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Abstract

In this thesis we analyse the high-order in time discontinuous Galerkin finite element method

(DGFEM) for second-order in time linear abstract wave equations.

Our abstract approximation analysis is a generalisation of the approach introduced by Claes John-

son (in Comput. Methods Appl. Mech. Engrg., 107:117-129, 1993), writing the second order problem

as a system of first order problems. We consider abstract spatial (time independent) operators, high-

order in time basis functions when discretising in time; we also prove approximation results in case

of linear constraints, e.g. non-homogeneous boundary data. We take the two steps approximation

approach i.e. using high-order in time DGFEM; the discretisation approach in time introduced by D

Schötzau (PhD thesis, Swiss Federal institute of technology, Zürich, 1999) to first obtain the semi-

discrete scheme and then conformal spatial discretisation to obtain the fully-discrete formulation. We

have shown solvability, unconditional stability and conditional a priori error estimates within our

abstract framework for the fully discretized problem.

The skew-symmetric spatial forms arising in our abstract framework for the semi- and fully-discrete

schemes do not fullfill the underlying assumptions in D. Schötzau’s work. But the semi-discrete and

fully discrete forms satisfy an Inf-sup condition, essential for our proofs; in this sense our approach is

also a generalisation of D. Schötzau’s work. All estimates are given in a norm in space and time which

is weaker than the Hilbert norm belonging to our abstract function spaces, a typical complication in

evolution problems.

To the best of the author’s knowledge, with the approximation approach we used, these stability

and a priori error estimates with their abstract structure have not been shown before for the abstract

variational formulation used in this thesis.

Finally we apply our abstract framework to the acoustic and an elasto-dynamic linear equations

with non-homogeneous Dirichlet boundary data.



Operators used in Part I

A : see Definition 2.2 on p. 6.

Π̂ : see Definition 3.11 on p. 58.

Â : see Definition 2.6 on p. 12.

Π̃r : see Definition 3.12 on p. 59.

Operators used in Part II
A : see Definition 5.1 on p. 101.

Π̂ : see Definition 6.6 on p. 146.

Operators used in both parts
Π : see Definition 3.12 on p. 59.

A and B ∈ C(r+1)×(r+1) : see Definition 3.7 on p. 29.

Table 1: Summary of all abstract operators

Abstract spatial spaces used in Part I
Z : see Definition 2.1 on p. 6.

DA : see Definition 3.13 on p. 60.

Abstract spatial spaces in Part II Z and DA : see Definition 5.1 on p. 101.

Abstract spatial space used in both parts H : see Definition 2.1 on p. 6.

Table 2: Summary of all abstract spatial spaces

Common Notations

C : The field of complex numbers.

R : The set of Real numbers.

N0 : The set of Natural numbers.

J = (0, T ) : The time interval for T <∞.

J̄ = [0, T ] : The closed time interval.

0 : The vector-valued zero function i.e. 0 =
(

0
0

)
.

N : The number of time steps.

k = T
N : The time step size.

r = {rn}N−1
n=0 : Vector of the temporal orders over all time steps.

N : Partition of the time interval J into N time steps.

Un− : The left-sided limits for n = 0, · · · , N − 1.

Un+ : The right-sided limits for n = 0, · · · , N − 1.

[U ] = Un+ − Un− : Jump of vector-valued function U across time node tn.

Table 3: Summary of all common notations and math symbols
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Chapter 1

Introduction

In [30], Claes Johnson proved a priori and a posteriori error estimates for linear wave equation

(with homogeneous boundary data) based on using space-time finite element discretisations with basis

functions which are continuous in space and discontinuous in time.

In this thesis, the approach introduced by Claes Johnson [30] will be generalised by:

- Analysing abstract linear second-order in time evolution problem with abstract linear (time

independent) spatial operator. This covers e.g. scalar acoustic wave equation and elastic wave

equation governed by Lamé-Navier equations of linear elasticity theory.

- Rewriting the abstract problem as a first-order system in time and analysing theoretically its

equivalent variational formulation in general abstract Hilbert spaces and showing its solvability,

stability and a priori error estimates.

- Introducing a version of a variational formulation of the first-order system in time with lin-

ear constraints and showing its solvability, stability, and a priori error estimates. The linear

constraints model e.g. in-homogeneous boundary data.

- Using the two step discretisation approach in the analysis of both versions, with firstly, discret-

ising in time by applying the high-order in time DGFEM approach introduced by D Schötzau

[44] to get the semi-discrete scheme. Secondly, using a conformal spatial discretisation to get

the fully-discrete scheme.

In the area of approximating the wave equation, there are two basic solution concepts. One, is

to deal directly with second-order in time problem in the sense of a single field formulation. Two, is

rewriting the problem as a first-order system in time, rendering a two field formulation. There are

two approaches to approximate wave equation (as single or two field formulation) in space and time.

The first one is the semi-discrete approach, by first discretising in space and then use any time stepping

scheme to get the fully discretised one, see e.g. [5], [14], [47].

The second one is to discretise in space and time simultaneously to get the fully-discrete scheme, see

e.g. [40], [25], [30], [37]. This approach is usually more complex and complicated specially if the

non-conformal approximation methods are used in both space and time, see [25].

Many approaches of the Discontinuous Galerkin method for the second-order in time evolution

problem have been emerged, where discontinuities may be considered in the spatial discretisation, in

the temporal discretisation, or even both, see [40, 1. Introduction] and the references therein.
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Talking about high-order in time DGFEM method as well as the two field formulation since they

are considered in this text. It may come to the reader that this approach may not be the best since:

- It is dissipative [30] via the discontinuity at the time nodes; jumps, in comparison to CG method

in time.

But:

- Still the total energy is bounded by the given data.

- Moreover, the resulting systems in this approach after discretising in time are diagonalisable and

in practice can be solved in parallel and this make it more favourable.

Recently, Banks et al. 2014, [6], demonstrated the practicality of the introduced approach by D

Schötzau [44] for a collection of common and important linear wave equation problems without any

stability or error analysis.

This thesis provides general abstract theorems on stability and a priori error estimates which come

to explain and illustrate the encountered observation in the numerical experiments done in [6], e.g.

the reasons why the computed convergence rates change whenever different interpolants are used

to approximate the continuous solutions of a formulation which have linear constraints (e.g. in-

homogeneous boundary data) and the choice of the conformal finite dimensional spaces with the order

of the bases function in space.

There are mainly two obstacles faced while carrying out this research:

1. The resulting forms of the semi and fully discrete systems are skew symmetric and not as the

case in D Schötzau [44].

2. The stability and a priori error estimates are given in a non matching norm of the abstract

product space i.e. stability and a priori error estimates are given in a normed-product abstract

space.

For the first obstacle, it is resolved. Since the resulting forms in the local time-stepping schemes have

a structure which allow them to satisfy the Inf-sup condition to be able to get the desired complete

proofs.

For the second obstacle, that is the best which can be achieved. Since the resulting inner products

of the coefficient of our solution after discretising in time and in space are defined in the E−energy

norms of the product spaces.

In Literature, Runge Kutta methods are used to discretize time integral problems, where only

implicit Runge Kutta methods can be A-stable. This method is applied to stiff systems which are

already been discretised in space. Usually, the resulting matrices when using A-stable Runge Kutta

are either lower triangle matrices or full, see [20].

whereas in our approach, after we discretize in time using DGFE method, the resulting semi-discrete

schemes are an implicit time stepping schemes and the matrices after time basis transformation are

diagonalizable and also can be solved in parallel which is more favourable.

The outline of the thesis is as follows:

1. Part I is about general abstract theory analysis of High-order in time DGFEM for abstract linear

wave equation. It includes three chapters in addition to the introduction. The second chapter

discusses the existence, uniqueness, and stability estimates of the Abstract Linear second-order

3



in time evolution equation. The third chapter discusses the discretisation of the variational for-

mulation of the first-order system in time with using high-order in time GDFEM with conformal

spatial discretisation. It includes existence, uniqueness, stability estimates for the semi and fully

discrete formulations and ends with a priori error estimates given in Theorem 3.6 on p. 61. In Co-

rollary 3.5 on p. 65 with assuming higher regularity such that U ∈ H2(J ;Z×Z), Au1 ∈ H2(J ;H),

the a priori error estimate in the last left sided limit reads

‖(U − UhDG)N−‖E ≤ ‖(U − Π̂U)N−‖E +
√

2

N∑
n=1

‖(u2 − Π̂u2)n−‖H

+

(
2
√
PrnC
k

+
max(1,M)C√

min(α, 1)

)(
C(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ C max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
max(1,M)C√

min(α, 1)

(
C(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ C max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)
,

(1.1)

and with such assumptions we obtain the convergence result in h and k :

‖(U − UhDG)N−‖E = O(h2 + k−1h2 + k + k2 + k−1/2h2), (1.2)

shown in Corollary 3.6 on p. 66. Also, a local a priori error estimate in the L2(I;E)-norm

shown in Theorem 3.7 on p. 68 and a global a priori error estimate in the L2(J ;E)-norm in

Lemma 3.24 on p. 74 with taking the maximum over time steps. The fourth chapter discusses

existence, uniqueness, and stability estimates of a first-order in time variational formulation but

this time with a general vector valued functional.

2. Part II is about Abstract theory analysis of High-order in time DGFEM for abstract linear wave

equation with linear constrains. It includes two chapters. The first chapter(chapter 5) discusses

the existence, uniqueness, and stability estimates of linear variational formulation of second order

in time with linear constraints, where chapter three from Part I is used. The second chapter

(chapter 6) discusses the discretisation of the variational formulation of the first-order system

in time with using high-order in time GDFEM with conformal spatial discretisation. It includes

existence, uniqueness, stability estimates for the semi and fully discrete formulations with linear

constraints and ends with a last left sided limit a priori error estimate given in Theorem 6.8 on

p. 149, a local a priori error estimate in the L2(I;X) norm on Theorem 6.9 on p. 152.

3. Part III includes one chapter which is about application and conclusion. It shows that the

abstract frame work of the shown theory in Part I and II does fit the linear Acoustic wave

equation and the elastic wave equation.

4. The appendix includes all the fundamental definitions and theorems used throughout the thesis.
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Part I: General abstract theory

analysis of High-order in time DGFEM

for abstract linear wave equation
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Chapter 2

Linear second-order in time evolution

equation

This chapter discusses the linear second-order in time evolution equation and the main theorem of its

solvability. With using the high-regularity of the problem, it will be rewritten as a first-order system

in time. The variational formulation of the latter is also formulated and its stability, existence, and

uniqueness are shown.

2.1 Abstract Linear Second-order in time evolution equation

Definition 2.1 (The abstract spaces) Let Z and H be Hilbert spaces (see Definition A.16 on

p. 176), over the field C and have the following properties:

Z ⊂ H, (Z is a subspace of H), Z dense in H, Z is separable (see Definition A.5 on p. 172), (2.1)

and they satisfy the Gelfand triple properties i.e. (Z ⊂ H ⊂ Z ′), where Z ′ is the dual space of Z (see

Definition A.17 on p. 176).

Definition 2.2 (The abstract linear spatial operator) Let Z be the Hilbert space given in Defin-

ition 2.1 with its dual space Z ′. Let a : Z ×Z → C be a Hermitian form which satisfies the properties

given in Theorem A.3 on p. 178:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z,

(2.2)

and

a(u, v) = a(v, u), for real functions u, v ∈ Z, (Symmetric),

a(u, v) = a(v, u), for complex functions u, v ∈ Z, (Conjugate symmetric),

then an elliptic spatial operator (see Corollary A.9 on p. 178) A ∈ L(Z,Z ′) is defined:

〈Au, v〉Z′×Z := a(u, v), ∀u, v ∈ Z,

Remark 2.1 The operator A given in Definition 2.2 is denoted as A(t) in [34] and L(t) in [50]. In

these references it is considered to be time dependent whereas in this text it is time independent.
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Problem 2.1.1 (Abstract linear second-order in time evolution problem) Given the spatial

abstract operator in Definition 2.2 the following second-order in time evolution equation (abstract hy-

perbolic differential equation) is considered:

∂2
t u+Au = f,

u|t=0 = u0, ∂tu|t=0 = ū0,
(2.3)

see [34, 1.2 Problem Statement. An existence and uniqueness result] and [50, 17 The existence and

uniqueness of the solution].

Remark 2.2

In this thesis, the considered function u, initial, and forcing data of Problem 2.1.1 are real, but due

to technical reasons which appear in the time discretisation steps where the diagonalisation process is

only done in complex arithmetic, the abstract Hilbert spaces are chosen to be over the field C.

2.1.1 Main theorem on linear second-order in time evolution equation

Theorem 2.1 (Existence and uniqueness of second-order in time evolution problem)

Let Z and H be the Hilbert spaces given in Definition 2.1. With a form a( , ) which satisfies the

properties in Theorem A.3 on p. 178:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z,

(2.4)

and let f , u0, and ū0 in (2.3) be given with

f ∈ L2(J ;H), u0 ∈ Z, ū0 ∈ H. (2.5)

Then there exists a unique function u satisfying (2.3) and

u ∈ L2(J ;Z), ∂tu ∈ L2(J ;H). (2.6)

Detailed proofs of uniqueness and existence of the solution of Problem 2.1.1 are given in [52, Section

24.1]. Proofs of uniqueness and existence of Problem 2.1.1, with operator A(t), dependent in time,

can be found in [34, 1.2. Problem Statement. An Existence and Uniqueness], [33, 8.2 Existence and

Uniqueness Theorem], and in [50, 17 The existence and uniqueness of the solution].

Remark 2.3 [33, Remark 8.2] If (2.6) holds then Au ∈ L2(J ;Z ′) so that (2.3) implies

∂2
t u ∈ L2(J ;Z ′). (2.7)

Theorem 2.2 (Existence and uniqueness with higher regularity) [50, c.f. Theorem 30.1]

For Problem 2.1.1 on p. 7 with the given initial data u0 and ū0, the properties of the abstract Hilbert

spaces Z and H given in Definition 2.1 on p. 6, and supposing that

f ∈W k−1,2(J ;H), k ≥ 1, (see Definition A.23 on p. 181), and u0 ∈ Z, ū0 ∈ Z. (2.8)

Then the solution u of Problem 2.1.1 satisfies

u ∈W k−1,2(J ;Z), ∂kt u ∈ L2(J ;H). (2.9)

7



Detailed proof of Theorem 2.2 is in [50, c.f. Theorem 30.1].

Corollary 2.1 (Important higher regularity results)

For Problem 2.1.1 on p. 7 and based on Theorem 2.2 the following hold:

1) For k = 1, then

f ∈W 0,2(J ;H) := L2(J ;H), and u0 ∈ Z, ū0 ∈ Z ⊂ H. (2.10)

Thus the solution u of Problem 2.1.1 satisfies

u ∈ L2(J ;Z), ∂tu ∈ L2(J ;H), and ∂2
t u ∈ L2(J ;Z ′). (2.11)

2) For k = 2, then

f ∈W 1,2(J ;H) = H1(J ;H) := {v|v ∈ L2(J ;H), ∂tv ∈ L2(J ;H)}, and u0 ∈ Z, ū0 ∈ Z. (2.12)

Thus the solution u of Problem 2.1.1 satisfies

u ∈ H1(J ;Z) := {v|v ∈ L2(J ;Z), ∂tv ∈ L2(J ;Z)}, ∂2
t u ∈ L2(J ;H). (2.13)

Detailed proof of Corollary 2.1 also is in [50, c.f. Theorem 30.1].

2.2 The first-order system in time

In this section, Problem 2.1.1 on p. 7; the second-order on time evolution problem, with the higher

regularity results in (2.13) in Corollary 2.1 on p. 8 will be rewritten as a first-order system in time.

The latter with the use of Definition 2.6 on p. 12 is given in Problem 2.2.1 on p. 12 in terms of two

unknowns introduced in Definition 2.5 on p. 10.

The equivalence proof between Problems 2.1.1 and 2.2.1 is given in Lemma 2.3 on p. 12. The normed

product space (Z ×Z, ‖ · ‖X) is given in Definition 2.3 and an equivalent norm to ‖ · ‖X on Z ×Z in

Definition 2.4 on p. 8. Also an inner product in the normed product space (Z×Z, ‖ · ‖E) is introduced

in Corollary 2.2 on p. 10. These Definitions and Corollary will be used in both parts of the thesis.

Definition 2.3 (New normed product space) Let Z and H be the Hilbert spaces over the field C
given in Definition 2.1 on p. 6.

Z ×Z is a normed product (see Definition A.6 on p. 172) space and the norm in this space is defined

as

‖ U ‖X :=
√
‖ u1 ‖2Z + ‖ u2 ‖2H , for U =

(
u1

u2

)
∈ Z × Z. (2.14)

Remark 2.4 In Theorem A.3 on p. 178, the Hermitian form a : Z × Z → C with real functions is

symmetric, bilinear, and positive definite:

a(u, v) = a(v, u), ∀ u, v ∈ Z,
|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z.

With defining

‖ u ‖a:= a(u, u), for u ∈ Z,

then (Z, a( , )) is a normed space.
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Definition 2.4 Let Z×Z be the normed product space given in Definition 2.3. With using Remark 2.4

the following norm is defined in the Z × Z normed product space

‖ U ‖E :=
√
a(u1, u1)+ ‖ u2 ‖2H , for U =

(
u1

u2

)
∈ Z × Z. (2.15)

Lemma 2.1 (Equivalent norms in the Z × Z normed product space) Let Z and H be the Hil-

bert spaces over the field C given in Definition 2.1 on p. 6. The normed product space Z × Z given

in Definition 2.3 have two equivalent norms given in Definitions 2.3 and 2.4 in (2.14) and (2.15),

respectively such that for U =

(
u1

u2

)
∈ Z × Z

‖ U ‖X ≤
1√

min(α, 1)
‖ U ‖E , and ‖ U ‖E≤

√
max(M, 1) ‖ U ‖X .

Moreover

‖ U ‖E≤
√

max(M, c2) ‖ U ‖Z×Z , (2.16)

and

‖ U ‖X≤
√

max(1, c2) ‖ U ‖Z×Z . (2.17)

For real constants α ∈ R and M < ∞ correspond to the lower and upper bounds of the form a( , )

given in Theorem A.3 on p. 178, respectively, and c is the inclusion constant between the H and Z

norms inequality i.e. ‖ u ‖H≤ c ‖ u ‖Z ∀u ∈ Z (see [22, (6.)]) and for U =

(
u1

u2

)
∈ Z × Z:

‖ U ‖E =
√
a(u1, u1)+ ‖ u2 ‖2H , ‖ U ‖X=

√
‖ u1 ‖2Z + ‖ u2 ‖2H , and ‖ U ‖Z×Z=

√
‖ u1 ‖2Z + ‖ u2 ‖2Z ,

Proof:

Starting with the definition of ‖ · ‖E in (2.15), for any U =
(
u1
u2

)
∈ Z × Z, and using the ellipticity of

the form a( , ) given in Theorem A.3 on p. 178 with α 6= 0, then

‖ U ‖2E = a(u1, u1)+ ‖ u2 ‖2H≥ α ‖ u1 ‖2Z + ‖ u2 ‖2H≥ min(α, 1)

=‖U‖2X︷ ︸︸ ︷(
‖ u1 ‖2Z + ‖ u2 ‖2H

)
=⇒‖ U ‖X ≤

1√
min(α, 1)

‖ U ‖E ,

and when using the continuity of the form a( , ), then

‖ U ‖2E = a(u1, u1)+ ‖ u2 ‖2H≤M ‖ u1 ‖2Z + ‖ u2 ‖2H≤ max(M, 1)

=:‖U‖2X︷ ︸︸ ︷(
‖ u1 ‖2Z + ‖ u2 ‖2H

)
=⇒‖ U ‖E ≤

√
max(M, 1) ‖ U ‖X .

Moreover, with using again the continuity of the form a( , ) and finally the inequality

‖ u ‖H≤ c ‖ u ‖Z , ∀u ∈ Z,

imply

‖ U ‖2E = a(u1, u1)+ ‖ u2 ‖2H≤M ‖ u1 ‖2Z +c2 ‖ u2 ‖2Z≤ max(M, c2)
(
‖ u1 ‖2Z + ‖ u2 ‖2Z

)
=⇒‖ U ‖E ≤

√
max(M, c2) ‖ U ‖Z×Z ,
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and

‖ U ‖2X =‖ u1 ‖2Z + ‖ u2 ‖2H≤‖ u1 ‖2Z +c2 ‖ u2 ‖2Z≤ max(1, c2)
(
‖ u1 ‖2Z + ‖ u2 ‖2Z

)
=⇒‖ U ‖X ≤

√
max(1, c2) ‖ U ‖Z×Z . �

Corollary 2.2 (The E−inner product in the Z × Z normed-product space)

Let Z and H be Hilbert spaces over the field C given in Definition 2.1 on p. 6. For the normed product

space (Z×Z, ‖ · ‖E) given in Definition 2.4 on p, 9, then the following inner product in (Z×Z, ‖ · ‖E)

is defined

(U, V )E := a(u1, v1) + (u2, v2)H , for all U, V ∈ Z × Z, (2.18)

such that

(1) ( , )E in (2.18) is linear, symmetric, continuous, and positive definite for all real vector-valued

functions U, V ∈ Z × Z.

(2) From (1), if the vector-valued functions U, V ∈ Z×Z are complex, then all properties still holds.

Only the symmetry is replaced by the conjugate-symmetry:

(U, V )E = (V,U)E .

where the Hermitian form a( , ) satisfies the properties given in Theorem A.3 on p. 178:

a(u, v) = a(v, u), for real u, v ∈ Z or

a(u, v) = a(v, u), for complex u, v ∈ Z
|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z.

Proof:

Firstly, for real vector-valued functions; U, V ∈ Z × Z, and based on the definition of the Hermitian

form a( , ) which is bilinear, symmetric, and positive definite as given in Theorem A.3 on p. 178 and

the Hilbert space (H, ‖ · ‖H), then

(U, V )E = a(u1, v1) + (u2, v2)H = a(v1, u1) + (v2, u2)H = (V,U)E .

Secondly, if the vector-valued functions U, V ∈ Z×Z are complex, and ones again from the properties

of a( , ) and (H, ‖ · ‖H) only the symmetry will be replaced by the conjugate-symmetry:

(U, V )E = a(u1, v1) + (u2, v2)H = a(v1, u1) + (v2, u2)H = (V,U)E ,

and that completes the proof. �

Definition 2.5 (The two new unknown functions)

The following functions are introduced

u1 := u, the solution of (2.3), and

u2 := ∂tu.
(2.19)
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Now, to rewrite Problem 2.1.1 on p. 7 as a first-order system in time with using the higher regularity

results for the given forcing and initial data in (2.13) given in Corollary 2.1 on p. 8:

f ∈ H1(J ;H) i.e. f ∈ L2(J ;H) ⊂ L2(J ;Z ′) and ∂2
t u ∈ L2(J ;H) ⊂ L2(J ;Z ′), (Gelfand triple),

and using the two functions introduced in Definition 2.5 with the knowledge that:

- The operator A ∈ L(Z,Z ′) given in Definition 2.2 on p. 6, that is time independent and invertible.

- u2 = ∂tu1 ∈ L2(J ;Z) from (2.19) and ∂tu2 ∈ L2(J ;H) ⊂ L2(J ;Z ′).

then rewriting Problem 2.1.1 in terms of the two functions u1 and u2 introduced in Definition 2.5 will

be:

∂tAu1 −Au2 = 0,

∂tu2 +Au1 = f,
(2.20)

with given initial data u1|t=0 = u1,0 := u0 ∈ Z, u2|t=0 = u2,0 := ū0 ∈ Z.

Remark 2.5 The system in (2.20) is a generalisation of the one in [30], since the abstract spatial

operator A with properties given in Definition 2.2 on p. 6 covers not just the Laplace operator as in

[30], but all linear time-independent elliptic spatial operators with sufficiently regular coefficients. For

example:

- The (scalar) diffusion operator

Au := −div(a∇u),

occurring in the acoustic wave equation.

- The (vectorial) Lamé-Navier operator

Au := −µ∆u + (λ+ µ)∇div u.

Lemma 2.2 Let Z be the separable Hilbert space over the field C given in Definition 2.1 on p. 6.

Then the product Z × Z with a norm

‖ U ‖Z×Z :=
√

(U,U)Z×Z , (2.21)

is a separable Hilbert space. The Bochner space L2(J ;Z × Z) with the norm

‖ U ‖L2(J ;Z×Z):=
√

(U,U)L2(J ;Z×Z), (2.22)

is also a Hilbert space.

Proof:

Firstly, from Definition 2.1 Z with the norm ‖ u ‖Z :=
√

(u, u)Z for any u ∈ Z is a separable Hilbert

space, then also holds that the product Z × Z with the following norm

‖ U ‖Z×Z=
√
‖ u1 ‖2Z + ‖ u2 ‖2Z =

√
(u1, u1)Z + (u2, u2)Z =

√
(U,U)Z×Z ,
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is also a Hilbert space and separable, see [7, 1.3 Hilbert Spaces from Hilbert spaces].

Secondly, since the product Z ×Z is a separable Hilbert space as shown earlier in this proof then the

Bochner space L2(J ;Z × Z) induced with the following

‖ U ‖L2(J ;Z×Z):=
√

(U,U)L2(J ;Z×Z) =

√∫
J
(U,U)Z×Zdt, (2.23)

is also a Hilbert space and also separable, ( see [11, 1.7 Sobolev Spaces Involving Time] and [39,

Remark 10.1.10]), and that completes the proof. �
Now, it comes to couple the latter system (2.20) in vector-valued form after using the following

definition

Definition 2.6 (The matrix spatial operators)

Let Z be the Hilbert space given in Definition 2.1 on p. 6. Let A ∈ L(Z × Z ′) be the spatial (time

independent) operator given in Definition 2.2 on p. 6. The following matrix operators are defined for

U :=

(
u1

u2

)
∈ L2(J ;Z × Z):

Ā :=

(
A 0

0 I

)
, Ā : L2(J ;Z × Z)→ L2(J ;Z ′ × Z), where ĀU :=

(
Au1

u2

)
∈ L2(J ;Z ′ × Z),

and

Â :=

(
0 −A
A 0

)
, Â : L2(J ;Z × Z)→ L2(J ;Z ′ × Z ′) where ÂU :=

(
−Au2

Au1

)
∈ L2(J ;Z ′ × Z ′).

(2.24)

Remark 2.6 The operator Â given in Definition 2.6 is skew-symmetric since

−Â =

(
0 A

−A 0

)
= ÂT , where ÂT means the transpose of Â.

Then the system (2.20) reads:

Problem 2.2.1 (The first-order system in time)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Ā, and Â be the matrix operators

given in Definition 2.6.

Find U ∈ L2(J ;Z × Z), with ∂tU ∈ L2(Z ×H) ⊂ L2(J ;Z × Z ′):

∂t

Ā=︷ ︸︸ ︷(
A 0

0 I

)
U +

Â=︷ ︸︸ ︷(
0 −A
A 0

)
U = Ā

(
0

f

)
, a.e.,

(2.25)

with initial data U0 =

(
u1,0

u2,0

)
:=

(
u0

ū0

)
∈ Z × Z, and f ∈ L2(J ;H) ⊂ L2(J ;Z ′) which are the same

initial and forcing data given in (2.3) on p. 7 which satisfy the higher regularity results in (2.13) in

Corollary 2.1 on p. 8.

Lemma 2.3 (Equivalence of the evolution problem with the first-order system in time)

Problem 2.1.1 on p. 7 given that its solution satisfies the higher regularity in (2.13) in Corollary 2.1

on p. 8 is equivalent to Problem 2.2.1.
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Proof:

Firstly, starting from Problem 2.1.1 on p. 7, and setting

u1 := u, the solution of Problem 2.1.1, and

u2 := ∂tu, which satisfy the regularity results in (2.13) in Corollary 2.1 on p. 8,
(2.26)

then

∂t

=:u2︷ ︸︸ ︷
(∂tu1) +Au1 = f,

where the initial data

u1:=︷︸︸︷
u |t=0 =

=:u1,0︷︸︸︷
u0 , and

u2=︷︸︸︷
∂tu1 |t=0 =

=:u2,0︷︸︸︷
ū0 ,

and the Bochner spaces (see Definition A.22 on p. 181) of the latter functions in (2.26) are:

u1 ∈ L2(J ;Z); since u1 := u, and that u ∈ L2(J ;Z),

∂tu1 ∈ L2(J ;Z); since u1 := u, and that ∂tu ∈ L2(J ;Z),

u2 ∈ L2(J ;Z); since u2 = ∂tu1, and that ∂tu1 ∈ L2(J ;Z), and

∂tu2 ∈ L2(J ;H); since u2 := ∂tu, and that ∂t

u2:=∂tu︷ ︸︸ ︷
(∂tu) = ∂2

t u ∈ L2(J ;H),

(2.27)

with Au2 = ∂tAu1 =⇒ (∂tAu1 −Au2 = 0), thus using the matrix operators in Definition 2.6 on p. 12

i.e. for U =
(
u1
u2

)

∂t

Ā=︷ ︸︸ ︷(
A 0

0 I

)
U +

Â=︷ ︸︸ ︷(
0 −A
A 0

)
U =

(
0

f

)
,

then

Problem 2.1.1 =⇒ Problem 2.2.1, with u = u1 and ∂tAu1 = Au2. (2.28)

Secondly, starting from Problem 2.2.1, and

∂tAu1 = Au2 ⇐⇒ ∂tu1 = u2, since A is invertible, then

∂t

∂tu1︷︸︸︷
u2 +Au1 = f,

with initial data

u=︷︸︸︷
u1 |t=0 =

=u0︷︸︸︷
u1,0 , and

∂tu1=︷︸︸︷
u2 |t=0 =

=ū0︷︸︸︷
u2,0 ,

such that u1 = u and that completes the proof. �
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2.2.1 The variational formulation of the first-order system in time

Definition 2.7 (The two new dual pairings) Let Z be the Hilbert space given in Definition 2.1

on p. 6. Let A ∈ L(Z × Z ′) be the spatial time independent operator given in Definition 2.2 on p. 6:

〈Au, v〉Z′×Z = a(u, v), ∀u, v ∈ Z.

With the matrix spatial operators given in Definition 2.6 on p. 12 we define

∫
J

〈 Â︷ ︸︸ ︷(
0 −A
A 0

)
U, V

〉
Z′×Z′×Z×Z dt =

∫
J

{
− 〈Au2, v1〉Z′×Z + 〈Au1, v2〉Z′×Z

}
dt

=

∫
J

{
− a(u2, v1) + a(u1, v2)

}
dt =:

∫
J
â(U, V )dt,

∫
J

〈
∂t

Ā=︷ ︸︸ ︷(
A 0

0 I

)
U, V

〉
Z′×Z′×Z×Z dt =

∫
J

{
− 〈∂tAu1, v1〉Z′×Z + 〈∂t u2, v2〉Z′×Z

}
dt

=

∫
J

{
a(∂tu1, v1) + 〈∂t u2, v2〉Z′×Z

}
dt,

(2.29)

for all U =

(
u1

u2

)
, V =

(
v1

v2

)
∈ L2(J ;Z × Z).

Remark 2.7 From Remark 2.6 on p. 12 and the symmetry property of the form a( , ), also the form

â(U, V ) is skew-symmetric i.e.

−â(U, V ) = â(V,U).

Deriving the variational formulation for Problem 2.2.1 on p. 12, starts by choosing a test vector-

valued function V =

(
v1

v2

)
∈ L2(J ;Z×Z), testing Problem 2.2.1 with it. With using the dual pairings

given in (2.29) in Definition 2.7, then∫
J

{
〈∂tĀU, V 〉Z′×Z′×Z×Z + 〈ÂU, V 〉Z′×Z′×Z×Z

}
dt =

∫
J
〈
(

0

f

)
, V 〉Z′×Z′×Z×Zdt.

In component-wise it would be∫
J
{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z − a(u2, v1) + a(u1, v2)}dt =

∫
J
〈f, v2〉Z′×Zdt. (2.30)

Then with defining the following form with the use of â( , ) given in Definition 2.7:

B(U, V ) :=

∫
J

{
a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )

}
dt, (2.31)

and with given
(

0
f

)
∈ L2(J ;Z ×H) the functional (see Definition A.18 on p. 176) F ∈ L2(J ;Z ×H)′:

F (V ) : =

∫
J
(f, v2)Hdt,∀v2 ∈ L2(J,H), (2.32)

where here all vector-valued functions in L2(J ;Z × Z) are also involved in the this linear map since

L2(J ;Z × Z) ⊂ L2(J ;Z ×H).

The variational formulation of Problem 2.2.1 on p. 12 reads:
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Problem 2.2.2 (The variational formulation of the first-order system in time)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let B( , ) be the form given in

(2.31) and F (·) the functional in (2.32).

Find U ∈ L2(J ;Z × Z) with ∂tU ∈ L2(J ;Z ×H) ⊂ L2(J ;Z × Z ′):

B(U, V ) = F (V ), ∀V ∈ L2(J ;Z × Z), (2.33)

for given initial data U0 =

(
u1,0

u2,0

)
∈ Z × Z and f ∈ H1(J ;H).

Lemma 2.4 (Equivalence of the first-order system in time with its formulation)

Problem 2.2.2 is equivalent to Problem 2.2.1 on p. 12.

Proof:

Firstly, starting with the choice of an arbitrary real vector-valued test function V ∈ L2(J ;Z×Z), and

testing Problem 2.2.1 with it. After using the forms in Definition 2.7 on p. 14, and the given spaces

of u1, u2 and their time partial derivatives in (2.27) on p. 13, then

∫
J

{〈
∂t

Ā=︷ ︸︸ ︷(
A 0

0 I

)
U, V

〉
Z′×Z′×Z×Z

+
〈 Â=︷ ︸︸ ︷(

0 −A
A 0

)
U, V

〉
Z′×Z′×Z×Z

}
dt

=

∫
J

〈 Ā=︷ ︸︸ ︷(
A 0

0 I

)(
0

f

)
,

(
v1

v2

)〉
Z′×Z′×Z×Z

dt,

=⇒
∫
J

{
a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )

}
dt =

∫
J
〈f, v2〉Z′×Zdt, ∀V ∈ L2(J ;Z × Z),

with given data f ∈ H1(J ;H) i.e. f ∈ L2(J ;H) ⊂ L2(J ;Z ′) and U0 ∈ Z × Z.

Secondly, starting with Problem 2.2.2 that is∫
J

{
a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )

}
dt =

∫
J
〈f, v2〉Z′×Zdt, for all V ∈ L2(J ;Z × Z).

After using the given forms in (2.29) in Definition 2.7 in the previous page such that∫
J
a(∂tu1, v1)dt =

∫
J
〈∂tAu1, v1〉Z′×Zdt,

then ∫
J

{
〈∂tĀU, V 〉Z′×Z′×Z×Z + 〈ÂU, V 〉Z′×Z′×Z×Z

}
dt =

∫
J
〈f, v2〉Z′×Zdt,

=

∫
J

〈 Ā=︷ ︸︸ ︷(
A 0

0 I

)(
0

f

)
, V
〉
Z′×Z′×Z×Z

dt,

=⇒
∫
J
〈∂tĀU + ÂU −

Ā=︷ ︸︸ ︷(
A 0

0 I

)(
0

f

)
, V 〉Z′×Z′×Z×Zdt = 0.
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Referring to Corollary A.10 on p. 179 i.e. for all V =

(
v1

v2

)
∈ L2(J ;Z × Z), then there exists

∂tĀU + ÂU = Ā

(
0

f

)
,

with having regular data; f ∈ H1(J ;H), U0 :=
(
u0
ū0

)
∈ Z×Z given in (2.13) in Corollary 2.1 on p. 8 and

that completes the proof. �

2.2.2 Stability estimate, existence and uniqueness

This section starts with showing stability estimate of the solution of Problem 2.2.2 on p. 15 in

Lemma 2.5 on p. 16 in the (L2(J ;Z × Z), ‖ · ‖L2(J ;E))-normed product space. This section ends

with the existence and uniqueness proof for the solution of Problem 2.2.2 on p. 15.

Lemma 2.5 (The stability of the variational formulation of the first-order system in time)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let A ∈ L(Z × Z ′) be the spatial

operator given in Definition 2.2 on p. 6. In the normed product space (L2(J ;Z ×Z), ‖ · ‖L2(J ;E)), the

solution of the variational formulation in (4.4) with a functional F ∈ L2(J ;Z ′×Z ′) with forcing data(
0
f

)
∈ L2(J ;Z ×H) ⊂ L2(J ;Z × Z ′) and initial data U0 ∈ Z × Z, satisfies

‖ U ‖L2(J ;E)≤ T
√
C
(
‖ f ‖L2(J ;H) + ‖ U0 ‖E

)
, (2.34)

for

‖ U ‖2L2(J ;E):=

∫
J

{ ‖U‖2E=︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H

}
dt, ∀U ∈ L2(J ;Z × Z), (2.35)

where C is a generic constant which does not depend on T <∞.

Proof:

Starting with the variational formulation in (2.33) and considering the vector-valued test function to

be

V =

{
V̄ (τ), V̄ (τ) ∈ L2((0, t);Z × Z), for t < T <∞,
0, elsewhere.

Then it becomes∫ t

0

{
a(∂τu1, v̄1) + 〈∂τu2, v̄2〉Z′×Z + â(U, V̄ )

}
dτ = F (V̄ ) =

∫ t

0
(f, v̄2)Hdτ. (2.36)

Then with choosing V̄ = U ∈ L2((0, t);Z × Z), which are all real and thus the form a( , ) is real and

symmetry holds, applying the chain rule in a(∂τu1, u1) and Theorem A.7 on p. 181 in 〈∂τu2, u2〉Z′×Z :

a(∂τu1, u1) =
1

2

d

dτ
a(u1, u1), by the symmetry of a( , ), and

〈∂τu2, u2〉Z′×Z =
1

2

d

dτ
‖ u2 ‖2H , respectively,

then using the Cauchy inequality with the Bochner integral norm in Definition A.22 on p. 181 with

p = 2 with the Hilbert space (L2((0, t);Z × H), ‖ · ‖E), and Young’s inequality (see Lemma A.2 on

p. 181) in the r.h.s of (2.36), imply∫ t

0

{
a(∂τu1, u1) + 〈∂τu2, u2〉Z′×Z

=0︷ ︸︸ ︷
−a(u2, u1) + a(u1, u2)

}
dτ =

∫ t

0
(f, u2)Hdτ
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=⇒ 1

2

∫ t

0

d

dτ
{

=‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dτ =

∫ t

0
(f, u2)Hdτ

≤
√
T ‖ f ‖L2((0,t);H)

1√
T
‖ u2 ‖L2((0,t);H),

≤ 1

2

(
T ‖ f ‖2L2((0,t);H)

+
1

T
‖ u2 ‖2L2((0,t);H)︸ ︷︷ ︸

≤

∫ t

0
a(u1, u1)dτ+ ‖ u2 ‖2L2((0,t);H)

)

=
1

2

(
T ‖ f ‖2L2((0,t);H) +

1

T
‖ U ‖2L2((0,t);E)

)
,

with multiplying both sides with 2 and then using the Gronwall’s inequality given in Theorem A.8 on

p. 182, where

e
t
T ≤ e1 = C, for t ≤ T, (2.37)

imply

‖ U(t) ‖2E ≤ C
(
T ‖ f ‖2L2((0,t);H) + ‖ U0 ‖2E

)
, (2.38)

where C is a constant which does not depend on T . Now, taking the integral over J = (0, T ) of both

sides in (2.38) and using the inequality∫ t

0
u2dτ ≤

∫ t

0
u2dτ +

∫ T

t
u2dτ =

∫
J
u2dt, ∀t ∈ J = (0, T ), 0 < t < T <∞.

Knowing that ‖ U0 ‖2E and

∫
J
‖ f ‖2H dt are constants in time, then

‖ U ‖2L2(J ;E) ≤ C
(
T

∫
J

∫ t

0
‖ f ‖2H dτdt︸ ︷︷ ︸

≤

∫
J

∫
J
‖ f ‖2H dtdt

+T ‖ U0 ‖2E
)

≤ T 2C
(
‖ f ‖2L2(J ;H) + ‖ U0 ‖2E

)
=⇒‖ U ‖L2(J ;E) ≤ T

√
C
(
‖ f ‖L2(J ;H) + ‖ U0 ‖E

)
, after using Lemma A.3 on p. 181. �

Theorem 2.3 (Existence, uniqueness of the formulation of first-order system in time)

Let Z be Hilbert space given in Definition 2.1 on p. 6. There exists a unique real solution U =

(
u1

u2

)
∈

L2(J ;Z × Z) which solves Problem 2.2.2 on p. 15.

Proof:

Firstly, to show uniqueness, Let U1 =
(u11
u12

)
and U2 =

(u21
u22

)
be two solutions which solve Problem 2.2.2.

Let W̄ := U1 − U2 which solves∫
J

{
a(∂tw̄1, v1) + 〈∂tw̄2, v2〉Z′×Z + â(W̄ , V )

}
dt = 0,∀V ∈ L2(J ;Z × Z), with initial data W̄0 = 0.
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Then with choosing V = W̄ ∈ L2(J ;Z × Z), and repeating the same steps in the proof of Lemma 2.5

on p. 16 but this time with zero forcing and initial data i.e. F = 0 and W̄0 = 0:

‖ W̄ ‖2L2(J ;E)= 0 =⇒ 0 = W̄ = U1 − U2, i.e. U1 = U2. (2.39)

Secondly, to show existence and from the given equivalence proofs in Lemmas 2.4 on p. 15 and 2.3 on

p. 12, respectively i.e.

Problem 2.2.2 on p. 15⇐⇒ Problem 2.1.1 on p. 7,

and from the existence of the solution of the latter as give in Theorem 2.2 with Corollary 2.1 on p. 8

and since U =

(
u1

u2

)
∈ L2(J ;Z × Z) for

u1 = u, the solution of Problem 2.1.1 on p. 7 and

u2 = ∂tu,

the real functions given in Definition 2.5 on p. 10 which solve Problem 2.2.2 and satisfy (2.13) in

Corollary 2.1 thus that imply the existence and that completes the proof. �
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Chapter 3

High-order in time DGFEM with

conformal spatial discretisation for the

variational formulation of the

first-order system in time

The main techniques related to the discretisation in time introduced by Dominik Schötzau (see [44])

are used in the coming sections. In addition to some techniques related to the proof of the a priori

error estimate introduced by Claes Johnson approach [30]. These techniques would now be applied to

approximate our continuous variational formulation of the first-order system in time by first discretising

in time with using high-order in time DGFEM approach introduced by Dominik Schötzau [44] and

then apply conformal spatial discretisation to the semi-discrete formulation to get the fully-discretised

formulation.

3.1 The Generalisation of Schötzau theorem

In this section, the introduced high-order in time Discontinuous Galerkin Finite Element method,

DGFEM for (scalar) abstract parabolic problem in [44] will now be extended to the (vector-valued)

first-order system in time variational formulation of the abstract linear wave equation given in Prob-

lem 2.2.2 on p. 15.

Briefly, the idea of the extended approach is to approximate in time the continuous vector-valued solu-

tion U =

(
u1

u2

)
∈ L2(J ;Z × Z) of Problem 2.2.2 on p. 15 by partitioning the time interval J = (0, T )

into N time steps and on each time step In for n = 0, · · · , N−1, approximate the time bases by a poly-

nomial in time of degree rn > 1 whose coefficients are in the Hilbert-product space (Z ×Z, ‖ · ‖Z×Z).

At any time node, the solution is allowed to be discontinuous, resulting the semi-discrete formulation.

Then using a conformal spatial discretisation to get the fully-discretised formulation.

In this section, the semi-discrete spaces will be defined. Essential identity and lemmas needed to

generalise the theorem in [44] will be discussed here with pointing out the differences between it and

our generalised theorem in this thesis.

Definition 3.1 (Semi-discrete spaces in time)

Let N be a partition of the time interval J = (0, T ) such that the time interval J is partitioned into a
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time mesh of N time steps so that J = ∪N−1
n=0 In, where

In = (tn, tn+1), 0 ≤ n ≤ N − 1.

The time step size kn := tn+1 − tn, with nodes 0 =: t0 < t1 . . . < tN := T , and associating with

each time interval In an approximation order rn ≥ 0, with storing these temporal orders in the vector

r := {rn}N−1
n=0 . On the mesh N = {In}N−1

n=0 , the following semi-discrete spaces are:

Vr(N ;Z × Z) := {U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1} . (3.1)

Vr(N ;Z × Z) is a linear space consisting of piecewise polynomials in time with coefficients in Z × Z.

It is a subspace of L2(J ;Z × Z). P rn(In;Z × Z) denotes the space of rnth order polynomials in time

at In with coefficients in Z × Z.

Cb(N ;Z × Z) := {U : J → Z × Z : U |In ∈ Cb(In;Z × Z), 0 ≤ n ≤ N − 1} , (3.2)

is the space of Z × Z-vector-valued functions which are bounded and piecewise continuous in time.

Cb(In;Z × Z) denotes the bounded continuous function on In.

If r is constant on each time interval, i.e. rn = r, for all 0 ≤ n ≤ N − 1, the space in (3.1) will be

simplified as Vr(N ;Z × Z).

Remark 3.1

The definitions used here are the same as the ones in [44], with now considering In = (tn, tn+1), for

0 ≤ n ≤ N − 1 and with Hilbert-product spatial abstract spaces instead of a scalar spatial abstract

Hilbert space. The time partitioning notations used here are the same as the ones used by C Johnson,

[30].

Definition 3.2 Let ϕnε , ε > 0, be the real-valued and continuous function that interpolates piecewise

linearly the following values at the nodes {tn, tn + ε, tn+1 − ε, tn+1}, for 0 ≤ n ≤ N − 1:

ϕnε (t) =


0, t ≥ tn+1,

0, t ≤ tn,
1, t ∈ [tn + ε, tn+1 − ε],

(3.3)

which gives

d

dt
ϕnε (t) =


1
ε , in (tn, tn + ε),

−1
ε , in (tn+1 − ε, tn+1),

0, elsewhere.

(3.4)

Definition 3.3 (The left/right-sided limits and jumps) In the high-order in time DGFEM, the

time polynomials on different time steps are not required to be continuous across the time nodes, thus

the left/right-sided limits in (Z × Z, ( , )E) of a vector-valued function U at any given time node are

defined as:

Un− = lim
s→0,s>0

U(tn − s), 0 < n ≤ N − 1,

Un+ = lim
s→0,s>0

U(tn + s), 0 ≤ n ≤ N − 1,

and the jump of U across tn is

[Un] := Un+ − Un−, 0 ≤ n ≤ N − 1.

The restriction of U to In is denoted by Un.
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Definition 3.4 Let Z be the Hilbert space given in Definition 2.1 on p. 6. For a time interval J =

(0, T ), T <∞, the following is defined

Y(J) :=

{
U =

(
u1

u2

)
such that U ∈ L2(J ;Z × Z), ∂tU ∈ L2(J ;Z × Z ′)

}
. (3.5)

Corollary 3.1 Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6.

Let U ∈ Y(J), J = (0, T ) and T <∞. For U ∈ Y(J) given in Definition 3.4, then

U ∈ C([0, T ];Z ×H) := space of continuous functions from [0, T ]→ Z ×H.

Proof:

Starting from Definition 3.3 on p. 20, and for U ∈ Y(J) in component-wise would be

u1 ∈ L2(J ;Z), ∂tu1 ∈ L2(J ;Z), and u2 ∈ L2(J ;Z), ∂tu2 ∈ L2(J ;Z ′),

which imply that

u1 ∈ H1(J ;Z) := {v|v ∈ L2(J ;Z), ∂tv ∈ L2(J ;Z)},
u2 ∈ W(J) :=

{
v|v ∈ L2(J ;Z), ∂tv ∈ L2(J ;Z ′)

}
, see [52, c.f. Proposition 23.23],

due to that, then

u1 ∈ C(J̄ ;Z), and u2 ∈ C(J̄ ;H).

Thus

U =

(
u1

u2

)
∈ C(J̄ ;Z×H). �

The following identity is going to be used in the proof of Theorem 3.1 on p. 23.

Lemma 3.1 (Essential identity)

Let Z be the Hilbert space given in Definition 2.1 on p. 6. Let

v(t, x) = ψε(t)v̄, for v̄ ∈ Z and ψε(t) ∈ C∞0 (J), (3.6)

where C∞0 (J), denotes the C∞0 -functions with compact support in J .

For u ∈ W(J) =
{
v|v ∈ L2(J ;Z), ∂tv ∈ L2(J ;Z ′)

}
such that W(J) ⊂ C([0, T ];H), then∫

J
〈∂tu, v〉Z′×Zdt = −

∫
J
(u, v̄)H

d

dt
ψε(t)dt, ∀v̄ ∈ Z, ψε(t) ∈ C∞0 (J), (3.7)

see Theorem A.7 on p. 181 and [52, c.f. Proposition 23.20].

Lemma 3.2 (Important Identity) Let Z and H be the Hilbert spaces given in Definition 2.1 on

p. 6. Let N = {In} be the partition of J = (0, T ) for n = 0, · · · , N − 1. Let Y(J) be the new space

given in Definition 3.3 on p. 20.
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For U =

(
u1

u2

)
∈ Y(J) =

{
U =

(
u1

u2

)
such that U ∈ L2(J ;Z × Z), ∂tU ∈ L2(J ;Z × Z ′)

}
, then at a

time interval In = (tn, tn+1)∫
In

a(∂tu1, (ϕ
n
ε (t)v̄1))dt+

∫
In

〈∂tu2, (ϕ
n
ε (t)v̄2)〉Z′×Zdt = (Un+1

− , V n+1
− )E − (Un+, V

n
+ )E , (3.8)

∀V (t, x) = ϕnε (t)V̄ , for V̄ =
(
v̄1
v̄2

)
∈ Z × Z,ϕnε (t) ∈ C∞0 (In), the time basis given in Definition 3.2 on

p. 20 where C∞0 (In) denotes the C∞0 -functions with compact support in In and

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Z × Z. (3.9)

Remark 3.2 In comparison to the arguments in the proof of [44, Lemma 1.3], the second term in

(3.8) on p. 22 that is ∫
In

〈∂tu2, ϕ
n
ε (t)v̄2)〉Z′×Zdt,

follows the same arguments in [44, Lemma 1.3]. Whereas, the first term in (3.8) is the additional term

to what was discussed in [44]. The form a( , ) is time-independent inner-product and the following lines

in the proof of Lemma 3.2 on p. 21 will show how it can be treated with the second term rendering the

E-inner product of left/right-sided limits of the trail and test vector-valued functions at a given time

interval In for n = 0, · · · , N − 1.

Proof:

Given Corollary 3.1 on p. 21 which states that the vector-valued function U ∈ Y ⊂ C(J̄ ;Z ×H) and

for J = ∪N−1
n=0 In, then U ∈ C(Īn;Z ×H).

Firstly, the arguments in the proof of [44, Lemma 1.3] with the Essential identity 3.1 on p. 21 are

recalled for the second term in (3.8) such that∫
In

〈∂tu2, v2〉Z′×Zdt = −
∫
In

(u2, v̄2)H
d

dt
ϕnε (t)dt = (un+1

2,− , v
n+1
2,− )H − (un2,+, v

n
2,+)H . (3.10)

Secondly, with knowing that the form a( , ) is a time independent inner product, then with integrating

by parts then∫
In

a(∂tu1, v̄1ϕ
n
ε (t))dt = a(u1, v̄1ϕ

n
ε (t))|∂In −

∫
In

a(u1, ∂t(v̄1ϕ
n
ε (t)))dt

=⇒
∫
In

a(∂tu1, v̄1ϕ
n
ε (t))dt = a(u1(tn+1), v̄1ϕ

n
ε (tn+1))− a(u1(tn), v̄1ϕ

n
ε (tn))−

∫
In

a(u1, ∂t(v̄1ϕ
n
ε (t)))dt.

Now, in (3.3) in Definition 3.2 on p. 20 the time basis function ϕnε has zero values at the nodes tn and

tn+1, thus ∫
In

a(∂tu1, v̄1ϕ
n
ε (t))dt = −

∫
In

a(u1, ∂t(v̄1ϕ
n
ε (t)))dt,

with taking the limit at ε→ 0, using Lebesgue differentiation theorem, see [46, Theorem 1.17], applying

the product rule of differentiation in the second term that is

−
∫
In

a(u1, ∂t(v̄1ϕ
n
ε (t)))dt,
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and the left/right-sided limits given in Definition 3.3 in (3.3) on p. 20 in Hilbert space (Z, a( , )), and

then for In = (tn, tn+1) and with using the results from (3.4) in Definition 3.2 on p. 20 and that

∂tv̄1 = 0 since it is a coefficient in Z, yield to

∫
In

a(∂tu1, v̄1ϕ
n
ε (t))dt = −

∫
In

{a(u1,

=0︷︸︸︷
∂tv̄1)ϕnε (t) + a(u1, v̄1)∂tϕ

n
ε (t)}dt

=⇒
∫
In

a(∂tu1, (v̄1ϕ
n
ε (t)))dt = −

∫
In

a(u1v̄1)∂tϕ
n
ε (t)dt

= −
(1

ε

∫ tn+ε

tn

a(u1, v̄1)dt+

∫ tn+1−ε

tn+ε
a(u1, v̄1)

(
∂tϕε(t) = 0

)
dt

− 1

ε

∫ tn+1

tn+1−ε
a(u1, v̄1)dt

)
= −

(1

ε

∫ tn+ε

tn

a(u1, v̄1)dt− 1

ε

∫ tn+1

tn+1−ε
a(u1, v̄1)dt

)

=⇒
∫
In

a(∂tu1, v1)dt = a(un+1
1,− , v

n+1
1,− )− a(un1,+, v

n
1,+). (3.11)

Finally, with adding (3.11) to (3.10), that completes the proof. �
The following problem is considered to derive the generalisation of [44, Lemma 1.3].

Problem 3.1.1

Let Z and H be the Hilbert spaces over the field C, given in Definition 2.1 on p. 6.

Let Y(J) =
{
U |U ∈ L2(J ;Z × Z), ∂tU ∈ L2(J ;Z × Z ′)

}
be the Bochner space given in Definition 3.3

on p. 20. Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14:

â(U, V ) = −a(u2, v1) + a(u1, v2),∀U, V ∈ Z × Z.

Find real vector-valued function U =

(
u1

u2

)
∈ Y(J):

∫
J
{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )}dt =

∫
J
〈f, v2〉Z′×Zdt

∀V =

(
v1

v2

)
∈ Y0(J) :={V ∈ Y(J) : V (0, ·) = 0, and V (T, ·) = 0},

(3.12)

with given initial data U0 ∈ Z × Z and forcing data f ∈ H1(J ;H).

The formulation in (3.12) is equivalent to Problem 2.2.2 on p. 15 since U the vector-valued solution

of (3.12) satisfies the higher regularity of the solution of Problem 2.2.2 and also the solution of the

latter is in the space Y(J) for all smooth enough vector-valued test function.

Remark 3.3 Only real trial and test vector-valued functions are considered in (3.12).

Theorem 3.1 (Generalised Schötzau theorem) Let Z and H be the Hilbert spaces given in Defin-

ition 2.1 on p. 6. Let ( , )E be the inner product given in Corollary 2.2 on p. 10:

(U, V )E = a(u1, v1) + (u2, v2)H , for all U, V ∈ Z × Z,
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The solution U ∈ Y(J) of (3.12) satisfies

N−1∑
n=0

∫
In

{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )}dt+

N−1∑
n=1

([U ]n, V n
+ )E + (U0

+, V
0

+)E

=

N−1∑
n=0

∫
In

〈f, v2〉Z′×Z dt+ (U0, V
0

+)E ,

∀V ∈ Cb(N ;Z × Z),

(3.13)

where Cb(N ;Z×Z) is the Z×Z-valued functions which are bounded and piecewise continuous in time.

U0 =
(
u1,0
u2,0

)
is the given initial data, Y(J) =

{
U |U ∈ L2(J ;Z × Z), ∂tU ∈ L2(J ;Z × Z ′)

}
is the new

space given in Definition 3.3 on p. 20, and â(U, V ) = −a(u2, v1) + a(u1, v2) is the skew-symmetric

form given in Definition 2.7 on p. 14.

