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Abstract 
 

It is well known that effective prediction of project cost 
related factors is an important aspect of software 
engineering.  Unfortunately, despite extensive research 
over more than 30 years, this remains a significant 
problem for many practitioners.  A major obstacle is the 
absence of reliable and systematic historic data, yet this 
is a sine qua non for almost all proposed methods: 
statistical, machine learning or calibration of existing 
models.  In this paper we describe our sparse data 
method (SDM) based upon a pairwise comparison 
technique and Saaty's Analytic Hierarchy Process 
(AHP).  Our minimum data requirement is a single 
known point.  The technique is supported by a software 
tool known as DataSalvage.  We show, for data from 
two companies, how our approach — based upon expert 
judgement — adds value to expert judgement by 
producing significantly more accurate and less biased 
results.  A sensitivity analysis shows that our approach 
is robust to pairwise comparison errors.  We then 
describe the results of a small usability trial with a 
practising project manager.  From this empirical work 
we conclude that the technique is promising and may 
help overcome some of the present barriers to effective 
project prediction. 
 
Keywords: prediction, software project effort, expert 
judgement, empirical data, sparse data. 
 

 
1. Introduction 
Despite a great deal of research activity, predicting effort 
for software development projects with any acceptable 
degree of accuracy remains challenging.  One of our 

growing concerns is that of the availability of appropriate 
data. 

Data is needed to construct models and to validate 
them.  However, collecting data is time consuming and 
difficult.  In particular, it is difficult to ensure that the data 
collected is accurate, consistent and complete.  Data has 
to be collected by a number of individuals and over a 
period of time, increasing the opportunity for 
inconsistency and error.  For example, data from different 
sources may be kept in different formats, or over time 
those recording data may lose enthusiasm for doing so, 
and so possibly be less meticulous.  There is certainly 
strong anecdotal evidence that many developers do not 
keep accurate records of effort.  

Even as simple an attribute as the number of person 
hours expended upon a particular project may in practice 
be difficult to ascertain with much hope of precision.  
Time sheets can be completed some time after the event.  
An appropriate cost code may not exist.  Overtime, 
especially where it is not remunerated may lead to 
complications.  Staff may even be encouraged to 
misallocate time for political reasons.  Recently one 
author was involved in assisting an organisation with its 
estimation practices.  Data relating to project effort was 
available from three different sources so that triangulation 
was possible.  Unfortunately this revealed that there were 
very substantial — in excess of 30% — discrepancies 
between the different measures.  This was despite the fact 
that, at least in principle, the data was describing the same 
commodity, namely project effort.  Resolving these 
discrepancies has not proved easy.  Yet not knowing the 
true level of effort per project makes building prediction 
systems a somewhat speculative activity.  

An additional problem is that the value of collected 
data may diminish over time due to advances in 
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development technology or other organisational changes.  
Thus the usefulness of such data is compromised.  Even 
assuming that we can be confident about the data, we will 
often find there is insufficient data to construct and test a 
model for effort prediction.   

One possible solution is to pool or reuse data across 
different measurement environments.  Examples of this 
kind of approach are the International Software 
Benchmarking Standards Group (ISBSG) and the 
European Space Agency (ESA) datasets, each of which 
comprises hundreds of projects.  Unfortunately there are 
drawbacks.  There is the diversity between software 
projects.  This is compounded by different development 
methods, variation between staff and data collection 
conventions.  Two obvious examples of the latter are 
person hours of effort — is overtime (paid or unpaid), 
sickness, administration, etc. to be included - and lines of 
code (LOC) where there is a not inconsiderable literature 
describing the nuances of different definitions [1].  A 
recent study [2] has analysed the ISBSG dataset which 
comprises over 750 projects that have been submitted by 
a range of different software development organisations.  
The results of this study indicated that there were 
significant benefits in restricting data to that which was 
collected locally, as opposed to using all the pooled data. 

The majority of effort prediction techniques 
commonly in use have the same problem.  They need 
systematic historical data, preferably a good deal of it.  
Broadly speaking these techniques can be grouped into 
four categories: 

• "off-the-shelf" or general purpose models 
• statistically derived local models 
• machine learning techniques 
• expert judgement 

 
"Off-the-shelf" models are general purpose, algorithmic 

prediction systems intended for usage beyond the 
environment in which they have been developed.  Well 
known examples include COCOMO [3] and SLIM [4].  
Estimators using these techniques do not need to collect 
project data other than that which is required as inputs to 
the model.  Unfortunately there is little evidence to 
suggest these techniques perform well outside their own 
environments [5-7].  The relevance of models constructed 
from data drawn from one environment, to another, with 
different working practices, problem domains, 
development techniques and so on, has, quite rightly, 
been questioned.  Recalibration has often been shown to 
be of value [8, 9], however, this necessitates data. 

Statistical models are algorithmic prediction systems 
derived from local data and, in contrast to the general 
purpose models, are intended only for one particular 
environment.  Frequently, relatively straightforward 
methods, such as linear regression procedures are used to 
develop simple, but useful, prediction systems.  Here 

historical data is needed, not only to formulate the model, 
but to test the model in order to assess its accuracy.  An 
example is the MERMAID approach [10], which 
advocates that models should be calibrated to the 
environment in which they are to be used, by using local 
data to evolve local models, employing techniques such 
as stepwise regression. 

Machine Learning includes neural nets, case-based 
reasoning, rule induction and neuro-fuzzy systems.  They 
are inductive learning techniques and as such require 
accurate data for training and then validation purposes.  
For instance, neural nets require training sets from which 
the network learns the relationships that are implicit in 
that dataset.  A training set will consist of an input vector 
and an output(s) that have been collected from real 
software development projects.  The trained network can 
then be validated against the validation data set.  A 
number of experiments have compared a neural net 
approach with an algorithmic approach, and have tended 
to conclude that neural nets offer improved accuracy, for 
example [11].  Experimentation has indicated that neural 
nets seem to require large amounts2 of data [12].  
Likewise, rule induction systems require training sets to 
build rules, in the form of decision trees, with a predicted 
range of values at each leaf node.  Another machine 
learning approach to software estimation is case-based 
reasoning (CBR).  A case is a problem that has been 
solved so for cost estimation purposes is typically a 
project.  Each case is characterised by a set of features 
such as size and development method.  These are stored 
in a case base.  The most similar case, or cases, are then 
retrieved to help solve the new problem, in this situation 
to make a project prediction.  Clearly , performance will 
be related to the number, relevance and quality of past 
projects stored in the case base.  For example, our 
sensitivity analysis using Albrecht's dataset suggested a 
need for at least 15 cases [13]. 

