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Abstract
NOVEL REGRESSION MODELS FOR DISCRETE RESPONSE

In a regression context, the aim is to analyse a response variable of interest conditional to a set of covariates. Inmany applications the response variable is discrete. Examples include the event of surviving a heart attack, thenumber of hospitalisation days, the number of times that individuals benefit of a health service, and so on. Thisthesis advances the methodology and the application of regression models with discrete response. First, wepresent a difference-in-differences approach to model a binary response in a health policy evaluation framework.In particular, generalized linear mixed methods are employed to model multiple dependent outcomes in orderto quantify the effect of an adopted pay-for-performance program while accounting for the heterogeneity ofthe data at the multiple nested levels. The results show how the policy had a positive effect on the hospitals’quality in terms of those outcomes that can be more influenced by a managerial activity. Next, we focus onregression models for count response variables. In a parametric framework, Poisson regression is the simplestmodel for count data though it is often found not adequate in real applications, particularly in the presenceof excessive zeros and in the case of dispersion, i.e. when the conditional mean is different to the conditionalvariance. Negative Binomial regression is the standard model for over-dispersed data, but it fails in thepresence of under-dispersion. Poisson-Inverse Gaussian regression can be used in the case of over-disperseddata, Generalised-Poisson regression can be employed in the case of under-dispersed data, and Conway-Maxwell Poisson regression can be employed in both cases of over- or under-dispersed data, though theinterpretability of these models is not straightforward and they are often found computationally demanding.While Jittering is the default non-parametric approach for count data, inference has to be made for eachindividual quantile, separate quantiles may cross and the underlying uniform random sampling can generateinstability in the estimation. These features motivate the development of a novel parametric regression modelfor counts via a Discrete Weibull distribution. This distribution is able to adapt to different types of dispersionrelative to Poisson, and it also has the advantage of having a closed form expression for the quantiles. Aswell as the standard regression model, generalized linear mixed models and generalized additive models arepresented via this distribution. Simulated and real data applications with different type of dispersion show agood performance of Discrete Weibull-based regression models compared with existing regression approachesfor count data.
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Chapter 1

Introduction

1.1 Modelling discrete response

The main assumption in Ordinary Least Squares regression (OLS) is that the dependent variable is continuous. Thereare numerous real world processes whose outcomes are count variables, e.g. the number of days spent in hospital, thenumber of deaths recorded for a specific condition, the number of doctor visits, and so on. In some cases, the dependentvariable takes the value of zero for many observations, e.g. the number of patients affected by a rare health condition. Inother cases, the dependent variable is binary, e.g. an event which either did or did not occur such as being exposed toa treatment, or the event of surviving a disease. This thesis describes alternatives and extensions to existing regressionmethods for these types of data. In particular the focus will be on logistic regression and on regression models for countdata. This chapter will introduce these topics and will conclude with the contribution of the thesis to this field.
1.2 Generalized linear and mixed regression models

1.2.1 Generalized linear model

Generalized linear models (GLMs) [67, 72] relax the assumptions made by linear regression models that the responsevariable is continuous and normally distributed conditional on the predictors. Let Y be the response variable and
X = (X1, . . . ,XP )T the vector of P predictors. The conditional distribution of Y |X is assumed to belong to an exponentialfamily, and it has probability function

f(y;λ,φ) = exp(yλ−a(λ)
φ +c(y,φ)) ,

where λ is the canonical parameter while φ is the dispersion parameter. The functions a(·), and c(·) are known anddetermine the type of distribution. The parameters λ and φ can be also defined as location and scale parameters,respectively. Thus, when the response variable has a distribution in the exponential family, its conditional mean can bewritten as E(Y |X ) = µ = a′(λ) and its conditional variance is in the form of var(Y |X ) = φa′′(λ), where a′(λ) and a′′(λ)are the first and second derivative of a(λ). This means that, up to a dispersion parameter φ, the distribution of Y isdetermined by its mean. Moreover, the dependence of the conditional mean on the regressors is specified as
g(µ(x)) = xθ,1
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where g(·) is a known link function, x = (1, x1, . . . , xP ), and θ = (θ0,θ1, . . . ,θP )T is the vector of regression coefficients.The link function can take different forms. In particular, the canonical link is defined when the link function makes thelinear predictor equal to the canonical parameter µ(x), as in the case of a standard linear regression, while the logit isthe respective link for the Binomial distribution, and the log is the link for both the Poisson and the Negative Binomialdistribution. These models are described in detail below. The parameters of these models are typically estimated bymaximum likelihood.
Logistic model Many count response variables are binary, that is the response variable can take two possible outcomesonly. In this case, the distribution of the response is specified by the probability P(Y = 1) = π of success, and by theprobability P(Y = 0) = (1−π) of failure. Thus, the conditional distribution is given by

Y |X ∼ Binomial(n,π(x)),
where the probability function is defined by

f(y;n,π(x)) = (ny
)(π(x))y(1−π(x))(n−y),

with 0< π(x)< 1. The logit link is typically used to link π with x, i.e.
logit(π(x)) = log( π(x)1−π(x)

)= xθ,

from which π(x) = exp(xθ)1+exp(xθ) gives the popular sigmoid relationship which guarantees that π(x) is between 0 and 1 for anyreal values of θ.
Poisson model The Poisson regression is the simplest count model upon which a variety of other count models arebased on. In this case,

Y |X ∼ Poisson(µ(x)),
that is

f(y;µ(x)) = e−µ(x)(µ(x))y
y!for y= 0,1,2, . . ., and µ(x)> 0. Here µ is linked to the predictors x via

log(µ(x)) = xθ,

that is there is a log-linear relationship between the mean and the predictors. For the properties of a Poisson distribution,
E(Y |X ) = var(Y |X ) = µ(x) making this regression model too restrictive in many applications.
Negative Binomial model Unlike the Poisson distribution, the variance of a Negative Binomial differs from its mean.The Negative Binomial distribution can be defined as

Y |X ∼Negative Binomial(µ(x),σ ),
and its probability function assumes the form

f(y;µ(x),σ ) = Γ(y+ 1
σ )Γ( 1

σ )Γ(y+1)
(

σµ(x)1+σµ(x)
)y( 11+σµ(x)

) 1
σ
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for y = 0,1,2, . . ., µ(x) > 0, and σ > 0. This parametrization is equivalent to that used by [8] except that there α = 1

σinstead of σ . For this parametrisation, µ(x) is the conditional mean, and µ(x) + σ (µ(x))2 is the conditional variance.The σ parameter is referred to as the dispersion parameter. Since µ(x)+ (µ(x))2σ ≥ 0, this model can only account forover-dispersion relative to Poisson. In a Negative Binomial model, the mean is linked to the predictors via
log(µ(x)) = xθ.

Poisson-inverse Gaussian model The Poisson-inverse Gaussian distribution was first introduced by [51]. This distri-bution is a two parameter mixture of the Poisson distribution and the inverse Gaussian distribution. Due to the flexibilityof the inverse Gaussian distribution, the Poisson-inverse Gaussian distribution is particularly useful for modelling over-dispersed count data. In particular [111] proposed this distribution as an alternative to the Negative Binomial. Theprobability function of the Poisson-inverse Gaussian distribution is given by
Y |X ∼ Poisson-inverse Gaussian(µ(x),σ ),

where
f(y;µ(x),σ ) =(2α 12

π

) µ(x)ye 1
σ Ky− 12 (α)(ασ )yy! ,

for y = 0,1,2, ..., with µ(x) > 0, σ > 0, α2 = 1
σ2 + 2µ(x)

σ , and where K (·) is a modified Bessel function of the third kind(see Chapter 10 in [2]). This parametrization is used in [30]. The Poisson-inverse Gaussian distribution can be seen as aspecial case of the Sichel(µ(x),σ ,ν), when ν = − 12 . For the Poisson-inverse Gaussian distribution µ(x)+ (µ(x))2σ is theconditional variance, and µ(x) is the conditional mean, which is linked to the predictors as follows
log(µ(x)) = xθ.

Conway–Maxwell–Poisson model It has been shown above how Poisson and Negative Binomial models can onlyaccount for equi- and over-dispersed data, respectively. Other models have been developed that can account for differenttypes of dispersion. Among others, the Conway–Maxwell–Poisson (COM-Poisson) distribution is a generalisation of thePoisson distribution which allows to model both under-dispersed and over-dispersed data. One of the properties of thePoisson distribution is that the ratio of consecutive probabilities is linear in y, i.e. P(Y=y−1|X )
P(Y=y|X ) = y

µ(x) , as showed in [68].However, in some applications this ratio may not decrease linearly in y, i.e. the distribution may have a thinner or thickertail than the Poisson. Generalising the above formulation leads to the ratio yσ
µ(x) , and the COM-Poisson is the distributionfor which this holds. In particular, this distribution can be described as

Y |X ∼ COM-Poisson(µ(x),σ )
which has probability function

f(y;µ(x),σ ) = (µ(x))y(y!)σ 1
Z (µ(x),σ ) ,

for y = 0,1,2, . . ., µ(x) > 0, σ ≥ 0, and where the function Z (µ(x),σ ) =∑∞j=0 (µ(x))j(j!)σ serves as a normalisation constant sothat the probability mass function sums to 1. When σ = 1, Z (µ(x),σ ) = eµ(x), so the COM-Poisson distribution equals theformulation of the Poisson distribution. For the COM-Poisson distribution, E(Y |X ) =∑∞j=0 j(µ(x))j(j!)σZ (µ(x),σ ) is the conditionalmean, and var(Y |X ) =∑∞j=0 j2(µ(x))j(j!)σZ (µ(x),σ ) is the conditional variance. These and other moments cannot be computed in closedform, leading to computational issues when performing parameter inference using this distribution. In a COM-Poisson
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regression model, the parameter µ is linked to the predictors via

log(µ(x)) = xθ.

Generalised Poisson model Another distribution which has been proposed for modelling under-dispersion is thegeneralized Poisson distribution [26] which is a generalization of a Poisson distribution with an additional parameterbeing added. In particular, this distribution can be described as
Y |X ∼ Generalised Poisson(µ(x),σ )

which has probability function
f(y;µ(x),σ ) = µ(x)(µ(x)+σy)y−1 exp(−µ(x)−σy)

y! ,

for y = 0,1,2, . . ., µ(x) > 0, max(−1,− θ
m ) 6 σ 6 1, and where m > 4. The Poisson distribution corresponds to the casewhere σ=0. The weakness of the generalised Poisson model, however, is its inability to capture some levels of dispersionbecause the distribution is truncated under certain conditions on the dispersion parameter. For the generalised Poissondistribution, E(Y |X ) = µ(x)1−σ is the conditional mean, and var(Y |X ) = µ(x)(1−σ )3 is the conditional variance. The parameter µis linked to the predictors via log(µ(x)) = xθ.

1.2.2 Excess zeros model

Zero inflated model

Zero inflated models are employed in the presence of an excess of zero counts in the response. As detailed in [18], thesemodels are two-component mixture models combining zeros coming from both a point mass at zero and a conditionalcount distribution, i.e. f(Y = y|X ) (or shortly f(y)). The zeros are modelled through a binomial model, typically with logitor probit link. The zero realisations are modelled with probability π(x), while the non-zeros with probability (1−π(x)).Thus,
Pr(Y |X ) =

π(x)+ (1−π(x))f(0) for y= 0(1−π(x))f(y) for y= 1,2,3, . . . ,
where 0< π(x)< 1 is the mixture proportion. Specifically, the mixture parameter can take any link function which mapsit into (−∞,+∞). The logit link is the preferred choice, thus π can be related to the set of covariates as

logit(π(x)) = log( π(x)1−π(x)
)= xγ,

which leads to π(x) = exp(xγ)1+exp(xγ) . For the second part of the mixture, i.e. f(y), one can use any of the models describedbefore.
Zero inflated Poisson model The zero inflated Poisson regression model which links both π and the mean to thepredictors can be written as

Pr(Y |X ) =
π(x)+ (1−π(x))e−µ(x) for y= 0(1−π(x))e−µ(x)(µ(x))yy! for y= 1,2,3, . . . . (1.1)
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Zero inflated Negative Binomial model The zero inflated Negative Binomial regression model which links both πand the mean to the predictors can be written as

Pr(Y |X ) =
π(x)+ (1−π(x))( 11+σµ(x)) 1

σ for y= 0
(1−π(x)) Γ(y+ 1

σ )Γ( 1
σ )Γ(y+1)

(
σµ(x)1+σµ(x))y( 11+σµ(x)) 1

σ for y= 1,2,3, . . . . (1.2)

Hurdle model

Hurdle models were first discussed by [27], but [70] significantly contributed to their application in modelling count data.Unlike the zero-inflated models, here the main idea is to partition the model estimating a process for the zero counts,and another for the positive counts via a zero-truncated count model, i.e. Poisson, Negative Binomial, or any other countdistribution of interest. Thus, assuming that the zero counts are generated by a binary process π(x), and the positivecounts by a zero-truncation of a density f(y), it follows that
Pr(Y |X ) =

π(x) for y= 0(1−π(x)) f(y)1−f(0) for y= 1,2,3, . . . .
Hurdle Poisson model The hurdle Poisson regression model which links both π and the mean to the predictors canbe written as

Pr(Y |X ) =
π(x) for y= 0(1−π(x)) (µ(x))ye−µ(x)(1−e−µ(x))y! for y= 1,2,3, . . . . (1.3)

Hurdle Negative Binomial model The hurdle Negative Binomial regression model which links both π and the meanto the predictors can be written as
Pr(Y |X ) =

π(x) for y= 0(1−π(x)) Γ(y+ 1
σ )Γ( 1

σ )Γ(y+1)
(

σµ(x)1+σµ(x))y 1(1+σµ(x)) 1
σ −1 for y= 1,2,3, . . . . (1.4)

1.2.3 Generalized linear mixed model

Standard regression models assume that the observations are independent of each other conditional on X . This is notappropriate in the case of correlated data structures, specifically for clustered or longitudinal data. In these studies,subjects are observed nested within larger units, e.g. hospitals, countries, or repeated observations within subjects. Datawith this structure are often referred to as multilevel or hierarchical data because the level-1 observations, i.e. subjects, arenested within the higher level-2 observations, i.e. clusters. Higher levels are also possible, e.g. a three-level study couldhave repeated level-1 observations nested within level-2 subjects which are nested within level-3 groups. Regressionmodels for the analysis of such multilevel data are referred to as generalized linear mixed models (GLMMs). These arean extension to the GLM in which the linear predictor contains random effects in addition to the usual fixed effects. Thebasic idea underlying a random effects model is that the heterogeneity across individuals in the regression coefficientscan be represented by additional random variables. In particular, the expected value of the outcome is related to thelinear predictors through the link function
g(µ(x,u)) = xθ+ zu,
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where x = (1, . . . , xp), θ = (θ0,θ1, . . . ,θP )T , and z = (z1, . . . , zQ) is the (1×Q) design vector for the (Q×1) random effects
u= (u1, . . . ,uQ)T , which are assumed i.i.d as u∼Normal(0,σ2

u). The variable σ2
u indicates the degree of heterogeneity ofthe subjects.

Logistic mixed model A logistic regression mixed effects model can be written as
logit(π(x,u)) = log( π(x,u)1−π(x,u)

)= xθ+ zu,

from which π(x,u) = exp(xθ+zu)1+exp(xθ+zu) .
Poisson mixed model A Poisson model which links the mean to the predictors via both fixed and random effects canbe written as log(µ(x,u)) = xθ+ zu.

Negative Binomial mixed model A Negative Binomial model which links the mean to the predictors via both fixedand random effects can be written as log(µ(x,u)) = xθ+ zu.

1.3 Generalized additive models

1.3.1 Generalized additive model for location

Generalized additive models (GAMs) were first introduced by [96], and later they have been made popular by [47]. GAMsallows for rather flexible specifications of the dependence of the response on the covariates. Specifically, while thesimplicity is retained through the additive form of the model, GAMs extend GLMs to non-linear covariate effects that maynot be identified using traditional linear regression methods. In particular, smooth non-linear functions are applied toeach individual predictors. As in the GLM framework, we consider a response variable which pertains to the exponentialfamily distribution, and we assume E(Y |X ) = µ(x). Thus, for a GAM model we can define the link
g(µ(x)) = s0 + P∑

p=1 sp(xp),
where sp(·) represents a generic smoothing function for the covariate xp. The non-linear functions can be defined withinspecified families, such as polynomials. Like for the GLMs, different link functions can be used, such as a logit or a probitfor binomial response, or a Poisson for count data, and so on. The parameter estimation is done through a combinationof back-fitting and iteratively re-weighted least squares algorithm.
1.3.2 Generalized additive model for location, scale and shape

GLMs and GAMs can be extended to modelling all the parameters of a distribution. The resulting model are calledgeneralized additive models for location, scale and shape (GAMLSS), and they were first introduced by [84]. In GAMLSS,the exponential family distribution assumption for the response variable Y |X is relaxed and replaced by a general



Chapter 1. Introduction 7
distribution family D, i.e. Y |X ∼ D(Y |X,θ), where D ∈D can be any distribution with K distribution parameters, suchas location (µ), scale (σ ), and shape parameters. These parameters are linked to the covariates as follows

gk (µk (x)) = sk0 + P∑
p=1 skp(xp)

where k = (1, . . . ,K ), skp(·) is a generic smoothing function for the kth distributional parameter, and for the covariate xp.Thus, all the parameters of the distribution can be modelled as smoothing functions of the explanatory variables, i.e. cubicsplines [44], penalized splines [37], lowess [25], varying coefficient models [48], and so on. In particular, this approachfacilitate the interpretation of all the parameters of the distribution which can be explicitly linked to the different momentsof the distribution, i.e. mean, variance, skewness and kurtosis.
It is possible to extend the previous model to a more general formulation, which specifically focus on the inclusion of therandom effects. Thus,

gk (µk (x,u)) = sk0 + P∑
p=1 skp(xp)+ zuk

where uk = (uT1 , . . . ,uQK T )T is the random effects vector of coefficients where each component is assumed to be distributedas Normal(0,σ2
uk ). Thus, within this more general formulation, each parameter of the distribution can be modelled througha smoothing function of each of the explanatory variables xp and of the random effects u.

Poisson GAMLSS random effects model The Poisson GAMLSS random effects regression model can be written as
log(µ(x,u)) = s0 + P∑

p=1 sp(xp)+ zu.

Negative Binomial GAMLSS random effects model There can be situations where the assumption of a constantscale parameter is not appropriate. Thus, modelling the scale parameter as a function of the explanatory variables maybe useful in explaining more variation of the data. As detailed in [94], modelling the dispersion parameter within the GLMframework was done by [73], [91] and [106]. Moreover, [82] introduced a class of additive models for mean and dispersion(MADAM), by including smooth functions for modelling simultaneously both µ and σ . A Negative Binomial GAMLSSrandom effects regression model can be written as
log(µ(x,u)) = s10 + P∑

p=1 s1p(xp)+ zu1
log(σ (x,u)) = s20 + P∑

p=1 s2p(xp)+ zu2.
Maximum likelihood inference for these models is more complex and is typically done by iteratively estimating regressionparameters for one link while keeping the other fixed (see Section 7.4 of [105]).
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1.4 Non-parametric regression model for discrete response: the jittering method

At the other spectrum of parametric approaches for discrete response, there are numerous non-parametric quantile re-gression methods which focus on modelling individual quantiles of the distribution and link these to the predictors viaa regression model, without making any assumption on the parametric form of the conditional distribution. Of particularnotice for discrete responses are the quantile regression models for binary and multinomial response of [65] and [52], andthe median regression approach with ordered response of [59]. For a general discrete response, the literature on quantileregression for counts is mainly dominated by the jittering approach of [64], which was also rephrased in a Bayesian frame-work by [58] in the context of an environmental epidemiology study. In these approaches, the fitted regression parametersare specific to the selected conditional quantile, by using quantile-specific loss functions. Performing inference acrossa range of quantiles provides a global picture of the conditional distribution of the response variable, without having tospecify the parametric form of the conditional distribution. This has proven to be rather useful in practice, particularlyin cases where the relationship between response and predictors is complex. In the case of a count, however, quantileregression analysis is complicated by the fact that a non-differentiable objective function is combined with a discretedependent variable. In such a context, it is impossible to obtain valid asymptotic results for the distribution of the con-ditional quantiles using standard econometric tools. In particular, let Y be the response variable and X = (X1, . . . ,XP )Tthe vector of P predictors. The main problem with the estimation of quantile regression when Y results from counts isthat because Y has a discrete distribution, the conditional τ-quantile µ(τ)(Y |X ) cannot be a continuous function of theparameter of interest. This limitation can be overcome by constructing a continuous random variable whose quantileshave a one to one relation with the quantiles of Y . In particular, to deal with this issue [64] suggests smoothing the databy introducing the jittering method. The basic idea of the jittering approach is to build a continuous r.v. whose quantileshave a known relationship with the quantiles of the response. This task is achieved by creating the auxiliary variable
Z = Y +U , where U ∼Uniform(0,1) which has conditional τ-quantiles linked to the predictors x via

log(µ(τ)(Z |X ))= xθ(τ),
where x = (1, x1, . . . , xP ), and θ(τ) = (θ(τ)0 ,θ(τ)1 , . . . ,θ(τ)

P )T is the vector of regression coefficients for the τ-quantile. Thus,standard quantile regression can be applied to a monotonic transformation of Z |X . The monotonic transformation ensuresthat the estimated quantiles of Z are non-negative and that the transform quantile function is linear in the parameters.Specifically, how the covariates affect µ(τ)(Z |X ) is of interest because
µ(τ)(Y |X ) = dµ(τ)(Z |X )−1e,

where d·e represents the ceiling function. In other words, it is possible to recover µ(τ)(Y |X ) on the basis of µ(τ)(Z |X ).As described above, this method requires sampling from a Uniform distribution, thus [64] suggest averaging the quantileregression estimates across M jittered sample. The resulting estimator is more efficient than the one obtained from asingle draw. However, these non-parametric approaches suffer from some drawbacks: inference has to be made for eachindividual quantile, separate quantiles may cross and, additionally in the case of the jittering method, the underlyinguniform random sampling can generate instability in the estimation. For example, considering the waiting times datawhich we will analyse in chapter 4 of this thesis, Figure 1.1 shows the marginal relation between the response variable(y-axis) i.e. the waiting times days before intervention for the three health conditions CABG, PTCA and hip replacementin Lombardy region of Italy, and a continuous variable (x-axis) i.e. the age of the patient, under a jittering approach (topplot) while keeping all the other covariates used in the regression model fixed to their mean if continuous, and to theirmode if discrete. For the same data and via the same model specification, the bottom plot shows the marginal relationbetween the response and the predictor obtained via the parametric Discrete Weibull regression model that is introducedin this thesis.
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Jittering

Discrete Weibull

FIGURE 1.1: Plot of the τ-quantiles of the response (y-axis) over the variable age (x-axis) under a linear non-parametric (top) and parametric (bottom) fit of the model and while keeping all the other covariates fixed to theirmean if continuous, and to their mode if discrete for the hospital waiting times data.
1.5 Contributions of the thesis

1.5.1 Difference-in-differences approach via a logistic linear mixed model

In chapter 2 we present a generalized linear mixed model for a binary response in a health policy evaluation frameworkthrough a difference-in-differences approach. In particular, the focus is on the evaluation of a pay-for-performance program,which is widely adopted to drive improvements in the quality of healthcare provision. In this field, previous studiesevaluating the impact of these programs are either limited by the number of health outcomes or of medical conditionsconsidered. Thus, our novel approach aims to evaluate the effectiveness of the adopted pay-for-performance program onthe basis of five health outcomes, and across a wide range of medical conditions. The context of the study is Lombardyregion of Italy, where a rewarding program was introduced in 2012. The model includes multiple dependent outcomesthat allow quantifying the joint effect of the program, and random effects that account for the heterogeneity of the data atthe ward and hospital level. Our results show that the policy had a positive effect on the hospitals’ performances in termsof those outcomes that can be more influenced by a managerial activity, namely the number of readmissions, transfers
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and returns to surgery room. No significant changes which can be related to the pay-for-performance introduction areobserved for the number of voluntary discharges and for mortality. Moreover, our study shows evidence that the medicalwards have reacted more strongly to the P4P program than the surgical ones, whereas only limited evidence is found insupport of a different policy reaction across types of hospital ownership. Finally, the evaluation found no evidence of adistortion of the hospital behaviour aimed at inflating the performance evaluation such as cream skimming behaviour.
1.5.2 Linear models for counts via a Discrete Weibull distribution

In chapter 3 we focus on linear regression models for count data. This analysis was motivated by the lack of a unifiedand flexible regression framework for count response which can easily adapt to the different cases of dispersion, and inpresence of excessive zeros in the data. This has been addressed with the use of a Discrete Weibull distribution. Beyondequi-dispersion, this model has the ability to capture over-dispersion, and under-dispersion relative to Poisson, i.e. allcases where the conditional variance is different to the mean. Moreover, this model is particularly flexible in the presenceof an excess of zeros. In addition to the standard regression model, the analysis has been extended with the inclusion ofmultilevel models i.e. mixed effects models, which typically recognise the existence of hierarchies of the data measuredat multiple nested levels. Simulated and real data examples are used to show the performance obtained via the DiscreteWeibull model in comparison with existing parametric approaches.
1.5.3 Non-linear models for counts via a Discrete Weibull distribution

In chapter 4 we extend the regression framework for count response to more complex dependencies where linearity orthe parametric form of the distribution may be too restrictive. Thus, we developed a Discrete Weibull-based generalizedadditive model. Different smoothing functions, i.e. polynomials and un-penalized regression spline of a variable, areproposed in the link function. Maximum likelihood is considered as well as a Lasso regression approach for variableselection. Lastly, Gaussian kernel weights are presented for a local regression approach. A comparison on simulated andreal data studies is made with existing parametric approaches and non-parametric regression models for counts, such asthe jittering method of [64]. We show how our flexible regression method can approximate well the conditional distributionof the response given the predictors across a number of quantiles, and how its performance is comparable to that of thenon-parametric quantile regression approach of [64] which fits separate models for each conditional quantile.



