

RESEARCH EDUCATION TREATMENT ADVOCACY

Critical Review

Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis

Wei-Ju Chang,* Neil E. O'Connell,[†] Paula R. Beckenkamp,[‡] Ghufran Alhassani,* Matthew B. Liston,* and Siobhan M. Schabrun*

*School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia. [†]Health Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical Sciences, Brunel University, Uxbridge, United Kingdom.

[‡]The University of Sydney, Discipline of Physiotherapy, Faculty of Health Sciences, Sydney, New South Wales, Australia.

Abstract: Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Metaanalyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. **Perspective:** This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations.

© 2017 The Author(s). Published by Elsevier Inc. on behalf of the American Pain Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). *Key words:* Chronic pain, primary motor cortex, neuroplasticity, meta-analysis.

The authors have no conflicts of interest to declare.

hronic pain conditions such as low back pain (LBP), neck pain, and knee osteoarthritis (OA) are leading causes of disability globally¹⁰⁷ and are associated with significant and rising health care and socioeconomic costs.⁵⁰ Despite this, effective treatment remains elusive.

People with chronic pain conditions commonly present with abnormalities of movement. For example, excessive finger flexion has been reported during grip release in chronic lateral elbow pain, greater hip adduction and internal rotation during stair climbing in lateral hip pain, and delayed onset of trunk muscle activation during

W.-J.C., M.B.L., and S.M.S. received salary support from the National Health and Medical Research Council of Australia and G.A. from an Australian Postgraduate Award.

Supplementary data accompanying this article are available online at www.jpain.org and www.sciencedirect.com.

Address reprint requests to Siobhan M. Schabrun, MD, School of Science and Health, Western Sydney University, Locked bag 1797, Penrith, New South Wales 2751, Australia. E-mail: s.schabrun@westernsydney.edu.au 1526-5900/\$36.00

^{© 2017} The Author(s). Published by Elsevier Inc. on behalf of the American Pain Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1016/j.jpain.2017.10.007

arm elevation in recurrent LBP.^{3,33,97} As a result, rehabilitation to target movement dysfunction is a treatment for musculoskeletal pain. However, treatment success with this approach is limited^{1,71} and there is debate regarding the type, quantity, and timing of interventions needed to effectively target movement dysfunction in chronic musculoskeletal pain or indeed whether such an approach is warranted.^{2,30,31}

The physiological basis of movement dysfunction in pain is poorly understood. The primary motor cortex (M1) has an essential role in the formulation and execution of movement and is likely to have a role in movement abnormalities. Indeed, a recent systematic review provided evidence of reduced M1 output (ie, corticospinal excitability) in response to acute muscle pain that may represent an adaptive mechanism to protect against further pain or injury.9 Similarly, studies investigating M1 in experimental models of progressively developing, sustained muscle pain show altered M1 organization (increased representations of painful muscles) and function (reduced M1 inhibition) 4 days after pain onset.⁷⁷ Studies have reported that changes in M1 structure, organization, and function may also be present when pain becomes chronic. For example, associations have been reported between the severity of pain and/or the degree of movement dysfunction in chronic musculoskeletal disorders such as low back, elbow, and patellofemoral pain and reorganization of the M1 representation (ie, greater representational overlap, reduced number of discrete peaks) of muscles in the region of pain.^{78,79,94} However, it is unclear whether M1 reorganization presents in other chronic pain conditions and whether it can be observed via different neurophysiological methods.

Previous reviews examining changes in M1 in chronic pain have been restricted to specific pain conditions or by the neurophysiological method used to assess M1. For instance, a systematic review revealed limited evidence for bilateral M1 disinhibition in complex regional pain syndrome (CRPS) of the upper limb.²⁰ Whether similar alterations in M1 are present in other forms of chronic pain is unknown. Indeed, it has been suggested that M1 disinhibition may occur in chronic neuropathic but not chronic nociceptive pain.⁸² A second systematic review reported similar findings of disinhibition across a range of chronic pain conditions (including migraine) but was restricted to data obtained using transcranial magnetic stimulation (TMS).⁶⁵ The integration of information on M1 structure, organization, and function across 1) a range of neuropathic and non-neuropathic conditions, and 2) using a range of complementary neurophysiological techniques, is necessary to provide comprehensive information on whether M1 is altered in chronic pain. This information is timely because of the range of treatment techniques being tested that target the M1 in chronic pain.^{12,56,74,80}

The aim of this review was to systematically evaluate the evidence of altered M1 structure, organization, and function in chronic pain conditions of neuropathic and non-neuropathic origin across a range of neurophysiological methods.

Methods

The protocol of this review was prospectively registered with the International Prospective Register of Systematic Reviews (registration number CRD42015014823) and has been published elsewhere.¹³ This review is reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.⁴⁶

Search Strategy

The search was conducted in 5 electronic databases (PubMed, MEDLINE, Embase, PsychINFO, and CINAHL) from inception to February 2017, using key words and medical subject headings terms related to chronic pain and M1 organization/function (Supplementary Appendix 1). The reference list of eligible studies and relevant reviews were manually searched for additional articles.

Eligibility Criteria

Inclusion criteria were: 1) full text studies published in English, including in press or accepted studies, 2) adult (aged older than 18 years) humans with non-neuropathic or neuropathic pain, 3) duration of pain >3 months,⁶⁴ 4) investigated and reported measures of the organization and/or function of the M1 (regardless of the anatomical or functional definition used) using TMS, magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), magnetic

Table 1. Summary of M1 Structural, Organizational, and Functional Constructs and Their Associated Neurophysiological Methods and Outcome Measures

	M1 STRUCTURE	M1 ORGANIZATION	M1 FUNCTION
Neurophysiological methods and outcome measures	MRI: cortical thickness (VBM); white matter structure (diffusion tensor imaging)	fMRI: activation/connectivity (rCBF, BOLD) TMS: M1 representation (map volume, CoG of M1 representation)	TMS: corticospinal excitability (rMT, aMT, MEP amplitude and latency, CSP); ICF/ intracortical inhibition EEG: cerebrocortical motor activity MEG: 20-Hz cortical rhythm (rebound amplitude/duration, reactivity) MRS: neurochemical metabolism PET: glucose metabolism

resonance spectroscopy (MRS), or positron emission tomography (PET; Table 1). Studies were excluded if: 1) included participants presented chronic pain associated with neurological disorders, cancer, or visceral pain, or 2) the study did not include a healthy control group or used the unaffected limb or body side as a control. Crosssectional or prospective studies, including case-control and randomized controlled trials that provided baseline data with information relevant to the review objective and that met the eligibility criteria, were included.

Study Selection

Search results were imported into Endnote X7 (Clarivate Analytics, Philadelphia, PA). After removing duplicates, 2 reviewers independently screened titles and abstracts of all studies to remove those not relevant to the review objective. The full text of all remaining studies were retrieved and evaluated according to the eligibility criteria. If there was uncertainty or disagreement, a third reviewer was consulted.

Data Extraction

Two independent reviewers extracted the following data: pain condition, country of origin, study design and setting, inclusion/exclusion criteria, source of participants, sample size, participant demographic characteristics, duration and severity of chronic pain, neurophysiological methods, specifics of the investigative model, type and location of stimulation, and outcomes (ie, M1 excitability, representation, reactivity, neurochemical or glucose metabolism). Any disagreements were resolved in consensus with a third reviewer. If data were missing, authors were contacted a maximum of 3 times, after which the data were considered irretrievable.

Quality and Risk of Bias Assessment

Study quality and risk of bias were assessed by 2 independent reviewers using a modified version of the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) statement for cross-sectional and cohort studies.^{67,103,104} Disagreements were resolved by consensus with a third reviewer. The modified STROBE statement investigated potential for bias in 5 domains: 1) source of participants, 2) participant selection, 3) methodology, 4) statistical analysis, and 5) funding (Supplementary Appendix 2). Each domain would be allocated 1 point if the risk of bias was low and no point if the risk of bias was considered high. The maximum score possible was 5 points. For studies using TMS, an additional methodological quality assessment was undertaken using an adapted version of the TMS methodological checklist.¹⁴ Two items that were not relevant for this review were removed from the checklist (item 22-time between days of testing-and item 30-size of the unconditioned motor evoked potential [MEP] controlled). Each domain that was reported (r) and/or controlled (c) was allocated 1 point. In total, the maximum score possible for the reported and controlled items of the TMS

methodological checklist were, respectively, 26 and 25 for single-pulse TMS, and 29 and 28 for paired-pulse TMS. The ratio of the summed score relative to the maximum score for the reported ($r/[26 \text{ or } 29] \times 100$) and controlled ($c/[25 \text{ or } 28] \times 100$) items was calculated. The median percentage for the reported and controlled items was then calculated. TMS studies received 1 point in the methodology category of the modified STROBE statement if the percentage of reported and controlled items were both greater than the median value.

Data Synthesis

Meta-analyses were performed to aggregate the data from TMS studies. Because of increased heterogeneity in the methodology of included studies, a narrative synthesis was used to summarize the findings of studies using other neurophysiological methods.⁸⁴ TMS outcome measures (resting and active motor threshold [aMT], MEP amplitude and latency, cortical silent period (CSP), map volume, intracortical inhibition and facilitation) were pooled and separate meta-analyses were performed using RevMan version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen). Cohen d effect sizes were used to analyze effect estimates (d \leq .2, small; .5, moderate; ≥.8, large).¹⁶ Meta-analyses were performed using a random effects model when data from at least 2 studies addressing that outcome were accessible. Statistically significant heterogeneity was identified using the χ^2 test and was considered when $\chi^2 P < .10$. The I² statistic was used to evaluate the degree of heterogeneity. Substantial heterogeneity was considered present when $I^2 > 50\%$.³⁵ Meta-analyzed data are presented as effect estimates (standardized mean difference [SMD] with 95% confidence intervals [CIs]).

Subgroup and Sensitivity Analysis

Preplanned subgroup analyses were conducted according to the type of musculoskeletal condition where significant heterogeneity was identified. The median value of the modified STROBE statement score of the TMS studies was used as a cutoff point to divide studies into either low or high risk of bias groups. The influence of high risk of bias studies was examined by rerunning the analysis with those studies excluded.

Results

The initial search identified 5,028 records, from which 120 full text articles were retrieved to assess eligibility. Sixty-nine studies met the inclusion criteria in the review. The authors of 14 studies were contacted to request additional data pertaining to M1 function. Two studies were excluded as a result of unsuccessful attempts to acquire these data.^{18,106} Thus, a total of 67 studies were included in this review. The study flow chart can be seen in Fig 1.