Proof:

Firstly, integrating by parts the first two terms in (3.12) on p. 23, with V ∈ Y0(J) for

Y0(J) = {V ∈ Y(J) : V (0, ·) = 0, and V (T, ·) = 0},

it yields

=0︷ ︸︸ ︷
(a(u1, v1) + 〈u2, v2〉Z′×Z)|∂J −

∫
J
{a(u1, ∂tv1) + 〈u2, ∂tv2〉Z×Z′}dt+

∫
J
â(U, V )dt =

∫
J
〈f, v2〉Z′×Z dt,

=⇒ −
∫
J
{a(u1, ∂tv1) + 〈u2, ∂tv2〉Z×Z′}dt+

∫
J
â(U, V )dt =

∫
J
〈f, v2〉Z′×Zdt, ∀V ∈ Y0(J ;Z × Z).

Partitioning the time interval J = (0, T ) into subintervals {In}N−1
n=0 , and letting the test vector-valued

function V (t, x) = ϕnε (t)V̄ , for V̄ ∈ Z×Z and ϕnε (t) ∈ C∞0 (In), be the time basis given in Definition 3.2

on p. 20. By the density of (C∞0 (J)⊗Z ×Z) in Y0(J ;Z ×Z), then in every time interval In we have

−
∫
In

{a(u1, ∂t(v̄1ϕ
n
ε (t))) + 〈u2, ∂t(v̄2ϕ

n
ε (t))〉Z×Z′}dt+

∫
In

â(U, V̄ ϕnε (t))dt =

∫
In

〈f, v̄2ϕ
n
ε (t)〉Z′×Zdt,

and after applying the product rule of differentiation and since v1 and v2 in

∂t(v̄1ϕ
n
ε (t)), and ∂t(v̄2ϕ

n
ε (t)), respectively are coefficient in Z which are constants in time,

then that yield

−
∫
In

a(u1, v̄1)
d

dt
ϕnε (t)dt−

∫
In

〈u2, v̄2〉Z×Z′
d

dt
ϕnε (t)dt+

∫
In

â(U, V̄ ϕnε (t))dt =

∫
In

〈f, v̄2ϕ
n
ε (t)〉Z′×Zdt,

(3.14)

with applying the result in the proof of Lemma 3.2 on p. 21 after the integration by parts and with

left/right-sided limits which exist in (Z × Z, (, )E), yields

(Un+1
− , V n+1

− )E − (Un+, V
n

+ )E +

∫
In

â(U, V̄ ϕnε (t))dt =

∫
In

〈f, v̄2ϕ
n
ε (t)〉Z′×Zdt. (3.15)
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But, since in Lemma 3.2 on p. 21∫
In

a(∂tu1, v1)dt+

∫
In

〈∂tu2, v2〉Z′×Zdt = (Un+1
− , V n+1

− )E − (Un+, V
n

+ )E , for all V (t, x) = (ϕnε (t)V̄ ),

for V̄ ∈ Z × Z and ϕnε (t) ∈ C∞0 (In),

then ∫
In

{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z}dt+

∫
In

â(U, V )dt =

∫
In

〈f, v2〉Z′×Zdt, ∀V ∈ Cb(V;Z × Z),

and with summing over n for 0 ≤ n ≤ N − 1, gives

N−1∑
n=0

∫
In

{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )}dt =

N−1∑
n=0

∫
In

〈f, v2〉Z′×Zdt. (3.16)

Now, after summing over n, for 0 ≤ n ≤ N − 1, and using the result in Corollary 3.1 on p. 21 which

states that U ∈ C(J̄ ;Z × H) and similarly U ∈ C(Īn;Z × H), then [U ]n = 0, and with setting

U0
− = U0 =

(
u1,0

u2,0

)
, thus (3.16) can be written as

N−1∑
n=0

∫
In

{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )}dt+
N−1∑
n=1

([U ]n, V n
+ )E + (U0

+, V
0

+)

=
N−1∑
n=0

∫
In

〈f, v2〉Z′×Z dt+ (U0, V
0

+)E ,

∀V ∈ Cb(N ;Z × Z),

and that completes the proof. �

3.2 High-order in time DGFEM, semi-discrete formulation

Let N = {In}N−1
n=0 be a partition of J = (0, T ) for T < ∞. Let r be the vector which stores the

temporal orders in N . Using the semi-discrete space given in Definition 3.1 on p. 19 which is

Vr(N ;Z × Z) =
{
U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1

}
.

With using the defined E-inner product in Corollary 2.2 on p. 10:

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Z × Z,

such that

N−1∑
n=0

([UDG]n, V n
+ )E =

N−1∑
n=1

([UDG]n, V n
+ )E + ([UDG]0, V 0

+)E

=
N−1∑
n=1

([UDG]n, V n
+ )H + (U0

DG,+, V
0

+)H − (U0
DG,−, V

0
+)H

=

N−1∑
n=1

([UDG]n, V n
+ )H + (U0

DG,+, V
0

+)H − (U0, V
0

+)H .

25



Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14:

â(UDG, V ) = −a(u2,DG, v1) + a(u1,DG, v2),

then we define the semi-discrete form:

BDG(UDG, V ) :=
N−1∑
n=0

∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+

N−1∑
n=1

([UDG]n, V n
+ )E + (U0

DG,+, V
0

+)E ,

(3.17)

and for f ∈ L2(J ;H), the linear functional (see Definition A.18 on p. 176) FDG : L2(J ;H)→ C such

that FDG ∈ (L2(J ;H))′ ≡ L2(J ;H) where L2 is a pivot space i.e. (L2)′ = L2 (see [3, 5.3 Normal

Subspaces of a pivot space]) and H ≡ H ′ from the Gelfand triple (Z ⊂ H ⊂ Z ′):

FDG(V ) :=

N−1∑
n=0

∫
In

(f, v2)Hdt. (3.18)

The high-order in time DGFEM for Problem 2.2.2 on p. 15 reads:

Problem 3.2.1 (Semi-discrete formulation)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let BDG( , ) be the form given in

(3.17) and FDG(·) the linear functional in (3.18). Let ( , )E be the inner product given in Corollary 2.2

on p. 10:

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Z × Z.

Let Vr(N ;Z × Z) =
{
U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1

}
be the semi-discrete

space given in Definition 3.1 on p. 19.

Find UDG ∈ Vr(N ;Z × Z) such that

BDG(UDG, V ) = FDG(V ) + (U0
DG,−, V

0
+)E , ∀ V ∈ Vr(N ;Z × Z), (3.19)

with given initial condition U0
DG,− = U0 =

(
u1,0

u2,0

)
∈ Z × Z and forcing data f ∈ H1(J ;H).

The coming lemma shows an important identity which will be used in the proof of a priori error

estimate.

Lemma 3.3 (Important identity for the semi-discrete form BDG( , ))

Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14:

â(UDG, V ) = −a(u2,DG, v1) + a(u1,DG, v2),

and ( , )E be the inner product given in Corollary 2.2 on p. 10:

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Z × Z.

For the form BDG( , ) defined in (3.17) on p. 26, there holds

BDG(U, V ) =
N−1∑
n=0

∫
In

{
− (∂tV,U)E − â(V,U)

}
dt−

N−1∑
n=1

([V ]n, Un−)E + (V N
− , U

N
− )E , (3.20)

for real vector-valued U, V ∈ Vr(N ;Z×Z) =
{
U : J → Z×Z : U |In ∈ P rn(In;Z×Z), 0 ≤ n ≤ N−1

}
.

(Similar results can be found in [30, c.f. Lemma 3.2 ].
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Proof:

Starting with integrating by parts in the first term of the form BDG( , ) in (3.17):

BDG(U, V ) =
N−1∑
n=0

∫
In

{
(∂tU, V )E + â(U, V )

}
dt+

N−1∑
n=1

([U ]n, V n
+ )E + (U0

+, V
0

+)E , (3.21)

then
N−1∑
n=0

∫
In

(∂tU, V )Edt =
N−1∑
n=0

(U, V )E |∂In −
N−1∑
n=0

∫
In

(U, ∂tV )Edt,

for In = (tn, tn+1) and taking the left/right-sided limits at the nodes (tn+1 − s) and (tn + s) as s→ 0

yield

N−1∑
n=0

(U, V )E |∂In =

N−1∑
n=0

lim
s→0

(
(U(tn+1 − s), V (tn+1 − s))E − (U(tn + s), V (tn + s))E

)
=

N−1∑
n=0

(
(Un+1
− , V n+1

− )E − (Un+, V
n

+ )E

)
,

and with rearranging the sum terms yields

N−1∑
n=0

∫
In

(∂tU, V )Edt = (UN− , V
N
− )E +

N−1∑
n=1

(Un−, V
n
− )E −

N−1∑
n=0

(Un+, V
n

+ )E −
N−1∑
n=0

∫
In

(U, ∂tV )Edt. (3.22)

Plugging (3.22) back into the form BDG(U, V ) in (3.21) and with rearranging the sum terms where

[U ]n = Un+ − Un−, and the use of the symmetry of the E-inner product and the skew-symmetry of the

form â(U, V ) such that â(U, V ) = −â(V,U) given in Remark 2.7 on p. 14, then

BDG(U, V ) = (UN− , V
N
− )E +

N−1∑
n=1

(Un−, V
n
− )E − (U0

+, V
0

+)E −
N−1∑
n=1

(Un+, V
n

+ )E −
N−1∑
n=0

∫
In

(∂tV,U)Edt

−
N−1∑
n=0

∫
In

â(V,U)dt+
N−1∑
n=1

(Un+, V
n

+ )E −
N−1∑
n=1

(Un−, V
n

+ )E + (U0
+, V

0
+)E

=
N−1∑
n=0

∫
In

{
− (∂tV,U)E − â(V,U)

}
dt−

N−1∑
n=1

([V ]n, Un−)E + (V N
− , U

N
− )E ,

and that completes the proof. �

The high-order in time DGFEM formulation can be interpreted as an implicit time marching

scheme.

Problem 3.2.2 (Semi-discrete time-stepping scheme)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let â( , ) be the skew-symmetric

form given in Definition 2.7 on p. 14. Let ( , )E be the inner product given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2),

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Z × Z.
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Let P rn(In;Z ×Z) be the semi-discrete space of rnth order polynomials in time at In with coefficients

in Z × Z given in Definition 3.1 on p. 19.

Find UDG ∈ P rn(In;Z × Z) such that

bnDG(UDG,V ):=︷ ︸︸ ︷∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+ (UnDG,+, V

n
+ )E =

FnDG(V ):=︷ ︸︸ ︷∫
In

(f, v2)Hdt+(UnDG,−, V
n

+ )E ,
(3.23)

for all V ∈ P rn(In;Z × Z), with UnDG,− to be the initial value at the time step In, for 0 ≤ n ≤ N − 1,

and given forcing data f ∈ H1(J ;H).

Corollary 3.2 The form bnDG( , ) in (3.23) in Problem 3.2.2 satisfies

bnDG(U, V ) = (Un+1
− , V n+1

− )E −
∫
In

(U, ∂tV )Edt+

∫
In

â(U, V )dt,∀U, V ∈ P rn(In;Z × Z).

Proof:

Starting with integrating by parts the first term of the form bnDG( , ) in (3.23) in Problem 3.2.2 and

repeating the same steps in the proof of Lemma 3.3 on p. 26 but this time without sums i.e.

bnDG(U, V ) = (Un+1
− , V n+1

− )E − (Un+, V
n

+ )E −
∫
In

(U, ∂tV )Edt+

∫
In

â(U, V )dt+ (Un+, V
n

+ )E

= (Un+1
− , V n+1

− )E −
∫
In

(U, ∂tV )Edt+

∫
In

â(U, V )dt,∀U, V ∈ P rn(In;Z × Z).

and that completes the proof. �

3.2.1 Decoupling, existence and uniqueness

The form BDG( , ) in the semi-discrete formulation (3.19) on p. 26 and more precisely as given in

Remark 2.7 on p. 14 the form â( , ) is skew-symmetric and not symmetric as the case in [44]. Because

of that, time decoupling technique introduced in [44] is used in order to show at the end that our

semi-discrete formulation is uniquely solvable.

3.2.1.1 Time decoupling

Let rn → r, and In → I = (t0, t1), then for a generic time step I with a step size k = t1 − t0 and an

approximation order r, the implicit time marching scheme in (3.23) is now written as

Find UDG ∈ P r(I;Z × Z) such that∫
I

{
(∂tUDG, V )E + â(UDG, V )

}
dt+ (UDG,+(t0), V+(t0))E =

∫
I
(f, v2)Hdt+ (U0

DG,−, V+(t0))E ,

for all V ∈ P r(I;Z × Z), with U0
DG,− =: UDG,−(t0) the initial value at a given time step I.

(3.24)

Definition 3.5 (Time bases polynomials)

Let P r(t0, t1) be the space of polynomials in time up to an order r. Let {ϕj}rj=0 and {ψi}ri=0 be two

bases in P r(t0, t1) and their transported variants {ϕ̂j}rj=0, {ψ̂i}ri=0 ∈ P r(−1, 1), respectively similar
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to the way represented by Dominik Schötzau [44, (4.2) and (4.3)] i.e. for Q to be the push-forward

transformation:

t = Q(t̂) =
1

2
(t0 + t1 + kt̂), (3.25)

then

ϕj ◦Q(t̂) = ϕ̂j(t̂) and ψi ◦Q(t̂) = ψ̂i(t̂), for i = 0, · · · , r,

and the derivatives of the latter bases are

dϕj
dt

=
2

k

dϕ̂j

dt̂
, and

dψi
dt

=
2

k

dψ̂i

dt̂
,

where k is the time step size.

Definition 3.6 (Semi-discrete trial and test vector-valued polynomials)

In (3.24) The semi-discrete trial and test vector-valued polynomials UDG, V ∈ P r(I;Z×Z) with using

high-order in time DGFEM can be uniquely written as:

UDG =
r∑
j=0

ϕj(t)Uj and V =
r∑
i=0

ψi(t)Vi,

for {ϕj(t)}rj=0, {ψi(t)}ri=0 ∈ P r(I); the time bases polynomials given in Definition 3.5, and sequence

of coefficients {Uj}rj=0, {Vi}ri=0 ⊂ Z × Z. With

UDG,+(t) =

r∑
j=0

ϕ+
j (t)Uj and V+(t) =

r∑
i=0

ψ+
i (t)Vi.

Definition 3.7

For I = (t0, t1) and using time bases polynomials given in Definition 3.5, the following matrices are

defined

Aij :=

∫
I

d

dt
ϕjψidt+ ϕ+

j (t0)ψ+
i (t0), and Bij :=

∫
I
ϕiψjdt, for i, j = 0, · · · , r, see [44, (4.5)]

With using Definitions 3.5, 3.6, and 3.7, the time stepping formulation in (3.24) at a generic time step

I reads:

Find {Uj}rj=0 ⊂ Z × Z such that
r∑

i,j=0

{
Aij(Uj , Vi)E + Bij â(Uj , Vi)

}
=

r∑
i=0

{∫
I
ψi(f, v2,i)Hdt+ ψ+

i (t0)(U0
DG,−, Vi)E

}
, ∀{Vi}ri=0 ⊂ Z × Z,

for given initial data U0
DG,− at a given time step I = (t0, t1), and forcing data f ∈ H1(J ;H).

(3.26)

The resulting spatial problems in (3.26) can still be simplified using the transformation in the time

bases, choosing the normalised Legendre polynomials, and then the diagonalisation in the complex

arithmetic’s. The coming lines will explain that in details.
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Definition 3.8

With the affine transformation for the time bases {ϕj}rj=0, {ψi}ri=0 ∈ P r(t0, t1) given in Definition 3.5

to their variants {ϕ̂j}rj=0, {ψ̂i}ri=0 ∈ P r(−1, 1), then the matrices Aij , Bij given in Definition 3.7,

can be written as the following:

Aij = Âij :=

∫ 1

−1
∂tϕ̂jψ̂idt̂+ ϕ̂+

j(−1)ψ̂+
i (−1), see [44, (4.6)], (3.27)

Bij =
k

2
B̂ij :=

k

2

∫ 1

−1
ϕ̂jψ̂idt̂, see [44, (4.7)]. (3.28)

Accordingly with the affine transformation done in Definition 3.8 now for the r.h.s of (3.26) will be

written as ∫
I
ψi(f, v2,i)Hdt =

k

2

∫ 1

−1
ψ̂i(f ◦Q, v2,i)Hdt̂, and

ψ+
i (t0)(U0

DG,−, Vi)E = ψ̂+
i (−1)(U0

DG,−, Vi)E , for i = 0, · · · , r.
(3.29)

Then, the formulation in (3.26) now reads:

r∑
i,j=0

{
Âij(Uj , Vi)E +

k

2
B̂ij â(Uj , Vi)

}
=

r∑
i=0

{k
2

∫ 1

−1
ψ̂i(f ◦Q, v2,i)Hdt̂+ ψ̂+

i (−1)(U0
DG,−, Vi)E

}
,

(3.30)

Definition 3.9 (Normalised Legendre polynomials)

Let {ϕ̂j}rj=0, {ψ̂i}ri=0 ∈ P r(−1, 1) be the time basis functions. The time basis functions are chosen to

be the normalised Legendre polynomials which are defined on (−1, 1), such that

ϕ̂i = ψ̂i =
√

(i+ 1/2)Li, i = 0, · · · , r, see [44, (4.17)]

and have the following properties:

Li(1) = 1, and Li(−1) = (−1)i.

With choosing the time basis functions to be the normalised Legendre polynomials, then the matrices

Âij , and B̂ij in (3.30) become:

Âij = ALij :=
√

(i+ 1/2)(j + 1/2)
[ ∫ 1

−1
∂tLi(t)Lj(t)dt+ (−1)i+j

]
, (3.31)

and with the use of the orthogonality of the normalised Legendre polynomials

B̂ij =
√

(i+ 1/2)(j + 1/2)

∫ 1

−1
LiLjdt̂

= δij , which is the identity matrix, for i, j = 0, · · · , r, see [44, (4.18)].

(3.32)

Repeating the same for the r.h.s of (3.30) analogously, then the formulation in (3.30) with defining

x1
i :=

√
(i+ 1/2), and x2

i :=
√

(i+ 1/2)(−1)i, for i = 0, · · · , r, (3.33)
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would become

r∑
i,j=0

{
ALij(Uj , Vi)E +

k

2
δij â(Uj , Vi)

}
=

r∑
i=0

{
k

2
x1
i

∫ 1

−1
Li(t̂)(f ◦Q, v2,i)Hdt̂+ x2

i (U
0
DG,−, Vi)E

}
,

(3.34)

Remark 3.4 (Diagonalisation in C)

Following the practical experiments in [44], the resulting matrix; AL in (3.31), after the temporal basis

transformation can be diagonalised in C (for 0 ≤ r ≤ 100, where practical interests do not go beyond

that number of polynomial degrees in time):

There exists a matrix Y ∈ C(r+1)×(r+1) such that

Y −1ALY = diag(λ1, · · · , λr+1) or similarly AL = Y diag(λ1, · · · , λr+1)Y −1, see [44, 4.3 Decoupling].

The transformed matrix Y discussed in [44] is not unitary (i.e. Y Y −1 6= I) and becomes strongly

ill-conditioned (i.e. it has a high condition number; if Cond(Y ) =‖ Y ‖ · ‖ Y −1 ‖→ ∞) for large r,

but in practice, r varies between 0 and 10, and according to the practical observations in [44], with

ranges for 0 ≤ r ≤ 100, it is not a big disadvantage.

From Remark 3.4, unique complex functions u1,q, and u2,q are defined such that

u1,j =

r∑
q=0

Yjqu1,q, u2,j =

r∑
q=0

Yjqu2,q,

and similarly for v1,p, and v2,p such that

v1,i =
r∑
p=0

(Y −1)piv1,p, and v2,i =
r∑
p=0

(Y −1)piv2,p,

and defining the linear functional

fi(v2,p) :=

∫ 1

−1
Li(t̂)(f ◦Q, v2,p)Hdt̂, for i = 0, · · · , r

then via the linearity of the formulation in (3.34) on p. 31 it can be rewritten in terms of these unique

complex ansatz and test functions as follows

Find {Uq}rq=0 ⊂ Z × Z such that
r∑

p,i,j,q=0

{
(Y −1)piALijYjq(Uq,Vp)E +

k

2
(Y −1)piδijYjqâ(Uq,Vp)

}
=

r∑
p,i=0

(Y −1)pi

{k
2
x1
i fi(v2,p)

+ x2
i (U

0
DG,−,Vp)E

}
,

∀{Vp}rp=0 ⊂ Z × Z, given initial data U0
DG,− at a given time step I, and forcing data f ∈ H1(J ;H).

Since Y −1ALY = diag(λ1, · · · , λr+1), then

r∑
p,q=0

{
λpδpq(Uq,Vp)E +

k

2
δpqâ(Uq,Vp)

}
=

r∑
p,i=0

(Y −1)pi

{k
2
x1
i fi(v2,p) + x2

i (U
0
DG,−,Vp)E

}
, (3.35)
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and after rearranging the system with (3.33) on p. 30 and defining

(β1
p)q := (Y −1)pq x

1
q = (Y −1)pq

√
(q + 1/2), and

(β2
p)q := (Y −1)pq x

2
q = (Y −1)pq

√
(q + 1/2)(−1)q,

(3.36)

it would be given as follows

Problem 3.2.3 (Spatial problems)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let λp be the eigenvalues of the

matrix AL given in (3.31) on p. 30. Let (β1
p)q and (β2

p)q be the (r + 1) vectors given in (3.36). Let

â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14. Let ( , )E be the inner product given

in Corollary 2.2 on p. 10 and

fq(v2,p) =

∫ 1

−1
Lq(t̂)(f ◦Q, v2,p)Hdt̂.

Find {Up}rp=0 ⊂ Z × Z such that

λp(Up,Vp)E +
k

2
â(Up,Vp) =

k

2

r∑
q=0

{
(β1
p)qfq(v2,p)

}
+

r∑
q=0

{
(β2
p)q

}
(U0

DG,−,Vp)E ,

for each p = 0, · · · , r,∀{Vp}rp=0 ⊂ Z × Z, given initial data U0
DG,− at a given time step I,

and forcing data f ∈ H1(J ;H).

(3.37)

Thus, at a given time step I, there are 2(r+ 1) systems to be solved where both U, V, the ansatz and

test functions, respectively are complex.

3.2.1.2 Reduced spatial problems

The coupled formulation of the spatial problems in (3.37) in component-wise reads:

Find {u2,p}rp=0 ⊂ Z and {u1,p}rp=0 ⊂ Z such that

λpa(u1,p, v1,p) =
k

2
a(u2,p, v1,p) +

r∑
q=0

{
(β2
p)q

}
a(u0

1,DG,−, v1,p), (3.38)

λp(u2,p, v2,p)H +
k

2
a(u1,p, v2,p) =

k

2

r∑
q=0

{
(β1
p)qfq(v2,p)

}
+

r∑
q=0

{
(β2
p)q

}
(u0

2,DG,−, v2,p)H , (3.39)

for each p = 0, · · · , r, for all {v1,p}rp=0 ⊂ Z, {v2,p}rp=0 ⊂ Z, with given data f ∈ H1(J ;H), and

u0
1,DG,− ∈ Z, u0

2,DG,− ∈ Z.

Now, the equation (3.38) is rearranged, by dividing both sides with λp (where λp 6= 0 and 0 <

Re λp ≤ max(1, r)2, see [44, Lemma 4.1]) and then taking v1,p = v2,p in (3.38):

a(u1,p, v2,p) =
k

2λp
a(u2,p, v2,p) +

1

λp

r∑
q=0

{
(β2
p)q

}
a(u0

1,DG,−, v2,p). (3.40)
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Then, replacing (3.40) back in (3.39) and multiplying the latter with 4λp. Thus, it is enough to solve

for {u2,p}rp=0 ⊂ Z with defining

f(v2,p) := 2kλp

r∑
q=0

{
(β1
p)qfq(v2,p)

}
= 2kλp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f ◦Q, v2,p)Hdt̂

}
,

such that with defining the following b( , ) form and f ∈ L2(J ;Z)′ functional,

b(u2,p, v2,p) := 4λ2
p(u2,p, v2,p)H + k2a(u2,p, v2,p), (3.41)

Thus the formulation is now reduced to read:

Problem 3.2.4 (Reduced spatial problems)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let b( , ) be the form and f(·) the

linear functional given in (3.41).

Find {u2,p}rp=0 ⊂ Z:

b(u2,p, v2,p) = f(v2,p) +

r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
,

for each p = 0, · · ·, r, for all {v2,p}rp=0 ⊂ Z.
(3.42)

After solving for unknowns {u2,p}rp=0 ⊂ Z with given data f ∈ H1(J ;H) and u0
1,DG,−, u

0
2,DG,− ∈ Z,

then it comes to update the values of {u1,p}rp=0 ⊂ Z:

u1,p =
k

2λp
u2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
u0

1,DG,−, (3.43)

which need to be solved at any given time step I.

Now, comes to show that these reduced problems are solvable which also concludes that our real

semi-discrete formulation is solvable too.

Lemma 3.4 (Inf-sup condition of reduced spatial problem’s forms) Let Z be the Hilbert space

over the field C given in Definition 2.1 on p. 6. Let c1 ∈ C with Re c1 ∈ R and c2 ∈ R, then the form

b(u, v) := c1(u, v)H + c2a(u, v), (3.44)

satisfies

inf
u∈Z

sup
v∈Z

∣∣b(u, v)
∣∣

‖ u ‖Z · ‖ v ‖Z
≥ C = αc2 > 0. (3.45)

The imaginary parts of u, v ∈ Z may not be zero. α ∈ R is a real constant which corresponds to the

lower bound of the form a( , ) which satisfies the properties given in Theorem A.3 on p. 178:

a(u, v) = a(v, u), for real u, v ∈ Z or

a(u, v) = a(v, u), for complex u, v ∈ Z
|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z.
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Proof:

In the form b( , ) in (3.44), choose v = u ∈ Z, then

inf
u∈Z

sup
v∈Z

|b(u, v)|
‖ u ‖Z · ‖ v ‖Z

= inf
u∈Z

sup
v∈Z

∣∣c1(u, v)H + c2a(u, v)
∣∣

‖ u ‖Z‖ v ‖Z
≥ inf

u∈Z

∣∣c1 ‖ u ‖2H +c2a(u, u)
∣∣

‖ u ‖2Z

Here, with knowing that

|x| ≥ Re x, for x ∈ C,

using the ellipticity of the form a( , ), then

∣∣c1 ‖ u ‖2H +c2a(u, u)
∣∣ ≥ Re

(
c1 ‖ u ‖2H +c2a(u, u)

)
=

>0︷ ︸︸ ︷
( Re c1) ‖ u ‖2H +c2a(u, u)

≥ c2a(u, u)

≥ c2α ‖ u ‖2Z ,

Thus

inf
u∈Z

sup
v∈Z

|b(u, v)|
‖ u ‖Z · ‖ v ‖Z

≥ inf
u∈Z

c2α ‖ u ‖2Z
‖ u ‖2Z

= c2α > 0. �

Lemma 3.5 (Continuity of reduced spatial problem’s forms) Let Z be the Hilbert space over

the field C given in Definition 2.1 on p. 6. Let c1 ∈ C and c2 ∈ R, then the form

b(u, v) = c1(u, v)H + c2a(u, v), (3.46)

satisfies

|b(u, v)| ≤ C̄ ‖ u ‖Z‖ v ‖Z , ∀u, v ∈ Z, C̄ > 0, (3.47)

where the imaginary parts of u, v ∈ Z may not be zero. α ∈ R is a real constant which corresponds to

the lower bound of the form a( , ) which satisfies the properties given in Theorem A.3 on p. 178:

a(u, v) = a(v, u), for real u, v ∈ Z or

a(u, v) = a(v, u), for complex u, v ∈ Z
|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z.

Proof:

Using Cauchy inequality, the continuity of the form a(, ), and that ‖ u ‖H≤ c ‖ u ‖Z , ∀u ∈ Z, then

b(u, v) = c1(u, v)H + c2a(u, v) ≤ |c1| ‖ u ‖H‖ v ‖H +c2M ‖ u ‖Z‖ v ‖Z
≤ |c1|c2 ‖ u ‖Z‖ v ‖Z +c2M ‖ u ‖Z‖ v ‖Z
= (|c1|c2 + c2M) ‖ u ‖Z‖ v ‖Z
= C̄ ‖ u ‖Z‖ v ‖Z , ∀u, v ∈ Z, C̄ > 0,

and that completes the proof. �
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Lemma 3.6 (Existence and uniqueness of continuous reduced spatial problem’s)

Let Z and H be the Hilbert spaces over the field C given in Definition 2.1 on p. 6. There exist

unique complex functions {u2,p}rp=0 ⊂ Z which solve the (r + 1) spatial problems in (3.42) on p. 33,

as well as {u1,p}rp=0 ⊂ Z given in (3.43) on p. 33, for given data f ∈ H1(J ;H) and initial data

u0
1,DG,−, u

0
2,DG,− ∈ Z.

Proof:

Firstly, the form b( , ) in (3.42) is continuous with using Lemma 3.5 after letting c1 = 4λp ∈ C and

c2 = k2 ∈ R where k is the time step size, such that

b(u2,p, v2,p) = 4λ2
p(u2,p, v1,p)H + k2a(u2,p, v1,p) ≤ (4|λp|c2 + k2M) ‖ u2,p ‖Z‖ v1,p ‖Z , for p = 0, · · · , r.

Secondly, the form b( , ) in (3.42) for u2,p, v2,p ∈ Z satisfies the Inf-sup condition in Lemma 3.4 on

p. 33 after letting c1 = 4λp and c2 = k2, where the Inf-sup constant is k2α.

Thirdly, for the continuous of the r.h.s of (3.42) with

|r.h.s| = |f(v2,p) +
r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
|. (3.48)

Here, with using Cauchy inequality

f(v2,p) = 2kλp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f ◦Q, v2,p)Hdt̂

}
≤ 2k|λp|

r∑
q=0

{
|(β1

p)q| ‖ f ◦Q ‖L2((−1,1);H)‖ Lq(t̂)v2,p ‖L2((−1,1);H)

}
.

The test functions {v2,p}rp=0 are constants in time, then with using the definition of the L2((−1, 1);H)

norm, the orthogonal property of the Legendre polynomials, and the fact that ‖ v2,p ‖H≤ c ‖ v2,p ‖Z ,

yield

‖ Lq(t̂)v2,p ‖L2((−1,1);H)=
(∫ 1

−1
L2
q(t̂) ‖ v2,p ‖2H dt̂

)1/2
=
(∫ 1

−1
L2
q(t̂)dt̂

)1/2
‖ v2,p ‖H

=
( 2

2q + 1

)1/2
‖ v2,p ‖H

≤ c
( 2

2q + 1

)1/2
‖ v2,p ‖Z= cx̂q ‖ v2,p ‖Z ,

then using the temporal transformation back from L2((−1, 1);H) to L2(I = (t0, t1);H) and based on

the given relation between the time variable t and t̂ in (3.25) on p. 29, yield

‖ f ◦Q ‖2L2((−1,1);H) =

∫ 1

−1
‖ f ◦Q ‖2H dt̂ =

2

k

∫
I
‖ f ‖2H dt,

Thus

f(v2,p) = 2kλp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f ◦Q, v2,p)Hdt̂

}
≤ c
√

23k|λp|
r∑
q=0

(β1
p)qx̂q ‖ f ‖L2(I;H)‖ v2,p ‖Z .
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Secondly, for

r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
,

with using again Cauchy inequality, the continuity of the form a( , ),

and again the inequality ‖ v2,p ‖H≤ c ‖ v2,p ‖Z , then plugging everything back in (3.48) on p. 35 imply

|r.h.s| ≤

(
c
√

23k|λp|
r∑
q=0

|(β1
p)q|x̂q ‖ f ‖L2(I;H) +|

r∑
q=0

(β2
p)q|
(

4c|λp| ‖ u0
2,DG,− ‖H

+ 2kM ‖ u0
1,DG,− ‖Z

))
‖ v2,p ‖Z .

(3.49)

Now, going back to Theorem [Babuška] A.4 on p. 179 with having Lemmas 3.4 and 3.5, then there

exist unique functions {u2,p}rp=0 ∈ Z which solve (3.42). Moreover, from the identity (3.43) on p. 33

that is

u1,p =
k

2λp
u2,p +

1

λp

r∑
q=0

(β2
p)qu

0
1,DG,−, (3.50)

for each p = 0, · · · , r, then from the given existence and uniqueness of {u2,p}rp=0 ⊂ Z and the given

forcing data f ∈ H1(J ;H) and initial data u0
1,DG,−, u

0
2,DG,− ∈ Z which are well defined, that also

concludes that {u1,p}rp=0 ⊂ Z at a given time step I also exists and is unique. �

Theorem 3.2 (Existence and uniqueness of the semi-discrete solution) Let Z and H be the

Hilbert spaces over the field C given in Definition 2.1 on p. 6.

Let Vr(N ;Z × Z) = {U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1} be the semi-discrete

space given in Definition 3.1. There exists a unique real semi-discrete vector-valued function UDG ∈
Vr(N ;Z × Z) which solves the formulation (3.19) on p. 26.

Proof:

Since the real semi-discrete vector-valued function UDG is uniquely written as

UDG =
N−1∑
n=0

UDG|In ,

where

UDG|In =

rn∑
j=0

ϕj(t)Uj , for Y rn ∈ C(rn+1)×(rn+1) and Uj =

rn∑
i=0

Y rn
ji Ui ⊂ Z × Z.

Then the shown existence and uniqueness of {Ui}rni=0 ⊂ Z × Z in Lemma 3.6 on p. 35 implies that

UDG ∈ Vr(N ;Z × Z) does exist and is unique. �

3.2.2 The stability estimate with zero forcing data f = 0

This section includes the lemmas and theorems of the local and global stability estimates of the semi-

discrete vector-valued function UDG ∈ Vr(N ;Z × Z) which solves the high-order in time DGFEM
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formulation given in (3.19) on p. 26 with forcing data f = 0. The left-sided limits estimate of the

semi-discrete solution is shown in Lemma 3.7 on p. 37 with Corollary 3.3 on p. 38. The Inf-sup

condition for the local semi-discrete form of the formulation (3.19) on p. 26 is given in Lemma 3.8 on

p. 38. The local stability estimate of the semi-discrete solution is proven in Lemma 3.9 on p. 40 which

uses the result of Lemma 3.8.

Lemma 3.7 (Identity estimate of left-sided limit of the semi-discrete solution with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let P rn(In;Z × Z) be the semi-

discrete space of rnth order polynomials in time at In with coefficients in Z×Z given in Definition 3.1

on p. 19. The solution UDG ∈ P rn(In;Z × Z) of (3.23) on p. 28 with f = 0 and given initial data

U0 ∈ Z × Z satisfies:

‖ UnDG,− ‖2E +
n−1∑
m=0

(
‖ [UDG]m ‖2E

)
=‖ U0 ‖2E , for n ≤ N, (3.51)

where UDG and U0 are real

‖ U ‖2E= a(u1, u1)+ ‖ u2 ‖2H , ∀ U ∈ Z × Z,

and [U ]n = U+
n − U−n is the jump at a time node tn, for n = 0, · · · , N − 1, given in Definition 3.3 on

p. 20.

Proof:

Firstly, with choosing V = UDG ∈ P rm(Im;Z×Z) in (3.23) on p. 28 for some m = 0, · · · , n−1, letting

f = 0, and since UDG is real and thus the form a( , ) is real and symmetric, thus

â(UDG, UDG) = −a(u2,DG, u1,DG) + a(u1,DG, u2,DG) = 0,

imply ∫
Im

(∂tUDG, UDG)E dt+ ‖ UmDG,+ ‖2E −(UmDG,−, U
m
DG,+)E = 0,

for Im = (tm, tm+1) and with the symmetry of the E−inner product with real vector-valued functions

as shown in Corollary 2.2 on p. 10:

(U, V )E = a(u1, v1) + (u2, v2)H = a(v1, u1) + (v2, u2)H = (V,U)E ,

and then taking the one-sided limits at the nodes (tm+1 − s), and (tm + s) as s→ 0, yields

1

2

∫
Im

d

dt
‖ UDG ‖2E dt+ ‖ UmDG,+ ‖2E −(UmDG,−, U

m
DG,+)E = 0

=⇒ ‖ Um+1
DG,− ‖

2
E − ‖ UmDG,+ ‖2E +2 ‖ UmDG,+ ‖2E −2(UmDG,−, U

m
DG,+)E = 0.

Now, with rearranging the terms with adding ‖ UmDG,− ‖2E − ‖ UmDG,− ‖2E , yields

‖ Um+1
DG,− ‖

2
E +

=‖[UDG]m‖2E︷ ︸︸ ︷
‖ UmDG,+ ‖2E −2(UmDG,−, U

m
DG,+)E+ ‖ UmDG,− ‖2E − ‖ UmDG,− ‖2E= 0,
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and with summing over m = 0, · · · , n− 1, yields

‖ UnDG,− ‖2E +
n−1∑
m=0

‖ [UDG]m ‖2E=‖ U0
DG,− ‖2E , for n ≤ N,

where U0
DG,− = U0 is the given initial data, and that completes the proof. �

Corollary 3.3 (Stability of left-sided limits of the semi-discrete solution with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. The following estimate holds for

0 ≤ n ≤ N ,

‖ UnDG,− ‖2E≤‖ U0 ‖2E . (3.52)

Proof:

Now, going back to the resulting estimate in (3.51), which is

‖ UnDG,− ‖2E +

≥0︷ ︸︸ ︷
n−1∑
m=0

‖ [UDG]m ‖2E =‖ U0 ‖2E=⇒‖ UnDG,− ‖2E≤‖ U0 ‖2E ,

and that completes the proof. �

Lemma 3.8 (Inf-sup condition of local form of the semi-discrete formulation) Let Z and H

be the Hilbert spaces given in Definition 2.1 on p. 6. Let P r(I;Z × Z) be the semi-discrete space of

rth order polynomials in time at a generic time step I = (t0, t1) with coefficients in Z × Z given in

Definition 3.1 on p. 19. The form

bDG(U, V ) =

∫
I
{(∂tU, V )E + â(U, V )}dt+ (U+(t0), V+(t0))E , (3.53)

satisfies

inf
U∈P r(I;Z×Z)

sup
V ∈P r(I;Z×Z)

∣∣bDG(U, V )
∣∣

‖ U ‖L2(I;E) · ‖ V ‖L2(I;E)
≥ C =

2 min
p

Re λp

k ‖ Y ‖22
> 0, (3.54)

for p = 0, · · · , r, where r is the time polynomial degree at the given time step I, the matrix Y ∈
C(r+1)×(r+1), λp with Re λp > 0 the eigenvalues of the matrix AL given in (3.31) on p. 30, k is the

time step size, and the normed-product space (P r(I;Z × Z), ‖ · ‖L2(I;E)), such that

‖ U ‖2L2(I;E)=

∫
I
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for a vector-valued functions U =

(
u1

u2

)
∈ P r(I;Z × Z).

Proof:

Firstly, in (3.53) choose V = U , then

inf
U∈P r(I;Z×Z)

sup
V ∈P r(I;Z×Z)

∣∣bDG(U, V )
∣∣

‖ U ‖L2(I;E) · ‖ V ‖L2(I;E)
≥ inf

U∈P r(I;Z×Z)

∣∣bDG(U,U)
∣∣

‖ U ‖2
L2(I;E)

.
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Secondly, with the use of the unique representation of U ∈ P r(I;Z × Z) and choosing the temporal

basis transformation as done at Section 3.2.1.1 starting on p. 28, and the choice of Normalised Legendre

polynomials given in Definition 3.9 on p. 30 and their orthogonal properties in P r(−1, 1):

‖ U ‖2L2(I;E)=

∫
I
‖ U ‖2E dt =

∫
I
‖

r∑
j=0

ϕj(t)Uj ‖2E dt

=
k

2

∫ 1

−1
‖

r∑
j=0

ϕ̂j(t̂)Uj ‖2E dt̂

=
k

2

∫ 1

−1
‖

r∑
j=0

√
(j + 1/2)Lj(t̂)Uj ‖2E dt̂

=
k

2

∫ 1

−1
(

r∑
j=0

√
(j + 1/2)Lj(t̂)Uj ,

r∑
j=0

√
(j + 1/2)Lj(t̂)Uj)Edt̂

=
k

2

r∑
j=0

‖ Uj ‖2E (j + 1/2)

∫ 1

−1
L2
j (t̂)dt̂ =

k

2

r∑
j=0

‖ Uj ‖2E ,

(3.55)

the diagonalisation step such that there exist unique vector-valued functions {Ui}ri=0 ∈ Z × Z, and a

matrix Y ∈ C(r+1)×(r+1), such that

Uj =
r∑
i=0

YjiUi, or in vector notation ~U = Y · ~U, for ~U ∈ (Z × Z)r+1,

and with using the matrix compatibility, then

r∑
j=0

‖ Uj ‖2E =
r∑
j=0

‖
r∑
i=0

YjiUi ‖2E

≤‖ Y ‖22
r∑
j=0

‖ Uj ‖2E , where ‖ · ‖2 is the spectral norm, see (A.6) on p. 173,

which imply that

‖ U ‖2L2(I;E) =
k

2

r∑
j=0

‖ Uj ‖2E≤
k

2
‖ Y ‖22

r∑
j=0

‖ Uj ‖2E . (3.56)

Then, the form (3.53) on p. 38 now is rewritten as

bDG(U, V ) =
r∑
p=0

aλp(Up,Vp) =
r∑
p=0

λp(Up,Vp)E +
k

2
â(Up,Vp)

=

r∑
p=0

λp(Up,Vp)E +
k

2

(
a(u1,p, v2,p)− a(u2,p, v1,p)

)
.

Secondly, from above time decoupling and diagonalisation process such that

U =

r∑
j=0

φj(t)

r∑
i=0

YjiUi
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yield

inf
U∈P r(I;Z×Z)

sup
V ∈P r(I;Z×Z)

∣∣bDG(U, V )
∣∣

‖ U ‖L2(I;E) · ‖ V ‖L2(I;E)
≥ inf

U∈P r(I;Z×Z)

∣∣bDG(U,U)
∣∣

‖ U ‖2
L2(I;E)

= inf
U∈P r(I;Z×Z)

∣∣∣∣ r∑
p=0

aλp(Up,Up)

∣∣∣∣
‖ U ‖2

L2(I;E)

≥ inf
~U∈(Z×Z)r+1

∣∣∣∣ r∑
p=0

aλp(Up,Up)

∣∣∣∣
k
2 ‖ Y ‖

2
2

r∑
p=0

‖ Up ‖2E

.

Here and after switching to the complex arithmetic∣∣∣∣ r∑
p=0

aλp(Up,Up)

∣∣∣∣ =

∣∣∣∣ r∑
p=0

λp ‖ Up ‖2E +
k

2

(
a(u1,p, u2,p)− a(u2,p, u1,p)

)∣∣∣∣
=

∣∣∣∣ r∑
p=0

λp ‖ Up ‖2E +
k

2

(
a(u1,p, u2,p)− a(u1,p, u2,p)

)∣∣∣∣
=

∣∣∣∣ r∑
p=0

λp ‖ Up ‖2E +k i Im (a(u1,p, u2,p))

∣∣∣∣
≥ Re

( r∑
p=0

λp ‖ Up ‖2E +k i Im (a(u1,p, u2,p))

)

=
r∑
p=0

( Re λp) ‖ Up ‖2E≥ min
p

( Re λp)
r∑
p=0

‖ Up ‖2E ,

which yields that

inf
U∈P r(I;Z×Z)

sup
V ∈P r(I;Z×Z)

∣∣bDG(U, V )
∣∣

‖ U ‖L2(I;E) · ‖ V ‖L2(I;E)
≥ inf

~U∈(Z×Z)r+1

∣∣∣∣ r∑
p=0

aλp(Up,Up)

∣∣∣∣
k
2 ‖ Y ‖

2
2

r∑
p=0

‖ Up ‖2E

≥ inf
~U∈(Z×Z)r+1

min
p

( Re λp)

r∑
p=0

‖ Up ‖2E

k
2 ‖ Y ‖

2
2

r∑
p=0

‖ Up ‖2E

=
2 min

p
( Re λp)

k ‖ Y ‖22
> 0. �

Lemma 3.9 (Local stability estimate of semi-discrete formulation with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let P r(I;Z×Z) be the semi-discrete
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space of rth order polynomials in time at a generic time step I = (t0, t1) with coefficients in Z × Z
given in Definition 3.1 on p. 19. Let ( , )E be the inner product given in Corollary 2.2 on p. 10. Let

â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)H ,∀U, V ∈ Z × Z, respectively.

At a generic time step I = (t0, t1) with f = 0 and U0
DG,− the given initial data at I, the semi-discrete

vector-valued function UDG ∈ P r(I;Z × Z) which solves

bDG(UDG,V )=︷ ︸︸ ︷∫
I

{
(∂tUDG, V )E + â(UDG, V )

}
dt+ (UDG,+(t0), V+(t0))E = (UDG,−(t0), V+(t0))E ,

for all V ∈ P r(I;Z × Z), where UDG,−(t0) = U0
DG,− to be the initial value at the time step I.

satisfies

‖ UDG ‖L2(I;E) ≤
k ‖ Y ‖22 (2r + 1)

2 min
p

Re λp
‖ U0

DG,− ‖E , (3.57)

where k is the time step size, r is the approximation order of polynomials in time, ‖ Y ‖22 is the square

of the spectral norm (see (A.6) on p. 173) of the matrix Y ∈ C(r+1)×(r+1), and λp with Re λp > 0 for

p = 0, · · · , r are the eigenvalues of the matrix AL given in (3.31) on p. 30 and

‖ U ‖2L2(I;E)=

∫
I
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for a vector-valued functions U =

(
u1

u2

)
∈ P r(I;Z × Z).

Proof:

With using Lemma 3.8 on p. 38 and then Cauchy inequality, then

‖ UDG ‖L2(I;E) ≤
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z×Z)

∣∣∣bDG(UDG, V )
∣∣∣

‖ V ‖L2(I;E)

=
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z×Z)

∣∣∣(U0
DG,−, V+(t0))E

∣∣∣
‖ V ‖L2(I;E)

≤ k ‖ Y ‖22
2(min

p
Re λp)

sup
V ∈P r(I;Z×Z)

‖ U0
DG,− ‖E‖ V+(t0) ‖E
‖ V ‖L2(I;E)

.

(3.58)

Now, to bound the norm ‖ V+(t0) ‖E from above with the use of time basis transformation and using

Normalised Legendre polynomials given in Definition 3.9 on p. 30 such that

V+(t0) =
r∑
p=0

φ+
p (t0)Vp =

r∑
p=0

φ̂+
p (−1)Vp =

r∑
p=0

√
(p+ 1/2)Lp(−1)Vp =

r∑
p=0

√
(p+ 1/2)(−1)pVp,
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then with applying the r + 1 Cauchy inequality imply

‖ V+(t0) ‖2E=‖
r∑
p=0

√
(p+ 1/2)(−1)pVp ‖2E ≤ (r + 1)

r∑
p=0

‖
√

(p+ 1/2)(−1)pVp ‖2E

≤ (r + 1)
r∑
p=0

‖
√

(r + 1/2)(−1)rVp ‖2E

= (r + 1)
(2r + 1)

2

r∑
p=0

‖ Vp ‖2E≤ (2r + 1)2
r∑
p=0

‖ Vp ‖2E .

(3.59)

In the proof of Lemma 3.8 in (3.55) on p. 39:

‖ U ‖2L2(I;E)=
k

2

r∑
p=0

‖ Up ‖2E⇐⇒

√√√√ r∑
p=0

‖ Up ‖2E =

√
2

k
‖ U ‖L2(I;E), (3.60)

and then with going back to (3.58) with using (3.59) and (3.60), then

‖ UDG ‖L2(I;E) ≤
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z×Z)

√
2(2r + 1) ‖ U0

DG,− ‖E‖ V ‖L2(I;E)√
k ‖ V ‖L2(I;E)

=

√
k

2

‖ Y ‖22 (2r + 1)

min
p

Re λp
‖ U0

DG,− ‖E

≤ k

2

‖ Y ‖22 (2r + 1)

min
p

Re λp
‖ U0

DG,− ‖E . �

(3.61)

Theorem 3.3 (Global stability estimate of the semi-discrete formulation with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6.

Let Vr(N ;Z × Z) =
{
U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1

}
be the semi-discrete

space given in Definition 3.1 on p. 19, the solution UDG ∈ Vr(N ;Z×Z) of (3.19) on p. 26 with f = 0

and initial data U0 ∈ Z × Z satisfies

‖ UDG ‖L2(J ;E) ≤ C ‖ U0 ‖E , for C <∞, (3.62)

where C = max(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
) for T <∞ is a real constant depending on the maximum value

of the approximation order rn for n = 0, · · · , N − 1, the square of the spectral norm (see (A.6) on

p. 173) of the matrix Y rn ∈ C(rn+1)×(rn+1), and the eigenvalues λp with Re λp > 0 of the matrix AL

given in (3.31) on p. 30 for p = 0, · · · , rn, and

‖ U ‖2L2(J ;E)=

∫
J
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for a vector-valued functions U =

(
u1

u2

)
∈ Vr(N ;Z × Z).
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Proof:

Starting with using the estimate (3.57) in Lemma 3.9 on p. 40 with summing over all time steps

In = (tn, tn+1) such that J = ∪N−1
n=0 In and

‖ UDG ‖L2(J ;E)=
N−1∑
n=0

‖ UDG ‖L2(In;E),

using the estimate (3.52) in Corollary 3.3 on p. 38 that is

‖ UnDG,− ‖2E≤‖ U0 ‖2E ,

and considering k = T
N such that for p = 0, · · · , rn, then

‖ UDG ‖L2(J ;E)=
N−1∑
n=0

‖ UDG ‖L2(In;E) ≤
N−1∑
n=0

{
T

2N

‖ Y rn ‖22 (2rn + 1)

(min
p

Re λp
‖ UnDG,− ‖E

}

=
T

2N

N−1∑
n=0

{
‖ Y rn ‖22 (2rn + 1)

min
p

Re λp
‖ UnDG,− ‖E

}

≤ T

2N
max

(‖ Y rn ‖22 (2rn + 1)

min
p

Re λp

)N−1∑
n=0

‖ UnDG,− ‖E︸ ︷︷ ︸
≤‖U0‖E

= max
(
T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp

)
‖ U0 ‖E= C ‖ U0 ‖E ,

and that completes the proof. �

3.3 High-order in time DGFEM with conformal spatial discretisa-

tion, fully-discrete formulation

This section discusses the approximation analysis of the fully-discrete formulation given in (3.66) on

p. 44 after using the conformal finite dimensional spatial space given in Definition 3.10. In Section 3.3.1,

existence and uniqueness of the fully-discrete solution is shown in Theorem 3.4 on p. 48. The latter

uses the result of Lemma 3.12 on p. 47, where the same techniques used to show the existence and

uniqueness of the semi-discrete solution are used here too. In Section 3.3.2 starting on p. 48 discusses

the stability estimate of the fully-discrete solution.

Definition 3.10 (The conformal finite dimensional spatial space) Let Z be the Hilbert space

given in Definition 2.1 on p. 6. Let Zh ⊂ Z be a finite dimensional subspace of Z, such that

(Zh × Zh, ‖ · ‖Z×Z), is a finite-dimensional product space which is a subspace of (Z × Z, ‖ · ‖Z×Z).

(3.63)

Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14 and ( , )E be the inner product

given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)H ,∀U, V ∈ Zh × Zh, respectively.
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For the form:

BDG(UhDG, V
h) =

N−1∑
n=0

∫
In

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)
}
dt+

N−1∑
n=1

([UDG]h,n, V h,n
+ )E + (Uh,0DG,+, V

h,0
+ )E ,

(3.64)

and the linear functional:

FDG(V h) =

N−1∑
n=0

∫
In

(f, vh2 )Hdt, (3.65)

given in Section 3.2 on p. 25, the fully-discrete formulation of Problem 2.2.2 on p. 15 reads:

Problem 3.3.1 (Fully-discrete variational formulation)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the discrete finite-

dimensional product subspace given in Definition 3.10 on p. 43. Let Vr(N ;Zh×Zh) be the fully-discrete

finite-dimensional product subspace of Vr(N ;Z×Z) where the latter is given in Definition 3.1 on p. 19.

Let BDG( , ) be the form given in (3.64) and FDG(·) the linear functional in (3.65).

Find UhDG ∈ Vr(N ;Zh × Zh) such that

BDG(UhDG, V
h) = FDG(V h) + (Uh0 , V

h,0
+ )E , ∀ V h ∈ Vr(N ;Zh × Zh), (3.66)

with given initial data Uh0 =

(
uh1,0

uh2,0

)
= Uh,0DG,− ∈ Z

h × Zh and forcing data f ∈ H1(J ;H).

The time-stepping scheme of (3.66) would be

Problem 3.3.2 (Fully-discrete time-stepping formulation)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh the discrete finite-

dimensional product subspace given in Definition 3.10 on p. 43. Let P rn(In;Zh × Zh) be the fully-

discrete finite-dimensional product subspace of P rn(In;Z × Z) where the latter is the semi-discrete

space of rnth order polynomials in time at In with coefficients in Z × Z given in Definition 3.1 on

p. 19. Let ( , )E be the inner product given in Corollary 2.2 on p. 10. Let â( , ) be the skew-symmetric

form given in Definition 2.7 on p. 14:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)H ,∀U, V ∈ Zh × Zh, respectively.

Find UhDG ∈ P rn(In;Zh × Zh) such that∫
In

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)
}
dt+ (Uh,nDG,+, V

h,n
+ )E =

∫
In

(f, vh2 )Hdt+ (Uh,nDG,−, V
h,n

+ )E ,

for all V h ∈ P rn(In;Zh × Zh), with Uh,nDG,− to be the initial value at the time step In,

for 0 ≤ n ≤ N − 1.

(3.67)

Assumption 3.1 (The E-projection of the given initial data)

Let Z be the Hilbert space given in Definition 2.1 on p. 6. Let Zh ⊂ Z be the conformal finite

dimensional subspace of Z. For the initial data U0 ∈ Z × Z of Problem 2.2.2 on p. 15 and Uh0 to be

the initial data of (3.66) and Π̄ :=
( Π̄1 0

0 Π̄2

)
: Z × Z → Zh × Zh.

Find Uh0 ∈ Zh × Zh:

(Uh0 − U0, V
h)E = 0,∀V h ∈ Zh × Zh, (3.68)

i.e. Uh0 := Π̄U0 is the E−projection of U0 into Zh × Zh.
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Lemma 3.10 ((Discrete) Inf-sup condition of local form of the fully-discrete formulation)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6 and Zh be the conformal finite di-

mensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43. Let P r(I;Zh×Zh) be the

fully-discrete finite-dimensional product subspace of P r(I;Z ×Z) where the latter is the semi-discrete

space of rth order polynomials in time at a generic time step I = (t0, t1) with coefficients in Z × Z
given in Definition 3.1 on p. 19. The form

bDG(U, V ) =

∫
I
{(∂tU, V )E + â(U, V )}dt+ (U+(t0), V+(t0))E , for U, V ∈ P r(I;Zh × Zh) (3.69)

satisfies

inf
U∈P r(I;Zh×Zh)

sup
V ∈P r(I;Zh×Zh)

∣∣bDG(U, V )
∣∣

‖ U ‖L2(I;E) · ‖ V ‖L2(I;E)
≥ C =

2 min
p

Re λp

k ‖ Y ‖22
> 0. (3.70)

For p = 0, · · · , r, where r is the time polynomial degree at the given time step I, the matrix Y ∈
C(r+1)×(r+1). λp with Re λp > 0 are the eigenvalues of the matrix AL given in (3.31) on p. 30, k is

the time step size, and fully-discrete normed-product space (P r(I;Zh × Zh), ‖ · ‖L2(I;E)), such that

‖ U ‖2L2(I;E)=

∫
I
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for vector-valued functions U =

(
u1

u2

)
∈ P r(I;Zh × Zh),

and

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)H ,∀U, V ∈ Zh × Zh, respectively,

where the form a( , ) is given in Definition 2.2 on p. 6:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

Proof:

The form bDG( , ) in (3.69) is the same as the one in (3.53) in Lemma 3.8 on p. 38 for U, V ∈
P r(I;Zh × Zh) ⊂ P r(I;Z × Z) and this is because Zh is a conformal finite dimensional subspace

of Z and thus the conformal finite dimensional space (P r(I;Zh × Zh), ‖ · ‖L2(I;E)) is a subspace of

P r(I;Z ×Z). Thus all the steps in the proof of Lemma 3.8 on p. 38 still hold and that completes the

proof. �

3.3.1 Existence and uniqueness, reduced discrete spatial problems

Let P r(I;Zh×Zh) be the fully-discrete finite-dimensional product subspace of rth order polynomials

in time at a generic time step I = (t0, t1) with coefficients in Zh×Zh. Let UhDGP
r(I;Zh×Zh) be the

fully-discrete vector-valued function which solves (3.67):

UhDG =

r∑
j=0

ϕj(t)U
h
j , for time basis ϕj(t) ∈ P r(I), and unique coefficients Uhj ∈ Zh × Zh, (3.71)

which approximates UDG =

r∑
j=0

ϕjUj the solution of (3.23) on p. 28. Now, with recalling the

time decoupling process done previously in Section 3.2.1 and the diagonalisation i.e. for {U}rj=0 =
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{(
u1,j

u2,j

)}r
j=0

such that Uj =

r∑
i=0

YjiUi, where Y ∈ C(r+1)×(r+1) is the transformation matrix and

{Uj}rj=0 ∈ Z × Z is the solution of the formulation (3.37) on p. 32 which need to be solved at the

generic time step I. Then the following hold for {Uhj }rj=0 =

{(
uh1,j

uh2,j

)}r
j=0

, such that

Uhj =
r∑
i=0

YjiU
h
i .