Chapter 2

Difference-in-differences approach via a
logistic linear mixed model

In this chapter we present a generalized linear mixed model for a binary response in a health policy evaluation frameworkthrough a Difference-In-Differences approach (DID) approach. In particular, the focus is on the evaluation of a pay-for-performance (P4P) program, which is widely adopted to drive improvements in the quality of healthcare provision. Theanalyses presented in this chapter have been performed in SAS 9.3 software [54], and in Stata 14 software [95].
2.1 Overview of the study

As part of a reforming project aimed to improve the efficiency, the effectiveness, and the quality of care delivered by afinancially sustainable health system, in 2012 the Italian region of Lombardy adopted a P4P. Motivated by the necessityto evaluate the effectiveness of this newly introduced program, we investigate whether the P4P incentives have led tobetter health outcomes.
2.1.1 The P4P program and the experimental design for policy evaluation

Quality improvement is the principal strategy of any healthcare system. For this reason, there is a strong focus onassessment and redesign of the work process and of the systems themselves in order to lower the costs and to delivercare that is safer and which results in the best outcome for patients. The adoption of a P4P approach aims to drive thehospitals in this direction. The idea behind the implementation of a P4P approach is quite simple: in order to improvethe overall quality delivered, healthcare providers are given the opportunity to have their reimbursement increased whenthey achieve specified quality benchmarks [7, 36]. From an economics perspective, the hospital is considered as a profitmaximizer agent which is encouraged to compete for quality in order to obtain a financial reward, rather than to attractmore patients. Therefore, a P4P program is considered efficient when an improved quality of care is achieved with equalor lower costs for the overall healthcare system [39]. Clearly the evaluation of the quality delivered is a crucial part toevery P4P approach. While quality in healthcare is a broad concept composed of different dimensions, such as efficiency,appropriateness and customer satisfaction, P4P programs refer to the healthcare system’s quality mostly in terms of itseffectiveness [102].
11
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Due to the potential of P4P programs, in recent years there has been a growing interest in the application of theseprograms to the healthcare systems of different countries. These studies are collected in several systematic reviews[35, 76, 103], but mixed results transpire about the impact of the programs to the quality of care. The aim of the currentchapter is to contribute to the existing literature by providing a thorough evaluation of a P4P program and its effect onthe overall quality of the healthcare system. The study discussed in this chapter pertains the Lombardy region of Italy,previously identified as a suitable context for the adoption of P4P program [23]. Data were collected both two years priorand two year post introduction of the policy for all hospitals in the Lombardy region. As data are available also two yearpost introduction of the policy, our analysis can reveal a possible delayed impact of the P4P program. In this way, weextend the existing literature with an evaluation of the impact beyond the immediate P4P introduction.
2.1.2 The specifics of the P4P program in Italy and its implementation

The Italian healthcare system provides universal healthcare coverage. The state government guarantees the EssentialLevels of Assistance (LEA) over all regions of the country. Each region has administrative and executive freedom ofimplementation of the LEA, and citizens may freely choose the healthcare provider. The Italian NHS is funded mainlyfrom general taxation. Financial resources for NHS are transferred from the state to a regional budget, and are thenmanaged by the local healthcare system [66]. Among the 21 regions in Italy, Lombardy is one of the top-ranked for socio-demographic indicators and one of the most competitive areas in Europe according to economic indicators. Lombardy hasa population of 10 million residents, equal to 16% of the total Italian population, with a density of 404 inhabitants perkm2. The Lombardy healthcare system comprises of circa 150 hospitals generating around 1.6 million discharges annually,with circa 18 billion Euro allocated for the healthcare spending i.e. circa 75% of the regional budget, every year.
A regional reform in 1997 radically transformed the healthcare system in Lombardy into a quasi-market healthcare systemin which citizens can freely choose the provider regardless of its ownership (private for profit, private not for profit, orpublic). In particular, the healthcare system in Lombardy is entirely built on a prospective payment system based on aclassification of the inpatient stay into groups for the purposes of payment, i.e. Diagnosis-related Groups (DRGs). Thefactors used to determine the DRGs payment amount include the diagnosis involved as well as the hospital resourcesnecessary to treat the condition.
In 2012 a tailored P4P program was introduced to control the payment amount provided to each hospital on the basisof their effectiveness. Specifically, on top of their annual budget each hospital receive a financial incentives based ona weighted mean of the hospital’s evaluated outcomes. According to this measure the best-performing hospital receivesan increment of 2% of its annual budget, the least-performing one gets a penalty of 2%, whereas all the others receivean amount between the interval [−2%,+2%] and proportional to the distance between their score and the score of theleast-performing hospital (see page 84 of [3], and [4]).
The evaluation of the hospitals outcome measures is assessed on 9 wards exogenously selected by the regional health-care management, namely cardiology, cardiosurgery, neurosurgery, neurology, oncology, general medicine, urology, or-thopaedic, and surgery. These wards have been chosen according to their coverage within the hospitals, the inclusionof both medical and surgical disciplines as well as the level of specialization, i.e. cardiosurgery and neurosurgery, andconstitute the treatment group in the P4P evaluation analysis, whereas the other hospital wards not involved in theprogram belong to the control group. Further details on the policy introduction can be found in the regional resolution[3]. It is interesting to note that the evaluation is based on the selected wards, whereas the incentive is provided to thehospital as a whole, as typical of P4P programmes in healthcare [22]. Each hospitals have then a large accountability onhow to allocate the incentive payments. Typically, provider institutions allocate the financial resources to make generalimprovements in the service delivered, and in particular related to the performance measures. In the case of the Lombardyregion, it is also possible that the physicians and/or nurses working in the treated wards received a direct bonus to drive
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performance improvement. This is however bound to vary across hospitals, so we do not expect to see the impact of thisin our policy evaluation.
As in the evaluation of any policy, a choice needs to be made about which health outcome to use for quantifying the impactof the P4P program. In many studies, a single outcome is considered, such as overall mortality in England [98]. In addition,the evaluation of P4P programmes is often confined to specific clinical conditions, such as acute myocardial infarction(AMI), coronary artery bypass graft surgery (CABG), heart failure, pneumonia, and hip/knee replacement [42, 56, 61, 90, 98].In contrast to these studies, we evaluate the performance of the hospitals by considering five outcome measures, namelyoverall mortality (in-hospital mortality + 30 days after discharge), number of transfers to a different hospital, number ofdischarges against medical advice, number of returns to the surgery room, and number of repeated hospitalisations orreadmissions. The choice of these outcomes was based both on their popularity in the scientific literature, i.e. mortalityand readmissions, and on the necessity of driving hospitals towards a reduction in the number of adverse outcomes, suchas voluntary discharges, return to the surgery room and transfers to a different hospital. These outcomes measure havebeen previously identified by the Lombardy regional healthcare directorate to systematically evaluate the performance ofthe hospitals in terms of the quality supplied. More details of this process are given in [16] and in the regional resolution(page 4 of [4]).
2.1.3 Data

The database was gathered from the Lombardy healthcare information system. Data were collected on patients admittedto 142 hospitals during the four years 2010-2013 (two before and two in the policy-on period). In this period the hospitalsprovided 3,581,389 hospitalisations, coded in the available hospital discharge chart. In our analysis, we included patientsadmitted for acute care and we excluded patients living outside the region, patients younger than two years old orpatients hospitalized in day-hospital, rehabilitation or palliative treatments. We used variables both at the patient andward/hospital level. At the patient level, there is information on their gender, age, number of transit to the intensivecare unit during hospitalization, the weight of the financial reimbursement corresponding to the patient’s disease, andthe comorbidity index. The latter is measured as in [38] and indicates the presence of one or more additional diseases ordisorders co-occurring with a primary disease or disorder. At the hospital level, we know whether the hospital is affiliatedto a medical school in which medical students receive practical training, whether the hospital is mono-specialistic orgeneral, and whether there is presence of high-technology instrumentation in the ward. Finally, we include the hospitals’ownership, which categorizes the hospital as private for profit, private not-for-profit or public, and we distinguish wardswhose prevalent activity is surgical from the medical ones. The effectiveness of the policy is evaluated over the five healthoutcomes described in the previous section, namely mortality, readmissions, transfers, returns, and voluntary discharges.We should clarify that the outcome return to the surgery room can be evaluated only for the surgical wards.
Table 2.1 reports the average (and the standard deviations in brackets) of the variables in the dataset by treatment andacross the four years of the study (two pre and two post policy). It appears that the mix of patients within the treatedand untreated wards is relatively constant over time, but that there are differences between the two groups. In particular,patients that are admitted to the treated wards are on average older than those admitted to the untreated ward. Inaddition, the treated wards consider higher risk patients than the untreated wards in terms of DRGs weight, number ofcomorbidities and intensive care treatment. The percentage of comorbidities (roughly 30%) is however still relatively smallcompared to other countries e.g. 0.69% in Northern Ireland in 2011/2012 [80]. This is justified by the coding rules thataffect the healthcare system in Lombardy, whereby only the comorbidities directly connected with the treated DRGs areregistered. Considering the variables related to the hospitals and the wards, we observe that the overall composition ofthe hospitals has not changed during the policy period, with surgical wards covering around 51% of the overall admissions.Moreover, 71% of the hospitalizations are provided by the public hospitals, whereas 30% of the patients are admitted to a
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TABLE 2.1: Sample means and standard deviations in brackets for the covariates in the study from the Lombardyhospital inpatient stays for each year before and after the policy introduction.Untreated TreatedPre-policy Post-policy Pre-policy Post-policy2010 2011 2012 2013 2010 2011 2012 2013PatientMALE 0.2589 0.2613 0.2646 0.2673 0.5399 0.5413 0.5397 0.5383(0.43) (0.43) (0.44) (0.44) (0.49) (0.49) (0.49) (0.49)AGE 46.076 46.585 46.973 47.212 64.526 64.877 65.054 65.384(21.1) (21.1) (21.2) (21.3) (18.7) (18.5) (18.6) (18.5)DRGWEIGHT 0.892 0.9127 0.9139 0.919 1.2974 1.3252 1.3167 1.3277(0.81) (0.84) (0.83) (0.85) (1.12) (1.15) (1.12) (1.13)COMORBIDITY 0.2379 0.2128 0.2156 0.2099 0.4082 0.3303 0.325 0.3121(0.58) (0.55) (0.56) (0.55) (0.72) (0.66) (0.65) (0.64)INTCARE 0.015 0.0164 0.017 0.0174 0.0644 0.0676 0.0677 0.0687(0.12) (0.12) (0.12) (0.13) (0.24) (0.25) (0.25) (0.25)Ward/HospitalTECHNOLOGY 0.8585 0.8588 0.8614 0.8683 0.8079 0.807 0.8111 0.8119(0.34) (0.34) (0.34) (0.33) (0.39) (0.39) (0.39) (0.39)TEACHING 0.2684 0.2708 0.2754 0.2734 0.2455 0.2456 0.2471 0.2456(0.44) (0.44) (0.44) (0.44) (0.43) (0.43) (0.43) (0.43)SPECIALISED 0.052 0.0474 0.0482 0.049 0.0387 0.0386 0.0406 0.0393(0.22) (0.21) (0.21) (0.21) (0.19) (0.19) (0.19) (0.19)SURGICAL 0.5637 0.5535 0.5646 0.562 0.5088 0.4884 0.4942 0.487(0.49) (0.49) (0.49) (0.49) (0.49) (0.49) (0.5)) (0.49)OWN:NOPROFIT 0.0758 0.0765 0.077 0.0793 0.0947 0.0948 0.0975 0.096(0.26) (0.26) (0.26) (0.27) (0.29) (0.29) (0.29) (0.29)OWN:PROFIT 0.1376 0.1373 0.1346 0.1264 0.2314 0.2354 0.2308 0.2327(0.34) (0.34) (0.34) (0.33) (0.42) (0.42) (0.42) (0.42)OWN:PUBLIC 0.7866 0.7862 0.7884 0.7943 0.6739 0.6698 0.6717 0.6713(0.49) (0.49) (0.49) (0.49) (0.49) (0.49) (0.5)) (0.49)OutcomesTRANSFERS 0.0056 0.0052 0.0036 0.0035 0.0127 0.0127 0.0053 0.0051(0.07) (0.07) (0.06) (0.05) (0.11) (0.11) (0.07) (0.07)RETURN 0.0592 0.0632 0.0099 0.0108 0.0431 0.0443 0.0154 0.0161(0.23) (0.24) (0.09) (0.10) (0.20) (0.20) (0.12) (0.12)MORTALITY 0.0268 0.0276 0.029 0.0273 0.0593 0.0608 0.0611 0.0601(0.16) (0.16) (0.16) (0.16) (0.23) (0.23) (0.23) (0.23)READMISSIONS 0.1216 0.1149 0.1117 0.1091 0.1335 0.1277 0.1211 0.1111(0.32) (0.31) (0.31) (0.31) (0.34) (0.33) (0.32) (0.31)VOLDISCH 0.0084 0.0085 0.0082 0.0084 0.0088 0.0081 0.0076 0.007(0.09) (0.09) (0.09) (0.09) (0.09) (0.08) (0.08) (0.08)

private provider (20% in the for profit hospitals and 9% in the not-for-profit). With regards to the health outcome measures,three out of the five outcomes, namely transfers, return to the surgery room and readmissions, show a reduction after theintroduction of the P4P program.
2.2 Methods

2.2.1 The DID approach

A before/after analysis, e.g. Hospital Quality Incentive Demonstration in USA [42], or a comparison analysis betweenparticipants and non-participants e.g. Quality Bonus System programme in Estonia [104] or Payment for Public HealthObjectives programme in France [28], are common approaches for policy evaluation. When before/after analysis is con-sidered, the average outcome is compared before and after the treatment in the treatment group only. The simplicity of
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this approach comes at the expenses of the validity of the design study, as a time trend in the outcome may confoundthe effect of the treatment. One can compare the average difference in the outcome measure post treatment, between thetreatment and control group, ignoring what happened in the pre-treatment period. In this case, the true treatment effectcan be confounded by permanent differences in the treatment and control group that existed prior to any treatment. Forthese reasons, the DID method represent a stronger approach in terms of policy evaluations, and as such should be thepreferred method for evaluating changes in health care policies [32].
The DID estimator is defined as a difference between the difference in the average outcome in the treatment group beforeand after the treatment and the same difference taken in the control group. In its simplest form, this can be achieved viaa regression model which considers the treatment and the post policy factors only. For a continuous response, this isgiven by

Y = θ0 +θ1POST+θ2TREATMENT+θ3POST ·TREATMENT+ ε.

The model has the following conditional expectations:
E(Y |X,POST = 0,TREATMENT = 0) = θ0,
E(Y |X,POST = 1,TREATMENT = 0) = θ0 +θ1,
E(Y |X,POST = 0,TREATMENT = 1) = θ0 +θ2,
E(Y |X,POST = 1,TREATMENT = 1) = θ0 +θ1 +θ2 +θ3,

(2.1)

from which
D1 = E(Y |X,POST = 1,TREATMENT = 1)−E(Y |X,POST = 0,TREATMENT = 1) = θ1 +θ3D2 = E(Y |X,POST = 1,TREATMENT = 0)−E(Y |X,POST = 0,TREATMENT = 0) = θ1DID = D1−D2 = θ3

(2.2)
provide the differences in the expected outcome before and after the policy introduction in the treatment group, controlgroup and their difference, respectively. Therefore the changes in outcome which are related to the policy introductionbeyond background trends can be estimated from the double difference between the treated an the control group.
As detailed in [1], the DID estimator requires that the trends in outcomes between the treated and comparison groups arethe same prior to the intervention i.e. parallel trend assumption. If true, it is reasonable to assume that these paralleltrends would continue for both groups even if the program was not implemented. Moreover, any events occurring duringor after the time the policy changed are assumed to equally affect the treatment and comparison groups. Thus, ideally,the only difference between the comparison group and the treatment group would be the exposure to the policy.
2.2.2 The econometric model for the P4P policy evaluation

We test the effect of the policy using a DID approach on data between 2010 and 2013, i.e. two year pre- and two yearpost-policy. To justify the suitability of this approach, the following considerations are needed:
1. The wards are split into a treatment group, i.e. the 9 wards that are used for the hospital evaluation, and a controlgroup, i.e. the remaining wards. The allocation of the wards in one of these groups was made exogenously prior tothe introduction of the policy [3]. There is an underlying assumption here that, although the incentive is providedto the hospital as a whole, the incentive is dictated only by the performance of the wards treated. Combined withthe fact that the individual wards operate autonomously, the untreated wards can be considered as an independent
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group. A similar analysis was conducted by [98], where the treatment and control groups are defined within eachhospital on the basis of selected diagnoses.

2. Units do not switch between the control and the treatment group: improvements in performance of the control groupdo not affect the financial incentives gained by the hospital. We will however test whether there is evidence of adistortion of the hospital behaviour aimed at inflating the performance evaluation, such as the lift of resources infavour of the treated wards.
3. Any macro changes affect both groups equally and differences between the treatment and the control group remainconstant in the absence of treatment, i.e. parallel trend prior to treatment. The check of this assumption is goingto be discussed later in the results section. Of notice is also the fact that the regional resolution was formallyannounced in December 2011 [3], and applied from early January 2012 [4]. Thus, hospitals had no possibility toanticipate changes.

As discussed in the previous section, the policy evaluation is based on five health outcomes. Given the mix of patients inthe different wards, the outcomes are first adjusted by patients characteristics via the use of a multilevel logistic mixedeffect model [43, 92]. This model allows to account for the hierarchical structure of the data whereby patients are clusteredinto wards and wards are nested into hospitals. In addition, the longitudinal structure of the data means that a time effectis also to be expected. In detail, let Ypwhtm represent a binary health outcome for patient p (with p = 1, . . . ,Pwhtm ) inthe ward w (with w = 1, . . . ,Whtm ), belonging to the hospital h (with h= 1, . . . ,Ht), hospitalized at time tm (month of theyears t = 2010, . . . ,2013). Let πpwhtm be the conditional probability of Ypwhtm being equal to 1. We consider the logisticregression mixed model
logit(πpwhtm (x,u)) = log( πpwhtm (x,u)1−πpwhtm (x,u)

)= θxpwhtm +uwhtm +uhtm , (2.3)
where θ = (θ0,θ1 . . . ,θP )T is a vector of coefficients for the xpwhtm = (1, x1, . . . , xP ) patient-level covariates, and uwhtm isthe random effects for the ward w nested within hospital h at time tm capturing the latent heterogeneity of the wards,whereas uhtm is the random effects capturing the latent heterogeneity of the hospital h at time tm. In particular, uwhtmand uhtm are independent and identically distributed i.e. N(0,σ2

uwhtm ) and N(0,σ2
uhtm ) respectively, and are assumed to beuncorrelated with the regressors.

The model in Equation 2.3 returns the patients’ predicted probabilities
π̂pwhtm (x,u) = exp(θxpwhtm +uwhtm +uhtm )1+exp(θxpwhtm +uwhtm +uhtm ) , (2.4)

which we collapse at the ward level over time in order to obtain the average predicted health outcome
HOwhtm = ∑

p∈Pwhtm
π̂pwhtm (x,u)

|Pwhtm |
, (2.5)

where Pwhtm is the set of patients admitted in the ward w of the hospital h in the month m (m= 1, . . . ,12) of the year tand |Pwhtm | is the cardinality of this set.
The aim is now to quantify the policy effect on the basis of the five (adjusted) health outcomes. As we anticipate acorrelation between the five health outcomes, we consider a multivariate DID model, rather than a separate model foreach outcome. In this way, we are able to quantify the overall effect of the policy across all health outcomes, as well as atthe individual level. Let then HO(λ)

whtm denote the health outcome λ, namely readmissions (λ= 1), mortality (λ= 2), returnto the surgical room (λ= 3), transfers (λ= 4) and voluntary discharges (λ= 5), at month m of year t (t = 2010, . . . ,2013) of
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ward w (w = 1, . . . ,Wh) belonging to hospital h (with h= 1, . . . ,H). We consider the following multivariate mixed model:

HO(λ)
whtm = u(λ)

h + θ(λ)1 TREATEDwh + 2013∑
j=2011 θ

(λ)2j I(j = t)+
2013∑
j=2011 θ

(λ)3j (I(j = t) ·TREATEDwh) + θ(λ)4 MONTHtm + ε(λ)
whtm ,

(2.6)

where the dummy variable TREATEDwh indicates whether the ward w within the hospital h is in the treatment groupor not, the indicator variable I(j = t) indexes the four years of the study (two pre and two post policy), with 2010set as reference category, MONTH is a continuous variable, taking values 1 to 48 and added to correct for a possibleseasonality effect, u(λ)
h is the random hospital effect for outcome λ, and the error ε(λ)

whtm = (ε(1)
whtm , . . . , ε

(5)
whtm ) has a multivariatedistribution εwhtm ∼N(0,Σ), with the covariance Σ accounting for possible dependencies between the different outcomes.The parameter θ(λ)3j is of interest in this model. Under the assumption of a parallel trend pre-policy, we expect θ(λ)3,2011 = 0for all outcomes, whereas the parameters θ(λ)3,2012 and θ(λ)3,2013 represent the DID of average outcomes between the treatedand control wards from the pre to the post-policy years. The two different parameters for the post-policy period let usdetect whether the impact of the policy was immediate in the first year of its introduction or whether it was delayed inthe second year [11]. This model allows us to detect the effect of the policy across all wards.

A second objective of the study is to detect whether the reaction to the P4P adoption is different depending on the ward’stype. In particular, we group all wards into two types: surgical and medical, and extend the model in Equation 2.6 to:
HO(λ)

whtm = u(λ)
h + θ(λ)1 TREATEDwh + 2013∑

j=2011 θ
(λ)2j I(j = t)+

2∑
k=1θ

(λ)3k I(k = SURGICALwh) + 2013∑
j=2011

(
θ(λ)4j I(j = t) · TREATEDwh

)+
2013∑
j=2011

2∑
k=1

(
θ(λ)5jk I(j = t) · I(k = SURGICALwh)) + 2∑

k=1
(
θ(λ)6k I(k = SURGICALwh) ·TREATEDwh

)+
2013∑
j=2011

2∑
k=1

(
θ(λ)7jk I(j = t) · I(k = SURGICALwh) ·TREATEDwh

) +θ(λ)8 MONTHtm + ε(λ)
whtm ,

(2.7)

with the variable SURGICAL defined as 1 if the prevalent activity of the ward is surgical and 0 otherwise. In this model,the DID parameters θ(λ)7,2012,k and θ(λ)7,2013,k are of interest as they represent the differences in average outcomes betweenthe surgical treated wards and the surgical control wards, from the pre to the post policy period and with respect to themedical wards which are taken as the reference category. For this model, we do not consider the health outcome returnsto the surgery room as this is observed only for the surgical wards.
Finally, in the results section, we also consider a similar model for the detection of possible different reactions to the P4Padoption depending on the type of hospital ownership. In particular, we compare private for-profit, private not-for-profitand public hospitals. Due to the more strict budget constrains for private hospitals, these hospitals may react moreactively to the policy than public ones. Furthermore, private for-profit hospitals are more oriented towards profit thanthe other hospitals and may therefore be more driven to increase their outcome measures in order to obtain a financialreward.
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2.3 Policy evaluation

In this section, we use the models described above to evaluate the impact of the introduction of the P4P policy inLombardy. Table 2.2 reports the fixed effects estimates of the model in Equation 2.6. As all outcomes are constrained tobe between 0 and 1, the parameter estimates and the p-values are computed by a non-parametric bootstrap approach.For this, we use a method specifically developed for multilevel modelling [19, 109].
TABLE 2.2: Parameters estimates for the fixed part of the multivariate mixed model in Equation 2.6.MORTALITY READMISSIONS RETURN TRANSFERS VOL. DISCH.MONTHS 0.001 -0.001 0.001 -0.001 0.001(0.001) (0.001) (0.001) (0.001) (0.001)TREATED 0.02*** 0.004*** -0.037*** 0.006*** 0.001(0.001) (0.001) (0.002) (0.001) (0.001)YEAR2010 0.044*** 0.13*** 0.084*** 0.009*** 0.009***(0.002) (0.002) (0.003) (0.002) (0.002)YEAR2011 0.044*** 0.125*** 0.082*** 0.008*** 0.008***(0.003) (0.003) (0.004) (0.003) (0.003)YEAR2012 0.045*** 0.122*** 0.021*** 0.006* 0.008**(0.003) (0.003) (0.005) (0.003) (0.003)YEAR2013 0.041*** 0.118*** 0.022*** 0.005 0.008**(0.004) (0.004) (0.006) (0.004) (0.004)TREATED·YEAR2011 0.002 0.001 0.002 0.001 -0.001(0.001) (0.001) (0.003) (0.001) (0.001)TREATED·YEAR2012 0.001 -0.005*** 0.026*** -0.005*** -0.001(0.001) (0.001) (0.003) (0.001) (0.001)TREATED·YEAR2013 0.005*** -0.011*** 0.025*** -0.005*** -0.001(0.001) (0.001) (0.003) (0.001) (0.001)The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

2.3.1 Testing the assumptions of a DID approach for policy evaluation

Table 2.2 shows how the parameters θ(λ)3,2011 of the interaction between TREATED and YEAR2011 are not significantlydifferent from zero. This provides evidence in favour of the parallel trend assumption for each individual health outcome,i.e. the differences between the average outcome of the treatment and control group are constant prior to the introductionof the policy. This assumption is needed in order to evaluate the impact of the policy using a DID approach. As werequire a parallel trend to be satisfied for all health outcomes simultaneously, we use a multivariate analysis of variancetest (MANOVA) to test the null hypothesis H0 : θ(1)3,2011 = . . . θ(5)3,2011 = 0 under the model in Equation 2.6. The Wilks’lambda statistics returns a p-value of 0.2676, which provides further evidence in support of the parallel trend assumptionacross all health outcomes.
Given that the incentive is provided to the hospital as a whole, it is also necessary to test whether the introduction ofthe P4P may have had a negative spillover effect between the treated and the untreated wards. This would violate theassumption of independence between the two groups and thus bias the policy evaluation. Although within each ward thephysicians and nurses detain managerial freedom on whether and how to treat the patients, spillover effects could takethe form of hospitals lifting resources in favour of the treated wards to the expense of the untreated wards. To this aim,we assess whether there has been a difference in the total number of hours worked by physicians and nurses within eachhospital between the treated and the untreated wards from the year 2011 (pre-policy) to 2012 (post-policy). We consider58 hospitals which have a balanced proportion of treated/untreated wards.
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FIGURE 2.1: Box-plot of the number of hours worked by physicians and nurses across hospitals before and afterthe policy introduction for the treated (top) and untreated (bottom) wards.