Finally there is expert judgement.  Here there is no 
formal requirement for systematic data which is 
potentially advantageous.  However, various concerns 
have been raised, for instance, repeatability and bias.  
Also there has been relatively little research in this area, 
nevertheless, due to our interest in predicting in the face 
of limited data availability we will review related work in 
the next section.  

To summarise, the estimator faces something of an 
impasse.  The estimation techniques that appear to be 
most effective have the greatest demands for historical 
data — data which is seldom available — whilst those 
techniques that have no data requirement have been 
shown to have many drawbacks. This is, therefore, the 
motivation for our research into sparse data methods.  We 

                                                           
2 By large we mean by software project dataset training 
sets, of the order of 50 plus cases. 
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now go on to describe our approach based upon the AHP 
which uses subjective pairwise comparisons made by an 
expert or set of experts. 

The next section examines, in more detail, prediction 
based upon expert judgement.  We then describe our new 
sparse data method based on Saaty's AHP and its 
application to software estimation. Next we show the 
results of applying this new technique to two industrial 
datasets, followed by a sensitivity analysis.  We then 
provide some qualitative data based upon our experiences 
with users, derived from interviews with a practising 
project manager.  We conclude by identifying outstanding 
problems and further work. 

 
2. Expert Judgement 
Expert judgement is a widely practised technique for 
making predictions.  Although there is no strict 
requirement for systematic historical data, estimators 
frequently make use of remembered analogies when 
possible [14] and may be hindered by recall problems if 
past projects are not adequately documented.  Despite its 
popularity, this has not been a major research topic and 
the limited research we have indicates a number of 
problems.  The impact of group dynamics can have a 
significant impact upon expert judgement.  These 
problems are compounded by confusion between 
prediction and target setting.  Ideally an estimate will 
have an equal probability of being under or over whereas 
a goal is intentionally challenging.  For these various 
reasons much research has focused upon building more 
objective and repeatable prediction systems. 

Despite the fact that expert judgement is the most 
commonly used means of making a prediction there is 
relatively little research in this arena.  Heemstra [14] 
conducted a survey over almost 600 organisations in the 
Netherlands in the early 1990s and found that less than 
10% reported that they used algorithmic models such 
COCOMO or PRICE-S.   Heemstra found most 
organisations made some use of past experience, but in 
many cases on an informal basis only, since half the 
organisations surveyed claimed not to record data 
concerning completed projects.  

A more recent study by Hughes [15] focused upon the 
details of expert judgement in a telecommunications 
company.  He noted that respondents indicated widely 
differing levels of effort for making a prediction ranging 
from 4 weeks to 5 minutes.  They also indicated that they, 
in the main, received little if any feedback.  This would 
seem to be a major obstacle to improving the practice.  
Better access to past projects appeared to be another issue. 

In a wider context there has been rather more work 
that has looked at the psychology of estimation.  A 
number of relevant findings have emerged.  (For a more 
detailed review of such work see Busby and Barton [16]).  

A number of different phenomena have been observed 
through experimentation and case study: 

• a preference for singular as opposed to distributional 
information 

• recall impacted by recency and "vividness" 
• distortion of probabilities 
• anchoring and adjustment 
• group dynamics and a fear of voicing "negative" 

opinions. 
 
First estimators seem to exhibit a marked preference 

for case specific, or singular, information as opposed to 
general statistical, or distributional, information.  A good 
illustration of this is given by Busby and Barton [16] 
where they give the example of estimators who employed 
a top-down or work breakdown approach to prediction.  
Unfortunately this approach failed to accommodate 
unplanned activity, consequently estimates were 
consistently under-estimating by 20%.  The case-specific 
evidence for each project, by definition will fail to 
account for unplanned activities, yet the statistical 
evidence across many projects suggests that it is very real.  
Nonetheless managers favoured the singular evidence and 
would not include a factor for unplanned activities.  This 
is sometimes referred to as the "planning fallacy" [17-19]. 

A second phenomenon is the tendency of recall to be 
impacted by recency and the vividness of the experience.  
The further into the past a factor the greater the tendency 
to discount its significance.  Now in one sense this may be 
sensible given that the way in which we develop software 
has changed considerably over the years.  On the other 
hand, many risks, such as requirements being modified or 
misunderstood, have changed little. 

Third is a general tendency for humans to distort 
probabilities such that very low probabilities are 
considered more likely than is the case (this in part may 
the explain the popularity of lotteries), whilst high 
probabilities are considered less likely.  This may be 
significant particularly if we regard the estimate as a 
probabilistic statement, ideally with an equal probability 
of under or overshooting.  This leads to a tendency where 
the lower (best case) and upper (worst case) bounds of a 
prediction cover too small a range of values. 

Anchoring and adjustment is a common tactic for 
estimating. Here the estimator selects an analogous 
situation and then adjusts it to suit the new circumstances. 
There is considerable evidence to suggest that estimators 
are unduly cautious when making the adjustment.  In 
other words the anchoring dominates and then insufficient 
adaptation is made.  This tactic may also be influenced by 
problems of recall such that the most suitable analogies 
may be overlooked due to their lack of recency. 

The impact of group dynamics and, in particular, a 
reluctance to appear "negative" can also have a significant 
impact upon expert judgement.  As DeMarco [20] has 
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remarked "realism can be mistaken for disloyalty"..  A 
consequence is undue optimism in making predictions.  It 
may also influence techniques based upon multiple 
experts known as Delphi methods [21].  Since these 
methods revolve around searching for group consensus, 
albeit often with anonymous individual predictions, such 
methods must be treated with a certain degree of caution. 