Then let {Uhj }rj=0 ⊂ Zh × Zh ⊂ Z × Z be the conformal approximative solution of (3.37) on p. 32,

which solves the following formulation:

Problem 3.3.3 (Discrete spatial problems)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh the discrete finite-

dimensional product subspace given in Definition 3.10 on p. 43. Let λp be the eigenvalues of the matrix

AL given in (3.31) on p. 30. Let ( , )E be the inner product given in Corollary 2.2 on p. 10 and let

(β1
p)q and (β2

p)q be elements given in (3.36):

(U, V )E = a(u1, v1) + (u2, v2)H ,∀U, V ∈ Zh × Zh, (3.72)

(β1
p)q = (Y −1)pq x

1
q = (Y −1)pq

√
(q + 1/2), and (3.73)

(β2
p)q = (Y −1)pq x

2
q = (Y −1)pq

√
(q + 1/2)(−1)q, respectively. (3.74)

Find {Uhp}rp=0 ⊂ Zh × Zh:

λp(U
h
p ,V

h
p)E +

k

2

(
a(uh1,p, v2,p)− a(uh2,p, v

h
1,p)
)

=
k

2

r∑
i=0

{
(β1
p)i

∫ 1

−1
Li(t̂)(f ◦Q, vh2,p)Hdt̂

}
+

r∑
i=0

{
(β2
p)i

}
(Uh,0DG,−,V

h
p)E ,

for each p = 0, · · · , r, for all {Vh
p}rp=0 ⊂ Zh × Zh, given forcing data f ∈ H1(J ;H), and

Uh,0DG,− ∈ Z
h × Zh initial data at the given generic time step I = (t0, t1), and k is the time step size.

(3.75)

Problem 3.3.4 (Discrete reduced spatial problems)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the discrete finite-

dimensional product subspace given in Definition 3.10 on p. 43. Let λp be the eigenvalues of the matrix

AL given in (3.31) on p. 30. Let (β1
p)q and (β2

p)q be the (r+ 1) row vectors defined in (3.36) and also

given in (3.74).

Again with following the same steps of reduction done in Section 3.2.1.2 for (3.75), then the formu-

lation in (3.75) with

b(uh2,p, v
h
2,p) = 4λ2

p(u
h
2,p, v

h
2,p)H + k2a(uh2,p, v

h
2,p),

f(vh2,p) = 2kλp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f ◦Q, vh2,p)Hdt̂

}
,
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now reads:

Find {uh2,p}rp=0 ⊂ Zh:

b(uh2,p, v
h
2,p) = f(vh2,p) +

r∑
q=0

{
(β2
p)q

}(
4λp(u

h,0
2,DG,−, v

h
2,p)H − 2ka(uh,01,DG,−, v

h
2,p)
)
,

for each p = 0, · · · , r, for all {vh2,p}rp=0 ∈ Zh.
(3.76)

After solving for the unknowns {uh2,p}rp=0 ⊂ Zh with given data f ∈ H1(J ;H) and Uh,0DG,− ∈ Zh × Zh,

then comes to update the values of {uh1,p}rp=0 ⊂ Zh:

uh1,p =
k

2λp
uh2,p +

1

λp

r∑
i=0

{
(β2
p)i

}
uh,01,DG,−, (3.77)

which need to be solved in every given time step I.

Lemma 3.11 ((Discrete) Inf-sup condition of discrete reduced spatial problem’s forms)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let (Zh, ‖ · ‖Z) be the conformal

finite dimensional subspace of the Hilbert space (Z, ‖ · ‖Z) over the field C given in Definition 3.10 on

p. 43. Let c1 ∈ C such that Re c1 > 0 and c2 ∈ R, then the form

b(u, v) = c1(u, v)H + c2a(u, v), (3.78)

satisfies

inf
u∈Zh

sup
v∈Zh

∣∣b(u, v)
∣∣

‖ u ‖Z · ‖ v ‖Z
≥ C = αc2 > 0. (3.79)

The imaginary parts of these functions may not be zero, and α ∈ R a real constant which corresponds

to the lower bound of the form a( , ) given in Theorem A.3 on p. 178:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

Proof:

The form b( , ) in (3.78) is the same as the one in (3.44) in Lemma 3.4 on p. 33 with (u, v ∈ Zh ⊂ Z)

and this is based on the choice of the conformal finite dimensional space (Zh, ‖ · ‖Z) which is a subspace

of (Z, ‖ · ‖Z), then the same arguments in the proof of Lemma 3.4 on p. 33 hold and that complete the

proof. �

Lemma 3.12 (Uniqueness and existence of discrete reduced spatial problem’s) Let Z and

H be the Hilbert spaces given in Definition 2.1 on p. 6. Let (Zh, ‖ · ‖Z) be the conformal finite

dimensional subspace of the Hilbert space (Z, ‖ · ‖Z) over the field C given in Definition 3.10 on p. 43.

There exist unique functions {uh2,p}rp=0 ⊂ Zh which solve the (r + 1) spatial problems (3.76), as well

as {uh1,p}rp=0 ⊂ Zh in (3.77).

Proof:

Firstly, the form in (3.76) on p. 47 is continuous with using Lemma 3.5 on p. 34 after letting c1 =
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4λp ∈ C and c2 = k2 ∈ R since λp with Re λp > 0 is the eigenvalues of the matrix AL given in (3.31)

on p. 30, k is the time step size, thus

b(uh2,p, v
h
1,p) = 4λ2

p(u
h
2,p, v

h
1,p)H + k2a(uh2,p, v

h
1,p) ≤ (4|λp|c2 + k2M) ‖ uh2,p ‖Z‖ vh1,p ‖Z , for uh2,p,

vh1,p ∈ Zh ⊂ Z for p = 0, · · · , r.

Secondly, and again based on the choice of the conformal finite dimensional space (Zh, ‖ · ‖Z) which is

a subspace of (Z, ‖ · ‖Z), then the form b( , ) in (3.76) for each p = 0, · · · , r satisfies the discrete Inf-sup

condition in Lemma 3.11 on p. 47 after letting c1 = 4λp and c2 = k2 then the Inf-sup constant would

be k2α. Finally, with going back to (Babuška) Theorem A.4 on p. 179, and with having Lemmas 3.11

and 3.5, then there exist unique functions {uh2,p}rp=0 ⊂ Zh ⊂ Z which solve (3.76) on p. 47. Moreover,

from the identity (3.77) on p. 47 that is

uh1,p =
k

2λp
uh2,p +

1

λp

r∑
q=0

(β2
p)qu

h,0
1,DG,−, (3.80)

for each p = 0, · · · , r, then from the given existence and uniqueness of {u2,p}rp=0 ⊂ Z and the given

forcing data f ∈ H1(J ;H) and initial data uh,01,DG,−, u
0
2,DG,− ∈ Z which are well defined, that also con-

cludes that {uh1,p}rp=0 ∈ Zh ⊂ Z at a given time step I also exists and is unique. �

Theorem 3.4 (Existence and uniqueness of the fully-discrete solution)

Let Z and H be Hilbert spaces over the field C given in Definition 2.1 on p. 6. Let Zh be the

conformal finite dimensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43. Let

Vr(N ;Zh×Zh) =
{
U : J → Zh×Zh : U |In ∈ P rn(In;Zh×Zh), 0 ≤ n ≤ N − 1

}
be the fully-discrete

finite-dimensional product subspace of Vr(N ;Z × Z), where the latter space is given in Definition 3.1

on p. 19. There exists a unique fully-discrete vector-valued function UhDG ∈ Vr(N ;Zh × Zh) which

solves the formulation (3.66) on p. 44.

Proof:

Since the fully-discrete vector-valued function UhDG is uniquely written as

UhDG =

N−1∑
n=0

UhDG|In ,

such that

UhDG|In =

rn∑
j=0

ϕj(t)U
h
j , where for Y rn ∈ C(rn+1)×(rn+1), Uhj =

rn∑
i=0

Y rn
ji U

h
i ⊂ Z × Z.

The shown existence and uniqueness of {Uhi }
rn
i=0 ⊂ Zh × Zh (after letting r = rn) in Lemma 3.12 on

p. 47 implies that UhDG ∈ Vr(N ;Zh×Zh) does exist and is unique. �

3.3.2 Stability estimates of the fully-discrete formulation with f = 0

Lemma 3.13 (Identity estimate of left-sided limits of fully-discrete solution with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite di-

mensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43. Let P rm(Im;Zh×Zh) be
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the fully-discrete finite-dimensional product subspace of P rm(Im;Z × Z) where the latter is the semi-

discrete space of rmth order polynomials in time at Im with coefficients in Z×Z given in Definition 3.1

on p. 19. With f = 0 and given initial data Uh0 ∈ Zh × Zh, the solution UhDG ∈ P rm(Im;Zh × Zh) of

(3.67) on p. 44 satisfies:

‖ Uh,nDG,− ‖
2
E +

n−1∑
m=0

(
‖ [UhDG]m ‖2E

)
=‖ Uh0 ‖2E , for n ≤ N, (3.81)

where UhDG and Uh0 are real and

‖ U ‖2E= a(u1, u1)+ ‖ u2 ‖2H , ∀ U ∈ Zh × Zh,

[U ]n = U+
n −U−n is the jump at a time node tn, for n = 0, · · · , N −1, given in Definition 3.3 on p. 20,

and a( , ) is th form given in Definition 2.2 on p. 6 which has the following properties:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

Proof:

With repeating the same arguments in the proof of Lemma 3.7 on p. 37 which hold here since they don’t

depend on the discrete product spatial space, Zh×Zh which is a conformal finite dimensional subspace

of Z×Z, and that completes the proof. �
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Lemma 3.14 (Local stability estimate of fully-discrete formulation with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43. Let P r(I;Zh × Zh)

be the fully-discrete finite-dimensional product subspace of P r(I;Z × Z) where the latter is the semi-

discrete space of rth order polynomials in the generic time step I = (t0, t1) with coefficients in Z × Z
given in Definition 3.1 on p. 19. Let ( , )E be the inner product given in Corollary 2.2 on p. 10. Let

â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Zh × Zh, respectively,

where a( , ) is th form given in Definition 2.2 on p. 6 which has the following properties:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

At a generic time step I = (t0, t1) with f = 0 and Uh,0DG,− the given initial data at I, the fully-discrete

vector-valued function UhDG ∈ P r(I;Zh × Zh) which solves

bDG(UhDG,V
h)=︷ ︸︸ ︷∫

I

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)
}
dt+ (UhDG,+(t0), V h

+(t0))E = (UhDG,−(t0), V h
+(t0))E ,

for all V h ∈ P r(I;Zh × Zh), where UhDG,−(t0) = Uh,0DG,− is the initial value at the generic time step I.

satisfies

‖ UhDG ‖L2(I;E) ≤
k

2

‖ Y ‖22 (2r + 1)

min
p

Re λp
‖ Uh,0DG,− ‖E , (3.82)

where k is the time step size, r is the approximation order of polynomials in time, ‖ Y ‖22 is the square

of the spectral norm (see (A.6) on p. 173) of the matrix Y ∈ C(r+1)×(r+1), and λp with Re λp > 0 for

p = 0, · · · , r are the eigenvalues of the matrix AL given in (3.31) on p. 30.

Proof:

Using Lemma 3.10 on p. 45 with the same arguments in the proof of Lemma 3.9 on p. 40, that completes

the proof. �

Theorem 3.5 (Global stability estimate of the fully-discrete formulation with f = 0)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43.

Let Vr(N ;Zh × Zh) =
{
U : J → Zh × Zh : U |In ∈ P rn(In;Zh × Zh), 0 ≤ n ≤ N − 1

}
be the

fully-discrete finite-dimensional product subspace of Vr(N ;Z × Z), where the latter space is given in

Definition 3.1 on p. 19. The solution UhDG ∈ Vr(N ;Zh×Zh) of (3.66) on p. 44 with f = 0 and initial

data Uh0 ∈ Zh × Zh satisfies

‖ UhDG ‖L2(J ;E) ≤ C ‖ Uh0 ‖E , for C <∞, (3.83)
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where C = max
n

(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
) is depending on the maximum value of the approximation order

rn for n = 0, · · · , N − 1, the square of the spectral norm (see (A.6) on p. 173) of the matrix Y rn ∈
C(rn+1)×(rn+1), and the eigenvalues λp with Re λp > 0 of the matrix AL given in (3.31) on p. 30 for

p = 0, · · · , rn and

‖ U ‖2L2(J ;E)=

∫
J
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for vector-valued functions U =

(
u1

u2

)
∈ Vr(N ;Zh × Zh).

Proof:

Firstly, from Lemma 3.13 on p. 48 we have

‖ Uh,nDG,− ‖
2
E +

≥0︷ ︸︸ ︷
n−1∑
m=0

(
‖ [UhDG]m ‖2E

)
=‖ Uh0 ‖2E

=⇒ ‖ Uh,nDG,− ‖
2
E≤‖ Uh0 ‖2E ,

With this estimate and Lemma 3.14 on p. 50:

‖ UhDG ‖L2(J ;E)=
N−1∑
n=0

‖ UhDG ‖L2(In;E)≤
N−1∑
n=0

k

2

‖ Y ‖22 (2r + 1)

min
p

Re λp
‖ Uh,nDG,− ‖E ,

then following the rest of the arguments in the proof of Theorem 3.3 on p. 42, that completes the

proof. �

3.4 Implementation

At a given generic time step with the time basis transformation as done in Section 3.2.1.1, the fully-

discrete time stepping scheme of our formulation reads

Find {Uhj }rj=0 ⊂ Zh × Zh such that
r∑

i,j=0

{
Aij(Uhj , V h

i )E + Bij â(Uhj , V
h
i )
}

=

r∑
i=0

{∫
I
ψi(f, v

h
2,i)Hdt+ ψ+

i (t0)(Uh,0DG,−, V
h
i )E

}
,

∀{Vi}ri=0 ⊂ Zh × Zh,

for given initial data Uh,0DG,− at a given time step I = (t0, t1), and forcing data f ∈ H1(J ;H).

(3.84)

With M = dimZh, the following matrices and vectors are introduced:

Sij := â(Uhj , V
h
i ), for S ∈ RM×M,

M̄ij := (Uhj , V
h
i )E , for E ∈ RM×M,

with r.h.s B̄i(V ) =
r∑
i=0

{∫
I
ψi(f, v

h
2,i)Hdt+ ψ+

i (t0)(Uh,0DG,−, V
h
i )E

}
.

(3.85)
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Then, with making use of matrix-vector notation, the formulation in (3.84) reads

r∑
j=0

(
AijM̄+ BijS

)
Uhj = ~̄Bi(V ),∀i = 0, · · · , r, (3.86)

which has to be solved in every given time step for obtaining the fully-discrete solution U ∈ (2 · M ·
(r + 1)), where ~̄Bi(V ) = (B̄i(V 1), B̄i(V 2), · · · , B̄i(VM)).

With higher polynomial degrees r and 2M basis functions in space, the systems become difficult

to solve. But since this system can be diagonalized as given in (3.75) on p. 46 where we now solve for

Uhj ∈ C2(r+1): (
λjM̄+

k

2
S
)
Uhj = ~̄Bi(V), (3.87)

where the coefficients ~Uj are derived by the following inverse transformation

~Uj =
r∑
i=0

YjiU
h
i , for Y ∈ C(r+1)×(r+1). (3.88)

The decoupling step with diagonalization reduces the computation from solving for 2 · M · (r + 1)

unknowns to solve only for (r + 1) systems with 2M unknowns which can be computed in parallel.

3.5 The a priori error estimate

Similar projection arguments and techniques used by C Johnson, 1993, (see [30]) are used here to

get the a priori error estimates, but this time with abstract spatial operator and spaces. Also the

properties of the time projection given in [44, Definition 1.9] will be used with its approximation in

[44, Lemma 1.16], where Definition 3.12 extended it to become a 2×2− matrix spatio-time projection

operator in the a( , )-inner product. In Theorem 3.6 on p. 61, the a priori error estimate of the last

left-sided limit in the E-norm of the difference from the continuous to fully-discrete solution is given.

Also, we show two global a priori error estimates. The first one is in the global L2(J ;E)-norm is

shown in Lemma 3.23 on p. 71. The second one is the maximum over the local L2(In;E) norms for

n = 0, · · · , N − 1 is shown in Lemma 3.24 on p. 74. Both lemmas uses the resulting a priori error

estimate in the Local L2(I;E)-norm shown in Theorem 3.7 on p. 68 and then Theorem 3.6 on p. 61.

Problem 3.5.1; an auxiliary semi-discrete formulation (see [30, c.f. Backward problem (3.1)]), is

introduced and will be shown later in Lemma 3.15 that it is equivalent to our original semi-discrete

formulation with f = 0. Then Lemma 3.16 on p. 55 shows that Problem 3.5.1 is solvable and its

solution has the same stability as the semi-discrete solution of our scheme in (3.19) on p. 26.

Following the same techniques in [30] to show the a priori error estimates, the fully-discrete formulation

of Problem 3.5.1 is given in Problem 3.5.2 on p. 55. The latter will be used in the proof of Theorem 3.6

to get the a priori error estimate from the continuous to fully-discrete solution in the E-norm. Also,

in Lemma 3.23 on p. 71 the a priori error estimate is shown in the global L2(J ;E)-norm. The latter

uses the local a priori error estimates shown in Theorem 3.7 on p. 68.

Problem 3.5.1 (The semi-discrete auxiliary problem)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6.

Let Vr(N ;Z × Z) =
{
U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1

}
be the semi-discrete
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space given in Definition 3.1 on p. 19. Let â( , ) be the skew-symmetric form given in Definition 2.7

on p. 14, ( , )E be the inner product given in Corollary 2.2 on p. 10, and BDG( , ) be the form given in

(3.17) on p. 26:

â(UDG, V ) = −a(u2,DG, v1) + a(u1,DG, v2),

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Z × Z, and

BDG(U, V ) =

N−1∑
n=0

∫
In

{
(∂tU, V )E + â(U, V )

}
dt+

N−1∑
n=1

([U ]n, V n
+ )E + (U0

+, V
0

+)E .

Find a real vector-valued function Φ ∈ Vr(N ;Z × Z), which satisfies

BDG(V,Φ) = (V N
− ,Θ

N
− )E , ∀V ∈ Vr(N ;Z × Z), (3.89)

for given data ΘN
− ∈ Z × Z.

Lemma 3.15 (Equivalence between Problem 3.5.1 and the semi-discrete formulation)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6.

Let Vr(N ;Z×Z) =
{
U : J → Z×Z : U |In ∈ P rn(In;Z×Z), 0 ≤ n ≤ N−1

}
be the semi-discrete space

given in Definition 3.1 on p. 19 where J = (0, T ) is the time interval. Let Φ ∈ Vr(N ;Z × Z) be the

solution of Problem 3.5.1 for given data ΘN
− ∈ Z×Z, then Φ̄(t) =

(
Φ1(T − t)
−Φ2(T − t)

)
for 0 < t < T <∞ is

a solution of the semi-discrete formulation (3.19) on p. 26 with f = 0 and given data
(

Θ1

−Θ2

)N
− ∈ Z×Z.

Moreover, let Φ̄ ∈ Vr(N ;Z × Z) be a solution of the semi-discrete formulation (3.19) on p. 26 with

f = 0 and given data
(

Θ1

−Θ2

)N
− ∈ Z × Z, then Φ(t) =

(
Φ̄1(T − t)
−Φ̄2(T − t)

)
is the solution of Problem 3.5.1

for given data ΘN
− ∈ Z × Z.

Proof:

Firstly, in Problem 3.5.1 and starting with the form BDG(V,Φ) in (3.89) and using the result of

Lemma 3.3 on p. 26, then

BDG(V,Φ) =
N−1∑
n=0

∫
In

{
− (∂tΦ, V )E − â(Φ, V )

}
dt−

N−1∑
n=1

([Φ]n, V n
− )E + (ΦN

− , V
N
− )E = (ΘN

− , V
N
− )E .

(3.90)

Secondly, with the following transformation on the time variable:

t = T − τ ⇐⇒ τ = T − t, such that dt = −dτ, (3.91)

and the time nodes become

tn = τN−n with tn+1 = τN−(n+1), where now τN = T, and τ0 = 0,

such that the following integral ∫ tn+1

tn

f(t)dt

after the time variable transformation becomes∫ τN−(n+1)

τN−n

f(T − τ)(−dτ) = −
∫ τN−n

τN−n−1

f(T − τ)(−dτ) =

∫ τN−n

τN−n−1

f(T − τ)dτ,
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also, letting

Ū(τ) =

(
ū1(τ)

ū2(τ)

)
:=

(
u1(T − τ)

−u2(T − τ)

)
=⇒ U(t) =

(
ū1(T − t)
−ū2(T − t)

)
.

For the left/right-sided limits at any time nodes given in Definition 3.3 on p. 20 would be e.g.

un− = lim
s→0

u(tn − s) = lim
s→0

u(T − (T − (tn − s))) = lim
s→0

ū(T − tn + s) = lim
s→0

ū(τN−n + s) = ūN−n+ ,

the same holds for the right-sided limits i.e.

un+ = lim
s→0

u(tn + s) = ūN−n− ,

and that

uN− = ū0
+, i.e. for the jump over a given time node :

[U ]n = Un+ − Un− =

(
ū1

−ū2

)N−n
−

−
(

ū1

−ū2

)N−n
+

= −

[(
ū1

−ū2

)]N−n
, for n = 0, · · · , N − 1.

With all above transformation, Problem 3.5.1 in (3.90) on p. 52 becomes

N−1∑
n=0

∫ τN−n

τN−n−1

{
−

(
− ∂τ

(
Φ̄1(τ)

−Φ̄2(τ)

)
,

(
v̄1(τ)

−v̄2(τ)

))
E

− â

((
Φ̄1(τ)

−Φ̄2(τ)

)
,

(
v̄1(τ)

−v̄2(τ)

))}
dτ

−
N−1∑
n=1

(
−

[(
Φ̄1(τ)

−Φ̄2(τ)

)]N−n
,

(
v̄1(τ)

−v̄2(τ)

)N−n
+

)
E

+

((
Φ̄1(τ)

−Φ̄2(τ)

)0

+

,

(
v̄1(τ)

−v̄2(τ)

)0

+

)
E

=

(
ΘN
− ,

(
v̄1(τ)

−v̄2(τ)

)0

+

)
E

.

Rearranging the terms with the use of the skew-symmetry property of â( , ) given in Remark 2.7 on

p. 14:

−â

((
Φ̄1(τ)

−Φ̄2(τ)

)
,

(
v̄1(τ)

−v̄2(τ)

))
= −

(
− a(−Φ̄2(τ), v̄1(τ)) + a(Φ̄1(τ),−v̄2(τ))

)
= −

(
a(Φ̄2(τ), v̄1(τ))− a(Φ̄1(τ), v̄2(τ))

)
= −â(V̄ , Φ̄) = â(Φ̄, V̄ ),

yield

=BDG(Φ̄,V̄ )︷ ︸︸ ︷
N−1∑
n=0

∫ τN−n

τN−n−1

{
(∂τ Φ̄, V̄ )E + â(Φ̄, V̄ )

}
dτ +

N−1∑
n=1

([Φ̄]N−n, V̄ N−n
+ )E + (Φ̄0

+, V̄
0

+)E =

(
ΘN
− ,

(
v̄1(τ)

−v̄2(τ)

)0

+

)
E

=

((
Θ1

−Θ2

)N
−
, V̄ 0

+

)
E

.

(3.92)

With (3.92) it concludes that Φ̄(τ) =

(
Φ1(T − τ)

−Φ2(T − τ)

)
is a solution of (3.19) on p. 26 with now f = 0

and given data
(

Θ1

−Θ2

)N
− in the r.h.s that is((

Θ1

−Θ2

)N
−
, V̄ 0

+

)
E

. (3.93)
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Finally, and via the given transformation on the time variable in (3.91) the other way holds and that

completes the proof. �

Lemma 3.16 (Solvability of the semi-discrete auxiliary problem) Let Z and H be the Hilbert

spaces given in Definition 2.1 on p. 6.

Let Vr(N ;Z × Z) =
{
U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1

}
be the semi-

discrete space given in Definition 3.1 on p. 19. Problem 3.5.1 on p. 52 is solvable and for given data

ΘN
− ∈ Z × Z its real solution satisfies

‖ Φ ‖L2(J ;E) ≤ C ‖ ΘN
− ‖E , (3.94)

and C <∞ is the same real constant appearing in Theorem 3.3 on p. 42, where

‖ U ‖2L2(I;E)=

∫
I
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for vector-valued functions U =

(
u1

u2

)
∈ Vr(N ;Z × Z),

and the form a( , ) is given in Definition 2.2 on p. 6:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z.

Proof:

From Lemma 3.15 on p. 53, Φ(t) the solution of Problem 3.5.1 is transformed to be

(
Φ̄1(T − t)
−Φ̄2(T − t)

)
,

and accordingly with the test function such that it is equivalent to the solution of the semi-discrete

formulation (3.19) on p. 26 with given data

(
Θ1

−Θ2

)N
−

and f = 0. The equivalence then concludes

that the following holds

‖ Φ̄ ‖L2(J ;E) ≤ C ‖ ΘN
− ‖E ,

and since Φ̄(τ) =

(
Φ1(T − τ)

−Φ2(T − τ)

)
then also holds

‖ Φ ‖L2(J ;E) ≤ C ‖ ΘN
− ‖E .

That concludes that Problem 3.5.1 with given data
(

Θ1

Θ2

)N
− ∈ Z × Z is solvable and its solution Φ ∈

Vr(N ;Z×Z) has the same stability estimates of the semi-discrete solution of (3.19) on p. 26. �

Problem 3.5.2 (The fully-discrete auxiliary problem)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh the discrete finite-

dimensional product subspace given in Definition 3.10 on p. 43. Let Vr(N ;Zh×Zh) be the fully-discrete

finite-dimensional product subspace of Vr(N ;Z×Z) where the latter is given in Definition 3.1 on p. 19.

Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14, ( , )E be the inner product given

in Corollary 2.2 on p. 10, and BDG( , ) be the form given in (3.17) on p. 26:

â(UDG, V ) = −a(u2,DG, v1) + a(u1,DG, v2),

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Zh × Zh ⊂ Z × Z, and

BDG(U, V ) =

N−1∑
n=0

∫
In

{
(∂tU, V )E + â(U, V )

}
dt+

N−1∑
n=1

([U ]n, V n
+ )E + (U0

+, V
0

+)E ,
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where a( , ) is th form given in Definition 2.2 on p. 6 which has the following properties:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

Find Φh ∈ Vr(N ;Zh × Zh), which is a real vector-valued function, satisfies

BDG(V h,Φh) = (V h,N
− ,Θh,N

− )E ,∀V h ∈ Vr(N ;Zh × Zh), (3.95)

for given data Θh,N
− ∈ Zh × Zh.

Lemma 3.17 (Equivalence between the fully-discrete auxiliary problem and formulation)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite di-

mensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43. Let Φh ∈ Vr(N ;Zh×Zh)

be the solution of Problem 3.5.2 on p. 55 for given data Θh,N
− ∈ Zh×Zh, then Φ̄h(t) =

(
Φh

1(T − t)
−Φh

2(T − t)

)
,

for 0 < t < T <∞, is a solution of the fully-discrete formulation (3.66) on p. 44 with f = 0 and given

data

(
Θh

1

−Θh
2

)N
−
∈ Zh × Zh. Let Φ̄h ∈ Vr(N ;Zh × Zh) be a solution of the fully-discrete formulation

(3.66) on p. 44 with f = 0 and given data
( Θh1
−Θh2

)N
−
∈ Zh × Zh, then Φh(t) =

(
Φ̄h

1(T − t)
−Φ̄h

2(T − t)

)
is the

solution of Problem 3.5.2 for given data Θh,N
− ∈ Zh × Zh.

Proof:

Knowing that the product space Zh×Zh is a conformal finite dimensional subspace of Z×Z and that

renders having the same form and linear r.h.s used in the semi-discrete as well as the fully-discrete

formulation. Also, since the transformation in Lemma 3.15 was done in time i.e. the same equivalence

would also hold between Problem 3.5.2 and the fully-discrete formulation in (3.66) on p. 44 with f = 0

and given data

(
Θh

1

−Θh
2

)N
−
∈ Zh×Zh and that completes the proof. �

Lemma 3.18 (Solvability of the fully-discrete auxiliary problem)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43.

Let Vr(N ;Zh × Zh) be the fully-discrete finite-dimensional product subspace of Vr(N ;Z × Z) =
{
U :

J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1
}

which is the semi-discrete space given in

Definition 3.1 on p. 19. Problem 3.5.2 on p. 55 is solvable and for given data Θh,N
− ∈ Zh × Zh its

solution satisfies

‖ Φh ‖L2(J ;E) ≤ C ‖ Θh,N
− ‖E , (3.96)

and

‖ Φh,n
− ‖2E +

n−1∑
m=0

(
‖ [Φh]m ‖2E

)
=‖ Θh,N

− ‖2E , for n ≤ N, (3.97)
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for given data Θh,N
− ∈ Zh × Zh, and C < ∞ is the same real constant appearing in Theorem 3.5 on

p. 50, where

‖ U ‖2L2(I;E)=

∫
I
{

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dt, for U =

(
u1

u2

)
∈ Vr(N ;Zh × Zh) ⊂ Vr(N ;Z × Z),

and the form a( , ) is given in Definition 2.2 on p. 6:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

Proof:

From Lemma 3.17 on p. 56, Φh(t) the solution of Problem 3.5.2 on p. 55 can be transformed to be(
Φ̄h

1(T − t)
−Φ̄h

2(T − t)

)
, and accordingly with the test function, such that it is equivalent to the solution of

the fully-discrete formulation (3.66) on p. 44 with f = 0 and given data

(
Θh

1

−Θh
2

)N
−

. The equivalence

then concludes that the following hold

‖ Φ̄h ‖L2(J ;E) ≤ C ‖ Θh,N
− ‖E , using Theorem 3.5 on p. 50,

and

‖ Φ̄h,n
− ‖2E +

n−1∑
m=0

(
‖ [Φ̄h]m ‖2E

)
=‖ Θh,N

− ‖2E , for n ≤ N, using Lemma 3.13 on p. 48.

Since Φ̄h(τ) =

(
Φh

1(T − τ)

−Φh
2(T − τ)

)
then also hold

‖ Φ ‖L2(J ;E) ≤ C ‖ ΘN
− ‖E ,

and

‖ Φh,n
− ‖2E +

n−1∑
m=0

(
‖ [Φh]m ‖2E

)
=‖ Θh,N

− ‖2E , for n ≤ N.

That concludes that Problem 3.5.2 with given data

(
Θh

1

Θh
2

)N
−
∈ Zh × Zh is solvable and its solution

Φh ∈ Vr(N ;Zh × Zh) has the same stability estimates of the fully-discrete solution of (3.66) on

p. 44. �

Corollary 3.4 From (3.97) in Lemma 3.18 on p. 56 there hold

‖ Φh,n
− ‖E≤‖ Θh,N

− ‖E , (3.98)

and

n−1∑
m=0

(
‖ [Φh]m ‖2E

)
≤‖ Θh,N

− ‖2E , (3.99)

for n ≤ N .
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Proof:

Starting with (3.97) then

‖ Φh,n
− ‖2E +

≥0︷ ︸︸ ︷
n−1∑
m=0

(
‖ [Φh]m ‖2E

)
=‖ Θh,N

− ‖2E=⇒‖ Φh,n
− ‖2E≤‖ Θh,N

− ‖2E ,

similarly

≥0︷ ︸︸ ︷
‖ Φh,n
− ‖2E +

n−1∑
m=0

(
‖ [Φh]m ‖2E

)
=‖ Θh,N

− ‖2E=⇒
n−1∑
m=0

(
‖ [Φh]m ‖2E

)
≤‖ Θh,N

− ‖2E ,

and that completes the proof. �

Definition 3.11 (The spatial matrix projection operator) Let Z be the Hilbert space given in

Definition 2.1 on p. 6. Let Zh be the conformal finite dimensional subspace of the Hilbert space Z

given in Definition 3.10 on p. 43. For u1, u2 ∈ Z, we define the spatial scalar projection operator

Π̂ : Z → Zh:

a(Π̂u− u, v) = 0, ∀ v ∈ Zh, (3.100)

Lemma 3.19 The spatial projection operator Π̂ given in Definition 3.11 is well defined.

Proof:

To show uniqueness and then existence for Π̂ : Z → Zh. For u ∈ Z, let u1, u2 ∈ Zh to be two functions

which satisfy (3.100):

a(u1 − u, v) = 0, and a(u2 − u, v) = 0, ∀ v ∈ Zh. (3.101)

with taking the difference of u1 − u2 =: w in (3.101) which now reads

Find w ∈ Zh:

a(w, v) = 0, (3.102)

then with using the continuity of the form a( , ) and Cauchy inequality,

a(w, v) ≤M ‖ w ‖Z‖ v ‖Z ,

and with choosing v = w ∈ Zh, and using ellipticity of the form a( , ), then

α ‖ w ‖2Z≤ a(w,w) = 0,=⇒ 0 = w = u1 − u2,=⇒ u1 = u2.

Now, since Z is a Hilbert space (see Lemma 2.2 on p. 11) then with applying Lax-Milgram theorem

(see Theorem A.3 on p. 178) it concludes the existence and the uniqueness, and that completes the

proof. �
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Definition 3.12 (The spatio-time projection operator) Let I = (−1, 1) be the given time step,

Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let P r(I;Zh×Zh) be the fully-discrete

space of rth order polynomials in the time step I = (−1, 1) with coefficients in Zh × Zh given in

Definition 3.1 on p. 19. For U =
(
u1
u2

)
∈ L2(I;Z ×Z) which is continuous at t = 1. The following two

spatio-time projection operators are defined, via the r + 1, r ≥ 1 conditions:

Π̃r =

(
Π̃r

1 0

0 Π̃r
2

)
: L2(J ;Z × Z)→ P r(I;Zh × Zh), (3.103)

such that∫
I
a(Π̃r

1u1 − u1, v1)dt = 0, ∀ v1 ∈ P r−1(I;Zh), with Π̃r
1u1(+1) = Π̂u1(+1) ∈ Zh, (3.104)

and ∫
I
a(Π̃r

2u2 − u2, v2)dt = 0, ∀ v2 ∈ P r−1(I;Zh), with Π̃r
2u2(+1) = Π̂u2(+1) ∈ Zh. (3.105)

Here, a( , ) is the form which is given in Definition 2.2 on p. 6 which satisfies the following properties:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z,

Lemma 3.20 (Well-defined spatio-time matrix projection operator) Let Π̃r =
( Π̃r1 0

0 Π̃r2

)
be

the matrix time projection operator given in Definition 3.12 on p. 59. It is well defined.

Proof:

To show uniqueness, and doing it in component wise:

Firstly, for given u1 ∈ L2(I;Z), let u1
1 ∈ P r(I;Zh) and u2

1 ∈ P r(I;Zh) where both satisfy (3.104) such

that ∫
I
a(u1

1 − u1, v1)dt = 0, and

∫
I
a(u2

1 − u1, v1)dt = 0,∀ v1 ∈ P r−1(I;Zh), (3.106)

with

u1
1(+1) = Π̂u1(+1) and u2

1(+1) = Π̂u1(+1). (3.107)

Then from taking the difference of u1
1 − u2

1 which can be written in the following finite series

u1
1 − u2

1 =
r∑
i=0

v̄iLi, for v̄i =

∫
I
(u1

1 − u2
1)Li dt ∈ Zh, ( see [44, Lemma 1.10]), (3.108)

and for any j = {0, · · · , r−1} and choosing v1 = Ljv ∈ P r−1(I, Zh) and using the orthogonal property

of Legendre polynomials, yield

0 =

∫
I
a(u1

1 − u2
1, Ljv)dt =

r∑
i=0

a(v̄i, v)

∫
I
LiLjdt =

r∑
i=0

a(v̄i, v)δij
2

2j + 1
= a(v̄j , v)

2

2j + 1
,

=⇒ 0 = a(v̄j , v), for j = {0, · · · , r − 1}.
(3.109)

Now, with choosing v = v̄j ∈ Zh and using the ellipticity of the form a( , ), imply

M ‖ v̄j ‖2Z≤ a(v̄j , v̄j) = 0, (3.110)
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and, from (3.110), implies that v̄j = 0, for j = {0, · · · , r − 1}, and with going back to (3.108), yields

that

u1
1 − u2

1 =

=0︷ ︸︸ ︷
r−1∑
j=0

v̄jLj +v̄rLr =⇒ u1
1 − u2

1 = v̄rLr,

and finally from (3.104) i.e.

0 = u1
1(+1)− u2

1(+1) = v̄rLr(+1) = v̄r =⇒ v̄r = 0,

which concludes that u1
1 = u2

1. Also the same holds for the other component. To show existence

and with following the same argument in [44, Lemma 1.10] such that, from Lemma 2.2 on p. 11

L2(J ;Zh × Zh) is a separable Hilbert space i.e. it has orthonormal bases (see Theorem A.5 and

Definition A.20 on p. 179) and with choosing the Legendre polynomials as the orthonormal basis in

L2(I) = L2(−1, 1), then U =

∞∑
i=0

LiUi, is the Legendre expansion of U ∈ L2(I;Z × Z) which exists

and is continuous in t = 1, and setting

Π̃rU =

r−1∑
i=0

LiUi +
(
(Π̂I)U(1)−

r−1∑
i=0

Ui
)
Lr,

then that also concludes that Π̃rU ∈ P r(I;Zh×Zh), which satisfies (3.104) and (3.105) on p. 59, does

exist and that completes the proof. �

Remark 3.5 For an arbitrary interval (a, b) with k := b− a > 0, then Πr
(a,b) correspondingly via the

linear map Q : (−1, 1)→ (a, b), t̄ 7→ t = 1
2(a+ b+ kt̄) is defined as

Πr
(a,b)U = [Πr(U ◦Q)] ◦Q−1, see [44, c.f. (1.41) ] (3.111)

Definition 3.13 (New non-empty normed spaces) Let Z and H be the Hilbert spaces given in

Definition 2.1 on p. 6. Let A ∈ L(Z,Z ′) be the operator given in Definition 2.2 on p. 6. From

Definition A.19 with Corollaries A.7 and A.8 on p. 176, a non-empty spaces DA and D̄A over the

field C which are a subspace of Z is defined as

DA := {u ∈ Z : Au ∈ H}, with a norm ‖ u ‖2DA :=‖ u ‖2Z + ‖ Au ‖2H ,∀u ∈ DA, and

D̄A := {u ∈ Z : Au ∈ Z}, with a norm ‖ u ‖2D̄A :=‖ u ‖2Z + ‖ Au ‖2Z ,∀u ∈ D̄A

(3.112)

Assumption 3.2 (Regularity of the solution after discretising in time) Given the higher reg-

ularity in Corollary 2.1 in (2.11) on p. 8 for the first component on the solution of the variational

formulation, such that for f ∈ H1(J ;H) and ∂tu2 ∈ L2(J ;H), then from (2.20) on p. 11 that is

∈L2(J ;H)︷︸︸︷
∂tu2 +

∈L2(J ;H)︷︸︸︷
Au1 =

∈L2(J ;H)︷︸︸︷
f ,

then it means from Definition 3.13 that u1 ∈ L2(J ;DA). The same is also assumed for the correspond-

ent initial data u1,0 := u0 ∈ DA ⊂ Z which does not affect the given existence and uniqueness theorem

in Chapter 2. Moreover, at a generic time step I = (t0, t1) the first component of the spatio-time

projected solution is assumed to be in H i.e. AΠ̃r
1u1 ∈ P r(I;H).
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Lemma 3.21 (Galerkin orthogonality) Let Z be the Hilbert space given in Definition 2.1 on p. 6.

Let Zh be the conformal finite dimensional subspace of the Hilbert space Z given in Definition 3.10 on

p. 43. Let BDG( , ) be the form given in (3.17) on p. 26:

BDG(UDG, V ) :=

N−1∑
n=0

∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+

N−1∑
n=1

([UDG]n, V n
+ )E + (U0

DG,+, V
0

+)E .

For U ∈ L2(J ;Z × Z) which is the continuous solution of Problem 2.2.2 on p. 15, and UhDG ∈
Vr(N ;Zh × Zh) the solution of the fully-discrete formulation (3.66) on p. 44, there holds

BDG(U − UhDG, V h) = 0, ∀V h ∈ Vr(N ;Zh × Zh) ⊂ Vr(N ;Z × Z). (3.113)

Proof:

Firstly, the continuous solution of Problem 2.2.2 on p. 15 which is a solution of the equivalent vari-

ational formulation in (3.12) on p. 23 which satisfies Theorem 3.1 on p. 23:

BDG(U, V ) = FDG(V ) + (U0, V
0

+)E =

N−1∑
n=0

∫
In

(f, v2)Hdt+ (U0, V
0

+)E ,∀V ∈ Vr(N ;Z × Z), (3.114)

with taking the difference between U and UhDG in (3.114) and with V = V h ∈ Vr(N ;Zh × Zh) ⊂
Vr(N ;Z × Z), then

BDG(U − UhDG, V h) = (U0 − Uh0 , V
h,0

+ )E ,∀V h ∈ Vr(N ;Zh × Zh).

Secondly, with the use of Assumption 3.1 on p. 44 such that Uh0 := Π̄U0 is the E−projection of given

initial data U0 into Zh × Zh, thus

BDG(U − UhDG, V h) = 0,∀V h ∈ Vr(N ;Zh × Zh),

and that completes the proof. �

Theorem 3.6 (A priori error estimate in the last left sided limit)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of Z. Let DA be the non-empty normed space given in Definition 3.13 on p. 60.

Let Vr(N ;Zh × Zh) =
{
U : J → Zh × Zh : U |In ∈ P rn(In;Zh × Zh), 0 ≤ n ≤ N − 1

}
be the

fully-discrete finite-dimensional product subspace of Vr(N ;Z × Z), where the latter space is given in

Definition 3.1 on p. 19. For U ∈ L2(J ;Z×Z) the solution of the continuous formulation Problem 2.2.2

on p. 15 and UhDG ∈ Vr(N ;Zh × Zh) the solution of the fully-discrete formulation (3.66) on p. 44.

We assume the additional regularity U ∈ H1(J ;Z × Z). Then there holds

‖ (U−UhDG)N− ‖E≤‖ (U − Π̃rU)N− ‖E +
2
√
PrnC
k

‖ Π̃r
2u2 − u2 ‖L2(J ;H) +

N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖H

+
√

2 ‖ (Π̂u2 − u2)N− ‖H +
max(1,M)C√

min(α, 1)

(
‖ A(Π̃r

1u1 − u1) ‖L2(J ;H) + ‖ Π̃r
2u2 − u2 ‖L2(J ;Z)

)
,

(3.115)

where Π̂ is the spatial projection operator given in Definition 3.10 on p. 43, and Π̃r =
(Π̃r1 0

0 Π̃r2

)
is the

spatio-time projection operator given in Definition 3.12 on p. 59. k is the time step size, M <∞ and
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α ∈ R, the upper and lower bounds of the form a( , ), respectively which satisfies the properties given

in Theorem A.3 on p. 178:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Zh ⊂ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Zh ⊂ Z.

and

C = max
n

(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
),

is depending on the maximum value of the approximation order rn for n = 0, · · · , N − 1, the square of

the spectral norm (see (A.6) on p. 173) of the matrix Y rn ∈ C(rn+1)×(rn+1), and λp with Re λp > 0

the eigenvalues of the matrix AL given in (3.31) on p. 30 for p = 0, · · · , rn. Prn is a real constant

which also depends on the maximum approximation order rn.

Proof:

The additional regularity U ∈ H1(J ;Z × Z) ensures that the point evaluation of U in all time mesh

nodes is well defined. Firstly, with the triangle inequality

‖ (U − UhDG)N− ‖E≤‖ (U − Π̃rU)N− ‖E + ‖ (Π̃rU − UhDG)N− ‖E .

Now, to find the upper bound of ‖ (Π̃ΠU − UhDG)N− ‖E , Problem 3.5.2 on p. 55; the fully-discrete

auxiliary problem on p. 55, and it stability will be used:

Let Θh = Π̃rU − UhDG s.t. Θh,N
− = (Π̃rU − UhDG)N− ∈ Zh × Zh, for U the solution of continuous

formulation Problem 2.2.2 on p. 15, and UhDG the solution of the fully-discrete formulation in (3.66)

on p. 44.

Problem 3.5.2 in (3.95) states:

Find a real vector-valued function Φh ∈ Vr(N ;Zh × Zh), which satisfies

BDG(V h,Φh) = FDG(V h) := (V h,N
− ,Θh,N

− )E , ∀V h ∈ Vr(N ;Zh × Zh), (3.116)

for given data Θh,N
− ∈ Zh × Zh. Now, with choosing V h = Θh ∈ Vr(N ;Zh × Zh) in (3.116).

Then

‖ Θh,N
− ‖2E= BDG(Θh,Φh) = BDG(Π̃rU − UhDG,Φh) = BDG(Π̃rU − U + U − UhDG,Φh)

= BDG(Π̃rU − U,Φh) +BDG(U − UhDG,Φh).

With having

BDG(U −UhDG,Φh) = 0, from Lemma 3.21 on p. 61, for V h = Φh ∈ Vr(N ;Zh×Zh) ⊂ Vr(N ;Z×Z).

Then

‖ Θh,N
− ‖2E = BDG(Π̃rU − U,Φh). (3.117)
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In BDG(Π̃rU − U,Φh) with using Lemma 3.3 on p. 26, yields

BDG(Π̃rU − U,Φh) = −
N−1∑
n=0

∫
In

a(Π̃rn
1 u1 − u1, ∂tΦ

h
1)dt−

N−1∑
n=0

∫
In

(Π̃rn
2 u2 − u2, ∂tΦ

h
2)Hdt

−
N−1∑
n=1

((Π̃rnU − U)n−, [Φ
h]n)E + ((Π̃rNU − U)N− ,Φ

h,N
− )E

+
N−1∑
n=0

∫
In

a(Π̃rn
1 u1 − u1,Φ

h
2)dt−

N−1∑
n=0

∫
In

a(Π̃rn
2 u2 − u2,Φ

h
1)dt

=

6∑
j=1

Ej .

(3.118)

Now, with using the spatio-time projection result in (3.104) on p. 59, implies

E1 = −
N−1∑
n=0

∫
In

a(Π̃rn
1 u1 − u1, ∂tΦ

h
1)d = 0.

In E2 in (3.118) on p. 63 and with first using Cauchy inequality yields

E2 =

∫
J
(Π̃r

2u2 − u2, ∂tΦ
h
2)Hdt ≤‖ Π̃r

2u2 −Π2u2 ‖L2(J ;H)‖ ∂tΦh
2 ‖L2(J ;H), (3.119)

With Lemma 3.22 there holds

‖ ∂tΦh ‖2L2(J ;H)≤
4

k2
Prn ‖ Φh ‖2L2(J ;H) (3.120)

Now after taking the square root of both sides of (3.120) and then plugging it back into (3.119) yields

E2 ≤
2
√
PrnC
k

‖ Π̃r
2u2 − u2 ‖L2(J ;H)‖ Θh,N

− ‖E .

For E3 and E4. Starting with, E3 and from the identities (3.104) and (3.105) on p. 59 s.t. Π̃r
1u1(+1) =

Π̂u1(+1) and Π̃r
2u2(+1) = Π̂u2(+1) imply

E3 = −
N−1∑
n=1

((Π̃rnU − U)n−, [Φ
h]n)E = −

N−1∑
n=1

{a(Π̂u1 − u1)n−, [Φ
h
1 ]n) + (Π̂u2 − u2)n−, [Φ

h
2 ]n)H}

= −
N−1∑
n=1

(Π̂u2 − u2)n−, [Φ
h
2 ]n)H ,

(3.121)

now with using Cauchy inequality, the estimate in (3.99) in Corollary 3.4 on p. 57, and at the end

Lemma A.3 on p. 181, then

E3 ≤

√√√√N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖2H

√√√√√N−1∑
n=1

‖ [Φh
2 ]n ‖2H︸ ︷︷ ︸

≤a([Φh1 ]n,[Φh1 ]n)+‖[Φh2 ]n‖2H

=

√√√√N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖2H

√√√√N−1∑
n=1

‖ [Φh]n ‖2E

≤

√√√√N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖2H ‖ Θh,N
− ‖E≤

N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖H‖ Θh,N
− ‖E .

(3.122)
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Also, for E4 i.e.

E4 = ((Π̃rNU − U)N− ,Φ
h,N
− )E = a((Π̂u1 − u1)N− ,Φ

h,N
1,− ) + ((Π̂u2 − u2)N− ,Φ

h,N
2,− )H

= ((Π̂u2 − u2)N− ,Φ
h,N
2,− )H

≤‖ (Π̂u2 − u2)N− ‖H‖ Φh,N
2,− ‖H

≤‖ (Π̂u2 − u2)N− ‖H
(√

a(Φh,N
1,− ,Φ

h,N
1,− )+ ‖ Φh,N

2,− ‖H
)

≤‖ (Π̂u2 − u2)N− ‖H
√

2
(
a(Φh,N

1,− ,Φ
h,N
1,− )+ ‖ Φh,N

2,− ‖
2
H

)1/2
≤
√

2 ‖ (Π̂u2 − u2)N− ‖H‖ Φh,N
− ‖E

≤
√

2 ‖ (Π̂u2 − u2)N− ‖H‖ Θh,N
− ‖E .

(3.123)

Now, for E5 + E6 and with referring to Assumption 3.2 on p. 60 for the given higher regularity of the

function u1 and the fully-projected u1:

a(Π̃1u1 − u1,Φ
h
2) := (A(Π̃1u1 − u1),Φh

2)H , for , and Φh
2 ∈ Zh ⊂ Z.

Thus, after using Cauchy inequality, the continuity of the form a( , ), the inequality in Lemma 2.1 on

p. 9, and (3.96) on p. 56 then

E5 + E6 =

∫
J
(A(Π̃r

1u1 − u1),Φh
2)Hdt−

∫
J
a(Π̃r

2u2 − u2,Φ
h
1)dt

≤‖ A(Π̃r
1u1 − u1) ‖L2(J ;H)‖ Φh

2 ‖L2(J ;H) +M ‖ Π̃r
2u2 − u2 ‖L2(J ;Z)‖ Φh

1 ‖L2(J ;Z)

≤ max(1,M)
(
‖ A(Π̃r

1u1 − u1) ‖2L2(J ;H) + ‖ Π̃r
2u2 − u2 ‖2L2(J ;Z)

)1/2(
‖ Φh

2 ‖2L2(J ;H) + ‖ Φh
1 ‖2L2(J ;Z)

)1/2︸ ︷︷ ︸
=‖Φh‖L2(J;X)

≤ max(1,M)C√
min(α, 1)

(
‖ A(Π̃r

1u1 − u1) ‖L2(J ;H) + ‖ Π̃r
2u2 − u2 ‖L2(J ;Z)

)
‖ Θh,N

− ‖E ,

(3.124)

and with plugging the resulting estimates in back into (3.118) on p. 63, yield

BDG(Π̃rU − U,Φh) = E2 + E3 + E4 + E5 + E6

≤

(√
2PrnC
k

‖ Π̃r
2u2 − u2 ‖L2(J ;H)

+
N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖H +
√

2 ‖ (Π̂u2 − u2)N− ‖H

+
max(1,M)C√

min(α, 1)

(
‖ A(Π̃r

1u1 − u1) ‖L2(J ;H) + ‖ Π̃r
2u2 − u2 ‖L2(J ;Z)

))
‖ Θh,N

− ‖E

(3.125)

Finally,

‖ (U−UhDG)N− ‖E≤‖ (U − Π̃rU)N− ‖E +

√
2PrnC
k

‖ Π̃r
2u2 − u2 ‖L2(J ;H) +

N−1∑
n=1

‖ (Π̂u2 − u2)n− ‖H

+
√

2 ‖ (Π̂u2 − u2)N− ‖H +
max(1,M)C√

min(α, 1)

(
‖ A(Π̃r

1u1 − u1) ‖L2(J ;H) + ‖ Π̃r
2u2 − u2 ‖L2(J ;Z)

)
,

(3.126)
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and that completes the proof. �

Corollary 3.5 Let U ∈ L2(J ;Z × Z) be the solution of the continuous formulation the problem in

(2.33) and UhDG ∈ Vr(N ;Zh×Zh) be the solution of the fully-discrete formulation (3.66). We assume

the additional regularity U ∈ H2(J ;Z × Z), Au1 ∈ H2(J ;H). Then there holds

‖(U − UhDG)N−‖E ≤ ‖(U − Π̂U)N−‖E +
√

2
N∑
n=1

‖(u2 − Π̂u2)n−‖H

+

(
2
√
PrnC
k

+
max(1,M)C√

min(α, 1)

)(
C(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ C max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
max(1,M)C√

min(α, 1)

(
C(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ C max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)
,

(3.127)

where M <∞ and α ∈ R, the upper and lower bounds of a( , ) and

C = max
n

(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
),

which is depending on the maximum value of the approximation order rn for n = 0, · · · , N − 1.

Proof:

In Theorem 3.6 we split all terms U − Π̃rU in two parts U − Π̃U = U −ΠrU + ΠrU − Π̃rU and then

apply the approximation result in time [44, Theorem 1.19] with s = s0 = 1, r ≥ 1, I = (0, k) using the

identity Π̃r = ΠrΠ̂ with the time interpolation operator Πr:

‖u−Πru‖L2(I;·) ≤ C
(
k

2

)2 1

max{1, r}2
‖u′′‖L2(I;·). (3.128)

We also need the stability result [44, Lemma 1.16]

‖Πru‖2L2(I;·) ≤ C max{1, r}‖u‖2L2(I;·) +
C

max{1, r}
k

2
‖(u)−‖2· . (3.129)

We now bound the 2 relevant terms in Theorem 3.6 involving the time interpolation operator:

‖A(u1 − Π̃ru1)‖L2(J ;H) ≤ ‖A(u1 −Πru1 + Πru1 − Π̃ru1)‖L2(J ;H)

≤ ‖A(u1 −Πru1)‖L2(J ;H) + ‖ΠrA(u1 − Π̂u1)‖L2(J ;H)

≤ C(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ C max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H .
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Analogously

‖u2 − Π̃ru2‖L2(J ;Z) ≤ ‖u2 −Πru2 + Πru2 − Π̃ru2‖L2(J ;Z)

≤ ‖u2 −Πru2‖L2(J ;Z) + ‖Πr(u2 − Π̂u2)‖L2(J ;Z)

≤ C(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ C max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z .