Chapter 2. Difference-in-differences approach via a logistic linear mixed model 20
Figure 2.1 shows the box-plot of the number of hours worked by hospital and year. The figure shows how, within eachhospital, the number of hours worked is stable across the two groups and between the pre and post-policy period,suggesting that no shift of resources occurred, at least at the level of labour. This is supported by a non-significant p-value for the year-treatment interaction term (p-value=0.812) from a Negative Binomial generalised linear model (GLM)which also includes hospitals fixed effects. In addition to the allocation of resources, another possible spillover effectcould result from the sharing of technological resources between the different wards. This may have an impact on surgicaloutcomes, such as the return to the surgery room in our case. We have no data to evaluate this, but we will take this intoconsideration when interpreting the results of the policy evaluation analysis.
Together with the spillover effects mentioned above between wards within the same hospital, the different providers mayhave also reacted to the policy by avoiding to treat high risk patients [60]. In order to check for this potential distortion, wehave analysed whether the cream skimming index, calculated as in [14], changed significantly between the pre and the postpolicy period. As above, we restrict the analysis to the hospitals which have a balanced proportion of treated/untreatedwards and we perform the pre-post analysis separately for the treated and untreated groups. Using a multiple regressionmodel, we find only four hospitals (out of 58) with a significant negative interaction with the post-policy term, two forthe treated wards (p-values=4.54E−08, and 0.0025) and two for the untreated ones (p-values= 0.02, and 0.0314). Thus,we conclude that overall the hospitals show no evidence of a gaming behaviour in selecting the mix of patients in thepost-policy period.
2.3.2 Do the hospitals react positively to the policy?

We are now in a position to evaluate the impact of the P4P policy by considering the estimates of the coefficients of theinteraction between the treatment variable and the post-policy years in Table 2.2, i.e. θ(λ)3,2012 and θ(λ)3,2013. As all healthoutcomes are improved if they are reduced, a significant and negative coefficient for these interactions would mean thatthe P4P introduction had a positive effect on quality. This result is confirmed for readmissions (θ3,2012=-0.0051, θ3,2013=-0.0112) and transfers (θ3,2012=-0.0046, θ3,2013=-0.0047). This is a clear signal that the hospital activity was modified asa result of the P4P introduction, as both readmissions and transfers are directly affected by the hospital organization.In particular, the results show that the P4P program may have reduced the hospital attitude of readmitting patients inorder to increase the number of the DRGs provided [14]. The reduction in the transfers of the patients between hospitalsin the treated wards is also particularly encouraging, considering that transfers are directly linked to the patient safetyand continuity of care.
In order to further quantify the impact of the policy and to confirm the significance of the results on the health outcomesin absolute terms, Figure 2.2 plots the marginal effects of each health outcome in Equation 2.6 for treated and untreatedwards and over the observation period [5, 57]. As well as verifying the parallel trend in the pre-policy period, the plotsshow a clear improvement for readmissions and transfers. In particular, there is an absolute difference of 0.91% and 1.52%in the average number of readmissions between the treated and untreated wards in the year 2012 and 2013, respectively,and of 0.31% in the year 2011, whereas there is a difference of 0.19% and 0.18% in the average number of transfers betweenthe treated and untreated wards in the year 2012 and 2013, respectively, and of 0.72% in the year 2011. This leads toDID reductions of 0.60% (readmissions) and 0.53% (transfers) in 2012 compared to 2011 and a further reduction of 0.61%(readmissions) and 0.01% (transfers) in 2013. The predicted percentages of reduction correspond to a P4P-related savingof 4,324 readmissions and 4,295 transfers in the treated wards in 2012 and a further reduction of 4,871 readmissions and157 transfers in 2013.
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Expected Mortality Expected Readmissions

Expected Returns Expected Transfers

Expected Voluntary Discharges

FIGURE 2.2: Marginal effects of all health outcomes per year and treatment for the model in Equation 2.6.
The picture for the other three health outcomes is more complex than for transfers and readmissions. The average numberof returns to the surgery room seems to increase in the treated wards more than in the untreated after the introduction ofthe policy, as θ3,2012 and θ3,2012 are positive and significant. This is shown in Figure 2.2, which, on the other hand, showsalso how the P4P incentives improve the performance for both the treated and untreated wards. This is an interestingresult, suggesting that the managerial impact in the hospital organization caused by the adoption of the P4P programhas changed the overall hospital performance with regards to the surgical activity. A possible explanation to this couldbe given by a spillover effect between the treated and the untreated wards, as all wards may benefit from potentiallyimproved technology in the surgery room.
For the other two health outcomes, voluntary discharges and mortality, the DID coefficients of θ3,2012 and θ3,2013 are notsignificantly different from zero. Figure 2.2 shows how the number of voluntary discharges decreases already before theP4P introduction. With regards to mortality, it is reasonable to believe that, when hospitals are checked for effectiveness
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on more than one output, they will focus on those outcomes that are easily measurable. This is observed by [78] in thecontext of a competition analysis. From this point of view, readmissions, transfers and return to the surgery room representwell-measured outcomes. Hence it is possible that hospitals have focussed their efforts on those easily measured andbetter observable activities in order to increase their performance and then gain financial rewards.
2.3.3 Do surgical and medical wards react differently to the policy?

We investigate the policy effect with regards to the different wards, by evaluating whether surgical and medical wardsreacted differently to the policy. We fit the model in Equation 2.7 to the data in order to answer this question. The results,omitted in full for brevity, show evidence of a differential impact of the P4P introduction for the two health outcomes thatwere significant in the global analysis above. In particular, there is evidence that the P4P program impacted more on themedical wards than on the surgical ones in terms of number of readmissions (θ7,2012=0.008, p-value=0.0102; θ7,2013=0.0307,p-value=<.0001) and number of transfers (θ7,2012=0.0117, p-value=0.0002, θ7,2013=0.012, p-value=0.0001). This is shownvisually also by the marginal effects in Figure 2.3. This finding can be explained by the fact that the surgical healthcarepathways are more rigorous and more linked to fixed guidelines than those on medical hospitalizations, which insteadtend to be more flexible and more dependent on managerial actions and hospital organization.
Expected Readmissions Expected Transfers

FIGURE 2.3: Marginal effects of readmissions and transfers per type of ward, year and treatment for the modelin Equation 2.7.
2.3.4 Do private and public hospitals react differently to the policy?

Previous studies have found no dependency between hospital ownership and efficiency [12] or hospital ownership andcompetition [15], suggesting that the long term adoption of a quasi-market system in Lombardy has reduced the expecteddifferences between the hospital types. For the first time in a P4P study, here we investigate the policy effect with regardsto hospital ownership, by evaluating possible different reactions to the P4P program among the private (for-profit and not-for-profit) and public providers. To answer this question, we use a model like Equation 2.7, but with SURGICAL replacedby a variable representing the ownership type, where the public hospitals are taken as the reference category. Onceagain, the interactions θ(λ)7jk are of interest in this model. In line with the existing literature, the results show only limitedevidence in support to a hypothesis of a different reaction: apart from readmissions in 2012 (θ7,2012,not-for-profit=-0.01964,p-value=0.0004; θ7,2012,private=-0.0096, p-value=0.0062), the interaction for readmissions in 2013 and all interactions fortransfers, for both the private for profit and not-for-profit categories, are not statistically significant. This is an interestingresult meaning that the monetary incentive is a valuable motivation to improve the quality of care of hospitals with alltypes of ownership and not only for the profit-maximizer providers, i.e. profit hospitals.
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2.4 Conclusions

The P4P approach has been adopted in many countries in order to encourage improvements in the quality of healthcareby supplying financial incentives to healthcare providers. In this study, we evaluate the impact of a specific P4P programadopted in the Lombardy region (Italy) in 2012. Differently to previous studies, we perform the analysis considering thewhole healthcare system, evaluating multiple health outcomes over a number of clinical areas. We analyse data over fouryears, two before (2010/2011) and two after (2012/2013) the implementation of the program. The policy was applied toall hospitals in the Lombardy region, but the incentive was calculated only on the basis of the performance of 9 wards.The fact that the selection of these wards was made exogenously, combined with the fact that we observe a parallel trendpre-introduction of the policy and that we have found no evidence of spillover effects between the treated and untreatedwards in terms of allocation of resources, have led us to use a multivariate DID approach for the evaluation of the impactof the policy.
Our study shows that two out of the five health outcomes considered i.e. readmissions and transfers, support the hypothesisthat the P4P introduction had a positive effect on quality. The picture for the other three health outcomes is more complexthan for transfers and readmissions. Considering the returns to the surgery room, our results show that the P4P incentivesimprove the performance for both the treated and untreated wards. We speculate that this may be the result of improvedtechnology in the surgery room which all the wards have benefit from. The last two health outcomes, voluntary dischargesand mortality, did not show changes that can be attributed to the P4P adoption. This can be explained by considering thefact that when hospitals are checked for effectiveness on more than one output, they will focus on those outcomes whichare more easily driven by a managerial intervention in order to improve their performance and to obtain the financialincentives. Moreover, our study shows that the medical wards have reacted to the P4P program more strongly than thesurgical wards, whereas only limited evidence is found to suggest that the policy reaction was different across differenttypes of hospital ownership. As anticipated by [23], overall the results show that the healthcare system in Lombardywas positively impacted by the P4P implementation: there is evidence of a reduction in some adverse health outcomesand of a general change in the hospital organization in order to improve the healthcare services provided to the citizens.Lastly, the evaluation study found no evidence of a distortion of the hospital behaviour aimed at inflating the performanceevaluation, such as cream skimming behaviour.
This study has some implications. Firstly, Lombardy should extend the adoption of the P4P program across the wholeregional healthcare system in order to improve the overall hospital activity. Secondly, given the positive impact of theP4P program in Lombardy, the adoption of a similar strategy is suggested to the other regional healthcare systems inItaly. This would stimulate improvements in quality for the regions that already perform relatively well, but, in particular,this would be an important incentive for these regions with a lower qualified healthcare system. The same could alsoapply to other countries.
Future work on the evaluation of P4P programs could explore additional aspects. Firstly, we could test the effect ofthe adoption of the P4P program by using more flexible models, such as via autoregressive time components. Secondly,it would be interesting to test the impact of the P4P program in terms of the number of intra-hospital infections andcomplications, or other outcomes directly related to the performance of the hospitals’ physicians and the improvement oftechnology. Thirdly, it would be useful to conduct a comparative analysis between the Lombardy region and neighbouringregions which are not subjected to P4P programmes. This would help also in controlling for spillover effects between thetreated and the untreated wards within the same hospital, such as those resulting from the sharing of common technologyand resources. Fourthly, our analysis has focussed solely on the impact of the P4P programs on the hospital effectiveness.It would be interesting to extend the current analysis to understand whether the monetary incentive had an impact alsoon the hospital efficiency. Finally, we believe that further research is needed to assess the impact of P4P programs overa long time frame, as encouraged by [110].



Chapter 3

Linear models for counts via a Discrete
Weibull distribution

Motivated by the lack of a unique, efficient, and flexible regression framework for the different types of count response,i.e. over- or under-dispersed, and excessive zeros, we develop regression models via a Discrete Weibull distribution. Theanalyses presented in this chapter and the one presented in chapter 4 have been conducted in R software [79].
3.1 The Discrete Weibull distribution and its properties

The Discrete Weibull distribution was introduced by [71], as a discrete form of a continuous Weibull distribution, similarlyto the Geometric distribution, which is the discrete form of the Exponential distribution, and the Negative Binomial, whichis the discrete alternative of a Gamma distribution. In some studies this is referred to as type I Discrete Weibull, as twoother distributions were subsequently defined. The three distributions have been reviewed by [17] which point out theadvantages of using the type I distribution, i.e. it has an unbounded support, differently to the type II distribution, and ithas a more straightforward interpretation differently to the type III distribution. The probability mass function of a type IDiscrete Weibull
Y |X ∼Discrete Weibull(q(x),β)

can be written as
f(y;q(x),β) = q(x)yβ −q(x)(y+1)β , (3.1)

for y= 0,1,2, . . ., with the real parameter 0< q(x)< 1, and the shape parameter β > 0. Thus, the cumulative distributionfunction can be written as
F (y;q(x),β) =

1−q(x)(y+1)β y= 0,1,2, . . .0 y < 0. (3.2)
Figure 3.1 and Figure 3.2 shows how both the q(x) and β parameter affect the shape of the Discrete Weibull distribution.Specifically, a value of β close to 0 leads to a highly skewed distribution, while a value of β close to ∞ reduces the

24
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range of the count values of the response. Moreover, the q(x) parameter quantify the probability of the response variablebeing a non-null value, i.e. Pr(Y = 0|X ) = 1−q(x), thus q(x) = 1−Pr(Y = 0|X ) = Pr(Y > 0|X ).

DW q(x)=0.5, β=0.5 DW q(x)=0.5, β=0.7 DW q(x)=0.5, β=1 DW q(x)=0.5, β=4
FIGURE 3.1: Plot of the Discrete Weibull distribution for different values of β, and q(x)=0.5.

DW q(x)=0.3, β=2 DW q(x)=0.5, β=2 DW q(x)=0.75, β=2 DW q(x)=0.99, β=2
FIGURE 3.2: Plot of the Discrete Weibull distribution for different values of q(x), and β=2.

The mean of a Discrete Weibull with parameters q(x) and β as described in Equation 3.1 can be written as
E(Y |X ) = ∞∑

y=1(q(x))yβ , (3.3)
while the variance of a Discrete Weibull(q(x),β) can be written as

var(Y |X ) = ∞∑
y=1(2y−1)(q(x))yβ

= 2 ∞∑
y=1y(q(x))yβ −E(Y |X ). (3.4)

The distribution is connected to other well known distributions. In particular,
• The discrete Rayleigh distribution in [86] is a special case of a Discrete Weibull with β = 2 and q(x) = xθ.
• The Geometric distribution is a special case of a Discrete Weibull, with β = 1 and q(x) = 1−p(x). Moreover, forthe Geometric distribution the variance is always greater than its mean. Therefore, a Discrete Weibull with β = 1is a case of over-dispersion relative to Poisson, regardless of the value of q(x). In particular, when β = 1 and
q(x) = e−λ(x), the distribution is the Discrete Exponential distribution introduced by [87].

• β can be considered as controlling the range of values of the variable. As β→∞, the Discrete Weibull approachesa Bernoulli distribution with probability q(x).
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As for quantiles, the τ-quantile of a Discrete Weibull of parameters q(x) and β is given by the smallest integer µ(τ) forwhich Pr(Y = y|X 6 µ(τ)) = 1− (q(x))(y+1)β > τ. Thus, the Discrete Weibull distribution presents a closed form for its
τ-quantile function, which is given by

µ(τ) = ⌈( log(1−τ)log(q(x))
) 1

β
−1⌉, (3.5)

where d·e is the ceiling function. As a special case, the median of the Discrete Weibull is given by
µ(0.5) = ⌈(− ln(2)ln(q(x))

) 1
β
−1⌉. (3.6)

The formulation in Equation 3.5 can be extended to non integers by removing the ceiling function, though since theDiscrete Weibull takes positive values only, this will be valid only for τ > 1−q(x).
3.1.1 Accounting for different types of dispersion

Dispersion in count data is formally defined in relation to a specified model being fitted to the data [18, 50]. In particular,
VR = observed variancetheoretical variance . (3.7)

So VR is the ratio between the observed variance from the data and the theoretical variance from the model. Then the dataare said to be over-/equi-/under- dispersed relative to the fitted model if the observed variance is larger/equal/smallerthan the theoretical variance specified by the model, respectively. It is common to refer to dispersion relative to Poisson.In that case, the variance of the model is estimated by the sample mean. Thus, over-/equi-/under- dispersion relative toPoisson refers to cases where the sample variance is larger/equal/smaller than the sample mean, respectively. Since thetheoretical variance of a Negative Binomial is always greater than its mean, the Negative Binomial regression model is thenatural choice for data that are over-dispersed relative to Poisson. However, crucially, the Negative Binomial distributioncannot handle under-dispersed data. In contrast to this, Figure 3.3 shows how a Discrete Weibull distribution can handledata that are both over- and under- dispersed relative to Poisson.

FIGURE 3.3: Ratio of observed and theoretical variance from a Poisson model, calculated from simulated DiscreteWeibull models with parameters q(x) and β.
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Specifically, the white area corresponds to values of dispersion less than 1, i.e. under-dispersed relative to Poisson,whereas the black area corresponds to over-dispersion. Moreover, the plot shows that:
• 0< β ≤ 1 is a case of over-dispersion, regardless of the value of q(x).
• β ≥ 3 is a case of under-dispersion, regardless of the value of q(x). In fact, the Discrete Weibull approaches theBernoulli distribution with mean p(x) and variance p(x)(1−p(x)) for β→∞.
• 1< β < 3 leads to both cases of over and under-dispersion depending on the value of q(x).

3.2 The Discrete Weibull regression model

3.2.1 Linear regression model

There are a number of possible choices for linking the q and β parameters to linear predictors x. In particular,
• q depend on x via

log( q(x)1−q(x)
)= xθ,

i.e. log(q(x)) = xθ− log(1+exp(q(x))), where x = (1, x1, . . . , xP ), θ = (θ0,θ1, . . . ,θP )T .
• q depend on x via

log(− log(q(x))) = xθ,

where x = (1, x1, . . . , xP ), θ = (θ0,θ1, . . . ,θP )T
• β depend on x via

log(β(x)) = xθ,

where x = (1, x1, . . . , xP ), θ = (θ0,θ1, . . . ,θP )T , otherwise β is kept constant.
• both q and β depend on x.

While the parametrization which consider the logit link function has been exploited by [46], the analysis presented in thisthesis is based on the log(− log) link in q(x). Thanks to this link we will show later in subsection 3.3.2 how this modelformulation can be linked to that of a continuous Weibull regression models so that efficient implementations can be madeavailable in R software. Moreover, in subsection 3.3.3 we will show how the analytical formula for the quantile facilitatesthe interpretation of the parameters of this model formulation. Regarding the β parameter, this chapter considers it fixed,that is we consider the model
log(− log(q(x))) = xθ,log(β) = θ

(3.8)
where x = (1, x1, . . . , xP ), θ = (θ0,θ1, . . . ,θP )T , and θ takes real values. Later in chapter 3 we will also consider thedependence of β on x in order to capture more complex dependencies. Inference for these models is included in our Rpackage DWreg.
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3.2.2 Linear mixed regression model

It is possible to extend the linear formulation in Equation 3.8 with the inclusion of random effects. This leads to
log(− log(q(x,u)) = xθ+ zulog(β) = θ

(3.9)
where x = (1, x1, . . . , xP ), θ = (θ0,θ1, . . . ,θP )T , θ = (θ0), and z = (z1, . . . , zQ) is the (Q× 1) design vector for the randomeffects u= (u1, . . . ,uQ)T which are assumed i.i.d. as Normal(0,σ2

u).
3.2.3 Excess zeros regression model

In addition to the cases of over- or under- dispersion, it is important to consider the presence of excessive zeros. In fact,the joint presence of excess zeros and long right tails are features common to many counts. Typically, an excess of zeros inthe data reduces the mean of the response, thus inflating the dispersion index. Hence, it is important to consider a flexibledistribution as the Discrete Weibull which not only can account for the excess of zero, but can also address potentialover- or under- dispersion. Models such as zero-inflated or hurdle regression are employed when there is evidence of anexcess of zeros in the data.
Zero inflated Discrete Weibull regression model As detailed in subsection 1.2.2, zero inflated models combineszeros coming from both a point mass at zero and a conditional count distribution. Thus, the zero inflated Discrete Weibullregression model with parameter q(x), β and π(x) can be written as

Pr(Y |X ) =
π(x)+ (1−π(x))(1−q(x)) for y= 0(1−π(x))(q(x)yβ −q(x)(y+1)β ) for y= 1,2,3, . . . , (3.10)

where 0< π(x)< 1 is the mixture parameter which is related to the set of covariates by
logit(π(x)) = log( π(x)1−π(x)

)= xγ, (3.11)
with γ = (γ0,γ1, . . . ,γP )T .
Hurdle Discrete Weibull regression model Another possibility to model data with excessive zeros is hurdle regres-sion, as detailed in subsection 1.2.2. The hurdle Discrete Weibull regression model with parameter q(x), β and π(x) canbe written as

Pr(Y |X ) =
π(x) for y= 0(1−π(x)) (q(x)yβ−q(x)(y+1)β )

q(x) for y= 1,2,3, . . . . (3.12)
Inference for these models is included in our R package DWreg.
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3.3 Parameter estimation

In a regression framework, there are different methods to estimate the parameters, i.e. GLS, GEE or MCMC, as illus-trated in [53]. Here, we use full maximum likelihood. This method is generally robust, and produces estimates that areasymptotically efficient and consistent.
3.3.1 Likelihood

Under a maximum likelihood approach, the parameters θ and θ of Equation 3.8, are estimated by directly maximising thelikelihood function using any non-linear optimization tool. The likelihood function can be written as
L(y,x;θ,θ) =∏

i
f(yi|xi) = n∏

i=1
((q(xi))yβi − (q(xi))(yi+1)β) ,

on the data y= (y1, . . . ,yn), and the maximum of which can be found numerically. This leads to the log-likelihood function
l(y,x;θ,θ) = n∑

i=1 log((q(xi))yβi − (q(xi))(yi+1)β) .
The optimisation of this likelihood was originally implemented in the R package DWreg [108]. In the next section wediscuss a faster alternative which also opens up the possibility for DW-inference for other regression models, such as themixed model in Equation 3.9.
3.3.2 Link between discrete and continuous Weibull distribution

As introduced in section 3.1, the Discrete Weibull has been derived as the discrete analogues of a continuous Weibulldistribution, i.e. see methodology-IV in [24]. In particular, the latter can be described as
Y |X ∼Weibull(µ(x),σ ),

with probability density function and cumulative density function defined by
fW(y) = f(y;µ(x),σ ) = σ

µ(x)
(

y
µ(x)

)(σ−1) exp{−( y
µ(x)

)σ}
y≥ 0

FW(y) = F (y;µ(x),σ ) = 1−exp{−( y
µ(x)

)σ}
.

(3.13)
Let us recall the probability mass function and the cumulative density function of a Discrete Weibull presented inEquation 3.1 and Equation 3.2, respectively, i.e.

fDW(y) = f(y;q(x),β) = (q(x))yβ − (q(x))(y+1)β y= 0,1,2, . . .
FDW(y) = F (y;q(x),β) = 1− (q(x))(y+1)β .

We consider the transformation from the continuous to the discrete case given by
exp{− 1

µ(x)
}= q(x)
σ = β,
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and by substituting this into

FW(y+1)−FW(y),
we obtain the fDW(y) with parameters β > 0 and 0< q(x)< 1. Thus, the likelihood of a continuous Weibull distributionwith interval censored data is equal to that of a Discrete Weibull distribution, i.e.

n∏
i=1
(
FW(yi+1|xi)−FW(yi|xi))= n∏

i=1 fDW(yi|xi).
From this, ∫ y+1

y
fW(y)dy= fDW(y)

shows that integrating between y and y+1 the probability density function of a continuous Weibull leads to the probabilitymass function of a Discrete Weibull distribution.
From these considerations, we can use available implementations for continuous Weibull regression models with intervalcensored data, such as the function gamlss in the R package gamlss [93], and the function survreg in the R package
survival [100]. The survreg implementation is limited to simple regressions with the possibility of adding a simplerandom effects term, i.e. a frailty. In contrast to this, the gamlss implementation allows to include complex non-linearand multilevel models, so it will be chosen implementation for this thesis. The interval censored response variable can becreated in R software by calling the survival package and make use of the Surv function with type=interval2.
Link between the parameter estimates and gamlss and survreg parametrisations We exploit the link betweenthe Discrete Weibull with parameters q(x) and β as presented in Equation 3.1, and the parametrisation of a continuousWeibull with parameters µ(x) and σ as presented in Equation 3.13 and implemented in R software within the gamlss.distand survival package. In particular, the estimators of the parameters of the Discrete Weibull were derived by a directtransformation, whereas the standard errors were derived using a first-order Taylor expansion around the mean known asDelta method [75]. Table 3.1 shows these transformations, while the details on how to derive the standard errors of theparameters can be found in section A.1.

TABLE 3.1: Discrete Weibull model parameters and respective standard errors exploiting the survreg and gamlssparametrisation via a continuous Weibull distribution.Estimates Std. Errors
survreg

β̂ = 1̂
σ s.e.(β̂) = { var(log(σ̂ ))

σ̂2
}0.5

θ̂ =− α̂
σ̂ s.e.(θ̂) = {( α̂σ̂ )2(var (log(σ̂ ))+ var(α̂)

α̂2
)}0.5

gamlss

β̂ = exp(σ̂ ) s.e.(β̂) = {(exp(σ̂ ))2var(σ̂ )}0.5
θ̂ =−α̂ exp(σ̂ ) s.e.(θ̂) = {α̂2(exp(σ̂ ))2( var(α̂)

α̂2 + var(σ̂ ))}0.5

In particular, α̂ = (α̂0, α̂1, . . . , α̂P )T are the estimated regression coefficients, σ̂ and 1exp(σ̂ ) are the estimated scale parametersobtained with the survreg and gamlss function, respectively. Additionally, in the gamlss environment when a mixed
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model is considered, the variance of the random effects, i.e. σ2

u , can be obtained as σ2
u = φ2

u(exp(σ̂ ))2, where φ2
u is thevariance of the random effects obtained by fitting a linear mixed regression model as in Equation 3.9 via a continuousWeibull distribution. Thus, to obtain the t-value one can simply compute the ratio between the estimated parameterand its respective standard error. Lastly, the probability associated to the t-value, i.e. Pr (t-value> t), can be computedas twice the output of the pt function which returns the distribution function of a t-distribution with (n-P-1) degrees offreedom.