This section has indicated that expert judgement is a 
widespread method of making predictions.  Despite its 
popularity, however, it has not been a major research 
topic and the limited research we have indicates a number 
of problems.  There appears to be a tendency for 
estimators to behave in a subjective fashion preferring 
certain forms of evidence to others and with a bias to 
more recent or memorable analogies.  These problems are 
compounded by group behaviour and confusion between 
predictions and goals.  In the next section we describe a 
technique that endeavours to impose more structure upon 
the expert judgement process yet does not have heavy 
demands for systematic data. 
 
3. AHP, a New Approach to Effort Prediction 
AHP is widely used for multi-criteria decision making 
[22, 23].  It provides a means of decomposing the 
problem into a hierarchy of sub-problems which can more 
easily be comprehended and subjectively evaluated.  First 
we describe the relevant aspects of the AHP technique 
and then consider its application to software prediction. 

AHP is carried out in two phases.  First, the design 
phase where a hierarchy of criteria is set up, and second 
the evaluation phase which comprises making pairwise 
comparisons.  The design of the hierarchy requires both a 
decision-maker and knowledge of the problem area 
though not necessarily knowledge of the actual data.  The 
hierarchy is structured so that the topmost node is the 
overall objective.  For example, we may wish to 
determine which is the best supplier of certain goods (see 
Figure 1).  The topmost node would be ‘Choosing a 
supplier’.  Subsequent nodes, at lower levels in the 
hierarchy, consist of the criteria used in arriving at this 
decision, perhaps cost and quality.  The bottom level of 
the hierarchy consists of the alternatives from which the 
choice is to be made, i.e. the suppliers.  Each element in 
an upper level must be a common criterion for each 
element in the level immediately below it.  

 

 
 

Figure 1: Choosing a supplier 
 

During the design stage key elements of the problem area 
are identified and inserted into the hierarchy, building up 
a structure which represents the problem area.  Complex 
problems are decomposed into simpler, more manageable 
portions which proceed downwards from the more 
general to the more concrete, and from the less 
controllable to the more controllable.  Such structures are 
fundamental to the analysis of risk [23]. 

The second phase is the evaluation stage in which 
each alternative is compared to all other alternatives.  This 
determines the relative importance of each alternative 
with respect to the criterion in the level immediately 
above it.  For example, Supplier 1 is compared with 
respect to cost against Supplier 2 and then Supplier 3.  
The same comparison is then made between Supplier 2 
and Supplier 3.  These comparisons are subsequently 
repeated with respect to quality.  The comparisons are 
made by firstly posing the question ‘Which of the two is 
the larger/more important?’ and secondly ‘By how 
much?’.  The strength of preference is expressed on a 
ratio scale of 1-9, which keeps measurement within the 
same order of magnitude.  A preference of 1 indicates 
indifference between two criteria whilst a preference of 9 
indicates that one criterion is 9 times larger or more 
important than the one to which it is being compared.  
Nine times larger, or smaller, is therefore the maximum 
allowable difference between elements and is one reason 
why Saaty has recommended limits on the heterogeneity 
of the elements being compared.  In this way comparisons 
are being made between criteria within a limited range 
where perception is sensitive enough to make a 
distinction.  If the elements are more widely separated 
then homogeneous clusters should be used, and 
comparisons made between clusters. These comparisons 
result in a reciprocal matrix A (see Table 1) where Aii = 1 
and Aij = 1 / Aji. 
 

Relative 
Cost 

Supplier 1 Supplier 2 Supplier 3 

Supplier 1 1 3 1 
Supplier 2 1 / 3 1 1 / 5 
Supplier 3 1 5 1 
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Table 1: Example Reciprocal Matrix A 
 
In this case Supplier 1 is three times the cost of Supplier 
2, and consequently Supplier 2 is one-third the cost of 
Supplier 1. 

Each judgement reflects the perception of the ratio of 
the relative contributions of the two alternatives to the 
overall dimension being assessed.  The resulting matrix is 
used to derive a ratio scale by an eigenvector technique.  
This is achieved by averaging over normalised columns.  
In this way the relative weights are calculated for each of 
the alternatives in relation to the dimension on which they 
were compared, in this case, cost.  Stated simply, each 
alternative is given a value that is a measure of its 
contribution to the common criterion in the level 
immediately above it.  This process is repeated for all 
criteria within a given level.  Again in this example, the 
three suppliers would again be compared with regard to 
quality, and weightings found for each supplier on this 
dimension.  The next stage would be to compare criteria 
in the next level with respect to the common criterion 
immediately above it.  In this example cost might be 
selected as being more important in choosing a supplier, 
along with the intensity of preference.  Finally, the overall 
weighting is achieved by propagating through the 
hierarchy combining the resulting weights from each 
level.   In this way each supplier will be accorded a 
weight value after having taken into account both cost and 
quality. 

It is often the case that people’s judgements are not 
entirely consistent.  Comparisons made by this method 
are subjective and AHP tolerates inconsistency through 
the amount of redundancy in the approach.  For a matrix 
of size n x n only n–1 comparisons are required to 
establish weights for the n alternatives.  The actual 
number of comparisons performed in AHP is n(n – 1) / 2 
which is greater than n–1 for n>2.  This redundancy is a 
useful feature as it is analogous to estimating a number by 
calculating the average of repeated observations.  This 
results in a set of weights that are less sensitive to errors 
of judgement.  In addition, this redundancy allows for a 
measure of these judgement errors by providing a means 
of calculating a consistency index.  If this consistency 
index fails to reach a required level then answers to 
comparisons may be re-examined.  The consistency 
index, CI is calculated thus: 

 
CI = (!Max " n) /(n "1)  
 

where λMax is the maximum principal eigenvalue of the 
judgement matrix.  The nearer CI is to zero, the more 
consistent the judgements.  This CI can be compared to 
that of a random matrix, RI.  The ratio derived, (CI /RI) is 
termed the consistency ratio (CR).  Saaty suggests the 

value of CR should be less that 0.1.  However, caution 
should be exercised with regard to the significance of this 
figure.  Firstly "magic numbers" should be used simply 
for guidance, not as some benchmark.  Secondly where n 
is a small number, the CR becomes less reliable.  