Combining now the individual terms with Theorem 3.6 we obtain

‖(U − UhDG)N−‖E ≤ ‖(U − Π̂U)N−‖E +
2
√
PrnC
k

‖u2 − Π̃ru2‖L2(J ;H)

+
max(1,M)C√

min(α, 1)

(
‖A(u1 − Π̃ru1)‖L2(J ;H) + ‖u2 − Π̃ru2‖L2(J ;Z)

)
+
N−1∑
n=1

‖(u2 − Π̂u2)n−‖H +
√

2‖(u2 − Π̂u2)N−‖H

≤ ‖(U − Π̂U)N−‖E +
√

2
N∑
n=1

‖(u2 − Π̂u2)n−‖H

+

(
2
√
PrnC
k

+
max(1,M)C√

min(α, 1)

)
‖u2 − Π̃ru2‖L2(J ;Z)

+
max(1,M)C√

min(α, 1)
‖A(u1 − Π̃ru1)‖L2(J ;H)

≤ ‖(U − Π̂U)N−‖E +
√

2
N∑
n=1

‖(u2 − Π̂u2)n−‖H

+

(
2
√
PrnC
k

+
max(1,M)C√

min(α, 1)

)(
C(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ C max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
max(1,M)C√

min(α, 1)

(
C(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ C max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)

�

Corollary 3.6 Let U ∈ L2(J ;Z × Z) be the solution of the continuous formulation the problem

in (2.33) and UhDG ∈ Vr(N ;Zh × Zh) be the solution of the fully-discrete formulation (3.66). We
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assume the additional regularity U ∈ H2(J ;Z × Z), Au1 ∈ H2(J ;H) and we assume the following

approximation bound in space for all 1 ≤ n ≤ N

‖(U − Π̂U)N−‖E + ‖(u2 − Π̂u2)n−‖H + ‖(u2 − Π̂u2)n−‖Z + ‖A(u1 − Π̂u1)n−‖H
+‖u2 − Π̂u2‖L2(J ;Z) + ‖A(u1 − Π̂u1)‖L2(J ;H) ≤ CUh2

(3.130)

with the constant CU only depending on U and J . Then we obtain the convergence result in h and k :

‖(U − UhDG)N−‖E = O(h2 + k−1h2 + k + k2 + k−1/2h2) (3.131)

Proof:

Using Corollary 3.5 we obtain

‖(U − UhDG)N−‖E =≤ C(h2 + k−1h2 + k + k2 + h2 + k1/2k−1h2 + k2 + h2 + k1/2k−1h2)

= O(h2 + k−1h2 + k + k2 + k−1/2h2)

�

Lemma 3.22 Let Φh ∈ Vr(N ;Z). Then there holds

‖ ∂tΦh ‖2L2(J ;H)≤
4

k2
Prn ‖ Φh ‖2L2(J ;H) (3.132)

with Prn = maxn(rn + 1)4.

Proof:

we can write Φh|In =

rn∑
j=0

φj(t)Φ
h
j with Φh

j ∈ Zh. Due to the normalisation of the φj(t) we have

‖ Φh ‖2L2(In;H)=
k

2

r∑
j=0

‖ Φh
j ‖2H . (3.133)

For the derivative we obtain ∂tΦ
h =

rn∑
j=0

∂tφj(t)Φ
h
j , with ∂tφj(t) ∈ P rn−1(In),. Applying the Cauchy

inequality for the (rn + 1) sums we obtain

‖ ∂tΦh ‖2L2(J ;H)≤
N−1∑
n=0

(rn + 1)

rn∑
j=0

∫
In

(∂tφj(t))
2dt ‖ Φh

j ‖2H ,

Here, with letting In → I = (t0, t1), recalling the affine transformation i.e. for t = 1
2(t0 + t1 + kt̂), and

choosing the time basis’s transported variant to be the normalised Legendre polynomials s.t.

∂tφj(t) =
2

k

√
j + 1/2∂t̂Lj(t̂) =⇒

∫
In

(∂tφj(t))
2dt =

(2j + 1)

k

∫ 1

−1
(∂t̂Lj(t̂))

2dt̂

For Legendre polynomials it can be easily show that∫ 1

−1
(∂t̂Lj(t̂))

2dt̂ = j(j + 1), (3.134)
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i.e. we obtain ∫
In

(∂tφj(t))
2dt =

(2j + 1)

k
j(j + 1) ≤ 2

k
(j + 1)3.

Using the norm identity (3.133) and the estimate in (3.96) we finally obtain

‖ ∂tΦh ‖2L2(J ;H) ≤
2

k
max
n

(rn + 1)4︸ ︷︷ ︸
=:Prn

N−1∑
n=0

rn∑
j=0

‖ Φh
j ‖2H︸ ︷︷ ︸

= 2
k
‖Φh‖2

L2(In;H)

=
4

k2
Prn ‖ Φh ‖2L2(J ;H) .

(3.135)

�

Theorem 3.7 (Local a priori error estimate in the L2(I;E)-norm)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of Z. Let DA be the non-empty normed space given in Definition 3.13 on p. 60.

For U ∈ L2(J ;Z ×Z) the solution of Problem 2.2.2 on p. 15 and UhDG ∈ Vr(N ;Zh×Zh) the solution

of the fully-discrete formulation (3.66) on p. 44, then at a generic time step I = (t0, t1). We assume

the additional regularity U ∈ H2(J ;Z × Z), Au1 ∈ H2(J,H). Then there holds

‖ U − UhDG ‖L2(I;E) ≤‖ U − Π̃rU ‖L2(I;E)

+ (
k ‖ Y ‖22

2 min
p

Re λp
)

(
C
(√2Pr

k
+

max(1,M)√
min(α, 1)

)(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
2√
k

(2r + 1) ‖ (Π̂2u2 − u2)− ‖H +

√
2

k
(2r + 1) ‖ (U − UhDG)0

− ‖E

+
max(1,M)C√

min(α, 1)

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H) + max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
))
,

(3.136)

where Π̂ is the spatial projection operator given in Definition 3.10 on p. 43, and Π̃r =
(Π̃r1 0

0 Π̃r2

)
is the

spatio-time projection operator given in Definition 3.12 on p. 59. k is the time step size, M <∞ and

α ∈ R, the upper and lower bounds of the form a( , ), respectively given in Theorem A.3 on p. 178

and Pr is a real constant which also depends on the maximum approximation order r at the generic

time step I. k is the time step size, ‖ Y ‖22 the square of the spectral norm (see (A.6) on p. 173) of

the matrix Y r ∈ C(r+1)×(r+1), and the eigenvalues λp of the matrix AL given in (3.31) on p. 30 for

p = 0, · · · , r.

Proof:

Starting with the triangle inequality

‖ U − UhDG ‖L2(I;E)≤‖ U − Π̃rU ‖L2(I;E) + ‖ Π̃rU − UhDG ‖L2(I;E) . (3.137)
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Now, since Π̃rU −UhDG ∈ P r(I;Zh ×Zh), then the discrete inf-sup condition in Lemma 3.10 on p. 45

will be used to bound ‖ Π̃rU − UhDG ‖L2(I;E) where the difference between the continuous and fully

discrete solution at a local generic time stepping scheme is

bDG(U − UhDG, V h) = ((U − UhDG)0
−, V

h,0
+ )E ,

and with knowing that

sup(A+B) ≤ sup(A) + sup(B), see [23, 1.2 The Set R],

then we have

‖ Π̃rU − UhDG ‖L2(I;E) ≤ (
k ‖ Y ‖22

2 min
p

Re λp
) sup
V h∈P r(I;Zh×Zh)

bDG(Π̃rU − UhDG, V h)

‖ V h ‖L2(I;E)

≤ (
k ‖ Y ‖22

2 min
p

Re λp
)
(

sup
V h∈P r(I;Zh×Zh)

bDG(Π̃rU − U, V h)

‖ V h ‖L2(I;E)

+ sup
V h∈P r(I;Zh×Zh)

bDG(U − UhDG, V h)

‖ V h ‖L2(I;E)

)
= (

k ‖ Y ‖22
2 min

p
Re λp

)
(

sup
V h∈P r(I;Zh×Zh)

bDG(Π̃rU − U, V h)

‖ V h ‖L2(I;E)

+ sup
V h∈P r(I;Zh×Zh)

((U − UhDG)0
−, V

h,0
+ )E

‖ V h ‖L2(I;E)

)
.

(3.138)

Now, with using Cauchy inequality and then recalling the steps in (3.59) and (3.60) in the proof of

Lemma 3.9 on p. 40:

‖ V h,0
+ ‖E≤

√
2

k
(2r + 1) ‖ V h ‖L2(I;E),

then

sup
V h∈P r(I;Zh×Zh)

((U − UhDG)0
−, V

h,0
+ )E

‖ V h ‖L2(I;E)
≤ sup

V h∈P r(I;Zh×Zh)

‖ (U − UhDG)0
− ‖E‖ V

h,0
+ ‖E

‖ V h ‖L2(I;E)

≤
√

2

k
(2r + 1) ‖ (U − UhDG)0

− ‖E .

(3.139)

With recalling Corollary 3.2 on p. 28, then

bDG(Π̃rU − U, V h) =

∫
I

{
− (Π̃rU − U, ∂tV h)E + â(Π̃rU − U, V h)

}
dt+ ((Π̃rU − U)−, V

h
−)E

=

∫
I
−a(Π̃r

1u1 − u1, ∂tv
h
1 )dt−

∫
I
(Π̃r

2u2 − u2, ∂tv
h
2 )Hdt

+ ((Π̃rU − U)−, V
h
−)E +

∫
I
a(Π̃r

1u1 − u1, v
h
2 )dt−

∫
I
a(Π̃r

2u2 − u2, v
h
1 )dt

=

5∑
j=0

Ej .

(3.140)
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With recalling the estimates of E1 and E2, in (3.118) on p. 63 in the proof of Theorem 3.6 on p. 61

but this time without the sum over all time steps and just being at a generic time step I = (t0, t1),

then now we have

E1 = 0, with using the spatio-time projection property, (3.141)

E2 ≤
√

2Pr
k
‖ Π̃r

2u2 − u2 ‖L2(I;H)‖ V h ‖L2(I;E), (3.142)

and with recalling the steps in (3.59) and (3.60) in the proof of Lemma 3.9 on p. 40 but this time with

V h
− :

‖ V h
− ‖E=‖ V h

−(t1) ‖E=

√√√√‖ r∑
p=0

√
(p+ 1/2)V h

p ‖2E ≤

√√√√(2r + 1)2

r∑
p=0

‖ V h
p ‖2E ≤

√
2

k
(2r+1) ‖ V h ‖L2(I;E),

and the identity in (3.104) on p. 59 s.t. Π̃r
1u1(+1) = Π̂1u1(+1), then

E3 = ((Π̃rU − U)−, V
h
−)E = a(Π̂1u1 − u1)−, v

h
1,−) + (Π̂2u2 − u2)−, v

h
2,−)H

= (Π̂2u2 − u2)−, v
h
2,−)H

≤‖ (Π̂u2 − u2)− ‖H ‖ vh2,− ‖H︸ ︷︷ ︸
≤
√

2‖V h−‖E

≤ 2√
k

(2r + 1) ‖ (Π̂2u2 − u2)− ‖H‖ V h ‖L2(I;E),

(3.143)

Again recalling the estimates of in the proof of Theorem 3.6 on p. 61 then

E4 + E5 ≤
max(1,M)√

min(α, 1)

(
‖ A(Π̃r

1u1 − u1) ‖L2(I;H) + ‖ Π̃r
2u2 − u2 ‖L2(I;Z)

)
‖ V h ‖L2(I;E) . (3.144)

Now, with recalling the approximation steps done in Corollary 3.5 then we have

‖ A(Π̃r
1u1 − u1) ‖L2(I;H) + ‖ Π̃r

2u2 − u2 ‖L2(I;Z)

+ ‖ Π̃r
2u2 − u2 ‖L2(I;H)≤ C(

k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H) + C max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H + C(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ C max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ C max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z .

(3.145)
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Finally we have

‖ U − UhDG ‖L2(I;E) ≤‖ U − Π̃rU ‖L2(I;E)

+ (
k ‖ Y ‖22

2 min
p

Re λp
)

(
C
(√2Pr

k
+

max(1,M)√
min(α, 1)

)(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
2√
k

(2r + 1) ‖ (Π̂2u2 − u2)− ‖H +

√
2

k
(2r + 1) ‖ (U − UhDG)0

− ‖E

+
max(1,M)C√

min(α, 1)

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H) + max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
))
,

and that completes the proof. �

Lemma 3.23 ( First global a priori error estimate in the L2(J ;E)-norm)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of Z. For U ∈ L2(J ;Z × Z) the solution of the continuous formulation Prob-

lem 2.2.2 on p. 15 and UhDG ∈ Vr(N ;Zh×Zh) the solution of the fully-discrete formulation (3.66) on

p. 44. We assume the additional regularity U ∈ H2(J ;Z × Z), Au1 ∈ H2(J,H). Then there holds

‖ U−UhDG ‖L2(J ;E)≤‖ U − Π̃rU ‖L2(J ;E) +CC(
2 max(

√
Prn)

T
+

max(1,M)√
min(α, 1)

)
(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
Cmax(2rn + 1)√

TN

N−1∑
n=0

‖ (Π̂2u2 − u2)n+1
− ‖H +

CCmax(1,M)√
min(α, 1)

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)

+

√
2N max(2rn + 1)√

T

(N−1∑
n=0

‖ (U − Π̃rnU)n− ‖E +
√

2

N∑
n=1

N∑
n=1

‖(u2 − Π̂u2)n−‖H

+

N∑
n=1

(
2
√
PrnC
k

+ C
max(1,M)C√

min(α, 1)

)(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
C max(1,M)C√

min(α, 1)

N∑
n=1

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
))

(3.146)
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where Π̂ is the spatial projection operator given in Definition 3.10 on p. 43, and Π̃r =
(Π̃r1 0

0 Π̃r2

)
is the

spatio-time projection operator given in Definition 3.12 on p. 59. M < ∞ and α ∈ R, the upper and

lower bounds of the form a( , ), respectively given in Theorem A.3 on p. 178 and Pr is a real constant

which also depends on the maximum approximation order r at the generic time step I. k is the time

step size, ‖ Y ‖22 the square of the spectral norm (see (A.6) on p. 173) of the matrix Y r ∈ C(r+1)×(r+1),

and the eigenvalues λp of the matrix AL given in (3.31) on p. 30 for p = 0, · · · , r with

C = max
n

(
T ‖ Y rn ‖22
2 min

p
Re λp

),

Proof:

Starting with summing over all time steps and then using the resulting estimate in Theorem 3.7 on

p. 68 with k = T
N and

C = max
n

(
T ‖ Y rn ‖22
2 min

p
Re λp

),

then

‖ U − UhDG ‖L2(J ;E)=

N−1∑
n=0

‖ U−UhDG ‖L2(In;E)≤‖ U − Π̃rU ‖L2(J ;E)

+ C(

√
2Cmax(

√
Prn)

T
+
Cmax(1,M)√

min(α, 1)
)
(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
Cmax(2rn + 1)√

TN

N−1∑
n=0

‖ (Π̂2u2 − u2)n+1
− ‖H

+
CCmax(1,M)√

min(α, 1)

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)

+

√
2N max(2rn + 1)√

T

N−1∑
n=0

‖ (U − UhDG)n− ‖E .
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Now, from the resulting estimate in Corollary 3.5 on p 65:

‖(U − UhDG)N−‖E ≤ ‖(U − Π̂U)N−‖E +
√

2

N∑
n=1

‖(u2 − Π̂u2)n−‖H

+

(
2
√
PrnC
k

+ C
max(1,M)C√

min(α, 1)

)(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
C max(1,M)C√

min(α, 1)

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)
,

then we have

N−1∑
n=0

‖ (U − UhDG)n− ‖E ≤
N−1∑
n=0

‖ (U − Π̂U)n− ‖E +
√

2
N∑
n=1

N∑
n=1

‖(u2 − Π̂u2)n−‖H

+
N∑
n=1

(
2
√
PrnC
k

+ C
max(1,M)C√

min(α, 1)

)(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
C max(1,M)C√

min(α, 1)

N∑
n=1

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)
.

(3.147)
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Finally, with plugging all the terms together

‖ U−UhDG ‖L2(J ;E)≤‖ U − Π̃rU ‖L2(J ;E) +CC(
2 max(

√
Prn)

T
+

max(1,M)√
min(α, 1)

)
(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
Cmax(2rn + 1)√

TN

N−1∑
n=0

‖ (Π̂2u2 − u2)n+1
− ‖H +

CCmax(1,M)√
min(α, 1)

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
)

+

√
2N max(2rn + 1)√

T

(N−1∑
n=0

‖ (U − Π̂U)n− ‖E +
√

2
N∑
n=1

N∑
n=1

‖(u2 − Π̂u2)n−‖H

+
N∑
n=1

(
2
√
PrnC
k

+ C
max(1,M)C√

min(α, 1)

)(
(
k

2
)2 1

max{1, r}2
‖u2‖H2(J ;Z)

+ max{1, r}1/2‖u2 − Π̂u2‖L2(J ;Z) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖(u2 − Π̂u2)n−‖Z
)

+
C max(1,M)C√

min(α, 1)

N∑
n=1

(
(
k

2
)2 1

max{1, r}2
‖Au1‖H2(J ;H)

+ max{1, r}1/2‖A(u1 − Π̂u1)‖L2(J ;H) + max{1, r}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)n−‖H
))

,

and that completes the proof. �

Lemma 3.24 ( Second global a priori error estimate in the L2 − E-norm)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh be the conformal finite

dimensional subspace of Z. For U ∈ L2(J ;Z × Z) the solution of the continuous formulation Prob-

lem 2.2.2 on p. 15 and UhDG ∈ Vr(N ;Zh×Zh) the solution of the fully-discrete formulation (3.66) on
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p. 44. We assume the additional regularity U ∈ H2(J ;Z × Z), Au1 ∈ H2(J,H). Then there holds

max
m
‖ U − UhDG ‖L2(Im;E)≤ max

m

(
‖ U − Π̃rU ‖L2(Im;E)

+ C(

√
2Cmax(

√
Prm)

T
+
Cmax(1,M)√

min(α, 1)
)
(
(
k

2
)2 1

max{1, rm}2
‖u2‖H2(J ;Z)

+ max{1, rm}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
m=1

‖(u2 − Π̂u2)m−‖Z
)

+
Cmax(2rm + 1)√

TN

N−1∑
m=0

‖ (Π̂2u2 − u2)m+1
− ‖H

+
CCmax(1,M)√

min(α, 1)

(
(
k

2
)2 1

max{1, rm}2
‖Au1‖H2(J ;H)

+ max{1, rm}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
m=1

‖A(u1 − Π̂u1)m−‖H
)

+

√
2N max(2rm + 1)√

T

N−1∑
m=0

(
‖(U − Π̂U)m−‖E +

√
2

N∑
m=1

‖(u2 − Π̂u2)m−‖H

+

(
2
√
PrmC
k

+ C
max(1,M)C√

min(α, 1)

)(
(
k

2
)2 1

max{1, rm}2
‖u2‖H2(J ;Z)

+ max{1, rm}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
m=1

‖(u2 − Π̂u2)m−‖Z
)

+
C max(1,M)C√

min(α, 1)

(
(
k

2
)2 1

max{1, rm}2
‖Au1‖H2(J ;H)

+ max{1, rm}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
m=1

‖A(u1 − Π̂u1)m−‖H
)))

(3.148)

where Π is the interpolant in time related to the projection operator given in Definition 3.12 on p. 59

i.e. on each time interval In ΠU |In = Πrn
In

(U |In) =
( Πrn1 0

0 Πrn2

)
(U |In), for n = 0, · · · , N − 1.

Π̃ =
(Π̂ 0

0 Π̂

)
is the spatial matrix projection operator given in Definition 3.11 on p. 58 and

C = max
n

(T
‖ Y rm ‖22 (2rm + 1)

2 min
p

Re λp
),

is depending on the maximum value of the approximation order rm for m = 0, · · · , N − 1, the square

of the spectral norm (see (A.6) on p. 173) of the matrix Y rm ∈ C(rm+1)×(rm+1), and the eigenvalues

λp of the matrix AL given in (3.31) on p. 30 for p = 0, · · · , rm. Prm is a real constant which also

depends on the maximum approximation order rm and C is a generic constant (see [44, Lemma 1.16]).
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M <∞ and α ∈ R, the upper and lower bounds of the form a( , ), respectively given in Theorem A.3

on p. 178.

Proof:

Starting with the resulting estimate in Theorem 3.7 on p. 68 with taking the maximum at the given

m = 0, · · · , N − 1 with

C = max
m

(
T ‖ Y rm ‖22
2 min

p
Re λp

),

max
m
‖ U − UhDG ‖L2(Im;E)≤ max

m

(
‖ U − Π̃rU ‖L2(Im;E)

+ C(

√
2Cmax(

√
Prm)

T
+
Cmax(1,M)√

min(α, 1)
)
(
(
k

2
)2 1

max{1, rm}2
‖u2‖H2(J ;Z)

+ max{1, rm}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
m=1

‖(u2 − Π̂u2)m−‖Z
)

+
Cmax(2rm + 1)√

TN

N−1∑
m=0

‖ (Π̂2u2 − u2)m+1
− ‖H

+
CCmax(1,M)√

min(α, 1)

(
(
k

2
)2 1

max{1, rm}2
‖Au1‖H2(J ;H)

+ max{1, rm}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
n=1

‖A(u1 − Π̂u1)m−‖H
)

+

√
2N max(2rm + 1)√

T

N−1∑
m=0

(
‖(U − Π̂U)m−‖E +

√
2

N∑
m=1

‖(u2 − Π̂u2)m−‖H

+

(
2
√
PrmC
k

+ C
max(1,M)C√

min(α, 1)

)(
(
k

2
)2 1

max{1, rm}2
‖u2‖H2(J ;Z)

+ max{1, rm}1/2‖u2 − Π̂u2‖L2(J ;Z)

+ max{1, r}−1/2(
k

2
)1/2

N∑
m=1

‖(u2 − Π̂u2)m−‖Z
)

+
C max(1,M)C√

min(α, 1)

(
(
k

2
)2 1

max{1, rm}2
‖Au1‖H2(J ;H)

+ max{1, rm}1/2‖A(u1 − Π̂u1)‖L2(J ;H)

+ max{1, rm}−1/2(
k

2
)1/2

N∑
m=1

‖A(u1 − Π̂u1)m−‖H
)))

(3.149)

and that completes the proof. �
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Chapter 4

A variational formulation of a

first-order system in time with a

general vector-valued functional

In this chapter, the same methods used in Chapter 3 will be used here again to approximate a

variational formulation of a first-order system in time with a functional of a more general forcing data.

The general theorems provided in this chapter will be very useful when it comes to show existence,

uniqueness, and stability estimate of the variational formulation of first-order system in time with

given linear constrains in Part II of this thesis.

4.1 The continuous variational formulation of a first-order system

in time with a general vector-valued functional

This section will discuss the general stability, existence, and uniqueness of a continuous variational

formulation of first-order system in time with a general vector-valued functional. All theorems to

be shown here are going to be very important and useful to show existence and uniqueness of semi-

discrete formulation in Part II of this thesis. The stability estimate of Problem 4.1.1 on p. 77 is shown

in Theorem 4.1 on p. 78. Existence and uniqueness is shown in Theorem 4.2 on p. 80.

Problem 4.1.1 (Variational formulation of first-order system in time with general functional)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let A ∈ L(Z,Z ′) be the spatial

operator given in Definition 2.2 on p. 6. Let a : Z × Z → C be a Hermitian form which satisfies the

properties given in Theorem A.3 on p. 178:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z,

and

a(u, v) = a(v, u), for real functions u, v ∈ Z, (Symmetric),

a(u, v) = a(v, u), for complex functions u, v ∈ Z, (Conjugate symmetric),

〈Au, v〉Z′×Z = a(u, v), ∀u, v ∈ Z.
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Let DA be the subspace of the Hilbert space Z given in Definition 3.13 on p. 60:

DA := {u ∈ Z : Au ∈ H}, with a norm ‖ u ‖2DA :=‖ u ‖2Z + ‖ Au ‖2H , ∀u ∈ DA. (4.1)

Let

F =

(
f1

f2

)
∈ L2(J ;Z ×H) be a general vector-valued function where f1 is in L2(J ;DA) ⊂ L2(J ;Z).

(4.2)

A general linear functional (see Definition A.18 on p. 176) F : L2(J ;Z × H) → C and since L2 is

a pivot space i.e. (L2)′ = L2 (see [3, 5.3 Normal Subspaces of a pivot space]) and H ≡ H ′ from the

Gelfand triple (Z ⊂ H ⊂ Z ′), F ∈ (L2(J ;Z ×H))′ ≡ L2(J ;Z ′ ×H):

F(V ) :=

∫
J

{ (F,V )E=︷ ︸︸ ︷
a(f1, v1) + (f2, v2)H

}
dt, ∀V ∈ L2(J ;Z ×H), (4.3)

where all vector-valued functions here are real. Here, the regularity of the vector-valued function F in

(4.2) is chosen that way so that the existence can be shown as well as to have well defined norms for

the approximated initial data when it comes to show a priori error estimates in Part II of this theses.

Find U ∈ L2(J ;Z × Z) with ∂tU ∈ L2(J ;Z ×H) ⊂ L2(J ;Z × Z ′):

B(U, V ) = F(V ), ∀V ∈ L2(J ;Z × Z), (4.4)

for given vector-valued initial data U0 =

(
u1,0

u2,0

)
∈ Z × Z.

Theorem 4.1 (Stability of continuous variational formulation with general vector-valued functional)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let DA be the subspace of the Hilbert

space Z given in Definition 3.13 on p. 60. In the normed product space (L2(J ;Z×Z), ‖ · ‖L2(J ;E)), the

solution of the variational formulation in (4.4) with a functional F ∈ L2(J ;Z ′×H) with general forcing

data F =
(
f1
f2

)
∈ L2(J ;Z ×H) and initial data U0 =

(
u1,0
u2,0

)
∈ Z ×Z, where f1 ∈ L2(J ;DA) ⊂ L2(J ;Z)

and u1,0 ∈ DA ⊂ Z, satisfies

‖ U ‖L2(J ;E)≤ T
√
C
(
‖ F ‖L2(J ;E) + ‖ U0 ‖E

)
, (4.5)

for

‖ U ‖2L2(J ;E)=

∫
J

{ ‖U‖2E=︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H

}
dt, ∀U ∈ L2(J ;Z × Z), (4.6)

where C does not depend on T <∞.

Proof:

Starting with the general variational formulation (4.4) with (4.3) on p. 78 and considering the vector-

valued test function to be

V =

{
V̄ (τ), V̄ (τ) ∈ L2((0, t);Z × Z), for t < T <∞,
0, elsewhere.
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Then it becomes∫ t

0

{
a(∂τu1, v̄1) + 〈∂τu2, v̄2〉Z′×Z + â(U, V̄ )

}
dτ = F(V̄ ) =

∫ t

0
(F, V̄ )Edτ. (4.7)

With choosing V̄ = U ∈ L2((0, t);Z×Z), and then repeating the same steps done to proof Lemma 2.5:

a(∂τu1, u1) =
1

2

d

dτ
a(u1, u1), by the symmetry of a( , ), and

〈∂τu2, u2〉Z′×Z =
1

2

d

dτ
‖ u2 ‖2H , respectively,

then using the Cauchy inequality with the Bochner integral norm in Definition A.22 on p. 181 with

p = 2 for F ∈ L2((0, t);Z×H) with the Hilbert space (L2((0, t);Z×H), ‖ · ‖E), and Young’s inequality

(see Lemma A.2 on p. 181) in the r.h.s of (4.7), imply

∫ t

0

{
a(∂τu1, u1) + 〈∂τu2, u2〉Z′×Z

=0︷ ︸︸ ︷
−a(u2, u1) + a(u1, u2)

}
dτ =

∫ t

0
(F,U)Edτ

=⇒ 1

2

∫ t

0

d

dτ
{

=‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H}dτ =

∫ t

0
(F,U)Edτ

≤
√
T ‖ F ‖L2((0,t);E)

1√
T
‖ U ‖L2((0,t);E)

≤ 1

2

(
T ‖ F ‖2L2((0,t);E) +

1

T
‖ U ‖2L2((0,t);E)

)
,

with multiplying both sides with 2 and then using the Gronwall’s inequality given in Theorem A.8 on

p. 182 imply

‖ U(t) ‖2E ≤ C
(
T ‖ F ‖2L2((0,t);E) + ‖ U0 ‖2E

)
, (4.8)

where C does not depend on T . Now, taking the integral over J = (0, T ) of both sides in (2.38) and

using the inequality∫ t

0
u2dτ ≤

∫ t

0
u2dτ +

∫ T

t
u2dτ =

∫
J
u2dt, ∀t ∈ J = (0, T ), 0 < t < T <∞.

Knowing that ‖ U0 ‖2E and

∫
J
‖ F ‖2E dt are constants in time, then

‖ U ‖2L2(J ;E) ≤ C
(
T

∫
J

∫ t

0
‖ F ‖2E dτdt︸ ︷︷ ︸

≤

∫
J

∫
J
‖ F ‖2E dtdt

+T ‖ U0 ‖2E
)

= TC
(
T ‖ F ‖2L2(J ;E) + ‖ U0 ‖2E

)
=⇒‖ U ‖L2(J ;E) ≤ T

√
C
(
‖ F ‖L2(J ;E) + ‖ U0 ‖E

)
, after using Lemma A.3 on p. 181. �
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Theorem 4.2 (Existence, uniqueness of variational formulation with general vector-valued functional)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let A ∈ L(Z,Z ′) be the spatial

operator given in Definition 2.2 on p. 6 such for a Hermitian form a : Z × Z → C which satisfies the

properties given in Theorem A.3 on p. 178:

〈Au, v〉Z′×Z = a(u, v), ∀u, v ∈ Z.

Let DA be the subspace of the Hilbert space Z given in Definition 3.13 on p. 60. There exists unique

vector-valued function U ∈ L2(J ;Z × Z) which solves (4.4) in Problem 4.1.1.

Proof:

Firstly, to show existence for the solution of Problem 4.1.1 starts with writing it as a strong form as

follows

∂tAu1 −Au2 = Af1,

∂tu2 +Au1 = f2,
(4.9)

with given initial data u1|t=0 = u1,0 ∈ DA ⊂ Z, and u2|t=0 = u2,0 := ū0 ∈ Z and from (4.3) on p. 78:(
f1

f2

)
∈ L2(J ;DA ×H) ⊂ L2(J ;Z ×H). (4.10)

Now, in order to show existence of u1 and u2 with their first time derivatives we will show that they

are defined by existing functions. To do that we recall the existing system in (2.20) on p. 11, transform

(4.9) to an existence system of the form of (2.20) on p. 11.

First, with the invertibility of the operator A ∈ L(Z,Z ′) then with recalling the system (2.20) on p. 11

which now reads to avoid any confusion with notations

∂tAū1 −Aū2 = 0,

∂tū2 +Aū1 = f,
(4.11)

with given initial data ū1|t=0 = ū1,0 := u0 ∈ Z, ū2|t=0 = ū2,0 := ū0 ∈ Z0 and forcing data f ∈
H1(J ;H). Theorem 2.3 on p. 17 shows that ū1 ∈ L2(J ;Z), ū2 ∈ L2(J ;Z), and ∂tū1 ∈ L2(J ;Z) with

∂tū2 ∈ L2(J ;H) ⊂ L2(J ;Z ′) which solve (4.11) do exist, with the regularity of ū1 and the initial data

ū1,0 given in Assumption 3.2 on p. 60.

Then, with defining

δ1 := ū1 − u1 and ū2 − u2 = 0, with δ1,0 = ū1,0 − u1,0, (4.12)

and after taking the difference of the two systems; (4.11) and (4.9):

∂tAδ1 −A(−f1) = 0,

f2 +Aδ1 = f,
(4.13)

and knowing that f1 ∈ L2(J ;DA) ⊂ L2(J ;Z) from (4.10) and thus the operator A ∈ L(Z,Z ′) is

invertible and that

δ1,0 = ū1,0 − u1,0 ∈ DA which is constant in time, (4.14)
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then

∂tAδ1 = −Af1 =⇒ δ1 = δ1,0 −
∫ t

0
f1dτ, for t < T <∞, i.e. δ1 ∈ L2(J ;DA) ⊂ L2(J ;Z), (4.15)

and also from (4.10) f2 ∈ L2(J ;H) ⊂ L2(J ;Z ′) and δ1 ∈ L2(J ;DA) ⊂ L2(J ;Z) from (4.15), which are

well defined then

=⇒ f = f2 + Aδ1︸︷︷︸
∈L2(J ;H)

∈ L2(J ;H) ⊂ L2(J ;Z ′).
(4.16)

Secondly, let

δ1 := δ1,0 −
∫ t

0
f1dτ ∈ L2(J ;DA) ⊂ L2(J ;Z),

f := f2 +Aδ1 ∈ L2(J ;H) ⊂ L2(J ;Z ′),

(4.17)

and with the existence of ū1 and ū2 in (4.11) shown in Theorem 2.3 on p. 17 with considering the

regularity of ū1 given in Assumption 3.2 on p. 60 such that ū1 ∈ L2(J ;DA), then there exists

u1 := ū1 − δ1 ∈ L2(J ;DA) ⊂ L2(J ;Z), u2 := ū2 ∈ L2(J ;Z), and u1,0 := ū1,0 − δ1,0 ∈ DA ⊂ Z.
(4.18)

Finally, with going back to (4.9) on p. 80 with using the identities in (4.18), (4.17), and the system

(4.11), then

∂tAu1 −Au2 = ∂tA(ū1 − δ1)−Au2 =

=0︷ ︸︸ ︷
∂tAū1 −Aū2−∂tAδ1 = −∂tA(δ1,0 −

∫ t

0
f1dτ) = Af1,

∂tu2 +Au1 = ∂tū+A(ū1 − δ1) =

=f︷ ︸︸ ︷
∂tū+Aū1−Aδ1 = f2 +Aδ1 −Aδ1 = f2,

(4.19)

and this concludes that u1 ∈ L2(J ;DA) ⊂ L2(J ;Z) and u2 ∈ L2(J ;Z) do exist. Moreover for well

defined f1 ∈ L2(J ;Z) and f2 ∈ L2(J ;H), the existence of u1 ∈ L2(J ;Z) and u2 ∈ L2(J ;Z), the

invertibility of the operator A ∈ L(Z,Z ′), and from (4.19), then

∂tAu1 −Au2 = Af1,=⇒ ∂tu1 = u2 + f1L
2(J ;Z),

∂tu2 +Au1 = f2,=⇒ ∂tu2 = f2 −Au1 ∈ L2(J ;H),
(4.20)

which also conclude that

∂tu1 ∈ L2(J ;Z) and ∂tu2 ∈ L2(J ;H) ⊂ L2(J ;Z ′), (4.21)

exist. Thus, with the stability estimate shown in Theorem 4.1 on p. 78, then U ∈ L2(J ;Z × Z) with

∂tU ∈ L2(J ;Z ×H) with well defined forcing data(
f1

f2

)
∈ L2(J ;DA ×H), (4.22)

and given initial data Ū ∈ DA×Z ⊂ Z×Z, the existence of the vector-valued function U which solves

Problem 4.1.1 on p. 77 is shown.
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Secondly, to show uniqueness, let U1 =
(u11
u12

)
and U2 =

(u21
u22

)
be two functions which solve the formula-

tion in (4.4) on p. 78 with same forcing and initial data, then when letting W̄ := U1−U2 ∈ L2(J ;Z×Z)

with ∂tW̄ ∈ L2(J ;Z ×H) which solves∫
J
{a(∂tw̄1, v1) + 〈∂tw̄2, v2〉Z′×Z + â(W̄ , V )}dt = 0,

for all V ∈ L2(J ;Z × Z) with initial data W̄0 = 0. Now, with choosing V = W̄ ∈ L2(J ;Z × Z) and

then following that same steps done at the beginning of this proof to show stability but this time with

zero vector-valued forcing data and initial data i.e.

‖ W̄ ‖2L2(J ;E)= 0,=⇒ 0 = W̄ = U1 − U2,

which implies that

U1 = U2. (4.23)

Finally, there exists unique solution U ∈ L2(J ;Z ×Z) of Problem 4.1.1 on p. 77. �

4.2 High-order in time DGFEM, semi-discrete formulation with a

functional of general forcing data F

The section includes the general theorem of existence and uniqueness of the semi-discrete vector-valued

function which solves Problem 4.2.1 on p. 82. The latter is having a general structure with general

vector-valued functional. All theorems to be shown here are going to be very important and useful to

show existence and uniqueness of semi-discrete formulation in Part II of this thesis. In this Section,

Problem 4.1.1 on p. 77 is discretised in time then in space using the same method in Chapter 3. The

semi-discrete formulation is given in (4.26) on p. 83. In Theorem 4.4 on p. 86 it will be shown that

this formulation is solvable.

Problem 4.2.1 (Semi-discrete formulation with a functional of general forcing data)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let A ∈ L(Z,Z ′) be the spatial

operator given in Definition 2.2 on p. 6 for a Hermitian form a : Z × Z → C which satisfies the

properties given in Theorem A.3 on p. 178:

〈Au, v〉Z′×Z = a(u, v), ∀u, v ∈ Z.

Let DA be the subspace of the Hilbert space Z given in Definition 3.13 on p. 60. Let ( , )E be the inner

product given in Corollary 2.2 on p. 10. Let BDG( , ) be the form given in (3.17) on p. 26:

(U, V )E = a(u1, v1) + (u2, v2)H and â(U, V ) = −a(u2, v1) + a(u1, v2),

and

BDG(UDG, V ) =
N−1∑
n=0

∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+

N−1∑
n=1

([UDG]n, V n
+ )E + (U0

DG,+, V
0

+)E .

Let Vr(N ;Z × Z) ⊂ L2(J ;Z × Z) be the semi-discrete space given in Definition 3.1 on p. 19:

Vr(N ;Z × Z) = {U : J → Z × Z : U |In ∈ P rn(In;Z × Z), 0 ≤ n ≤ N − 1} .
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Vr(N ;Z×Z) is the linear space consisting of piecewise polynomials in time with coefficients in Z×Z.

P rn(In;Z × Z) denotes the space of rnth order polynomials in time at In with coefficients in Z × Z.

Here Vr(N ;Z × Z) ⊂ L2(J ;Z × Z).

For vector-valued function

F =

(
f1

f2

)
∈ L2(J ;Z ×H) be a general vector-valued function where f1 is in L2(J ;DA) ⊂ L2(J ;Z).

(4.24)

A general linear functional (see Definition A.18 on p. 176) FDG : L2(J ;Z × H) → C i.e. FDG ∈
(L2(J ;Z ×H))′

FDG(V ) =
N−1∑
n=0

∫
In

{ (F,V )E=︷ ︸︸ ︷
a(f1, v1) + (f2, v2)H

}
dt =

∫
J

{ (F,V )E=︷ ︸︸ ︷
a(f1, v1) + (f2, v2)H

}
dt, ∀V ∈ L2(J ;Z ×H),

(4.25)

and here all vector-valued functions in semi-discrete space Vr(N ;Z×Z) are also included in this linear

map since Vr(N ;Z × Z) ⊂ L2(J ;Z ×H).

Find UDG ∈ Vr(N ;Z × Z) such that

BDG(UDG, V ) = FDG(V ) + (U0
DG,−, V

0
+)E , ∀ V ∈ Vr(N ;Z × Z), (4.26)

with given initial data U0
DG,− = U0 =

(
u1,0

u2,0

)
∈ Z × Z, where u1,0 ∈ DA ⊂ Z.

The time-stepping formulation of (4.26) would read:

Problem 4.2.2 (Semi-discrete time-stepping scheme with general forcing data)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let DA be the subspace given in

Definition 3.13 on p. 60. Let ( , )E be the inner product given in Corollary 2.2 on p. 10 and â( , ) be

the skew-symmetric form given in Definition 2.7 on p. 14:

(U, V )E = a(u1, v1) + (u2, v2)H , and â(U, V ) = −a(u2, v1) + a(u1, v2).

Let P rn(In;Z ×Z) be the semi-discrete space of rnth order polynomials in time at In with coefficients

in Z × Z given in Definition 3.1 on p. 19. For F =
(
f1
f2

)
∈ L2(In;Z ×H) where f1 ∈ L2(In;DA), let

FnDG ∈ (L2(In;Z ×H))′:

FnDG(V ) :=

∫
In

(F, V )Edt, for all V ∈ L2(In;Z ×H), 0 ≤ n ≤ N − 1. (4.27)

Find UDG ∈ P rn(In;Z × Z):

bnDG(UDG,V )=︷ ︸︸ ︷∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+ (UnDG,+, V

n
+ )E =

FnDG(V ):=︷ ︸︸ ︷∫
In

(F, V )Edt+(UnDG,−, V
n

+ )E ,

for all V ∈ P r(In;Z × Z), with UnDG,− to be the initial data at a given time step In = (tn, tn+1),

(4.28)
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4.2.1 Existence and uniqueness

Theorem 4.3 (Existence, uniqueness of the local semi-discrete solution with general r.h.s)

Let Z and H be the Hilbert spaces over the field C given in Definition 2.1 on p. 6. At a generic time

step I = (t0, t1) there exists a unique real semi-discrete vector-valued function UDG ∈ P r(I;Z × Z)

which solves Problem 4.2.2.

Proof:

Firstly, with repeating the same time decoupling and the diagonalisation process done in Section 3.2.1.1

starting on p. 28, then the formulation (4.28) at a generic time step I would read

Find {Up}rp=0 ⊂ Z × Z such that

λp(Up,Vp)E +
k

2
â(Up,Vp) =

k

2

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(F ◦Q,Vp)Edt̂

}
+

r∑
q=0

{
(β2
p)q

}
(U0

DG,−,Vp)E ,

for each p = 0, · · · , r,∀{Vp}rp=0 ⊂ Z × Z, given initial data U0
DG,− at a given time step I = (t0, t1),

and forcing data F =

(
f1

f2

)
∈ L2(J ;Z ×H).

(4.29)

and in component-wise (4.29) is written as:

λpa(u1,p, v1,p) = a(u2,p, v1,p) +
k

2

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)a(f1 ◦Q, v1,p)dt̂

}
+

r∑
q=0

{
(β2
p)q

}
a(u0

1,DG,−, v1,p)

λp(u2,p, v2,p)H +
k

2
a(u1,p, v2,p) =

k

2

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f2 ◦Q, v2,p)Hdt̂

}
+

r∑
q=0

{
(β2
p)q

}
(u0

2,DG,−, v2,p)H .

Secondly, the 2(r + 1) spatial problems in (4.29) can be reduced with again recalling the same steps

done in Section 3.2.1.2 starting on p. 32 such that with

f1(v2,p) := −k2
r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)a(f1 ◦Q, v2,p)dt̂

}
f2(v2,p) := 2kλp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f2 ◦Q, v2,p)Hdt̂

}
,

(4.30)

and with a form and a linear functional f ∈ (Z ×H)′ ≡ Z ′ ×H (since H ≡ H ′ is a pivot space):

b(u2,p, v2,p) := 4λ2
p(u2,p, v2,p)H + k2a(u2,p, v2,p)

f(v2,p) := f1(v2,p) + f2(v2,p), ∀v2 ∈ Z,
(4.31)

it would now read:

Find {u2,p}rp=0 ⊂ Z:

b(u2,p, v2,p) = f(v2,p) +

r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
,

for each p = 0, · · · , r, for all {v2,p}rp=0 ⊂ Z.

(4.32)

84



After solving for unknowns {u2,p}rp=0 ⊂ Z with given data F =
(
f1
f2

)
∈ L2(J ;Z × H) and u0

1,DG,−,

u0
2,DG,− ∈ Z, then it comes to update the values of {u1,p}rp=0 ⊂ Z:

u1,p =
k

2λp
u2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
u0

1,DG,− +
k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
, (4.33)

which need to be solved at any given time step I.

Now, the form b(u2,p, v2,p) given in (4.32) is continuous with using Lemma 3.5 on p. 34 after letting

c1 = 4λp ∈ C and c2 = k2 ∈ R:

b(u2,p, v2,p) = 4λ2
p(u2,p, v1,p)H + k2a(u2,p, v1,p) ≤ (4|λp|c2 + k2M) ‖ u2,p ‖Z‖ v1,p ‖Z , for p = 0, · · · , r,

and satisfies the Inf-sup condition in Lemma 3.4 on p. 33 where the Inf-sup constant is k2α. Also, the

r.h.s of (4.32) we have

|r.h.s| = |f1(v2,p) + f2(v2,p) +

r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
|. (4.34)

The same steps done in the proof of Lemma 3.6 on p. 35 are recalled in order to show boundedness

of the r.h.s, where now there is one additional term in the functional in (4.34) that is f1(v2,p) and the

other two terms are the same as the ones in (3.48) on p. 35 after letting f → f2, and from (3.49) on

p. 36, then

|f2(v2,p) +

r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
|

≤

(
c
√

23k|λp|
r∑
q=0

|(β1
p)q|x̂q ‖ f2 ‖L2(I;H) +|

r∑
q=0

(β2
p)q|
(

4c|λp| ‖ u0
2,DG,− ‖H

+ 2kM ‖ u0
1,DG,− ‖Z

))
‖ v2,p ‖Z .

(4.35)

Here and with using the continuity of the form a( , ) and then following the rest of steps done to get

the upper bound of the term f(v2,p) in the proof of Lemma 3.6 on p. 35 yield

|f1(v2,p)| = |k2
rn∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)a(f1 ◦Q, v2,p)dt̂

}
| ≤
√

2k3M

rn∑
q=0

|(β1
p)q|x̂q ‖ f1 ‖L2(I;Z)‖ v2,p ‖Z .

Then

|r.h.s| ≤

(
c
√

23k|λp|
r∑
q=0

|(β1
p)q|x̂q ‖ f2 ‖L2(I;H) +|

r∑
q=0

(β2
p)q|
(

4c|λp| ‖ u0
2,DG,− ‖H

+ 2kM ‖ u0
1,DG,− ‖Z

)
+
√

2k3M

rn∑
q=0

|(β1
p)q|x̂q ‖ f1 ‖L2(I;Z)

)
‖ v2,p ‖Z .

(4.36)
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Thus, going back to (Babuška) Theorem A.4 on p. 179 with having Lemmas 3.4 and 3.5 and (4.36),

then there exist unique functions {u2,p}rnp=0 ⊂ Z which solve (4.32).

For the identity (4.33) on p. 85:

u1,p =
k

2λp
u2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
u0

1,DG,− +
k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
,

where

‖ k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
‖Z ≤

k

2|λp|

r∑
q=0

{
|(β1

p)q|
∫ 1

−1
Lq(t̂) ‖ f1 ◦Q ‖Z dt̂

}
<∞,

for each p = 0, · · · , r, then from the given existence and uniqueness of {u2,p}rp=0 ⊂ Z and the given

forcing data f1 ∈ L2(J ;Z), f2 ∈ L2(J ;H) and initial data u0
1,DG,−, u

0
2,DG,− ∈ Z which are well defined,

that also concludes that {u1,p}rp=0 ⊂ Z at a given time step I also exists and is unique.

Finally, for given forcing data F =

(
f1

f2

)
∈ L2(J ;Z × H) and initial data U0

DG,− ∈ Z × Z at given

generic time step I there exist unique functions {Up}rp=0 ⊂ Z × Z which solve the 2(r + 1) spatial

problems (4.29) on p. 84. Now since

UDG|I =

r∑
j=0

ϕj(t)Uj , for Y ∈ C(r+1)×(r+1) : Uj =

r∑
i=0

YjiUi ∈ Z × Z.

From the existence and uniqueness of {Ui}ri=0 ⊂ Z×Z, then there exists unique vector-valued function

UDG ∈ P r(I;Z ×Z) which solves Problem 4.2.2. �

Theorem 4.4 (Existence and uniqueness of the semi-discrete solution with general r.h.s)

Let Z and H be the Hilbert spaces over the field C given in Definition 2.1 on p. 6. There exists a

unique real semi-discrete vector-valued function UDG ∈ Vr(N ;Z × Z) which solves the formulation

(4.26) on p. 83.

Proof:

Firstly, the semi-discrete vector-valued function UDG is uniquely written as

UDG =

N−1∑
n=0

UDG|In ,

where

UDG|In =

rn∑
j=0

ϕj(t)Uj , for Y rn ∈ C(rn+1)×(rn+1) : Uj =

rn∑
i=0

Y rn
ji Ui ∈ Z × Z.

Then, from the existence and uniqueness of UDG|In ∈ P
rn(In;Z×Z) for n = 0, · · · , N−1 shown in The-

orem 4.3 on p. 84 implies that UDG ∈ Vr(N ;Z×Z) does exist and is unique. �
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4.2.2 Stability estimates

This section includes the general lemmas and theorems of the local and global stability estimates of

the semi-discrete vector-valued function which solves Problem 4.2.1 on p. 82. The latter is having a

general structure with general vector-valued functional. The same techniques used in Section 3.2.2

starting on p. 36 will be used here with treating the additional terms in the functional which are

bounded as well as we will see in the coming sections.

All lemmas and theorems to be shown here are going to be very important and useful to get the

complete proofs of existence, uniqueness, and stability estimates in Part II of this thesis.

Lemma 4.1 (Local stability estimate of semi-discrete formulation with general r.h.s)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. The solution of the time-stepping

scheme in (4.28) on p. 83 and at a generic time step I = (t0, t1) that is

bDG(UDG,V )=︷ ︸︸ ︷∫
I

{
(∂tUDG, V )E + â(UDG, V )

}
dt+ (U0

DG,+, V
0

+)E =

=FDG(V )︷ ︸︸ ︷∫
I
(F, V )Edt+(U0

DG,−, V
0

+)E ,

for all V ∈ P r(I;Z × Z), with U0
DG,− to be the initial data at a given time step I = (t0, t1),

(4.37)

where V 0
+ = V+(t0), satisfies

‖ UDG ‖L2(I;E) ≤
k ‖ Y ‖22 (2r + 1)

2 min
p

Re λp

(
‖ F ‖L2(I;E) + ‖ U0

DG,− ‖E
)
, (4.38)

where k is the time step size at I. λp with Re λp > 0 are the eigenvalues of the matrix AL given in

(3.31) on p. 30 for p = 0, · · · , r, ‖ Y r ‖22 is the square of the spectral norm (see (A.6) on p. 173) of the

transformation matrix Y ∈ C(r+1)×(r+1) and r is the approximation order at the given generic time

step I.

Proof:

Firstly the form bDG( , ) in (4.37) satisfies the local Inf-sup condition in Lemma 3.8 on p. 38 with

recalling the first steps in the proof of Lemma 3.9 more precisely in (3.58) on p. 41, but this time with

one additional term in the r.h.s:

‖ UDG ‖L2(I;E) ≤
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z×Z)

∣∣∣bDG(UDG, V )
∣∣∣

‖ V ‖L2(I;E)

=
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z×Z)

∣∣∣
the additional term︷ ︸︸ ︷∫

I
(F, V )Edt +(U0

DG,−, V
0

+)E

∣∣∣
‖ V ‖L2(I;E)

(4.39)

Now, getting the upper bound for the additional term with using Cauchy inequality would be∣∣∣ ∫
I
(F, V )Edt

∣∣∣ ≤‖ F ‖L2(I;E)‖ V ‖L2(I;E) (4.40)
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Then with adding (4.40) to the resulting estimate in (3.61) on p. 42 and plugging them back to (4.39)

and since the time step size 0 < k < 1, yield

=⇒‖ UDG ‖L2(I;E) ≤
k ‖ Y ‖22

2 min
p

Re λp

(
‖ F ‖L2(I;E) +

√
2(2r + 1)√

k
‖ U0

DG,− ‖E
)

≤ k

2

‖ Y ‖22
min
p

Re λp
‖ F ‖L2(I;E) +

√
k

2
‖ Y ‖22

(2r + 1)

min
p

Re λp
‖ U0

DG,− ‖E
)

≤ k

2

‖ Y ‖22 (2r + 1)

min
p

Re λp

(
‖ F ‖L2(I;E) + ‖ U0

DG,− ‖E
)
. �

Lemma 4.2 (Estimate of a special recursion relation) Let c > 0 with assuming

δj+1 ≤ c(dj + δj), (4.41)

and

δj ≤
j−1∑
i=0

cj−idi + cjδ0, (4.42)

then there holds

δj+1 ≤
j∑
i=0

cj+1−idi + cj+1δ0,

Proof:

Starting with (4.41) for j = 0, then

δ0+1 ≤ cd0 + cδ0, (4.43)

and for j = 1

=⇒ δ1+1 ≤ c d1 + c δ1,

and with using the inequality in (4.43), implies

δ1+1 ≤ c d1 + c δ1 ≤ c d1 + c (c d0 + c δ0) = c d1 + c2 d0 + c2δ0, (4.44)

and for j = 2

=⇒ δ2+1 ≤ c d2 + c δ2, (4.45)

and again substituting (4.44) in (4.45), yields

δ2+1 ≤ c d2 + c δ2 ≤ c d2 + c (c d1 + c2 d0 + c2δ0) = c d2 + c2 d1 + c2+1d0 + c2+1δ0

=
2∑
i=0

c2+1−idi + c2+1δ0,
(4.46)

Then with having (4.42) and from (4.46) for general j then by induction we have

δj+1 ≤
j∑
i=0

cj+1−idi + cj+1δ0,

and that completes the proof. �
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Lemma 4.3 (Left-sided limits estimate of semi-discrete solution with general r.h.s)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let P rm(Im;Z × Z) be the semi-

discrete space of rmth order polynomials in time at Im with coefficients in Z×Z given in Definition 3.1

on p. 19. The semi-discrete vector-valued function UDG ∈ P rm(Im;Z × Z) which solves the following

formulation∫
Im

{
(∂tUDG, V )E + â(UDG, V )}dt+ (UmDG,+, V

m
+ )E =

∫
Im

(F, V )E dt+ (UmDG,−, V
m

+ )E ,

for all V ∈ P rm(Im;Z × Z),

(4.47)

for UmDG,− ∈ Z × Z to be the initial data at a given time step Im = (tm, tm+1) for m = 0, · · · , n − 1,

( n ≤ N) and F =
(
f1
f2

)
∈ L2(J ;Z ×H) to be a general forcing data, and U0 ∈ Z × Z to be the given

initial data, satisfies

‖ UnDG,− ‖E ≤
(

1 +
C
N

)n(
‖ F ‖L2(J ;E) + ‖ U0 ‖E

)
, (4.48)

where

‖ U ‖2E= a(u1, u1)+ ‖ u2 ‖2H , ∀ U ∈ Z × Z, (4.49)

and

C = max
m

(
T ‖ Y rm ‖22 (2rm + 1)

2 min
p

Re λp
),

for T <∞, ‖ Y rm ‖22 is the square of spectral norm (see (A.6) on p. 173) of the transformation matrix

Y rm ∈ C(rm+1)×(rm+1) and λp with Re λp > 0 for p = 0, · · · , rm is the corresponding eigenvalues of

the diagonalised matrix AL as defined in (3.31) on p. 30.

Proof:

Starting with choosing V = UDG ∈ P rm(Im;Z × Z) in (4.47) and then repeating the same first steps

done in the l.h.s of (3.23) on p. 28 in the proof of Lemma 3.7 and before summing up over m and with

applying the Cauchy and then Young’s inequality, (see Lemma A.2 on p. 181), in the r.h.s of (4.47),

imply

‖ Um+1
DG,− ‖

2
E +

≥0︷ ︸︸ ︷
‖ [UDG]m ‖2E − ‖ UmDG,− ‖2E = 2

∫
Im

(F,UDG)Edt

=⇒‖ Um+1
DG,− ‖

2
E − ‖ UmDG,− ‖2E≤ 2

∫
Im

(F,UDG)E dt ≤ 2 ‖ F ‖L2(Im;E)‖ UDG ‖L2(Im;E)

≤‖ F ‖2L2(Im;E) + ‖ UDG ‖2L2(Im;E),

now with going back to the resulting estimate in Lemma 4.1 on p. 87 with letting I → Im which means

that U0
DG,− → UmDG,−with considering a conformal time step size i.e. k = T

N and using Lemma A.3 on
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p. 181 three times after taking the square root of both sides, then

‖ Um+1
DG,− ‖

2
E − ‖ UmDG,− ‖2E ≤‖ F ‖2L2(Im;E) +

k2

4

(‖ Y rm ‖22)2(2rm + 1)2

(min
p

Re λp)
2

(
‖ F ‖2L2(Im;E) + ‖ UmDG,− ‖2E

)
=‖ F ‖2L2(Im;E) +

T 2(‖ Y rm ‖22)2(2rm + 1)2

4N2(min
p

Re λp)
2

(
‖ F ‖2L2(Im;E) + ‖ UmDG,− ‖2E

)

=⇒‖ Um+1
DG,− ‖E=

(
‖F ‖2L2(Im;E) +

T 2(‖ Y rm ‖22)2(2rm + 1)2

4N2(min
p

Re λp)
2

(
‖ F ‖2L2(Im;E) + ‖ UmDG,− ‖2E

)

+ ‖ UmDG,− ‖2E

)1/2

≤
(
‖F ‖2L2(Im;E) + ‖ UmDG,− ‖2E

)1/2
+
T ‖ Y rm ‖22 (2rm + 1)

4N min
p

Re λp

(
‖ F ‖2L2(Im;E)

+ ‖ UmDG,− ‖2E
)1/2

=⇒‖ Um+1
DG,− ‖E ≤

(T ‖ Y rm ‖22 (2rm + 1)

4N min
p

Re λp
+ 1
)(
‖ F ‖L2(Im;E) + ‖ UmDG,− ‖E

)
.