3.3.3 Interpretation of the regression parameters

There is no closed form of the moments of the Discrete Weibull distribution. Nevertheless, from the estimated modelwe can obtain the fitted values of the conditional distribution with respect to the mean as in Equation 3.3 by numericalapproximation on a truncated support of the moments of the Discrete Weibull. In R software this can be done with thefunction Edweibull available in the DiscreteWeibull package [13]. Anyway, given the usual skewed nature of the countdata, an approach with regards to the conditional median may be more appropriate. Hence, substituting the formulationof the parameter q(x) = e−exθ with respect to the median µ(0.5) presented in Equation 3.6, leads to
log(µ(0.5) +1)≈ 1

β log(log(2))− 1
β xθ.

Thus, like for any conditional distribution which is assumed to belong to an exponential family where the parametersare linked to the mean, here the regression parameter θ can be interpreted with respect to the logarithm of the median.Specifically,
1
β

(log(log(2))−θ0) (3.14)
is related to the conditional median when all the remaining covariates are set to zero, while for pth covariate,

−
θp
β (3.15)

can be related to the change in the median of the response corresponding to a one unit change of xp while keeping allthe other covariate constant.
3.4 Model selection and diagnostic

Within a likelihood based approach, we can assess the fit of our parametric model by its global deviance defined as
GDEV =−2 l(y,x;θ,θ),

or simply by means of comparison of its log-likelihood l(y,x;θ,θ). Thus, for comparing non-nested models we can usethe generalised Akaike information criterion (GAIC), defined as GAIC = GDEV+ (κ df), which includes a penalty κ foreach effective degree of freedom (i.e., the number of free parameters) used in the model. To compare existing parametricapproaches with our approach, we employ the special case of the GAIC corresponding to κ = 2 which leads to the Akaikeinformation criterion (AIC) [6] AIC = GDEV+(2df).
The best model is the one with the lowest AIC value.
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Moreover, the appropriateness of the selected model can be assessed with a residual analysis. Given that the responseis discrete, the analysis will be based on the randomised quantile residuals [33]. In particular, let

ri = Φ−1(ui)
for i= 1, . . . ,n, and where Φ−1 is the inverse cumulative distribution function of a standard Normal variable, and ui is arealisation from a Uniform random variable on the interval

[u1;u2]≈ [F (yi−1;q(x),β),F (yi;q(x),β)] .
The main advantage of the normalised randomised quantile residuals is that, whatever the distribution of the responsevariable, their true values ri, for i = 1, . . . ,n, always have a standard Normal distribution if the model assumption iscorrect. Since checking the normality assumption is well established within the statistical literature, e.g. using a qq-plot, the randomised normalised quantile residuals provide an easy way to check the adequacy of the fitted model. Therandomisation of these quantile residuals is also appropriate for interval censored response variables.
In addition to the residual analysis, it is informative also to check whether the data shows any under- or over-dispersionrelative to the specified Discrete Weibull conditional distribution. In the case of good fitting, we would expect the ratioof observed and theoretical variance in equation Equation 3.7 to be close to 1 for each x. In order to check for this, weproduce a variance ratio plot whereby we split the response values into a number of groups of similar size, based on thepercentiles of the fitted values from the specified distribution. Then the observed variance is computed within each group,while the theoretical variance from the model is averaged within each group. If the model is well specified, we wouldexpect these values to be close to 1.
3.5 Simulation study

In this section we consider a number of simulations to asses the performance of our novel regression approach via aDiscrete Weibull distribution.
3.5.1 Computational efficiency of gamlss and survreg implementations

Recalling the linear regression model in Equation 3.8, we simulate n=3,000 realisations from a Discrete Weibull with
q(x) and β parameters, and one covariate only. This leads to

log(− log(q(x))) = θ0 +θ1xlog(β) = θ0. (3.16)
where θ0=-6.7, θ1=0.9, x ∼ Uniform(−1,1), θ0=0.7, thus β ≈2. Table 3.2 shows the parameter estimates for the lin-ear regression model in Equation 3.16. The comparison is between the newly implemented functions dw.gamlss and
dw.survreg, and the existing dw.reg function available in the earlier version of the R package DWreg [107], which doesnot employ the link with the continuous Weibull interval censored distribution. Specifically, exploiting the parametriza-tion presented in subsection 3.3.2, the dw.gamlss function calls the function gamlss in the R package gamlss, while the
dw.survreg calls the function survreg in the R package survreg. It is clear how the three functions return very similarestimates and standard errors. However, the dw.reg function has a higher computational cost. Using the R function
system.time available in the R package base, in Table 3.3 we show a comparison of the CPU time needed to compute



Chapter 3. Linear models for counts via a Discrete Weibull distribution 33
TABLE 3.2: Parameter estimates for the linear regression model in Equation 3.16 via the R functions dw.gamlss,

dw.survreg, and dw.reg.
dw.gamlss dw.survreg dw.reg(Intercept) -6.732*** -6.732*** -6.732***(0.103) (0.103) (0.109)x 0.849*** 0.849*** 0.849***(0.006) (0.006) (0.006)

β 2.022*** 2.043*** 2.043***(0.029) (0.029) (0.029)The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
a linear Discrete Weibull regression model on the datasets rwm available in the R package COUNT which includes 27,326observations.

TABLE 3.3: CPU time performance comparison between the R functions dw.survreg, dw.gamlss, and the oldversion of dw.reg on estimating a linear Discrete Weibull regression model on the rwm data which containsn=27,326 observations.Function dw.survreg dw.gamlss dw.regCPU time 0.34 4.79 17.82

3.5.2 Linear mixed regression simulated data

Recalling the linear mixed regression model in Equation 3.9, we simulate data from a random intercept and a randomslope model. We evaluate the estimation of parameters and describe a method for computing their standard errors.
3.5.2.1 Random intercept model

We consider a 2-level random intercept model where the level-1 observation i = 1, . . . ,nj is nested in the level-2 group
j = 1, . . . , J, and there is one covariate x. This leads to

log(− log(q(x,u)) = θ0j +θ1jxij
θ0j = γ00 +u0j
θ1j = γ10log(β) = θ0j
θ0j = α00,

where u0j ∼Normal(0,σ20 ). This can be rewritten in full terms as
log(− log(q(x,u)) = γ00 +γ10xij +(u0j )log(β) = α00. (3.17)

Thus, we define x.j ∼Uniform(−1,1), γ00 =−3.9, γ10 = 0.7, α00 = 0.7 so that β ≈ 2, and q(x) varies between 0.9 and 0.99.Moreover, we assume equal sample size in each group, i.e. nj = 100, and we consider J = 15 groups. The random effects
u0j are assumed i.i.d. as u0j ∼Normal(0,σ20 ), where we set σ20 = 0.4. The bar plot of the response variable simulated under
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these values, and the box-plot of the response by group can be visualised in Figure 3.4. Using the gamlss implementation,we obtain the parameter estimates γ̂00 =−4.08, γ̂10 = 0.72, β̂= 2.02, and σ̂20 = 0.42. The AIC value of the random interceptmodel via a Discrete Weibull distribution is 5,250.88. As a comparison, we fit the same data via a Poisson and a NegativeBinomial distribution. The AIC values of these models are 5,660.33 and 5,273.25 for the Poisson and Negative Binomialmodel, respectively.

FIGURE 3.4: Bar plot and box-plot by group of a random intercept multilevel Discrete Weibull model withparameters β ≈ 2, and q(x)∈ [.9, .99].
3.5.2.2 Random slopes model

We consider a 2-level random slopes model for the individual i= 1, . . . ,nj within the cluster j = 1, . . . , J and one covariate
x. This leads to

log(− log(q(x,u)) = θ0j +θ1jxij
θ0j = γ00 +u0j
θ1j = γ10 +u1jlog(β) = θ0j
θ0j = α00

where u0j ∼Normal(0,σ20 ), and u1j ∼Normal(0,σ21 ). This can be rewritten in full terms as
log(− log(q(x,u)) = γ00 +γ10xij +(u0j +u1jxij )log(β) = α00 (3.18)

where x.j ∼Uniform(−1,1), γ00 =−5.4, γ10 = 0.9, α00 = 0.7 so that β≈ 2, and q(x) varies between 0.75 and 0.99. Moreover,we assume equal sample size in each group, i.e. nj = 100, and we consider J = 15 groups. The random effects uij are
assumed i.i.d. as uij ∼ multivariate Normal([0 0]T ,Σ2), and we set Σ2 = [σ200 σ201

σ210 σ211
]= [ 1 0.30.3 1

]. The bar plot of the
response variable simulated under these values, and the box-plot of the response by group can be visualised in Figure 3.5.
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FIGURE 3.5: Bar plot and box-plot by group of a random slope multilevel Discrete Weibull model with parameters
β ≈ 2, and q(x)∈ [.75, .99].

We then employ the simulated dataset in a regression model as described in Equation 3.18. This leads to the parameter
estimates γ̂00 =−5.437, γ̂10 = 0.948, β̂ = 2.056, and Σ̂2 = [0.895 0.3260.326 0.934

]. The AIC value of the random slopes model via
a Discrete Weibull distribution is 9,729.39. As a comparison, we fit the same data via a Poisson and Negative Binomialdistribution. The AIC values of these models are 12,247.98 and 9,751.71 for the Poisson and Negative Binomial model,respectively.
3.5.2.3 Parametric bootstrap estimation of the standard errors

Bootstrapping is a re-sampling method for statistical inference [34]. It consists in repeatedly drawing random samplesfrom the original sample, with replacement and with the same size of the original sample. Thus, the sampling distributionof the bootstrap estimates of a parameter of interest is obtained from the pool of bootstrap re-samples, as well as thebiased-corrected estimate, standard error, and confidence interval of the parameter. We apply this procedure in order toobtain the standard errors of the random effects of our Discrete Weibull mixed regression model.
Random intercept model We use the parameter estimates from the model in Equation 3.17, i.e. γ̂00, γ̂10, β̂, and σ̂20 ,to compute the new response variable Y ∗|X ∼ Discrete Weibull(q̂(x,u), β̂), and we refit the model via the formulationpresented in Equation 3.17. This is repeated b= 1000 times leading to the bootstrap estimates γ̂00(b), γ̂10(b), β̂(b), and thevariance of the random effects σ̂20(b). Thus, we can compute the standard error as the standard deviation of the empiricaldistribution of the parameter estimates. This leads to the results in Table 3.4. Moreover, for γ̂00(b), γ̂10(b), β̂, and σ̂20(b) wecompute a coverage measure based on the 95% confidence interval. We iterate the bootstrap procedure k = 200 times inorder to compute these values as the proportion of instances in which the true parameter γ00, γ10, β, and σ20 was found inits respective 95% bootstrap confidence interval. The resulting percentage coverage is expected to be close to the nominalconfidence of the interval estimate. This leads to a coverage values of 95%, 96%, 95%, 97% for the parameters γ00, γ10, β,
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TABLE 3.4: Parameter estimates for the simulated random intercept Discrete Weibull model with standard errorsin brackets obtained via a parametric bootstrap approach.Fixed effects Random part(Intercept) -4.077*** σ20 0.416***(0.158) (0.059)x 0.717***(0.027)

β 2.018***(0.025)Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1
and σ20 , respectively. The plot of the bootstrapped estimates is presented in Figure 3.6 and shows distributions centredaround the true values.

FIGURE 3.6: True parameter (red line) and distribution of the bootstrapped estimates γ̂00(b), γ̂10(b), β̂(b), and σ̂20(b)of a simulated random intercept multilevel Discrete Weibull model obtained over k = 200 iterations of b= 1000bootstrap replications.
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FIGURE 3.7: True parameter (red line) and distribution of the bootstrapped estimates γ̂00(b), γ̂10(b), β̂(b), and
σ̂200(b), σ̂201(b) = σ̂210(b), σ̂211(b) of a simulated random slope multilevel Discrete Weibull model obtained over k = 200iterations of b= 1000 bootstrap replications.
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Random slopes model We use the parameter estimates from the model in Equation 3.18 to compute the new responsevariable Y ∗|X ∼ Discrete Weibull(q̂(x,u), β̂). Next, we refit the model via the random slopes model formulation. This isrepeated b= 1000 times, and it leads to the bootstrap estimates γ̂00(b), γ̂10(b), β̂(b), and to the variance-covariance matrixof the random effects Σ̂2(b). Thus, we compute the standard error as the standard deviation of the empirical distribution ofthe parameters, which leads to the estimates in Table 3.5.

TABLE 3.5: Parameter estimates for the simulated random slope Discrete Weibull model with standard errors inbrackets obtained via a parametric bootstrap approach.Fixed effects Random part(Intercept) -5.469*** σ200 0.985***(0.132) (0.09)x 0.931*** σ201 0.326***(0.135) (0.066)
β 2.056*** σ211 0.993***(0.02) (0.09)

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1

Then, we iterate the procedure k = 200 times in order to compute the coverage value as the 95% confidence interval of theparameters γ̂00(b), γ̂10(b), and σ̂200(b), σ̂201(b) = σ̂210(b), σ̂211(b). This leads to 96%, 94%, 95% coverage values for the parameters
γ00, γ10, and β respectively, and 96%, 95%, and 96% coverage values for the variance-covariance matrix of the randomeffects σ̂200, σ̂201 = σ̂210, σ̂211, respectively. The plot of the bootstrapped estimates via the gamlss parametrization is shownin Figure 3.7.
3.5.3 Excess zeros regression simulated data

We now consider the case when the data are inflated by an excess of zeros. Thus, we simulate n=2,000 realisationsfrom a mixture model combining a constant logit to model the zeros of the response, and a count model via the DiscreteWeibull distribution with parameters q(x) and β. Specifically, this can be written as
Pr(Y |X ) =


π+(1−π)(1−q(x)) for y= 0
(1−π)

log(− log(q(x))) = θ0 +θ1x1 +θ2x2 +θ3x3log(β) = θ0 for y= 1,2,3, . . . , (3.19)
where π = 0.6, x1 ∼ Uniform(−1,1), x2 ∼ Uniform(0,1), x3 ∼Normal(0,1), θ0 =−3.5, θ1 =−2.4, θ2 = 0.8, θ3 =−0.3, and
θ0 = 0.7. This leads to β ≈ 2, and q(x) which varies between 0.38 and 0.99. The percentage of zeros in the data is 63.5%,and the dependent variable has a dispersion index of 7.52. The bar plot of the response variable simulated under thesevalues can be visualised in Figure 3.8.
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FIGURE 3.8: Bar plot of the simulated zero inflated Discrete Weibull model with β ≈ 2, and q(x)∈ [.38, .99].
Thus, we fit a zero inflated Discrete Weibull and a hurdle Discrete Weibull model with parameters q(x) and β as inEquation 3.10 and Equation 3.12, respectively. We compare these models with a zero inflated and a hurdle model via aPoisson distribution as in Equation 1.1 and Equation 1.3, respectively, and with a zero inflated and a hurdle model via aNegative binomial distribution as presented in Equation 1.2 and Equation 1.4, respectively. To perform the Poisson andNegative Binomial zero inflated and hurdle regression models we use the zeroinfl and hurdle functions available inthe R package pscl [55]. The parameter estimates are presented in Table 3.6. Specifically, we report the parametrisationto the logarithm of the mean for the Poisson and Negative Binomial model, while for the count model via the DiscreteWeibull we employ the parametrisation to the logarithm of the median presented in Equation 3.14 and Equation 3.14, forthe intercept and the three covariates, respectively.

TABLE 3.6: Parameter estimates and AIC for the simulated zero-excessive Discrete Weibull model in Equation 3.19fitted by using different parametric zero inflated and hurdle models.ZI PO ZI NB ZI DW hurdle PO hurdle NB hurdle DW(Intercept) 1.483*** 1.451*** 1.565*** 1.481*** 1.444*** 1.565***(0.037) (0.05) (0.176) (0.037) (0.051) (0.177)x1 1.33*** 1.415*** 1.181*** 1.329*** 1.416*** 1.175***(0.038) (0.052) (0.11) (0.039) (0.053) (0.11)x2 -0.398*** -0.428*** -0.351*** -0.393*** -0.417*** -0.346***(0.061) (0.087) (0.136) (0.061) (0.087) (0.137)x3 0.154*** 0.162*** 0.132*** 0.154*** 0.163*** 0.132***(0.019) (0.026) (0.039) (0.019) (0.026) (0.04)other - σ=1.954*** β=2.099*** - σ=1.95*** β=2.103***- (0.149) (0.079) - (0.149) (0.079)AIC 5574.748 5444.528 5417.350 5580.753 5450.210 5423.893logLik -2779.374 -2713.264 -2699.675 -2782.377 -2716.105 -2702.946
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
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The AIC values reported for both the model formulation, i.e. zero inflated and hurdle, point to the choice of a DiscreteWeibull model as the best fitting one, followed by the Negative Binomial model and, lastly, by the Poisson model. Inparticular, the zero inflated model formulation fits this data slightly better than the hurdle regression. As expected giventhe choice of a constant π to model the zeros, we note that the logit coefficient of x1, x2, and x3 are not significant, thusthey are omitted.
3.6 Real data study

We now consider a number of real data examples to illustrate our parametric approach via a Discrete Weibull distribution.Specifically, we will consider both cases of over- and under- dispersion and excessive zeros data.
3.6.1 Over-dispersed data

Length of stay in hospital The results in chapter 2 have shown a positive effect of the P4P program on the hospitaleffectiveness in the Italian Lombardy region, but what about their efficiency? In this analysis we aim to study theeffect of the P4P on three patient health conditions, namely coronary artery bypass graft surgery (CABG), percutaneoustransluminal coronary angioplasty (PTCA) and hip replacement (HIP). As outcome, we consider the in-hospital patient’slength of stay which is a commonly used indicator of the quality of care and planning capacity within a hospital [10, 20, 49,50] since it is a proxy of the expenditure of each hospitalisation in a DRG-based payment system [97]. Thus, a reductionin this measures provides a reduction in the hospital costs for the same reimbursement and this drives an increment ofthe hospital efficiency. In this sense, our analysis can be seen as an evaluation of the relationship between hospitalefficiency and the quality of care provided. The data used are gathered from the Lombardy healthcare information systemregarding patients admitted to either public or private hospitals during the year 2014. For the analysis, we subset thedata by excluding patients living outside the region and patients younger than two years old. Thus, for the three healthconditions described above, we used a total of 23,709 hospitalisations within 110 hospitals of the Lombardy region, ofwhich 3,851 hospitalisations were for CABG, 7,083 for HIP, and 12,775 for PTCA, respectively. The average length of stayfor patient admitted for CABG is approximately 15 days, for HIP is approximately 8 days, and for PTCA is approximately10 days. The evaluation of the P4P impact in terms of length of stay will be described including patients’ demographiccharacteristics while considering the severity of the health condition. Specifically, we consider the gender and age of thepatients, the comorbidity index measured as in [38], and a factor variable with categories the three procedures or patient-reported health conditions. The length of stay of the hospitalisation is measured in days and obtained as a differencebetween the discharge and the in-hospital admission date. This variable is over-dispersed, with a mean of 10.26, a rangeof [0;144], and a dispersion value of 5.45. Our empirical approach is to estimate a multilevel model that recognises theclustering of patients within providers. Specifically, we estimate multilevel models with provider-specific intercepts [81, 92],where the patients are the level-1 observations and the hospitals represent the level-2 units. We compare our approachwith models of the same complexity assuming a Poisson, a Poisson-inverse Gaussian, a COM-Poisson, and a NegativeBinomial distribution, as these are the most widespread parametric approaches for modelling over-dispersed count data.The Poisson, the Negative Binomial, and the Poisson-inverse Gaussian model are implemented via the function gamlssin the R package gamlss [83], and the COM-Poisson is implemented via the function HLfit in the R package spaMM [85].Figure 3.9 shows the empirical distribution of the response variable.
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FIGURE 3.9: Bar plot of hospital length of stay measured in days.
For the patient p (with p= 1, . . . ,Ph) hospitalised within hospital h (with h= 1, . . . ,H), the linear mixed Discrete Weibullmodel can be written as

log(− log(q(x,u)) = θ0 +θ1femaleph+θ2ageph+θ3comorbidity1ph+θ4comorbidity2ph+
θ5comorbidity3ph+θ6procHIPph+θ7procCABGph+uhlog(β) = θ0,

(3.20)
where θ = (θ0,θ1, . . . ,θ7)T is the vector of coefficients for the patients level covariates, and uh is the random effect forhospital h. Table 3.7 reports the parameter estimates and the AIC values for this model and the same specification modelvia the distributions described above. The AIC values describe the good performance of the COM-Poisson, Negative Bino-mial and Discrete Weibull models. The parameters of the Poisson, COM-Poisson, Negative Binomial and Poisson-InverseGaussian model are linked to the logarithm of their expected mean, while the Discrete Weibull model is parametrisedwith respect to the logarithm of the median as presented in Equation 3.14 and Equation 3.15. For the random part ofthe Discrete Weibull mixed effects model the standard error is obtained over 1000 bootstrap replications. We considerthe fixed part of the model presented in Table 3.7 to investigate how the patient-level factors and the diagnosis pro-cedure explain the variations in the hospital length of stay. The effects of the age and the presence of comorbiditiesare associated with an increment of the length of stay, while patients admitted for HIP generally have a shorter staythan patients admitted for PTCA, while patients admitted for CABG generally have a longer stay than patients admittedfor PTCA. The sex of the patient is not statistically significant. We now consider the random part of the model, and tooffer a visual comparison of the effects across hospitals, the intercept estimates of each hospital are plot in Figure 3.10.Specifically, we consider the variation of each hospital with respect to the red line, i.e. the fixed intercept estimate. Theblue lines represent the 25% and 75% quantiles of the distribution of the random effects, respectively. Thus, assuming thatall hospitals aim to make efficiency savings, we interpret these effects as a measure of the hospitals’ performance and weidentify the hospitals which have been more successful in terms of shorter in-hospital stay, i.e. green dots, after takinginto account the characteristics of the patients being treated and their health condition.
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TABLE 3.7: Parameter estimates and AIC values for the mixed effects models with hospitals random effects forthe length of stay data.PO CMP NB PIG DWFixed part(Intercept) 1.62*** 1.486 1.535*** 1.109*** 1.327***(0.054) (0.034) (0.059) (0.155) (0.054)female 0.003 0.005 0.002 0.005 0.003(0.011) (0.004) (0.012) (0.034) (0.011)age 0.009*** 0.007 0.009*** 0.008*** 0.009***(0.001) (0) (0.001) (0.002) (0.001)comorbidity1 0.207*** 0.18 0.2*** 0.156*** 0.207***(0.019) (0.007) (0.02) (0.045) (0.019)comorbidity2 0.302*** 0.268 0.289*** 0.211** 0.302***(0.033) (0.011) (0.036) (0.069) (0.033)comorbidity3 0.251*** 0.237 0.251*** 0.22 0.251***(0.071) (0.021) (0.076) (0.174) (0.071)procHIP -0.11*** -0.112 -0.113*** -0.103* -0.11***(0.012) (0.005) (0.013) (0.043) (0.012)procCABG 0.415*** 0.352 0.412*** 0.372*** 0.415***(0.017) (0.007) (0.018) (0.043) (0.017)other - σ=-2.515 σ=0.657*** σ=1.142*** β=1.25***- (0.136) (0.102) (0.128) (0.09)Random partvar(uh) 0.093 0.081 0.094 0.128 0.129- - - - (0.009)AIC 152120.4 149371.7 149285.3 150375.8 149210.4logLik -75946.7 -74927.34 -74528.5 -75106.5 -74491.7The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

FIGURE 3.10: Parameter estimates for the random part of the mixed Discrete Weibull model on the length ofstay data. The hospitals allocated below the expected median value of the response (red line) show goodperformances in terms of efficiency.
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FIGURE 3.11: Variance ratio plot for the models fitted to the hospital length of stay data.

FIGURE 3.12: Diagnostic plots of the theoretical versus the sample quantiles for the analyses of the length ofstay data using various regression models.
The variance ratio plot between the observed variance and the averaged theoretical conditional variance for each model
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is shown in Figure 3.11. Given the complexity of the model and the not straightforward formulation of the theoreticalconditional variance of the COM-Poisson, the variance ratio plot for this distribution is omitted. The plot confirms theabove results pointing out the Discrete Weibull and the Negative Binomial as the best performing models being itsvariance ratio closest to 1. The diagnostic plots in Figure 3.12 show the normalized randomized quantile residuals for thePoisson, Negative Binomial, Poisson-inverse Gaussian, Discrete Weibull, and COM-Poisson model, respectively. We canconclude that the residuals of the Discrete Weibull, Negative Binomial and Poisson-Inverse Gaussian models in generalbehave better than the residuals of the other models.
3.6.2 Under-dispersed data

Apgar index In the following study we investigate the Apgar score which is an index used to assess how a baby isdoing at birth [9]. Given the fact that low Apgar scores are associated with a greater risk of problems, the aim of thisstudy is to predict the medical assistance needed, and thus the cost of the hospitalisation of the newborn. The data usedare gathered from the Lombardy healthcare information system regarding 55,637 baby births in 2012 in 62 hospitals ofthe Lombardy region in Italy. Figure 3.13 shows the bar plot of the response variable. This variable has a range [0,10]where a score of 10 means that the baby is doing very well at birth. Moreover, the response variable has a mean of 9.789,a variance of 0.471, and a dispersion value close to 0.05, thus we are modelling highly under-dispersed data.