Study Characteristics

The included studies encompassed 7 neurophysiological methods: TMS (n = 35 studies), functional MRI (fMRI;

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram of the screening and inclusion of studies.

n = 16 studies), MRI (n = 6 studies), MEG (n = 3 studies), MRS (n = 3 studies), EEG (n = 1 study), and PET (n = 1 study). Two studies investigated functional as well as structural MRI changes.^{95,101} In total, the included studies involved 1,248 chronic pain (20 different pain conditions) and 1,042 healthy participants. CRPS (n = 16 studies) and LBP (n = 16 studies) were the most frequently investigated conditions.

Five studies investigated 2 or more chronic pain conditions.^{11,72,73,75,82} Participant sex (n = 4 studies) and age (n = 3 studies), pain intensity (n = 22 studies), and the duration of the pain (n = 7 studies) were not reported by some of the included studies. The characteristics of included studies are summarized in Tables 2 and 3.

Quality and Risk of Bias Within Studies

The average score for the methodological quality assessment was 3.1 of 5 (range = 1–5; Table 4), with 50 studies presenting a score of \geq 3. For the TMS methodology checklist, the average score for the reported items was 64.8% (SD = 13) and for the controlled items 61.1% (SD = 13.8). All studies reported and controlled position and contact of electromyography electrodes and stimulation intensity. All studies that used paired-pulse paradigms (n = 16) reported the intensity of the test and conditioning pulse and the interstimulus interval. Participant age and sex, although reported, were not controlled. Items that were not consistently reported or controlled were: previous motor activity of the muscle to be tested, level of relaxation of the muscles other than those being tested, pulse shape, and participants' prescribed medication.

Is There Evidence of Altered M1 Function, Organization, and Structure in Chronic Pain?

We were unable to conduct meta-analyses of these data because of the heterogeneity of methodology across the included studies. Furthermore, the effect size of the differences between the pain and healthy participants were not reported in these studies.

In neuropathic pain, 3 studies reported statistically significant (P < .05) increases in M1 activation/connectivity in neuropathic pain populations from regional cerebral blood flow (rCBF)⁴⁷ (cluster level corrected P < .05, n = 22 participants, quality score = 2) and blood oxygen leveldependent (BOLD) contrast studies (n = 42 participants, quality score = 4⁹⁵; n = 19 participants, quality score = 4⁶²). Voxel-based morphometry (VBM) imaging showed 12% to 13% increase in bilateral M1 cortical thickness in

Table 2. Characteristics of Studies using TMS

			CHRONIC PAIN PARTICIPANTS				HEALTHY PARTICIPANTS					
Reference	Condition	Country	Study size (MIF), N	Age, years	Pain Duration	Pain INTENSITY (0–10)	Study size (M/F), N	Age, years	ie, years Modality S: 1 ± 5 Double cone coil on Single -	Stimuli	Target muscles	Оитсоме MEASURES
Salerno et al ⁷⁵	Fibromyalgia; rheumatoid arthritis	France	13 (0/13); 5 (0/5)	50.1 ± 5.6; 50.0 ± 5.1 (SEM)	NA	NA	13 (NA)	49.1 ± 5 (SEM)	Double cone coil on cortical representation of the target muscles	Single and paired pulses	First dorsal interosseous, tibialis anterior	rMT, MEP amplitude, CSP, SICI, ICF, LICI
Schwenkreis et al ⁸¹	CRPS I: hand	Germany	25 (9/16)	49.1 ± 13.8	26.1 ± 47 Months	NA	20 (10/10)	20 to 78 (95% CI)	Circular coil (14 cm) on vertex	Single and paired pulses, monophasic*	First dorsal interosseous	rMT, MEP amplitude, SICI, ICF
Strutton et al ⁹¹	Chronic sciatica	United Kingdom	9 (NA)	NA	NA	NA	7 (NA)	NA	Double cone coil on hotspot	Single pulse, monophasic*	Tibialis anterior, lateral gastrocnemius	rMT, aMT
On et al ⁶³	Patello-femoral pain	Turkey	13 (0/13)	25 ± 8.1 (SEM)	3.46 ± 1.9 Years (SEM)	NA	13 (0/13)	25.1 ± 7.4 (SEM)	Circular coil (9 cm) on hotspot	Single pulse, monophasic	Vastus medialis obliques, vastus lateralis, extensor digitorum brevis	MEP amplitude
Eisenberg et al ²¹	CRPS I: hand; CRPS I: foot	Israel	6 (4/2); 6 (5/ 1)	33 ± 12.7; 32 ± 9	31 ± 41 Months; 20 ± 21 months	7.3 ± 3.1; 6.7 ± 2.3	14 (10/4)	30.9 ± 12.7	Figure of 8 coil (9 cm) on hotspot	Single and paired pulses, monophasic*	Abductor pollicis brevis	SICI
Krause et al ⁴³	CRPS I: hand	Germany	12 (2/10)	55.9 ± 15.6	NA	NA	10 (NA)	42.4	Figure of 8 coil (9 cm) on hotspot	Single pulse, monophasic*	Long extensor muscle	rMT, MEP amplitude, CSP
Strutton et al ⁹²	LBP	United Kingdom	24 (15/9)	39.1 ± 2.2	NA	NA	11 (7/4)	35.9 ± 3.2	Double cone coil on vertex	Single pulse, monophasic*	Erector spinae	aMT, MEP latency, CSP
Krause et al ⁴⁴	CRPS: hand	Germany	14 (4/10)	37 (17–72)	>6 Months	NA	10	38 (24–63)	Figure of 8 coil (7 cm) on M1	Single pulse, monophasic*	Long extensor muscle	rMT, MEP amplitude, map volume
Turton et al ⁹⁹	CRPS I: hand	United Kingdom	8 (1/7)	45 ± 13	6.6 ± 4.9 Years	6.3 ± 1.4	8 (1/7)	45 ± 13	Figure of 8 coil (9.5 m) on hotspot	Single pulse, monophasic*	Abductor pollicis brevis	MEP amplitude
Tsao et al ⁹⁷	LBP	Australia	11 (5/6)	24 ± 7	5.6 ± 4.2 Years	5.5 ± 2	11 (4/7)	23 ± 3	Figure of 8 coil (7 cm) and double cone coil (11 cm) on hotspot and M1	Single pulse, monophasic	Transversus abdominus	rMT, aMT, map volume
Berth et al ⁵	Rotator cuff tear	Germany	10 (10/0)	64.9 ± 4.6	>6 Months	NA	13 (10/3)	27.2 ± 8.1	Figure of 8 coil on hotspot	Single pulse, monophasic*	Deltoid	MEP amplitude
									·	·	(continue	d on next page)

Table 2. Continued

			CHRONIC PA	IN PARTICIPANTS		HEALTHY	PARTICIPANTS					
Reference	Condition	Country	Study size (MIF), N	Age, Years	PAIN DURATION	Pain intensity (0–10)	Study size (M/F), N	Age, YEARS	Modality	Stimuli	Target muscles	О итсоме MEASURES
Turgut et al ⁹⁸	Diabetic neuropathic pain	Turkey	20 (5/15)	63.9 ± 7.3	12.4 ± 6.7 Years	8.1 ± 1.3	30 (14/16)	58.3 ± 6.5	Circular coil (14 cm) on hotspot	Single pulse, NA	First dorsal interosseous	rMT, MEP amplitude, MEP latency, CSP
Mhalla et al ⁵⁷	Fibromyalgia	France	21 (0/21)	52.2 ± 10.4	14.1 ± 11.9 Years	5.5 ± 1.3	21 (0/21)	46.7 ± 11.6	Figure of 8 coil	Single and paired pulses, NA	First dorsal interosseous	rMT, SICI, ICF
Schwenkreis et al ⁸²	Neuralgia: hand; OA: hand	Germany	26 (14/12); 20 (10/ 10)	50.9 ± 11.7; 56.6 ± 10.2	39.3 ± 44.8 Months; 35.6 ± 42.9 months	$4.7 \pm 2.1;$ 3.9 ± 2	14 (6/8)	58.8 ± 12.7	Circular coil (14 cm) on vertex	Single and paired pulses, monophasic	First dorsal interosseous	rMT, SICI, ICF
Clark et al ¹⁵	LBP	United States	10 (5/5)	23.7 ± 6.1	3.2 ± 3.1 Years	2.6 ± 1.6	10 (5/5)	22.9 ± 1.9 (SEM)	Custom-modified 110-mm double cone coil on vertex	Single pulse, NA	Erector spinae	MEP amplitude
Schwenkreis et al ⁸³	Fibromyalgia	Germany	16 (2/14)	48.7 ± 8.4	NA	NA	23 (7/16)	37.7 ± 11.5	Circular coil (14 cm) on vertex	Single and paired pulses, mono-phasic*	Forearm superficial flexor	rMT, MEP amplitude, CSP, SICI, ICF
Tsao et al ⁹⁶	LBP	Australia	9 (4/5)	25 ± 3.4	3.6 ± 2.3 Years	4.7 ± 1.1	11 (5/6)	24 ± 5	Figure of 8 coil (7 cm) on M1	Single pulse, monophasic	Deep multifidus, erector spinae	Map volume
Masse-Alarie et al ⁵⁴	LBP	Canada	13 (6/7)	53.7 ± 7.4	16 ± 10 Years	2.9 ± 2.5	9 (4/5)	48.7 ± 6.8	Double cone coil (7 cm) on hotspot	Single and paired pulses, mono- phasic	Transversus abdominus, internal oblique	MEP amplitude, SICI
Vallence et al ¹⁰⁵	Chronic tension type headache	Australia	11 (5/6)	35 ± 13.2	NA	NA	18 (7/11)	28 ± 8 (unclear)	Figure of 8 (9 cm) on hotspot	Single pulse, mono-phasic*	Abductor pollicis brevis	rMT, MEP amplitude
Kittelson et al ⁴¹	OA knee	United States	17 (8/9)	63.9 ± 1.8 (SEM)	NA	NA	20 (10/10)	58.3 ± 2.5 (SEM)	Double cone coil on hotspot	Single and paired pulses, mono-phasic*	Vastus lateralis	rMT, MEP amplitude, SICI, ICF
Marker et al ⁵¹	Neck pain	United States	9 (2/7)	42.4 ± 11	>12 Months	1.7 ± 1.4	8 (4/4)	31.5 ± 14.5	Figure of 8 coil (7 cm) on hotspot	Single and paired pulses, mono- phasic	Upper trapezius	rMT, aMT, MEP amplitude, SICI
Rittig-Rasmussen et al ⁷³	Neck pain; knee pain	Denmark	20 (14/6); 15 (10/5)	29 ± 7; 27 ± 6	>3 Months	1.7 ± .6 1.5 ± .6	15 (12/3)	25 ± 3.5	Figure of 8 coil on hotspot	Single pulse, monophasic	Upper trapezius, abductor pollicis brevis	aMT, MEP amplitude, MEP latency
Bradnam et al ⁷	Shoulder pain	Australia	8 (1/7)	64.9 (49–75)	>12 Months	4.4 ± 1.2	18 (9/8)	41.3 (20–68)	Figure of 8 (7 cm) on hotspot	Single pulse, monophasic*	Infraspinatus	aMT, MEP amplitude, CSP
Schabrun et al ⁷⁸	LBP	Australia	27 (13/14)	30 ± 9	5.3 ± 4 Years	4.6±1.9	23 (12/11)	27 ± 5	Figure of 8 coil on M1	Single pulse, monophasic	L3 and L5 erector spinae	Map volume
										•	(continue	ed on next page)