Moreover

=⇒‖ Um+1
DG,− ‖E ≤

(T ‖ Y rm ‖22 (2rm + 1)

4N min
p

Re λp
+ 1
)(
‖ F ‖L2(Im;E) + ‖ UmDG,− ‖E

)
≤
(
1 +

1

N
max(

T ‖ Y rm ‖22 (2rm + 1)

2 min
p

Re λp
)
)(
‖ F ‖L2(Im;E) + ‖ UmDG,− ‖E

)
= (1 +

C
N

)
(
‖ F ‖L2(Im;E) + ‖ UmDG,− ‖E

)
.

(4.50)

Now,let

δm+1 :=‖ Um+1
DG,− ‖E , δm :=‖ UmDG,− ‖E , and dm :=‖ F ‖L2(Im;E), (4.51)

then (4.50) can be written as

δm+1 ≤ (1 +
C
N

)(dm + δm), for m = 0, · · · , n− 1,

and with using the recurrence relation in Lemma 4.2 on p. 88:

δn ≤
n−1∑
m=0

(
1 +
C
N

)(n−m)
dm +

(
1 +
C
N

)n
δ0,

and with using the defined terms in (4.51) with U0
DG,− = U0 yields

‖ UnDG,− ‖E ≤
n−1∑
m=0

(
1 +
C
N

)n−m ‖ F ‖L2(Im;E) +
(
1 +
C
N

)n ‖ U0 ‖E , for n ≤ N. (4.52)
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In the r.h.s of (4.52)

n−1∑
m=0

(
1 +
C
N

)(n−m) ‖ F ‖L2(Im;E) =
(

1 +
C
N

)n
‖ F ‖L2(I0;E) + · · ·+

(
1 +
C
N

)
‖ F ‖L2(In−1;E)

≤
(

1 +
C
N

)n n−1∑
m=0

‖ F ‖L2(Im;E)=
(

1 +
C
N

)n
‖ F ‖L2(J ;E) .

Then

‖ UnDG,− ‖E ≤
(

1 +
C
N

)n(
‖ F ‖L2(J ;E) + ‖ U0 ‖E

)
,

and that completes the proof. �

Theorem 4.5 (Global stability estimate of semi-discrete formulation with general r.h.s)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. With a general forcing data

F ∈ L2(J ;Z × H) and initial data U0 ∈ Z × Z the solution UDG ∈ Vr(N ;Z × Z) of (4.26) in

Problem 4.2.1 on p. 82 satisfies

‖ UDG ‖L2(J ;E) ≤ (eC − 1)(‖ F ‖L2(J ;E) + ‖ U0 ‖E).

For bounded real constant

C = max
n

(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
), for p = 0, · · · , rn,

for T <∞, ‖ Y rn ‖22 is the square of spectral norm (see (A.6) on p. 173) of the transformation matrix

Y rm ∈ C(rn+1)×(rn+1) and λp with Re λp > 0 for p = 0, · · · , rn is the corresponding eigenvalues of the

diagonalised matrix AL as defined in (3.31) on p. 30.

Proof:

Summing over all time steps In such that J = ∪N−1
n=0 In, then

‖ UDG ‖L2(J ;E)=

N−1∑
n=0

‖ UDG ‖L2(In;E) .
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Now, with using the resulting estimate in Lemma 4.1 on p. 87 after letting I → In and the corres-

pondence initial data accordingly and after that Lemma 4.3 on p. 89, then

‖ UDG ‖L2(J ;E) ≤
N−1∑
n=0

‖ UDG ‖L2(In;E)

≤
N−1∑
n=0

{
k
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp

(
‖ F ‖L2(In;E) + ‖ UnDG,− ‖E

)}

=

N−1∑
n=0

{
T ‖ Y rn ‖22 (2rn + 1)

2N min
p

Re λp

(
‖ F ‖L2(In;E) + ‖ UnDG,− ‖E

)}

≤ 1

N
max
n

(
T ‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
)

N−1∑
n=0

{(
‖ F ‖L2(In;E) + ‖ UnDG,− ‖E

)}

=
C
N

N−1∑
n=0

‖ F ‖L2(In;E)︸ ︷︷ ︸
=‖F‖L2(J;E)

+
C
N

N−1∑
n=0

‖ UnDG,− ‖E

≤ C
N
‖ F ‖L2(J ;E) +

C
N

N−1∑
n=0

{(
1 +
C
N

)n}(
‖ F ‖L2(J ;E) + ‖ U0 ‖E

)

=

(
C
N

+
C
N

N−1∑
n=0

{( C
N

+ 1
)n})

‖ F ‖L2(J ;E) +
C
N

N−1∑
n=0

{( C
N

+ 1
)n}

‖ U0 ‖E .

Here, with the use of the geometric series formula with a 6= 1:

n−1∑
i=0

ai =
an − 1

a− 1
, (see [31, (7.6)])

then

N−1∑
n=0

( C
N

+ 1
)n

=

(
C
N + 1

)N
− 1(

C
N + 1

)
− 1

=
N

C

(( C
N

+ 1
)N
− 1

)
.

Then

‖ UDG ‖L2(J ;E) ≤

(
C
N

+
(( C

N
+ 1
)N
− 1
))
‖ F ‖L2(J ;E) +

(( C
N

+ 1
)N
− 1
)
‖ U0 ‖E .

For the boundedness of the latter estimate:

First, let x = N such that 0 < N <∞, and given fixed 0 < C <∞,

f(x) :=

((C
x

+ 1
)x
− 1

)
. (4.53)

Now, it is necessary to check if the latter function is increasing or decreasing. This is done by

calculating the first derivative with respect to x and check its sign.

With knowing that

1− 1

x
≤ log(x) ≤ x− 1, for x > 0, (see [9, (9)])
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then

f ′(x) =
(C
x

+ 1
)x(

log
(C
x

+ 1
)
− C
C + x

)
≥
(C
x

+ 1
)x((

1− 1
C
x + 1

)
− C
C + x

)
︸ ︷︷ ︸

=0

.

Secondly, with using this result, it concludes that the function f(x) given in (4.53) is bounded by its

limit as x→∞ with C <∞. For Cx which is bounded from above by C, then

lim
x→+∞

(
C
x

+

f(x)︷ ︸︸ ︷((C
x

+ 1
)x
− 1
))
≤ eC − 1.

Thus,

‖ UDG ‖L2(J ;E) ≤ (eC − 1)(‖ F ‖L2(J ;E) + ‖ U0 ‖E),

and that completes the proof. �

4.3 High-order in time DGFEM with conformal spatial discretisa-

tion, fully-discrete formulation with a functional of general for-

cing data F

The section includes the general theorem of existence, uniqueness, and stability estimates of fully-

discrete vector-valued function which solves Problem 4.3.1 on p. 93 which is having a structure with

general vector-valued functional. The same conformal spatial discretisation method used in Chapter 3

is also going to be used here in order to get the fully-discrete formulation.

All theorems to be shown here are going to be very important and useful to show existence, uniqueness,

and stability estimates of fully-discrete formulation in Part II of this thesis. In Theorem 4.7 on p. 96 it

will be shown that Problem 4.2.1 on p. 82 is solvable. Theorem 4.8 on p. 98 shows the global stability

estimate of fully-discrete solution of Problem 4.2.1.

Problem 4.3.1 (Fully-discrete formulation with general forcing data)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the discrete

finite-dimensional product subspace of Z × Z given in Definition 3.10 on p. 43. Let Vr(N ;Zh × Zh)

be the fully-discrete finite-dimensional product subspace of Vr(N ;Z × Z) where the latter is given in

Definition 3.1 on p. 19. Here Vr(N ;Zh × Zh) is a subspace of L2(J ;Z × Z). Let ( , )E be the inner

product given in Corollary 2.2 on p. 10. Let â( , ) be the skew-symmetric form given in Definition 2.7

on p. 14. Let BDG( , ) be the form given in (3.64):

(U, V )E = a(u1, v1) + (u2, v2)H , and â(U, V ) = −a(u2, v1) + a(u1, v2),

and

BDG(UDG, V ) =
N−1∑
n=0

∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+

N−1∑
n=1

([UDG]n, V n
+ )E + (U0

DG,+, V
0

+)E .
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Let FDG ∈ (L2(J ;Z ×H))′ be the linear functional:

FDG(V h) :=
N−1∑
n=0

∫
In

{
a(f1, v

h
1 ) + 〈f2, v

h
2 〉Z′×Z

}
dt

=
N−1∑
n=0

∫
In

{ (F,V h)E=︷ ︸︸ ︷
a(f1, v

h
1 ) + (f2, v

h
2 )H

}
dt, ∀V h ∈ L2(J ;Z ×H),

(4.54)

where all vector-valued functions in semi-discrete space Vr(N ;Zh×Zh) are also included in this linear

map since Vr(N ;Zh × Zh) ⊂ L2(J ;Z ×H).

Find UhDG ∈ Vr(N ;Zh × Zh) such that

BDG(UhDG, V
h) = FDG(V h) + (Uh,0DG,−, V

h,0
+ )E , ∀ V h ∈ Vr(N ;Zh × Zh), (4.55)

with given initial condition Uh,0DG,− = Uh0 =

(
uh1,0

uh2,0

)
∈ Zh × Zh.

The time-stepping formulation of (4.55) would read:

Problem 4.3.2 (Fully-discrete time-stepping scheme with general forcing data)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the discrete finite-

dimensional product subspace of Z × Z given in Definition 3.10 on p. 43. Let P rn(In;Zh × Zh) be

the fully-discrete finite-dimensional product subspace of P rn(In;Z × Z) where the latter is given in

Definition 3.1 on p. 19. Let ( , )E be the inner product given in Corollary 2.2 on p. 10. Let â( , ) be

the skew-symmetric form given in Definition 2.7 on p. 14:

â(U, V ) = −a(u2, v1) + a(u1, v2), (U, V )E = a(u1, v1) + (u2, v2)H ,

Find UhDG ∈ P rn(In;Zh × Zh):

bnDG(UhDG,V
h)=︷ ︸︸ ︷∫

In

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)
}
dt+ (Uh,nDG,+, V

h,n
+ )E =

FnDG(V h):=︷ ︸︸ ︷∫
In

(F, V h)Edt+(Uh,nDG,−, V
h,n

+ )E ,

for all V h ∈ P rn(In;Zh × Zh), with Uh,0DG,− to be the initial data at a given time step In = (tn, tn+1),

(4.56)

4.3.1 Existence and uniqueness

With repeating the same time decoupling process done in Section 3.2.1.1 starting on p. 28, then the

formulation (4.56) at a generic time step I = (t0, t1) would read

Problem 4.3.3 (Discrete spatial problems with a general forcing data)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the discrete finite-

dimensional product subspace of Z×Z given in Definition 3.10 on p. 43. Let ( , )E be the inner product

given in Corollary 2.2 on p. 10. Let λp be the eigenvalues of the matrix AL given in (3.31) on p. 30.

Let (β1
p)q and (β2

p)q be the (r + 1) vectors given in (3.36):

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Zh × Zh,

(β1
p)q = (Y −1)pq x

1
q = (Y −1)pq

√
(q + 1/2), and

(β2
p)q = (Y −1)pq x

2
q = (Y −1)pq

√
(q + 1/2)(−1)q, respectively.

(4.57)
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Find {Uhp}rp=0 ⊂ Zh × Zh such that

λp(U
h
p ,V

h
p)E +

k

2

(
a(uh1,p, v2,p)− a(uh2,p, v

h
1,p)
)

=
k

2

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(F ◦Q,Vh

p)Edt̂
}

+
r∑
i=0

{
(β2
p)q

}
(Uh,0DG,−,V

h
p)E ,

for each p = 0, · · · , r,∀{Vh
p}rp=0 ⊂ Zh × Zh, given initial data Uh,0DG,− at a given time step I,

and forcing data F =

(
f1

f2

)
∈ L2(J ;Z ×H),

(4.58)

The 2(r + 1) spatial problems in (4.58) can be reduced.

Problem 4.3.4 (Discrete reduced spatial problems with a general forcing data) Let Z and

H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh the discrete finite-dimensional subspace

of Z given in Definition 3.10 on p. 43. Let λp be the eigenvalues of the matrix AL given in (3.31) on

p. 30. Let (β1
p)q and (β2

p)q be elements given in (4.57).

With again recalling the same steps done in sections 3.2.1.2 and 4.2 starting on p. 32 and 82, respect-

ively, such that with

f1(vh2,p) = 2λpk

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f ◦Q, vh2,p)Hdt̂

}
,

f2(vh2,p) = −k2
r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)a(f1 ◦Q, vh2,p)dt̂

}
,

and with a form and a linear functional f ∈ (Z ×H)′:

b(uh2,p, v
h
2,p) = 4λ2

p(u2,p, v
h
2,p)H + k2a(uh2,p, v

h
2,p)

f(vh2,p) = f1(vh2,p) + f2(vh2,p), ∀v2 ∈ Z,
(4.59)

where all functions in the conformal finite dimensional subspace Zh are also included in this linear

map since Zh ⊂ Z. Then (4.58) is reduced and would now read:

Find {uh2,p}rp=0 ⊂ Zh:

b(uh2,p, v2,p) = f(vh2,p) +
r∑
q=0

{
(β2
p)q

}(
4λp(u

h,0
2,DG,−, v

h
2,p)H − 2ka(uh,01,DG,−, v

h
2,p)
)
,

for each p = 0, · · · ,r, for all {vh2,p}rp=0 ⊂ Zh.
(4.60)

After solving for unknowns {uh2,p}rp=0 ⊂ Zh with given data F =
(
f1
f2

)
∈ L2(J ;Z × H) and uh,01,DG,−,

uh,02,DG,− ∈ Zh, then it comes to update the values of {uh1,p}rp=0 ⊂ Zh:

uh1,p =
k

2λp
uh2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
uh,01,DG,− +

k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
, (4.61)

which need to be solved at a given generic time step I.
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Theorem 4.6 (Existence, uniqueness of discrete reduced problems of with general r.h.s)

Let Z and H be the Hilbert spaces over the field C given in Definition 2.1 on p. 6. Let Zh be the

conformal finite dimensional subspace of the Hilbert space Z given in Definition 3.10 on p. 43. There

exist unique discrete functions {uh2,p}rp=0 ⊂ Zh which solve (4.60) and {uh1,p}rp=0 ⊂ Zh in (4.61).

Proof:

With using conformal spatial discetisation and since Zh is a subspace of Z, the form b( , ) given in

(4.60) is continuous with using Lemma 3.5 on p. 34 after letting c1 = 4λp ∈ C and c2 = k2 ∈ R:

b(uh2,p, v
h
2,p) = 4λ2

p(u
h
2,p, v

h
1,p)H + k2a(uh2,p, v

h
1,p) ≤ (4|λp|c2 + k2M) ‖ uh2,p ‖Z‖ vh1,p ‖Z , for p = 0, · · · , r,

and satisfies the discrete Inf-sup condition in Lemma 3.11 on p. 47 where the Inf-sup constant is k2α.

For the r.h.s of (4.60) and with again using the same steps in the proof of Theorem 4.3, then

|r.h.s| ≤

(
c
√

23k|λp|
r∑
q=0

|(β1
p)q|x̂q ‖ f2 ‖L2(I;H) +|

r∑
q=0

(β2
p)q|
(

4c|λp| ‖ uh,02,DG,− ‖H

+ 2kM ‖ uh,01,DG,− ‖Z
)

+
√

2k3M

rn∑
q=0

|(β1
p)q|x̂q ‖ f1 ‖L2(I;Z)

)
‖ vh2,p ‖Z .

(4.62)

Thus, going back to (Babuška) Theorem A.4 on p. 179 again with having Lemmas 3.11 and 3.5 and

(4.62), then there exist unique functions {uh2,p}rp=0 ⊂ Zh which solve (4.60) on p. 95.

For the identity (4.61) on p. 95:

uh1,p =
k

2λp
uh2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
uh,01,DG,− +

k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
,

where

‖ k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
‖Z ≤

k

2|λp|

r∑
q=0

{
|(β1

p)q|
∫ 1

−1
Lq(t̂) ‖ f1 ◦Q ‖Z dt̂

}
<∞,

for each p = 0, · · · , r, then from the given existence and uniqueness of {uh2,p}rp=0 ⊂ Zh and the given

forcing data f1 ∈ L2(J ;Z), f2 ∈ L2(J ;H) and initial data uh,01,DG,−, u
h,0
2,DG,− ∈ Z which are well defined,

that also concludes that {uh1,p}rp=0 ⊂ Zh at a given time step I also exists and is unique. �

Theorem 4.7 (Existence and uniqueness of fully-discrete solution with general r.h.s)

Let Z and H be the Hilbert spaces over the field C given in Definition 2.1 on p. 6. Let Zh×Zh be the

conformal finite dimensional subspace of the product-Hilbert space Z × Z given in Definition 3.10 on

p. 43. There exists unique fully-discrete vector-valued function UhDG ∈ Vr(N ;Zh × Zh) which solves

the formulation (4.55).

Proof:

Since the fully-discrete vector-valued function UhDG is uniquely written as

UhDG =

N−1∑
n=0

UhDG|In ,

96



where

UhDG|In =

rn∑
j=0

ϕj(t)U
h
j , for Y rn ∈ C(rn+1)×(rn+1) : Uhj =

rn∑
i=0

Y rn
ji U

h
i ∈ Zh × Zh.

Then, the shown existence and uniqueness of {Uhi }
rn
i=0 ⊂ Zh×Zh in Theorem 4.6 on p. 96 implies that

UhDG ∈ Vr(N ;Zh×Zh) does exist and is unique. �

4.3.2 The stability estimates

This section will provide local and global stability estimates of fully-discrete formulation with general

forcing data F .

Lemma 4.4 (Local stability estimate for fully-discrete formulation with general r.h.s)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the conformal

finite dimensional subspace of the product-Hilbert space Z ×Z given in Definition 3.10 on p. 43. At a

generic time step I = (t0, t1) with general vector-valued functional F ∈ (L2(J ;Z×H))′, a vector-valued

function UhDG ∈ P r(I;Zh × Zh) which solves

bDG(UhDG,V
h)=︷ ︸︸ ︷∫

I

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)
}
dt+ (Uh,0DG,+, V

h,0
+ )E =

FDG(V h)=︷ ︸︸ ︷∫
I
(F, V h)Edt+(Uh,0DG,−, V

h,0
+ )E ,

for all V h ∈ P r(I;Zh × Zh), with Uh,0DG,− to be the initial data at a given time step I = (t0, t1),

(4.63)

satisfies

‖ UhDG ‖L2(I;E) ≤
k ‖ Y ‖22 (2r + 1)

2 min
p

Re λp

(
‖ F ‖L2(I;E) + ‖ Uh,0DG,− ‖E

)
, (4.64)

where k is the time step at I. λp with Re λ > 0 are the eigenvalues of the matrix AL given in (3.31)

on p. 30 for p = 0, · · · , r, ‖ Y r ‖22 is the square of the spectral norm (see (A.6) on p. 173) of the

transformation matrix Y ∈ C(r+1)×(r+1) and r is the approximation order.

Proof:

Now, since the form bDG( , ) in (4.63) satisfies the discrete local Inf-sup condition in Lemma 3.10 on

p. 45, then

‖ UhDG ‖L2(I;E) ≤
k ‖ Y ‖22

2(min
p

Re λp)
sup

V h∈P r(I;Zh×Zh)

∣∣∣bDG(UhDG, V
h)
∣∣∣

‖ V h ‖L2(I;E)

=
k ‖ Y ‖22

2(min
p

Re λp)
sup

V h∈P r(I;Zh×Zh)

∣∣∣ ∫
I
(F, V h)Edt+ (Uh,0DG,−, V

h
+)E

∣∣∣
‖ V h ‖L2(I;E)

,

(4.65)

From here, and based on the choice of Zh × Zh which is the conformal finite dimensional sub-

spaces of Z × Z the rest of the proof follows the same steps of proving the estimate in Lemma 4.1

on p. 87 since in this case the steps don’t depend on the spatial spaces and that completes the

proof. �
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Lemma 4.5 (Left-sided limits estimate of fully-discrete solution with general r.h.s)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh × Zh be the conformal

finite dimensional subspace of the product-Hilbert space Z ×Z given in Definition 3.10 on p. 43. The

fully-discrete vector-valued function UhDG ∈ P rm(Im;Zh × Zh) which solves the formulation

∫
Im

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)}dt+ (Um,hDG,+, V

h,m
+ )E =

FDG(V h)=︷ ︸︸ ︷∫
Im

(F, V )E dt+(Uh,mDG,−, V
h,m

+ )E ,

for all V h ∈ P rm(Im;Zh × Zh),

(4.66)

where Uh,mDG,− is the initial data at a given time step Im = (tm, tm+1) for m = 0, · · · , n− 1, ( n ≤ N)

and Uh0 ∈ Zh × Zh to be the given initial data, satisfies

‖ Uh,nDG,− ‖E ≤
(

1 +
C
N

)n(
‖ F ‖L2(J ;E) + ‖ Uh0 ‖E

)
, (4.67)

where

‖ Uh ‖2E= a(uh1 , u
h
1)+ ‖ uh2 ‖2H ,∀ Uh ∈ Zh × Zh, (4.68)

and

C = max
m

(
T ‖ Y rm ‖22 (2rm + 1)

2 min
p

Re λp
),

for T <∞, ‖ Y rm ‖22 is the square of spectral norm (see (A.6) on p. 173) of the transformation matrix

Y rm ∈ C(rm+1)×(rm+1) and λp with Re λm are the corresponding eigenvalues of the diagonalised matrix

AL as defined in (3.31) for p = 0, · · · , rm.

Proof:

Firstly, choosing V h = UhDG ∈ P rm(Im;Zh × Zh) in (4.66), then

∫
Im

{
(∂tU

h
DG, U

h
DG)E +

=0︷ ︸︸ ︷
â(UhDG, U

h
DG)}dt+ ‖ Um,hDG,+ ‖

2
E=

∫
Im

(F,UhDG)E dt+ (Uh,mDG,−, U
h,m
DG,+)E .

Secondly, since the formulation in (4.66) satisfies same properties as the one in (4.37) on p. 87 and this

is based on the choice of the space Zh×Zh which is the conformal finite dimensional subspaces of Z×Z.

Thus, the rest of the steps follow the same arguments in the proof of Lemma 4.3 on p. 89 which does not

depend on the spatial spaces and that completes the proof. �

Theorem 4.8 (The global stability estimate of fully-discrete formulation with general r.h.s)

Let Z and H be the Hilbert spaces given in Definition 2.1 on p. 6. Let Zh×Zh be the conformal finite

dimensional subspace of the product-Hilbert space Z×Z given in Definition 3.10 on p. 43. With general

forcing data F ∈ L2(J ;Z×H) and initial data Uh0 ∈ Zh×Zh, then the solution UhDG ∈ Vr(N ;Zh×Zh)

of the formulation (4.66) satisfies

‖ UhDG ‖L2(J ;E) ≤ (C + eC − 1) ‖ F ‖L2(J ;E) +(eC − 1) ‖ Uh0 ‖E .

For bounded real constant

C = max
n

(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
), for p = 0, · · · , rn,

which appeared in Lemma 3.3 on p. 42.

98



Proof:

Firstly, with summing over all time steps In such that J = ∪N−1
n=0 In, then

‖ UhDG ‖L2(J ;E)=
N−1∑
n=0

‖ UhDG ‖L2(In;E) .

Secondly, with using the resulting estimate in Lemma 4.4 on p. 97 and then using the estimate in

Lemma 4.5 on p. 98, with following the same arguments in the proof of Theorem 4.5 on p. 91, then

that completes the proof. �
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Part II: Abstract theory analysis of

High-order in time DGFEM for

abstract linear wave equation with

linear constrains
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Chapter 5

Linear second-order in time evolution

equation with linear constraints

In this chapter, a variational formulation of the first-order system in time considered in Chapter 3

of Part I of this thesis is now going to be discussed with the case if there are linear constraints e.g.

in-homogeneous boundary data. These data are considered to be continuous in time and have high

regularity in space. The first-order system in time variational formulation is analysed in abstract

subset spaces.

In order to show existence, uniqueness, and stability estimates for first-order system in time formu-

lation with linear constraints, the extension methodology is used. This approach is about splitting

the solution of the formulation with linear constraints into two solutions. One is an existing function

which solves an auxiliary elliptic problem which is depending on the given constraints in the trace

space. The other is a solution of a transformed formulation where its analysis fits the given general

abstract theory in Chapter 4 in Part I.

For the auxiliary problem, the space and the regularity of its solution are chosen very carefully in

order to make sure all theory and regularity results from Part I are still applicable for the resulting

transformed formulation in this chapter as well as in the coming ones when it comes to discretise in

time and space.

5.1 Important Definitions and Lemmas

Definition 5.1 Let:

- Z and H be separable, (see Definition A.5 on p. 172) Hilbert spaces over the field C such that

Z is a subspace of H and dense in H, with Gelfand triple i.e. (Z ⊂ H ⊂ Z ′).

- A ∈ L(Z,Z ′) be a linear bounded operator, where Z ′ is the dual space of Z.

- With Definition A.19, Corollaries A.7 and A.8 on p. 176, a non-empty space DA which is a

subspace of Z is defined as

DA := {u ∈ Z : Au ∈ H}, with a norm ‖ u ‖2DA :=‖ u ‖2Z + ‖ Au ‖2H , ∀u ∈ DA.

Assumption 5.1 (DA, ‖ · ‖DA) in Definition 5.1 is Hilbert space.
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Corollary 5.1 (Separability of the Hilbert space DA) The Hilbert space DA given in Defini-

tion 5.1 is separable.

Proof:

Assumption 5.1 implies DA is complete and that means it is a closed subspace of the separable Hilbert

space Z and from Theorem A.2 on p. 178 it concludes that DA is also separable. �

Definition 5.2 Let Z and DA be the Hilbert spaces given in Definition 5.1 with Assumption 5.1.

- Let Ztr be a normed vector space.

Let γ : Z → Ztr which is linear continuous surjective map, (see Definitions A.11 and A.13 on

p. 174) i.e. Ztr = γ[Z]. The norm in Ztr is defined as

‖ v ‖Ztr := inf
u∈Z
γu=v

‖ u ‖Z , ∀ v ∈ Ztr.

- DA,tr := γ[DA] with the norm

‖ v ‖DA,tr := inf
u∈DA
γu=v

‖ u ‖DA , ∀ v ∈ DA,tr.

- For any g ∈ Ztr and g ∈ DA,tr the following subsets are defined over the field C:

Zg := {v ∈ Z : γv = g} and Dg := {v ∈ DA : γv = g}.

- Also the following subsets over the field C:

Z0 := {v ∈ Z : γv = 0} and D0 := {v ∈ DA : γv = 0}.

Corollary 5.2 (Separability of Ztr and DA,tr) Ztr and DA,tr given in Definition 5.2 are separ-

able.

Proof:

With using Corollary A.5 on p. 175 i.e. from Definition 5.2 on p. 102:

Ztr = γ[Z], and DA,tr = γ[DA],

and since Z and DA are separable Hilbert spaces as given in Definition 5.1 with Assumption 5.1 and

Corollary 5.1 on p. 101 and γ is linear and bounded operator, then that completes the proof. �

Corollary 5.3 Let Z and DA be the Hilbert spaces given in Definition 5.1 with Assumption 5.1 on

p. 101. Then the subsets Zg and Dg given in Definition 5.2 on p. 102 are not subspaces of Z and DA,

respectively. Moreover, the subsets Z0 and D0 given in Definition 5.2 are subspaces of (Z, ‖ · ‖Z) and

(DA, ‖ · ‖DA), respectively with (Z0, ‖ · ‖Z) and (D0, ‖ · ‖DA).
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Proof:

With recalling the three conditions given in the third point in Definition A.1 on p. 171:

Firstly, Let u1, u2 ∈ Zg and based on the definition of Zg then

γu1 + γu2 = γ(u1 + u2) = 2g → u1 + u2 /∈ Zg,

and the same thing holds for the subset Dg.

Secondly, for example if u1 and u2 are in Z0 and α ∈ C, then

αγu1 + αγu2 = 0 ∈ Z0,

with knowing that from the definition of Z0 the zero vector is in Z0. Also, the same thing holds for

the subset D0, then that completes the proof. �

Lemma 5.1 Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Then (Z0, ‖ · ‖Z)

is a separable Hilbert space which is a subspace of H and dense in H i.e. have the Gelfand triple

(Z0 ⊂ H ⊂ Z ′0). Also

Z0 ⊂ Z ⊂ H ⊂ Z ′ ⊂ Z ′0. (5.1)

Proof:

Firstly, for γ ∈ L(Z,Ztr) which is a linear bounded surjective operator and the definition of the

subspace Z0 given in Definition 5.2 on p. 102:

Z0 = {v ∈ Z : γv = 0} ⇐⇒ ker(γ) = {v ∈ Z : γv = 0},

and from Corollary A.3 on p. 174 then Z0 is closed. Also, with knowing that a closed subspace of

a Hilbert space is a Hilbert space,( see [13, Orthogonal Complements and Projections]) and from

Theorem A.2 on p. 178, Consequently, Z0 is separable Hilbert space of Z. Secondly, from the given

properties of the Hilbert spaces Z and H in Definition 5.1 on p. 101:

Z and H are separable, Z is subspace of H and dense in H, and have Gelfand triple Z ⊂ H ⊂ Z ′,

and from the separability of Z0 i.e. it has countable dense subsets, then it means that it is also dense

in H, and for Z ′0 the dual space of Z0 the Gelfand triple holds that is (Z0 ⊂ H ⊂ Z ′0) with the following

spacial structure holds

Z0 ⊂ Z ⊂ H ⊂ Z ′ ⊂ Z ′0,

and that completes the proof. �

Corollary 5.4 Let Z and DA be the Hilbert spaces given in Definition 5.1 with Assumption 5.1 on

p. 101. Let Dg and Zg be the subsets and Z0 and D0 be the subspaces given in Definition 5.2 on p. 102.

Then Dg and Dg′ are subsets of Zg and Zg′, respectively, and D0 is a subspace of Z0.

Proof:

Since DA is a Hilbert subspace of Z, and from the definitions of the subsets Dg and Zg:

Zg = {v ∈ Z : γv = g} and Dg = {v ∈ DA : γv = g},
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they conclude that Dg is a subset of Zg. Also, the same would hold for Dg′ and Zg′ . Similarly, from

the definitions of the subspaces D0 and Z0 of DA and Z, respectively:

Z0 = {v ∈ Z : γv = 0} and D0 = {v ∈ DA : γv = 0},

they imply that D0 is a subspace of Z0, and that concludes the proof. �

Definition 5.3 Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let A ∈ L(Z,Z ′).

Let Z0 be the Hilbert subspace of Z given in Definition 5.2 on p. 102. a : Z × Z → C is a Hermitian

form such that

a(u, v) := 〈Au, v〉Z′×Z , for u, v ∈ Z,

and

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀u ∈ Z0,

which is real and symmetric if both u, v are real functions and if they are complex then

a(u, v) = a(v, u), (conjugate-symmetry).

Definition 5.4 Considering Definitions 5.1 and 5.2 on p. 101, the following is defined

W := H1(J ;DA ×DA),

with the norm

‖ U ‖2W :=‖ U ‖2H1(J ;DA×DA)=‖ u1 ‖2H1(J ;DA) + ‖ u2 ‖2H1(J ;DA) .

Lemma 5.2 (New inner product) Let Z and DA be the Hilbert spaces given in Definition 5.1 with

Assumption 5.1 on p. 101. Let W be the normed-product space given in Definition 5.4 on p. 104. The

following is an inner product

(U, V )W : =

∫
J
{(∂tU, ∂tV )DA×DA + (U, V )DA×DA}dt = (U, V )H1(J ;DA×DA), ∀U, V ∈W.

Proof:

1. Bi-linearity:

For any real vector-valued functions U1, U2, V ∈W and α1, α2 ∈ R, with the bi-linearity of the

inner products ( , )DA and ( , )Z of the Hilbert spaces DA and Z, respectively then

((α1U
1 + α2U

2), V )W = ((α1U
1 + α2U

2), V )H1(J ;DA×DA)

= α1(U1, V )H1(J ;DA×DA) + α2(U2, V )H1(J ;DA×DA)

= α1(U1, V )W + α2(U2, V )W = (U1, α1V )W + (U2, α2V )W .

2. Symmetry:

By definition and the symmetries of its individual terms with given real vector-valued functions,

then

(U, V )W = (U, V )H1(J ;DA×DA) = (V,U)H1(J ;DA×DA) = (V,U)W .
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3. Positive definiteness:

For real vector-valued function U 6= 0 and by definition

(U,U)W = (U,U)H1(J ;DA×DA) =‖ U ‖2H1(J ;DA×DA)> 0,

and this concludes that (U,U)W = 0 if and only if U ≡ 0.

Moreover, since H1(J ;DA) is a Hilbert space and with using Definition A.22 on p. 181 such that

‖ u1 ‖2H1(J ;DA) <∞, ∀u1 ∈ H1(J ;DA),

then

‖ U ‖2W=‖ U ‖2H1(J ;DA×DA)<∞ =⇒‖ U ‖W is defined on the whole W.

Thus, the space W given in Definition 5.4 is a normed-product space with an inner product space i.e.

(W, ( , )W ) is a pre-Hilbert space. �

Remark 5.1 The inner product in Lemma 5.2 on p. 104 can also be written as

(U, V )W : =

∫
J
{(∂tu1, ∂tv1)DA + (u1, v1)DA + (∂tu2, ∂tv2)DA + (u2, v2)DA}dt

= (u1, v1)H1(J ;DA) + (u2, v2)H1(J ;DA).

(5.2)

Lemma 5.3 (New Hilbert space) Let DA be the Hilbert space given in Definition 5.1 with As-

sumption 5.1 on p. 101. Then W given in Definition 5.4 on p. 104 is a Hilbert space, i.e. (W, ‖ · ‖W )

is complete, (see Definitions A.4 and A.16 on p. 172 and 176, respectively) and separable.

Proof:

(W, (·, ·)W ) is a pre-Hilbert space as shown in Lemma 5.2. It remains to show that it is a Hilbert

space. This is shown if the space W induced with the norm ‖ · ‖W is complete i.e. if every Cauchy

sequence {Un} in W , (see Definition A.3 on p. 172), converges in W .

Let {Un} be a Cauchy sequence in W = H1(J ;DA ×DA) where

W = H1(J ;DA)×H1(J ;DA).

Since a product of two Hilbert spaces is a Hilbert space, i.e. since H1(J ;DA); with using Assump-

tion 5.1 on p. 101 thus

∃u1 ∈ H1(J ;DA) such that u1,n → u1 in H1(J ;DA), (5.3)

and

∃u2 ∈ H1(J ;DA) such that u2,n → u2 in H1(J ;DA), (5.4)

Thus, from (5.3) and (5.4)

the limit U =

(
u1

u2

)
is in W, (5.5)

which concludes that the space (W, (·, ·)W ) is a Hilbert space. Also since DA is separable as well as

the product DA ×DA, which also implies that W = H1(J ;DA ×DA) is separable, (see [39, Remark

10.1.10]), and that completes the proof. �
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Lemma 5.4 (Surjective time-extension operator) Let DA be the Hilbert space given in Defini-

tion 5.1 with Assumption 5.1 on p. 101. Let DA,tr be the separable normed vector space in Defini-

tion 5.2 on p. 102. Then γH1 ∈ L(H1(J ;DA), H1(J ;DA,tr)) is continuous (bounded) and surjective.

Proof:

From Lemma 5.3 on p. 105 H1(J ;DA) is a separable Hilbert space i.e. from Theorem A.5 on p. 179

it has a countable orthonormal basis. Thus, v ∈ H1(J ;DA) is written as

v =
∑
n

ψn(t)vn, for orthonormal basis ψn(t) ∈ H1(J), and vn = (v, ψn)H1(J) ∈ DA.

Now, with using Definition A.20 on p. 179 and knowing that γ ∈ L(DA, DA,tr) is bounded and time

independent:

γH1v :=
∑
n

ψn(t)γvn, (5.6)

then

‖ γH1v ‖2H1(J ;DA,tr) =
∑
n

‖ γvn ‖2Dtr≤‖ γ ‖
2
DA,DA,tr

∑
n

‖ vn ‖2DA= Cγ ‖ v ‖2H1(J ;DA),

and with the way the mapping is defined and the surjectivity of γ ∈ L(DA, DA,tr), then

γH1 ∈ L(L2(J ;DA), L2(J ;DA,tr)) is continuous and surjective. �

Definition 5.5 (The norm in H1(J ;DA,tr)) Let DA be the Hilbert space given in Definition 5.1

with Assumption 5.1 on p. 101. Let DA,tr be the separable normed vector space in Definition 5.2 on

p. 102. Let γH1 ∈ L(H1(J ;DA), H1(J ;DA,tr)) be the continuous (bounded) and surjective operator

given in Lemma 5.4. The norm in H1(J ;DA,tr) is defined as

‖ g ‖2H1(J ;DA,tr)= inf
u∈H1(J ;DA)
γH1u=g

‖ u ‖2H1(J ;DA), for g ∈ H1(J ;DA,tr). (5.7)

Lemma 5.5 (Matrix surjective time-extension operator)

Let DA,tr be the normed space given in Definition 5.2 on p. 102. Let W be the given Hilbert space

in Definition 5.4 on p. 104. For vector-valued function U ∈ W = H1(J ;DA) × H1(J ;DA) and

with W tr := H1(J ;DA,tr) × H1(J ;DA,tr), the time-extension of the continuous surjective map γ̄ :=(
γH1 0

0 γH1

)
∈ L(W,W tr) is continuous and surjective.

Proof:

From Definition 5.4 on p. 104, then the vector-valued function U ∈W = H1(J ;DA×DA) in component

wise would be as

u1 : J → DA, is in H1(J ;DA) and u2 : J → DA, which is in H1(J ;DA).

With recalling the proof of Lemma 5.4 on p. 106, respectively, then(
u1

u2

)
=
∑
n

φn(t)

(
u1,n

u2,n

)
, for orthonormal basis φn(t) ∈ H1(J), and(

u1,n

u2,n

)
= (U, φn(t)I)H1(J)×H1(J) ∈ DA ×DA :

γ̄U =

(
γH1 0

0 γH1

)(
u1

u2

)
=
∑
n

φn(t)

∈DA,tr×DA,tr︷ ︸︸ ︷(
γ 0

0 γ

)(
u1,n

u2,n

)
,
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and since the operator γH1 is linear, bounded, and surjective, then γ̄ ∈ L(W,W tr) is bounded and

surjective. �

Corollary 5.5 (The norm on the trace space W tr) Let DA,tr be the normed space given in Defin-

ition 5.2 on p. 102. Let W be the Hilbert space given in Definition 5.4 on p. 104 and W tr =

H1(J ;DA,tr × DA,tr). Let γ̄ : W → W tr be the time-extension continuous surjective map given in

Lemma 5.5 on p. 106, then a norm in W tr is

‖ G ‖W tr := inf
U∈W
γ̄U=G

‖ U ‖W , ∀G ∈W tr. (5.8)

Proof:

Firstly, Lemma 5.5 implies that W tr = γ̄[W ].

Secondly, for the norm of the Hilbert space W given in Definition 5.4 on p. 104, with the norm of the

space DA,tr in Definition 5.2 on p. 102, and for G =
(
g1
g2

)
=
(
g
g′

)
∈W tr (where g′ indicates the partial

time derivative of g) and with taking the infimum of W where γ̄U = G, then

inf
U∈W
γ̄U=G

‖ U ‖2W = inf
u1∈H1(J ;DA)
γH1u1=g1

‖ u1 ‖2H1(J ;DA) + inf
u1∈H1(J ;DA)
γH1u2=g2

‖ u2 ‖2H1(J ;DA)

=‖ g1 ‖2H1(J ;DA,tr) + ‖ g2 ‖2H1(J ;DA,tr)=‖ G ‖
2
H1(J ;DA,tr×DA,tr)=‖ G ‖W tr ,

and that completes the proof. �

Definition 5.6 (Subset and subspace of the Hilbert space W ) Let W be the Hilbert space given

in Definition 5.4 on p. 104 and W tr = H1(J ;DA,tr ×DA,tr). Let γ̄ : W →W tr be the time-extension

continuous surjective map given in Lemma 5.5 on p. 106. For any G =
(
g
g′

)
∈ W tr the following set

is defined

WG :=

{
U =

(
u1

u2

)
|U ∈W with γ̄U =

(
g

g′

)
, ∂tu1 ∈ L2(J ;Dg′) and ∂tu2 ∈ L2(J ;DA)

}
.

Also the subset:

W0 =

{
U =

(
u1

u2

)
|U ∈W with γ̄U = 0 =

(
0

0

)}
.

Corollary 5.6 (W0, ‖ · ‖W ) is a subspace of W = H1(J ;DA ×DA) and is a separable Hilbert space.

Proof:

Firstly, from the definition of the subset W0, the zero vector is in W0. Also for any U1, U2 ∈W0 and

α ∈ C,

αγ̄U1 + αγ̄U1 = 0.

Secondly, with the use of Lemma 5.4 on p. 106 such that γ̄ ∈ L(W,W tr) is a linear bounded surjective

operator and also from the definition of the subspace W0:

W0 :=

{
U =

(
u1

u2

)
|U ∈W with γ̄U = 0 =

(
0

0

)}
⇐⇒ ker(γ̄) = {V ∈W : γ̄V = 0},

then from Corollary A.3 on p. 174 then W0 is closed. Also, with knowing that a closed subspace

of a Hilbert space is a Hilbert space,( see [13, Orthogonal Complements and Projections]) and from

Theorem A.2 on p. 178, Consequently, W0 is separable Hilbert space of W , and that complete the

proof. �
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Lemma 5.6 (New inequalities) Let Z, H, and DA be the Hilbert spaces given in Definition 5.1

with Assumption 5.1 on p. 101. Let (Z × Z, ‖ · ‖X) be the normed-product space with the equivalent

E-norm in Definition 2.4 on p. 9 and in Lemma 2.1 on p. 9, the following hold

‖ V ‖2E≤ max(c2,M) ‖ V ‖2DA×DA , for V ∈ Z × Z, (5.9)

and

‖ V ‖2X≤ max(c2, 1) ‖ V ‖2DA×DA , for V ∈ Z × Z. (5.10)

Proof:

Starting with the E-norm for V ∈ Z × Z, using the continuity of the form a( , ), the inequality

‖ v2 ‖H≤ c ‖ v2 ‖Z , and the DA-norm imply

‖ V ‖2E= a(v1, v1)+ ‖ v2 ‖2H ≤M ‖ v1 ‖2Z +c2 ‖ v2 ‖2Z
≤ max(M, c2)

(
‖ v1 ‖2Z + ‖ v2 ‖2Z

)
≤ max(M, c2)

(
‖ v1 ‖2Z + ‖ Av1 ‖2H + ‖ v2 ‖2Z + ‖ Av2 ‖2H

)
= max(M, c2)

(
‖ v1 ‖2DA + ‖ v2 ‖2DA

)
= max(M, c2) ‖ V ‖2DA×DA ,

and for the X-norm

‖ V ‖2X=‖ v1 ‖2Z + ‖ v2 ‖2H ≤‖ v1 ‖2Z +c2 ‖ v2 ‖2Z
≤ max(1, c2)

(
‖ v1 ‖2Z + ‖ v2 ‖2Z

)
≤ max(1, c2)

(
‖ v1 ‖2Z + ‖ Av1 ‖2H + ‖ v2 ‖2Z + ‖ Av2 ‖2H

)
= max(1, c2)

(
‖ v1 ‖2DA + ‖ v2 ‖2DA

)
= max(1, c2) ‖ V ‖2DA×DA , �

5.2 The variational formulation of second-order system in time evol-

ution problem with linear constraints

Given Definitions 5.1 and 5.3 on p. 101 - 104 and suppose that

f ∈ H1(J ;H) to be the forcing data,

u0 ∈ Dg ⊂ Zg ⊂ Z and ū0 ∈ Zg′ ⊂ Z to be the compatible initial data

with, g ∈ H1(J ;DA,tr), and g′ ∈ H1(J ;DA,tr), to be the smooth linear constraints on the trace space.

(5.11)

The following formulation reads:

Problem 5.2.1 (The second-order in time formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg, Zg′, and Z0 be the subsets

and subspace given in Definition 5.2 on p. 102. Let a( , ) be the form given in Definition 5.3 on p. 104.

Find u ∈ L2(J ;Zg) with ∂tu ∈ L2(J ;Zg′) and ∂2
t u ∈ L2(J ;H):∫

J
{〈∂2

t u, v〉Z′×Z + a(u, v)}dt = F (v) =

∫
J
(f, v)Hdt, ∀v ∈ L2(J ;Z0), (5.12)

for given forcing data f ∈ H1(J ;H), compatible initial data u0 ∈ Zg ⊂ Z, ū0 ∈ Zg′ ⊂ Z, and

g ∈ H1(J ;DA,tr), ∂tg = g′ ∈ H1(J ;DA,tr) to be smooth enough data at the trace space.
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5.3 The continuous auxiliary (elliptic) problem

This section will introduce an existing continuous auxiliary (elliptic) problem which is going to be

used later as part of the splitting technique to complete the theoretical analysis involved in this part

i.e. showing the existence, uniqueness, and stability estimates of solution of the continuous variational

formulation with given linear constraints.

With recalling Definitions 5.1 and 5.3 on p. 101 - 104, and Lemma 5.2 on p. 104, the following problem

is introduced

Problem 5.3.1

Let DA be the Hilbert space given in Definition 5.1 with Assumption 5.1 on p. 101. Let Dg be the

subset of DA given in Definition 5.2. Let WG and W0 be the subset and the subspace of W , respectively,

given in Definition 5.6 on p. 107. Let ( , )W be the inner product given in Lemma 5.2 on p. 104 with

J = (0, T ):

(U, V )W = (U, V )H1(J ;DA×DA), for U, V ∈W = H1(J ;DA ×DA).

Find Ĝ ∈ WG =

{
U =

(
u1
u2

)
|U ∈ W with γ̄U =

(
g
g′

)
, ∂tu1 ∈ L2(J ;Dg′) and ∂tu2 ∈ L2(J ;DA)

}
⊂

W ⊂ C([0, T ];DA ×DA):

(Ĝ, V )W = 0, (5.13)

for all V ∈W0 ⊂W with G =
(
g1
g2

)
:=
(
g
g′

)
∈W tr = H1(J ;DA,tr ×DA,tr) where γ̄ ∈ L(W,W tr) is the

linear surjective matrix operator given in Lemma 5.5 on p. 106, and G ∈W tr ⊂ C([0, T ];DA,tr×DA,tr).

Now, since Ĝ ∈WG ⊂W ⊂ C([0, T ];DA ×DA), then

∂tĝ1 ∈ L2(J ;Dg′) and ĝ2 ∈ L2(J ;Dg′). (5.14)

5.3.1 Existence, uniqueness, and stability estimate of the continuous auxiliary

(elliptic) problem

Theorem 5.1 (Existence and uniqueness of continuous auxiliary (elliptic) problem)

Let DA be the Hilbert space given in Definition 5.1 with Assumption 5.1 on p. 101. Let DA,tr be the

normed space given in Definition 5.2 on p. 102. Let Dg be the subset of DA given in Definition 5.2.

Let W be the Hilbert space given in Definition 5.4 on p. 104 and W tr = H1(J ;DA,tr×DA,tr). Let WG

and W0 be the subset and the subspace of W , respectively, given in Definition 5.6 on p. 107. There

exists a unique vector-valued function Ĝ ∈WG which solves the formulation in (5.13).

Proof:

To show existence, since G ∈W tr = H1(J ;DA,tr ×DA,tr) is in the trace space, therefore at least one

vector-valued function Ḡ ∈ W = H1(J ;DA × DA) exists which satisfies the data at the trace space

i.e. γ̄Ḡ = G, then let

Ĝ := Ḡ+ G̃, where G̃ ∈W0 ⊂W, (5.15)

then the formulation in (5.13) in terms of G̃ ∈W0 ⊂W and Ḡ ∈W now reads

Find G̃ ∈W0:

(G̃, V )W = −(Ḡ, V )W , ∀V ∈W0 ⊂W. (5.16)
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Firstly, since ( , )W is the inner product in Hilbert space W as shown in Lemma 5.2 on p. 104, the

following hold

1. Continuity:

Using Cauchy inequality yields

(G̃, V )W ≤‖ G̃ ‖W ‖ V ‖W , ∀G̃, V ∈W0 ⊂W.

2. Positive definite:

(G̃, G̃)W =‖ G̃ ‖2W≥ 0, ∀ G̃ ∈W0 ⊂W.

Secondly, for the r.h.s of (5.16) with the use of Cauchy inequality again yields:

(Ḡ, V )W ≤‖ Ḡ ‖W ‖ V ‖W , ∀ Ḡ ∈W, V ∈W0 ⊂W.

Thus, with knowing that W0 is a Hilbert space (see Lemma 5.6 on p. 107), then by Lax-Milgram the-

orem (see Theorem A.3 on p. 178) there exists a unique solution G̃ ∈W0 which solves the formulation

in (5.16). From the identity in (5.15) on p. 109 and since G̃ ∈ W0 exists, it concludes that Ĝ ∈ WG

exists.

Finally, for the uniqueness, let Ĝ1 =

(
ĝ1

1

ĝ1
2

)
∈WG and Ĝ2 =

(
ĝ2

1

ĝ2
2

)
∈WG be two solutions which solve

(5.13) on p. 109, and with taking the difference of the two solutions i.e. letting W̄ := Ĝ1 − Ĝ2 ∈W0,

then we have

Find W̄ ∈W0:

(W̄ , V )W = 0, ∀V ∈W0,

and with choosing V = W̄ ∈W0, then

(W̄ , W̄ )W =‖ W̄ ‖2W≥ 0 =⇒ W̄ := Ĝ1 − Ĝ2 = 0,

which means Ĝ1 = Ĝ2, and that completes the proof. �

Lemma 5.7 (Stability estimate of continuous auxiliary (elliptic) problem)

Let DA be the Hilbert space given in Definition 5.1 with Assumption 5.1 on p. 101. Let DA,tr be the

normed space given in Definition 5.2 on p. 102. Let Dg be the subset of DA given in Definition 5.2.

Let W be the Hilbert space given in Definition 5.4 on p. 104 and W tr = H1(J ;DA,tr × DA,tr). Let

WG and W0 be the subset and the subspace of W , respectively, given in Definition 5.6 on p. 107. The

vector-valued function Ĝ ∈WG which solves the formulation in (5.13) on p. 109 satisfies

‖ Ĝ ‖W≤ 2 ‖ G ‖W tr . (5.17)

For G ∈W tr, where ‖ · ‖W tr is the norm on W tr given in Corollary 5.5 on p. 107:

‖ G ‖W tr := inf
U∈W
γ̄U=G

‖ U ‖W , ∀G ∈W tr. (5.18)
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Proof:

Starting with the identity given in (5.15) on p. 109 and the use of the triangle inequality, then

‖ Ĝ ‖W =‖ Ḡ+ G̃ ‖W≤‖ Ḡ ‖W + ‖ G̃ ‖W . (5.19)

Now, with choosing V = G̃ ∈W0, in the formulation (5.16) implies

‖ G̃ ‖2W≤‖ Ḡ ‖W ‖ G̃ ‖W ,

and dividing both sides with ‖ G̃ ‖W 6= 0, yields

‖ G̃ ‖W≤‖ Ḡ ‖W ,

then substituting the resulting estimate back in (5.19) implies

‖ Ĝ ‖W ≤ 2 ‖ Ḡ ‖W .

Now, with taking inf
Ḡ∈W
γ̄Ḡ=G

in both sides and using Corollary 5.5 on 107, imply

‖ Ĝ ‖W≤ 2 inf
Ḡ∈W
γ̄Ḡ=G

‖ Ḡ ‖W= 2 ‖ G ‖W tr ,
(5.20)

and that completes the proof. �

5.4 The variational formulation of the first-order system in time

with linear constraints

In this Section, the first-order system in time variational formulation of (5.12) on p. 108 is given in

Problem 5.4.1 on p. 112. The equivalence proof between the two problems is shown in Lemma 5.8

on p. 112. Uniqueness and existence of Problem 5.4.1 is proven in Theorem 5.2 on p. 115, where the

proof of it uses the results from Theorem 5.1 on p. 109 and Lemma 4.2 on p. 80.

Definition 5.7 (New functions)

From Section 5.3 the following (linear constraints) smooth data are considered at the trace space:

g1 = g, the same function at the trace space of problem (5.12), with

g2 = ∂tg = g′,
(5.21)

such that

G =

(
g1

g2

)
∈W tr = H1(J ;DA,tr ×DA,tr).

Then to rewrite the variational formulation in (5.12) as a first-order system in time the following

functions are introduced

u1 := u, the solution of (5.12), and

u2 := ∂tu.
(5.22)
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Now, with (5.22) in Definition 5.7:

∂tu1 = u2 and ∂2
t u = ∂tu2,

then the formulation in (5.12) on p. 108 is rewritten in terms of the two functions in (5.22) would read

Find u1 ∈ L2(J ;Zg), u2 ∈ L2(J ;Zg′) with ∂tu2 ∈ L2(J ;H):∫
J
{a(∂tu1, v1)− a(u2, v1)}dt = 0∫

J
{〈∂tu2, v2〉Z′×Z + a(u1, v2)}dt =

∫
J
〈f, v2〉Z′×Zdt, ∀v1, v2 ∈ Z0,

for given initial data u1,0 := u0 ∈ Dg ⊂ Zg, u2,0 := ū ∈ Zg′ , forcing data f ∈ H1(J ;H), and linear

constraints G ∈W tr.

Definition 5.8

Let Z be the Hilbert space given in Definition 5.1 on p. 101. Let Zg′ be the subset of Z given in

Definition 5.2. Let Zg and Zg′ be the subsets given in Definition 5.1 on p. 101. Let u1 and u2 be the

given functions in Definition 5.7:

U =

(
u1

u2

)
∈ L2(J ;Zg × Zg′), U0 =

(
u1,0

u2,0

)
∈ Zg × Zg′ , F =

(
0

f

)
, (5.23)

for f , u1,0, and u2,0 to be the same data given in (5.12) on p.108 accordingly, and the following form

â(U, V ): ∫
J
â(U, V )dt =

∫
J
{−a(u2, v1) + a(u1, v2)}dt, ∀V ∈ L2(J ;Z0 × Z0), (5.24)

where a( , ) is given in Definition 5.3 on p. 104.

Using the defined vector-valued functions and the form â(U, V ) in Definition 5.8 then Problem 5.2.1

on p. 108 can be rewritten in terms of the new functions u1 and u2 given in Definition 5.7 in a vector

form as follows

Problem 5.4.1 (First-order system in time variational formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg, Zg′, and Z0 be the subsets

and subspace given in Definition 5.2 on p. 102. Let DA,tr be the normed space given in Definition 5.2

on p. 102. Let â( , ) be the skew-symmetric form given in Definition 5.8.

Find U ∈ L2(J ;Zg × Zg′) with ∂tU ∈ L2(J ;Zg′ ×H):∫
J
{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )}dt =

∫
J
(f, v2)Hdt, ∀V ∈ L2(J ;Z0 × Z0), (5.25)

for given f ∈ H1(J ;H), initial data U |t=0 =

(
u1,0

u2,0

)
∈ Dg × Zg′ ⊂ Z × Z, and smooth enough data

G =
(
g1
g2

)
∈W tr = H1(J ;DA,tr ×DA,tr).

Lemma 5.8 (Equivalence between variational formulations with linear constraints)

Problem 5.4.1 on p. 112 and Problem 5.2.1 on p. 108 are equivalent.
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Proof:

Firstly, starting with Problem 5.2.1, knowing that Zg, and Zg′ are subsets of Z, and using the intro-

duced functions in (5.22) in Definition 5.7:

u1 := u ∈ L2(J ;Zg) ⊂ L2(J ;Z), ∂tu1 = ∂tu ∈ L2(J ;Zg′) ⊂ L2(J ;Z), and

u2 := ∂tu1 ∈ L2(J ;Zg′) ⊂ L2(J ;Z) with ∂tu2 = ∂2
t u ∈ L2(J ;H) ⊂ L2(J ;Z ′).