FIGURE 3.13: Bar plot of the Apgar index.
The evaluation of the cost of the hospitalisation of the newborn via the Apgar index will be described including the ageof the mother and whether she delivered naturally or by caesarean section, and some physical conditions of the babymeasured straight after his/her birth which are usually representative of his/her future health condition. Specifically, weconsider the weight of the baby, the circumference of the baby’s head, and the presence of malformations. Given thenature of the data we fit a random intercept model which considers the hospitals as the level-2 units. Specifically, forthe baby b (with b = 1, . . . ,Bh) born within hospital h (with h = 1, . . . ,H), the linear mixed Discrete Weibull model canbe written as

log(− log(q(x,u)) = θ0 +θ1motheragebh+θ2babyweightbh+θ3headcircbh+
θ4malfo2bh+θ5comorbidity3bh+θ6csection1bh+uhlog(β) = θ0.

(3.21)
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where θ = (θ0,θ1, . . . ,θ6)T is the vector of coefficients for the patients level covariates, and uh is the random effectfor hospital h. We compare the results of the Discrete Weibull model in Equation 3.21 with the same specificationmodels obtained via a Poisson, a COM-Poisson, and a Generalised-Poisson distribution, as these are the commonly useddistribution in the case of under-dispersed data.

TABLE 3.8: Parameter estimates and AIC for the mixed effect models via different distributions on the Apgar indexdata using random effects for the hospitals.PO CMP GPO DWFixed part(Intercept) 2.082*** 6.409. -4.245*** 2.27***(0.036) (0.06) (0.09) (0.364)motherage 0.001 0.001*** 0.000 0.001***(0.001) (0.001) (0.001) (0.001)babyweight 0.001*** 0.001*** 0.000 0.001***(0.001) (0.001) (0.001) (0.001)headcirc 0.003*** 0.01** 0.003 0.001***(0.001) (0.002) (0.003) (0.001)malfo2 0.045* 0.129* 0.045 0.02***(0.02) (0.035) (0.043) (0.002)csection1 -0.011*** -0.033** -0.011 -0.006***(0.003) (0.005) (0.013) (0.001)other - σ=3.014 σ=-36.04 β=30.61***- - (-423.95) (2.768)Random partvar(uh) 0.001 0.002 0.001 0.17- - - (0.001)AIC 233531.8 179911.8 233442.7 76761.72logLik -116700 -90009.5 -116702 -38311.95
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

FIGURE 3.14: Observed (grey) and expected (red) frequencies for the Discrete Weibull mixed effect models onthe Apgar index data.
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Table 3.8 reports the parameter estimates with respect to the logarithm of the mean for the Poisson, Negative Binomialand COM-Poisson model, and with respect to the logarithm of the median for the Discrete Weibull model. The AIC andlog-likelihood values of these models point out the Discrete Weibull distribution as the best fitting one. For the randompart of the model the bootstrapped standard error is obtained over 1000 replications. Moreover, we measure the fit of theDiscrete Weibull model by the comparison between the observed, i.e. grey bars, and expected, i.e. red lines, frequenciesas shown in Figure 3.14. This is obtained by adapting to a Discrete Weibull fit the histDist function available in the Rpackage gamlss.

FIGURE 3.15: Diagnostic plots of the theoretical versus the sample quantiles for the the mixed effect models onthe Apgar index data.
From Figure 3.15, we can conclude that the normalised quantile residuals of the Discrete Weibull model behave betterthan the residuals of the Poisson, COM-Poisson and Generalised Poisson model, although there is still some inaccuracyin modelling the left-tail of the distribution.
Asthma inhaler For this analysis we use the data from [45] which consists of 5,201 observations regarding the dailycount of using Albuterol asthma oral inhaler for 48 children undertaking at least 30 measurements during the year. Hence,this can be seen as an example of growth models which are an important variation of multilevel models. In growth modelsrepeated observations from an individual represent the level-1 variables, and the attributes of the individual represent thelevel-2 variables. In particular, the study investigates the relationship between the asthma inhaler use of each child whichrepresents the asthma severity, and the air pollution which is recorded by four covariates: the percentage of humidity, thebarometric pressure, the average daily temperature, and the morning levels of PM25. The response variable has a meanof 1.27, a variance of 0.84, and a dispersion value of approximately 0.664. The observed frequencies can be visualised inFigure 3.16.
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FIGURE 3.16: Bar plot of the daily count of using the asthma inhaler.
At first we fit a linear Discrete Weibull fixed effects regression model, as in Equation 3.8 to predict the response variableby including the four covariates representing the air pollution, and the child id factor. Given the under-dispersed natureof the data, we compare our approach with models of the same complexity based on a Poisson, a COM-Poisson, and aGeneralised Poisson distribution. The Poisson, and the Generalised Poisson models are implemented via the function
gamlss in the R package gamlss, while the COM-Poisson model with only fixed effects is implemented via the function
glm.comp in the R package CompGLM [77], and the COM-Poisson mixed effects model implemented next is fitted with the
HLfit function available in the R package spaMM. For these models, Table 3.9 shows the AIC and log-likelihood valueswhich point to the good performances of the COM-Poisson and Discrete Weibull models.

TABLE 3.9: Comparison of the models in terms of AIC and using fixed effects only for the asthma inhaler data.PO GPO CMP DWAIC 13356.41 13358.43 12448.87 12446.08logLik -6626.204 -6626.217 -6171.435 -6170.038
The variance ratio plot in Figure 3.17 confirms the good performance of the Discrete Weibull model.

FIGURE 3.17: Variance ratio plots of four different models using fixed effects only fitted on the asthma inhalerdata.
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Given the structure of the data, we then fit a more appropriate random intercept multilevel model considering the child asthe level-2 variable. Specifically, for the measurements m (with m= 1, . . . ,Mc) undertaken by child c (with c = 1, . . . ,C ),the linear mixed Discrete Weibull model can be written as

log(− log(q(x,u)) = θ0 +θ1hum.origmc+θ2pres.origmc+
θ3temp.origmc+θ4pm25.origmc+uclog(β) = θ0.

(3.22)
where θ = (θ0,θ1, . . . ,θ4)T is the vector of coefficients for the Albuterol asthma oral inhaler measurements level covariates,and uc is the random effect for child c.
Table 3.10 reports the parameter estimates and the AIC values of the fitted mixed models which points again to the choiceof the Discrete Weibull and the COM-Poisson as the best fitting models. For the random part of the mixed effects DiscreteWeibull model the bootstrapped standard error is obtained over 1000 replications.

TABLE 3.10: Comparison of the mixed effects models on the asthma inhaler data using a random effects for thechildren.PO GPO CMP DWFixed part(Intercept) -2.468 -2.421 -4.008 -0.257***(1.711) (2.435) (2.351) (0.01)hum.orig -0.103 -0.104 -0.195 -0.057.(0.084) (0.115) (0.115) (0.031)pres.orig 4.494. 4.477 8.464 1.376***(2.721) (3.875) (3.737) (0.185)temp.orig -0.188 -0.189 -0.353 -0.149*(0.129) (0.172) (0.178) (0.062)pm25.orig 0.021 0.021 0.039 0.005*(0.013) (0.019) (0.018) (0.002)other - σ=-36.04 σ=2.457 β=2.478***- (1385.55) - (0.224)Random partvar(uc) 0.103 0.105 0.343 0.29- - - (0.002)AIC 13355.83 13351.58 12445.04 12444.26logLik -6626.89 -6628.26 -6277.08 -6169.75
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

The diagnostic plots in Figure 3.18 show the normalized randomized quantile residuals for each fitted model, confirminga good fit of the Discrete Weibull model to this data.
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FIGURE 3.18: Diagnostic plots of the theoretical versus the sample quantiles for the analysis of the asthmainhaler data using different mixed effects regression models.
3.6.3 Excess zeros data

An excess of zeros in the data reduces the mean of the response inflating the dispersion index, thus it is crucial to considera flexible distribution which can simultaneously account for the excess of zeros and potential over- or under- dispersion.We address this by employing Discrete Weibull zero-inflated and hurdle regression models as presented in Equation 3.10and Equation 3.12, respectively.
Visits to physicians offices The individual number of visits to a doctor is largely used as an outcome measure ofaccessibility to an health service. Thus, we model the number of doctor visits considering two different examples, namelythe German health registry for the year 1984, and the German socio-economic panel data.
German health registry for the year 1984To illustrate how the Discrete Weibull handles the case of excessive zero counts, we consider the German health registrydata study available in the R package COUNT under the name of rwm1984. This is a subset from the year 1984 of thecross-section study rwm5yr regarding the health information for the years immediately prior to the health reform carriedin Germany. The dataset contains 3,874 observations. The number of doctor visits is regressed over the age of thepatient, the gender of the patient, the working condition, the years of formal education, and the household yearly income.The response variable has approximately 42% of zeros, a mean of 3.16, a variance of 39.39, and a - possibly inflated -dispersion value of approximately 12. The observed frequencies can be shown in Figure 3.19.



Chapter 3. Linear models for counts via a Discrete Weibull distribution 50

FIGURE 3.19: Bar plot of the number of doctor visit for the year 1984.
TABLE 3.11: Parameter estimates and AIC for the count part of the zero-inflated and hurdle model on the numberof doctor visit for the year 1984 data.ZI PO ZI NB ZI DW hurdle PO hurdle NB hurdle DW(Intercept) 1.253*** 0.536* -0.169 1.252*** 0.707** 0.026*(0.074) (0.214) (0.152) (0.074) (0.229) (0.179)age 0.013*** 0.02*** 0.019*** 0.013*** 0.018*** 0.017***(0.001) (0.002) (0.002) (0.001) (0.003) (0.002)female 0.156*** 0.214*** 0.234*** 0.156*** 0.206*** 0.222***(0.019) (0.059) (0.043) (0.019) (0.061) (0.043)hhninc -0.081*** -0.07*** -0.054*** -0.083*** -0.084*** -0.074***(0.007) (0.016) (0.011) (0.008) (0.018) (0.012)educ -0.004 -0.009 -0.001 -0.003 -0.016 -0.007(0.005) (0.014) (0.01) (0.005) (0.015) (0.011)work -0.033 -0.045 -0.099 -0.033 0.001 -0.057(0.044) (0.128) (0.091) (0.044) (0.139) (0.099)other - σ=-0.604*** β=0.736*** - σ=-0.725*** β=0.721***- (0.058) (0.015) - (0.091) (0.024)AIC 24199.34 16585.74 16533.5 24195.96 16577.34 16528.92logLik -12087.7 -8279.87 -8253.75 -12086 -8275.67 -8251.46

The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
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Following the model formulation for the zero-inflated and hurdle formulation presented in Equation 3.10 and Equation 3.12,respectively, the q(x), β and π(x) parameters of a excessive-zero Discrete Weibull linear regression model can be relatedto the set of covariates as follows

log(− log(q(x))) = θ0 +θ1age+θ2female+
θ3hhinc+θ4educ+θ5worklog(β) = θ0logit (π(x)) = γ0 +γ1age+γ2female+
γ3hhinc+γ4educ+γ5work

(3.23)

As a comparison we consider the zero inflated and hurdle models via the Poisson and the Negative Binomial distributionimplemented via the function zeroinfl and hurdle respectively, and available in the R package pscl [55]. The parametersestimates and the AIC values are presented in Table 3.11 for the zero inflated and hurdle models, respectively. Thecoefficient of the Discrete Weibull model are parametrised with respect to the logarithm of the median. We note that allthe models identify as significant the same variables, i.e. the age, the gender and the income of the patient, while theeducation and the working condition do not affect significantly the number of visits to a doctor.
German socio-economic panelWe compare our analysis to the study of [113] which fit a zero inflated generalised Poisson regression model to investigatethe German Socio-economic Panel (GSOEP). This is an unbalanced panel of 7,293 individual families over 7 years. Asin [113] we subset the first 438 individuals, and we aim to predict the number of doctor visits in the last three monthsusing as covariates the gender, the age in years, the health satisfaction, the working condition, the marital status, andthe years of schooling. The response variable has approximately 45% of zeros, a mean of 2.93 and a variance of 33.1, thusa dispersion of 11.32. The observed frequencies are shown in Figure 3.20.

FIGURE 3.20: Bar plot of the number of doctor visit for the GSOEP data.
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The q(x), β and π(x) parameters of a excessive-zero Discrete Weibull linear regression model can be related to the setof covariates as follows

log(− log(q(x))) = θ0 +θ1female+θ2age+θ3hsat+
θ4married+θ5working+θ6educlog(β) = θ0logit (π(x)) = γ0 +γ1female+γ2age+γ3hsat+
γ4married+γ5working+γ6educ

(3.24)

The parameter estimates and the AIC values via the zero inflated and hurdle Poisson, Negative Binomial and DiscreteWeibull regression model are presented in Table 3.12 together with the model significant covariates identified by fitting azero inflated generalised Poisson model as presented in Table 7 of [113]. The estimates for the Discrete Weibull modelsare parametrised with respect to the logarithm of the median. We note that the zero inflated and hurdle models via aPoisson, Negative Binomial and Discrete Weibull models detect as significant the same parameters identified by the zeroinflated Generalised-Poisson of [113], i.e. the gender and the health satisfaction. Considering the log-likelihood and theAIC values, both the zero inflated and hurdle formulations via the Discrete Weibull outperform the other models.
TABLE 3.12: Parameter estimates and AIC for the count part of the zero-inflated and hurdle model on the GSOEPdata. The first column reports the significant variables of the zero-inflated generalised Poisson model takenfrom Table 7 of [113].ZI GPO ZI PO ZI NB ZI DW hurdle PO hurdle NB hurdle DW(Intercept) 2.53*** 2.741*** 2.283*** 1.926*** 2.708*** 2.259*** 1.824**- (0.237) (0.661) (0.62) (0.236) (0.672) (0.635)female 0.59*** 0.276*** 0.37* 0.345* 0.274*** 0.32. 0.285.- (0.062) (0.161) (0.131) (0.063) (0.163) (0.137)age - -0.004 -0.001 -0.001 -0.003 0 0.001- (0.003) (0.007) (0.006) (0.003) (0.007) (0.006)hsat -0.26*** -0.221*** -0.24*** -0.213*** -0.221*** -0.251*** -0.225***- (0.012) (0.033) (0.03) (0.012) (0.035) (0.031)married - 0.25*** 0.218 0.19 0.251*** 0.195 0.159- (0.062) (0.163) (0.14) (0.062) (0.166) (0.139)working - 0.143* 0.269 0.204 0.15* 0.343. 0.292.- (0.066) (0.18) (0.158) (0.067) (0.185) (0.153)educ - -0.005 0.003 0.002 -0.004 0.003 0.002- (0.012) (0.03) (0.026) (0.012) (0.03) (0.026)other - - σ=-0.078 β=0.933*** - σ=-0.133 β=0.908***- - (0.203) (0.081) - (0.224) (0.083)AIC 1755.01 2254.91 1750.61 1750.85 2254.642 1748.506 1748.424logLik -871.50 -1113.46 -860.31 -860.42 -1113.321 -859.253 -859.2121

The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
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Unwanted pursuit behaviour In this analysis we follow [62] and investigate the impact of the education level and thelevel of anxious attachment on the number of unwanted pursuit behaviour perpetration in the context of couple separationtrajectories. The response is regressed against the factor education, and the anxious attachment levels. The datasetcontains 387 observations with 63.6% of zeros, while the response has a mean of 2.28 and a variance of 23.3, thus adispersion index of 10.2. The observed frequencies are shown in Figure 3.21.

FIGURE 3.21: Bar plot of the number of unwanted pursuit behaviour perpetration in the context of coupleseparation.
To model these data [88] employed a zero-inflated COM–Poisson model. Here we consider an excessive-zero DiscreteWeibull linear regression model where q(x), β and π(x) parameters can be related to the set of covariates as follows

log(− log(q(x))) = θ0 +θ1education+θ2anxietylog(β) = θ0logit (π(x)) = γ0 +γ1education+γ2anxiety (3.25)
We report the results of [88] in Table 3.13, together with the Discrete Weibull model estimates parametrised to thelogarithm of the median. The results show a good performance of the zero inflated Discrete Weibull and zero inflatedGeometric model. Given that the Geometric distribution can be seen as a special case of the Discrete Weibull as detailedin section 3.1, this result confirms the potential of the Discrete Weibull distribution in modelling count data. Moreover,all the zero-inflated models identify the education as significant factor in predicting the behaviour of individuals in thecontext of couple separation.
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TABLE 3.13: Parameter estimates and AIC for the count part of the zero-inflated and hurdle model on the numberof unwanted pursuit behaviour perpetration. The results for the models other than Discrete Weibull are takenfrom Table 2 of [88].ZI PO ZI NB ZI CMP ZI G ZI DW hurdle PO hurdle NB hurdle DW(Intercept) 1.921* 1.723* -0.160* 1.770* 1.365*** 1.921*** 1.725*** 1.368***(0.044) (0.15) (0.077) (0.122) (0.313) (0.044) (0.148) (0.314)Education -0.350* -0.490* -0.068* -0.476* -0.454* -0.35*** -0.487* -0.45*(0.071) (0.206) (0.034) (0.191) (0.178) (0.071) (0.206) (0.178)Anxiety 0.133* 0.205 0.023 0.199 0.206* 0.133*** 0.207. 0.207*(0.034) (0.108) (0.015) (0.1) (0.092) (0.034) (0.107) (0.091)other - σ=0.821 σ=0.001 - β=0.915*** - σ=-0.187 β=0.918***- (0.226) (0.031) (0.104) - - (0.273) (0.105)AIC 1616.9 1266.3 1268.3 1264.8 1265.9 1616.921 1266.526 1266.2logLik -802.45 -626.14 -627.17 -626.42 -625.98 -802.461 -626.263 -626.104

The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

Number of fish caught The data is available at ”https://stats.idre.ucla.edu/stat/data/fish.csv”. The study focus on 250groups that went to a park, and each group was questioned about how many fish they caught, how many children, andhow many people were in the group, and whether or not they brought a camper to the park. In addition to predicting thenumber of fish caught, there is interest in predicting the existence of excess zeros, i.e. the probability that a group caughtzero fish. The dataset contains 56.8% of zeros, while the response has a mean of 3.29 and a variance of 135.37, thus adispersion index of approximately 41. The observed frequencies are shown in Figure 3.22.

FIGURE 3.22: Bar plot of the number of fish caught data.
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Thus, the q(x), β and π(x) parameters of a excessive-zero Discrete Weibull linear regression model can be related to theset of covariates as follows

log(− log(q(x))) = θ0 +θ1child+θ2camper1+θ3personslog(β) = θ0logit (π(x)) = γ0 +γ1child+γ2camper1+γ3persons (3.26)
The parameter estimates parametrised to the logarithm of the median and the AIC values via the zero inflated and hurdlemodels Discrete Weibull models are presented in Table 3.14. Once again, in terms of AIC the zero inflated and the hurdleDiscrete Weibull models outperforms all the alternatives. The zero inflated COM-Poisson regression model has beencomputed via the R function glm.cmp available in the R package COMPoissonReg. We note that the COM-Poisson modelshows better performance than the Poisson model.

TABLE 3.14: Parameter estimates and AIC for the count part of the zero-inflated and hurdle model on the numberof fish caught data.ZI PO ZI CMP ZI NB ZI DW hurdle PO hurdle NB hurdle DW(Intercept) -0.798*** -0.678 -1.618*** -1.798*** -0.826*** -1.622** -2.456***(0.171) (0.085) (0.32) (0.194) (0.172) (0.596) (0.351)child -1.137*** -0.139 -1.261*** -1.234*** -1.139*** -1.095*** -1.156***(0.093) (0.047) (0.247) (0.172) (0.093) (0.32) (0.204)camper1 0.724*** 0.075 0.386 0.404. 0.734*** 0.375 0.515(0.093) (0.04) (0.246) (0.157) (0.093) (0.336) (0.21)persons 0.829*** 0.145 1.09*** 0.958*** 0.835*** 1.003*** 0.983***(0.044) (0.028) (0.112) (0.085) (0.044) (0.155) (0.105)other - σ=-0.957 σ=-0.593*** β=0.74*** - σ=-1.053* β=0.62***- (0.35) (0.158) (0.054) - (0.497) (0.105)AIC 1521.463 815.937 809.079 802.349 1519.236 808.318 803.942logLik -752.732 -398.968 -395.539 -391.998 -751.618 -395.159 -392.971
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

3.7 Conclusions

The regression framework presented in this chapter via a Discrete Weibull distribution has been successfully applied toa number of real data examples, thus it can be considered a highly competitive alternative to the current models for countdata in case of over- or under-dispersion, and in the presence of an excess number of zeros. Such data structures appearfrequently in various applications, such as healthcare, social science, psychology, engineering, business, and so on. Inaddition to the linear regression framework, the model has been extended to consider cases when data are grouped intoclusters, or panels, or correlated groups, i.e. hierarchical structures.



Chapter 4

Non-linear models for counts via a Discrete
Weibull distribution

In the parametric literature, the inclusion of dependencies other than linear had been addressed by developing newdistributions with additional parameters, e.g. the generalised Gamma approach of [74] for continuous responses, or byadopting more flexible non-linear regression models that can link all parameters of the distribution to the covariates, mostnotably the generalized additive models for location, scale and shape i.e. GAMLSS of [84].
In chapter 3 we employed GLMs where the conditional distribution of the response variable given the predictors isassumed to follow a specified distribution with the conditional mean linked to the predictors via a regression model.Specifically, we employed the Negative Binomial and the Poisson-inverse Gaussian models in the case of over-disperseddata, the generalised Poisson in the case of under-dispersed data, the Poisson and COM-Poisson models in both thecases, and the zero inflated and hurdle specifications of these models when in the presence of excessive zeros. Thus,we compared these models with our approach via a Discrete Weibull distribution which considered a linear relationshipbetween the linked-transformed parameters and the covariates. So far, we have kept the second distributional parameterof the Discrete Weibull fixed. Here we extend our parametric approach by including non-linear dependencies for boththe regression parameters and the covariates. In this way we are able to model more accurately the full conditionaldistribution of Y given X , i.e. all conditional quantiles.
4.1 The GAMLSS Discrete Weibull regression model

By assuming that the response variable has a discrete Weibull distribution conditional on the exogenous variables, weemploy generalised additive models to link the parameters to the predictors. In this sense, this approach could offer analternative to the more traditional non-parametric quantile regression models, which are rather challenging for counts.Moreover, adding a link to both parameters means that conditional quantiles of various shapes and complexity can becaptured. Specifically, we assume that the response Y |X has a Discrete Weibull conditional distribution, with the q and

56
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β parameters linked to the covariates x via a generalized additive model as follows

log(− log(q(x))) = P∑
p=1

Dp∑
d=0θ0pdxpd+ P∑

p=1
Kp∑
k=1θpk (xp−hpk )Dp I(xp > hpk ),

log(β(x)) = P∑
p=1

D′p∑
d=0θ0pdxpd+ P∑

p=1
K ′p∑
k=1θpk (xp−hpk )D′p I(xp > hpk ),

(4.1)

where x = (1, x1, . . . , xP ), D and D′ denote the degrees of the polynomials, K and K ′ the number of break points or internalknots, I(·) is the indicator function, so I(xp >hpk ) is 1 if xp >hpk and 0 otherwise, and (θ,θ) are the vectors of parametersto be estimated. The general formulation as a B-spline model [29] includes models of varying complexity, such as linearmodels with or without interactions and orthogonal polynomial basis [99]. This in turn returns conditional quantiles ofvarious shapes and complexity. Rather than defining the number of knots and degrees, is also possible to formulate theproblem as a penalized regression spline [112].We can now extend the formulation of the τ-quantile function presented in Equation 3.5 linking both the parameter q and
β to the covariates x. Thus, for a fixed quantile τ ∈ [0,1], the µ(τ) quantile of a Y |X ∼Discrete Weibull is given by

µ(τ) = ⌈µ∗(τ)⌉= ⌈( log(1−τ)log(q(x))
) 1

β(x)
−1⌉. (4.2)

From this,
log(µ∗(τ) +1) = 1

β(x) log(−log(1−τ))− 1
β(x) log(−log(q(x))). (4.3)

The formulation of the log-quantile given in Equation 4.3 will be used to graphically inspect the quantiles of the models.
Considering one covariate x only, and dropping the indices p of the model for simplicity, we look closely at three casesto inspect the level of flexibility of a Discrete Weibull model in approximating conditional distributions.
• Discrete Weibull linear regression model with β constant.This model is specified as in Equation 4.1 with D = 1, D′ = 0 and no knots, i.e.:

log(− log(q(x))) = θ00 +θ01xlog(β) = θ00. (4.4)
The top-left plot in Figure 4.1 shows the case θ00 =−10, θ01 =−5, θ00 = 0.7. The figure plots log(µ(∗τ) +1) fromEquation 4.3. As expected by Equation 4.3, a linear model with β constant returns log-quantiles which are linearand parallel. This is the case of the models considered in chapter 3.

• Discrete Weibull linear regression model with β not constant.This model is specified as in Equation 4.1 with D =D′ = 1 and no knots, for example:
log(− log(q(x))) = θ00 +θ01xlog(β(x)) = θ00 +θ01x, (4.5)

for the case of a linear model on both q(x) and β(x). The top-right plot in Figure 4.1 shows the case θ00 = −5,
θ01 =−10, θ00 =−1.5, θ01 = 3. This plot shows how a non-constant β(x) allows to obtain log-quantiles that arenot parallel.
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Linear model for q(x), β constant Linear model for q(x), β(x)

Polynomial model for q(x), β constant Spline model for q(x), β constant
FIGURE 4.1: Plot of the conditional quantiles for Discrete Weibull models under linear (top) and non-linear(bottom) models, and β fixed (top left, bottom) and not (top right).
• Discrete Weibull non-linear regression model.Here there are two cases of interest: a parametric polynomial model and a spline model. For example, setting
D = 3, D′ = 0 and no knots in Equation 4.1 leads to a 3rd-degree orthogonal polynomial model for q(x):

log(− log(q(x))) = θ00 +θ01x+θ02x2 +θ03x3
log(β) = θ00. (4.6)

The bottom-left plot in Figure 4.1 shows the quantiles for the 3rd-degree polynomial model with θ00 = −15,
θ01 =−25, θ02 = 20, θ03 =−18, and θ00 = 0.7. On the other hand, setting D =K = 3, D′ = 0 in Equation 4.1 leadsto a B-spline model for q(x) with three interior knots:

log(− log(q(x))) = θ00 +θ01x+θ02x2 +θ03x3 +θ1(x−h1)3I(x > h1)++θ2(x−h2)3I(x > h2)+θ3(x−h3)3I(x > h3)log(β) = θ00.
(4.7)

Cubic splines are typically complex enough for most real applications [31]. The degrees of freedom for the fittedmodel are given by S=1+D+K. The knots are typically evenly spaced throughout the range of observed values orplaced at some quantiles of the variable of interest. To generate the smooth term of x to pass into the model formula,in R software we employ the bs function available in the splines package. This generates the the B-spline basis
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matrix of the piecewise polynomial term x with the specified number of interior knots K and degree D. The bottom-right plot in Figure 4.1 shows the quantiles for the cubic spline model having set θ00 =−15, θ01 =−13, θ02 =−19,
θ03 = −14, θ1 = −17, θ2 = −18.5, θ3 = −16, and θ00 = 0.7. The cubic spline, together with the assumption of aconstant β, leads to parallel and non-linear log-quantiles, as expected by Equation 4.3.