Although AHP is a decision making process, we have 
shown how it can also be used for prediction [24]3.  AHP 
produces weight values for each alternative based on the 
judged importance of one alternative over another with 
respect to a common criterion.  These weights represent 
the degree to which each alternative contributes to this 
common criterion.  This information can, therefore, be 
used for prediction purposes provided one reference point 
(known data) is available. 

A simple example would be to deal with just one 
criterion, namely project effort.  Effort becomes the 
topmost node in the hierarchy and the alternatives are a 
set of projects between which pairwise comparisons are 
performed.  Estimators are asked to subjectively judge 
which out of two projects presented, Project 1 or Project 
2, requires more effort, and then indicate the extent to 
which they believe this to be so, e.g. twice more, three 
times more, etc.  Then they are asked to choose between 
Project 1 and Project 3, and so on until each project has 
been compared with all other projects in the dataset. 

 

 
 

Figure 2: Example hierarchy (for the criterion project 
effort) 

 
This determines a set of weights, which indicate the 
relative contribution by each project to the overall effort 
of all projects in the dataset.  If the effort for one of these 
                                                           
3 We have recently become aware of similar, but 
independent work by Miranda [25] E. Miranda, "An 
evaluation of the paired comparisons method for software 
sizing," presented at 22nd IEEE Intl. Conf. on Softw. 
Eng., Limerick, Ireland, 2000., whose technique is also 
based upon AHP and solving for projects with a single 
known datapoint. The main difference is that he uses a 
geometric mean whilst we use Saaty's eigenvector 
method.  Presently, we are uncertain as to the impact of 
these differences, however, we are of the opinion that 
they may not be very significant. 
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projects is known then the effort for the remainder of the 
projects can be determined as follows: 

 
ˆ E i = wi wk( )Ek  

 
where ˆ 

E i  is the estimated effort for project i, and Ek is the 
known effort for project k, wi is the weight of the project 
to be estimated and wk is the weight of project with 
known effort.  A more sophisticated example would be to 
utilise the hierarchical structure of AHP to predict effort 
by decomposing the problem into a number of criteria 
which all contribute to actual effort. 

To summarise, our sparse data method requires the 
following steps. 

1. Determine the elements for which a prediction is 
required.  These might be either tasks / phases of a 
project or components / project subsystems. 

2. Assess whether these elements satisfy, at least 
approximately, Saaty's homogeneity requirement 
of less than an order of magnitude variation 

3. Identify a minimum of one reference point for 
which there is a known value.  Ideally the 
reference point will be closer to a midpoint rather 
than an extreme value. 

4. Identify the criteria upon which the pairwise 
comparisons will be made.  (In this paper we 
restrict ourselves to comparing relative effort 
directly, however, estimators may construct an 
attribute hierarchy if so desired.) 

5. Make the pairwise comparisons to the level of 
granularity of equal, twice as, three times as … 

6. Use Saaty's eigenvector method to compute the 
relative contributions of each element to the 
overall figure. 

7. Using the known value of the reference point solve 
for all other elements 

 
We have developed a prototype research tool, known as 
DataSalvage, in Visual Basic to support the use of the 
sparse data method for estimation purposes. 

Superficially the AHP method of prediction appears to 
bear some similarity with the Software Sizing Model 
(SSM) [26] which also quantifies subjective judgements.  
SSM is based on "three key facts", first, in the very early 
stages in a project, qualitative size information is more 
accurate than quantitative; second, experts' estimates of 
relative size of software are more reliable than actual size; 
third estimated and actual relative size of software are 
strongly correlated.  SSM provides the means to estimate 
the size of a software project by entering four different 
types of input, namely, pairwise comparisons, PERT 
sizing, sorting and ranking.  During the pairwise 
comparisons the user selects the larger of the two projects 
being compared but does not indicate the degree of 

difference.  Instead, further information is obtained from 
the other methods of input.  Rather than use an 
eigenvector approach to derive a scale, SSM uses the 
Logarithmic Least Squares Method for each of the four 
types of input.  The scalar product of these results is 
calculated to produce a ranking vector.  By assigning a 
known reference point the size of the remaining projects 
is determined (in LOC).  We believe our approach 
benefits from being simpler, and requires significantly 
fewer inputs from the expert than SSM.  Moreover, 
DataSalvage is not restricted to LOC as a unit for size 
either as an output or as a reference point.  Lastly, SSM is 
a proprietary method, so we do not know the details of the 
algorithm(s) used. 

 
 
4. Evaluation Using Industrial Data 
Having described our sparse data method, we now turn to 
empirical validation.  For this purpose we utilised two 
project effort datasets (see the Appendix), both derived 
from the telecommunication industry.  Both datasets 
comprised a number of builds to a large underlying 
product.  They were selected on the basis that they 
contained the project manager's estimate as well as the 
true effort value.  The estimates were based upon expert 
judgement rather than using any formal process or 
software tool.  Unfortunately, due to this informality we 
do not have precise details as to how each estimate was 
arrived at.  Ideally one might interview the managers, 
however, this level of access was not possible. 

A difficulty in validating our method in a post hoc 
fashion is that knowledge of the actual outcome could 
influence the pairwise comparison process and thus lead 
to significant bias in favour of our technique.  
Consequently we restricted our analysis to datasets where 
the a priori estimates were available.  Our analysis was 
therefore limited to only data that was available at the 
time of making the estimate.  Such a restriction is unusual 
amongst this type of research. 