Table 2. Continued

	CONDITION	Condition Country	CHRONIC PAIN PARTICIPANTS				HEALTHY PARTICIPANTS					
Reference			Study size (MIF), N	Age, YEARS	P AIN DURATION	Pain intensity (0–10)	Study size (M/F), N	Age, YEARS	rs Modality Stimuli	Stimuli	Target muscles	Outcome Measures
Schabrun et al ⁷⁹	Lateral epicondylalgia	Australia	11 (5/6)	44 ± 11	9±6 Months	2.7 ± 2	11 (5/6)	42 ± 11	Figure of 8 coil (7 cm) on M1	Single pulse, monophasic*	Extensor carpi radialis brevis, extensor digitorum	rMT, MEP amplitude, map volume
Van Velzen et al ¹⁰¹	CRPS I: hand	Netherlands	12 (2/10)	51 ± 9.5	88 ± 26.9 Months	6.7 ± 1.8	12 (1/11)	52 ± 13	Figure of 8 coil on hotspot	Single pulse, biphasic*	First dorsal interosseous	rMT, MEP amplitude
Burns et al ⁸	Lateral epicondylalgia	Australia	14 (4/10)	41.5 ± 9.9	37.3 ± 74.8 Months	3.5 ± 2.8	14 (4/10)	42.1 ± 11.1	Circular coil (9 cm) on hotspot	Single and paired pulses, monophasic*	Extensor carpi radialis brevis	rMT, aMT, MEP amplitude, SICI, ICF, LICI
Caumo et al ¹¹	Myofascial pain; fibromyalgia; OA knee	Brazil	54 (0/54); 19 (0/19); 27 (0/27)	46.1 ± 12.1; 50.4 ± 8.8; 64.4 ± 7.8	NA	7.2 ± 2.2; 7.9 ± 1.9; 6.3 ± 2.2	14 (0/14)	32.4 ± 10.8	Figure of 8 coil on M1	Single and paired pulses	First dorsal interosseous	MEP amplitude, CSP, SICI, ICF
Masse-Alarie et al ⁵³	LBP	Canada	35 (20/15)	38 ± 14.6	65.8 ± 72.8 Months	4.2 ± 2.1	13 (6/7)	37.6 ± 12.5	Double cone coil on hotspot	Single and paired pulses, monophasic	Multifidus	aMT, MEP amplitude, CSP, SICI, SICF
Masse-Alarie et al ⁵²	LBP	Canada	11 (6/5)	33.8 ± 12.5	NA	2 ± 1.9	13 (6/7)	37.6 ± 12.5	Double cone coil (7 cm) on hotspot	Single and paired pulses, monophasic*	Multifidus	aMT, MEP amplitude, CSP, SICI, SICF
Rio et al ⁷²	Patellar tendon pain; anterior knee pain	Australia	11 (10/1); 10 (6/4)	26 (18–37); 26.5 (18–37)	90 Months (5–192); 9 months (12– 264) (median)	5.4 ± 2.0; 5.0 ± 2.4	8 (7/1)	26 (18–37) (median)	Double cone coil (110 mm) on hotspot	Single pulse, monophasic*	Rectus femoris	aMT
Tarrago et al ⁹³	OA knee	Brazil	21 (0/21)	64.5 ± 7.72	6.73 ± 2.53 Years	NA	10 (0/10)	34.1 ± 11.64	Figure of 8 coil on hotspot	Single and paired pulses	First dorsal interosseous	rMT, MEP amplitude, CSP, SICI, ICF
Morgante et al ⁶⁰	CRPS I: hand	United States	10 (1/9)	48.2 ± 5.5 (SE)	11.3 ± 1.8 Months (SE)	8.1 ± .73	10 (1/9)	48.3 ± 12.5 (SE)	Figure of 8 coil on hotspot	Single and paired pulses, monophasic	Abductor pollicis brevis	rMT, aMT, CSP, SICI, ICF
Parker et al ⁶⁶	OA hand	New Zealand	23 (6/17)	72 ± 6	13.5 ± 13.1 years	NA	20 (6/14)	71 ± 7	Figure of 8 coil on hotspot	Single and paired pulses, monophasic	First dorsal interosseous	rMT, MEP amplitude, CSP, SICI, LICI, SICF
Te et al ⁹⁴	Patello-femoral pain	Australia	11 (3/8)	21 ± 7	29 ± 6 months	2.3 ± 2.2	11 (3/8)	24±6	Figure of 8 coil on M1	Single pulse, monophasic	Rectus femoris, vastus lateralis, vastus medialis	aMT, map volume

Abbreviations: M, male; F, female; SEM, standard error of the mean; NA, not available; rMT, resting motor threshold; SE, standard error.

NOTE. Values are mean \pm SD unless otherwise stated.

*Information obtained from the stimulator manufacturer's website.

			CHRONIC PAIN PARTICIPANTS					HY PARTICIPANTS			
Reference	Condition	Country	Study size (MIF)	Age	Pain duration	Pain intensity (0–10)	Study size (MIF)	Age	Modality	Stimuli	Outcome MEASURES
Cook et al ¹⁷	Fibromyalgia	United States	9 (0/9)	37 ± 5	NA	1.03 ± .7	9 (0/9)	35 ± 3	fMRI	Heat pain on left thenar eminence	BOLD at 1.5 T
Vapadow et al ⁶²	Carpal tunnel syndrome	United States	10 (4/6)	51.1 (31–60)	4 months to 10 years	NA	9 (3/6)	46.9 (32–59)	fMRI	Innocuous electrical stimulation to digit 2, 3, and 5	BOLD at 3 T
Maihöfner et al ⁴⁹	CRPS I: hand	Germany	12 (2/10)	41.2 ± 2.5 (SEM)	52.2 ± 32 weeks (SEM)	$3.9 \pm .8$ (SEM)	12 (2/10)	43.2 ± 2.5 (SEM)	fMRI	Finger tapping task	BOLD at 1.5 T
Gieteling et al ²⁸	CRPS I: hand with dystonia	Netherlands	8 (1/7)	46.4 ± 6	NA	NA	17 (2/15)	42.9 ± 9.2	fMRI	Imagining and performing wrist flexion/extension	BOLD at 3 T
Cobayashi et al ⁴²	LBP	Japan	8 (5/3)	33 (22–44)	>3 Months	NA	8 (8/0)	29 (22–42)	fMRI	Lumbar mechanical compression	BOLD at 3 T
Vasan et al ¹⁰⁸	LBP	United States	16 (5/11)	47.4 (95% CI = 40–54.8)	6.24 years (95% CI = 3.9–11.8)	4.8 (95% CI = 3.8–5.9)	16 (5/11)	46.7 (95% CI = 40.1–53.2)	fMRI	Rest state; clinical maneuver (pain exacerbation); heat pain (affected leg)	rCBF at 3 T
larke et al ⁴	LBP	Germany	30 (0/30)	NA	NA	NA	30 (0/30)	NA	fMRI	Photos (aversive and neutral movement/posture; general fear-inducing; neutral; spider)	BOLD at 3 T
Bolwerk et al ⁶	CRPS I and II: hand and foot	Germany	12 (5/7)	61.1 ± 11.1	15.5 (4–406) Weeks	5.3 ± 2.1	12 (5/7)	60.9 ± 11	fMRI	Resting state	BOLD at 1.5 T
iu et al ⁴⁷	Postherpetic neuralgia	China	11 (11/0)	66.2 ± 5.5	8.4 ± 6.2 Months	8.3 ± 1	11 (11/0)	64 (56–73)	fMRI	Resting state	rCBF at 3 T
lodin et al ²⁵	Fibromyalgia	Sweden	16 (0/16)	48.3 (25–64)	7.6 ± 3.8 Years	NA	22 (0/22)	45.7 (20–63)	fMRI	Ankle, knee, and hand tasks	BOLD at 3 T
He et al ³²	Temporo-mandibular disorder	China	23 (9/14)	22.4 ± 3.6	14.8 ± 20.7 Months	NA	20 (9/11)	23.1 ± 2.4	fMRI	Resting state	BOLD at 3 T
ijnenburg et al ⁶⁹	LBP	Belgium	17 (6/11)	33.3 ± 7.9	9.8 ± 8.2 Years	2 ± 2	17 (5/12)	31.8±8.2	fMRI	Resting state	BOLD at 3 T
hanahan et al ⁸⁵	OA knee	Australia	11 (6/5)	68.9 ± 6.4	NA	4.3 ± .8	7 (5/2)	64 ± 6.7	fMRI	15 Pressure stimuli (5 different pressure intensities) on left thumb	BOLD at 3 T
lodin et al ²⁴	Rheumatoid arthritis	Sweden	24 (4/20)	53.8±14.8	66 ± 34 Months	3.4 ± 2.9	19 (3/16)	50.4 ± 16.6	fMRI	Resting state	BOLD at 3 T
lemington et al ³⁴	Ankylosing spondylitis, back pain	Canada	20 (17/3)	39.4 ± 12	12.8 ± 10.1 Years	NA	20 (17/3)	39.7 ± 12	fMRI	Resting state	BOLD at 3 T
lotta et al ³⁷	CRPS I: hand	Finland	13 (0/13)	44.7 ± 6.9	5.2 ± 3.9 Years	7.7 ± 1.7	13 (0/13)	44.1±8.6	fMRI	Viewing videos of hand actions	BOLD at 3 T
ian et al ⁹⁵	Trigeminal neuropathic pain	China	20 (8/12)	52.6 ± 8.9	21.1 ± 16.2 Months	7.7 ± 1.6	22 (6/16)	52.2 ± 6.1	fMRI and MRI	Resting state	BOLD and DKI analysis at 3 T
Van Velzen et al ¹⁰²	CRPS: hand	Netherland	19 (0/19)	48.1 ± 11.6	110.8 ± 110.5 Years	7.1 ± 1.5	19 (0/19)	49.4 ± 11.6	fMRI and MRI	Resting state	BOLD, VBM and DTI analysis at 3 T
										(continu	ued on next page)