4.2 Parameter estimation

Parameter estimation is done via maximum likelihood, as presented in section 3.3. In addition, we consider two mainextensions. For high dimensional problems or when variable selection is of interest we consider the L1 penalty as in theleast absolute shrinkage and selection operator widely known as Lasso ([101], or see Chapter 3 in [40]). By retaininga subset of the predictors and discarding the rest, this method is very efficient also for large problems, e.g. when thenumber of variables is larger than the number of observations, when the usual maximum likelihood approach will fail. Thesecond extension considers a local approach via a weighting function or kernel which assign a weight to xi based on itsdistance from a specified point x0 (see chapter 6 in [40]). We described both methods in the next two sections.
4.2.1 The L1 penalised Discrete Weibull regression model

Lasso is a regression method which involves penalizing the absolute size of the regression coefficients. The penalisationwill results in some of the parameter being exactly zero. This is convenient when we want some automatic variableselection, or when dealing with highly correlated predictors. For the above reasons, we extended the regression modelin Equation 4.1 with the inclusion of a L1 penalty term for the selection of the variables. The L1 penalized estimationmethod shrinks the estimates of the regression coefficients towards zero relative to the maximum likelihood estimates.In particular, the parameters of the model presented in Equation 4.1 are now estimated by maximising the weightedlog-likelihood with L1 penalty
n∑
i=1 l(y,x;θ,θ)+λ1 P∑

p=1
DP∑
d=0 |θ0pd|+λ2 P∑

p=1
KP∑
k=1 |θpk |+λ3 P∑

p=1
D′P∑
d=0 |θ0pd|+λ4 P∑

p=1
K ′P∑
k=1 |θpk |.

We note that as the λs terms increase, more coefficients are set to zero, i.e. less variables are selected, and among thenon-zero coefficients, more shrinkage is employed. In R software and within the gamlss regression function, the estimationof the penalised smoothing coefficients for each distributional parameter with respect to the xth term can be done via the
ri function with Lp=1 penalty.
4.2.2 The Discrete Weibull regression model with Gaussian kernel weights

For the local estimator we extended the Discrete Weibull likelihood with the inclusion of Gaussian kernel weights. Thekernel smoothing is one of the most widely used non-parametric data smoothing techniques. The functional form of thekernel implies that the weights are much larger for the observations where xi is close to a pre-specified x0. The size ofthe weights is parametrized by the bandwidth b, where a very large bandwidth leads to a very smooth model. For eachchosen bandwidth b, the parameters θ(b) and θ (b) of Equation 4.1 are estimated by optimising
n∑
i=1 wi(x0,b)l(y,x|θ,θ),
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with the weights wi local around the vector of predictors x0 and dependent on a bandwidth b via the Gaussian kernel

wi(x0,b) = exp(−‖xi− x0‖2b2
)
,

where
‖xi− x0‖= P∑

p=1
(
xip− x0

psd(xp)
)2
.

For the selection of the bandwidth of a Gaussian kernel density estimator one can employ the R function bw.nrd0 availablein the stats package to select the optimally smoothed curve i.e. the density estimate which is close to the true density,thus avoiding curves which are under-smoothed since contains too many spurious data, or curves which are over-smoothedwhich will fail in the identification of the underlying structure of the data.
4.3 Model selection and comparison

We compare our Discrete Weibull specification with existing parametric approaches which employ different distributionsand with the jittering approach of [63]. We measure the performance of these approaches by considering three differentquantiles, namely τ = 0.25,0.5,0.75. Thus, in subsection 4.5.1 for each τ and for each model we will evaluate the accuracyin the estimation of the conditional quantile by calculating the root mean squared error
RMSE =

∑n
i=1(µ̂(τ)

i −µ
(τ)
i

)2
n


0.5
, (4.8)

where µ(τ)
i is the real quantile, and µ̂(τ)

i is the fitted quantile from the specified model. For the Discrete Weibull model,
µ̂(τ)
i and µ(τ)

i are calculated as in Equation 4.3 using the model fitted values from Equation 4.1, i.e. q̂(x) and β̂(x), and thereal values, i.e. q(x) and β(x), from the true parameters, respectively. For the other models, we use the functions qNBI,
qGPO, qPIG and qPO in the R package gamlss.dist and the function qcmp available in the R package COMPoissonRegto calculate the quantiles of the Negative Binomial, generalised Poisson, Poisson-inverse Gaussian, Poisson and COM-Poisson model, respectively.
In real data applications, as described in section 3.4 we employ the AIC estimator for the model selection. Moreover, weconsider the partial effects in order to quantify the change in the quantiles of the dependent variable in response to achange in each explanatory variable, while keeping all the other covariates constant. In particular, let x0 denotes thevector of predictors, where each predictor is set to their sample mean x̄ if continuous and to their mode if dummy. Then,the effect for the regressor xp is calculated as the difference µ∗(τ)(x1

p)−µ∗(τ)(x0), where µ∗(τ)(x1
p) is the quantile estimatedon the vector x1

p, which is equal to x0, with the exception of the pth variable which is increased by one unit, while µ∗(τ)(x0)is the fitted quantile on x0.
4.4 Model diagnostic

In addition to the diagnostic plot based on the randomised quantiles residuals as detailed in section 3.4, in sec-tion 4.6 we also assess the goodness-of-fit of the model following the approach of [74]. In particular, one would expect100(µ̂(τ)
i+1− µ̂(τ)

i

)% of the data to lie between the ith and the (i+1)th conditional quantile, so we compare this target
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value with that obtained using the estimated conditional quantiles. Although this approach requires continuous responsedata, it works well on the examples reported in this analysis where the response variable takes an enough large numberof discrete values. We consider the ten regions defined by the 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%quantiles.
4.5 Simulation study

We perform a number of simulations to compare the Discrete Weibull generalised additive regression with parametricalternatives and with the Jittering approach of [64]. Specifically, the parametric comparison is done in R by fitting thePoisson, Negative Binomial, generalised Poisson, and Poisson-Inverse Gaussian via the gamlss function, while the COM-Poisson regression is implemented via the R function glm.cmp within the COMPoissonReg package. The Jittering approachcan be fit in R via the lqm.counts and rq.counts functions in the lqmm and Qtools packages, respectively. The algorithmimplemented in the lqm.counts function is based on a Laplace gradient estimation, whereas the one implemented inthe rq.counts function is based on a linear programming estimation. In this chapter, we use the rq.counts function,which provides more stable estimates for small sample sizes. Moreover, we employ generalised additive regression modelsextended to all the distributional parameters for the distributions presented above. Across the simulations and the differentmodels, we use generalized additive models of the same complexity for a fair comparison.
4.5.1 Simulated data from a Discrete Weibull model

We first simulate data from our proposed model as in Equation 4.3. In particular, we set n=50,100,1000, x ∼Uniform(0,1),
Y |X ∼Discrete Weibull(q(x),β(x)), and we consider the following cases:
• Case (1). Linear model for q(x), β constant.

log(− log(q(x))) =−3.5− x,(a) log(β) = 0.7 → over-dispersed(b) log(β) = 1.1 → under-dispersed. (4.9)
• Case (2). Linear model for q(x), β(x).

log(− log(q(x))) =−5−3x(a) log(β(x)) = 0.9+0.3x → over-dispersed(b) log(β(x)) = 1.2+0.5x → under-dispersed. (4.10)
• Case (3). Third degree polynomial model for q(x), β constant.

log(− log(q(x))) =−5−7x−4x2−6x3,(a) log(β) = 0.8 → over-dispersed(b) log(β) = 1.6 → under-dispersed. (4.11)
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• Case (4). Cubic spline model for q(x), β constant.

log(− log(q(x))) =−7−5x−3x2−4x3−8(x−h1)3I(x > h1)+
−9(x−h2)3I(x > h2)−6(x−h3)3I(x > h3),(a) log(β) = 0.8 → over-dispersed(b) log(β) = 1.6 → under-dispersed.

(4.12)

Setting the values as above leads to a range of values of q(x) between 0.79 and 1 and a range of values of β(x) between2 and 8.2, thus allowing us to explore the fit of the models for a number of different quantiles. The four cases correspondto models of varying complexity. In addition, we also consider both cases of over-dispersion and of under-dispersionrelative to Poisson. Figure 4.2 shows the conditional dispersions for the over-dispersed cases, whereas Figure 4.3 is forthe under-dispersed cases. The red line in the graphs represents the threshold value of dispersion 1. The plots showcases of either over- or under-dispersion for all values x. In fact, a Discrete Weibull regression model can capture alsocases of mixed dispersion, with over-dispersion for some covariates’ patterns and under-dispersion for others.

Linear model for q(x), βconstant Linear model for q(x) and
β(x) Polynomial model for q(x), βconstant Spline model for q(x), βconstant

FIGURE 4.2: Plot of the conditional dispersion values for the cases of over-dispersion of Discrete Weibullsimulated data.

Linear model for q(x), βconstant Linear model for q(x) and
β(x) Polynomial model for q(x), βconstant Spline model for q(x), βconstant

FIGURE 4.3: Plot of the conditional dispersion values for the cases of under-dispersion of Discrete Weibullsimulated data.
By fitting the models in Equation 4.9, Equation 4.10, Equation 4.11, and Equation 4.12, for the over- and under-disperseddata respectively, we note the computational gain in terms of CPU time in seconds by using our parametric approachvia the Discrete Weibull model with respect to the COM-Poisson model and the Jittering method for the 50% τ-quantileaveraged over 50 dithered samples, as presented in Table 4.1.
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TABLE 4.1: System time (in seconds) performance comparison between the same specification model via differentapproaches on over- and under-dispersed data simulated from a Discrete Weibull model under four differentspecifications: (1) linear link on q, constant β, (2) linear link on both q and β, (3) cubic polynomial link on q,constant β, (4) cubic spline on q, constant βover-dispersedCase (1) Case (2) Case (3) Case (4)DW 0.16 0.16 0.14 0.18NB 0.03 0.05 0.03 0.06PIG 0.07 0.06 0.06 0.14CMP 2.64 5.7 9.59 18.35GPO 0.09 0.09 0.08 0.11PO 0.01 0.02 0.02 0.01Jittering 0.42 0.39 0.42 0.47under-dispersedCase (1) Case (2) Case (3) Case (4)DW 0.21 0.19 0.19 0.24CMP 2.26 6.85 7.08 19.23GPO 0.11 0.12 0.11 0.14PO 0.02 0.01 0.01 0.01Jittering 0.4 0.41 0.4 0.47

Table 4.2 and Table 4.3 report the errors, calculated as in Equation 4.8, averaged over 100 iterations, for the three differentquantiles τ = (0.25,0.5,0.75) and for sample sizes n= (50,100,1000), for the over-dispersed and under-dispersed cases,respectively.
TABLE 4.2: Comparison of different models in terms of root mean squared error on over-dispersed data simulatedfrom a Discrete Weibull model under four different model specifications: (1) linear link on q, constant β, (2)linear link on both q and β, (3) cubic polynomial link on q, constant β, (4) cubic spline on q, constant β.Jittering DW PO PIG CMP NB

τ\n 50 100 1000 50 100 1000 50 100 1000 50 100 1000 50 100 1000 50 100 1000(1)0.25 0.782 0.578 0.354 0.652 0.520 0.300 1.123 1.022 0.995 0.944 0.82 0.847 0.961 0.872 0.970 0.698 0.556 0.3860.500 0.934 0.678 0.399 0.757 0.605 0.336 0.787 0.642 0.496 1.347 1.265 1.359 1.385 1.293 1.359 0.730 0.604 0.3640.750 1.116 0.820 0.429 0.958 0.708 0.394 0.966 0.883 0.743 1.834 1.676 1.783 1.760 1.670 1.725 0.947 0.704 0.412(2)0.250 0.748 0.651 0.400 0.697 0.581 0.363 0.755 0.614 0.549 1.216 1.255 1.276 1.321 1.293 1.313 0.691 0.569 0.3650.500 0.879 0.729 0.464 0.742 0.635 0.449 0.708 0.626 0.466 1.316 1.345 1.390 1.394 1.377 1.345 0.710 0.627 0.5070.750 0.843 0.753 0.490 0.789 0.668 0.447 0.822 0.771 0.661 1.46 1.502 1.457 1.532 1.575 1.507 0.806 0.709 0.520(3)0.250 1.747 1.596 0.531 1.158 0.948 0.416 1.938 2.481 1.125 6.173 5.387 1.297 6.375 5.727 1.376 1.268 1.230 0.4660.500 1.979 1.826 0.482 1.590 1.216 0.432 1.778 1.505 0.537 8.911 7.726 1.779 8.953 7.873 1.824 1.637 1.336 0.4280.750 2.594 1.868 0.560 2.158 1.555 0.508 3.512 2.138 0.966 12.01 10.37 2.382 11.79 10.21 2.349 2.470 1.664 0.554(4)0.250 3.768 2.463 0.765 2.187 1.543 0.475 4.630 4.280 3.128 9.310 9.790 7.220 9.880 10.49 7.673 2.591 1.738 0.6390.500 3.841 2.707 0.808 2.823 2.056 0.575 3.133 2.244 0.780 13.12 13.73 10.38 13.47 14.19 10.71 2.989 2.078 0.7150.75 4.534 3.505 0.906 3.660 2.763 0.735 4.407 3.964 2.630 17.62 18.50 14.05 17.46 18.32 13.95 3.793 2.846 0.971
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TABLE 4.3: Comparison of different models in terms of root mean squared error on under-dispersed data simulatedfrom a Discrete Weibull model under four different model specifications: (1) linear link on q, constant β, (2)linear link on both q and β, (3) cubic polynomial link on q, constant β, (4) cubic spline on q, constant β.Jittering DW PO CMP GPO
τ\n 50 100 1000 50 100 1000 50 100 1000 50 100 1000 50 100 1000(1)0.25 0.313 0.230 0.058 0.257 0.208 0.052 0.511 0.492 0.570 0.220 0.150 0.020 0.290 0.340 0.3300.5 0.453 0.409 0.249 0.406 0.381 0.214 0.456 0.376 0.376 0.542 0.537 0.535 0.533 0.575 0.5610.75 0.468 0.396 0.233 0.424 0.359 0.197 0.499 0.498 0.494 0.667 0.639 0.673 0.690 0.671 0.687(2)0.25 0.546 0.443 0.318 0.440 0.369 0.216 0.801 0.775 0.719 1.298 1.290 1.341 1.365 1.430 1.4620.5 0.550 0.495 0.280 0.496 0.433 0.234 0.566 0.523 0.457 1.459 1.459 1.497 1.490 1.484 1.5370.75 0.497 0.374 0.215 0.474 0.362 0.179 0.650 0.609 0.616 1.530 1.473 1.537 1.639 1.549 1.680(3)0.25 0.138 0.139 0.008 0.136 0.121 0.002 0.635 0.584 0.809 0.120 0.090 0.060 1.124 0.792 0.8120.5 0.414 0.289 0.026 0.306 0.287 0.004 0.406 0.265 0.176 0.360 0.260 0.340 1.129 0.652 0.1820.75 0.537 0.478 0.434 0.480 0.425 0.440 0.675 0.664 0.767 0.591 0.576 0.602 1.296 0.890 0.779(4)0.25 0.546 0.443 0.318 0.440 0.369 0.216 0.801 0.775 0.719 1.298 1.290 1.341 1.365 1.430 1.4620.5 0.550 0.495 0.280 0.496 0.433 0.234 0.566 0.523 0.457 1.459 1.459 1.497 1.490 1.484 1.5370.75 0.497 0.374 0.215 0.474 0.362 0.179 0.650 0.609 0.616 1.530 1.473 1.537 1.639 1.549 1.680

TABLE 4.4: Case (4) cubic spline on q, constant β: root mean squared error comparison of linear Discrete Weibullmodel for q(x) and β constant, and linear Jittering model versus the well-specified Discrete Weibull B-splinemodel for q(x) and β in case of over- and under-dispersed data.(4) linear Jittering linear DW DW B-spline
τ\n 50 100 1000 50 100 1000 50 100 1000Over-disp.0.25 5.521 5.464 4.987 6.155 6.132 6.053 2.240 1.606 0.6010.5 7.778 7.495 6.930 7.764 7.698 7.427 2.926 2.103 0.7400.75 9.933 9.548 8.906 9.888 9.803 9.281 3.812 2.782 0.940Under-disp.0.25 0.824 0.793 0.726 0.924 0.938 0.946 0.461 0.366 0.2290.5 0.809 0.800 0.813 0.792 0.783 0.759 0.510 0.426 0.2450.75 0.917 0.871 0.843 0.940 0.912 0.890 0.467 0.355 0.185

Considering the case of over-dispersed data, for every τ and independently on the sample size, the Discrete Weibullmodel outperforms all the models. The two main competitors are the Jittering method and Negative Binomial model. ThePoisson model performs better than the the Poisson-Inverse Gaussian and the COM-Poisson model, particularly whennon-linear dependencies are considered, i.e. fourth case, but none of them seems to be a valuable alternative to theDiscrete Weibull model. Regarding the case of under-dispersion, the Discrete Weibull model outperforms the Jitteringand all the other models in all the case, although the error measures of the Jittering and the Discrete Weibull modelare very close under these two approaches. In the case of under-dispersed data the COM-Poisson model shows betterperformance than in the case of over-dispersed data. The results obtained via a Poisson and a generalised Poisson arevery similar. Table 4.4 focusses only on the fourth case and compares the Discrete Weibull well-specified non-linearmodel with the simpler (miss-specified) linear Discrete Weibull model for q(x) and β used in chapter 3, and the linearJittering model. The table shows how the linear Discrete Weibull and the Jittering are equally disadvantaged by themiss-specification of the model, although Jittering shows a slightly better performance.
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4.5.2 Simulated data from a Poisson and a Negative Binomial model

In order to advocate the use of this approach for general regression problems with a discrete response variable, we testthe robustness of the approach to misspecification in the distribution of the response variable. In particular, we considerthe cases of Poisson and Negative Binomial. We set n=50,100,1000, x ∼ Uniform(0,1) and consider the following models
Poisson data: Y |X ∼ Poisson(µ(x)):
• Case (1). Linear model.

log(µ(x)) = 1−1.5x.
• Case (3). Third degree polynomial model.

log(µ(x)) = 1+1.5x+0.5x2 + x3.
• Case (4). Cubic spline model.

log(µ(x)) = 1.5+ x+0.6x2 +0.9x3 +0.5(x−h1)3I(x > h1)++0.7(x−h2)3I(x > h2)+0.8(x−h3)3I(x > h3).
Because the Poisson distribution has only one parameter, we do not evaluate the model presented in Case (2). Table 4.5reports the errors as in Equation 4.8 for the quantiles τ = 0.25,0.5,0.75, averaged over 100 iterations, and for samplesizes n= 50,100,1000.

TABLE 4.5: Comparison of different models in terms of root mean squared error on simulated Poisson data underfour different model specifications: (1) linear link on q, constant β, (3) cubic polynomial link on q, constant β,(4) cubic spline on q, constant β.Jittering DW PO
τ\n 50 100 1000 50 100 1000 50 100 1000(1)0.25 0.400 0.275 0.090 0.362 0.255 0.074 0.321 0.221 0.0700.5 0.600 0.431 0.136 0.579 0.382 0.125 0.546 0.376 0.1220.75 0.613 0.454 0.143 0.585 0.407 0.129 0.572 0.402 0.129(3)0.25 0.726 0.563 0.574 0.651 0.522 0.529 0.593 0.491 0.5120.5 0.742 0.590 0.575 0.667 0.537 0.530 0.671 0.531 0.5270.75 0.848 0.663 0.308 0.771 0.615 0.253 0.746 0.607 0.267(4)0.25 0.662 0.526 0.177 0.475 0.295 0.220 0.507 0.352 0.1550.5 0.763 0.551 0.192 0.624 0.434 0.185 0.669 0.483 0.1630.75 0.941 0.654 0.261 0.816 0.601 0.214 0.775 0.574 0.204

With simulated Poisson data, the Poisson model performs only slightly better than the Discrete Weibull model. Moreover,in almost all the cases the Discrete Weibull model performs better than the Jittering approach.
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Negative Binomial data: Y |X ∼Negative Binomial(µ(x),σ (x)) with the following link functions:
• Case (1). Linear model for µ(x), σ constant.

log(µ(x)) = 1+1.5x,log(σ ) = 0.7.
• Case (2A). Linear model for µ(x), σ (x).

log(µ(x)) = 0.5+0.7xlog(σ (x)) =−1+0.5x.
• Case (2B). Linear model for µ(x), σ (x), and two covariates affecting different parts of the distribution.

log(µ(x)) = 0.3+0.7x1log(σ (x)) =−2+2x2.
• Case (3). Third degree polynomial model for µ(x), σ constant.

log(µ(x)) = 1.5+ x−0.5x2 +0.8x3,log(σ ) =−2.
• Case (4). Cubic spline model for µ(x), σ constant.

log(µ(x)) = 1.5+2x+ x2 +1.7x3 +1.2(x−h1)3I(x > h1)++1.4(x−h2)3I(x > h2)+2.3(x−h3)3I(x > h3),log(σ ) =−2.
Table 4.6 reports the square root of the error as in Equation 4.8 for the quantiles τ = 0.25,0.5,0.75, averaged over 100iterations, and for the different sample sizes n= 50,100,1000.With simulated Negative Binomial data, the Negative Binomial model performs only slightly better than the DiscreteWeibull model, but the Discrete Weibull model always performs better than the Jittering approach. Here Case (2B) is ofparticular interest: this is the case in which the dispersion depends on a regressor that does not affect the mean. Themodel estimates are presented in Table 4.7 for the Discrete Weibull, Negative Binomial and Jittering model, respectively.It is interesting to note that the Discrete Weibull model on q(x) and β(x) is behaving similarly to the Negative Binomialmodel, by selecting only x1 significant in predicting q(x), and only x2 for β(x), while the Jittering approach is able todetect τ-dependent significant variables, which is clearly not possible for a parametric model.
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TABLE 4.6: Comparison of different models in terms of root mean squared error on simulated Negative Binomialdata under four different model specifications: (1) linear link on q, constant β, (2) linear link on both q and
β with (2B) and without (2A) tail behaviour, (3) cubic polynomial link on q, constant β, (4) cubic spline on q,constant β.Jittering DW NB

τ\n 50 100 1000 50 100 1000 50 100 1000(1)0.25 0.636 0.493 0.257 0.560 0.428 0.221 0.537 0.401 0.1900.5 1.564 1.051 0.399 1.193 0.810 0.340 1.200 0.807 0.3420.75 3.343 2.214 0.656 2.455 1.680 0.580 2.517 1.644 0.577(2A)0.25 0.572 0.480 0.262 0.517 0.419 0.251 0.503 0.416 0.2440.5 0.651 0.532 0.294 0.593 0.476 0.269 0.580 0.473 0.2680.75 0.790 0.611 0.318 0.717 0.570 0.306 0.712 0.562 0.302(2B)0.25 0.517 0.505 0.108 0.497 0.477 0.102 0.509 0.480 0.0940.5 0.538 0.495 0.095 0.514 0.479 0.088 0.555 0.486 0.0840.75 0.694 0.607 0.143 0.622 0.577 0.122 0.667 0.578 0.119(3)0.25 0.891 0.743 0.571 0.661 0.610 0.537 0.716 0.638 0.5360.5 0.975 0.720 0.218 0.773 0.613 0.201 0.795 0.633 0.1990.75 1.224 0.857 0.283 1.054 0.798 0.268 1.031 0.776 0.248(4)0.25 1.173 0.923 0.420 0.847 0.656 0.371 0.927 0.718 0.3620.5 1.372 0.973 0.502 1.109 0.830 0.452 1.109 0.850 0.4430.75 1.861 1.192 0.511 1.446 1.056 0.503 1.363 1.007 0.454

TABLE 4.7: Parameter estimates for Discrete Weibull, Negative Binomial and Jittering model from the case (2B)of Negative Binomial simulated data with tail behaviour.DW NB Jittering
q(x) β(x) µ(x) σ (x) τ=.25 τ=.5 τ=.75(Intercept) 0.775*** 0.564*** 0.354*** -2.219*** -0.136 0.21* 0.636***(0.062) (0.075) (0.078) (0.392) (0.135) (0.094) (0.103)

x1 0.538*** -0.116 0.696*** 0.764. 0.434* 0.678*** 0.802***(0.084) (0.096) (0.101) (0.41) (0.185) (0.131) (0.133)
x2 -0.094 -0.364*** -0.032 1.466*** -0.503* -0.219 -0.026(0.088) (0.096) (0.103) (0.428) (0.201) (0.146) (0.158)

The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
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4.6 Real data study

4.6.1 Over-dispersed data

Waiting times before intervention We now continue the evaluation analysis of the healthcare system of Lombardyregion in Italy. In chapter 2 we have considered the hospital effectiveness quantifying the hospitals reaction to the newlyadopted P4P program. Then, in chapter 3 we investigated the hospital efficiency measuring the patient length of stay onthree patient health conditions, i.e. CABG, PTCA, and HIP. Here we measure the hospital efficiency in terms of waitingtime before intervention on the three patient health conditions previously considered. Specifically, the waiting timesbefore the intervention is calculated as a difference between the date of the surgery and the booking date. Thus, weconsider a total of 16,605 hospitalisations within 109 hospitals, as this is the dimension of the booked surgeries performedfor these conditions, and of which 2,487 hospitalisations were for CABG, 6,937 for HIP, and 7,181 for PTCA, respectively.In other words, 70% of the surgeries performed in 2014 for these three health conditions was previously booked. Theresponse variable is measured in weeks, and shows a dispersion of approximately 12, a mean of 11.52, and a range of[0,129]. On average the waiting time for CABG is approximately 3 weeks, while for HIP and PTCA is approximately 13weeks. Figure 4.4 plots the frequency of the response variable.