Letting v := v2 ∈ L2(J ;Z0) in (5.12) on p. 108 and for v1 ∈ L2(J ;Z0), with using the Hermitian form

a : Z × Z → C given in Definition 5.3 on p. 104, then∫
J
{a(∂tu1, v1)− a(u2, v1)}dt = 0

∫
J
{〈

∂tu2=︷︸︸︷
∂2
t u , v2〉Z′×Z + a(

u1=︷︸︸︷
u , v2)}dt =

∫
J
〈f, v2〉Z′×Zdt, ∀v1, v2 ∈ L2(J ;Z0),

for u1,0 = u0 ∈ Dg ⊂ Z and u2,0 = ū0 ∈ Zg′ ⊂ Z to be the compatible initial data with G =

(
g1

g2

)
:=(

g

∂tg

)
∈ W tr = H1(J ;DA,tr × DA,tr) to be the smooth data at the trace space. Coupling the two

equation with using the vector-valued functions in (5.23) and the skew-symmetric form â( , ) in (5.24),

respectively in Definition 5.8 on p. 112, conclude that

Problem 5.2.1 =⇒ Problem 5.4.1.

Secondly, starting now with Problem 5.4.1 that is∫
J
{a(∂tu1, v1) + 〈∂tu2, v2〉Z′×Z + â(U, V )}dt =

∫
J
〈f, v2〉Z′×Zdt, ∀V ∈ L2(J ;Z0 × Z0),

where ∫
J
â(U, V )dt =

∫
J
{−a(u2, v1) + a(u1, v2)}dt, ∀V ∈ L2(J ;Z0 × Z0),

and writing it in component-wise:∫
J
a(∂tu1 − u2, v1)dt = 0,∫

J
{〈∂tu2, v2〉Z′×Z + a(u1, v2)}dt =

∫
J
〈f, v2〉Z′×Zdt, ∀v2 ∈ L2(J ;Z0).

(5.26)

Now, the first equation in the system in (5.26), since ∂tu1 − u2 ∈ L2(J ;Z0) and from referring to

Corollary A.10 on p. 179 for all v1 ∈ L2(J ;Z0) and from Definition 5.3 on p. 104 which states that

a( , ) is elliptic in Z0 i.e. the operator A is invertible, then

0 =

∫
J
a(∂tu1 − u2, v1)dt :=

∫
J
〈A(∂tu1 − u2), v1〉Z′×Zdt =⇒ ∂tu1 = u2. (5.27)

With u2 = ∂tu1 ∈ L2(J ;Zg′) ⊂ L2(J ;Z), then for u1 = u ∈ L2(J ;Zg) ⊂ L2(J ;Z) and v2 = v ∈
L2(J ;Z0) conclude∫

J
{〈∂2

t u, v〉Z′×Z + a(u, v)}dt =

∫
J
〈f, v〉Z′×Zdt, ∀v ∈ L2(J ;Z0).

Thus

Problem 5.4.1 =⇒ Problem 5.2.1,

and that completes the proof. �
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5.4.1 Existence and uniqueness

With the use of the splitting technique i.e. the solution of Problem 5.4.1 on p. 112 is defined by

two functions and we should show that these two functions do exist and are unique. Then U ∈
L2(J ;Zg × Zg′) the solution of Problem 5.4.1 on p. 112 is defined by,

U := Ĝ+ Ū . (5.28)

Here, in (5.28) Ĝ ∈ WG is the uniquely existing vector-valued function which solves the auxiliary

problem (5.13) on p. 109 as shown in Lemma 5.1 on p. 109 the real vector-valued function Ū such

that Ū ∈ L2(J ;Z0 × Z0) with ∂tŪ ∈ L2(J ;Z0 ×H). Then the formulation in (5.25) on p. 112 can be

rewritten in a vector-valued form in terms of Ū and Ĝ as follows

Find Ū ∈ L2(J ;Z0 × Z0) with ∂tŪ ∈ L2(J ;Z0 ×H):∫
J
{a(∂tū1, v1) + 〈∂tū2, v2〉Z′×Z + â(Ū , V )}dt =

∫
J

{
〈f, v2〉Z′×Z − a(∂tĝ1, v1)− 〈∂tĝ2, v2〉Z′×Z

− â(Ĝ, V )
}
dt, ∀V ∈ L2(J ;Z0 × Z0),

(5.29)

for given initial data

Ū |0 =

(
ū1,0

ū2,0

)
= Ū |t=0 =

(
u1,0

u2,0

)
−
(
ĝ1,0

ĝ2,0

)
∈ D0 × Z0 ⊂ Z0 × Z0, (5.30)

and a forcing data f ∈ H1(J ;H) where Ĝ0 =
(ĝ1,0
ĝ2,0

)
∈ Dg ×Dg′ ⊂ Zg × Zg′ is well defined initial data

of the elliptic auxiliary problem in (5.13) on p. 109.

Here, with using Definition 5.3 on p. 104 and (5.24) on p. 112:

a(u, v) = 〈Au, v〉Z′×Z ,∫
J
â(U, V )dt =

∫
J
{−a(u2, v1) + a(u1, v2)}dt.

Now, from Remark 5.1 on p. 103 such that D0 is a subspace of Z0, then with the regularity of the

existing vector-valued function Ĝ shown in Theorem 5.1 on p. 109:

∂tĝ1 ∈ L2(J ;Dg′) and ĝ2 ∈ L2(J ;Dg′) =⇒ ∂tĝ1 − ĝ2 ∈ L2(J ;D0) ⊂ L2(J ;Z0), (5.31)

also with (Z0 ⊂ Z ⊂ H ⊂ Z ′ ⊂ Z ′0):

∂tĝ2 ∈ L2(J ;H) and ĝ1 ∈ L2(J ;Dg) ⊂ L2(J ;DA)

=⇒− ∂tĝ2 −Aĝ1 ∈ L2(J ;H) ⊂ L2(J ;Z ′0),
(5.32)

then in the r.h.s of (5.29) we have

r.h.s =

∫
J

{
(f, v2)H − a(∂tĝ1, v1)− 〈∂tĝ2, v2〉Z′×Z + a(ĝ2, v1)− 〈Aĝ1, v2〉Z′×Z}dt

=

∫
J
a(−∂tĝ1 + ĝ2, v1) + (f − ∂tĝ2 −Aĝ1, v2)Hdt

(5.33)

where from (5.31) and (5.32) with the regularity of f ∈ L2(J ;H), then(
f1

f2

)
=

(
−∂tĝ1 + ĝ2

f − ∂tĝ2 −Aĝ1

)
∈ L2(J ;D0 ×H) ⊂ L2(J ;Z0 ×H), (5.34)
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and with defining the linear functional F : L2(J ;Z0 × H) → C such that F ∈ (L2(J ;Z0 × H))′ ≡
L2(J ;Z ′0 ×H) where H ≡ H ′ from the (Gelfand triple) and (L2)′ ≡ L2 since it is pivot:

F(V ) :=

∫
J
{

(F,V )E︷ ︸︸ ︷
a(f1, v1) + (f2, v2)H}dt, ∀V ∈ L2(J ;Z0 ×H). (5.35)

Then with (5.35), the formulation of (5.29) on p. 114 would now read

Problem 5.4.2 (The transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the Hilbert subspace of

Z given in Definition 5.2 on p. 102 with Remark 5.1 on p. 103. Let â( , ) be the skew-symmetric form

given in Definition 2.7 on p. 14 and ( , )E be the inner product given in Corollary 2.2 on p. 10:

(U, V )E = a(u1, v1) + (u2, v2)E ,∫
J
â(U, V )dt =

∫
J
{−a(u2, v1) + a(u1, v2)}dt,

and a linear functional F ∈ L2(J ;Z ′0 ×H) given in (5.35).

Find Ū ∈ L2(J ;Z0 × Z0) with ∂tŪ ∈ L2(J ;Z0 ×H):

B(Ū ,V )=︷ ︸︸ ︷∫
J
{a(∂tū1, v1) + 〈∂tū2, v2〉Z′×Z + â(Ū , V )} dt = F(V ), ∀V ∈ L2(J ;Z0 × Z0),

(5.36)

for given initial data Ū |0 =

(
ū1,0

ū2,0

)
∈ D0 × Z0 ⊂ Z0 × Z0.

Theorem 5.2 (Existence, uniqueness of variational formulation with linear constraints)

Let Z, H, and DA be the Hilbert spaces given in Definition 5.1 on p. 101 with Assumption 5.1 on

p. 101. Let Zg and Z0 be the subset and the subspace of the Hilbert space Z, respectively, given

in Definition 5.2 on p. 102 with Remark 5.1 on p. 103. Let WG be the subset and the subspace

of W = H1(J ;DA × DA), respectively, given in Definition 5.6 on p. 107. There exists unique real

vector-valued solution U ∈ L2(J ;Zg × Zg′) for Problem 5.4.1 on p. 112.

Proof:

Starting with the identity (5.28) on p. 114 that is

U = Ĝ+ Ū .

Firstly, from Theorem 5.1 on p. 109 the vector-valued function Ĝ ∈WG exists and is unique.

Secondly, since the separable Hilbert space Z0 satisfies all the properties of the considered space in

the shown theory in Chapter 4 as shown in Lemma 5.1 on p. 103, also D0 satisfy the given property

given in Definition 3.13 on p. 60 where D0 is a subspace of Z0, and the forcing data in (5.34) defined

by the functional in (5.35) on p. 115 are then considered as a particular choice of the general one given

in Chapter 4 i.e. Problem 5.4.2 satisfies all proven properties of Problem 4.1.1 on p. 77 where now

F =

(
f1

f2

)
=

(
−∂tĝ1 + ĝ2

f − ∂tĝ2 −Aĝ1

)
∈ L2(J ;D0 ×H) ⊂ L2(J ;Z0 ×H), (5.37)

and Lemma 4.2 on p. 80, implies Ū ∈ L2(J ;Z0 × Z0); the solution of Problem 5.4.2, does exist

and is unique. Thus, the vector-valued function U ∈ L2(J ;Zg × Zg′) ⊂ L2(J ;Z × Z) which solves

Problem 5.4.1 also exists and is unique. �
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5.4.2 Stability estimate of first-order in time variational formulation with linear

constraints

Theorem 5.3 (Global stability estimate of continuous formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg be the subset of the Hilbert

space Z given in Definition 5.2 on p. 102. Let W be the Hilbert space given in Definition 5.4 on p. 104

and W tr = H1(J ;DA,tr × DA,tr) the normed-product space. With given forcing data f ∈ H1(J ;H),

compatible initial data U0 ∈ Zg × Zg′ and linear constraints G ∈ W tr, then the real vector-valued

function U ∈ L2(J ;Zg × Zg′) which solves Problem 5.4.1 on p. 112 for X = Z ×H satisfies

‖ U ‖L2(J ;X)≤ 2(4T
√
C max(M, c2, 1) +

√
max(1, c2)) ‖ G ‖W tr +

T
√

2C√
min(α, 1)

‖ f ‖L2(J ;H)

+
T
√
C√

min(α, 1)
(‖ U0 ‖E +

√
max(c2,M) ‖ G0 ‖DA,tr×DA,tr)

)
,

(5.38)

for T < ∞ and C is a generic constant which does not depend on T . M < ∞ is the lower bound of

the form a( , ) which satisfies the properties given in Definition 5.3 on p. 104. c is the constant in the

inclusion inequality ‖ u ‖H≤ c ‖ u ‖Z ,∀u ∈ Z, and the norm ‖ · ‖W tr given in Corollary 5.5 on p. 107.

Proof:

Starting with the identity in (5.28) on p. 114, using triangle inequality

‖ U ‖L2(J ;X) ≤‖ Ū ‖L2(J ;X) + ‖ Ĝ ‖L2(J ;X),

and substituting the resulting stability estimate in (4.5) on p. 78 in the proof of Lemma 4.2 and using

Lemma 5.6 on p. 108 and the inequality between the E and the X norms:

‖ Ū ‖L2(J ;X)≤
1√

min(α, 1)
‖ Ū ‖L2(J ;E)≤

T
√
C√

min(α, 1)

(
‖ F ‖L2(J ;E) + ‖ Ū0 ‖E

)
,

and

‖ Ĝ ‖L2(J ;X)≤
√

max(1, c2) ‖ Ĝ ‖L2(J ;DA×DA),

which yield

‖ U ‖L2(J ;X) ≤
T
√
C√

min(α, 1)

(
‖ F ‖L2(J ;E) + ‖ Ū0 ‖E

)
+
√

max(1, c2) ‖ Ĝ ‖L2(J ;DA×DA)︸ ︷︷ ︸
≤‖Ĝ‖W

.
(5.39)

Here, with the use of the Bochner integral E-norm definition, the definitions in (5.35) on p. 115,

Cauchy and Young’s inequalities, the inclusion inequality ‖ u ‖H≤ c ‖ u ‖Z ,∀u ∈ Z, the norm of the
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Hilbert space (DA, ‖ · ‖DA), and Lemma A.3 on p. 181 twice, then

‖ F ‖2L2(J ;E)=‖
(
f1

f2

)
‖2L2(J ;E) =

∫
J
{a(∂tĝ1 + ĝ2, ∂tĝ1 + ĝ2)+ ‖ f + ∂tĝ2 +Aĝ1 ‖2H}dt

≤ 2M ‖ ∂tĝ1 ‖2L2(J ;Z) +2M ‖ ĝ2 ‖2L2(J ;Z) +2 ‖ f ‖2L2(J ;H)

+ 4c2 ‖ ∂tĝ2 ‖2L2(J ;Z) +4 ‖ Aĝ1 ‖2L2(J ;H)

≤ 2M
(
‖ ∂tĝ1 ‖2L2(J ;Z) + ‖ A∂tĝ1 ‖2L2(J ;H)

)
+ 4 max(M, c2) ‖ ĝ2 ‖2H1(J ;Z)

+ 4 ‖ Aĝ1 ‖2L2(J ;H) +4 ‖ ĝ1 ‖2L2(J ;Z) +2 ‖ f ‖2L2(J ;H)

= 2M ‖ ∂tĝ1 ‖2L2(J ;DA) +4 max(M, c2) ‖ ĝ2 ‖2H1(J ;Z) +4 ‖ ĝ1 ‖2L2(J ;DA)

+ 2 ‖ f ‖2L2(J ;H)

≤ 4 max(M, 1) ‖ ĝ1 ‖2H1(J ;DA) +4 max(M, c2) ‖ ĝ2 ‖2H1(J ;DA)

+ 2 ‖ f ‖2L2(J ;H)

≤ 4 max(M, c2, 1) ‖ Ĝ ‖2H1(J ;DA×DA) +2 ‖ f ‖2L2(J ;H)

= 2
(

2 max(M, c2, 1) ‖ Ĝ ‖2W + ‖ f ‖2L2(J ;H)

)
,

(5.40)

then plugging this estimate back in (5.39) and with the use of the stability of the Ĝ function given in

Lemma 5.7 on p. 110 yields

‖ U ‖L2(J ;X) ≤ 2(4T
√
C max(M, c2, 1) +

√
max(1, c2)) ‖ G ‖W tr +

T
√

2C√
min(α, 1)

‖ f ‖L2(J ;H)

+
T
√
C√

min(α, 1)
‖ Ū0 ‖E .

Here, from (5.30) on p. 114 for compatible initial data at the trace, the triangle inequality, and using

the estimate in Lemma 5.6 on p. 108 but again this time with considering the correspondent norm of

the Hilbert space DA in Definition 5.1 on p. 101, then

‖ Ū0 ‖E=‖ U0 − Ĝ0 ‖E≤‖ U0 ‖E + ‖ Ĝ0 ‖E≤‖ U0 ‖E +
√

max(c2,M) ‖ Ĝ0 ‖DA×DA ,

and with using the norm of the space DA,tr given in Definition 5.2 on p. 102 after taking the infimum

of Ĝ0 ∈ DA ×DA in both sides where
(
γ 0
0 γ

)
Ĝ0 = G0, imply

inf
Ĝ0∈DA×DA
(γ 0
0 γ)Ĝ0=G0

‖ Ĝ0 ‖DA×DA=‖ G0 ‖DA,tr×DA,tr ,

and this means

‖ Ū0 ‖E≤‖ U0 ‖E +
√

max(c2,M) ‖ G0 ‖DA,tr×DA,tr , (5.41)

and that completes the proof. �
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Lemma 5.9 (Last left-sided limit of the continuous transformed formulation) Let Z and H

be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the subspace of the Hilbert space

Z given in Definition 5.2 on p. 102 with Remark 5.1 on p. 103. Let W be the Hilbert space given

in Definition 5.4 on p. 104 and W tr = H1(J ;DA,tr × DA,tr) the normed-product space. With given

forcing data f ∈ H1(J ;H), compatible initial data U0 ∈ Zg × Zg′, and linear constraints G ∈ W tr,

then Ū ∈ L2(J ;Z0 × Z0) the real solution of Problem 5.4.2 on p. 115 for X = Z ×H satisfies

‖ ŪN− ‖E≤
√
TC
(
4
√

max(M, c2, 1) ‖ G ‖W tr +
√

2 ‖ f ‖2L2(J ;H)+ ‖ U0 ‖E
+
√

max(c2,M) ‖ G0 ‖DA,tr×DA,tr
)
,

(5.42)

where C is a generic constant which does not depend on T . M < ∞ is the lower bound of the form

a( , ) which satisfies the properties given in Definition 5.3 on p. 104. c is the constant in the inclusion

inequality ‖ u ‖H≤ c ‖ u ‖Z ,∀u ∈ Z, and the norm ‖ · ‖W tr is given in Corollary 5.5 on p. 107.

Proof:

Starting with choosing V = Ū ∈ L2(J ;Z0×Z0), which is real, in Problem 5.4.2 on p. 115 and recalling

the proof of Lemma 2.5 on p. 16 but this time with V ∈ L2(J ;Z0 × Z0):∫
J
{a(∂tū1, ū1) + 〈∂tū2, ū2〉Z′×Z +

=0︷ ︸︸ ︷
â(Ū , Ū)} dt =

∫
J
(F, Ū)Edt,

=⇒ 1

2

∫ T

0

d

dt
‖ Ū ‖2E dt ≤

√
T ‖ F ‖L2(J ;E)

1√
T
‖ Ū ‖L2(J ;E)

≤ 1

2

(
T ‖ F ‖2L2(J ;E) +

1

T
‖ Ū ‖2L2(J ;E)

)
.

(5.43)

Now, with considering that the time interval J = (0, T ) can be partitioned into a time mesh of N time

steps so that J = ∪N−1
n=0 In, where

In = (tn, tn+1), 0 ≤ n ≤ N − 1,

with nodes 0 =: t0 < t1 . . . < tN := T . With recalling the left-right sided limits at such nodes in

Definition 3.3 on p. 20 so that the vector-valued function Ū at the initial and last time nodes i.e. at

0 := t0 and T := tN , respectively is given by

U0 := U0
− = lim

s→0,s>0
U(t0 − s) =: lim

s→0,s>0
U(0− s), and

U(T ) := UN− = lim
s→0,s>0

U(tN − s) =: lim
s→0,s>0

U(T − s), respectively.

Thus, with also using the Gronwall’s inequality given in Theorem A.8 on p. 182 imply

‖ ŪN− ‖E ≤
√
TC
(
‖ F ‖L2(J ;E) + ‖ Ū0 ‖E

)
.

Here, with recalling the estimates done in the proof of Theorem 5.3 on p. 116 to get the upper bound

of the ‖ F ‖2L2(J ;E) norm in terms of the given data, using the stability of the Ĝ function given in

Lemma 5.7 on p. 110, and the estimate in (5.41) on p. 117, then

‖ ŪN− ‖E dt ≤
√
TC
(
4
√

max(M, c2, 1) ‖ G ‖W tr +
√

2 ‖ f ‖L2(J ;H)+ ‖ U0 ‖E
+
√

max(c2,M) ‖ G0 ‖DA,tr×DA,tr
)
,

and that completes the proof. �

118



Theorem 5.4 (Last left-sided limit of the continuous formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg be the subset of the Hilbert

space Z given in Definition 5.2 on p. 102. Let W be the Hilbert space and W tr = H1(J ;DA,tr×DA,tr)

the normed-product space given in Definition 5.4 on p. 104. With given forcing data f ∈ H1(J ;H),

compatible initial data U0 ∈ Zg × Zg′ and G ∈ W tr, then U ∈ L2(J ;Zg × Zg′) the solution of Prob-

lem 5.4.1 on p. 112 for X = Z ×H satisfies

‖ UN− ‖X≤
√
TC√

min(α, 1)

(
4
√

max(M, c2, 1) ‖ G ‖W tr +
√

2 ‖ f ‖L2(J ;H) + ‖ U0 ‖E

+
√

max(c2,M) ‖ G0 ‖DA,tr×DA,tr
)

+
√

max(M, c2) ‖ GN− ‖DA,tr×DA,tr ,

where C is a generic constant which does not depend on T . M < ∞ the lower bounds of the form

a( , ) which satisfies the properties given in Definition 5.3 on p. 104. c the constant in the inclusion

inequality ‖ u ‖H≤ c ‖ u ‖Z ,∀u ∈ Z, and the norm ‖ · ‖W tr given in Corollary 5.5 on p. 107.

Proof:

Starting with the identity in (5.28) on p. 114, using triangle then the inequality in Lemma 5.6 for the

corresponding DA Hilbert space given in Definition 6.3 on p. 133 would be

‖ UN− ‖X =‖ ŪN− + ĜN− ‖X≤‖ ŪN− ‖X + ‖ ĜN− ‖X≤
1√

min(α, 1)
‖ ŪN− ‖E +

√
max(1, c2) ‖ ĜN− ‖DA×DA ,

now with using the estimates in Lemma 5.9 on p. 118 and the estimate in (5.41) on p. 117, then

‖ UN− ‖E≤
√
TC√

min(α, 1)

(
4
√

max(M, c2, 1) ‖ G ‖W tr +
√

2 ‖ f ‖L2(J ;H) + ‖ U0 ‖E

+
√

max(c2,M) ‖ G0 ‖DA,tr×DA,tr
)

+
√

max(1, c2) ‖ ĜN− ‖DA×DA ,

here, with using the norms of the spaces DA,tr, and Ztr in Definition 5.2 on p. 102 after taking the

infimum of ĜN− ∈ DA × Z in both sides where
(
γ 0
0 γ

)
ĜN− = GN− , imply

inf
ĜN−∈DA×DA

(γ 0
0 γ)Ĝ

N
−=GN−

‖ ĜN− ‖DA×DA=‖ GN− ‖DA,tr×DA,tr , (5.44)

and that completes the proof. �

119



Chapter 6

High-order in time DGFEM for

first-order in time variational

formulation with linear constraints

In this chapter, Problem 5.4.1 on p. 112 in chapter 5 is going to be discretised in time using High-order

in time DGFEM with the same notations used in Part I, particularly in Chapter 3. Then, a conformal

spatial discretisation will be used to get the fully-discrete formulation. The same splitting technique

used in Chapter 5 is going to be used again here to show existence, uniqueness, and stability estimates.

The a priori error estimates will be proven with again using the projection method used in Chapter 3

but this time with a particular spatial projection operator.

6.1 The semi-discrete continuous auxiliary (elliptic) problem

In Section 6.1.1, existence and uniqueness of the solution of the semi-discrete auxiliary (elliptic)

problem (6.2) on p.121 will be shown in Theorem 6.1 on p. 122. The stability estimate of the solution

of (6.2) is shown in Lemma 6.1 on p. 122. Theorem 6.1 and Lemma 6.1 will be used in order to show

existence, uniqueness and stability estimate of the solution of the semi-discrete variational formulation

with given linear constraints.

Definition 6.1 Let Z and DA be the Hilbert spaces given in Definition 5.1 with Assumption 5.1 on

p. 101. Let DA,tr be the normed-space given in Definition 5.2 on p. 102.

Let W tr = γ̄[W ] = H1(J ;DA,tr × DA,tr) be the normed-product space with the norm ‖ · ‖W tr given

in Corollary 5.5 on p. 107, where γ̄ : H1(J ;DA × DA) → H1(J ;DA,tr × DA,tr) is time independent

surjective matrix operator. Let WG, and W0 be the subset and subspace given in Definitions 5.4 and 5.6

on p. 104 and 107. Let J = ∪N−1
n=0 In:

In = (tn, tn+1), 0 ≤ n ≤ N − 1

fff with nodes 0 =: t0 < t1 . . . < tN := T , and associating with each time interval In an approximation

order rn ≥ 0, with storing these temporal orders in the vector r := {rn}N−1
n=0 . The following conformal

semi-discrete finite dimensional spaces are defined

W r :=
{
U |U ∈ H1(J ;DA ×DA) : U |In ∈ P rn(In;DA ×DA), 0 ≤ n ≤ N − 1

}
,
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which is the conformal semi-discrete in time finite-dimensional subspace of W = H1(J ;DA × DA),

and

W r,tr :=
{
U |U ∈W tr = H1(J ;DA,tr ×DA,tr) : U |In ∈ P rn(In;DA,tr ×DA,tr), 0 ≤ n ≤ N − 1

}
,

with the defined norm ‖ · ‖W tr for γ̄ : W r →W r,tr:

‖ GCG ‖W tr= inf
U∈W r

γ̄U=GCG

‖ U ‖W , ∀GCG ∈W r,tr,

which is a subspace of the normed-space (W tr, ‖ · ‖W tr). Moreover, for semi-discrete vector-valued

function GCG =
(
g1,CG
g2,CG

)
=
(gCG
g′CG

)
∈W r,tr with

∂tgCG = g′CG. (6.1)

W
r
GCG

:=
{
U |U ∈W r with γ̄U = GCG and ∂tu1 ∈ L2(J ;Dg′CG

), ∂tu2 ∈ L2(J ;DA)
}
,

which is the conformal semi-discrete in time finite-dimensional subset of WG, and

W
r
0 :=

{
U |U ∈W r with γ̄U = 0

}
,

which is the conformal semi-discrete in time finite-dimensional subspace of the Hilbert space (W0, ‖
· ‖W ).

Now, since Ĝ ∈W = H1(J ;DA×DA) (the continuous solution of the formulation of the auxiliary

(elliptic) problem (5.13) given in Section 5.3 starting on p. 109) i.e.

Ĝ ∈ C([0, T ];DA ×DA).

Thus, it is then considered to be still continuous at every time node 0 =: t0 < t1 . . . < tN := T , then

the semi-discrete formulation in time for (5.13) on p. 109 would read

Problem 6.1.1 (Semi-discrete auxiliary (elliptic) problem)

Let W
r
GCG

be the semi-discrete finite dimensional subset given in Definition 6.1 on p. 120. Let ( , )W
be the inner product given in Lemma 5.2 on p. 104:

(U, V )W : =

∫
J
{(∂tU, ∂tV )DA×DA + (U, V )DA×DA}dt = (U, V )H1(J ;DA×DA), ∀U, V ∈W.

Find ĜCG ∈W r
GCG

:

(ĜCG, V )W = 0, ∀V ∈W r
0 , (6.2)

where ĜCG ∈W ⊂ C([0, T ];DA ×DA) and

∂tĝ1 ∈ L2(J ;Dg′CG
), and ĝ2 ∈ L2(J ;Dg′CG

). (6.3)
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6.1.1 Existence, uniqueness and stability estimate of the semi-discrete auxiliary

(elliptic) problem

Theorem 6.1 (Existence, uniqueness of semi-discrete auxiliary (elliptic) problem) Let DA

and Z be the Hilbert spaces given in Definition 5.1 on p. 101. Let W
r
GCG

be the finite dimensional

subspace of the Hilbert space W = H1(J ;DA × DA) given in Definition 6.1 on p. 120. There exists

unique solution ĜCG ∈W r
GCG

for the formulation in (6.2) on p. 121.

Proof:

Firstly, to show existence, let

ĜCG := ḠCG + G̃CG,

where ḠCG ∈W r is an existing vector-valued function which satisfies the data at the trace space and

G̃CG ∈W r
0 .

Then the formulation in (6.2) in terms of ḠCG and G̃CG reads

Find G̃CG ∈W r
0 :

(G̃CG, V )W = −(ḠCG, V )W , ∀V ∈W r
0 ⊂W0. (6.4)

Now, since W
r
0 is a conformal finite-dimensional subspace of the Hilbert space (W0, ‖ · ‖W ) i.e. it is a

Hilbert space (see [51, Proof of Theorem 2.C.]) and with recalling the proof of Theorem 5.1 on p. 109

for G̃CG ∈ W
r
0 , thus, by Lax-Milligram theorem (see Theorem A.3 on p. 178), there exists unique

solution G̃CG ∈W r
0 which solves the formulation in (6.4).

Secondly, with the fact that

ĜCG := ḠCG + G̃CG (6.5)

and since G̃CG exists, the identity concludes that ĜCG ∈W r
GCG

exists.

Finally, for the uniqueness, let Ĝ1
CG =

(
ĝ1

1

ĝ1
2

)
∈ W r

GCG
and Ĝ2 =

(
ĝ2

1

ĝ2
2

)
∈ W r

GCG
be two solution of

(6.2), then let W̄ := Ĝ1
CG − Ĝ2

CG ∈W
r
0 be the solution which solves:

(W̄ , V )W = 0, ∀V ∈W r
0 ,

and with choosing V = W̄ ∈W r
0 , then

(W̄ , W̄ )W =‖ W̄ ‖2W≥ 0 =⇒ W̄ = Ĝ1
CG − Ĝ2

CG = 0,

which means that Ĝ1
CG = Ĝ2

CG, and that completes the proof. �

Lemma 6.1 (Stability estimate of the semi-discrete auxiliary (elliptic) problem)

Let W
r
GCG

be the finite-dimensional subset of W given in Definition 6.1 on p. 120. Let W
r
0 be the

finite-dimensional subspace of W given in Definition 6.1. Let W r,tr be the space given in Definition 6.1

with the norm

‖ GCG ‖W tr= inf
U∈W r

γ̄U=GCG

‖ U ‖W , ∀GCG ∈W r,tr.

The solution ĜCG ∈W r
GCG

which solves the formulation in (6.2) on p. 121 satisfies

‖ ĜCG ‖W≤ 2 ‖ GCG ‖W tr . (6.6)
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Proof:

Starting with the identity given in (6.5) on p. 122 and the use of the triangle inequality implies

‖ ĜCG ‖W=‖ ḠCG + G̃CG ‖W≤‖ ḠCG ‖W + ‖ G̃CG ‖W . (6.7)

Now, to bound ‖ G̃CG ‖W is by finding the stability estimate of the solution the formulation (6.4).

This starts with choosing V = G̃DG ∈ W r
0 , in the formulation (6.4) and using the same steps in the

proof of Lemma 5.7 on p. 110 then

‖ ĜCG ‖W ≤ 2 inf
ḠCG∈W r

γ̄ḠCG=GCG

‖ ḠCG ‖W= 2 ‖ GCG ‖W tr ,
(6.8)

and that completes the proof. �

6.2 High-order in time DGFEM, semi-discrete formulation with lin-

ear constraints

Definition 6.2 Let N = {In}N−1
n=0 be the partition of J = (0, T ) and associating with each time interval

In an approximation order rn ≥ 0 with storing these temporal orders in the vector r := {rn}N−1
n=0 . With

using the semi-discrete spaces given in Definition 3.1 on p. 19 and the finite dimensional subsets given

in Definition 6.1 on p. 120 such that for any semi-discrete vector-valued function GCG =
(
g1,CG
g2,CG

)
=(gCG

g′CG

)
∈W r,trwith

∂tgCG = g′CG, (6.9)

the new semi-discrete in time subset and subspace would be defined as

Vr(N ;ZgCG × Zg′CG) =
{
U : J → ZgCG × Zg′CG : U |In ∈ P rn(In;ZgCG × Zg′CG), 0 ≤ n ≤ N − 1

}
,

and

Vr(N ;Z0 × Z0) =
{
U : J → Z0 × Z0 : U |In ∈ P rn(In;Z0 × Z0), 0 ≤ n ≤ N − 1

}
, respectively.

The high-order in time DGFEM for Problem 5.4.1 on p. 112 reads:

Problem 6.2.1 (Semi-discrete formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg, Zg′, and Z0 be the subsets

and subspace given in Definition 5.2 on p. 102. Let Vr(N ;ZgCG × Zg′CG) be the semi-discrete finite

dimensional subset given in Definition 6.2 on p. 123. Let â( , ) be the skew-symmetric form given in

Definition 2.7 on p. 14 and ( , )E be the inner product given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .

with the given form

BDG(UDG, V ) =
N−1∑
n=0

∫
In

{(∂tUDG, V )E + â(UDG, V )} dt+
N−1∑
n=1

([UDG]n, V n
+ )E + (U0

DG,+, V
0

+)E ,

(6.10)
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and with given forcing data f ∈ H1(J ;H), the linear functional FDG ∈ (L2(J ;Z ×H))′:

FDG(V ) =

N−1∑
n=0

∫
In

(f, v2)Hdt,∀v2 ∈ L2(J ;H), (6.11)

where all semi-discrete test vector-valued functions in semi-discrete space Vr(N ;Z0 × Z0) are also

included in this linear map since Vr(N ;Z0 × Z0) ⊂ L2(J ;Z ×H).

Find UDG ∈ Vr(N ;ZgCG × Zg′CG) such that

BDG(UDG, V ) = FDG(V ) + (U0
DG,−, V

0
+)E , ∀ V ∈ Vr(N ;Z0 × Z0). (6.12)

For UnDG,− to be the initial data at a given time step In, with the given compatible initial data U0
DG,− =

U0 ∈ DgCG × Zg′CG ⊂ ZgCG × Zg′CG, and the semi-discrete data GCG ∈ W r,tr ⊂ W tr = H1(J ;DA,tr ×
DA,tr).

The time-stepping scheme for (6.12) would read:

Problem 6.2.2 (Semi-discrete time-stepping scheme with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg, Zg′, and Z0 be the subsets

and subspace given in Definition 5.2 on p. 102. Let P rn(In;ZgCG × Zg′CG) be the semi-discrete finite

dimensional subset given in Definition 6.2. Let â( , ) be the skew-symmetric form given in Definition 2.7

on p. 14 and ( , )E be the inner product given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .

Find UDG ∈ P rn(In;ZgCG × Zg′CG) such that

bnDG(UDG,V )=︷ ︸︸ ︷∫
In

{
(∂tUDG, V )E + â(UDG, V )

}
dt+ (UnDG,+, V

n
+ )E =

FnDG(V )=︷ ︸︸ ︷∫
In

(f, v2)Hdt+(UnDG,−, V
n

+ )E ,

for all V ∈ P rn(In;Z0 × Z0), with UnDG,− to be the initial data at a given time step In = (tn, tn+1),

(6.13)

the forcing data f ∈ H1(J ;H), and the semi-discrete data GCG ∈W r,tr ⊂W tr = H1(J ;DA,tr×DA,tr).

6.2.1 Decoupling, existence and uniqueness

In this Section, to show the solvability of the semi-discrete formulation in (6.12), the splitting technique

is used again as done in the previous chapter for the continuous problem i.e. the solution of (6.12) is

defined by two functions which do exist and are unique. The first part of the split exists and is unique

as shown in Theorem 6.1 on p. 122. The second part of the split which is a solution of (6.33) on

p. 130, also exists and is unique and this is shown by recalling the same techniques used in Chapter 4

for formulations with general functional since the formulation in (6.33) is considered as a particular

choice of the general structure in Chapter 4.
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6.2.1.1 The transformed semi-discrete formulation

Let ĜCG ∈ W r
GCG

⊂ Vr(N ;ZgCG × Zg′CG) be the existing semi-discrete continuous real vector-valued

function which solves the formulation in (6.2) on p. 121 i.e. at the nodes of In

[ĜCG]n = 0, for 0 ≤ n ≤ N − 1,

then with defining

UDG := ĜCG + ŪDG. (6.14)

for real vector-valued function ŪDG ∈ Vr(N ;Z0 ×Z0). With recalling (5.35) on p. 115, the form a( , )

given in Definition 5.3 on p. 104, and for real vector-valued function for

F =

(
f1

f2

)
=

(
−∂tĝ1,CG + ĝ2,CG

f − ∂tĝ2,CG −Aĝ1,CG

)
∈ L2(J ;D0 ×H) ∈ L2(J ;Z0 ×H), (6.15)

the functional FDG ∈ (L2(J ;Z0 ×H))′ would be given by

FDG(V ) :=
N−1∑
n=0

∫
In

{
(F,V )E︷ ︸︸ ︷

a(f1, v1) + (f2, v2)H}dt =

∫
J
(F, V )Edt, ∀V ∈ L2(J ;Z0 ×H), (6.16)

and here all vector-valued functions in semi-discrete space Vr(N ;Z0 × Z0) are also included in this

linear map since Vr(N ;Z0 × Z0) ⊂ L2(J ;Z ×H).

Then the formulation in (6.12) in terms of the two vector-valued functions ĜCG and ŪDG in (6.14)

would now read

Problem 6.2.3 (Semi-discrete transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the Hilbert subspace

given in Definition 5.2 on p. 102. Let Vr(N ;Z0×Z0) be the semi-discrete finite dimensional subspace

given in Definition 6.2. Let BDG( , ) be the form given in (6.10) on p. 123 and the functional FDG in

(6.16). Let ( , )E be the inner product given in Corollary 2.2 on p. 10.

Find ŪDG ∈ Vr(N ;Z0 × Z0) such that

BDG(ŪDG, V ) = FDG(V ) + (Ū0
DG,−, V

0
+)E , (6.17)

for all V ∈ Vr(N ;Z0 × Z0), and for given initial data Ū0
DG,− ∈ Z0 × Z0.

Problem 6.2.4 (The semi-discrete time-stepping transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the Hilbert subspace

given in Definition 5.2 on p. 102. Let P rn(In;Z0×Z0) be the semi-discrete finite dimensional subspace

given in Definition 6.2. Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14 and

( , )E be the inner product given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .

For F =
(
f1
f2

)
∈ L2(In;Z0 ×H) let FnDG ∈ (L2(In;Z0 ×H))′:

FnDG(V ) :=

∫
In

(F, V )Edt, for all V ∈ L2(In;Z0 ×H), 0 ≤ n ≤ N − 1, (6.18)

125



where all semi-discrete test vector-valued functions in semi-discrete space P rn(In;Z0 × Z0) are also

included in this linear map since P rn(In;Z0 × Z0) ⊂ L2(J ;Z0 ×H).

Find ŪDG ∈ P rn(In;Z0 × Z0) such that

bnDG(ŪDG,V )=︷ ︸︸ ︷∫
In

{
(∂tŪDG, V )E + â(ŪDG, V )

}
dt+ (ŪnDG,+, V

n
+ )E =

FnDG(V )=︷ ︸︸ ︷∫
In

(F, V )Edt+(ŪnDG,−, V
n

+ )E ,

for all V ∈ P rn(In;Z0 × Z0), with ŪnDG,− to be the initial data at a given time step In.

(6.19)

Here, Z0 is a separable Hilbert space as shown in Lemma 5.1 on p. 103 which satisfies all the properties

of the Hilbert space considered in the general theory of Chapter 4. Also, D0 is subspace of Z0 and

satisfies the properties of the given subspace in Definition 3.13 on p. 60. The functional in (6.19) is in

(L2(In;Z0 ×H))′. Then the transformed formulation in (6.19) is a particular example of the general

formulation in (4.28) on p. 83, where now with (6.3) on p. 121

−∂tĝ1,CG + ĝ2,CG,∈ L2(J ;D0),

and

∂tĝ2,CG −Aĝ1,CG ∈ L2(J ;H),

the terms in forcing data F =
(
f1
f2

)
are

f1 = −∂tĝ1,CG + ĝ2,CG,∈ L2(J ;D0) ⊂ L2(J ;Z0) and f2 = f − ∂tĝ2,CG −Aĝ1,CG ∈ L2(J ;H).

Now, since the transformed formulation (6.19) is a particular example of (4.28) on p. 83, then existence

and uniqueness of the solution of (6.19) can be proven by following the same steps done in Section 4.2.

6.2.1.2 Time decoupling and the continuous reduced spatial problems of semi-discrete

transformed formulation

With repeating the same steps in Section 4.2 starting on p. 82 and considering the formulation (4.28)

on p. 83 with its equivalent (r + 1) reduced spatial problems in (4.32) in Theorem 4.4 on p. 86, the

formulation in (6.19) reads the same as (4.28), and accordingly, the (r + 1) reduced spatial problems

of (6.19) at a generic time step I with referring to (4.31) on p. 84 would read

Problem 6.2.5 (Continuous reduced spatial problems of the transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the Hilbert subspace

given in Definition 5.2 on p. 102. Let ( , )E be the inner product given in Corollary 2.2 on p. 10. Let

λp be the eigenvalues of the matrix AL given in (3.31) on p. 30. Let (β1
p)q and (β2

p)q be the (r + 1)

vectors given in (3.36):

(U, V )E = a(u1, v1) + (u2, v2)H , ∀U, V ∈ Zh × Zh,

(β1
p)q = (Y −1)pq x

1
q = (Y −1)pq

√
(q + 1/2), and

(β2
p)q = (Y −1)pq x

2
q = (Y −1)pq

√
(q + 1/2)(−1)q, respectively.

(6.20)
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For

f1(v2,p) := −k2
r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)a(f1 ◦Q, v2,p)dt̂

}
f2(v2,p) := 2kλp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)(f2 ◦Q, v2,p)Hdt̂

}
,

(6.21)

and with a form and a linear functional f ∈ (Z0 ×H)′ ≡ Z ′0 ×H (since H ≡ H ′ is a pivot space):

b(u2,p, v2,p) := 4λ2
p(u2,p, v2,p)H + k2a(u2,p, v2,p)

f(v2,p) := f1(v2,p) + f2(v2,p),
(6.22)

now reads

Find {u2,p}rp=0 ⊂ Z0 :

b(u2,p, v2,p) = f(v2,p) +

r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
,

for each p = 0, · · · , r, for all {vp}rnp=0 ∈ Z0.

(6.23)

After solving for the unknowns {u2,p}rp=0 ⊂ Z0 with given data f1 ∈ L2(I;Z0), f2 ∈ L2(I;H), and

ū1,0, ū2,0 ∈ Z0 ⊂ Z, then comes to update the values of {u1,p}rp=0 ⊂ Z0:

u1,p =
k

2λp
u2,p +

k

2λp

r∑
i=0

{
(β1
p)i

∫ 1

−1
Li(t̂)f1 ◦Qdt̂

}
+

1

λp

r∑
i=0

{
(β2
p)i

}
ū1,0, (6.24)

which need to be done in every given time step I.

Lemma 6.2 (Existence, uniqueness of continuous reduced spatial problem’s for given r.h.s)

Let Z be the Hilbert space given in Definition 5.1 on p. 101. Let Z0 be the separable Hilbert subspace of

Z given in Definition 5.2 with Lemma 5.1 on p. 103. There exist unique functions {u2,p}rp=0 ⊂ Z0 which

solve the (r+ 1) spatial problems (6.23), as well as {u1,p}rp=0 ⊂ Z0 in (6.24), for given f1 ∈ L2(I;Z0),

f2 ∈ L2(I;H), and initial data ū1,0, ū2,0 ∈ Z0 ⊂ Z.

Proof:

Firstly, the form b(u2,p, v2,p) in (6.23) for u2,p, and v2,p in the subspace (Z0, ‖ · ‖Z) is continuous with

using Lemma 3.5 on p. 34 after letting c1 = 4λp and c2 = k2 such that for p = 0, · · · , r

b(u2,p, v2,p) = 4λ2
p(u2,p, v2,p)H + k2a(u2,p, v2,p) ≤ (4|λp|c2 + k2M) ‖ u2,p ‖Z‖ v2,p ‖Z .

Secondly, with using Definition 5.3 on p. 104 which says that the form a( , ) is elliptic in Z0 ‖ · ‖Z ,

then the form b(u2,p, v2,p) in (6.23) for u2,p, and v2,p in the subspace (Z0, ‖ · ‖Z) satisfies the Inf-sup

condition in Lemma 3.4 on p. 33 after letting c1 = 4λp and c2 = k2 where the Inf-sup constant would

be k2α.

Also in the r.h.s of (6.23) we have

|r.h.s| = |f1(v2,p) + f2(v2,p) +
r∑
q=0

{
(β2
p)q

}(
4λp(u

0
2,DG,−, v2,p)H − 2ka(u0

1,DG,−, v2,p)
)
|. (6.25)
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With repeating the same steps done in the proof of Theorem 4.2.1 on p. 84 to get the estimate in

(4.36) then

|r.h.s| ≤

(
c
√

23k|λp|
r∑
q=0

|(β1
p)q|x̂q ‖ f2 ‖L2(I;H) +|

r∑
q=0

(β2
p)q|
(

4c|λp| ‖ u0
2,DG,− ‖H

+ 2kM ‖ u0
1,DG,− ‖Z

)
+
√

2k3M

rn∑
q=0

|(β1
p)q|x̂q ‖ f1 ‖L2(I;Z)

)
‖ v2,p ‖Z .

(6.26)

Now, going back to (Babuška) Theorem A.4 on p. 179, and with having Lemmas 3.4 and 3.5 and

(6.26), then there exist a function {u2,p}rp=0 ⊂ Z0 which solves (6.23). For the identity (6.24) on

p. 127:

u1,p =
k

2λp
u2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
u0

1,DG,− +
k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
,

where

‖ k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
‖Z ≤

k

2|λp|

r∑
q=0

{
|(β1

p)q|
∫ 1

−1
Lq(t̂) ‖ f1 ◦Q ‖Z dt̂

}
<∞,

for each p = 0, · · · , r, then from the given existence and uniqueness of {u2,p}rp=0 ⊂ Z0 and the given for-

cing data f1 ∈ L2(J ;Z0), f2 ∈ L2(J ;H) and initial data u0
1,DG,−, u

0
2,DG,− ∈ Z0 which are well defined,

that also concludes that {u1,p}rp=0 ⊂ Z0 at a given time step I also exists and is unique. �

Theorem 6.2 (Existence, uniqueness of semi-discrete formulation with linear constraints)

Let Zg and Zg′ be the subsets given in Definition 5.2 on p. 102. Let Vr(N ;ZgCG ×Zg′CG) be the semi-

discrete space given in Definition 6.2 on p. 123. There exists a unique semi-discrete vector-valued

function UDG ∈ Vr(N ;ZgCG × Zg′CG) which solves the formulation in (6.12) on p. 124.

Proof:

The semi-discrete vector-valued function UDG is given in the identity (6.14) on p. 125 that is

UDG = ŪDG + ĜCG, (6.27)

for the existing unique vector-valued function ĜCG ∈ W r
GCG

⊂ Vr(N ;ZgCG × Zg′CG) ⊂ L2(J ;Z × Z)

which solves (6.2) on p. 121 and for ŪDG ∈ Vr(N ;Z0 × Z0) which solves the formulation (6.33) on

p. 130:

ŪDG =
N−1∑
n=0

ŪDG|In ,

where

ŪDG|In =

rn∑
j=0

ϕj(t)Ūj , for Y rn ∈ C(rn+1)×(rn+1) : Ūj =

rn∑
i=0

Y rn
ji Ui ∈ Z0 × Z0,

and with using the shown existence and uniqueness of {Ui}rni=0 ⊂ Z0 × Z0 in Lemma 6.2 on p. 127

which implies that ŪDG ∈ Vr(N ;Z0×Z0) exists and is unique and from the identity (6.27) thus UDG ∈
Vr(N ;ZgCG×Zg′CG) exists and is unique. �
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6.2.2 Stability estimates of semi-discrete formulation with linear constraints

In this Section, local and global stability estimates of the vector-valued function UDG ∈ Vr(N ;ZgCG×
Zg′CG) which solves the semi-discrete formulation in (6.12) on p. 124 will be shown in Lemma 6.3 on

p. 129 and Theorem 6.4 on p. 132, respectively. The latter uses the resulting estimates in Lemmas 6.3

and 6.4 on p. 129 - 130. Here since the transformed formulation in (6.33) is considered as a particular

example of the general formulation in Problem 4.2.1 on p. 82, then the estimates in Section 4.3.2 are

going to be recalled here mainly to proof Lemmas 6.3 and 6.4.

Lemma 6.3 (Local estimate for semi-discrete transformed formulation) Let Z and H be the

Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the separable Hilbert subspace of Z given in

Definition 5.2 with Lemma 5.1 on p. 103. At a generic time step I = (t0, t1) and given forcing data

F ∈ L2(I;Z0×H) with initial data Ū0 ∈ Z0×Z0, then the vector-valued function ŪDG ∈ P r(I;Z0×Z0)

which solves Problem 6.2.4 on p. 125 satisfies

‖ ŪDG ‖L2(I;E) ≤
k ‖ Y ‖22 (2r + 1)

2 min
p

Re λp

(
‖ F ‖L2(I;E) + ‖ Ū0 ‖E

)
, (6.28)

for normed-product space (L2(J ;Z0 × Z0), ‖ · ‖L2(J ;E)):

‖ U ‖2L2(J ;E)=

∫
J

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H dt,∀ U ∈ L2(J ;Z0 × Z0),

(6.29)

where k is the time step size at I. λp are the eigenvalues of the matrix AL given in (3.31) on p. 30 for

p = 0, · · · , r, ‖ Y r ‖22 is the square of the spectral norm (see (A.6) on p. 173) of the transformation

matrix Y ∈ C(r+1)×(r+1) and r is the approximation order and the Hermitian form a( , ) given in

Definition 5.3 on p. 104:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z0.

Proof:

With knowing that Z0 is separable Hilbert space as shown in Lemma 5.1 on p. 103 and the form a( , )

in Z0 is elliptic, then at a generic time step I the formulation (6.19) on p. 126 with

F =

(
f1

f2

)
=

(
−∂tĝ1,CG + ĝ2,CG

f − ∂tĝ2,CG −Aĝ1,CG

)
∈ L2(J ;Z0 ×H),

is considered as a particular example of the general formulation in (4.28). This concludes that the

solution of (6.19) satisfies shown local stability estimate in Lemma 4.1 on p. 87 i.e.

‖ ŪDG ‖L2(I;E) ≤
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z0×Z0)

∣∣∣bDG(UDG, V )
∣∣∣

‖ V ‖L2(I;E)

=
k ‖ Y ‖22

2(min
p

Re λp)
sup

V ∈P r(I;Z0×Z0)

∣∣∣
FDG(V )=︷ ︸︸ ︷∫
I
(F, V )Edt+(Ū0

DG,−, V+)E

∣∣∣
‖ V ‖L2(I;E)

,

(6.30)

and that completes the proof. �
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Lemma 6.4 (Left-sided limits estimate of semi-discrete transformed formulation)

Let DA be the Hilbert space given in Definition 5.1 with Assumption 5.1 on p. 101. Let DA,tr be the

normed-space given in Definition 5.2 on p. 102.

Let W tr = γ̄[W ] = H1(J ;DA,tr × DA,tr) be the normed-product space with the norm ‖ · ‖W tr given

in Corollary 5.5 on p. 107, where γ̄ : H1(J ;DA × DA) → H1(J ;DA,tr × DA,tr) is time independent

surjective matrix operator. Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let

Z0 be separable Hilbert subspace of Z given in Definition 5.2 with Lemma 5.1 on p. 103. For given

data f ∈ L2(J ;H), GCG ∈W r,tr ⊂W tr and initial data Ū ∈ Z0 × Z0, the semi-discrete vector-valued

function ŪDG ∈ P rm(Im;Z0 × Z0) which solves the time-stepping formulation in (6.19) on p. 126 for

Im = (tm, tm+1), m = 0, · · · , n− 1 and n ≤ N , satisfies

‖ ŪnDG,− ‖E ≤ (1 +
C
N

)n
(
4
√

max(M, c2, 1) ‖ GCG ‖W tr +
√

2 ‖ f ‖L2(J ;H) + ‖ Ū0 ‖E
)
, (6.31)

for normed-product space (Z0 × Z0, ‖ · ‖E), with Lemma 5.1:

‖ U ‖2E= a(u1, u1)+ ‖ u2 ‖2H , ∀ U ∈ Z0 × Z0, (6.32)

and C = max
m

(
T ‖ Y rm ‖22 (2rm + 1)

2 min
p

Re λp
), is the same constant appearing in Lemma 4.3 on p. 89, and the

form a( , ) given in Definition 5.3 on p. 104:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z0.

Proof:

With knowing that Z0 is separable Hilbert space as shown in Lemma 5.1 on p. 103 and the form

a( , ) in Z0 is elliptic, then the formulation in (6.19) on p. 126 with it’s linear functional FnDG ∈
(L2(Im;Z ′0 ×H))′, is a particular example of the general formulation in (4.47) on p. 89 where here

F =

(
−∂tĝ1,CG + ĝ2,CG

f − ∂tĝ2,CG −Aĝ1,CG

)
∈ L2(J ;Z0 ×H),

with given initial data Ū0 ∈ Z0 × Z0 ⊂ Z × Z. Thus the proof of Lemma 4.3 on p. 89 holds for

ŪDG ∈ P rm(Im;Z0 × Z0) and with using the same steps done in (5.40) on p. 117 and the stability

estimate of Ĝ shown in Lemma 6.1 on p. 122 to get the bound of F in terms of the given data G and

f then that completes the proof. �

Remark 6.1 Before going to prove the Last left-sided limit of the semi-discrete solution, we will state

the estimate if we allow jumps in the data at the trace i.e. with considering non zero jump terms for

the function Ĝ. Then the formulation (6.33) on p. 130 would now be

BDG(ŪDG, V ) = FDG(V ) + (Ū0
DG,−, V

0
+)E − ([ĜCG]n, V 0

+)E , (6.33)

and when we try to derive the stability estimate of the last left sided limit we get the factor 2N of the

norm of the jumps of ĜCG and that is why we considered only smooth enough data at the trace.
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Theorem 6.3 (Last left-sided limit of the semi-discrete formulation)

Let DA be the Hilbert space given in Definition 5.1 with Assumption 5.1 on p. 101. Let DA,tr be the

normed-space given in Definition 5.2 on p. 102.

Let W tr = γ̄[W ] = H1(J ;DA,tr × DA,tr) be the normed-product space with the norm ‖ · ‖W tr given

in Corollary 5.5 on p. 107, where γ̄ : H1(J ;DA × DA) → H1(J ;DA,tr × DA,tr) is time independent

surjective matrix operator. Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg
and Zg′, be the subsets given in Definition 5.2 on p. 102. Let P rn(In;ZgCG×Zg′CG) be the semi-discrete

finite dimensional subset given in Definition 6.2 on p. 123. With given initial data U0 ∈ Zg ×Zg′ and

G0 ∈ DA,tr × DA,tr and the last left sided limit GN− ∈ DA,tr × DA,tr, the semi-discrete vector-valued

function UDG ∈ P rn(In;ZgCG × Zg′CG) which solves the time-stepping formulation in (6.13) on p. 124

satisfies

‖ UNDG,− ‖X ≤
(1 + C

N )n√
min(α, 1)

(
4
√

max(M, c2, 1) ‖ GCG ‖W tr +
√

2 ‖ f ‖L2(J ;H)

+ ‖ U0 ‖E +
√

max(M, c2) ‖ G0 ‖DA,tr×DA,tr
)

+
√

max(1, c2) ‖ GNCG,− ‖DA,tr×DA,tr ,
(6.34)

where C = max
n

(
T ‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
), is the same constant appearing in Lemma 4.3 on p. 89, with

the norm

‖ U ‖2E= a(u1, u1)+ ‖ u2 ‖2H , ∀ U ∈ Z × Z, (6.35)

for the form a( , ) given in Definition 5.3 on p. 104:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z,
a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z0.

Proof:

With using the identity given in (6.14) on p. 125 and the triangle inequality then

‖ UNDG,− ‖X≤‖ ŪNDG,− ‖X + ‖ ĜNCG,− ‖X ,

where

‖ ŪNDG,− ‖X ≤
1√

min(α, 1)
‖ ŪNDG,− ‖E ,

‖ ĜNCG,− ‖X ≤
√

max(1, c2) ‖ ĜNCG,− ‖DA×DA ,

and with using the resulting estimate in Lemma 6.4 on p. 130 then

‖ UNDG,− ‖X≤
(1 + C

N )n√
min(α, 1)

(
4
√

max(M, c2, 1) ‖ GCG ‖W tr +
√

2 ‖ f ‖L2(J ;H) + ‖ Ū0 ‖E
)

+
√

max(1, c2) ‖ ĜNCG,− ‖DA×DA .

Moreover, since

‖ Ū0 ‖E=‖ U0 − Ĝ0 ‖E≤‖ U0 ‖E + ‖ Ĝ0 ‖E≤‖ U0 ‖E +
√

max(M, c2) ‖ Ĝ0 ‖DA×DA , (6.36)
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and with recalling the estimate done in (5.41) on p. 117 and (5.44) on p. 119 that is

‖ Ū0 ‖E≤‖ U0 ‖E +
√

max(M, c2) ‖ G0 ‖DA,tr×DA,tr ,

and

inf
ĜNCG,−∈D

A×DA

(γ 0
0 γ)Ĝ

N
CG,−=GNCG,−

‖ ĜNCG− ‖DA×DA=‖ GNCG,− ‖DA,tr×DA,tr ,

that completes the proof. �

Theorem 6.4 (Global stability of semi-discrete formulation with linear constraints) Let

DA be the Hilbert space given in Definition 5.1 with Assumption 5.1 on p. 101. Let DA,tr be the

normed-space given in Definition 5.2 on p. 102.