Table 3. Characteristics of Included Studies Using Other Neurophysiological Methods

			_	CHRONIC	PAIN PARTICIPANTS		HEALTH	HY PARTICIPANTS			
Reference	Condition	Country	Study size (MIF)	Age	P AIN DURATION	Pain intensity (0–10)	Study size (M/F)	Age	Modality	Stimuli	Outcome measures
Moayedi et al ⁵⁸	Temporomandibular disorder	Canada	17 (0/17)	33.1 ± 11.9	9.8 ± 8.2 Years	4.3 ± 1.8	17 (0/17)	32.2 ± 10.1	MRI	Resting state	Cortical thickness analysis at 3 T
Desouza et al ¹⁹	Trigeminal neuropathic pain	Canada	24 (9/15)	48.5 ± 12.7	6.3 ± 3 Years	NA	24 (9/15)	47.6 ± 12.3	MRI	Resting state	Cortical thickness analysis via 3 T
Maeda et al ⁴⁸	Carpal tunnel syndrome	United States	28 (8/20)	48.1 ± 9.6	8.5 ± 9.1 Years	2.5 ± .8 (0-5)	28 (11/ 17)	47.3 ± 9.9	MRI	Resting state	DTI analyses at 3 T
Wu et al ¹¹⁰	Ankylosing spondylitis, neuropathic pain	Canada	17 (12/5)	34.4 ± 12.4	NA	6.1 ± 1.7	17 (12/5)	34.9 ± 10.1	MRI	Resting state	Cortical thickness analysis at 3 T
Pleger et al ⁷⁰	CRPS I: hand	Germany	20 (9/11)	41.8±9.8	11.9 ± 14.3 Months	5.3 ± 2.4	20 (9/11)	41.6 ± 9.6	MRI	Resting state	VBM analysis (?) at 1.5 T
Ung et al ¹⁰⁰	LBP	United States	47 (25/ 22)	373. ± 12.2	8.6 ± 7.8 Years	NA	47 (25/ 22)	37.7 ± 7.8	MRI	Resting state	VBM (SVM) analysis at 3 T
Juottonen et al ³⁹	CRPS I: hand	Finland	6 (0/6)	44.5 (33–54)	42.2 ± 26.2 Months	5.6 ± 1.8	6 (0/6)	45.1 (34–55)	MEG	Tactile stimuli to the fingertips	Reactivity of 20-Hz motor cortex rhythm
Shibukawa et al ⁸⁷	Temporomandibular disorder	Japan	9 (4/5)	32.4	NA	NA	8 (4/4)	30	MEG	Observation tasks of jaw- and palm-opening movements	Neuromagnetic signals
Kirveskari et al ⁴⁰	CRPS I: hand	Finland	8 (0/8)	45.5 (26–57)	5.5 ± 3.1 Years	6.4 ± 1.8	8 (0/8)	46.3 28–57)	MEG	Noxious thulium laser stimulation of both hands	Reactivity of 20-Hz motor cortex rhythm
Grachev et al ²⁹	LBP	United States	9 (7/2)	45 ± 6	9 ± 5 Years	6.18 ± 1.72	11 (9/2)	44 ± 3	MRS	Resting state	Relative concentration of neurochemicals at 1.5 T
Fayed et al ²³	Fibromyalgia	Spain	10 (2/8)	40 ± 6.2	1.6 ± .3 Years	NA	10 (2/8)	37.8 ± 8.7	MRS	Resting state	Relative concentration of neurochemicals at 1.5 T
Sharma et al ⁸⁶	LBP	United States	19 (4/15)	46.1 ± 11.3	8.8 ± 7.2 Years	4.5 ± 1.9	14 (3/11)	44.6 ± 14.7	MRS	Resting state	Absolute concentration of neurochemicals at 3 T
Jacobs et al ³⁸	LBP	United States	10 (5/5)	39.2 ± 6.3 (95% CI)	>12 months	1.8 ± .26 (95%)	CI)10 (5/5)	35.4 ± 5.3 (95%C	CI) EEG	Arm raise	Alpha event-related desynchronization and Bereitschafts potentials
Shiraishi et al ⁸⁸	CRPS	Japan	18 (10/8)	40.7 (21–59)	49.8 (6–252) Months	NA	13 (11/2)	38.7 (27–58)	PET	Resting state	Cerebral glucose metabolism

Abbreviations: M, male; F, female; NA, not available; SEM, standard error of the mean; DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; SVM, support vector machine. NOTE. Values are mean ± SD unless otherwise stated.

Table 3. Continued

Chang et al

350 The Journal of Pain

Table 4. Risk of Bias Assessment for Included Studies

		Modified STROBE STATEMENT ITEMS TMS METHODOLOGY CF							
Reepence	SOURCE OF	PARTICIPANT	METHODOLOGY	STATISTICAL	FUNDING	TOTAL	REPORTED	CONTROLLED	
Salarna at al ⁷⁵	0	1	0	0	1	2	A1 49/	20.20/	
Schwonkrois at al ⁸¹	0	1	1	1	0	2	61 20/	59.570 620/	
Scriwerikiels et al	0	1	1	1	1	2	04.5%	41 70/	
	1	0	0	1	1	5	40%	41.7%	
On et al	0	1	0	1	0	2	53.8%	52%	
Elsenberg et al-	1	1	1	1	0	4	72.4%	/1.4%	
Krause et al	0	0	0	1	0		61.5%	48%	
Strutton et al	1	0	0	1	1	3	52%	45.8%	
Krause et al	1	0	0	1	0	2	52%	37.5%	
	0	1	0	1	1	3	46.2%	44%	
Isao et al ⁵	0	1	1	1	1	4	/3.1%	76%	
Berth et al	0	0	1	1	I	3	//%	68%	
lurgut et al ³⁶	0	1	1	1	0	3	69.2%	64%	
Mhalla et al	1	1	0	1	0	3	55.2%	53.6%	
Schwenkreis et al	0	1	1	1	1	4	64.3%	66.7%	
Clark et al	0	1	0	1	1	3	54.2%	52.2%	
Schwenkreis et al ⁸³	0	0	0	1	1	2	64.3%	55.6%	
Tsao et al ⁹⁶	0	0	1	1	1	3	79.2%	82.6%	
Masse-Alarie et al ⁵⁴	0	0	1	1	1	3	69%	71.4%	
Vallence et al ¹⁰⁵	0	0	1	0	1	2	77%	68%	
Kittelson et al ⁴¹	0	1	1	1	1	4	72.4%	71.4%	
Marker et al ⁵¹	1	0	1	1	1	4	90%	82.1%	
Rittig-Rasmussen et al ⁷³	1	1	0	1	1	4	57.7%	56%	
Bradman et al ⁷	0	0	0	1	1	2	61.5%	52%	
Schabrun et al ⁷⁸	0	1	0	1	1	3	43.5%	43.5%	
Schabrun et al ⁷⁹	1	1	1	1	1	5	77%	76%	
Van Velzen et al ¹⁰¹	1	1	0	0	1	3	57.7%	52%	
Burns et al ⁸	0	1	1	1	1	4	79.3%	75%	
Caumo et al ¹¹	1	0	0	1	1	3	62.1%	46.4%	
Masse-Alarie et al ⁵²	0	1	0	1	1	3	62.1%	59.3%	
Masse-Alarie et al ⁵³	0	1	1	1	1	4	69%	64.3%	
Rio et al ⁷²	1	1	0	1	0	3	57.7%	60%	
Tarrago et al ⁹³	1	1	0	1	1	4	69%	55.6%	
Morgante et al ⁶⁰	0	1	1	1	1	4	72.4%	77.8%	
Parker et al ⁶⁶	0	1	1	1	1	4	96.6%	88.9%	
Te et al ⁹⁴	1	1	1	1	1	5	75%	79.2%	
Grachev et al ²⁹	0	1	1	1	1	4	NA	NA	
Juottonen et al ³⁹	0	1	1	0	1	3	NA	NA	
Cook et al ¹⁷	0	0	0	0	1	1	NA	NA	
Napadow et al ⁶²	0	1	1	1	1	4	NA	NA	
Shiraishi et al ⁸⁸	0	1	1	0	0	2	NA	NA	
Maihöfner et al ⁴⁹	0	1	1	0	1	3	NA	NA	
Shibukawa et al ⁸⁷	0	1	1	1	1	4	NA	NA	
Gieteling et al ²⁸	0	1	1	0	1	3	NA	NA	
Kobavashi et al ⁴²	0	0	1	0	1	2	NA	NA	
Faved et al ²³	1	0	0	1	1	3	NA	NA	
Jacobs et al ³⁸	0	0	1	1	1	3	NA	NA	
Kirveskari et al ⁴⁰	0	0	1	1	1	3	NA	NA	
Moavedi et al ⁵⁸	0	1	0	1	1	3	NA	NA	
Wasan et al ¹⁰⁸	0	1	0	0	1	2	NA	NA	
Barke et al ⁴	1	1	0	1	0	3	NΔ	NΔ	
Sharma et al ⁸⁶	0	1	1	1	1	4	NΔ	NΔ	
Bolwerk et al ⁶	0	1	1	1	1	4	NA	NA	
Desource et al ¹⁹	0	1	0	1	1	+ 2	NA NA	NIA	
Liu et al ⁴⁷	0	1	0	і О	1	כ ר	NIA NIA	NA NA	
Manda et al ⁴⁸	0	1	0	1	1	∠ ⊃		NA NA	
Mu ot al ¹¹⁰	0	1	0	1	1	2 2		INA NIA	
Flodin at al ²⁵	1	1	1	1	1	2 E		INA NIA	
Ho of al^{32}		1	1		1	5 5	INA NIA	INA NA	
ne et di	U	I	I	U	I	3	INA		
							(continued o	m next page)	

		TMS METHOL	THODOLOGY CHECKLIST					
Reference	S OURCE OF PARTICIPANTS	P ARTICIPANT SELECTION	M ETHODOLOGY	STATISTICAL ANALYSIS	Funding	Total score	Reported	Controlled
Pleger et al ⁷⁰	0	1	0	0	1	2	NA	NA
Ung et al ¹⁰⁰	0	1	0	0	1	2	NA	NA
Pijnenburg et al ⁶⁹	0	1	0	0	1	2	NA	NA
Shanahan et al ⁸⁵	0	1	0	0	1	2	NA	NA
Flodin et al ²⁴	1	1	1	0	1	4	NA	NA
Hemington et al ³⁴	0	1	0	0	1	2	NA	NA
Hotta et al ³⁷	1	1	0	0	1	3	NA	NA
Tian et al ⁹⁵	1	0	1	1	1	4	NA	NA
Van Velzen et al ¹⁰²	0	1	0	1	1	3	NA	NA

Abbreviations: STROBE, STrengthening the Reporting of OBservational studies in Epidemiology; NA not available.