FIGURE 4.4: Bar plot of the hospital waiting times measured in weeks.
As in section 3.6.1, the structure of the data is calling for a mixed effects model. Thus, we fit a two-level random interceptmodel considering the patient p (with p = 1, . . . ,Ph) hospitalised within hospital h (with h = 1, . . . ,H). Moreover, weinclude information regarding the patient-reported health procedure, patients’ demographic characteristics, i.e. genderand age of the patients, and the comorbidity index. To add flexibility to our model we smooth the data by including acubic B-splines term with three internal knots set at the quartiles of the variable age of the patient. Thus, recalling the
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random intercept model in Equation 3.17, the non-linear mixed effects Discrete Weibull model can be written as

log(− log(q(x,u))) = θ00 +θ01femaleph+θ02ageph+θ03age2
ph+θ04age3

ph+θ1(ageph−h1)3I(ageph > h1)+
θ2(ageph−h2)3I(ageph > h2)+θ3(ageph−h3)3I(ageph > h3)+θ05comorbidity1ph+
θ06comorbidity2ph+θ07comorbidity3ph+θ08procHIPph+θ09procCABGph+uhlog(β(x,u)) = θ00 +θ01femaleph+θ02ageph+θ03age2

ph+θ04age3
ph+θ1(ageph−h1)3I(ageph > h1)+

θ2(ageph−h2)3I(ageph > h2)+θ3(ageph−h3)3I(ageph > h3)+θ05comorbidity1ph+
θ06comorbidity2ph+θ07comorbidity3ph+θ08procHIPph+θ09procCABGph+uh.

(4.13)

As we have previously done in the case of over-dispersed data, we compare our model with the Poisson, Negative Binomial,Poisson-Inverse Gaussian, and COM-Poisson models. The COM-Poisson model for both the parameter µ(x) and σ (x) hassome convergence issues, thus we consider the COM-Poisson model with σ constant.
TABLE 4.8: Parameter estimates and AIC values for the non-linear mixed effects models with a cubic B-splinewith three internal knots of the variable AGE for the waiting times data.PO CMP NB PIG DW Jittering

µ(x) µ(x) µ(x) σ (x) µ(x) σ (x) q(x) β(x) τ=.25 τ=.5 τ=.75Fixed part(Intercept) 3.83*** 1.176 3.83*** -3.658* 4.18*** -4.47*** 3.14*** -0.408 13.62* 19.48** 21.89***(0.205) (0.134) (0.232) (1.458) (0.215) (1.079) (0.558) (0.326) (5.896) (5.894) (6.003)female -0.03*** -0.011 -0.031** -0.021 -0.031** -0.006 -0.009 0.018 0.017 -0.012 -0.168(0.005) (0.003) (0.011) (0.03) (0.012) (0.037) (0.011) (0.012) (0.051) (0.088) (0.208)cs.age1 -2.4*** -0.996 -2.39*** 3.373 -2.57*** 4.98** -1.356. 0.884. -8.456 -10.655 -10.39(0.302) (0.195) (0.385) (2.097) (0.377) (1.832) (0.756) (0.503) (7.795) (7.824) (7.669)cs.age2 -1.01*** -0.426 -1.02*** 2.588. -1.18*** 3.44*** -0.339 0.917** -5.502 -6.63 -3.309(0.196) (0.127) (0.222) (1.374) (0.206) (0.98) (0.533) (0.303) (5.503) (5.587) (5.229)cs.age3 -1.20*** -0.5 -1.21*** 2.829. -1.36*** 3.86*** -0.522 0.797* -6.038 -7.693 -5.419(0.206) (0.133) (0.235) (1.472) (0.218) (1.098) (0.562) (0.33) (5.875) (5.927) (5.799)cs.age4 -1.26*** -0.521 -1.27*** 2.51. -1.424*** 3.25** -0.562 0.965** -5.538 -6.927 -5.621(0.203) (0.131) (0.232) (1.439) (0.216) (1.057) (0.553) (0.321) (5.754) (5.834) (5.601)cs.age5 -1.52*** -0.594 -1.53*** 4.3** -1.68*** 5.99*** -0.809 0.182 -10.97. -13.303* -8.98(0.223) (0.143) (0.293) (1.547) (0.288) (1.244) (0.598) (0.382) (6.033) (6.36) (6.632)cs.age6 -4.11*** -1.617 -4.12*** 4.383** -4.27*** 5.32** -3.11*** -0.137 -14.53* -12.202 -12.95(0.303) (0.194) (0.587) (1.673) (0.649) (1.68) (0.752) (0.563) (6.244) (8.741) (8.378)comorbidity1 -0.03** -0.007 -0.031 -0.054 -0.03 -0.053 -0.019 0.055* -0.001 0.015 -0.688(0.011) (0.007) (0.022) (0.067) (0.023) (0.083) (0.02) (0.025) (0.328) (0.366) (0.455)comorbidity2 0.047* 0.021 0.046 0.195. 0.048 0.28. 0.028 -0.096* 0.000 0.902 -0.736(0.022) (0.014) (0.047) (0.115) (0.051) (0.149) (0.046) (0.043) (0.479) (0.701) (1.027)comorbidity3 -0.31*** -0.125 -0.32*** -1.41** -0.32*** -1.588** -0.28*** 0.43*** 0.01 0.071 -3.42**(0.064) (0.042) (0.079) (0.49) (0.08) (0.507) (0.065) (0.09) (0.476) (0.604) (1.2)procHIP 0.02*** 0.007 0.02. -0.11*** 0.02. -0.13*** 0.022* 0.04** 0.034 0.049 0.127*(0.005) (0.003) (0.011) (0.03) (0.012) (0.037) (0.011) (0.013) (0.099) (0.065) (0.047)procCABG -1.78*** -0.693 -1.78*** 0.24*** -1.79*** 0.293*** -1.62*** -0.22*** -6.68*** -10.9*** -14.91***(0.014) (0.01) (0.024) (0.059) (0.025) (0.075) (0.022) (0.021) (1.472) (1.803) (2.569)Random partvar(u0j ) 0.293 0.041 0.293 0.311 0.260 5.122 14.59 24.12AIC 155565.6 111852.5 104407.3 104417.3 104362.4 - - -logLik -77665.48 -56154.53 -51978.65 -51977.91 -51960.44 - - -
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
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Table 4.8 reports the parameter estimates and the AIC of these models, which point to the choice of the Discrete Weibullas the best fitting model. We note that the AIC value for the linear mixed effects Discrete Weibull model, i.e. fittedwithout the cubic B-spline for age, is higher than the AIC value of the non-linear mixed effects model, i.e. AIC linear:104,556. Figure 4.5 shows the diagnostic plot of the theoretical versus the sample quantiles.

FIGURE 4.5: Diagnostic plots for the analyses of the waiting times data using various non-linear mixed effectsregression models.
We note that being admitted for CABG has a strong negative effect on the waiting times, particularly on the upper tail.This coefficient is found significant both from the Discrete Weibull model and the Jittering approach at the 25%, 50% and75%. The sex of the patient does not impact the waiting times. Patients with many comorbidities and older patients presentdecreasing waiting times. Overall this analysis shows how the Discrete Weibull distribution represents a competitivealternatives to available parametric regression models for over-dispersed data. Moreover, the non-linear Discrete Weibullmodel has a comparable performance to the more complex Jittering approach and allows to detect similar dependencies.In addition to this, the main theoretical advantage of our parametric approach via a Discrete Weibull distribution onmodelling this data is the non-crossing quantiles as showed in section 1.4 for these data.
Unnecessary hospital bed occupancy We model data from [41], which are available in the R package gamlss.dataunder the name aep. This study was carried out at the Hospital del Mar in Barcelona (Spain) during the years 1988 and1990. The aim of the study is to model the number of inappropriate days out of the total number of days spent in hospital.
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In particular, a reduction of the inappropriate stays in hospital could increase the hospital productivity and reduce thewaiting lists. The response is regressed against the type of ward in the hospital as a factor with three categories, i.e.medical, surgical, and others, the specific year as a factor with two categories, i.e. year 1988 and 1990, and the gender ofthe patient. Thus, we consider n=620 observations, where the response variable has a mean of 7.23, a variance of 72.52,and a range of [1,72]. The dispersion for the response variable is close to 10, thus we are modelling over-dispersed data.Figure 4.6 plots the frequencies of the response variable.

FIGURE 4.6: Bar plot of the unnecessary hospital bed occupancy measured in days.
We perform a Discrete Weibull linear regression model for both q(x) and β(x), i.e.

log(− log(q(x))) = θ00 +θ01age+θ02los+θ03wardS+
θ04wardO+θ05year90+θ06femalelog(β(x)) = θ00 +θ01age+θ02los+θ03wardS+
θ04wardO+θ05year90+θ06female.

(4.14)

Table 4.9 shows the parameter estimates via different parametric regression model specifications and for the Jitteringapproach for the 25%, 50% and 75% quantiles. The COM-Poisson model for both the parameter µ(x) and σ (x) has someconvergence issues, thus in Table 4.9 is presented the COM-Poisson model with σ constant.
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TABLE 4.9: Parameter estimates for different parametric regression model specifications and the Jittering approachfor the unnecessary hospital bed occupancy data.PO CMP NB PIG DW Jittering

µ(x) µ(x) µ(x) σ (x) µ(x) σ (x) q(x) β(x) τ=.25 τ=.5 τ=.75(Intercept) 1.478*** 0.27** 1.089*** -2.791*** 0.971*** -3.312*** 1.322*** 1.052*** 0.796*** 1.173*** 1.486***(0.033) (0.094) (0.068) (0.284) (0.074) (0.338) (0.057) (0.079) (0.075) (0.101) (0.104)age 0.007*** 0.003 0.003* -0.005 0.002 -0.009 0.003* 0.001 0.004 0.004** 0.004(0.001) (0.044) (0.001) (0.006) (0.002) (0.007) (0.001) (0.002) (0.003) (0.002) (0.003)los 0.033*** 0.011*** 0.062*** 0.044*** 0.072*** 0.081*** 0.058*** -0.015*** 0.046*** 0.053*** 0.055***(0.001) (0.001) (0.004) (0.007) (0.005) (0.01) (0.003) (0.003) (0.002) (0.004) (0.006)wardS -0.328*** -0.132*** -0.38*** 0.291 -0.378*** 0.293 -0.357*** -0.143* -0.419*** -0.571*** -0.48***(0.031) (0.001) (0.052) (0.218) (0.053) (0.26) (0.045) (0.064) (0.072) (0.072) (0.109)wardO -0.412** -0.149*** -0.423* 0.132 -0.454* -0.123 -0.376* -0.083 -0.645* -0.508 -0.257(0.142) (0.02) (0.2) (0.919) (0.197) (1.265) (0.165) (0.236) (0.286) (0.428) (0.252)year90 -0.239*** -0.085 -0.224*** 0.676** -0.202*** 0.796** -0.206*** -0.258*** -0.402*** -0.386*** -0.261**(0.032) (0.09) (0.052) (0.225) (0.054) (0.265) (0.045) (0.065) (0.073) (0.072) (0.084)female 0.046 0.005 -0.025 -0.141 -0.034 -0.244 -0.023 0.022 0.007 -0.023 -0.031(0.031) (0.019) (0.05) (0.225) (0.052) (0.265) (0.043) (0.065) (0.073) (0.075) (0.092)AIC 3903.841 3354.22 3184.352 3164.867 3156.272 - - -
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

We note that both the parametric models via different distributions and the Jittering, detect the same variables assignificant predictors. In terms of AIC, the Discrete Weibull and the Poisson-Inverse Gaussian models lead to the best fit.The variance ratio plot for these models in Figure 4.7 confirms these results, as well as the diagnostic plot in Figure 4.8.

FIGURE 4.7: Variance ratio plots of five different models for the unnecessary hospital bed occupancy data.
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FIGURE 4.8: Diagnostic plots for the linear analyses over both the distributional parameters of the unnecessaryhospital bed occupancy data using various regression models.
We now assess the goodness-of-fit of the Discrete Weibull model by comparing the observed and expected number ofdata points in each of the ten regions defined by the 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% quantiles.

TABLE 4.10: Observed and expected number of data points by region for the Jittering and Discrete Weibull modelon the unnecessary hospital bed occupancy data.
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0n(τ) 62 62 62 62 62 62 62 62 62 62n(τ) DW 93 107 69 65 50 42 39 47 45 63n(τ) Jittering 122 71 46 62 61 50 48 55 60 45n(τ) (%) 10 10 10 10 10 10 10 10 10 10n(τ) DW (%) 15 17.26 11.13 10.48 8.06 6.77 6.29 7.58 7.26 10.16n(τ) Jittering (%) 19.68 11.45 7.42 10 9.84 8.06 7.74 8.87 9.68 7.26

Table 4.10 reports the number of observations in each region. We would expect 62 observations (10%) in each of theregions. The numbers of observation obtained with the two approaches are very similar. This is shown visually inFigure 4.9, which plots the expected percentage of data points in each regions for both the Discrete Weibull (red) andthe Jittering (blue) model.
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FIGURE 4.9: Expected percentage of data points (y-axis) for each τ-quantiles and by region for the Jittering andDiscrete Weibull model on the unnecessary hospital bed occupancy data.
We now focus on the estimation of the partial effects in order to quantify the change in the quantiles of the dependentvariable in response to a change in each explanatory variable, while keeping all the other covariates constant as describedin section 4.4. Table 4.11 reports these partial effects. We can conclude that there are similarities regarding the intensityand the signs of the effects between the two models.

TABLE 4.11: Partial effects for the Discrete Weibull and Jittering models on the unnecessary hospital bedoccupancy data.
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Jitteringage 0.001 0.002 0.003 0.005 0.013 0.032 0.058 0.061 0.026los 0.004 0.011 0.020 0.037 0.079 0.194 0.341 0.590 0.809wardS -0.022 -0.040 -0.045 -0.099 -0.351 -1.055 -1.551 -2.712 -3.072wardO -0.071 -0.134 -0.167 -0.264 -0.576 -1.409 -2.330 -4.301 -3.978year90 0.060 0.150 0.227 0.325 0.481 0.461 0.107 -0.734 -0.211female -0.018 -0.027 -0.039 -0.051 -0.042 -0.250 -0.638 -0.840 -0.938Discrete Weibullage 0.001 0.003 0.005 0.008 0.011 0.016 0.021 0.027 0.036los 0.004 0.015 0.036 0.069 0.120 0.198 0.321 0.536 1.004wardS -0.005 -0.035 -0.095 -0.194 -0.348 -0.587 -0.969 -1.638 -3.098wardO -0.024 -0.088 -0.195 -0.357 -0.596 -0.950 -1.496 -2.421 -4.373year90 0.142 0.289 0.429 0.555 0.657 0.716 0.694 0.489 -0.292female -0.008 -0.022 -0.044 -0.075 -0.116 -0.174 -0.257 -0.389 -0.649

This example shows a very good fit of the linear Discrete Weibull model where both the parameters q and β are linked to
x. Nevertheless, the performance of this model can improve by considering a more local approach. Specifically, we now
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fit a linear regression Discrete Weibull model with Gaussian kernel weights for q(x) and β(x), which can be written as

log(− log((q(x))(b)))= θ(b)00 +θ(b)01 age+θ(b)02 los+θ(b)03 wardS+
θ(b)04 wardO+θ(b)05 year90+θ(b)06 femalelog((β(x))(b))= θ (b)00 +θ (b)01 age+θ (b)02 los+θ (b)03 wardS+
θ (b)04 wardO+θ (b)05 year90+θ (b)06 female,

(4.15)

where estimates of the parameters are obtained for each bandwidth b considered.
TABLE 4.12: Parameter estimates and AIC values for the linear Discrete Weibull(q(x),β(x)) model with Gaussiankernel weights set at the bandwidth b=(0.2,0.1,0.001) for the unnecessary hospital bed occupancy data.KLR b=0.2 DW KLR b=0.1 DW KLR b=0.001 DW

q(x) β(x) q(x) β(x) q(x) β(x)(Intercept) 1.308*** 1.058*** 1.319*** 1.054*** 1.322*** 1.052***(0.061) (0.085) (0.058) (0.081) (0.057) (0.079)age 0.002. 0.002 0.003* 0.002 0.003* 0.001(0.001) (0.002) (0.001) (0.002) (0.001) (0.002)los 0.06*** -0.015*** 0.059*** -0.015*** 0.058*** -0.015***(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)wardS -0.355*** -0.143* -0.357*** -0.143* -0.357*** -0.143*(0.048) (0.07) (0.045) (0.066) (0.045) (0.064)wardO -0.37 -0.081 -0.374* -0.083 -0.376* -0.083(0.276) (0.397) (0.188) (0.268) (0.165) (0.236)year90 -0.205*** -0.266*** -0.206*** -0.26*** -0.206*** -0.258***(0.048) (0.07) (0.046) (0.066) (0.045) (0.065)female -0.023 0.02 -0.023 0.021 -0.023 0.022(0.046) (0.07) (0.044) (0.066) (0.043) (0.065)AIC 2674.269 3021.552 3156.258
The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

Table 4.12 show how the parameters estimates for the cases when the bandwidth is set to 0.2, 0.1 and 0.001 respectively.We note that for large values of the bandwidth the estimation becomes more local, while for small values of the bandwidth,i.e. b=0.001, the estimates reduce to the maximum likelihood estimates presented in Table 4.9. We now check whetherthe partial effects of this model could get closer to the ones of the Jittering approach. Table 4.13 reports the partial effectsfor the three chosen bandwidth. To deeper investigate the fit of the the significant covariates AGE, LOS, and YEAR90,in Figure 4.10, Figure 4.11, and Figure 4.12 we propose a graphical approach to visualise the partial effects for each
τ-quantiles and by bandwidth. We note that, depending on the quantiles, for some covariates the local estimator leadsto predictions closer to the ones obtained via the Jittering approach.
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TABLE 4.13: Partial effects of the regressors on the dependent variable for the Discrete Weibull model with Gaus-sian kernel weights and where both parameters are linked to the covariates. We report the effects correspondingto the bandwidth b=(0.2,0.1,0.001) for the unnecessary hospital bed occupancy.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Kernel linear regression with b=0.2 Discrete Weibullage 0.004 0.018 0.032 0.046 0.061 0.078 0.097 0.122 0.159los 0.16 0.26 0.349 0.435 0.523 0.617 0.725 0.857 1.053wardS -1.421 -1.794 -2.061 -2.282 -2.48 -2.669 -2.858 -3.061 -3.312wardO -1.331 -1.738 -2.047 -2.318 -2.573 -2.829 -3.1 -3.414 -3.84year90 -1.349 -1.561 -1.661 -1.705 -1.709 -1.676 -1.6 -1.458 -1.17female -0.031 -0.067 -0.099 -0.131 -0.164 -0.201 -0.243 -0.295 -0.374Kernel linear regression with b=0.1 Discrete Weibullage 0.012 0.017 0.021 0.026 0.03 0.034 0.039 0.045 0.054los 0.159 0.247 0.323 0.396 0.469 0.548 0.637 0.747 0.908wardS -1.4 -1.78 -2.055 -2.286 -2.495 -2.697 -2.902 -3.127 -3.412wardO -1.301 -1.707 -2.018 -2.291 -2.549 -2.809 -3.087 -3.409 -3.849year90 -1.358 -1.578 -1.686 -1.737 -1.747 -1.722 -1.653 -1.519 -1.243female -0.012 -0.049 -0.083 -0.118 -0.155 -0.196 -0.244 -0.304 -0.394Kernel linear regression with b=0.001 Discrete Weibullage 0.014 0.017 0.019 0.021 0.022 0.023 0.025 0.026 0.027los 0.158 0.243 0.315 0.384 0.454 0.529 0.613 0.717 0.868wardS -1.392 -1.773 -2.051 -2.285 -2.498 -2.703 -2.913 -3.144 -3.439wardO -1.292 -1.697 -2.008 -2.282 -2.541 -2.802 -3.082 -3.406 -3.849year90 -1.36 -1.582 -1.692 -1.745 -1.758 -1.735 -1.669 -1.539 -1.267female -0.008 -0.044 -0.08 -0.116 -0.154 -0.196 -0.245 -0.307 -0.4

FIGURE 4.10: Partial effects by bandwidth (y-axis) and τ (x-axis) for the variable AGE in the unnecessary hospitalbed occupancy data.
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FIGURE 4.11: Partial effects by bandwidth (y-axis) and τ (x-axis) for the variable LOS in the unnecessary hospitalbed occupancy data.

FIGURE 4.12: Partial effects by bandwidth (y-axis) and τ (x-axis) for the variable YEAR90 in the unnecessaryhospital bed occupancy data.
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4.6.2 Under-dispersed data

Ideal fertility We model data from [69]. The data contain 5,628 observations, from the National Survey of DemographicDynamics 1997, i.e. ENADID from its acronym in Spanish. In particular, data are collected for women aged between15 and 17 who at the time of the ENADID interview were living with at least one biological parent and had neitherstarted independent economic life nor entered motherhood. The aim of the study is to examine how education and familybackground affect the planned fertility of young individuals in Mexico, hence we model the desired number of children. Byconstruction, the sample is composed of women aged between 15 and 17 years old. For this reason, age has not enoughvariation in the data and will not be considered as an explanatory variable. Thus, as explanatory variable we considerthe teenager’s number of siblings, whether the she can speak an indigenous/native language, whether she is of catholicreligion, and a set of dummies control for the teenager highest education attainment, i.e. incomplete primary, completeprimary, incomplete secondary, complete secondary and over secondary. The study also controls for the location of theparental household. Three categories are considered: rural, urban, and suburban. Family background is controlled by aset of variables describing the socio-economic characteristics of the head of the family as his/her age and income, andher/his higher education attainment composed of five categories as for the education of the teenager considered. Thefamily type which reflects the presence of both parents, an absent mother or an absent father, and a series of dummiesindicating the birthplace of the teenager are also used as explanatory variables. The mean of the response is 2.5, thevariance is 1.37, and the range is [0,12]. The dispersion for the response variable is close to 0.55. Thus, we employ aPoisson, a Generalised Poisson and a COM-Poisson as a comparison. The frequency of the planned fertility are showedin Figure 4.13.