Another potential problem is that typically software 
systems will exhibit requirements "drift" whilst they are 
still being developed.  The consequence of this is that the 
initial estimate of development effort may deviate from 
actual effort solely on the grounds that the system being 
developed has changed from that first envisaged. Whilst 
we are unsure to what extent this occurred in our data 
collection environments, it could lead to the expert 
judgement being seen in a pessimistic light.  This is not a 
problem for our analysis, since we are investigating the 
question of whether our sparse data method adds value to 
expert judgement using the same inputs.  Therefore, if our 
analysis is biased, it is equally biased for both techniques. 

As we indicated earlier, an important requirement for 
the use of AHP is homogeneity, such that there should be 
less than an order of magnitude variation between 
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elements.  This is intended to facilitate pairwise 
comparison and avoid rank reversal problems [27, 28].  In 
order to satisfy this requirement three projects were 
removed from the investigation.  These were cases where 
the expert-estimated effort figure fell outside the required 
order of magnitude variation of the remainder of projects.  
The rationale behind this was that the estimated figure, 
rather than the true value, was all the user would have to 
go on at the time of prediction.  This meant that in our 
study there was some violation of homogeneity principle, 
and thus decreased accuracy in terms of the sparse data 
method prediction.  It can be said, therefore, that the 
validation technique does not favour the our method.  
Parenthetically, it should be noted that, in practice, the 
problem of a lack of homogeneity can be overcome by 
clustering the elements into a hierarchy of more similar 
matrices so this is not severe restriction. 

Our hypothesis was that our sparse data method 
should result in predictions that were more accurate than 
simply using expert judgement.  We assessed accuracy in 
terms of absolute residuals ˆ e ! e  since for the purpose of 
this research we assumed indifference between over and 
under-estimates, nor did we wish over and under-
estimates to cancel one another out.  We set our 
confidence limit at (α=0.10) as this was an initial 
exploratory study and, as already discussed, the approach 
did not favour the sparse data method. 

Our procedure was to randomly select one project as 
the known datapoint or reference project.  We then 
completed the pairwise comparison process using the 
expert's prediction and not the true value.  We then 
generated absolute residuals for the predictions using both 
techniques and then applied a robust paired test using the 
Wilcoxon Signed Rank test.  This test indicates whether 
or not the median error is greater using expert judgement 
than our sparse data method.  Note a robust test was used 
since absolute residuals are inevitably skewed in their 
distribution.  Note also that we combined the two datasets 
for the purposes of analysis (i.e. after results were 
obtained from the tools) — possible because the data was 
naturally paired — in order to increase the power of our 
test (n = 34 = 14+20) 4.  Elsewhere we discuss some of 
the difficulties of obtaining significant results when 
analysing small datasets [29] and this is borne out by the 
probabilities that the null hypothesis is true (p = 0.0736, 
n=14 and p = 0.1393, n=20). 

 
Technique Mean Median Min Max 
Sparse Data 
Method 

134.8 58.5 1 566 

                                                           
4 Note that the actual size of the datasets were 15 and 21 
projects respectively, but the cases used as known 
reference projects or datapoints were removed from the 
analysis, again to avoid favouring the sparse data method. 

Expert 
Judgement 

139.3 70 5 571 

 
Table 2: Comparison of absolute residuals from expert 
judgement with the Sparse Data Method 

 
From Table 2 we see that the Sparse Data Method appears 
to have a lower mean and median level of error, however, 
we need to formally test for significance. 
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Wilcoxon Signed Rank 
 
Test Ho: Median(sparse-expert) = 0 vs  
     Ha: Median(sparse-expert) < 0 
 
 Rank Totals Cases Mean Rank 
Positive Ranks 194 12 16.17 
Negative Ranks 367 21 17.48 
Ties  • 1 • 
Total  561 33 17 
 
Tied differences:  6 
Variance:  3132.2 
Adjustment To Variance For Ties:  -2.2500 
Expected Value:  280.50 
z-Statistic:  -1.5461 
p = 0.0610 
Reject Ho at Alpha = 0.10 

 
From the Wilcoxon test we see that in 21 cases our 
method was more accurate than expert judgement, in 1 
case there was a tie and in 12 cases expert judgement 
performed better than our method.  This suggested that 
the sparse data method tended to add value, or is able to 
improve upon the accuracy that can be obtained from the 
experts and that we can reject the null hypothesis of no 
difference between the techniques (p=0.061). 

Another aspect of prediction is to know whether there 
is bias.  For this analysis we used residuals rather than 
absolute residuals.  Here we found that both approaches 
had a tendency to underestimate effort.  The experts had 
an overall bias of approximately -5% 5 and the sparse data 
method of approximately -7%. This possible tendency to 
amplify the experts' bias, although not serious, warrants 
further investigation. 
 
5. Sensitivity Analysis by Simulation 
This section uses simulation to explore two potential 
problem areas.  First, the method relies upon subjective 
comparisons so there is clearly scope for errors.  The 
question then arises: how vulnerable is the method to such 
errors.  In order to answer this question we performed a 
sensitivity analysis in which we successively introduced 
increasing numbers of erroneous pairwise comparisons.  
Second, there is the question of which project to use as a 
reference point and what is the impact of making different 
choices.  The analyses are based upon the same datasets 
as described in the previous section. 

First, to explore the sensitivity of our sparse data 
method to erroneous judgements the actual effort value of 
each project was compared to that of every other project 
in a pairwise fashion.  In performing the comparisons for 
the simulation there was no subjectivity since the true 
                                                           
5 The bias is calculated as the ratio of the sum of the 

signed residuals to the total actual effort, i.e. 
ˆ e 

i
! e

i
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i
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"
 

values were known.  For the purposes of the sensitivity 
analysis the point chosen on the evaluation scale was the 
one that most closely reflected the true situation. For 
example, if two hypothetical values of 500 and 700 were 
being compared then the two projects would be 
considered as equal since 700 is closer to 500 (equal) than 
it is to 1000 (twice as great). 