NOTE: Each domain would be allocated 1 point if the risk of bias was low and zero point if the risk of bias was considered high. The maximum score possible was five points. NA: not applicable.

trigeminal neuralgia¹⁹ (n = 48 participants, quality score = 3), and larger left M1 cortical thickness that were associated with stronger neuropathic pain symptoms in ankylosing spondylitis¹¹⁰ (r = .8, n = 34 participants, quality score = 3). One diffusion tensor imaging study reported that enhanced myelination (lower radial diffusivity) in the microstructure of white matter connecting primary sensory cortex and M1 contralateral to the affected side was correlated with nerve conduction velocity in carpal tunnel syndrome⁴⁸ (r = .72, n = 56 participants, quality score = 3).

In LBP, 1 MRI study reported increased M1 gray matter (GM) density in people with chronic LBP¹⁰⁰ (P < .001 uncorrected for multiple comparisons, n = 94 participants, quality score = 2). Although 1 study reported decreased functional connectivity in the left M1, the left supplementary motor area, and the left cerebellum compared with healthy participants⁶⁹ (1.88 \pm 0.89 SD vs 2.64 \pm 0.8 SD, n = 34 participants, quality score = 2), the other reported increased rCBF in the left $M1^{108}$ (cluster-level P < .01, n = 32 participants, quality score = 2). Two studies reported no change in M1 activation/connectivity using BOLD contrast (n = 45 participants, quality score = 3^{42} and n = 16 participants, quality score = 2^4). One EEG study reported altered cerebrocortical motor activity before an arm raise in chronic LBP participants³⁸ (n = 20 participants, quality score = 3). MRS studies reported conflicting findings for M1 neurochemical metabolism. One study reported no between group difference in sensorimotor cortex²⁹ (n = 20 participants, quality score = 4), whereas the other reported lower N-acetylasparate concentrations in the right M1 compared with healthy participants⁸⁶ $(9 \pm .9 \text{ mM vs } 10.2 \pm 1.2 \text{ mM}, \text{ n} = 33 \text{ participants, quality}$ score = 4). For ankylosing spondylitis-related back pain, greater functional impairment was correlated with greater M1-precuneous resting functional connectivity and impaired spinal mobility was associated with weaker M1rostral ventromedial medulla functional connectivity on BOLD contrast³⁴ (n = 40 participants, quality score = 2).

Findings in people with CRPS were inconsistent for M1 structure from VBM studies. One study showed increased M1 GM density⁷⁰ (cluster-level P = .042, corrected, n = 40 participants, quality score = 2), whereas the other

showed no between group difference in GM volume and white matter connectivity in sensorimotor cortex¹⁰² (n = 38 participants, quality score = 3). Similarly, findings for M1 activation/connectivity from BOLD contrast were inconsistent. Two studies showed increased activation in bilateral M1⁴⁹ (cluster-level P < .0001, uncorrected, n = 24 participants, quality score = 3) or connectivity⁶ (cluster-level P < .001, corrected, n = 24 participants, quality score = 4), whereas 2 showed no changes compared with healthy participants (n = 25 participants, quality score = 3,²⁸ and n = 38 participants, quality score = 3¹⁰²). There was a significant between group difference in activation of the sensorimotor cortex³⁷ (P < .05, corrected, n = 26 participants, quality score = 3).

In temporomandibular disorder (TMD), 1 VBM study reported that greater pain severity was associated with smaller GM thickness of the M1 region where the representation of the face was situated⁵⁸ (r = -.83, n = 34 participants, quality score = 3). BOLD contrast showed decreased intrinsic neural activity in the left M1 in individuals with TMD³² (*P* < .05, corrected, n = 43 participants, quality score = 3). One MEG study reported that TMD participants had significantly smaller neuromagnetic signals in M1 during observation of jaw-opening movements⁸⁷ (1 ± 1 nano amp meter vs 16 ± 3 nano amp meter, n = 17 participants, quality score = 4).

In fibromyalgia, 1 MRS study showed a lower myoinositol to creatine ratio in the left sensorimotor cortex, indicating possible M1 neuronal metabolic dysfunction²³ (P < .05, n = 20 participants, quality score = 3). Two studies using BOLD contrast reported conflicting findings in M1 activation/connectivity. One reported no between group difference¹⁷ (n = 18 participants, quality score = 3), whereas the other showed decreased sensorimotor cortex connectivity²⁵ (P < .00031, corrected, n = 38 participants, quality score = 4).

One fMRI study in people with knee OA reported that the M1 representation of the affected knee was shifted 4.1 mm anteriorly (SD or CI not reported) and the relative position of the knee and ankle representations were swapped when participants performed ankle and knee tasks⁸⁵ (n = 18 participants, quality score = 2). In

Table 5. Effect Sizes for Between Group Differences (People With and Without Pain) From Meta-
Analyses of TMS Studies. Pooled Estimates for All Measures Revealed No Difference Between
People With and Without Pain, With the Exception of LICI

OUTCOME MEASURE	Number of included studies	Number of participants	QUALITY SCORE RANGE (MAXIMUM SCORE = 5)	SMD (95% CI)
Resting motor threshold	19	604	1 to 5	.01 (–.29 to .31)
AMT	12	357	3 to 5	.11 (24 to .46)
MEP amplitude	24	788	1 to 5	15 (38 to .09)
MEP latency	4	181	2 to 4	.21 (11 to .52)
Cortical silent period	12	481	1 to 4	-42 (85 to .00)
Map volume: erector spinae	2	70	3	24 (72 to .23)
Map volume: wrist extensor	2	46	2 to 5	.35 (–.66 to 1.36)
SICI	15	572	2 to 4	.07 (36 to .50)
LICI	3	102	2 to 4	.78 (.37–1.19)
ICF	7	249	2 to 4	26 (65 to .14)
SICF	3	113	3 to 4	.23 (24 to .70)

addition, poorer performance of a knee task was associated with more anterior placement of the M1 loci in people with knee OA. In rheumatoid arthritis, 1 study using BOLD contrast reported increased connectivity of bilateral sensorimotor cortex with the supplementary motor and midcingulate cortex²⁴ (P < .00031, corrected, n = 43 participants, quality score = 4).

Is There Evidence of Altered Corticospinal Excitability in Chronic Pain?

Data for resting motor threshold, aMT, MEP amplitude and latency, CSP, and map volume were pooled to perform separate meta-analyses from studies using singlepulse TMS. Pooled effect estimates for all measures revealed no difference between people with and without pain (Table 5; Supplementary Figs 1–6). There was substantial heterogeneity across all measures with the exception of MEP latency and map volume of erector spinae.

For comparisons in which significant heterogeneity was observed, we conducted subgroup analysis according to condition. A moderate reduction in aMT in people with chronic knee pain (3 studies, 73 participants, SMD = -.52, 95% CI = -1.02 to -.02, P = .04, $\chi^2 P = .68$, $I^2 = 0\%$; all studies have quality score >3; Supplementary Fig 2) was detected, indicating increased M1 corticospinal excitability.

Seven of 35 TMS studies^{7,43,44,63,75,83,105} scored lower than 3 (median value) on the modified STROBE statement and were categorized as high risk of bias. Meta-analyses rerun

after removing the high risk of bias TMS studies detected a large reduction in the CSP for CRPS but left only a single small study (n = 20 participants) in that subgroup.

Is There Evidence for Altered Intra-Cortical Facilitation and/or Inhibition in Chronic Pain?

Sixteen studies investigated intracortical inhibitory and facilitatory networks using paired-pulse TMS paradigms with several different measures. A moderate increase in long-interval intracortical inhibition (LICI) was detected in people with pain (3 studies, 102 participants, SMD = .78, 95% CI = .37–1.19, P < .001, $\chi^2 P = .84$, $I^2 = 0\%$; Fig 2), indicating increased M1 intracortical inhibition. No difference between people with and without pain was found for short-interval intracortical inhibition (SICI), intra-cortical facilitation (ICF) or shortinterval ICF (SICF; Table 5, Supplementary Figs 7-9). One study appeared to mislabel ICF as SICF on the basis of the experimental protocol and was not included in the meta-analysis.¹¹ There was substantial heterogeneity in the pooled effect estimates for SICI ($\chi^2 P < .01$, $I^2 = 80\%$) and ICF ($\chi^2 P = .04$, $I^2 = 51\%$). The subgroup analysis showed a moderate reduction in SICI in people with CRPS (4 studies, 100 participants, SMD = -.77, 95% CI = -1.21to -.34, P < .01, $\chi^2 P = .72$, $I^2 = 0\%$; Supplementary Fig 7), indicating reduced M1 intracortical inhibition, and a moderate reduction in ICF in people with non-neuropathic

pain (6 studies, 151 participants, SMD = -.53, 95% Cl = -.94 to -.13, P = .01, $\chi^2 P$ = .24, I^2 = 26%; Supplementary Fig 8), indicating reduced M1 ICF.

Evidence of reduced M1 intracortical inhibition in people with CRPS is complemented by the findings of attenuated activities of the 20-Hz cortical rhythm (which reflects decreased M1 cortical inhibition) from 2 MEG studies. The 20-Hz rebound duration in the right hemisphere was significantly shorter³⁹ (357 vs 458 ms, P < .03, n = 18 participants, quality score = 3), and the rebound amplitude (1 ± 1 SD vs 7 ± 3 SD femtotesla/cm, P = .05) and the reactivity (4 ± 2 SD vs 16 ± 5 SD femtotesla/cm, P = .03) to painful hand stimuli were significantly smaller⁴⁰ (n = 18 participants, quality score = 3) compared with healthy participants. One PET study (n = 31 participants, quality score = 2) showed reduced glucose metabolism in the contralateral M1 in CRPS⁸⁸ (P < .005, uncorrected), suggesting possible M1 inhibition.