Let W be the Hilbert space given in Definition 5.4 on p. 104 and W tr = γ̄[W ] = H1(J ;DA,tr ×DA,tr)

be the normed-product space with the norm ‖ · ‖W tr given in Corollary 5.5 on p. 107, where γ̄ :

H1(J ;DA ×DA) → H1(J ;DA,tr ×DA,tr) is time independent surjective matrix operator. Let Z and

H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg and Zg′, be the subsets given in

Definition 5.2 on p. 102. Let P rn(In;ZgCG × Zg′CG) be the semi-discrete finite dimensional subset

given in Definition 6.2 on p. 123. With given forcing data f ∈ H1(J ;H), compatible initial data

U0 ∈ ZgCG × Zg′CG and semi-discrete linear constraints GCG ∈ W r,tr ⊂ W tr, the solution UDG ∈
Vr(N ;ZgCG × Zg′CG) of the formulation (6.12) on p. 124 satisfies

‖ UDG ‖L2(J ;X) ≤
(
2
√

max(1, c2) + 4
√

max(M, c2, 1)
(eC − 1)√
min(α, 1)

)
‖ GCG ‖W tr

+
(eC − 1)√
min(α, 1)

(√
2 ‖ f ‖L2(J ;H) + ‖ U0 ‖E +

√
max(M, c2) ‖ G0 ‖DA,tr×DA,tr

)
,

(6.37)

for normed-product space (L2(J ;Z × Z), ‖ · ‖L2(J ;X)):

‖ U ‖2L2(J ;X)=

∫
J

‖U‖2X︷ ︸︸ ︷
‖ u1 ‖2Z + ‖ u2 ‖2H dt,∀ U ∈ L2(J ;Z × Z),

(6.38)

where C = max
n

(
T ‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
), is the same constant which appear in Lemma 4.5 on p. 91.

M < ∞ the lower bounds of the form a( , ) which satisfies the properties given in Definition 5.3 on

p. 104:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z.

c the constant in the inclusion inequality ‖ u ‖H≤ c ‖ u ‖Z , ∀u ∈ Z (see [22, (6.)]), and the norm

‖ · ‖W tr given in Corollary 5.5 on p. 107.

Proof:

Here, from the identity (6.14) on p. 125

UDG = ĜCG + ŪDG,
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with using the triangle inequality and from the inequality in Lemma 5.6 on p. 108, then

‖ UDG ‖L2(J ;X) =‖ ĜCG + ŪDG ‖L2(J ;X)

≤‖ ĜCG ‖L2(J ;X) + ‖ ŪDG ‖L2(J ;X)

≤
√

max(1, c2) ‖ ĜCG ‖L2(J ;DA×DA)︸ ︷︷ ︸
≤‖ĜCG‖H1(J;DA×DA)

+
1√

min(α, 1)
‖ ŪDG ‖L2(J ;E)

=
√

max(1, c2) ‖ ĜCG ‖W +
1√

min(α, 1)

N−1∑
n=0

‖ ŪDG ‖L2(In;E) .

Now, with using the resulting estimate in Lemma 6.3 on p. 129 after letting I = In and the corres-

pondence initial data accordingly with the use of Lemma 6.4, and the same steps used in the proof of

Theorem 4.5 on p. 91 yields

‖ UDG ‖L2(J ;E) ≤
√

max(1, c2) ‖ ĜCG ‖W +
(eC − 1)√
min(α, 1)

(‖ F ‖L2(J ;E) + ‖ Ū0 ‖E), (6.39)

and repeating the same steps done in the proof of Theorem 5.3 on p. 116 to get the upper bound of the

‖ F ‖L2(J ;E) and ‖ Ū0 ‖E in terms of the forcing data f , linear constraints GCG, and the given initial

data and with returning to the estimate in (6.39) and with using the stability estimate in Lemma 6.1

on p. 122 yield

‖ UDG ‖L2(J ;X) ≤
(
2
√

max(1, c2) + 4
√

max(M, c2, 1)
(eC − 1)√
min(α, 1)

)
‖ GCG ‖W tr

+
(eC − 1)√
min(α, 1)

(√
2 ‖ f ‖L2(J ;H) + ‖ U0 ‖E +

√
max(M, c2) ‖ G0 ‖DA,tr×DA,tr

)
,

and that completes the proof. �

6.3 The fully-discrete auxiliary (elliptic) problem

In Section 6.3.1, existence and uniqueness of the solution of the fully-discrete auxiliary (elliptic)

problem (6.43) on p.135 will be shown in Lemma 6.5 on p. 135. The stability estimate of the solution

of (6.43) is shown in Lemma 6.6 on p. 136. Lemma 6.5 and Lemma 6.6 will be used in order to show

existence, uniqueness and stability estimate of the solution of the fully-discrete variational formulation

with given linear constraints.

Definition 6.3 Let Z and DA be the Hilbert spaces given in Definition 5.1 with Assumption 5.1 on

p. 101. Also, let Ztr and DA,tr = γ[DA] be the separable normed spaces with the sets Zg and Dg given

in Definition 5.2 on p. 102 with Corollary 5.2 on p. 102:

- (Zh, ‖ · ‖Z) is a conformal finite dimensional subspace of the Hilbert space Z. (Dh,A, ‖ · ‖DA) is

a conformal finite dimensional subspace of the Hilbert space (DA, ‖ · ‖DA).

- Zh,tr := γ[Zh] is a conformal finite dimensional subspace of Ztr and Dh,A,tr := γ[Dh,A] is a

conformal finite dimensional subspace of DA,tr.

- For any ghCG ∈ Zh,tr and ghCG ∈ Dh,A,tr, Zh
ghCG

is a conformal finite dimensional subset of Zg and

Dh
ghCG

is a conformal finite dimensional subset of Dg.
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Corollary 6.1 (Dh,A, ‖ · ‖DA) is a subspace of (Zh, ‖ · ‖Z) and Dh,A,tr is a subspace of Zh,tr, where

all are separable.

Proof:

Firstly, since DA is a subspace of Z, and the finite dimensional spaces Zh and Dh,A are also subspaces

of Z and DA, that implies that Dh,A is also a subspace of Zh where all are Hilbert spaces and separable

(see [51, Proof of Theorem 2.C.]).

Secondly, with using Corollary A.5 on p. 175 i.e.from Definition 6.3 on p. 133:

Zh,tr = γ[Zh], and Dh,A,tr = γ[Dh,A],

and since Zh and Dh,A are separable Hilbert spaces and γ is linear and bounded operator, then that

completes the proof. �

Definition 6.4 Let Dh,A and Zh be the finite dimensional subspaces of the Hilbert spaces Dh,A and

Zh, respectively, given in Definition 6.3. Let Zh,tr and Dh,A,tr be the conformal finite dimensional

subspaces of the normed vector space Ztr and DA,tr, respectively and let Zh
ghCG

and Dh
ghCG

be the con-

formal finite dimensional subsets of Zg and DA
g given in Definition 6.3. Let WG, and W0 be the subset

and the subspace given in Definition 5.4 on p. 104. Let W r, W
r
GCG

, W
r
0 be the semi-discrete finite

dimensional spaces given in Definition 6.1 on p. 120. Let (W r,tr, ‖ · ‖W tr) be the semi-discrete finite

normed-product space given in Definition 6.1 on p. 120. With following the same time partitioning

in the previous sections, the following fully-discrete finite dimensional spaces in time and space are

introduced

W h,r :=
{
U |U ∈ H1(J ;Dh,A ×Dh,A) : UIn ∈ P rn(In;Dh,A ×Dh,A), 0 ≤ n ≤ N − 1

}
, (6.40)

which is a fully-discrete conformal finite-dimensional subspace of W = H1(J ;DA ×DA).

W h,r,tr :=
{
U |U ∈ H1(J ;Dh,A,tr ×Dh,A,tr) : U |In ∈ P rn(In;Dh,A,tr ×Dh,A,tr), 0 ≤ n ≤ N − 1

}
,

with the defined norm ‖ · ‖W tr for γ̄ : W h,r →W h,r,tr:

‖ GhCG ‖W tr= inf
U∈Wh,r

γ̄U=GhCG

‖ U ‖W , ∀GhCG ∈W h,r,tr,

which is the fully-discrete conformal finite dimensional space of the normed-space (W tr, ‖ · ‖W tr).

Moreover, for fully-discrete vector-valued function GhCG =
(gh1,CG
gh2,CG

)
=
(ghCG
gh,′CG

)
∈W h,r,tr with

∂tg
h
CG = gh,′CG. (6.41)

W
h,r

GhCG
:=
{
U |U ∈W h,r with γ̄U = GhCG =

(
ghCG

gh,′CG

)
and ∂tu1 ∈ L2(J ;Dh

gh,′CG
), ∂tu2 ∈ L2(J ;Dh,A)

}
and W

h,r
0 :=

{
U |U ∈W h,r with γ̄U = 0

}
,

(6.42)

are fully-discrete conformal finite-dimensional subset of WG and Hilbert space W0, respectively.
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The fully-discrete (continuous in time and space) auxiliary problem of (6.2) on p. 121 reads

Problem 6.3.1 (Fully-discrete auxiliary (elliptic) problem)

Let W
h,r

GhCG
be the fully-discrete finite dimensional subset given in Definition 6.4. Let ( , )W be the inner

product given in Lemma 5.2 on p. 104:

(U, V )W : =

∫
J
{(∂tU, ∂tV )DA×DA + (U, V )DA×DA}dt = (U, V )H1(J ;DA×DA), ∀U, V ∈W.

Find ĜhCG ∈W
h,r

GhCG
:

(ĜhCG, V
h)W = 0, (6.43)

for all V h ∈W h,r
0 where ĜhCG ∈W h,r ⊂ C([0, T ];Dh,A ×Dh,A) and

∂tĝ
h
1 ∈ L2(J ;D

gh,′CG
), and ĝ2 ∈ L2(J ;D

gh,′CG
). (6.44)

6.3.1 Existence, uniqueness, and stability estimate of the fully-discrete auxiliary

(elliptic) problem

Lemma 6.5 (Existence, uniqueness of fully-discrete auxiliary(elliptic) problem) Let W be

the Hilbert space given in Definition 5.4 on p. 104. Let W
h,r

GhCG
be the fully-discrete finite dimensional

subset of W given in Definition 6.4. There exists a unique solution ĜhCG ∈ W
h,r

GhCG
⊂ W which solves

(6.43).

Proof:

Firstly, to show existence, let

ĜhCG := ḠhCG + G̃hCG, (6.45)

where ḠhCG ∈ W h,r is an existing vector-valued function which satisfies the fully-discrete data at the

trace space and

G̃hCG ∈W
h,r
0 , (6.46)

then the formulation in (6.43) written in terms of ḠhCG and G̃hCG would be

Find G̃hCG ∈W
h,r
0 :

(G̃hCG, V
h)W = −(ḠhCG, V

h)W , ∀V h ∈W h,r
0 . (6.47)

Based on the choice of the conformal finite dimensional space Dh,A which is a subspace of DA, thus the

form in (6.47) is the same one in (6.4) on p. 122 and with using the steps of the proof of Theorem 5.1

on p. 109 i.e. since W
h,r
0 is a subspace of W which is a Hilbert space (see [51, Proof of Theorem 2.C.]),

then by Lax-Milligram theorem A.3 on p. 178 there exists a unique solution G̃hCG ∈W
h,r
0 which solves

the formulation in (6.47).

Secondly, with the given identity in (6.45) that is

ĜhCG = ḠhCG + G̃hCG,

and since G̃hCG exists, the identity concludes that ĜhCG ∈W
h,r
GCG

exists.

Finally, for the uniqueness, let Ĝh,1CG =

(
ĝh,11

ĝh,12

)
∈ W h,r

GCG
and Ĝh,2 =

(
ĝh,21

ĝh,22

)
∈ W h,r

GhCG
be two solutions
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which solve (6.43) on p. 135, and with taking the difference of the two solutions i.e. let W̄ :=

Ĝh,1CG − Ĝ
h,2
CG ∈W

h,r
0 which solves

(W̄ , V )W = 0,

and with choosing V = W̄ ∈W h,r
0 , then

(W̄ , W̄ )W =‖ W̄ ‖2W≥ 0 =⇒ W̄ = Ĝh,1CG − Ĝ
h,2
CG = 0,

which means Ĝh,1CG = Ĝh,2CG, and that completes the proof. �

Lemma 6.6 (Stability estimate of the fully-discrete auxiliary (elliptic) problem)

Let W be the Hilbert space given in Definition 5.4 on p. 104. Let W h,r be the fully-discrete conformal

finite-dimensional subspace of W . Let W h,r,tr be the fully-discrete conformal finite dimensional sub-

space of the normed-space (W tr, ‖ · ‖W tr) given in Definition 6.4 with the defined norm ‖ · ‖W tr for

γ̄ : W h,r →W h,r,tr:

‖ GhCG ‖W tr= inf
U∈Wh,r

γ̄U=GhCG

‖ U ‖W , ∀GhCG ∈W h,r,tr.

Let W
h,r

GhCG
be the fully-discrete conformal finite-dimensional subset of W given in Definition 6.4 on

p. 134. For given data GhCG ∈W h,r,tr the solution ĜhCG ∈W
h,r
GCG

which solves (6.43) satisfies

‖ ĜhCG ‖W≤ 2 ‖ GhCG ‖W tr . (6.48)

Proof:

Starting with the identity given in (6.45) on p. 135 and the use of the triangle inequality yields

‖ ĜhCG ‖W=‖ ḠhCG + G̃hCG ‖W≤‖ ḠhCG ‖W + ‖ G̃hCG ‖W . (6.49)

Now, to bound ‖ G̃hCG ‖W is by finding the stability estimate of the solution of the formulation (6.43)

and this starts with choosing V = G̃hDG, in (6.47) and using the same steps in the proof of Lemma 6.1

on p. 122 implies

‖ ĜhCG ‖W ≤ 2 inf
ḠhCG∈W

h,r

γ̄ḠhCG=GhCG

‖ ḠCG ‖W= 2 ‖ GCG ‖W tr ,
(6.50)

and that completes the proof. �

6.4 The high-order in time DGFEM with conformal spatial discret-

isation, fully-discrete formulation

Definition 6.5 Let Z be the Hilbert space given in Definition 5.1 on p. 101. Let Zg be the subset

of the Hilbert space Z and Z0 be the Hilbert subspace of Z given in Definition 5.2 on p. 102 with

Lemma 5.1 on p. 103. Let Zh
ghCG

be the conformal finite dimensional subset of Z and subspace of Zg.

Then with recalling the semi-discrete spaces given in Definition 6.1 the following fully-discrete spaces

are defined, accordingly

Vr(N ;Zh
ghCG
× Zh

gh,′CG
) :=

{
U : J → Zh

ghCG
× Zh

gh,′CG
: U |In ∈ P rn(In;Zh

ghCG
× Zh

gh,′CG
), 0 ≤ n ≤ N − 1

}
,
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and

Vr(N ;Zh0 × Zh0 ) :=
{
U : J → Zh0 × Zh0 : U |In ∈ P rn(In;Z0 × Z0), 0 ≤ n ≤ N − 1

}
,

where Zh
ghCG
×Zh

gh,′CG
is the conformal finite dimensional subset and Zh0×Zh0 a finite dimensional subspace

of Z × Z, respectively.

Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14 and ( , )E be the inner product

given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .

With using Definition 6.5 on p. 136, and for the given form

BDG(UhDG, V
h) =

N−1∑
n=0

∫
In

{
(∂tU

h
DG, V )E + â(UhDG, V

h)
}
dt+

N−1∑
n=1

([UDG]h,n, V h,n
+ )E + (Uh,0DG,+, V

h,0
+ )E ,

(6.51)

and for given f ∈ L2(J ;H) the linear functional FDG ∈ (L2(J ;Z ×H))′:

FDG(V h) =

N−1∑
n=0

∫
In

(f, vh2 )Hdt =

∫
J
(f, vh2 )Hdt,∀vh2 ,∈ L2(J ;H), (6.52)

where all vector-valued functions in semi-discrete space Vr(N ;Zh0 ×Zh0 ) are also included in this linear

map since Vr(N ;Zh0 × Zh0 ) ⊂ L2(J ;Z ×H).

Then the fully-discrete formulation of (6.12) on p. 124 reads:

Problem 6.4.1 (Fully-discrete formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let ZhgCG, Zhg′CG
, and Zh0 be the

conformal finite dimensional subsets and subspace given in Definition 6.5 on p. 136. Let Vr(N ;Zh
ghCG
×

Zh
gh,′CG

) be the fully-discrete finite dimensional subset given in Definition 6.5. Let BDG( , ) be the form

given in (6.51) and FDG be the linear functional given in (6.52).

Find UhDG ∈ Vr(N ;Zh
ghCG
× Zh

gh,′CG
) such that

BDG(UhDG, V
h) = FDG(V h) + (Uh,0DG,−, V

h,0
+ )E , ∀ V h ∈ Vr(N ;Zh0 × Zh0 ), (6.53)

for given compatible initial data Uh,0DG,− ∈ Zh
ghCG
× Zh

gh,′CG
and forcing data f ∈ H1(J ;H) with the

fully-discrete data GhCG ∈W h,r,tr.

The time-stepping scheme for (6.53) would read:

Problem 6.4.2 (Fully-discrete time-stepping formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let ZhgCG, Zhg′CG
, and Zh0 be the

conformal finite dimensional subsets and subspace given in Definition 6.5 on p. 136. Let P rn(In;Zh
ghCG
×

Zh
gh,′CG

) be the fully-discrete finite dimensional subset given in Definition 6.5. Let â( , ) be the skew-

symmetric form given in Definition 2.7 on p. 14 and ( , )E be the inner product given in Corollary 2.2

on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .
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Find UhDG ∈ P rn(In;Zh
ghCG
× Zh

gh,′CG
) such that

bnDG(UhDG,V
h)=︷ ︸︸ ︷∫

In

{
(∂tU

h
DG, V

h)E + â(UhDG, V
h)
}
dt+ (Uh,nDG,+, V

h,n
+ )E =

FnDG(vh2 )=︷ ︸︸ ︷∫
In

(f, vh2 )Hdt+(Uh,nDG,−, V
h,n

+ )E ,

∀V h ∈ P rn(In;Zh0 × Zh0 ), with Uh,nDG,− ∈ Z
h
ghCG
× Zh

gh,′CG
to be the initial data at a given time step In

(6.54)

and forcing data f ∈ H1(J ;H) with the fully-discrete data GhCG ∈W h,r,tr.

6.4.1 Existence and uniqueness

The splitting technique will be used here again in order to show existence and uniqueness of the fully-

discrete solution which solves (6.12) on p. 137. Theorem 6.5 on p. 141 shows existence and uniqueness

of the solution of (6.12). The latter theorem uses Lemma 6.7 on p. 140.

6.4.1.1 Time decoupling and the discrete reduced spatial problems of the fully-discrete

transformed formulation with linear constraints

Let ĜhCG ∈ W
h,r

GhCG
⊂ Vr(N ;Zh

ghCG
× Zh

gh,′CG
) be the existing fully-discrete real vector-valued function

which solves the formulation in (6.43) on p. 135 such that

UhDG := ĜhCG + ŪhDG. (6.55)

With the defined fully-discrete real vector-valued function ŪhDG, such that ŪhDG ∈ Vr(N ;Zh0 × Zh0 ),

and for

F =

(
f1

f2

)
=

( −∂tĝh1,CG + ĝh2,CG

f − ∂tĝh2,CG −Aĝh1,CG

)
∈ L2(J ;D0 ×H) ∈ L2(J ;Z0 ×H), (6.56)

the linear functional FDG ∈ (L2(J ;Z0 ×H))′:

FDG(V h) :=
N−1∑
n=0

∫
In

{

(F,V h)E︷ ︸︸ ︷
a(f1, v

h
1 ) + (f2, v

h
2 )H}dt =

∫
J
(F, V h)Edt, ∀V h ∈ L2(J ;Zh0 ×H), (6.57)

where all vector-valued functions in fully-discrete space Vr(N ;Zh0 ×Zh0 ) are also included in this linear

map since Vr(N ;Zh0 × Zh0 ) ⊂ L2(J ;Z0 ×H).

then the formulation in (6.53) on p. 137 written in terms of ĜhCG and ŪhDG would be

Problem 6.4.3 (Fully-discrete transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zh0 be the conformal finite

dimensional subspace given in Definition 6.5 on p. 136. Let Vr(N ;Zh0 ×Zh0 ) be the fully-discrete finite

dimensional subspace given in Definition 6.5. Let BDG( , ) be the form given in (6.51) on p. 137 and

FDG the linear functional in (6.57).

Find ŪhDG ∈ Vr(N ;Zh0 × Zh0 ) such that

BDG(ŪhDG, V
h) = FDG(V h) + (Ūh,0DG,−, V

h,0
+ )E , ∀ V h ∈ Vr(N ;Zh0 × Zh0 ), (6.58)

for given initial data Ūh0 ∈ Zh0 × Zh0 .
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Problem 6.4.4 (Fully-discrete time-stepping transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zh0 be the conformal finite

dimensional subspace given in Definition 6.5 on p. 136. Let P rn(In;Zh0 ×Zh0 ) be the fully-discrete finite

dimensional subspace given in Definition 6.5. Let ( , )E be the inner product given in Corollary 2.2 on

p. 10. Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14 and ( , )E be the inner

product given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .

Find ŪhDG ∈ P rn(In;Zh0 × Zh0 ) such that

bnDG(ŪhDG,V
h)=︷ ︸︸ ︷∫

In

{
(∂tŪDG, V )E + â(ŪhDG, V

h)
}
dt+ (Ūh,nDG,+, V

h,n
+ )E =

FnDG(V h)=︷ ︸︸ ︷∫
In

(F, V h)Edt+(Ūh,nDG,−, V
h,n

+ )E ,

for all V h ∈ P rn(In;Zh0 × Zh0 ), with Ūh,nDG,− to be the initial data at a given time step In,

and F ∈ L2(J ;Zh ×H) ⊂ L2(J ;Z ×H).

(6.59)

Here, (6.59) is the fully-discrete formulation of the semi-discrete one in (6.19). Now, since the latter

is a particular example of the general semi-discrete formulation given in (4.28) on p. 83 and with

knowing that Zh0 and Dh
0 are the conformal finite dimensional subspaces of Z0 and D0 which also fit

the properties of the discrete spatial spaces in Chapter 4, then (6.59) is a particular example of the

general fully-discrete formulation given in (4.56) on p. 94, where now the terms in F =
(
f1
f2

)
are

f1 = −∂tĝh1,CG + ĝh2,CG ∈ L2(J ;D0) ⊂ L2(J ;Z0), and f2 = f − ∂tĝh2,CG −Aĝh1,CG ∈ L2(J ;H).

With repeating the same steps in Section 4.3 and considering the formulation (4.56) on p. 94 with its

equivalent (r+1) discrete reduced spatial problems in (4.60) in Theorem 4.7 on p. 96, the formulation

in (6.59) reads the same as (4.56), and accordingly, the (r + 1) discrete reduced spatial problems of

(6.59) with referring to (4.59) on p. 95:

Problem 6.4.5 (Discrete reduced spatial problems for the transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the subspace of Z given

in Definition 5.2 with Lemma 5.1 on p. 102. Let Zh be the conformal finite dimensional subspace of

Z. Let Zh0 be the conformal finite dimensional subspace of Z0. Let λp be the eigenvalues of the matrix

AL given in (3.31) on p. 30. Let (β1
p)q and (β2

p)q be the (r + 1) vectors given in (3.36):

(β1
p)q = (Y −1)pq x

1
q = (Y −1)pq

√
(q + 1/2), and

(β2
p)q = (Y −1)pq x

2
q = (Y −1)pq

√
(q + 1/2)(−1)q, respectively.

(6.60)

For

f1(vh2,p) = 2λk
r∑
i=0

{
(β1
p)i

∫ 1

−1
Li(t̂)(f2 ◦Q, vh2,p)Hdt̂

}
, and

f2(vh2,p) = −k2
r∑
i=0

{
(β1
p)i

∫ 1

−1
Li(t̂)a(f1 ◦Q, vh2,p)dt̂

}
,

and with a form and a linear functional f ∈ (Z0 ×H)′:

b(uh2,p, v
h
2,p) = 4λ2

p(u
h
2,p, v2,p)H + k2a(uh2,p, v

h
2,p),

f(vh2,p) = f1(vh2,p) + f2(vh2,p),
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where all test functions in the conformal finite dimensional subspace Zh0 are also included in this linear

map since Zh0 ⊂ Z0, now reads:

Find {uh2,p}
rn
p=0 ⊂ Zh0 :

b(uh2,p, v
h
2,p) = f(vh2,p) + 4λ

rn∑
i=0

{
(β2
p)i

}
(ūh2,0, v

h
2,p)H − 2k

r∑
i=0

{
(β2
p)i

}
a(ūh1,0, v

h
2,p),

for each p = 0, · · · , r, for all {vhp}
rn
p=0 ⊂ Z

h
0 .

(6.61)

After solving for the unknowns {uh2,p}rp=0 ⊂ Zh0 with given data f1 ∈ L2(I;Zh0 ), f2 ∈ L2(I;H), and

ūh1,0, ū
h
2,0 ∈ Zh0 ⊂ Zh ⊂ Z, then comes to update the values of {uh1,p}rp=0 ⊂ Zh0 :

uh1,p =
k

2λp
uh2,p +

k

2λp

r∑
i=0

{
(β1
p)i

∫ 1

−1
Li(t̂)f1 ◦Qdt̂

}
+

1

λp

r∑
i=0

{
(β2
p)i

}
ūh1,0, (6.62)

which need to be done at the given generic time step I.

Lemma 6.7 (Existence, uniqueness of discrete reduced spatial problem’s for given r.h.s)

Let Z be the Hilbert space given in Definition 5.1 on p. 101. Let Z0 be the subspace of Z given in

Definition 5.2 with Remark 5.1 on p. 102. Let Zh be the conformal finite dimensional subspace of Z.

Let Zh0 be the conformal finite subspace of Z0. There exist unique functions {uh2,p}rp=0 ⊂ Zh0 which

solve the (rn + 1) discrete spatial problems (6.61), as well as {uh1,p}rp=0 ⊂ Zh0 , for given f1 ∈ L2(I;Z),

f2 ∈ L2(I;H), and initial data ūh1,0, ū
h
2,0 ∈ Zh0 ⊂ Z0 ⊂ Z.

Proof:

Firstly, the form b(uh2,p, v
h
2,p) in (6.61) for uh2,p, and vh2,p in the subspace (Zh0 , ‖ · ‖Z) is continuous with

using Lemma 3.5 on p. 34 after letting c1 = 4λp and c2 = k2, thus, for p = 0, · · · , rn:

b(uh2,p, v
h
2,p) = 4λ2

p(u
h
2,p, v

h
2,p)H + k2a(uh2,p, v

h
2,p) ≤ (4|λp|c2 + k2M) ‖ uh2,p ‖Z‖ vh2,p ‖Z .

Secondly, with using Definition 5.3 on p. 104 the form b(uh2,p, v
h
2,p) in (6.61) for uh2,p, and vh2,p in the

subspace (Zh0 , ‖ · ‖Z) which is again a subspace of (Z0, ‖ · ‖Z) satisfies the discrete Inf-sup condition

in Lemma 3.11 on p. 47 after letting c1 = 4λp and c2 = k2. The Inf-sup constant would be k2α. Then

for the r.h.s of (6.61) and with recalling the proof of Theorem 4.6 on p. 96, then

|r.h.s| ≤

(
c
√

23k|λp|
r∑
q=0

|(β1
p)q|x̂q ‖ f2 ‖L2(I;H) +|

r∑
q=0

(β2
p)q|
(

4c|λp| ‖ uh,02,DG,− ‖H

+ 2kM ‖ uh,01,DG,− ‖Z
)

+
√

2k3M

rn∑
q=0

|(β1
p)q|x̂q ‖ f1 ‖L2(I;Z)

)
‖ vh2,p ‖Z .

(6.63)

Then, going back to (Babuška) Theorem A.4 on p. 179, and with having Lemmas 3.11 and 3.5 and

(6.63), then there exist a function {uh2,p}rp=0 ⊂ Zh0 which solves (6.61).

For the identity (6.62) on p. 140:

uh1,p =
k

2λp
uh2,p +

1

λp

r∑
q=0

{
(β2
p)q

}
uh,01,DG,− +

k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
,
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where

‖ k

2λp

r∑
q=0

{
(β1
p)q

∫ 1

−1
Lq(t̂)f1 ◦Qdt̂

}
‖Z ≤

k

2|λp|

r∑
q=0

{
|(β1

p)q|
∫ 1

−1
Lq(t̂) ‖ f1 ◦Q ‖Z dt̂

}
<∞,

for each p = 0, · · · , r, then from the given existence and uniqueness of {uh2,p}rp=0 ⊂ Zh0 and the given

forcing data f1 ∈ L2(J ;Zh0 ), f2 ∈ L2(J ;H) and initial data uh,01,DG,−, u
h,0
2,DG,− ∈ Zh0 which are well

defined, that also concludes that {uh1,p}rp=0 ⊂ Zh0 at a given time step I also exists and is unique. �

Theorem 6.5 (Existence, uniqueness of fully-discrete formulation with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zh be the conformal finite

dimensional subspace of Z. Let Zh
ghCG

and Zh
gh,′CG

be the conformal finite dimensional subsets given in

Definition 6.5 on p. 136. Let Vr(N ;Zh
ghCG
×Zh

gh,′CG
) be the fully-discrete space given in Definition 6.5 on

p. 136. There exists a unique fully-discrete vector-valued function UhDG ∈ Vr(N ;Zh
ghCG
× Zh

gh,′CG
) which

solves the formulation in (6.53) on p. 137.

Proof:

The fully-discrete vector-valued function UhDG is given in the identity (6.55) on p. 138 that is

UhDG = ŪhDG + ĜhCG,

for the existing unique vector-valued function ĜhCG ∈W
h,r

GhCG
⊂ Vr(N ;Zh

ghCG
×Zh

gh,′CG
) which solves (6.43)

on p. 135 and for ŪhDG ∈ Vr(N ;Zh0 × Zh0 ) which solves the formulation (6.58) on p. 138:

ŪhDG =

N−1∑
n=0

ŪhDG|In ,

where

ŪhDG|In =

rn∑
j=0

ϕj(t)Ū
h
j , for Y rn ∈ C(rn+1)×(rn+1) : Ūhj =

rn∑
i=0

Y rn
ji U

h
i ∈ Zh0 × Zh0 ,

and with using the shown existence and uniqueness of {Uhi }
rn
i=0 ∈ Zh0 × Zh0 in Lemma 6.7 which

implies that ŪhDG ∈ P rn(In;Zh0 × Zh0 ) exists and is unique and from the identity (6.55) thus UhDG ∈
Vr(N ;Zh

ghCG
×Zh

gh,′CG
) exists and is unique. �

6.4.2 Stability estimates of fully-discrete formulation with linear constraints

In this Section, global stability estimate of the vector-valued function UhDG ∈ Vr(N ;Zh
ghCG
× Zh

gh,′CG
)

which solves the fully-discrete formulation in (6.53) on p. 137 will be shown in Theorem 6.7 on p. 144.

The latter uses the resulting estimates in Lemmas 6.8 and 6.9 on p. 141. The stability estimates

shown in Section 4.3.2 are used here, since the transformed formulation in this section is a particular

example of the given general formulation in Section 4.3.2.

Lemma 6.8 (Local estimate for fully-discrete transformed formulation) Let Z and H be the

Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the subspace of Z given in Definition 5.2

with Lemma 5.1 on p. 102. Let Zh be the conformal finite dimensional subspace of Z. Let Zh0 be the
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conformal finite dimensional subspace of Z0. With given vector-valued forcing data F ∈ L2(J, Z0×H),

initial data Ūh0 ∈ Zh0 × Zh0 , then the vector-valued function ŪDG ∈ P r(I;Zh0 × Zh0 ) at a generic time

step I = (t0, t1) satisfies

‖ ŪhDG ‖2L2(I;E) ≤
k ‖ Y ‖22 (2r + 1)

2 min
p

Re λp

(
‖ F ‖2L2(I;E) + ‖ Ūh0 ‖2E

)
, (6.64)

for normed-product space (L2(J ;Zh0 × Zh0 ), ‖ · ‖L2(J ;E)):

‖ U ‖2L2(J ;E)=

∫
J

‖U‖2E︷ ︸︸ ︷
a(u1, u1)+ ‖ u2 ‖2H dt,∀ U ∈ L2(J ;Zh0 × Zh0 ) ⊂ L2(J ;Z0 × Z0),

(6.65)

where k is the time step size at I. λp are the eigenvalues of the matrix AL given in (3.31) on p. 30 for

p = 0, · · · , r, ‖ Y r ‖22 is the square of the spectral norm (see (A.6) on p. 173) of the transformation

matrix Y ∈ C(r+1)×(r+1) and r is the approximation order and the form a( , ) satisfies the properties

given in Definition 5.3 on p. 104.

Proof:

At generic time step I, with the ellipticity property given in Definition 5.3 on p. 104 for a( , ), the

form bDG(ŪhDG, V
h) of Problem 6.4.4 on p. 139 for ŪhDG, and V h in P r(I;Zh0 × Zh0 ) ⊂ P r(I;Z0 × Z0)

satisfies Lemma 3.10 on p. 45. Thus

‖ ŪhDG ‖L2(I;E) ≤
k ‖ Y ‖22

2(min
p

Re λp)
sup

V h∈P r(I;Zh0×Zh0 )

∣∣∣bDG(UhDG, V
h)
∣∣∣

‖ V h ‖L2(I;E)

=
k ‖ Y ‖22

2(min
p

Re λp)
sup

V h∈P r(I;Zh0×Zh0 )

∣∣∣
FDG(V h)=︷ ︸︸ ︷∫
I
(F, V h)Edt+(Ūh,0DG,−, V

h
+)E

∣∣∣
‖ V h ‖L2(I;E)

,

(6.66)

and then with using the same steps in the proof Lemma 4.4 on p. 97 with

F =

(
f1

f2

)
=

( −∂tĝh1,CG + ĝh2,CG

f − ∂tĝh2,CG −Aĝh1,CG

)
∈ L2(J ;Z0 ×H),

that completes the proof. �

Lemma 6.9 (Left-sided limits estimate of fully-discrete transformed formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Z0 be the subspace of Z given

in Definition 5.2 with Remark 5.1 on p. 102. Let Zh be the conformal finite dimensional subspace

of Z. Let Zh0 be the conformal finite subspace of Z0. Let Dh,A,tr be the conformal finite dimensional

space of DA,tr given in Definition 6.5. Let W h,r,tr be the conformal finite dimensional space given in

Definition 6.4 on p. 134. With given forcing data f ∈ L2(J,H), initial data Ūh0 ∈ Zh0 × Zh0 , and the

data GhCG ∈ W h,r,tr, then the fully-discrete vector-valued function ŪhDG ∈ P rm(Im;Zh0 × Zh0 ) which

solves the time-stepping formulation in (6.59) on p. 139 satisfies

‖ Ūh,nDG,− ‖E ≤ (1 +
C
N

)n
(
4
√

max(M, c2, 1) ‖ GhCG ‖W tr +
√

2 ‖ f ‖L2(J ;H) + ‖ Ūh0 ‖E
)
, (6.67)
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for normed-product space (Zh0 ×Zh0 , ‖ · ‖E) which is a finite dimensional subspace of (Z0×Z0, ‖ · ‖E),

with Remark 5.1:

‖ U ‖2E= a(u1, u1)+ ‖ u2 ‖2H ,∀ U ∈ Zh0 × Zh0 ⊂ Z0 × Z0, (6.68)

and C = max
m

(
T ‖ Y rm ‖22 (2rm + 1)

2 min
p

Re λp
), is the same constant appearing in Lemma 4.5 on p. 98, and the

form a( , ) satisfies the properties given in Definition 5.3 on p. 104.

Proof:

With knowing that Z0 is separable Hilbert space as shown in Lemma 5.1 on p. 103 and the form

a( , ) in Z0 is elliptic, then at a generic time step I the formulation in (6.59) on p. 139 is a particular

example of the general formulation in (4.66) on p. 98 where here

F =

( −∂tĝh1,CG + ĝh2,CG

f − ∂tĝh2,CG −Aĝh1,CG

)
∈ L2(J ;Z0 ×H),

with given initial data Ūh0 ∈ Zh0 ×Zh0 ⊂ Z0×Z0 ⊂ Z×Z. Thus the proof of Lemma 4.5 on p. 98 holds

for ŪhDG ∈ P rm(Im;Zh0×Zh0 ) and also repeating the same steps done in Lemma 6.4 on p. 130 which don’t

depend on the spatial spaces that completes the proof. �

Theorem 6.6 (Last left-sided limit of the fully-discrete formulation)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zh be the conformal finite

dimensional subspace of Z. Let Zh
ghCG

and Zh
gh,′CG

be the conformal finite dimensional subsets given

in Definition 6.5 on p. 136. Let Dh,A,tr be the conformal finite dimensional space of DA,tr given

in Definition 6.5. Let W h,r,tr be the conformal finite dimensional space given in Definition 6.4 on

p. 134. With given forcing data f ∈ L2(J,H), initial data Uh0 ∈ Zh
ghCG
× Zh

gh,′CG
⊂ Zg × Zg′, G

h
0 ∈

Dh,A,tr×Dh,A,tr ⊂ DA,tr×DA,tr, and the last left sided limit Gh,N− ∈ Dh,A,tr×Dh,A,tr ⊂ DA,tr×DA,tr,

then the full-discrete vector-valued function UDG ∈ P rn(In;Zh
ghCG
×Z

gh,′CG
) which solves the time-stepping

formulation in (6.54) on p. 138 satisfies

‖ Uh,NDG,− ‖X ≤ (1 +
C
N

)n
(
4
√

max(M, c2, 1) ‖ GhCG ‖W tr +
√

2 ‖ f ‖L2(J ;H)

+ ‖ Uh0 ‖E +
√

max(M, c2) ‖ Gh0 ‖DA,tr×DA,tr
)

+
√

max(1, c2) ‖ Gh,NCG,− ‖DA,tr×DA,tr ,
(6.69)

where C = max
n

T ‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
, is the same constant appearing in Lemma 4.3 on p. 89, with the

norm

‖ U ‖2X=‖ u1 ‖2Z + ‖ u2 ‖2H ,∀ U ∈ Zh × Zh ⊂ Z × Z, (6.70)

for the form a( , ) which satisfies the properties given in Definition 5.3 on p. 104.

Proof:

With the identity given in (6.14) on p. 125, the triangle inequality, then

‖ Uh,NDG,− ‖X≤‖ Ū
h,N
DG,− ‖

2
X + ‖ Ĝh,NDG,− ‖X≤

1√
min(α, 1)

‖ Ūh,NDG,− ‖
2
E +

√
max(1, c2) ‖ Ĝh,NDG,− ‖DA×DA
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Since the spatial discretisation is done using conformal finite subspaces of the continuous ones, then

the steps done in the proof of Theorem 6.3 on p. 131 still holds with considering now the discrete

initial data i.e.

‖ Ūh0 ‖E≤‖ Uh0 ‖E +
√

max(M, c2) ‖ Gh0 ‖DA,tr×DA,tr ,

and that completes the proof. �

Theorem 6.7 (Global stability of fully-discrete formulation with linear constraints)

Let Z, H, and DA be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zh be the conformal

finite dimensional subspace of Z. Let Zh
ghCG

and Zh
gh,′CG

be the conformal finite dimensional subsets given

in Definition 6.5 on p. 136. Let Dh,A,tr be the conformal finite dimensional space of DA,tr given in

Definition 6.5. Let W h,r,tr be the conformal finite dimensional space given in Definition 6.4 on p. 134.

With given forcing data f ∈ L2(J ;H), initial data Uh0 ∈ ZhghCG
× Zh

gh,′CG
, and given data GhCG ∈ W h,r,tr

with Gh0 ∈ Dh,A,tr ×Dh,A,tr, then the solution UhDG ∈ Vr(N ;Zh
ghCG
× Zh

gh,′CG
) of the formulation (6.53)

on p. 137 satisfies

‖ UhDG ‖L2(J ;X) ≤
(
2
√

max(1, c2) + 4
√

max(M, c2, 1)
(eC − 1)√
min(α, 1)

)
‖ GhCG ‖W tr

+
(eC − 1)√
min(α, 1)

(√
2 ‖ f ‖L2(J ;H) + ‖ Uh0 ‖E +

√
max(M, c2) ‖ Gh0 ‖DA,tr×DA,tr

)
,

(6.71)

for normed-product space (Zh × Zh, ‖ · ‖X):

‖ U ‖2X=‖ u1 ‖2Z + ‖ u2 ‖2H , ∀ U ∈ Zh × Zh, (6.72)

where C = max
n

(
T ‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
), is the same constant which appear in Lemma 4.8 on p. 98.

M < ∞ the lower bounds of the form a( , ) which satisfies the properties given in Definition 5.3 on

p. 104. c the constant in the inclusion inequality ‖ u ‖H≤ c ‖ u ‖Z , ∀u ∈ Z, and the norm ‖ · ‖W tr

given in Corollary 5.5 on p. 107.

Proof:

Here

UhDG = ĜhCG + ŪhDG,

with using the triangle inequality and from the inequality in Lemma 5.6 on p. 108 but this time with

considering the correspondent norm of the DA in Definition 5.1 on p. 101, then

‖ UhDG ‖L2(J ;X) =‖ ĜhCG + ŪhDG ‖L2(J ;X)

≤‖ ĜhCG ‖L2(J ;X) + ‖ ŪhDG ‖L2(J ;X)

≤
√

max(1, c2) ‖ ĜhCG ‖L2(J ;DA×DA)︸ ︷︷ ︸
≤‖ĜhCG‖H1(J;DA×DA)

+
1√

min(α, 1)
‖ ŪhDG ‖L2(J ;E)

=
√

max(1, c2) ‖ ĜhCG ‖W +
1√

min(α, 1)

N−1∑
n=0

‖ ŪhDG ‖L2(In;E) .
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Now, with using the resulting estimate in Lemma 6.8 on p. 141 after letting I = In and the corres-

pondence initial data accordingly with the use of Lemma 6.9 on p. 142, and the same steps used in

the proof of Theorem 4.8 on p. 98 and repeating the same steps done in the proof of Theorem 6.4 on

p. 132 in order to get the upper bound of the ‖ F ‖2L2(J ;E) in terms of the forcing data f and GhCG;

the smooth data at the trace space where

Ūh0 = Uh0 − Ĝh0 ,

implies

‖ UhDG ‖L2(J ;X) ≤
(
2
√

max(1, c2) + 4
√

max(M, c2, 1)
(eC − 1)√
min(α, 1)

)
‖ GhCG ‖W tr

+
(eC − 1)√
min(α, 1)

(√
2 ‖ f ‖L2(J ;H) + ‖ Uh0 ‖E +

√
max(M, c2) ‖ Gh0 ‖DA,tr×DA,tr

)
,

and that completes the proof. �

6.5 The a priori error estimate

6.5.1 An auxiliary problem and its stability estimate

With recalling the subsets in Definitions 5.1, 5.2 on p. 101, and 6.5 on p. 136, the following auxiliary

problem is considered

Problem 6.5.1 (The fully-discrete auxiliary problem)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zh0 be the conformal finite

subspace given in Definition 6.5 on p. 136. Let Vr(N ;Zh0 ×Zh0 ) be the fully-discrete finite dimensional

subspace given in Definition 6.5. Let â( , ) be the skew-symmetric form given in Definition 2.7 on p. 14

and ( , )E be the inner product given in Corollary 2.2 on p. 10:

â(U, V ) = −a(u2, v1) + a(u1, v2), and (U, V )E = a(u1, v1) + (u2, v2)E .

Let BDG( , ) be the form given in (6.51) on p. 137:

BDG(UDG, V ) =
N−1∑
n=0

∫
In

{(∂tUDG, V )E + â(UDG, V )} dt+
N−1∑
n=1

([UDG]n, V n
+ )E + (U0

DG,+, V
0

+)E .

Find Φh ∈ Vr(N ;Zh0 × Zh0 ), which is a real vector-valued function, satisfies

BDG(V h,Φh) = (V h,N
− ,Θh,N

− )E ,∀V h ∈ Vr(N ;Zh0 × Zh0 ), (6.73)

for given data Θh,N
− ∈ Zh0 × Zh0 .

Lemma 6.10 (Equivalence between Problem 6.5.1 and Problem 3.5.2) Let Z and H be the

Hilbert spaces introduced in Definition 5.1 on p. 101. Let Zh and Zh0 be the conformal finite dimensional

subspaces of the Hilbert space Z and Z0, respectively given in Definition 6.5 on p. 136. Problem 6.5.1

and Problem 3.5.2 on p. 55 are equivalent.
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Proof:

Firstly, Lemma 5.1 on p. 103 states that Z0 is a separable Hilbert space which satisfies all the properties

given in Part I of the theses, and the same holds also for the product space Z0×Z0 (see [7, 1.3 Hilbert

Spaces from Hilbert spaces] i.e. Z0×Z0 is a separable Hilbert space. Secondly, with knowing that the

product space Zh0 × Zh0 is a conformal finite dimensional subspace of Z0 × Z0 and that renders that

product space Zh0 × Zh0 satisfies the properties of the product space Z0 × Z0, then Problem 6.5.1 is

equivalent to Problem 3.5.2 on p. 55 and that completes the proof. �

Lemma 6.11 (Solvability of Problem 6.5.1)

Let Z and H be the Hilbert spaces introduced in Definition 5.1 on p. 101. Let Zh and Zh0 be the con-

formal finite dimensional subspaces of the Hilbert space Z and Z0, respectively given in Definition 6.5

on p. 136. Problem 6.5.1 on p. 145 is solvable and its solution satisfies

‖ Φh ‖L2(J ;E) ≤ C ‖ Θh,N
− ‖E , (6.74)

‖ Φh,n
− ‖2E≤‖ Θh,N

− ‖2E , (6.75)

and

n−1∑
m=0

(
‖ [Φh]m ‖2E

)
≤‖ Θh,N

− ‖2E , (6.76)

for n ≤ N and given data Θh,N
− ∈ Zh × Zh, and C = max

n
(T
‖ Y rn ‖22 (2rn + 1)

2 min
p

Re λp
) <∞ is the same real

constant appearing in Lemma 3.18 on p. 56.

Proof:

From the shown equivalence in Lemma 6.10 on p. 145 then this implies that Problem 6.5.1 on p. 145

is solvable and its solution satisfies the same stability of the solution of Problem 3.5.2 on p. 55 and that

completes the proof. �

6.5.2 The full a priori error estimate

Definition 6.6 (The spatial matrix projection operator with linear constraints) Let Z and

H be the Hilbert spaces introduced in Definition 5.1 on p. 101. Let Zh and Zh0 be the conformal finite

dimensional Hilbert subspaces of the Hilbert space Z and Z0, respectively given in Definition 6.5 on

p. 136.

For u1 ∈ Z, the spatial projection operator Π̂gh : Z → Zh
gh

is defined:

a(Π̂ghu1 − u1, v) = 0, ∀ v ∈ Zh0 , (6.77)

and for u2 ∈ Z, the spatial projection operator Π̂g′,h : Z → Zh
g′,h

is defined:

a(Π̂g′,hu2 − u2, v) = 0, ∀ v ∈ Zh0 , (6.78)

and with coupling them would be Π̂Gh :=

(
Π̂gh 0

0 Π̂g′,h

)
: Z × Z → Zhgh × Z

h
gh,′.
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Lemma 6.12 The spatial projection operator Π̂ given in Definition 6.6 is well defined.

Proof:

Firstly, for Π̂gh : Z → Zh
gh

, assume that u1 ∈ Zh
gh

and u2 ∈ Zh
gh

to be functions which satisfy (6.77)

for u ∈ Z i.e.

a(u1 − u, v) = 0, and a(u2 − u, v) = 0, ∀ v ∈ Zh0 .

with letting w̄ := u1−u2 ∈ Zh0 then with using the continuity of the form a( , ) as given in Definition 5.3

on p. 104,

a(w̄, v) ≤M ‖ w̄ ‖Z‖ v ‖Z ,

and with choosing v = w̄ ∈ Zh0 , and using ellipticity of the form a( , ), then

α ‖ w̄ ‖Z≤ a(w̄, w̄) = 0,=⇒ 0 = w̄ = u1 − u2,

that concludes the uniqueness, and with the use of Lax-Milgram theorem also concludes the existence.

Secondly, for Π̂g′,h : Z → Zh
g′,h

and with repeating the same steps again that completes the proof. �

Definition 6.7 (Spatio-time projection operator) Let Π̂Gh :=

(
Π̂gh 0

0 Π̂g′,h

)
: Z × Z → Zhgh × Z

h
g′,h

be the spatial projection given in Definition 6.6. Let I = (−1, 1) be the given time step, Z and H

be the Hilbert spaces given in Definition 2.1 on p. 6. Let P r(I;Zh
ghCG
× Zh

g′,hCG
) be the fully-discrete

space of rth order polynomials in the time step I = (−1, 1) with coefficients in Zh
ghCG
× Zh

g′,hCG
. For

U ∈ L2(I;×Zg × Zg′) which is continuous at t = 1. With using the defined spatial projection in

Definition 6.6, the following two projection operators are defined, via the r + 1, r ≥ 1 conditions:

Π̃r
ghCG

: L2(J ;Z)→ P r(I;Zh
ghCG

), and Π̃r
g′,hCG

: L2(J ;Z)→ P r(I;Zh
g′,hCG

) (6.79)

such that∫
I
a(Π̃r

ghCG
u1 − u1, v1)dt = 0,∀ v1 ∈ P r−1(I;Zh0 ), with Π̃r

ghCG(+1)
u1(+1) = Π̂gh(+1)u1(+1) ∈ Zhgh(+1),

(6.80)

and∫
I
a(Π̃r

g′,hCG
u2 − u2, v2)dt = 0, ∀ v2 ∈ P r−1(I;Zh0 ), with Π̃r

g′,hCG(+1)
u2(+1) = Π̂

g′,hCG(+1)
u2(+1) ∈ Zh

g′,hCG(+1)
,

(6.81)

Lemma 6.13 The spatio-time projection Π̃r
GhCG

=

( Π̃r
ghCG

0

0 Π̃r
g′,hCG

)
given in Definition 6.7 is well-defined.

Proof:

To show uniqueness:
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Firstly, for given u1 ∈ L2(I;Z), let u1
1 ∈ P r(I;Zh

ghCG
) and u2

1 ∈ P r(I;Zh
ghCG

) where both satisfy (6.80)

such that ∫
I
a(u1

1 − u1, v1)dt = 0, and

∫
I
a(u2

1 − u1, v1)dt = 0,∀ v1 ∈ P r−1(I;Zh0 ), (6.82)

with

u1
1(+1) = Π̂gh(+1)u1(+1) and u2

1(+1) = Π̂gh(+1)u1(+1). (6.83)

Then from taking the difference of u1
1 − u2

1 which can be written in the following finite series

u1
1 − u2

1 =
r∑
i=0

v̄iLi, for v̄i =

∫
I
(u1

1 − u2
1)Li dt ∈ Zh0 , ( see [44, Lemma 1.10]), (6.84)

and for any j = {0, · · · , r−1} and choosing v1 = Ljv ∈ P r−1(I, Zh0 ) and using the orthogonal property

of Legendre polynomials, yield

0 =

∫
I
a(u1

1 − u2
1, Ljv)dt =

r∑
i=0

a(v̄i, v)

∫
I
LiLjdt =

r∑
i=0

a(v̄i, v)δij
2

2j + 1
= a(v̄j , v)

2

2j + 1
,

=⇒ 0 = a(v̄j , v), for j = {0, · · · , r − 1}.
(6.85)

Now, with choosing v = v̄j ∈ Zh0 and using the ellipticity of the form a( , ), imply

M ‖ v̄j ‖2Z≤ a(v̄j , v̄j) = 0, (6.86)

and, from (6.86), implies that v̄j = 0, for j = {0, · · · , r−1}, and with going back to (6.84), yields that

u1
1 − u2

1 =

=0︷ ︸︸ ︷
r−1∑
j=0

v̄jLj +v̄rLr =⇒ u1
1 − u2

1 = v̄rLr,

and finally from (6.80) i.e.

0 = u1
1(+1)− u2

1(+1) = v̄rLr(+1) = v̄r =⇒ v̄r = 0,

which concludes that u1
1 = u2

1.

Secondly, for u2 ∈ L2(I;Z), let u1
2 ∈ P r(I;Zh

g′,hCG
) and u2

2 ∈ P r(I;Zh
g′,hCG

) where both satisfy (6.81) such

that ∫
I
a(u1

2 − u2, v2)dt = 0, and

∫
I
a(u2

2 − u2, v2)dt = 0,∀ v2 ∈ P r−1(I;Zh0 ), (6.87)

with

u1
2(+1) = Π̂g′,h(+1)u2(+1) and u2

2(+1) = Π̂g′,h(+1)u2(+1). (6.88)

Then from taking the difference of u1
2 − u2

2 which can be written in the following finite series

u1
1 − u2

1 =
r∑
i=0

v̄iLi, for v̄i =

∫
I
(u1

1 − u2
1)Li dt ∈ Zh0 , ( see [44, Lemma 1.10]), (6.89)
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and with repeating the same steps done at the first part of this proof, the uniqueness is also shown.

To show existence and again with following the same argument again in [44, Lemma 1.10] such that,

from Lemma 2.2 on p. 11, for U ∈ L2(J ;Zg × Z ′g) it can be written as

U = Ū + Ĝ, where Ū ∈ L2(J ;Z0 × Z0), and Ĝ ∈ H1(J ;Z × Z),

which satisfies the data at the trace s.t. γ̄Ĝ = G,

and since both L2(J ;Z0 × Z0) and H1(J ;Z × Z) are Hilbert spaces thus the following exists

U = Ū + Ĝ =

∞∑
i

LiUi +

∞∑
i

LiĜi,

and setting

Πr
GhCG

U =
r−1∑
i=0

LiUi +
(
Π̂GhU(1)−

r−1∑
i=0

Ui
)
Lr,

then that also concludes that Πr
GhCG

U ∈ P r(I;Zh
ghCG
×Zh

g′,hCG
), which satisfies (3.104) and (3.105) on p. 59,

does exist and that completes the proof. �

Assumption 6.1 Let Z and H be the Hilbert spaces introduced in Definition 5.1 on p. 101. Let

A ∈ L(Z,Z ′) be the linear bounded operator. Let Π̃r
1 : L2(J ;Z) → P r(I;Zh

ghCG
) be the spatio-time

projection operator given in Definition 6.7 on p. 147. The following is assumed

A(Π̃u1 − u1) ∈ H. (6.90)

Theorem 6.8 (Last left-sided limit of the a priori error estimate with linear constraints)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg be the subset and Z0

the subspace of the Hilbert space Z given in Definition 5.2 on p. 102. Let U ∈ L2(J ;Zg × Zg′) be the

continuous solution of (5.25) on p.112 with initial data U0 ∈ Zg×Zg′. Let UhDG ∈ Vr(N ;Zh
ghCG
×Zh

gh,′CG
)

be the fully-discrete solution of (6.53) on p. 137 with initial data Uh0 ∈ Zhgh × Z
h
gh,′

for X = Z ×H,

then there holds

‖ (U − UhDG)N− ‖2X ≤‖ (U − Π̂GhU)N− ‖X +
1√

min(1, α)

(√
2Prn
k
C ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;H)

+

N−1∑
n=1

‖ (Π̂rn
g′,h
u2 − u2)n− ‖H +

√
2 ‖ (Π̂rN

g′,h
u2 − u2)N− ‖H

+
max(1,M)C√

min(α, 1)

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(J ;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;Z)

)
+

√
2

k
(2rn + 1)C ‖ U0 − Uh0 ‖E

)
,

(6.91)

where Π̂Gh :=

(
Π̂gh 0

0 Π̂g′,h

)
: Z × Z → Zhgh × Z

h
g′,h is the spatial projection given in Definition 6.6 and

Π̃r
GhCG

=

( Π̃r
ghCG

0

0 Π̃r
g′,hCG

)
is the spatio-time projection given in Definition 6.7. M < ∞ and α > 0, the
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upper and lower bounds of the form a( , ), respectively given in Definition 5.3 on p. 104 and Pr is a

real constant which also depends on the maximum approximation order r.