Initially we started with the theoretical optimum 
where all pairwise comparisons are made correctly — 
using post hoc knowledge6 — with the aim of establishing 
the potential maximum accuracy.  These were the best 
predictions that could be achieved since all actual effort 
values were known. This resulted in an accuracy level of 
MMRE7=3.9%.  This illustrates that the use of a quite 
coarse scale for the pairwise judgements does not detract 
significantly from the accuracy of the method. 

The above analysis made the assumption that a correct 
judgement is made every time. However, in a real life 
environment this would be very unlikely. The impact of 
erroneous judgements in this analysis was examined by 
simulating the problem of incorrect judgements during the 
pairwise comparisons. The effect of these incorrect 
comparisons was assessed by assuming that the estimator 
could provide the correct comparison for 90% of the time. 
This was then reduced in stages to 80%, 70% and lastly 
60% correct judgements. This was a similar method of 
sensitivity analysis to that used by Bozoki [30] during his 
testing of SSM.  The cases and degree of error were 
selected randomly.  The errors from one level were 
propagated to the next. In this way the erroneous 
decisions made at the 10% error level were included in 
the 20% level, and those made at the 20% level were 
carried through to the 30% level and so on. Thus there 
was some comparability between different levels of 
erroneous pairwise judgements. 

                                                           
6 This differs from the analysis in the previous section 
where the objective was to determine whether the sparse 
data method was able to improve upon the performance of 
expert estimators.  By contrast, in this sensitivity analysis 
we wish to explore the impact of erroneous comparisons 
and consequently must commence from a position of no 
errors. 
7 MMRE is the mean magnitude of relative error and is 
defined 100

n
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Figure 3: Prediction Accuracy Against Simulated 
Pairwise Comparison Error Rates  
 
From Figure 3 we see that our sparse data method was 
robust against comparison errors up to a level of 30% but 
beyond this there was a marked deterioration.  In one 
sense this is not surprising since the comparison matrices 
contain much redundancy, nevertheless it is an 
encouraging finding if the method is to be practically 
deployed.  Note that the horizontal line denotes the level 
of accuracy obtained via expert judgement for comparison 
purposes. 

The second analysis addressed the question of how 
influential is the choice of reference point or project upon 
the accuracy of the sparse data method.  Here we selected 
four different reference points for both the BT and the 
Company X data (i.e. eight in total).  The points were 
chosen to represent projects that were at either extreme of 
the range of project sizes as well as those in the middle.  
Since the purpose was to determine the effect of using 
different reference points our concern was relative 
accuracy rather than determining what might be 
realistically achievable.  Consequently our procedure was 
to use perfect knowledge (0% errors) as per the initial part 
of the previous simulation.  We then computed the 
absolute residual for each prediction. 
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Figure 4a: Distribution of Prediction Errors using 
Different Reference Tasks (BT dataset) 
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Figure 4b: Distribution of Prediction Errors using 
Different Reference Tasks (Company X dataset) 
 
Figures 4a and 4b show side by side boxplots of four 
reference tasks sampled from each environment.  The 
shaded areas show the 95% confidence limits for the 
medians.  It would seem that there is some variability in 
prediction errors according to the choice of task with the 
worst errors being associated with the largest reference 
points. 
 
Dataset Reference Project Effort Mean Absolute Residual 

BT 574 95.28 
BT 334 151.19 
BT 1116 227.87 
BT 97 114.73 
X 557 341.29 
X 229 158.48 
X 578 214.74 
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X 1076 405.45 

 
Table 4: Comparison of Accuracy Levels using 
Different Reference Projects 
 
The mean absolute residuals are provided in Table 4 and 
again confirm that the greatest problems were 
encountered when the reference points were at the 
extreme, or maximum, for the range of values.  Obviously 
further investigation would be useful but the finding that 
the more representative, or closer to the midpoint, a  
reference project is the better the predictions, is intuitively 
reasonable. 
 
6. Experiences With Users 
Next we turn to human evaluation of the sparse data 
method.  The utility of the method based upon our tool 
DataSalvage was assessed by two categories of user: 
students and a professional project manager.  First we 
consider a small longitudinal study using students, to 
whom we had more access.  Second we describe the 
reactions of a practising project manager to the tool and 
method.  Due to limited time and access this was a 
relatively informal exercise and the method was used with 
historical data. 

The students consisted of a group of four, involved in 
a software project of approximately 6 months duration.  
The project had two phases.  The first phase, outside the 
scope of this case study, involved developing a software 
prototype to ascertain customer requirements for a 
database system to generate questionnaires and manage 
responses for a university teaching feedback system.  The 
second phase was to implement a fully functional system 
based upon the specification derived from the prototype. 
  

Criterion % 
functionality 34.2 
robustness 27.0 
usability 22.5 
actual development 9.3 
actual testing 7.1 

 
Table 5: Criteria chosen and their relative 
contribution to total project effort 
 
The group identified five criteria that they considered 
important components of total effort.  We did not seek to 
influence their choices in any way.  These are listed in 
Table 5 together with their relative contributions 
determined by pairwise comparison.  Interestingly the 
first three criteria were quality characteristics of the 
system whilst the final two relate to development phases.  
Functionality, unsurprisingly, was seen as the most 
important criterion.  The team then made their 

comparisons for each criterion between the system to be 
developed (teaching feedback system) and the reference 
task, in this case the prototype from the previous phase 
for which the development effort was known (120 hours). 
 

Project % Predicted 
effort  

Actual 
effort 

prototype 23.9 n/a 120 
teaching feedback 
system 

76.1 382.5 318.5 

 
Table 6: Comparison between projects 
 
Table 6 indicates that predicted effort was 382 hours 
based upon the known effort for the prototyping task.  
The team kept detailed effort records both by individual 
and by task.  These were reported on a weekly basis, 
which provided an opportunity to seek clarification when 
surprising or questionable values were supplied.  Thus we 
had high confidence in the quality of the data.  The actual 
effort figure was 318.5 person hours, deviating from the 
estimate by approximately 20%.  Somewhat unusually the 
prediction was an over-estimate.  A possible explanatory 
factor is that the team viewed the original estimate as a 
target.  Thus they may have produced a pessimistic 
estimate which they were confident they could beat, or 
were motivated to 'beat' the estimate.  The prediction 
using the sparse data method was a significant 
improvement on previous estimates by students.  A pre-
investigation questionnaire completed by students 
undertaking the software development project revealed 
that they had previously tended to use algorithmic 
methods of estimation, notably COCOMO, or expert 
judgement to produce estimates.  The students reported 
errors in estimating ranging from 25% to 400% for such 
techniques, with the majority of respondents reporting 
inaccuracies of up to 100%. 