Discussion

To our knowledge, this systematic review is the first to provide a comprehensive and critical review of studies investigating M1 structure, organization, and function in people with chronic pain. For a range of neurophysiological parameters, published studies provided conflicting evidence. Meta-analyses identified a moderate increase in M1 LICI in people with chronic pain. Our findings suggest that the evidence for M1 changes in chronic pain populations is inconclusive for most measures.

Evidence for Altered ICF and/or Inhibition in Chronic Pain

Pooled data from 3 studies investigating nonneuropathic pain provided evidence of increased LICI, indicating increased M1 intracortical inhibition. Increased LICI reflects upregulated γ -aminobutyric acid (GABA)_B-mediated intracortical inhibition.⁵⁵ Subgroup analyses showed reduced ICF in non-neuropathic pain, suggesting decreased ICF of glutamatergic interneurons through N-methyl-D-aspartate receptors,¹¹¹ and reduced SICI in CRPS, suggesting M1 intracortical disinhibition driven by downregulated GABA_A-receptors.^{55,109} However, although our subgroup analyses were preplanned, interpretation of these findings requires caution because there are no overall effects in the pooled estimates for SICI and ICF.

Consistent with a previous review of CRPS,²⁰ our review also found M1 disinhibition on the basis of MEG outcomes from 2 studies. The 20-Hz cortical rhythm measured in MEG is initially decreased (suppression; reflecting an activated M1) and subsequently increased (rebound; reflecting inhibited M1) and represents the functional state of M1.^{68,76} Combined MEG and MRS showed a positive correlation between 20-Hz rebound amplitude and the concentration of the inhibitory neurotransmitter GABA, indicating the rebound period represents GABAergic inhibition in M1.²⁷ MEG studies reported a significantly shorter rebound duration of 20-Hz rhythm in both hemispheres,³⁹ and weaker rebound amplitude and reactivity of 20-Hz rhythm in the hemisphere contralateral to the affected side,⁴⁰ indicating M1 disinhibition in CRPS. These findings suggest M1 disinhibition in CRPS, reflecting downregulated GABAergic inhibition. The MEG findings of reduced M1 inhibition in CRPS are inconsistent with the findings of increased LICI in chronic pain from TMS studies. These inconsistencies could be explained because none of these TMS studies investigated CRPS. Although 1 PET study reported reduced glucose metabolism in the contralateral M1 for CRPS in the group analysis, indicating possible M1 inhibition, only 3 (of 18) CRPS participants showed this finding in the individual analysis.⁸⁸ Future larger trials are needed to elucidate M1 glucose metabolism in CRPS.

Evidence of Altered M1 Structure, Organization, and Function in Chronic Pain

There is conflicting evidence for M1 changes in chronic pain, which may be explained by the heterogeneity of the underlying neurophysiological mechanisms, methodological differences, internal study biases, reporting biases, and the random play of chance, because of the small sample sizes of the included studies. For example, heterogeneity of underlying neurophysiological mechanisms in nonspecific chronic LBP has been reported.⁸⁹ A mixture of neuropathic and non-neuropathic pain components were identified not only in chronic nonspecific LBP,⁹⁰ but ankylosing spondylitis back pain,¹¹⁰ and knee and hip OA.^{26,36,59,61} However, it is unclear whether a neuropathic pain subgroup exists in other pain conditions. Future studies should investigate whether distinct pain subgroups exist within chronic pain conditions and whether these subgroups present with different M1 changes.

Evidence from several different measures suggests increased M1 activation/connectivity in neuropathic pain. M1 disinhibition has been attributed to increased M1 activation (carpal tunnel syndrome), increased M1 rCBF (postherpic neuralgia), and increased M1 functional connectivity (trigeminal neuralgia)^{47,62,95} though M1 disinhibition in neuropathic pain was not supported by the finding of a reduction in MEP amplitude from a single study in people with diabetic neuropathy⁹⁸ (Supplementary Fig 3). More research is needed to elucidate the neurophysiological mechanisms driving M1 functional changes in neuropathic pain populations.

Several studies reported that impaired motor control in chronic pain was associated with M1 reorganization or altered corticomotor physiology.^{38,85,97} For example, delayed activation of the trunk muscles when performing an arm raise in chronic LBP patients was associated with smaller amplitudes of Bereitschafts potential, an EEG potential generated by M1 and the supplementary motor cortex representing movement preparation,³⁸ and with increased map volume and the posterolaterally shifted M1 representation of transversus abdominis.⁹⁷ This supports the role of altered M1 in motor control impairment in musculoskeletal disorders. However, the causal relationship and the interaction between M1 changes, motor control impairment, and symptom persistence in chronic pain requires further investigation.

A previous review on M1 function in CRPS could not draw a definite conclusion on M1 functional changes.²⁰ Two recent MRI studies investigating M1 function and structure for CRPS were included in this review, which reported conflicting findings, likely because of different experimental protocols (resting state vs observational tasks).^{37,102} Taken together with the other neurophysiological evidence, no conclusion on M1 changes in CRPS can be drawn from our findings.

Evidence of Altered Corticospinal Excitability in Chronic Pain

Meta-analyses of TMS data revealed no significant change in any measure of corticospinal excitability in people with chronic pain. Although subgroup analysis found a reduction in aMT in chronic knee pain, suggesting increased excitability in the motor system particularly in relation to neuronal and interneuronal membrane excitability,¹¹² interpretation of this finding requires caution because there is no overall effect in the pooled estimate for aMT.

A previous review on corticomotor excitability in chronic pain reported evidence of M1 disinhibition that was more prominent in neuropathic pain populations.⁶⁵ However, our review did not find compelling evidence of M1 disinhibition when people with and without pain were compared. This discrepancy is likely because of our inclusion of more recent studies^{7,11,52,53,60,66,72,79,85,93,94} and exclusion of studies containing neurological populations.⁴⁵ Also, CRPS studies were separated from neuropathic pain in our subgroup analyses because they have different diagnostic criteria and pathophysiology.

Altered M1 representation of erector spinae muscles (reduced map volume) in chronic LBP has been reported,⁹⁶ but not supported by a larger study.⁷⁸ Pooled map volume data from these studies found no significant difference between LBP and healthy participants. The differences between the studies in sample size and methodology such as different electromyography electrodes (fine wire needle vs superficial, surface electrodes), the sizes of grid used to measure the map (5 \times 7 cm versus 6×7 cm), and different coils used to deliver TMS could contribute to the contradictory findings of M1 reorganization of erector spinae in LBP. Although some small single studies reported increased map volume of the wrist extensor (lateral epicondylalgia) and transversus abdominis (LBP) muscles, and decreased map volume of guadriceps (patellofemoral pain; Supplementary Fig 5), meta-analyses do not support the changes in M1 representations.

Limitations and Recommendations

Several limitations should be considered when interpreting the findings of this review. First, most included studies were small, and may be affected by low statistical power as well as conversely, the propensity for small published studies to return positive and often inflated effect sizes.¹⁰ Additionally, subgroup analyses are regarded as exploratory and interpretation of these findings requires caution, particularly when there is no overall effect in the pooled estimates. False positive significance tests also increase in likelihood rapidly as more subgroup analyses are performed.

TMS studies investigating M1 representations of the affected muscles in chronic pain reported the center of gravity (CoG) as the location of M1 representation. Smudged M1 representations of affected muscles (measured by the distance between the CoG of neighboring muscles) has been reported in chronic LBP and lateral epicondylalgia, suggesting M1 reorganization.78,79,96 However, we were unable to meta-analyze CoG data because studies reported either the coordinates of the CoG or the absolute distance between the averaged CoG for each group. Future research using TMS to investigate M1 representation of the affected muscles should report the coordinates of CoG for meta-analysis of the data. We also acknowledge that 4 included TMS studies were published by 1 of the coauthors of this review.^{8,78,79,94} To minimize the bias, reviewers who were not involved in these studies performed the risk of bias assessment.

A recent study reported that the errors of software commonly used for data analysis in fMRI studies may result in a false positive rate of up to 70% and questioned the validity of some fMRI studies.²² It is beyond the scope of this review to discuss how these statistical issues may influence the findings of this review. However, the fMRI findings of M1 activation/connectivity and organization for chronic pain in this review should be interpreted with caution. Several studies included in this review investigated the sensorimotor cortex rather than the M1.^{23-25,37,102} It is possible that heterogeneity in the brain region being investigated (ie, sensorimotor vs M1) contributed to the inconclusive findings of this review.

Conclusions

This review provides the current evidence on M1 structure, organization, and function in chronic pain and identifies areas where further research is required. EEG, MEG, MRS, and PET techniques have been rarely used to investigate M1 function in chronic pain. Data pertaining to M1 changes for conditions such as TMD, rheumatoid arthritis, neck, shoulder, and neuropathic pain are still lacking. Additionally, more research using pairedpulse TMS paradigms to investigate M1 ICF/and inhibition in chronic pain is required because data are still lacking for measures of LICI and SICF. Future studies with larger sample sizes are warranted to elucidate M1 changes in chronic pain conditions and to inform treatments targeting M1.

Supplementary Data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jpain.2017.10.007.

References

1. Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, Mannion AF, Reis S, Staal JB, Ursin H, Zanoli G: European guidelines for the management of chronic nonspecific low back pain. Eur Spine J 15(Suppl 2):S192-S300, 2006

2. Aladro-Gonzalvo AR, Araya-Vargas GA, Machado-Diaz M, Salazar-Rojas W: Pilates-based exercise for persistent, non-specific low back pain and associated functional disability: A meta-analysis with meta-regression. J Bodyw Mov Ther 17: 125-136, 2013

3. Allison K, Vicenzino B, Bennell KL, Wrigley TV, Grimaldi A, Hodges PW: Kinematics and kinetics during stair ascent in individuals with Gluteal Tendinopathy. Clin Biomech (Bristol, Avon) 40:37-44, 2016

4. Barke A, Baudewig J, Schmidt-Samoa C, Dechent P, Kroner-Herwig B: Neural correlates of fear of movement in high and low fear-avoidant chronic low back pain patients: An eventrelated fMRI study. Pain 153:540-552, 2012

5. Berth A, Pap G, Neuman W, Awiszus F: Central neuromuscular dysfunction of the deltoid muscle in patients with chronic rotator cuff tears. J Orthop Traumatol 10:135-141, 2009

6. Bolwerk A, Seifert F, Maihofner C: Altered resting-state functional connectivity in complex regional pain syndrome. J Pain 14:1107-1115, e1108, 2013

7. Bradnam L, Shanahan EM, Hendy K, Reed A, Skipworth T, Visser A, Lennon S: Afferent inhibition and cortical silent periods in shoulder primary motor cortex and effect of a suprascapular nerve block in people experiencing chronic shoulder pain. Clin Neurophysiol 2015