FIGURE 4.13: Bar plot of the planned fertility measured as ideal number of children.
To model these data, [69] employed a non-parametric linear regression model via the Jittering approach. For a faircomparison, we employ the same specification model, i.e. a linear regression Discrete Weibull model for q(x) and β(x),which can be written as
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log(− log(q(x))) = θ0 +θ1siblings+θ2HFage+θ3cprimary+θ4isecondary+
θ5csecondary+θ6osecondary+θ7HFcprimary+θ8HFisecondary+
θ9HFcsecondary+θ10HFosecondary+θ11HFincome+θ12catholic+
θ13indspker+θ14urban+θ15surban+θ16AbsentFather+θ17AbsentMother+32 birth place dummieslog(β(x)) = θ0 +θ1siblings+θ2HFage+θ3cprimary+θ4isecondary+
θ5csecondary+θ6osecondary+θ7HFcprimary+θ8HFisecondary+
θ9HFcsecondary+θ10HFosecondary+θ11HFincome+θ12catholic+
θ13indspker+θ14urban+θ15surban+θ16AbsentFather+θ17AbsentMother+32 birth place dummies

(4.16)

By using our parametric approach via the Discrete Weibull model we note the computational gain in terms of CPU timein seconds in a comparison with the COM-Poisson model and the Jittering method averaged over 50 dithered samplesand for 9 quantiles, as reported in Table 4.14.
TABLE 4.14: System time (in seconds) performance comparison between the same specification model via thePoisson, the generalised Poisson, the Discrete Weibull, the COM-Poisson distributions, and the Jittering modelaveraged over 50 dithered samples and for 9 quantiles.Model PO GPO DW Jittering CMPCPU time 0.14 1.13 3.70 53.94 6,212.37

Table 4.15 shows the parameter estimates via different parametric regression model specifications, and for the Jitteringapproach, for the 25%, 50% and 75% quantiles. The Generalised-Poisson model for both parameters i.e. µ(x) and σ (x),has some convergence issues, thus in Table 4.15 we present the Generalised-Poisson model with σ constant. The tableshows various significant variables picked both by the Jittering and the Discrete Weibull model both in the q(x) and
β(x) regression part. For this data, in terms of AIC, the COM-Poisson represents the best parametric alternative to theDiscrete Weibull model.
Table 4.16 reports the partial effects of the Jittering and the Discrete Weibull model. Considering both the intensity andthe sign of the coefficients, we conclude that the effects estimates obtained via the Discrete Weibull model are very similarto the ones obtained via the Jittering approach and showed in [69]. In fact, both approaches revealed effects mostly at thetails of the conditional distribution, e.g. for the education factors.
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TABLE 4.15: Parameter estimates and AIC values for the Discrete Weibull model of Equation 4.16 and Jitteringon the planned fertility data.PO GPO CMP DW JITTERING

µ(x) µ(x) µ(x) σ (x) q(x) β(x) τ=.25 τ=.5 τ=.75(Intercept) 0.735*** 0.94*** 0.687 0.263 1.04*** 1.242*** 0.608*** 0.735*** 0.905***(0.087) (0.067) (0.435) (0.157) (0.045) (0.101) (0.045) (0.054) (0.064)siblings 0.025*** 0.032*** -0.145 -0.073 0.021*** -0.039*** 0.01*** 0.023*** 0.031***(0.005) (0.004) (0.022) (0.009) (0.003) (0.006) (0.003) (0.004) (0.004)HFage 0.002 0.003*** 0.043 0.014 0.002** -0.006*** 0.001 0.001 0.002*(0.001) (0.001) (0.007) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)cprimary 0.002 -0.028 -0.078 0.004 0.024 0.114* 0.047. 0.001 -0.026(0.037) (0.028) (0.172) (0.067) (0.026) (0.046) (0.028) (0.036) (0.036)isecondary -0.051 -0.08** -0.07 0.064 -0.043. 0.199*** 0.021 -0.052 -0.087*(0.039) (0.029) (0.182) (0.07) (0.026) (0.047) (0.027) (0.035) (0.037)csecondary -0.061. -0.098*** -0.004 0.107 -0.05* 0.266*** 0.035 -0.061. -0.128***(0.036) (0.027) (0.173) (0.065) (0.026) (0.044) (0.026) (0.033) (0.034)osecondary -0.073. -0.125*** -0.006 0.121 -0.066** 0.352*** 0.028 -0.072* -0.131***(0.038) (0.029) (0.189) (0.07) (0.026) (0.047) (0.026) (0.033) (0.035)HFcprimary -0.017 -0.017 0.014 0.038 -0.006 -0.021 -0.007 -0.018 -0.027(0.023) (0.018) (0.117) (0.043) (0.026) (0.027) (0.011) (0.014) (0.018)HFisecondary -0.013 -0.03 -0.013 0.036 -0.012 0.095. -0.006 -0.013 -0.001(0.049) (0.038) (0.262) (0.096) (0.026) (0.057) (0.02) (0.025) (0.04)HFcsecondary -0.056. -0.072** -0.02 0.071 -0.042** 0.109** -0.016 -0.056*** -0.074***(0.033) (0.025) (0.171) (0.062) (0.026) (0.037) (0.013) (0.015) (0.022)HFosecondary -0.059. -0.06* -0.031 0.073 -0.043** -0.021 -0.03* -0.058*** -0.059**(0.031) (0.024) (0.169) (0.058) (0.026) (0.036) (0.013) (0.015) (0.021)HFincome 0.005. 0.006** 0.063 0.015 0.004** -0.005 0.003. 0.006*** 0.004*(0.003) (0.002) (0.014) (0.003) (0.026) (0.003) (0.002) (0.001) (0.002)catholic 0.024 0.011 0.074 0.018 0.016 0.009 0.013 0.024 0.01(0.03) (0.022) (0.14) (0.052) (0.026) (0.034) (0.014) (0.017) (0.02)indspker -0.001 0.059. -0.05 -0.057 0.023 -0.303*** -0.063. -0.001 0.063(0.044) (0.033) (0.204) (0.081) (0.026) (0.053) (0.034) (0.037) (0.043)urban -0.11*** -0.132*** 0.027 0.109 -0.086*** 0.049. -0.057*** -0.109*** -0.14***(0.023) (0.017) (0.12) (0.044) (0.026) (0.027) (0.011) (0.014) (0.018)surban -0.06* -0.062** -0.084 -0.001 -0.05*** -0.046 -0.047*** -0.061*** -0.077***(0.026) (0.02) (0.127) (0.048) (0.026) (0.031) (0.014) (0.018) (0.021)AbsentFather -0.028 -0.018 -0.025 0.011 -0.007 -0.046 -0.018 -0.028* -0.026(0.026) (0.02) (0.136) (0.049) (0.026) (0.029) (0.011) (0.013) (0.018)AbsentMother -0.04 -0.07 -0.044 0.025 -0.031 0.117. 0.005 -0.04 -0.045(0.056) (0.043) (0.288) (0.099) (0.026) (0.064) (0.025) (0.03) (0.035)AIC 18047.1 17118.9 16468.79 16415.76 - - -
Birthplace dummies are included in the regression.The coefficients and standard errors (in brackets) are reported.Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1
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TABLE 4.16: Partial effects of the regressors on the dependent variable for the linear Discrete Weibull modelwhere both the distributional parameters are linked to the covariates and Jittering models for the planned fertilitydata.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Jitteringcatholic 0.063 0.030 0.021 0.015 0.014 0.016 0.015 0.056 0.058indspker -0.657 -0.145 -0.085 -0.041 0.002 0.066 0.131 0.203 0.540cprimary 0.301 0.107 0.074 0.049 0.021 -0.027 -0.061 -0.089 -0.194isecondary 0.295 0.071 0.002 -0.049 -0.100 -0.178 -0.213 -0.230 -0.388csecondary 0.340 0.107 0.030 -0.024 -0.091 -0.184 -0.273 -0.365 -0.594osecondary 0.328 0.094 0.021 -0.036 -0.103 -0.196 -0.282 -0.368 -0.602siblings 0.004 0.013 0.025 0.037 0.051 0.071 0.082 0.081 0.087urban -0.043 -0.089 -0.125 -0.177 -0.223 -0.280 -0.328 -0.353 -0.398surban -0.053 -0.078 -0.093 -0.123 -0.142 -0.178 -0.203 -0.199 -0.199HFage 0.001 0.001 0.001 0.001 0.001 0.002 0.004 0.006 0.009HFcprimary -0.012 -0.013 -0.015 -0.022 -0.036 -0.055 -0.064 -0.077 -0.075HFisecondary -0.010 -0.016 -0.010 -0.006 -0.020 -0.035 -0.024 0.010 0.047HFcsecondary -0.022 -0.023 -0.035 -0.052 -0.079 -0.121 -0.159 -0.210 -0.272HFosecondary -0.063 -0.053 -0.059 -0.067 -0.083 -0.105 -0.123 -0.175 -0.226HFincome 0.004 0.004 0.006 0.008 0.009 0.010 0.011 0.011 0.011AbsentFather -0.042 -0.025 -0.034 -0.038 -0.046 -0.054 -0.061 -0.067 -0.068AbsentMother 0.012 0.021 0.012 0.003 -0.018 -0.038 -0.088 -0.133 -0.196Discrete Weibullcatholic 0.030 0.036 0.041 0.044 0.047 0.050 0.053 0.056 0.059indspker -0.320 -0.294 -0.239 -0.167 -0.078 0.031 0.170 0.359 0.668cprimary 0.161 0.157 0.145 0.128 0.108 0.083 0.052 0.010 -0.057isecondary 0.162 0.118 0.069 0.016 -0.042 -0.106 -0.183 -0.281 -0.430csecondary 0.220 0.163 0.100 0.034 -0.039 -0.121 -0.217 -0.339 -0.525osecondary 0.282 0.205 0.123 0.037 -0.056 -0.160 -0.281 -0.435 -0.667siblings -0.018 -0.004 0.010 0.025 0.042 0.060 0.082 0.110 0.153urban -0.050 -0.091 -0.128 -0.164 -0.200 -0.240 -0.284 -0.340 -0.421surban -0.112 -0.129 -0.138 -0.144 -0.148 -0.150 -0.150 -0.147 -0.140HFage -0.005 -0.003 -0.002 0.000 0.002 0.005 0.008 0.011 0.017HFcprimary -0.033 -0.034 -0.032 -0.030 -0.026 -0.022 -0.016 -0.008 0.006HFisecondary 0.090 0.074 0.053 0.029 0.003 -0.027 -0.064 -0.111 -0.184HFcsecondary 0.068 0.038 0.005 -0.030 -0.068 -0.110 -0.161 -0.224 -0.321HFosecondary -0.074 -0.090 -0.102 -0.112 -0.120 -0.128 -0.136 -0.145 -0.155HFincome -0.001 0.002 0.004 0.006 0.009 0.012 0.015 0.019 0.025AbsentFather -0.060 -0.059 -0.054 -0.047 -0.038 -0.026 -0.012 0.007 0.038AbsentMother 0.090 0.063 0.032 -0.001 -0.038 -0.079 -0.128 -0.191 -0.287

Figure 4.14 shows the diagnostic plots for the Poisson, Generalised-Poisson, COM-Poisson and Discrete Weibull modelfor the planned fertility data, confirming a good fit of the Discrete Weibull and the COM-Poisson model to this data.
The variance ratio plot in Figure 4.15 shows a good performance for the Discrete Weibull model using a linear link bothon q an β.
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FIGURE 4.14: Diagnostic plots of the residuals for the linear models for both the regression parameters on thefertility data.

FIGURE 4.15: Variance ratio plots of the three models on the fertility data.
We further investigate these data by performing a Discrete Weibull analysis for q(x) and β(x) via the local Kernelestimator. Nevertheless, this analysis is omitted as returns similar results to the unweighted estimators, even thoughthere is a significant improvement in terms of the AIC estimator, i.e. AIC=10024.43 for the bandwidth b=0.14. As a finalanalysis, we fit a non-linear Discrete Weibull model for q(x) and β(x) by including a cubic B-spline for the continuousvariables SIBLINGS, HFINCOME and HFAGE. The AIC value for this non-linear model is lower than the AIC value ofthe linear model presented in Equation 4.16, i.e. AIC non-linear=16405.22 vs AIC linear=16415.76. There is however alarge number of parameters passed into the model, i.e. 53 terms for each distributional parameters. To address this issuewe maximise the L1 penalised likelihood. The non-linear Discrete Weibull model for q(x) and β(x) with L1 penalty hasan AIC value of 16373.65. The procedure shrinks to zero a total of ten terms, i.e. three terms of the cubic B-spline of
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HFINCOME, three of the cubic B-spline of HFAGE, the variable HFISECONDARY, and other three birthplace dummies.Table 4.17 reports the partial effects of this model. There does not appear to be significant changes with respect to theeffects from the linear model presented in Table 4.16, and from the conclusions of this analysis presented in [69].

TABLE 4.17: Partial effects of the regressors on the dependent variable for the non-linear Jittering approach andthe non-linear Discrete Weibull model with L1 penalty for the planned fertility data.
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Non-linear Jitteringcatholic 0.069 0.024 0.010 0.009 0.000 -0.006 0.014 0.037 0.060indspker -0.704 -0.153 -0.084 -0.055 0.013 0.071 0.120 0.215 0.605cprimary 0.381 0.112 0.066 0.049 0.022 -0.021 -0.042 -0.110 -0.219isecondary 0.386 0.071 0.003 -0.059 -0.107 -0.180 -0.209 -0.242 -0.426csecondary 0.433 0.103 0.025 -0.034 -0.104 -0.192 -0.275 -0.408 -0.649osecondary 0.419 0.089 0.018 -0.053 -0.115 -0.209 -0.290 -0.412 -0.662cs.siblings -0.010 0.019 0.041 0.066 0.089 0.119 0.115 0.115 0.166urban -0.061 -0.092 -0.134 -0.180 -0.230 -0.288 -0.340 -0.383 -0.432surban -0.070 -0.078 -0.096 -0.125 -0.143 -0.187 -0.205 -0.216 -0.205cs.HFage -0.038 -0.031 -0.023 -0.030 -0.029 -0.009 0.008 0.059 0.005HFcprimary -0.016 -0.010 -0.012 -0.019 -0.036 -0.047 -0.060 -0.067 -0.077HFcsecondary -0.031 -0.021 -0.034 -0.046 -0.074 -0.105 -0.158 -0.230 -0.324HFosecondary -0.083 -0.059 -0.062 -0.071 -0.090 -0.102 -0.141 -0.220 -0.325cs.HFincome 0.172 0.196 0.179 0.308 0.334 0.387 0.498 0.781 0.936AbsentFather -0.043 -0.026 -0.035 -0.040 -0.056 -0.061 -0.072 -0.083 -0.091AbsentMother 0.009 0.022 0.012 -0.010 -0.022 -0.037 -0.069 -0.161 -0.261Non-linear Discrete Weibull with L1 penaltycatholic 0.026 0.032 0.036 0.039 0.042 0.044 0.046 0.048 0.051indspker -0.328 -0.310 -0.257 -0.182 -0.087 0.032 0.187 0.402 0.759cprimary 0.168 0.168 0.158 0.141 0.120 0.093 0.059 0.012 -0.064isecondary 0.197 0.154 0.101 0.042 -0.024 -0.100 -0.191 -0.309 -0.492csecondary 0.246 0.190 0.124 0.051 -0.030 -0.123 -0.234 -0.377 -0.597osecondary 0.312 0.237 0.152 0.059 -0.044 -0.159 -0.297 -0.474 -0.743cs.siblings -0.016 0.007 0.031 0.058 0.086 0.119 0.157 0.207 0.284urban -0.037 -0.082 -0.123 -0.164 -0.207 -0.254 -0.308 -0.376 -0.477surban -0.096 -0.118 -0.132 -0.144 -0.154 -0.163 -0.172 -0.181 -0.190cs.HFage -0.002 -0.001 0.000 0.001 0.001 0.003 0.004 0.006 0.008HFcprimary -0.046 -0.045 -0.041 -0.035 -0.027 -0.018 -0.006 0.011 0.039HFcsecondary 0.086 0.055 0.019 -0.020 -0.064 -0.114 -0.173 -0.250 -0.369HFosecondary -0.062 -0.083 -0.101 -0.116 -0.132 -0.147 -0.164 -0.184 -0.212cs.HFincome -0.008 -0.004 0.000 0.005 0.011 0.018 0.025 0.036 0.052AbsentFather -0.053 -0.058 -0.059 -0.058 -0.055 -0.051 -0.046 -0.037 -0.021AbsentMother 0.044 0.028 0.010 -0.009 -0.032 -0.057 -0.088 -0.128 -0.191

4.7 Conclusions

With the analysis presented in this chapter, we contribute to the development of a flexible parametric regression modelfor count data. In particular, we exploit the adaptability of a Discrete Weibull distribution in modelling count data ofvarying dispersion, in conjunction with a generalized additive model to link its parameters to the covariates, to providea parametric quantile regression approach for general applications with a discrete response variable. We show theapplicability of this method to count data characterized by a skewed distribution making quantile regression models thepreferred option for the statistical analysis of these data. Our approach can be considered as the parametric alternativeto the Jittering approach of [64] and the discrete alternative to the generalized Gamma approach for continuous positiveresponse of [74]. With respect to the Jittering approach of [64], the main difference here is that with our method the
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conditional quantile function is given by a simple analytical formula, while the Jittering method employs an approximationto the unknown conditional quantile function. Another important difference with respect to the Jittering approach of [64] isthat we model the conditional distribution globally via maximum likelihood, rather than via a quantile-based loss function.The advantage of these procedures for quantile-based inference is that they avoid crossing of quantiles and that they areexpected to be more robust in the presence of a limited number of observations, particularly in the tails. On the otherhand, parametric assumptions on the conditional distribution may limit the applicability of these approaches in situationswhere these are strongly violated. One last aspect of interest regards the computational time of the two approaches:our approach returns the model estimates in one step, while the quantile function via the Jittering estimator has to becomputed for every τ of interest and to be averaged over a number of samples to correct the instability due to the uniformrandom sampling underlying the method.



Chapter 5

Conclusions

5.1 Summary

Discrete variables are those outcomes that are only allowed to assume a finite or countably infinite number of values.These variables are very common in practice, and many familiar outcomes fall into this category. Binary outcomes arewidespread given that many variables and questions naturally only take two values, but also because it is often usefulto construct binary variables from other types of data. Count variables recording the frequency of some events of interestare also common discrete outcomes. Because of the fundamental difference between continuous and discrete outcomes,many methods developed for continuous variables such as the popular linear least squares regression, do not apply todiscrete outcomes. This thesis advanced the methodology and the application of discrete response regression models.
Policy evaluation In chapter 2, we focussed on modelling a binary response in a health policy evaluation framework.We adopted a difference-in-differences approach based on a logistic linear mixed model. Specifically, we consideredmultiple dependent outcomes in order to quantify the effect of the adopted pay-for-performance program while accountingfor the heterogeneity of the data at the multiple nested levels. The results showed how the policy had a positive effecton the hospitals’ quality in terms of those outcomes that can be more influenced by a managerial activity.
Regression models for count response In chapter 3 and in chapter 4, we focussed on modelling a count response.Typically this is done via generalised linear models [72]. The most popular approach for modelling count data is Poissonregression which assumes that the conditional distribution is Poisson with a conditional mean regressed on the covariatesthrough the log-link function. Although Poisson regression is fundamental to the regression analysis of count data, it isoften of limited use for real data, due to its property of equal mean and variance. Real data usually presents over-dispersionrelative to Poisson, or the opposite case of under-dispersion. Negative Binomial regression is widely considered as thedefault choice for data that are over-dispersed relative to Poisson, although other options, such as the Poisson-inverseGaussian model [111], are available. In the presence of excessive zeros, an additional component is typically added toa count distribution, such as Negative Binomial, or its truncated version, to better capture the zero generation process,leading to zero-inflated and hurdle models, respectively [18]. However, Negative Binomial regression cannot deal withdata that are under-dispersed relative to Poisson. There have been some attempts to extend Poisson-based models toinclude also under dispersion, such as the generalised Poisson regression model [26], and the COM-Poisson regression[89]. These models are all modifications of a Poisson model and have been shown to be rather complex and computationallyintensive in practice. These reasons motivated the implementation of a unified regression framework for count data via
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a flexible distribution such as the Discrete Weibull. We show a number of desirable features of this distribution whichare particularly appealing within a regression context: it can model both over and under-dispersed data without beingrestricted to either of the two; the conditional quantiles have an analytic form making the calculation of partial effectsstraightforward; the likelihood from a discrete Weibull model is the same as that of a continuous Weibull distribution withinterval-censored data. Within the linear regression framework we have considered cases when data are grouped intoclusters, or panels, or correlated groups. These models are also known in the literature as mixed-effects models. Then, theregression model has been extended to both the parameters of the distribution, and by including non-linear dependenciesfor both the regression parameters, and the covariates. In this way we have been able to model more accurately the fullconditional distribution of Y given X , i.e. all conditional quantiles. This approach can be seen as the quantile regressionalternative to available generalized linear models for counts, the parametric alternative to the Jittering approach of [64]and the discrete alternative to the generalized Gamma approach for continuous positive response of [74]. Our methodhas been successfully applied to simulated data and a large number of real data studies as summarised in Table 5.1,Table 5.2, and Table 5.3 for the case of over-dispersion, under-dispersion and excessive zeros respectively. These resultsare showing that our approach can be considered a highly competitive alternative to the current available models forcount data.

TABLE 5.1: Over-dispersed data: AIC values of the Poisson, Poisson-inverse Gaussian, CMP-Poisson, NegativeBinomial and Discrete Weibull models applied to different real datasets.Data Model PO PIG CMP NB DWLOS linear (1), mixed effects 152,120.4 150,375.8 149,371.68 149,285.3 149,210.4WT non-linear (2), mixed effects 155,565.6 104,417.3 111,852.5 104,407.3 104,362.4AEP linear (2) 3,903.84 3,164.87 3,354.22 3,184.35 3,156.27

(1): regression model for one parameter, i.e. DW(q(x),β)(2): regression model for both parameters, i.e. DW(q(x),β(x))

TABLE 5.2: Under-dispersed data: AIC values of the Poisson, generalised-Poisson, CMP-Poisson and DiscreteWeibull models applied to different real datasets.Data Model PO GPO CMP DWAPGAR linear (1), mixed effects 233,531.80 233,442.70 179,911.80 76,761.72INHALER linear (1), mixed effects 13,355.83 13,351.58 12,445.04 12,444.26FERTILITY linear (2) 18,047.07 17,118.85 16,468.79 16,415.76

(1): regression model for one parameter, i.e. DW(q(x),β)(2): regression model for both parameters, i.e. DW(q(x),β(x))

TABLE 5.3: Excessive-zeros data: AIC values of the zero inflated and hurdle model formulation via Poisson,Negative Binomial and Discrete Weibull distributions applied to different real datasets.Data Model ZI PO ZI NB ZI DW hurdle PO hurdle NB hurdle DWRWM1984 linear (1) 24,199.34 16,585.74 16,533.50 24,195.96 16,577.34 16,528.92GSOEP linear (1) 2,254.91 1,750.61 1,750.85 2,254.64 1,748.51 1,748.42UPB linear (1) 1,616.90 1,266.30 1,265.90 1,616.92 1,266.53 1,266.20FISH linear (1) 1,521.46 809.08 802.35 1,519.24 808.32 803.94
(1): regression model for one parameter, i.e. DW(q(x),β)
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5.2 Recommendation for future research

A first consideration regards the hospital evaluation started in chapter 2 with respect to their effectiveness, and thencontinued in chapter 3 and chapter 4 focussing on the hospital efficiency quantified in terms of length of stay and hospitalwaiting times, respectively. Given the results of the three analyses it would be interesting to interpret these with respectto each hospital by ranking them and by assigning a score which reflects their performances both in terms of effectivenessand efficiency. This could offer a more representative measure of the quality of the hospitals.Next, an interesting extension of the models for count data presented in this thesis would consider a finite mixture ofDiscrete Weibull distributions formed from the weighted combination of the component distributions. Moreover, it wouldbe of interest to extend the Discrete Weibull regression models presented in this thesis to the case of a multivariateoutcome, for example to offer an alternative methodological approach when facing situations such as the one presented inchapter 2. Lastly, the approach presented could additionally be investigated from a Bayesian point of view. For the linearmodels, this is described in [46], but mixed and non-linear models have not been developed yet in a Bayesian framework.
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Appendix

A.1 Delta method for standard errors computation

The Delta method expands a function of a random variable around its mean, typically with a first order Taylor approxi-mation, and then takes the variance (see Chapter 5 of [21]).
To derive the standard error of the estimators of the parameters of the Discrete Weibull with parameters q(x) and β aspresented in Equation 3.1, from the parametrisation of a continuous Weibull with parameters µ(x) and σ as presented inEquation 3.13 and implemented in R software within the gamlss and survival package, we make use of the followingresults.
Approximate mean and variance Let us consider a r.v. X with mean E(X ) = µ 6= 0 and let us assume that we wantto estimate a function of µ, i.e. g(µ) with g(·) differentiable. Using a 1st order Taylor approximation around µ,

g(X ) = g(µ)+g′(µ)(X −µ),
and by using g(X ) as an estimator of g(µ),

E [g(µ)] = g(µ),
V [g(µ)] = (g′(µ))2V (X ). (A.1)

For example, one can consider g(µ) = 1
µ and a r.v. X . This leads to

E
( 1
X

)= 1
µ ,

V
( 1
X

)= (1
µ

)4
V (X ). (A.2)

Moments of a ratio estimator Let us consider a r.v. X and a r.v. Y , and let us assume that we want to estimate amultivariate function g(µX ,µY ) = µX
µY , where E(X ) = µX 6= 0, E(Y ) = µY 6= 0, ∂

∂(µX )g(·) = 1
µY , and ∂

∂(µY )g(·) =−( µX
µ2
Y

). From
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this

E
(
X
Y

)= µX
µY
,

V
(
X
Y

)= (µXµY
)2(V (X )

µ2
X

+ V (Y )
µ2
Y
−2COV(X,Y )

µXµY

)
.

(A.3)

A.1.1 survreg parametrisation

β coefficient: The transformation β = 1
σ leads to

E
( 1̂
σ

)= 1
σ ,

V
( 1̂
σ

)= ( 1
σ

)4
V (σ̂ ). (A.4)

Given the nature of the link function of the scale parameter σ in the R software survreg parametrisation the availablevariance estimate is for the log estimator i.e. V (log σ̂ ). Thus, to derive the estimator of V (σ̂ ) we compute
V (log σ̂ ) = ( 1

σ

)2
V (σ̂ ),

and from this
V (σ̂ ) = σ2V (log σ̂ ) , (A.5)

which makes possible to compute the V ( 1̂
σ
) in terms of V (log σ̂ ) as follow

V
( 1̂
σ

)= ( 1
σ

)2
V (log σ̂ ),

and by replacing the unknown parameter σ with its estimator σ̂ .
θ parameters: The transformation θ =−α

σ leads to
E
(
− α̂σ̂

)=−ασ ,
V
(
− α̂σ̂

)= (ασ )2(V (−α̂)
α2 + V (σ̂ )

σ2 −2COV(−α̂, σ̂ )
−ασ

)
.

Recalling the result in Equation A.5, considering that V (−α̂) = V (α̂), and that COV(−α̂, σ̂ ) = E(−α̂ log σ̂ )− (−α logσ ) = 0,the variance above can be rewritten as follow
V
(
− α̂σ̂

)= (ασ )2(V (α̂)
α2 +V (log σ̂ )) ,

and by replacing the unknown parameters α and σ with their estimators α̂ and σ̂ respectively.
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A.1.2 gamlss parametrisation

β coefficient: The transformation β = exp(σ ) leads to
E (exp(σ̂ )) =−ασ ,
V (exp(σ̂ )) = (exp(σ ))2V (σ̂ ), (A.6)

where the unknown parameter σ will need to be replaced by its estimator σ̂ .
θ parameters: The transformation θ =−α exp(σ ) leads to

E (−α̂ exp(σ̂ )) =−ασ ,
V (−α̂ exp(σ̂ )) = V

(
−α̂1exp(σ̂ )

)= (−α exp(σ ))2(V (−α̂)
α2 +(exp(σ ))2V ( 1exp(σ̂ )

)
−2COV(−α̂,exp(σ̂ ))

−α exp(σ )
)
.

Therefore, by considering that COV(−α̂,exp(σ̂ )) = 0, and using the result for V (exp(σ̂ )) in Equation A.6, and the fact that
V
( 1exp(σ̂ )

)= ( 1(exp(σ ))2
)2V (exp(σ̂ ))(exp(σ ))2 = V (σ̂ )(exp(σ ))2 ,

we can express the V (−α̂ exp(σ̂ )) as follows
V (−α̂ exp(σ̂ )) = (−α exp(σ ))2(V (α̂)

α2 +V (σ̂ )) ,
and by replacing the unknown parameters α and σ with their estimators α̂ and σ̂ respectively.
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