Next we considered the responses of a Project Manager, 
who was involved with estimating the level of effort 
required for future projects.  The Manager worked for 
British Telecom, and was asked to consider some 
example situations from his own projects.  The Project 
Manager currently estimated by subdividing the project 
development into modules, then performing a bottom-up 
analysis for the development of each module.  During this 
analysis he would typically consider such factors as: 
 

• the number of programs 
• functionality 
• level of difficulty 
• skill of the staff 
• number of groups  
• similarity to previous work 
• any problems expected 
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• whether pressure could be put on a person to 
complete the work more rapidly. 

 
In order to make the pilot study manageable, three 
projects familiar to the Project Manager were selected, 
and comparisons were made using just three criteria, 
namely: skill level of staff; number of groups of 
developers involved and functionality.  

The version of the DataSalvage tool, at that time, 
worked on the assumption that an increase in a sub-
criterion and in the higher-level criterion would share the 
same direction.  This assumption was true for the second 

and third criteria: increasing the number of groups of 
people involved will increase the effort expended in co-
ordination and communication between the groups.  
Similarly, increasing required functionality would 
generally lead to more development effort.  By contrast, 
the relationship between skill level and effort increased 
inversely, i.e. the higher the skill level the lower the 
effort.  Therefore care needed to be taken in selecting the 
criterion label.  Using the label ‘Unskilled’ meant the 
criteria would increase in the same direction (as a double 
negative) but complicated the process of making the 
comparisons, since it felt less natural to the estimator. 

 
Project Functionality No. of groups Unskilled Effort 

 % % % % value 
P1 20.6 6.0 60.7 48.4 300 
P2 72.3 75.0 9.0 26.7 165.6 
P3 7.1 19.0 30.3 24.9 154.3 

criterion 
comparison 

19.3 8.3 72.4  

 
Table 7: Results from the Project Manager 
 
The results presented in Table 7 did not concur with the 
experience of the Project Manager, since P2 had actually 
required more effort than P1.  This could be explained by 
the way the criteria had been compared.  The user had 
weighted the criteria so that the level of skill (Unskilled) 
was regarded as very important, (72.4% of the total).  P2 
was rated low on lack of skills, (i.e. the team involved 
was considered to be skilled), thus lowering the 
weightings for the effort values.  The number of groups 
involved was substantially greater for P2 compared to the 
other two projects, but this criterion had been rated the 
least important in estimating effort, (8.3% of the total).  
This further reduced the overall weighting for P2. 

Overall the Project Manager found comparing projects 
to be relatively straightforward. He responded positively 
to being allowed to choose the appropriate criteria, but 
found the comparison between criteria difficult.  The 
results suggested that the Project Manager attached too 
much importance to the level of skill of the staff as a 
driver for effort.  A possible explanation was that the 
required functionality for a project would generally be 
given whilst staff skill would be a major preoccupation 
for a project manager.  Consequently, in considering the 
relative importance of these factors the manager tended to 
emphasise staff skill.  This indicates that the approach 
may be beneficial in helping project managers assess the 
contribution of the criteria chosen to overall project effort.  
Further experimentation in varying the weightings of the 
criteria could potentially improve criteria weighting for 
future estimation in this environment. 

Criteria with an inverse relationship with effort, e.g. 
skills, flexibility were problematic.  It is far easier to think 

in terms of ‘more skilled’ than ‘less unskilled’.  This 
problem has subsequently been solved in more recent 
versions of DataSalvage by inverting the weightings in 
the matrix for criteria with negative relationships with 
effort. 

While the results from this very limited pilot study 
need to be viewed with some caution, there are a number 
of points that suggest the approach should be considered 
favourably.  The Project Manager involved was positive 
about the approach, and gave two main reasons.  First, it 
was easier to make pairwise comparisons among projects 
than to consider the set of projects as a whole; second, 
choosing the criteria on which comparisons would be 
made was valuable in its own right.  This could 
potentially provide feedback to project managers on 
which factors had a significant impact on effort, allowing 
them to concentrate on collecting the most useful 
measures.  We do acknowledge, however, that the second 
benefit indicated by the Manager is something of a moot 
point, since there are other methods that might address the 
question of which are important factors more directly. 
 
7. Summary and Conclusions 
The use of accurate, systematic, historical data for 
building useful effort prediction systems is extremely 
important, yet in practice such data is seldom available.  
The sparse data method described in this paper is based 
upon a multi-criteria decision-making technique known as 
AHP, which represents the problem hierarchically by 
decomposing it into smaller, more meaningful chunks.  It 
requires data for only one reference task and has been 
shown to be capable of accurate predictions.  It then uses 
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subjective pairwise comparisons to elicit information 
from the estimator.   

This paper has described results from an empirical 
analysis derived from an industrial dataset.  Here we have 
been able to reject the null hypothesis in favour of our 
method leading to more accurate predictions than merely 
using expert judgement.  In other words the sparse data 
method was able to add value to the prediction process.  
We also observe that we were able to generate more 
accurate results than if all the data had been made 
available and a least squares regression analysis 
performed8.  The respective MMREs are Stepwise 
Refinement (SWR)=57% and sparse data method=39%.  
If nothing else this indicates that expert judgement can 
offer a stronger basis for prediction than possibly 
incomplete objective data which can fail to capture all 
relevant factors.  Other support for our method comes 
from the small student longitudinal study where we 
obtained an accuracy level of approximately 20%. Lastly 
we note that Miranda [25, 31] also reported encouraging 
results when he conducted experiments using a similar 
method and using small data structure programs.  He 
found that more accurate size predictions were obtained 
using the pairwise technique than ad hoc methods. 