8. Burns E, Chipchase LS, Schabrun SM: Altered function of intracortical networks in chronic lateral epicondylalgia. Eur J Pain 20:1166-1175, 2016

9. Burns E, Chipchase LS, Schabrun SM: Primary sensory and motor cortex function in response to acute muscle pain: A systematic review and meta-analysis. Eur J Pain 20:1203-1213, 2016

10. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR: Power failure: Why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365-376, 2013

11. Caumo W, Deitos A, Carvalho S, Leite J, Carvalho F, Dussan-Sarria JA, Lopes Tarrago Mda G, Souza A, Torres IL, Fregni F: Motor cortex excitability and BDNF levels in chronic musculoskeletal pain according to structural pathology. Front Hum Neurosci 10:357, 2016

12. Chang WJ, Bennell KL, Hodges PW, Hinman RS, Liston MB, Schabrun SM: Combined exercise and transcranial direct current stimulation intervention for knee osteoarthritis: Protocol for a pilot randomised controlled trial. BMJ Open 5:e008482, 2015

13. Chang WJ, O'Connell NE, Burns E, Chipchase LS, Liston MB, Schabrun SM: Organisation and function of the primary motor cortex in chronic pain: Protocol for a systematic review and meta-analysis. BMJ open 5:e008540, 2015

14. Chipchase L, Schabrun S, Cohen L, Hodges P, Ridding M, Rothwell J, Taylor J, Ziemann U: A checklist for assessing the

methodological quality of studies using transcranial magnetic stimulation to study the motor system: An international consensus study. Clin Neurophysiol 123:1698-1704, 2012

15. Clark BC, Goss DA, Walkowski S, Hoffman RL, Ross A, Thomas JS: Neurophysiologic effects of spinal manipulation in patients with chronic low back pain. BMC Musculoskelet Disord 12:1-10, 2011

16. Cohen J: Statistical Power Analysis for the Behavioural Sciences, 2nd ed. Hillsdale, NJ, Lawrence Erlbaum, 1998

17. Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH: Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol 31:364-378, 2004

18. Daligadu J, Haavik H, Yielder PC, Baarbe J, Murphy B: Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. J Manipulative Physiol Ther 36:527-537, 2013

19. Desouza DD, Moayedi M, Chen DQ, Davis KD, Hodaie M: Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: A paroxysmal, sensory-triggered neuropathic pain. PLoS ONE 8:e66340, 2013.

20. Di Pietro F, McAuley JH, Parkitny L, Lotze M, Wand BM, Moseley GL, Stanton TR: Primary motor cortex function in complex regional pain syndrome: A systematic review and meta-analysis. J Pain 14:1270-1288, 2013

21. Eisenberg E, Chistyakov AV, Yudashkin M, Kaplan B, Hafner H, Feinsod M: Evidence for cortical hyperexcitability of the affected limb representation area in CRPS: A psychophysical and transcranial magnetic stimulation study. Pain 113:99-105, 2005

22. Eklund A, Nichols TE, Knutsson H: Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci 2016

23. Fayed N, Garcia-Campayo J, Magallon R, Andres-Bergareche H, Luciano JV, Andres E, Beltran J: Localized 1H-NMR spectroscopy in patients with fibromyalgia: A controlled study of changes in cerebral glutamate/glutamine, inositol, choline, and N-acetylaspartate. Arthritis Res Ther 12: R134, 2010

24. Flodin P, Martinsen S, Altawil R, Waldheim E, Lampa J, Kosek E, Fransson P: Intrinsic brain connectivity in chronic pain: A resting-state fMRI study in patients with rheumatoid arthritis. Front Hum Neurosci 10:107, 2016

25. Flodin P, Martinsen S, Lofgren M, Bileviciute-Ljungar I, Kosek E, Fransson P: Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect 4:587-594, 2014

26. French HP, Smart KM, Doyle F: Prevalence of neuropathic pain in knee or hip osteoarthritis: A systematic review and meta-analysis. Semin Arthritis Rheum 2017

27. Gaetz W, Edgar JC, Roberts DJ: Relating MEG measured motor cortical oscillations to resting γ -Aminobutyric acid (GABA) concentration. Neuroimage 55:616-621, 2011

28. Gieteling EW, van Rijn MA, de Jong BM, Hoogduin JM, Renken R, van Hilten JJ, Leenders KL: Cerebral activation during motor imagery in complex regional pain syndrome type 1 with dystonia. Pain 134:302-309, 2008

29. Grachev ID, Fredrickson BE, Apkarian AV: Abnormal brain chemistry in chronic back pain: An in vivo proton magnetic resonance spectroscopy study. Pain 89:7-18, 2000

356 The Journal of Pain

30. Gross A, Kay TM, Paquin JP, Blanchette S, Lalonde P, Christie T, Dupont G, Graham N, Burnie SJ, Gelley G, Goldsmith CH, Forget M, Hoving JL, Bronfort G, Santaguida PL: Exercises for mechanical neck disorders. Cochrane Database Syst Rev (1):CD004250, 2015

31. Hayden JA, van Tulder MW, Malmivaara A, Koes BW: Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev CD000335, 2005

32. He SS, Li F, Song F, Wu S, Chen JY, He N, Zou SJ, Huang XQ, Lui S, Gong QY, Chen S: Spontaneous neural activity alterations in temporomandibular disorders: A cross-sectional and longitudinal resting-state functional magnetic resonance imaging study. Neuroscience 278:1-10, 2014

33. Heales LJ, Hug F, MacDonald DA, Vicenzino B, Hodges PW: Is synergistic organisation of muscle coordination altered in people with lateral epicondylalgia? A case-control study. Clin Biomech (Bristol, Avon) 35:124-131, 2016

34. Hemington KS, Wu Q, Kucyi A, Inman RD, Davis KD: Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. Brain Struct Funct 221:4203-4219, 2016

35. Higgins J, Green S: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011], The Cochrane Collaboration, 2011. Available from http:// handbook.cochrane.org

36. Hochman JR, Davis AM, Elkayam J, Gagliese L, Hawker GA: Neuropathic pain symptoms on the modified painDETECT correlate with signs of central sensitization in knee osteoarthritis. Osteoarthritis Cartilage 21:1236-1242, 2013

37. Hotta J, Saari J, Koskinen M, Hlushchuk Y, Forss N, Hari R: Abnormal brain responses to action observation in complex regional pain syndrome. J Pain 2016

38. Jacobs JV, Henry SM, Nagle KJ: Low back pain associates with altered activity of the cerebral cortex prior to arm movements that require postural adjustment. Clin Neurophysiol 121:431-440, 2010

39. Juottonen K, Gockel M, Silen T, Hurri H, Hari R, Forss N: Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain 98:315-323, 2002

40. Kirveskari E, Vartiainen NV, Gockel M, Forss N: Motor cortex dysfunction in complex regional pain syndrome. Clin Neurophysiol 121:1085-1091, 2010

41. Kittelson AJ, Thomas AC, Kluger BM, Stevens-Lapsley JE: Corticospinal and intracortical excitability of the quadriceps in patients with knee osteoarthritis. Exp Brain Res 232: 3991-3999, 2014

42. Kobayashi Y, Kurata J, Sekiguchi M, Kokubun M, Akaishizawa T, Chiba Y, Konno S, Kikuchi S: Augmented cerebral activation by lumbar mechanical stimulus in chronic low back pain patients: An FMRI study. Spine 34:2431-2436, 2009

43. Krause P, Foerderreuther S, Straube A: Effects of conditioning peripheral repetitive magnetic stimulation in patients with complex regional pain syndrome. Neurol Res 27:412-417, 2005

44. Krause P, Forderreuther S, Straube A: TMS motor cortical brain mapping in patients with complex regional pain syndrome type I. Clin Neurophysiol 117:169-176, 2006 **45**. Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67:1568-1574, 2006

46. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med 6:e1000100, 2009

47. Liu J, Hao Y, Du M, Wang X, Zhang J, Manor B, Jiang X, Fang W, Wang D: Quantitative cerebral blood flow mapping and functional connectivity of postherpetic neuralgia pain: A perfusion fMRI study. Pain 154:110-118, 2013

48. Maeda Y, Kettner N, Sheehan J, Kim J, Cina S, Malatesta C, Gerber J, McManus C, Mezzacappa P, Morse LR, Audette J, Napadow V: Altered brain morphometry in carpal tunnel syndrome is associated with median nerve pathology. Neuroimage Clin 2:313-319, 2013

49. Maihofner C, Baron R, DeCol R, Binder A, Birklein F, Deuschl G, Handwerker HO, Schattschneider J: The motor system shows adaptive changes in complex regional pain syndrome. Brain 130:2671-2687, 2007

50. March L, Smith EU, Hoy DG, Cross MJ, Sanchez-Riera L, Blyth F, Buchbinder R, Vos T, Woolf AD: Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol 28:353-366, 2014

51. Marker RJ, Stephenson JL, Kluger BM, Curran-Everett D, Maluf KS: Modulation of intracortical inhibition in response to acute psychosocial stress is impaired among individuals with chronic neck pain. J Psychosom Res 76:249-256, 2014

52. Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C: The side of chronic low back pain matters: Evidence from the primary motor cortex excitability and the postural adjustments of multifidi muscles. Exp Brain Res 1-13, 2016

53. Masse-Alarie H, Beaulieu LD, Preuss R, Schneider C: Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: Concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Exp Brain Res 234:1033-1045, 2016

54. Masse-Alarie H, Flamand VH, Moffet H, Schneider C: Corticomotor control of deep abdominal muscles in chronic low back pain and anticipatory postural adjustments. Exp Brain Res 218:99-109, 2012

55. McDonnell MN, Orekhov Y, Ziemann U: The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res 173:86-93, 2006

56. Mendonca ME, Simis M, Grecco LC, Battistella LR, Baptista AF, Fregni F: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: A randomized placebo-controlled clinical trial. Front Hum Neurosci 10:68, 2016

57. Mhalla A, de Andrade DC, Baudic S, Perrot S, Bouhassira D: Alteration of cortical excitability in patients with fibromyalgia. Pain 149:495-500, 2010

58. Moayedi M, Weissman-Fogel I, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD: Contribution of chronic pain and neuroticism to abnormal forebrain gray

matter in patients with temporomandibular disorder. Neuroimage 55:277-286, 2011

59. Moreton BJ, Tew V, das Nair R, Wheeler M, Walsh DA, Lincoln NB: Pain phenotype in patients with knee osteoarthritis: Classification and measurement properties of painDETECT and self-report Leeds assessment of neuropathic symptoms and signs scale in a cross-sectional study. Arthritis Care Res (Hoboken) 67:519-528, 2015