Using our data and simulating errors we have also 
shown that our method is capable of yielding accurate 
predictions even in the presence of up to a 30% erroneous 
comparison rate and results better than SWR even at a 
40% error injection rate.  Given the subjective nature of 
pairwise comparison this is an important finding.  We 
have also shown that the choice of reference point can be 
influential upon the level of accuracy.  In particular 
reference points chosen from the extremes of the range of 
projects may be problematic. Further work is required 
here. 

We believe that this technique can enable the 
estimator to view the problem in a more structured and 
systematic way.  Clearly, our estimation method still 
relies upon an expert. If the estimator has no knowledge 
of project for which the prediction is required, then any 
prediction becomes highly risky; essentially one is 
guessing.  Those involved with the pilots of the tool, 
DataSalvage, gave positive feedback.  In particular, it was 
felt to be useful in helping the expert to assess which 
criteria were useful measures as input to effort 
predictions. 

We do not wish to argue that the sparse data method is 
the "best" estimation technique.  Indeed we believe the 

                                                           
8 The R-squared value for the regression equation is 
42.8% suggesting poor explanatory value.  Since there are 
some outliers it may be that a more robust technique 
could improve upon these results, however, we stress that 
this assumes that all the data is available which is not the 
premise of this paper.  

very notion of "best" technique is somewhat flawed since 
effectiveness of any prediction method is intimately 
linked to environment and data characteristics in which it 
has to operate. Nevertheless we believe that there is 
enough encouraging evidence on this novel approach to 
warrant further investigation. 

Naturally, however, there remain a number of open 
questions and areas for further work.  One of the 
difficulties we have encountered is that of validation. 
Unlike the majority of other methods the primary input is 
not data but rather a series of subjective pairwise 
comparisons made by an expert. This is difficult to 
validate, although we have attempted to do so by 
restricting our analysis to expert judgements made at the 
time as opposed to post hoc data.  This contrasts with the 
more normal practice of using data after the event that can 
lead to rather optimistic results. 

Another problem area is the number of comparisons 
required when there are many components or tasks.  
Pairwise comparison matrices contain redundant 
judgements that make the approach less sensitive to 
comparison errors. However, the number of comparisons 
can become burdensome if the problem is large since 

there will be 
n n ! 1( )

2
 comparisons. There are various 

options for dealing with large matrices. One method is to 
cluster tasks into a hierarchy of smaller matrices that 
could have the side effect of improving homogeneity. 
There are also techniques of dealing with sparse matrices 
where not all judgements are required. As the derived 
weights are more important than rank for effort 
prediction, further investigation into sparse matrices could 
be useful. 

AHP is intended as a multi-criteria decision-making 
technique. The evaluations described in this paper have 
been based on a single criterion, namely effort. The 
approach can be extended to assess a hierarchy of criteria 
that contribute to effort, such as function point, novelty of 
the task, expertise of the developers, etc.  It then becomes 
necessary to make pairwise comparisons to assess the 
relative importance of each of these criteria to overall 
effort.  We have found in our testing of the interface of 
the DataSalvage tool that estimators find it difficult to 
make these particular comparisons. Further work is 
needed to provide support for this aspect of using a 
hierarchy of criteria.  It is interesting that the Project 
Manager had more success when simply comparing 
projects in terms of effort, than when effort was broken 
down into criteria.  An obvious explanation is that we do 
not fully understand all of the factors involved in effort 
and their relative contributions. 

When using our sparse data method it is a requirement 
that data exists for at least one project and that this project 
is included in the comparisons. If the calculated 
percentage contribution of this particular project is 
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accurate then it greatly enhances the accuracy of the 
values for unknown projects. For the purposes of this test 
case, the known value was randomly selected from each 
dataset. Further work needs to be carried out to assess the 
significance of the relative size of the reference task to the 
other elements, in terms of accuracy of predictions. For 
example, would it be better if this value was one that 
contributed greatly to the whole or whether it was 
midrange? 

This method might also be utilised as a data elicitation 
method and to recover organisation memory, to structure 
and remember analogies. DataSalvage could also be used 
as a means to generate new cases for case based reasoning 
systems such as ANGEL [32], when more concrete data 
was not available by other means. 

Finally we also feel that there is a need for further 
research such as ours to integrate human and computer 
based estimation techniques. In the past there has been an 
implicit goal to replace subjective experts with objective 
prediction systems.  This may not always either be 
possible or desirable.  It may be more fruitful in the future 
to consider collaboration between humans and automated 
procedures.  Our sparse data method may be useful in this 
regard. 
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Appendix: Software Project Data 
 

Project Company Actual Expert Sparse Data 
Method 

Prediction 

1 BT 670 691 reference project 
2 BT 912 902 906 
3 BT 218 274 276 
4 BT 595 479 495 
5 BT 267 308 291 
6 BT 344 301 291 
7 BT 1044 590 591 
8 BT 229 234 230 
9 BT 190 172 181 
10 BT 870 334 313 
11 BT 109 159 166 
12 BT 289 239 247 
13 BT 616 373 377 
14 BT 557 308 291 
15 BT 416 588 591 
16 BT 578 861 838 
17 BT 98 104 100 
18 BT 439 424 424 
19 BT 99 232 230 
20 BT 75 218 223 
21 BT 1076 505 510 
22 company X 305 304 reference project 

23 company X 330 274 260 
24 company X 334 589 575 
25 company X 150 480 478 
26 company X 545 648 589 
27 company X 118 186 177 
28 company X 1116 777 740 
29 company X 159 136 137 
30 company X 574 709 664 
31 company X 277 333 334 
32 company X 97 91 90 
33 company X 374 446 416 
34 company X 167 159 155 
35 company X 358 342 344 
36 company X 123 198 182 
37 company X 24 30 not used* 
38 company X 34 30 not used* 
39 company X 32 34 not used* 

 
* removed due to homogeneity constraint (see section 4) 
 