60. Morgante F, Naro A, Terranova C, Russo M, Rizzo V, Risitano G, Girlanda P, Quartarone A: Normal sensorimotor plasticity in complex regional pain syndrome with fixed posture of the hand. Mov Disord 32:149-157, 2017

61. Moss P, Benson HA, Will R, Wright A: Patients with knee osteoarthritis who score highly on the PainDETECT questionnaire present with multimodality hyperalgesia, increased pain, and impaired physical function. Clin J Pain 34:15-21, 2018

62. Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK: Somatosensory cortical plasticity in carpal tunnel syndrome–a cross-sectional fMRI evaluation. Neuroimage 31: 520-530, 2006

63. On AY, Uludag B, Taskiran E, Ertekin C: Differential corticomotor control of a muscle adjacent to a painful joint. Neurorehabil Neural Repair 18:127-133, 2004

64. Ostelo RW, van Tulder MW, Vlaeyen JW, Linton SJ, Morley SJ, Assendelft WJ: Behavioural treatment for chronic lowback pain. Cochrane Database Syst Rev CD002014, 2005

65. Parker RS, Lewis GN, Rice DA, McNair PJ: Is motor cortical excitability altered in people with chronic pain? A systematic review and meta-analysis. Brain Stimul 9:488-500, 2016

66. Parker RS, Lewis GN, Rice DA, McNair PJ: The association between corticomotor excitability and motor skill learning in people with painful hand arthritis. Clin J Pain 33:222-230, 2017

67. Parkitny L, McAuley JH, Di Pietro F, Stanton TR, O'Connell NE, Marinus J, van Hilten JJ, Moseley GL: Inflammation in complex regional pain syndrome: A systematic review and meta-analysis. Neurology 80:106-117, 2013

68. Parkkonen E, Laaksonen K, Piitulainen H, Parkkonen L, Forss N: Modulation of the ~20-Hz motor-cortex rhythm to passive movement and tactile stimulation. Brain Behav 5:e00328, 2015

69. Pijnenburg M, Brumagne S, Caeyenberghs K, Janssens L, Goossens N, Marinazzo D, Swinnen SP, Claeys K, Siugzdaite R: Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connect 5:303-311, 2015

70. Pleger B, Draganski B, Schwenkreis P, Lenz M, Nicolas V, Maier C, Tegenthoff M: Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex. PLoS ONE 9:e85372, 2014.

71. Qaseem A, Wilt TJ, McLean RM, Forciea M: for the Clinical Guidelines Committee of the American College of Physicians: Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the american college of physicians. Ann Intern Med 2017 **72.** Rio E, Kidgell D, Moseley GL, Cook J: Elevated corticospinal excitability in patellar tendinopathy compared with other anterior knee pain or no pain. Scand J Med Sci Sports 26:1072-1079, 2016

73. Rittig-Rasmussen B, Kasch H, Fuglsang-Frederiksen A, Svensson P, Jensen TS: Effect of training on corticomotor excitability in clinical neck pain. Eur J Pain 18:1207-1216, 2014

74. Sakrajai P, Janyacharoen T, Jensen MP, Sawanyawisuth K, Auvichayapat N, Tunkamnerdthai O, Keeratitanont K, Auvichayapat P: Pain reduction in myofascial pain syndrome by anodal transcranial direct current stimulation combined with standard treatment: A randomized controlled study. Clin J Pain 30:1076-1083, 2014

75. Salerno A, Thomas E, Olive P, Blotman F, Picot MC, Georgesco M: Motor cortical dysfunction disclosed by single and double magnetic stimulation in patients with fibromyalgia. Clin Neurophysiol 111:994-1001, 2000

76. Salmelin R, Hari R: Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60:537-550, 1994

77. Schabrun SM, Christensen SW, Mrachacz-Kersting N, Graven-Nielsen T: Motor cortex reorganization and impaired function in the transition to sustained muscle pain. Cereb Cortex 26:1878-1890, 2016

78. Schabrun SM, Elgueta-Cancino EL, Hodges PW: Smudging of the motor cortex is related to the severity of low back pain. Spine 2015

79. Schabrun SM, Hodges PW, Vicenzino B, Jones E, Chipchase LS: Novel adaptations in motor cortical maps: The relation to persistent elbow pain. Med Sci Sports Exerc 47:681-690, 2015

80. Schabrun SM, Jones E, Elgueta Cancino EL, Hodges PW: Targeting chronic recurrent low back pain from the topdown and the bottom-up: A combined transcranial direct current stimulation and peripheral electrical stimulation intervention. Brain Stimul 7:451-459, 2014

81. Schwenkreis P, Janssen F, Rommel O, Pleger B, Volker B, Hosbach I, Dertwinkel R, Maier C, Tegenthoff M: Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology 61:515-519, 2003

82. Schwenkreis P, Scherens A, Ronnau AK, Hoffken O, Tegenthoff M, Maier C: Cortical disinhibition occurs in chronic neuropathic, but not in chronic nociceptive pain. BMC Neurosci 11:73, 2010

83. Schwenkreis P, Voigt M, Hasenbring M, Tegenthoff M, Vorgerd M, Kley RA: Central mechanisms during fatiguing muscle exercise in muscular dystrophy and fibromyalgia syndrome: A study with transcranial magnetic stimulation. Muscle Nerve 43:479-484, 2011

84. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 349:g7647, 2015

85. Shanahan CJ, Hodges PW, Wrigley TV, Bennell KL, Farrell MJ: Organisation of the motor cortex differs between people with and without knee osteoarthritis. Arthritis Res Ther 17: 164, 2015

358 The Journal of Pain

86. Sharma NK, Brooks WM, Popescu AE, Vandillen L, George SZ, McCarson KE, Gajewski BJ, Gorman P, Cirstea CM: Neurochemical analysis of primary motor cortex in chronic low back pain. Brain Sci 2:319-331, 2012

87. Shibukawa Y, Ishikawa T, Kato Y, Zhang ZK, Jiang T, Shintani M, Shimono M, Kumai T, Suzuki T, Kato M, Nakamura Y: Cerebral cortical dysfunction in patients with temporomandibular disorders in association with jaw movement observation. Pain 128:180-188, 2007

88. Shiraishi S, Kobayashi H, Nihashi T, Kato K, Iwano S, Nishino M, Ishigaki T, Ikeda M, Kato T, Ito K, Kimura T: Cerebral glucose metabolism change in patients with complex regional pain syndrome: A PET study. Radiat Med 24:335-344, 2006

89. Smart KM, Blake C, Staines A, Doody C: The Discriminative validity of "nociceptive," "peripheral neuropathic," and "central sensitization" as mechanisms-based classifications of musculoskeletal pain. Clin J Pain 27:655-663, 2011

90. Spahr N, Hodkinson D, Jolly K, Williams S, Howard M, Thacker M: Distinguishing between nociceptive and neuropathic components in chronic low back pain using behavioural evaluation and sensory examination. Musculoskelet Sci Pract 27:40-48, 2017

91. Strutton PH, Catley M, McGregor AH, Davey NJ: Corticospinal excitability in patients with unilateral sciatica. Neurosci Lett 353:33-36, 2003

92. Strutton PH, Theodorou S, Catley M, McGregor AH, Davey NJ: Corticospinal excitability in patients with chronic low back pain. J Spinal Disord Tech 18:420-424, 2005

93. Tarrago Mda G, Deitos A, Brietzke AP, Vercelino R, Torres IL, Fregni F, Caumo W: Descending control of nociceptive processing in knee osteoarthritis is associated with intracortical disinhibition: An exploratory study. Medicine (Baltimore) 95:e3353, 2016

94. Te M, Baptista AF, Chipchase LS, Schabrun SM: Primary motor cortex organisation is altered in persistent patellofemoral pain. Pain Med 2017

95. Tian T, Guo L, Xu J, Zhang S, Shi J, Liu C, Qin Y, Zhu W: Brain white matter plasticity and functional reorganization underlying the central pathogenesis of trigeminal neuralgia. Sci Rep 6:36030, 2016

96. Tsao H, Danneels LA, Hodges PW: ISSLS prize winner: Smudging the motor brain in young adults with recurrent low back pain. Spine 36:1721-1727, 2011

97. Tsao H, Galea MP, Hodges PW: Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain 131:2161-2171, 2008

98. Turgut N, Altun BU: Cortical disinhibition in diabetic patients with neuropathic pain. Acta Neurol Scand 120:383-388, 2009

99. Turton AJ, McCabe CS, Harris N, Filipovic SR: Sensorimotor integration in Complex Regional Pain Syndrome: A transcranial magnetic stimulation study. Pain 127:270-275, 2007

100. Ung H, Brown JE, Johnson KA, Younger J, Hush J, Mackey S: Multivariate classification of structural MRI data detects chronic low back pain. Cereb Cortex 24:1037-1044, 2014 **101.** van Velzen GA, Marinus J, van Dijk JG, van Zwet EW, Schipper IB, van Hilten JJ: Motor cortical activity during motor tasks is normal in patients with complex regional pain syndrome. J Pain 16:87-94, 2015

102. van Velzen GA, Rombouts SA, van Buchem MA, Marinus J, van Hilten JJ: Is the brain of complex regional pain syndrome patients truly different? Eur J Pain 20:1622-1633, 2016

103. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med 4:e296, 2007

104. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int J Surg 2014

105. Vallence AM, Smith A, Tabor A, Rolan PE, Ridding MC: Chronic tension-type headache is associated with impaired motor learning. Cephalalgia 33:1048-1054, 2013

106. Vidor LP, Torres IL, Medeiros LF, Dussan-Sarria JA, Dall'agnol L, Deitos A, Brietzke A, Laste G, Rozisky JR, Fregni F, Caumo W: Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome. BMC Neurosci 15:42, 2014

107. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB,

Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD,

Murray CJ, AlMazroa MA, Memish ZA: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163-2196, 2012

108. Wasan AD, Loggia ML, Chen LQ, Napadow V, Kong J, Gollub RL: Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology **115:364-374**, 2011

109. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J: Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2): 591-597, 1999

110. Wu Q, Inman RD, Davis KD: Neuropathic pain in ankylosing spondylitis: A psychophysics and brain imaging study. Arthritis Rheum 65:1494-1503, 2013

111. Ziemann U, Chen R, Cohen LG, Hallett M: Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320-1324, 1998

112. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W: Effects of antiepileptic drugs on motor cortex excitability in humans: A transcranial magnetic stimulation study. Ann Neurol 40: 367-378, 1996