Proof:

Firstly, with the triangle inequality

‖ (U − UhDG)N− ‖X ≤‖ (U − Π̃r
GhCG

U)N− ‖X + ‖ (Π̃r
GhCG

U − UhDG)N− ‖X .

Since Π̃r
GhCG

U ∈ Vr(N ;Zh
ghCG
× Zh

g′,hCG
) then Π̃r

GhCG
U − UhDG ∈ Vr(N ;Zh0 × Zh0 ) which concludes

‖ (Π̃r
GhCG

U − UhDG)N− ‖X≤
1√

min(1, α)
‖ (Π̃r

GhCG
U − UhDG)N− ‖E ,

and from (6.80) on p. 147 where Π̃r
ghCG(+1)

u1(+1) = Π̂gh(+1)u1(+1) ∈ Zh
gh(+1)

then

‖ (U − UhDG)N− ‖X≤‖ (U − Π̂GhU)N− ‖X +
1√

min(1, α)
‖ (Π̃r

GhCG
U − UhDG)N− ‖E . (6.92)

Now, for finding the upper bound of ‖ (Π̃r
GhCG

U−UhDG)N− ‖E and with Θh = Π̃r
GhCG

U−UhDG ∈ Zh0 ×Zh0 ,

by going back to Problem 6.5.1 on p. 55 with recalling the proof of Theorem 3.6 on p. 61.

Such that Θh,N
− = (Π̃r

GhCG
U − UhDG)N− ∈ Zh0 × Zh0 , for U ∈ L2(J ;Zg × Zg′) the solution of continuous

formulation (5.25) on p. 112, and UhDG ∈ Vr(N ;Zh
ghCG
× Zh

gh,′CG
) be the fully-discrete solution of (6.53)

on p. 137.

Problem 6.5.1 in (6.73) on p. 145 that is

Find Φh ∈ Vr(N ;Zh0 × Zh0 ), which is a real vector-valued function, satisfies

BDG(V h,Φh) = (V h,N
− ,Θh,N

− )E ,∀V h ∈ Vr(N ;Zh0 × Zh0 ), (6.93)

for given data Θh,N
− ∈ Zh0 × Zh0 . With choosing V h = Θh ∈ Vr(N ;Zh0 × Zh0 ) in (6.93):

‖ Θh,N
− ‖2E= BDG(Θh,Φh) = BDG(Π̃r

GhCG
U − UhDG,Φh)

= BDG(Π̃r
GhCG

U − U + U − UhDG,Φh)

= BDG(Π̃GhCG
U − U,Φh) +BDG(U − UhDG,Φh)︸ ︷︷ ︸

=(U0−Uh0 ,Φ
h,0
+ )E

.

Firstly, in BDG(Π̃r
GhCG

U − U,Φh) with using Lemma 3.3 on p. 26, yields

BDG(Π̃r
GhCG

U − U,Φh) = −
N−1∑
n=0

∫
In

a(Π̃rn
ghCG

u1 − u1, ∂tΦ
h
1)dt−

N−1∑
n=0

∫
In

(Π̃rn
g′,hCG

u2 − u2, ∂tΦ
h
2)Hdt

−
N−1∑
n=1

((Π̃rn
GhCG

U − U)n−, [Φ
h]n)E + ((Π̃rN

GhCG
U − U)N− ,Φ

h,N
− )E

+
N−1∑
n=0

∫
In

a(Π̃rn
ghCG

u1 − u1,Φ
h
2)dt−

N−1∑
n=0

∫
In

a(Π̃rn
g′,hCG

u2 − u2,Φ
h
1)dt

=
6∑
j=1

Ej .
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Now, with using (6.80) on p. 147 where u1 ∈ L2(J ;Zg):

E1 = 0,

E2 = −
∫
J
(Π̃r

g′,hCG
u2 − u2, ∂tΦ

h
2)Hdt,

and

E3 =
N−1∑
n=1

((Π̃rn
GhCG

U − U)n−, [Φ
h]n)E =

N−1∑
n=1

a((Π̃rn
ghCG

u1 − u1)n−, [Φ
h
1 ]n) +

N−1∑
n=1

((Π̃rn
g′,hCG

u2 − u2)n−, [Φ
h
2 ]n)H ,

and from (6.80) on p. 147 where Π̃r
ghCG(+1)

u1(+1) = Π̂gh(+1)u1(+1) ∈ Zh
gh(+1)

, and then using (6.78)

on p. 146, imply

N−1∑
n=1

a((Π̃rn
ghCG

u1 − u1)n−, [Φ
h
1 ]n) =

N−1∑
n=1

a((Π̂rn
gh
u1 − u1)n−, [Φ

h
1 ]n) = 0,

thus

E3 =
N−1∑
n=1

((Π̂rn
g′,h
u2 − u2)n−, [Φ

h
2 ]n)H .

The same thing hold for E4 s.t.

E4 = ((Π̂rN
g′,h
u2 − u2)N− ,Φ

h,N
2,− )H .

Similar steps to get the upper bounds of E2, E3, E4, E5 and E6 given in the proof of Theorem 3.6 on

p. 61 are going to be used with considering the change in the projection used this time:

E2 = −
∫
J
(Π̃r

g′,hCG
u2 − u2, ∂tΦ

h
2)Hdt ≤‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;H)‖ ∂tΦh

2 ‖L2(J ;H),

and with recalling the estimate of ‖ ∂tΦh
2 ‖L2(J ;H) given in (??) o p. ??:

‖ ∂tΦh
2 ‖2L2(J ;H)≤

1

k
Prn

N−1∑
n=0

rn∑
j=0

‖ Φh
2,j ‖2H︸ ︷︷ ︸

= 2
k
‖Φh2‖2L2(In;H)

=
2

k2
Prn ‖ Φh

2 ‖2L2(J ;H)

≤ 2

k2
Prn(

∫
J
a(Φh

1 ,Φ
h
1)dt+ ‖ Φh

2 ‖2L2(J ;H))

=
2

k2
Prn ‖ Φh ‖2L2(J ;E)≤

2

k2
PrnC2 ‖ Θh,N

− ‖2E ,

then

E2 ≤
√

2Prn
k
C ‖ Π̃

g′,hCG
u2 − u2 ‖L2(J ;H)‖ Θh,N

− ‖E . (6.94)

For E3 and E4, with using Cauchy inequality, and then the estimates in (6.76) and (6.75), then

E3 + E4 =
N−1∑
n=1

((Π̂rn
g′,h
u2 − u2)n−, [Φ

h
2 ]n)H + ((Π̂rN

g′,h
u2 − u2)N− ,Φ

h,N
2,− )H

≤

√√√√N−1∑
n=1

‖ (Π̂rn
g′,h
u2 − u2)n− ‖2H

√√√√N−1∑
n=1

‖ Φh,N
2,− ‖2H+ ‖ (Π̂rN

g′,h
u2 − u2)N− ‖H‖ Φh,N

2,− ‖H

≤
(N−1∑
n=1

‖ (Π̂rn
g′,h
u2 − u2)n− ‖H +

√
2 ‖ (Π̂rN

g′,h
u2 − u2)N− ‖H

)
‖ Θh,N

− ‖E

(6.95)
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For E5 and E6 and with using Assumption 6.1 on p. 149, Cauchy inequality, and then the estimate in

(6.74) on p. 146, then

E5 + E6 =

∫
J
a(Π̃r

ghCG
u1 − u1,Φ

h
2)dt−

∫
J
a(Π̃r

g′,hCG
u2 − u2,Φ

h
1)dt

≤ max(1,M)C√
min(α, 1)

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(J ;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;Z)

)
‖ Θh,N

− ‖E .
(6.96)

Secondly, with using Cauchy inequality

(U0 − Uh0 ,Φ
h,0
+ )E ≤‖ U0 − Uh0 ‖E‖ Φh,0

+ ‖E ,

and with also recalling the steps done (3.59) with (3.60) on p. 42 and the estimate in (6.74) on p. 146,

thus

‖ Φh,0
+ ‖E≤ (2rn + 1)

√√√√ rn∑
p=0

‖ Φh
p ‖2E =

√
2

k
(2rn + 1) ‖ Φh ‖L2(In;E) ≤

√
2

k
(2rn + 1) ‖ Φh ‖L2(J ;E)

≤
√

2

k
(2rn + 1)C ‖ Θh,N

− ‖E ,

then

(U0 − Uh0 ,Φ
h,0
+ )E ≤

√
2

k
(2rn + 1)C ‖ U0 − Uh0 ‖E‖ Θh,N

− ‖E . (6.97)

Finally, with adding (6.97), (6.96), (6.95), and (6.94) and going back to (6.92) on p. 150, then

‖ Θh,N
− ‖2E =‖ (Π̃r

GhCG
U − UhDG)N− ‖2E

≤
(√2Prn

k
C ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;H) +

N−1∑
n=1

‖ (Π̂rn
g′,h
u2 − u2)n− ‖H

+
√

2 ‖ (Π̂rN
g′,h
u2 − u2)N− ‖H +

max(1,M)C√
min(α, 1)

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(J ;H)

+ ‖ Π̃r
g′,hCG

u2 − u2 ‖L2(J ;Z)

)
+

√
2

k
(2rn + 1)C ‖ U0 − Uh0 ‖E

)
‖ Θh,N

− ‖E ,

and that completes the proof. �

Theorem 6.9 (Local a priori error estimate in the L2(I;X)-norm)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg be the subset and Z0

the subspace of the Hilbert space Z given in Definition 5.2 on p. 102. Let U ∈ L2(J ;Zg × Zg′) be the

continuous solution of (5.25) on p.112 with initial data U0 ∈ Zg×Zg′. Let UhDG ∈ Vr(N ;Zh
ghCG
×Zh

gh,′CG
)

be the fully-discrete solution of (6.53) on p. 137 with initial data Uh0 ∈ Zhgh×Z
h
gh,′

then, for X = Z×H,
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at a generic time step I = (t0, t1) there holds

‖ U − UhDG ‖L2(I;X) ≤‖ U − Π̃r
GhCG

U ‖L2(I;X)

+ (
k ‖ Y ‖22

2 min
p

Re λp
√

min(α, 1)
)

(√
2Pr
k
‖ Π̃r

g′,hCG
u2 − u2 ‖L2(I;H)

+

√
2

k
(2r + 1) ‖ (U − UhDG)0

− ‖E +

√
2

k
(2r + 1) ‖ (Π̃r

g′,hCG
u2 − u2)− ‖H

+
max(1,M)√

min(α, 1)

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(I;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(I;Z)

))
,

(6.98)

where Π̂Gh :=

(
Π̂gh 0

0 Π̂g′,h

)
: Z × Z → Zhgh × Z

h
g′,h is the spatial projection given in Definition 6.6 and

Π̃r
GhCG

=

( Π̃r
ghCG

0

0 Π̃r
g′,hCG

)
is the spatio-time projection given in Definition 6.7. M < ∞ and α > 0, the

upper and lower bounds of the form a( , ), respectively given in Definition 5.3 on p. 104 and Pr is a

real constant which also depends on the maximum approximation order r.

Proof:

Starting with the triangle inequality

‖ U − UhDG ‖L2(I;X)≤‖ U − Π̃r
GhCG

U ‖L2(I;X) + ‖ Π̃r
GhCG

U − UhDG ‖L2(I;X) .

Now, since Π̃r
GhCG

U − UhDG ∈ P r(I;Zh0 × Zh0 ), then

‖ Π̃r
GhCG

U − UhDG ‖L2(I;X)≤
1√

min(α, 1)
‖ Π̃r

GhCG
U − UhDG ‖L2(I;E),

and as shown earlier in the proof of Lemma 6.10 on p. 145 Z0 × Z0 is a product separable Hilbert

space as well as Zh0 × Zh0 which is the conformal finite dimensional subspace of Z0 × Z0, then with

using the discrete inf-sup condition in Lemma 3.10 on p. 45 since all properties their holds, then

‖ U − UhDG ‖L2(I;X) ≤‖ U − Π̃r
GhCG

U ‖L2(I;X)

+
1√

min(α, 1)

(
(
k ‖ Y ‖22

2 min
p

Re λp
) sup
V h∈P r(I;Zh0×Zh0 )

bDG(Π̃r
GhCG

U − UhDG, V h)

‖ V h ‖L2(I;E)

)
.

For finding the upper bounds of the supremum and with recalling the same steps done in (3.138) on

p. 69, then

sup
V h∈P r(I;Zh0×Zh0 )

bDG(Π̃r
GhCG

U − UhDG, V h)

‖ V h ‖L2(I;E)
≤ sup

V h∈P r(I;Zh0×Zh0 )

bDG(Π̃r
GhCG

U − U, V h)

‖ V h ‖L2(I;E)

+ sup
V h∈P r(I;Zh0×Zh0 )

((U − UhDG)0
−, V

h,0
+ )E

‖ V h ‖L2(I;E)
.
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Here and with recalling the steps done in (3.139) on p. 69, then

sup
V h∈P r(I;Zh0×Zh0 )

((U − UhDG)0
−, V

h,0
+ )E

‖ V h ‖L2(I;E)
≤ sup

V h∈P r(I;Zh0×Zh0 )

‖ (U − UhDG)0
− ‖E‖ V

h,0
+ ‖E

‖ V h ‖L2(I;E)

≤
√

2

k
(2r + 1) ‖ (U − UhDG)0

− ‖E .

(6.99)

Recalling Corollary 3.2 on p. 28, then

bDG(Π̃GhCG
U − U, V h) =

∫
I
−a(Π̃r

ghCG
u1 − u1, ∂tv

h
1 )dt−

∫
I
(Π̃r

g′,hCG
u2 − u2, ∂tv

h
2 )Hdt

+ ((Π̃r
GhCG

U − U)−, V
h
−)E +

∫
I
a(Π̂r

ghCG
u1 − u1, v

h
2 )dt

−
∫
I
a(Π̂r

g′,hCG
u2 − u2, v

h
1 )dt =

5∑
j=0

Ej .

(6.100)

Now, with using the resulting estimates for E1, E2, E5, E6, and E4 given in the proof of Theorem 6.8 on

p. 149 but this time being at a generic time step I, then

E1 =

∫
I
−a(Π̃r

ghCG
u1 − u1, ∂tv

h
1 )dt = 0,

E2 = −
∫
I
(Π̃r

g′,hCG
u2 − u2, ∂tv

h
2 )Hdt ≤

√
2Pr
k
‖ Π̃r

g′,hCG
u2 − u2 ‖L2(I;H)‖ V ‖L2(I;E),

E3 = ((Π̃r
GhCG

U − U)−, V
h
−)E = a(Π̃r

ghCG
u1 − u1)−, v

h
1,−) + (Π̃r

g′,hCG
u2 − u2)−, v

h
2,−)H ,

but since a(Π̃r
ghCG

u1 − u1)−, v
h
1,−) = a(Π̂ghu1 − u1)−, v

h
1,−) = 0, with recalling the estimates for vh2,−

done in the proof of Theorem 3.7 on p. 68, then

E3 ≤‖ (Π̃r
g′,hCG

u2 − u2)− ‖H‖ vh2,− ‖H≤
√

2

k
(2r + 1) ‖ (Π̃r

g′,hCG
u2 − u2)− ‖H‖ V h ‖L2(I;E),

with Assumption 6.1 on p. 149, Cauchy inequality, and then the estimate in (6.74) on p. 146, then

E5 + E6 =

∫
I
a(Π̃r

ghCG
u1 − u1, v

h
2 )dt−

∫
I
a(Π̃r

g′,hCG
u2 − u2, v

h
1 )dt

≤ max(1,M)√
min(α, 1)

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(I;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(I;Z)

)
‖ V h ‖L2(I;E) .

Then we have

‖ U − UhDG ‖L2(I;X) ≤‖ U − Π̃r
GhCG

U ‖L2(I;X)

+ (
k ‖ Y ‖22

2 min
p

Re λp
√

min(α, 1)
)

(√
2Pr
k
‖ Π̃r

g′,hCG
u2 − u2 ‖L2(I;H)

+

√
2

k
(2r + 1) ‖ (U − UhDG)0

− ‖E +

√
2

k
(2r + 1) ‖ (Π̃r

g′,hCG
u2 − u2)− ‖H

+
max(1,M)√

min(α, 1)

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(I;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(I;Z)

))
.

and that completes the proof. �
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Lemma 6.14 (The a priori error estimate in the max L2(Im;X)-norm)

Let Z and H be the Hilbert spaces given in Definition 5.1 on p. 101. Let Zg be the subset and Z0

the subspace of the Hilbert space Z given in Definition 5.2 on p. 102. Let U ∈ L2(J ;Zg × Zg′) be the

continuous solution of (5.25) on p.112 with initial data U0 ∈ Zg×Zg′. Let UhDG ∈ Vr(N ;Zh
ghCG
×Zh

gh,′CG
)

be the fully-discrete solution of (6.53) on p. 137 with initial data Uh0 ∈ Zh
gh
× Zh

gh,′
there holds for

X = Z ×H

max
m
‖ U − UhDG ‖L2(Im;X) ≤ max

m
‖ U − Π̃rm

GhCG
U ‖L2(Im;X)

+

√
2Cmax

m
(
√
Prm)

T
√

min(α, 1)
max
m
‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;H)

+
C2√

TN min(α, 1)
max
m
‖ (U − Π̂GhU)m− ‖X

+

√
N max(1,M)C1√
T 3 min(α, 1)

‖ Π̃r
g′,hCG

u2 − u2 ‖L2(J ;H)

C2√
TN min(α, 1)

(
max
m

N−1∑
m=1

‖ (Π̂rm
g′,h
u2 − u2)m− ‖H +

√
2 ‖ (Π̂rN

g′,h
u2 − u2)N− ‖H

)
+

C2Cmax(M, 1)√
TN min(α, 1)3

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(J ;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;Z)

)
Cmax(1,M)

N min(α, 1)
max
m

(
‖ A(Π̃rm

ghCG
u1 − u1) ‖L2(Im;H) + ‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;Z)

)
+

√
2C2Cmaxm(2rm + 1)

T min(α, 1)
‖ U0 − Uh0 ‖E

+
Cmax

m
(2rm + 1)√

TN min(α, 1)
max
m
‖ (Π̃rm

g′,hCG
u2 − u2)m+1

− ‖H ,

(6.101)

where Π̂Gh :=

(
Π̂gh 0

0 Π̂g′,h

)
: Z × Z → Zhgh × Z

h
g′,h is the spatial projection given in Definition 6.6 and

Π̃rm
GhCG

=

( Π̃rm
ghCG

0

0 Π̃rm
g′,hCG

)
is the spatio-time projection given in Definition 6.7. M <∞ and α > 0, the upper

and lower bounds of the form a( , ), respectively given in Definition 5.3 on p. 104 and Prm is a real

constant which also depends on the maximum approximation order r and

C1 = C2 max
m

(
√
Prmrm) max

m
(2rm + 1), C2 = C

√
max(1,M) max

m
(2rm + 1),

Proof:

Starting with the resulting estimate in Theorem 6.9 on p. 152 with k = T
N , C = max

m
(
T ‖ Y rm ‖22
2 min

p
Re λp

),
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and taking the maximum at the given m = 0, · · · , N − 1:

max
m
‖ U − UhDG ‖L2(Im;X)≤ max

m

(
‖ U − Π̃rm

GhCG
U ‖L2(Im;X)

+ (
T ‖ Y rm ‖22

2N min
p

Re λp
√

min(α, 1)
)

(√
2PrmN
T

‖ Π̃rm
g′,hCG

u2 − u2 ‖L2(Im;H)

+

√
2N

T
(2rm + 1) ‖ (U − UhDG)m− ‖E +

√
2N

T
(2rm + 1) ‖ (Π̃rm

g′,hCG
u2 − u2)m+1

− ‖H

+
max(1,M)√

min(α, 1)

(
‖ A(Π̃rm

ghCG
u1 − u1) ‖L2(Im;H) + ‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;Z)

)))

≤ max
m
‖ U − Π̃rm

GhCG
U ‖L2(Im;X) +

Cmax
m

(
√

2Prm)

T
√

min(α, 1)
max
m
‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;H)

+
Cmax

m
(2rm + 1)√

TN min(α, 1)
max
m
‖ (U − UhDG)m− ‖E +

Cmax
m

(2rm + 1)√
TN min(α, 1)

max
m
‖ (Π̃rm

g′,hCG
u2 − u2)m+1

− ‖H

Cmax(1,M)

N min(α, 1)
max
m

(
‖ A(Π̃rm

ghCG
u1 − u1) ‖L2(Im;H) + ‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;Z)

)
,

(6.102)

and also using the resulting estimate in Theorem 6.8 on p. 149 s.t. with

C1 = C2 max
m

(
√
Prmrm) max

m
(2rm + 1), C2 = C

√
max(1,M) max

m
(2rm + 1),

and rearranging all terms after taking the max over m time steps then

max
m
‖ U − UhDG ‖L2(Im;X) ≤ max

m
‖ U − Π̃rm

GhCG
U ‖L2(Im;X)

+

√
2Cmax

m
(
√
Prm)

T
√

min(α, 1)
max
m
‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;H)

+
C2√

TN min(α, 1)
max
m
‖ (U − Π̂GhU)m− ‖X

+

√
N max(1,M)C1√
T 3 min(α, 1)

‖ Π̃r
g′,hCG

u2 − u2 ‖L2(J ;H)

C2√
TN min(α, 1)

(
max
m

N−1∑
m=1

‖ (Π̂rm
g′,h
u2 − u2)m− ‖H +

√
2 ‖ (Π̂rN

g′,h
u2 − u2)N− ‖H

)
+

C2Cmax(M, 1)√
TN min(α, 1)3

(
‖ A(Π̃r

ghCG
u1 − u1) ‖L2(J ;H) + ‖ Π̃r

g′,hCG
u2 − u2 ‖L2(J ;Z)

)
Cmax(1,M)

N min(α, 1)
max
m

(
‖ A(Π̃rm

ghCG
u1 − u1) ‖L2(Im;H) + ‖ Π̃rm

g′,hCG
u2 − u2 ‖L2(Im;Z)

)
+

√
2C2Cmaxm(2rm + 1)

T min(α, 1)
‖ U0 − Uh0 ‖E

+
Cmax

m
(2rm + 1)√

TN min(α, 1)
max
m
‖ (Π̃rm

g′,hCG
u2 − u2)m+1

− ‖H ,

and that completes the proof. �
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Part III: Application and conclusion
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Chapter 7

Practical examples and Conclusion

In this Chapter, it will be shown that Linear Acoustic wave equation in Section 7.1 and the elastic

wave equation in Section 7.2 starting on p. 163 do fit our abstract approximation theory given in Part

II with I. Here the dimension of discretised spatial space with the choices of the bases are kept open.

7.1 Linear Acoustic wave equation

In Part II of this thesis, the first-order system in time variational formulation with linear constraints is

discussed in abstract spatial spaces. It is approximated using high-order in time DGFEM to discretise

in time and then conformal spatial discretisation to discretise in space. All that is done in abstract

subsets, subspaces and spatial operators. This section shows that the acoustic wave equation does fit

our abstract theory shown in Parts II with I:

- with J = (0, T ) for T < 0, and Ω to be a smooth simple connected Lipschitz bounded domain

in Rn for n ≥ 2:

ΓD = Γ\ΓN , for ∂Ω := Γ = ΓD ∪ ΓN , (7.1)

and the Neumann-Dirichlet transition points are Dirichlet nodes.

Then the acoustic linear wave equation would read

∂2
t u−∆u = f in J × Ω,

for given compatible initial data and boundary conditions

u = g on J × ΓD,

∂u

∂n
= 0 on J × ΓN

u|t=0 = u0 in Ω,

∂tu|t=0 = ū0 in Ω,

such that:
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- The following Sobolev spaces (see [8, The Sobolev Space W 1,p]) and subsets are chosen for the

abstract ones:

Z = H1(Ω), and H = L2(Ω).

Z0 = H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}, ( which is a subspace of H1(Ω)),

H = L2(Ω), and

Z ′ = H−1(Ω)( the dual space of H1
0 (Ω)).

(For simplification they will be noted as H1, L2, H1
0 , and the same would be applied for the rest

of the spaces).

These spaces fit the properties given in Definitions 5.1 and 5.2 on p. 101, respectively, which are:

- H1 and L2 are separable Hilbert spaces over the field C (see [8, Proposition 8.1]), H1 is a

subspace of L2, dense in L2, and is separable with the Gelfand triple (H1 ⊂ L2 ⊂ (H1)′)

for (H1)′ =: H̃−1 (see [28, 2.2 References from Functional Analysis]).

- Also in Lemma 5.1 on p. 103;H1
0 by definition is a subspace of H1as well as L2, dense in

L2, and is separable and also satisfies the Gelfand triple H1
0 ⊂ L2 ⊂ H−1 where

H1
0 ⊂ H1 ⊂ L2 ⊂ H̃−1 ⊂ H−1.

- The abstract spatial operator A ∈ L(Z,Z ′) to be the Laplace operator −∆ ∈ L(H1, H̃−1), where

all functions in H1
0 are involved in this linear map since H1

0 ⊂ H1.

- With choosing

DA = H1(∆) = {u ∈ H1 : ∆u ∈ L2}
(

see [4, (1− 11)]
)
, (7.2)

which is a subspace of H1, endowed with the norm

‖ u ‖2H1(∆)=‖ u ‖
2
H1 + ‖ ∆u ‖2L2 ,

which is as assumed in Assumption 5.1 and shown in Corollary 5.1 on p. 101 is a separable

Hilbert space, see [4, Section 2.1-10].

- With considering Dirichlet boundary data in ∂Ω such that

Ztr = H1−1/2(ΓD) = H1/2(ΓD (see [28, 2.2.4 Trace of a Function]) and

DA,tr = H1/2(ΓD) see [4, (1-40) of Theorem 1-2],

and for any g ∈ H1/2(ΓD)

Zg = H1
g = {u ∈ H1 : u = g on ΓD},

which is the subset of H1.

- Also, from Definition 5.2 on p. 102 with (7.2) such that for any g ∈ H1/2

Dg = H1
g (∆) = {u ∈ H1(∆) : u = g on ΓD},

D0 = H1
0 (∆) = {u ∈ H1(∆) : u = 0 on ΓD}.

From the definition of such subset and subspace and referring to Corollary 5.3 on p. 102 which

hold true, i.e. H1
g (∆) is a subset of H1(∆) and H1

0 (∆) is a subspace of H1(∆).

159



Here, for the higher regularity of the first component of the solution of Problem 5.4.1 on p. 112, since

the forcing data f ∈ H1(J ;L2) and ∂tu2 = ∂2
t u1 ∈ L2(J ;L2) thus

−∆u1 ∈ L2(J ;L2),

i.e. u1 ∈ H1(∆) ⊂ H1.

Moreover, the form in (5.24) on p. 112 which now would be∫
J
â(U, V )dt =

∫
J
{−a(u2, v1) + a(u1, v2)}dt, ∀V ∈ L2(J ;H1

0 ×H1
0 ). (7.3)

Here for u, v ∈ L2(J ;H1)∫
J
a(u, v)dt := −

∫
J
〈∆u, v〉H̃−1×H1dt = (∇u,∇v)L2(J ;L2)∀v ∈ L2(J ;H1

0 ), (7.4)

where

‖ u ‖2L2(J ;H1):=‖ u ‖
2
L2(J ;L2) + ‖ ∇u ‖2L2(J ;L2) (7.5)

then with also referring to Corollary A.9 on p. 178

|
∫
J
a(u, v)dt| = |(∇u,∇v)L2(J ;L2)| ≤‖ ∇u ‖L2(J ;L2)‖ ∇v ‖L2(J ;L2)≤M ‖ u ‖H1‖ v ‖H1 , ∀u, v ∈ H1,

and with also using Poincare-Friedrichs inequality (see [24, 2.4 Abstract Variational Problem]), then

a(u, u) ≥ α ‖ u ‖2H1 , ∀u ∈ H1
0 ,

and that fit all properties given in Definition 5.3 on p. 104.

From the choices of subspaces and subsets of Hilbert spaces:

- With having Dirichlet boundary data in J × ΓD that is

G =

(
g1

g2

)
:=

(
g

g′

)
∈W tr = H1(J ;H1/2 ×H1/2), where

g1 = g and g2 = ∂tg1 = ∂tg on J × ΓD,

and γ̄ : W = H1(J ;H1(∆)×H1(∆))→W tr = H1(J ;H1/2 ×H1/2).

- Forcing data F =
(

0
f

)
∈ L2(J ;H1 × L2) with f ∈ H1(J ;L2).

- Compatible initial data U0 =
(
u1,0
u2,0

)
∈ H1

g ×H1
g′ ⊂ H1 ×H1 with u1,0 ∈ H1

g (∆).

The vector-valued function U =
(
u1
u2

)
∈ L2(J ;H1

g ×H1
g′) with ∂tU ∈ L2(J ;H1

g′ × L2) in Definition 5.8

which solves Problem 5.4.1 on p. 112, are all well defined.

Also, with the separable Hilbert space W = H1(J ;H1(∆)×H1(∆)), the solution of the auxiliary

(elliptic) problem (5.13) on p. 109 which is

Ĝ ∈WG =

{
U =

(
u1

u2

)
|U ∈W with γ̄U =

(
g

g′

)
, ∂tu1 ∈ L2(J ;H1

g′(∆)) and ∂tu2 ∈ L2(J ;H1(∆))

}
,
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is well defined since Theorem 5.1 on p. 109 holds true, because via the definition of the normed space

in H1(J ;H1/2 × H1/2) there exists a vector-valued function Ḡ ∈ H1(J ;H1(∆) × H1(∆)) such that

Ḡ|J×∂Ω = G and a vector-valued function G̃ ∈W0 =

{
U =

(
u1
u2

)
|U ∈W with γ̄U = 0

}
:

Ĝ = G̃+ Ḡ. (7.6)

So, firstly, by Lax-Milgram theorem and since W0 ⊂ W is a Hilbert space, there exists a unique

vector-valued function G̃ ∈W0 and secondly, from (7.6) also Ĝ does exist.

Also, Lemma 5.7 on p. 110 holds true for the normed-vector space W tr = H1(J ;H1/2 ×H1/2):

‖ Ĝ ‖H1(J ;H1(∆)×H1(∆))≤ 2 ‖ G ‖H1(J ;H1/2×H1/2) . (7.7)

Thus, Theorem 5.2 on p. 115 holds true, i.e. firstly, for Ū ∈ L2(J ;H1
0 × H1

0 ) which solves Prob-

lem 5.4.2 on p. 115 and since such formulation is a particular example of the general continuous one

in Problem 2.2.2 on p. 15 with given

F =

(
f1

f2

)
=

(
−∂tĝ1 + ĝ2

f − ∂tĝ2 + ∆ĝ1

)
∈ L2(J ;H1

0 × L2), initial data Ū0 = U0 − Ĝ0 ∈ H1
0 ×H1

0 ⊂ H1 ×H1,

(7.8)

where here we have −∂tĝ1 + ĝ2 ∈ H1
0 (∆) ⊂ H1

0 , and ū1,0 ∈ H1
0 (∆) ⊂ H1

0 which all are well defined since

all such Hilbert spaces fit all assumptions given in Part II as well as I. Secondly, with the splitting

technique i.e.

U = Ĝ+ Ū (7.9)

Thus U ∈ L2(H1
g ×H1

g′) does exist.

Theorem 5.3 on p. 116 holds also true, for given the following norm

‖ U ‖2L2(J ;E)≤
∫
J
‖ U ‖2E dt =

∫
J
{a(u1, u1)+ ‖ u2 ‖2L2}dt,∀U ∈ L2(J ;H1 ×H1), (7.10)

such that

‖ U ‖L2(J ;E)≤ 2(4
√
TC max(M, c2, 1) +

√
max(M, c2)) ‖ G ‖H1(J ;H1/2×H1/2) +

√
2TC

(
‖ f ‖L2(J ;L2)

+
√
TC ‖ U0 ‖E +

√
max(c2,M) ‖ G0 ‖H1/2×H1/2

)
,

(7.11)

and Theorem 5.4 on p. 119 that is

‖ UN− ‖E≤ C
(
4
√

max(M, c2, 1) ‖ G ‖H1(J ;H1/2×H1/2) +
√

2 ‖ f ‖L2(J ;L2) + ‖ U0 ‖2E
+
√

max(c2,M) ‖ G0 ‖H1/2×H1/2

)
+
√

max(M, c2) ‖ GN− ‖H1/2×H1/2 .

Finally, with letting

- VM×VM to be the conformal finite dimensional subspace of H1×H1 with M2 = dim(VM×VM ).

- V̄M × V̄M to be the conformal finite dimensional subset of H1
g ×H1

g′ with M̄2 = dim(V̄M × V̄M ).

- V̂M× V̂M to be the conformal finite dimensional subspace of H1
0×H1

0 with M̂2 = dim(V̂M× V̂M ),

where V̂M × V̂M ⊂ VM × VM with M̂2 < M2.
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- ṼM to be the conformal finite dimensional subset of H1
g (∆) with M̃ = dimṼM .

- VM ×VM is a conformal finite dimensional subspace of H1/2×H1/2 with M = dim(VM ×VM ).

Then the a priori error from the continuous to the fully-discrete solution in the maximum global

L2− norm over the whole time interval steps given in Lemma 6.14 on p. 155 with their initial data

U0 ∈ H1
g ×H1

g′ and Uh0 ∈ V̄M × V̄M , respectively would be

max
m
‖ U−UhDG ‖L2(Im;E)≤‖ U −ΠU ‖L2(J ;E) +

√
2 ‖ (Π̃U − U)0

− ‖E + max
m
‖ (Π̃U − U)m− ‖E

+
(
4
√

2CC2
N

T 2
+

2CN

T

(
max(

√
rm) + max(

‖ Y rm ‖22
√
Prmrm

2 min
p

Re λp
)
))
‖ U − Π̃U ‖L2(J ;E)

+

(√
23

2N
C2 + 2CCC3 + C max(

1
√
rn

)

)
max
m
‖ (U − Π̃U)m+1

− ‖E

+ (
√

23C2CC3 + 2
T

N
C2)

N−1∑
n=1

‖ (Π̃U − U)n− ‖E +
√

23C2(CCC3 +
T

N
) ‖ (Π̃U − U)N− ‖E

+
max(1,M)√

min(α, 1)
C( C
N

+ 1)
(
‖ ∆(Π1u1 − u1) ‖L2(J ;L2) + ‖ Π2u2 − u2 ‖L2(J ;H1)

)
+
√

23C2 max(2rm + 1) ‖ U0 − Uh0 ‖E ,
(7.12)

where Π is the interpolant in time related to the projection operator given in Definition 3.12 on p. 59.

Π̃ =
(Π̂1 0

0 Π̂2

)
is the spatial matrix projection operator given in Definition 6.6 on p. 146 which is now

chosen very carefully so that also the data at the boundary of the given domain are interpolated in

order to be as close as possible to the given continuous data. M <∞ and α ∈ R, the upper and lower

bounds of the form a( , ), respectively given in (7.4) on p. 160 and

C = max
n

(
T ‖ Y rn ‖22
2 min

p
Re λp

),C1 = Cmax
n

(
√
Prmrm), C2 = Cmax

n
((2rm + 1)), C3 = max

n
(

√
Prm√

min(rm)
),

are depending on the maximum value of the approximation order rn for n = 0, · · · , N − 1, the square

of the spectral norm (see (A.6) on p. 173) of the matrix Y rn ∈ C(rn+1)×(rn+1), and the eigenvalues λp
of the matrix AL given in (3.31) on p. 30 for p = 0, · · · , rn. Prn is a real constant which also depends

on the maximum approximation order rn and C is a generic constant (see [44, Lemma 1.16]).

Here we use the approximation results of the time Projection Πr from ( [44, Corollary 1.20]) and

assuming that we have analytic functions in time i.e. with

‖ U −ΠU ‖L2(J ;E) ≤
√

max(M, c2) ‖ U −ΠU ‖L2(J ;H1×H1), from Lemma 2.1 on p. 9, and

‖ Π2u2 − u2 ‖L2(J ;H1) ≤
√

2 ‖ ΠU − U ‖L2(J ;H1×H1),

(7.13)

where now the Sobolev spaces are used and c is the constant in the inclusion inequality

‖ u ‖L2≤ c ‖ u ‖H1 ,∀u ∈ H1, (7.14)
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letting r ≥ 1, and U ∈ H1(J ;Z × Z) with k = T
N , then

‖ U −ΠU ‖L2(J ;E) ≤
√

max(M, c2) ‖ U −ΠU ‖L2(J ;H1×H1)

≤ C
√

max(M, c2)
N−1∑
n=0

T

2
√
rnN

‖ U ‖H1(In;H1×H1)

≤ C
√

max(M, c2)
T

2N
max(

1
√
rn

) ‖ U ‖H1(J ;H1×H1)

= C
√

max(M, c2)
k

2
max(

1
√
rn

) ‖ U ‖H1(J ;H1×H1),

and

‖ Π2u2 − u2 ‖L2(J ;H1) ≤ C
√

2
T

2N
max(

1
√
rn

) ‖ U ‖H1(J ;H1×H1)= C
k√
2

max(
1
√
rn

) ‖ U ‖H1(J ;H1×H1),

(7.15)

also with letting ∆u1 ∈ H1(J ;L2), then

‖ ∆(Π1u1 − u1) ‖L2(J ;L2)=‖ (Π1∆u1 −∆u1) ‖L2(J ;L2) ≤ C
N−1∑
n=0

T

2
√
rnN

‖ ∆u1 ‖H1(In;L2)

≤ T

2N
max(

1
√
rn

) ‖ ∆u1 ‖H1(J ;L2) .

(7.16)

Now, for approximating the spatial projection in (7.12) on p. 162, comes the question of how to

choose the finite dimensional spatial spaces appropriately with the choice of bases function in space

and the mesh size in space to get the most optimal a priori estimate possible. This is not going to be

investigated any further here, but there are many varieties of conformal finite element methods and

techniques which leads to optimal or nearly optimal a priori error estimates.

7.2 The elastic wave equation

Here, the same domain Ω ∈ Rd, which is an elastic body, and time interval J = (0, T ) considered

in Section 7.1 are going to be used. The displacement vector u(t,x) where t ∈ [0, T ] and x ∈ Ω,

ρ = ρ(x) = c̄ > 0 is the density which is constant in this case, and the stress is determined by the

generalised Hook’s law:

σ(∇u) = c · ∇u, (7.17)

or, in components,

σij = cijmnum,n, (7.18)

for 1 ≤ i, j, m,n ≤ d, um,n = ∂um
∂xn

, where summation over repeated indices is implied. The elastic

coefficients cijmn = cijmn(x) are assumed to satisfy the following conditions:

cijmn = cmnij (major symmetry),

cijmnφijφmn > 0 ∀φij = φji 6= 0 (positive-definiteness),
(7.19)

see [25, 2. Classical linear elastodynamics]. This section shows that the elastic wave equation e.g.

ρ∂2
t u−∇ · σ(∇u) = f in J × Ω,
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with compatible initial data and boundary conditions

u = g on J × ΓD,

n · σ(∇u) = 0 on J × ΓN

u|t=0 = u0 in Ω,

∂tu|t=0 = ū0 in Ω,

(7.20)

does fit our abstract theory shown in Parts II with I. The same Soblolev spaces, subsets, and subspaces

chosen in Section 7.1 are also chosen here, except for the space which depend on the spatial operator.

Firstly, with (7.18) let the abstract spatial operator A given in Part II:

A = −Λ = −∇ · σ∇, such that a(u,v) := −〈Λu,v〉H̃−1×H1 =

∫
Ω
∇u · c · ∇v dΩ,∀v ∈ H1

0 . (7.21)

Secondly, to show that Λ ∈ L(H1, H̃−1) is continuous and elliptic for all u ∈ H1
0 ⊂ H1, v ∈ H1

0 , the

following is used:

Definition 7.1 [35, 1.12 Korn’s Inequalities] For defined strain tensor e:

eab =
1

2
(ua|b + ub|a), i.e. σ = c · e, see [35, 3.4 Definition]. (7.22)

There exists a constant c̃ > 0 such that

‖ e ‖2L2 + ‖ u ‖2L2≥ c̃ ‖ u ‖2H1 , (7.23)

for u ∈ H1.

Form Definition 7.1, the major symmetry and positive-definiteness of the elastic coefficient c in (7.19)

then

a(u,u) = −〈Λu,u〉H̃−1×H1 =

∫
Ω

e · c · e dΩ ≥ η ‖ e ‖2L2≥ c̃ ‖ u ‖2H1 , (7.24)

and the form a : H1 ×H1 → R, with real displacement vectors is a continuous symmetric form, see

[35, 1.4 Definition]. Thus, the operator Λ ∈ L(H1, H̃−1) is linear and continuous, then

DA = H1(Λ){u ∈ H1 : Λu ∈ L2}
(

see [4, (2− 4)]
)
, (7.25)

which is a subspace of H1, endowed with the norm

‖ u ‖2H1(Λ)=‖ u ‖
2
H1 + ‖ Λu ‖2L2 ,

is a Hilbert space as assumed in Assumption 5.1 on p. 101, see [4, 2-2. Formal Operator Λ Associated

with a(u, v)].

From here, the rest follows as given in Section 7.1 such that the a priori error from the continuous to
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the fully-discrete solution in the last time step T := tN given in Lemma 6.14 on p. 155 would be

max
m
‖ U−UhDG ‖L2(Im;E)≤‖ U −ΠU ‖L2(J ;E) +

√
2 ‖ (Π̃U − U)0

− ‖E + max
m
‖ (Π̃U − U)m− ‖E

+
(
4
√

2CC2
N

T 2
+

2CN

T

(
max(

√
rm) + max(

‖ Y rm ‖22
√
Prmrm

2 min
p

Re λp
)
))
‖ U − Π̃U ‖L2(J ;E)

+

(√
23

2N
C2 + 2CCC3 + C max(

1
√
rn

)

)
max
m
‖ (U − Π̃U)m+1

− ‖E

+ (
√

23C2CC3 + 2
T

N
C2)

N−1∑
n=1

‖ (Π̃U − U)n− ‖E +
√

23C2(CCC3 +
T

N
) ‖ (Π̃U − U)N− ‖E

+
max(1,M)√

min(α, 1)
C( C
N

+ 1)
(
‖ Λ(Π1u1 − u1) ‖L2(J ;L2) + ‖ Π2u2 − u2 ‖L2(J ;H1)

)
+
√

23C2 max(2rm + 1) ‖ U0 − Uh0 ‖E .

7.3 Conclusion

As a conclusion, the abstract linear wave equation with smooth enough data which give its solution

the high-regularity we need is rewritten as a first-order in time system that is

∂t

(
A 0

0 I

)(
u1

u2

)
+

(
0 −A
A 0

)(
u1

u2

)
=

(
A 0

0 I

)(
0

f

)
, (7.26)

and its equivalent variational formulation is approximated with using the High-order in time DGFEM

introduced by D Schötzau (PhD Thesis, 1999) to discrete in time and a conformal spatial discretisation

to discretise in space. Our approximation analysis is a generalisation of Claes Johnson (CMAME,

1993), since:

- All the stability and a priori error estimate theorems are shown in abstract Hilbert spaces with

continuous functions in time.

- It covers the scalar acoustic and elastic wave equation governed by Lamé-Navier equations of

linear elasticity theory.

- It also covers the approximation analysis of a variational formulation of the first-order system

in time with time-dependent linear constraints and showing its solvability, stability, and a priori

error estimates. The linear constraints model is in-homogeneous boundary condition.

- Using the two step discretisation, with firstly, discretising in time by applying the high-order in

time DGFEM approach introduced by D Schötzau [44] to get the semi-discrete scheme. Secondly,

using a conformal spatial discretisation to get the fully-discrete scheme. This approach is not

common since in literature usually the approximation is done first by discretising in space and

the resulting schemes are discretised in time with using implicit or explicit conformal or non-

conformal methods or having space-time approximation methods where it is done simultaneously

in time and space.

Our approximation analysis approach can be implemented to any variational formulation of first-order

system in time of linear hyperbolic (second-order in time) evolution problems with smooth enough

data which satisfy our local Inf-sup condition and not necessary having symmetric form.
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The initial data in our semi and fully-discrete formulations are weakly imposed in our both formu-

lations in part I and II. In part I, the discrete initial data were defined by a certain projection so that

we have Galerkin orthogonality and they don’t appear in the bounds of the a priori error estimate.

In part II and since they are considered to be compatible with the linear constraints e.g. compatible

with the given boundary data then the difference between the continuous and the discretised initial

data do contributes in the bounds of the a priori error estimate.

In the case of considering boundary data which are not continuous in time and allowing discontinu-

ity over the time nodes as mentioned in Remark 6.1 on p. 130, no stability estimate can be achieved

since the resulted left-sided limit of such data will have an exploding parameter 2N as N →∞.

In future, and as a recommendation it would be interesting to investigate the generalisation of

our analysis with the case of spatial operators which depend on time and also when considering

spatial discretisation with allowing jumps in the spatial space. Also, finding out weather our analysis

also covers problems with mixed boundary conditions, where it would probably have to have enough

regularity as what we have here to fulfil at a minimum our stability and a priori error estimates.
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Appendix A

Foundations

This part includes common and fundamental definition, theorems, and inequalities in linear functional

analysis.

A.1 Metric and Normed spaces

A metric is simply a way of measuring distances between points of the space. In general, a metric

space (M,d) is defined to be a set M together with a function d : M × M → R called a metric

satisfying four conditions:

(i) d(x, y) ≥ 0 for all x, y ∈M .

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x), for all x, y ∈M .

(iv) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈M .

See [43, 1.1 Basic Definitions and Theorems].

Definition A.1 (Norm) c.f. [41, Definition 2.1]

(a) Let X be a vector space over F (R or C). A norm on X is a function ‖ · ‖: X → R such that

for all x, y ∈ X and α ∈ F,

(i) ‖ x ‖≥ 0.

(ii) ‖ x ‖= 0 if and only if x = 0.

(iii) ‖ αx ‖= |α| · ‖ x ‖.

(iv) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖.

(b) A vector space X on which there is a norm is called a normed vector space or just a normed

space, where every normed space is a metric space, see [43, 1.1 Basic Definitions and Theorems].

(c) A subset vector M is a subspace if:

1. The zero vector is in M .

2. For α ∈ C and x ∈M , then αx ∈M .
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3. For x, y ∈M , then x+ y ∈M .

Definition A.2 [12, c.f. Definition 2.1.5 (Convergence in normed spaces)] A sequence {vn} in a

normed vector space X converges to v ∈ X if

lim
n→0
‖ v − vn ‖X= 0. (A.1)

Definition A.3 [10, c.f. Definition 1.2] Let X be a normed vector-space. {un} ⊂ X is called Cauchy

sequence, if there holds

∀ε > 0, ∃N ∈ N, ∀ n, m ≥ N : ‖ un − um ‖X≤ ε. (A.2)

Every convergent sequence in a normed vector space is a Cauchy sequence, but the converse is not

true, see [48, B.2 Banach and Hilbert Spaces].

Definition A.4 [41, c.f. Definition 1.4] A normed vector space (X, ‖ · ‖X) is a Banach space if it

is complete, i.e. if every Cauchy sequence {un} ⊂ X converges in X.

Definition A.5 [21, c.f. 4.1.2 Basic facts about Banach Spaces]

- Let (X, ‖ · ‖) be a Banach space. A subset X0 ⊂ X is dense, if for any x ∈ X there is a sequence

xi ∈ X0 with ‖ x− xi ‖→ 0.

- A Banach space is separable, if there is a countable dense subset.

Corollary A.1 A vector subspace M of a normed vector space X is itself a normed space under the

norm of X and so normed is called a subspace of X, see [1, Normed Spaces].

Definition A.6 (Product space) Let N ∈ N. Let X1, · · · , XN be vector spaces. Then a product

space is defined as

X := X1 × · · · ×XN ,

and u ∈ X means that

u = (u1, · · · , uN ),

for u1 ∈ X1, · · · , uN ∈ XN .

For all u, v ∈ X, α ∈ R the following operation are defined

u+ v := (u1 + v1, · · · , uN + vN ), and

α · u := (αu1, · · · , α uN ).

If X1, · · · , XN are normed vector spaces, the following is defined for u ∈ X = X1 × · · · ×XN

‖ u ‖2X :=‖ u1 ‖2X1
+ · · ·+ ‖ uN ‖2XN .

If X1, · · · , XN have inner products, the following is defined for u, v ∈ X = X1 × · · · ×XN

(u, v)X := (u1, v1)X1 + · · ·+ (uN , vN )XN .

Corollary A.2 Let X = X1 × · · · × XN be a product space with X1, · · · , XN being normed spaces.

Then (X, ‖ · ‖X) is a normed space.
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Proof:

For u ∈ X, α ∈ R

‖ α · u ‖2X :=
N∑
i=1

‖ α · ui ‖2Xi=
N∑
i=1

|α|2 ‖ ui ‖2Xi= |α|
2
N∑
i=1

‖ ui ‖2Xi= |α|
2 ‖ u ‖2X . (A.3)

For u, v ∈ X,

‖ u+ v ‖2X :=
N∑
i=1

‖ ui + vi ‖2Xi ≤
N∑
i=1

(‖ ui ‖Xi + ‖ vi ‖Xi)2

=

N∑
i=1

‖ ui ‖2Xi +

N∑
i=1

‖ vi ‖2Xi +2

N∑
i=1

‖ ui ‖Xi‖ vi ‖Xi

≤
N∑
i=1

‖ ui ‖2Xi +
N∑
i=1

‖ vi ‖2Xi +2

√√√√ N∑
i=1

‖ ui ‖2Xi

√√√√ N∑
i=1

‖ vi ‖2Xi

=
(√√√√ N∑

i=1

‖ vi ‖2Xi +

√√√√ N∑
i=1

‖ ui ‖2Xi
)2

= (‖ u ‖X + ‖ v ‖X)2.

(A.4)

For ‖ u ‖X= 0 then

0 =‖ u ‖2X=
N∑
i=1

‖ ui ‖2Xi . (A.5)

Consequently, for ‖ ui ‖2Xi= 0, i = 1, · · · , N and therefore ui = 0 for i = 1, · · · , N , i.e. u = 0.

Therefore ‖ · ‖X is a norm. �

Definition A.7 (Distance) [49, Def. 757] Let X be a normed vector-space. The distance of two

sets S1 S2 ⊂ X is defined by

dist(S1, S2) := inf{‖ u1 − u2 ‖X : u1 ∈ S1, u2 ∈ S2},

with the special case dist(S, φ) =∞ for S ⊂ X, where φ is the empty set.

For u ∈ X, S ⊂ X the following is defined

dist(u, S) := dist({u}, S).

For ε > 0 the ε-neighbourhood of S is defined by

Bε(S) := {v ∈ X : dist(v, S) < ε},

Bε(u) = Bε({u}) = {v ∈ X : dist(v, u) < ε} is called ε-ball around u.

Definition A.8 [29, c.f. Frobenius Norm, The Usual Norm] Let A be a square matrix. The Frobenius

norm is defined as

‖ A ‖F=

(∑
i,j

|aij |2
)1/2

.

The spectral norm of the matrix A is

‖ A ‖2= σ(A) :=
√
%((A)∗(A)), and %(A) := max{|λ| : λ is the eigenvalue of A}, (A.6)

and

||A||2 ≤ ||A||F ≤
√
r||A||2, where r = rank(A).
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A.2 Operators

Definition A.9 [41, Notation in 4. Linear Operator]

Let X and Y be normed linear spaces then L(X,Y ) denotes the set of all linear transformations from

X to Y .

Definition A.10 Let X and Y be two vector spaces. An operator A is a mapping A : X → Y , which

assigns to every u ∈ X an element v = Au ∈ Y.
X is called domain of A denoted as D(A) and Y is called the co-domain of A. The image or range of

A is defined as

A[X] = {v ∈ Y |v = Au for some u ∈ X},

and the kernel of A

ker(A) = {u ∈ X|Au = 0},

see [38, Linear Operators and Linear Functionals].

Definition A.11 [27, c.f. 3.2.6 Definition] Suppose A is an operator from X into Y . A is said to

be injective“one-to-one” iff for each g ∈ A[X] (range of A), there is exactly one f ∈ D(A) such that

Af = g. A is called surjective“onto” iff A[X] = Y , when saying that A maps D(A) onto Y . A is

known as bijective“one-to-one and onto” iff it is both injective and surjective.

Definition A.12 (Linear operator) Let X and Y be two vector spaces, then the operator A : X →
Y is called linear if there holds for all u, v ∈ X and α ∈ R

A(u+ v) = Au+Av,

A(αu) = αAu,

see [38, Linear Operators and Linear Functionals].

Corollary A.3 Let X, Y be two normed vector spaces. Let A ∈ L(X,Y ). Then ker(A) is closed.

Proof:

Let u ∈ clos(ker(A)), then there exists a sequence {un} ⊂ ker(A) such that un → u. Consequently,

0 = Aun → Au, i.e. Au = 0 and u ∈ ker(A). �

Definition A.13 (Continuity) Let X and Y be two normed vector-spaces. An operator A : X → Y

is called continuous in u ∈ X if there holds

∀ε > 0 ∃δ > 0, ∀ v ∈ Bδ(u) :‖ Av −Au ‖Y≤ ε,

see [38, Linear Operators and Linear Functionals].

Definition A.14 Let X and Y be two normed vector-spaces. Let A be an operator A : X → Y is a

continuous linear operator from X into Y . The norm of the operator A is defined by

‖ A ‖X,Y := sup
u∈X

‖ Au ‖Y
‖ u ‖X

,

see [38, Linear Operators and Linear Functionals].
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Theorem A.1 Let X,Y be normed vector spaces. Let γ ∈ L(X,Y ) be surjective. A norm on Y is

defined as

‖ u ‖γ := inf
U∈X
γU=u

‖ U ‖X , ∀u ∈ Y, (A.7)

Proof:

N1 : Absolute scalability

Let u ∈ Y and α ∈ R. With the linearity of γ it follows

‖ αu ‖γ= inf
U∈X
γU=αu

‖ U ‖X= inf
U∈X

Z= 1
α
U,γZ=u

‖ αZ ‖X= inf
Z∈X
γZ=u

|α| ‖ Z ‖X= |α| ‖ u ‖γ (A.8)

N2 : Triangle inequality

Let u1, u2 ∈ Y . Again with the linearity of γ it follows that

‖ u1 + u2 ‖γ= inf
U∈X

γU=u1+u2

‖ U ‖X= inf
U1,U2∈X,U=U1+U2
γU1=u1,γU2=u2

‖ U ‖X = inf
U1,U2∈X

γU1=u1,γU2=u2

‖ U1 + U2 ‖X

≤ inf
U1,U2∈X

γU1=u1,γU2=u2

‖ U1 ‖X + ‖ U2 ‖X

=‖ u1 ‖γ + ‖ u2 ‖γ
(A.9)

N3 : If ‖ u ‖γ= 0, then u = 0

By contradiction, let u 6= 0 and ‖ u ‖γ := inf
U∈X
γU=u

‖ U ‖X= 0. Therefore there exists a sequence

{Un}, n ∈ N with γ Un = u such that ‖ Un ‖X→ 0. Therefore with γ ∈ L(X,Y ) it follows

‖ u ‖Y =‖ γ Un ‖Y≤ C ‖ Un ‖X→ 0, i.e. ‖ u ‖Y = 0 and consequently u ≡ 0, which is a

contradiction,

and that complete the proof. �

Corollary A.4 Let X and Y be two normed vector spaces and A ∈ L(X,Y ). Let W be dense in X.

Then A[W ] is dense in A[X].

Proof:

Since W is dense in X i.e. for every u ∈ X there exists un ⊂W such that

‖ u− un ‖X→ 0.

Now, for every v ∈ A[X] there exists u ∈ X such that v = Au. Then Aun ∈ A[W ] and

‖ v −Aun ‖Y =‖ Au−Aun ‖Y≤‖ A ‖X,Y ‖ u− u2 ‖X→ 0.

Therefore A[W ] is dense in A[X]. �

Corollary A.5 Let X and Y be two normed vector space and A ∈ L(X,Y ). Let X be separable, then

A[X] is separable.

Proof:

X is separable, i.e. there exists a dense and countable subset W ⊂ X. Due to Corollary A.4 A[W ] is

dense in A[X]. W is countable, therefore A[W ] is also countable. �
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A.3 Inner product, Hilbert, and dual spaces

Definition A.15 [32, Definition 1.3.1] Let X be a vector space over F = R or C. An inner product

(·, ·) is a function from X ×X to F with the following properties:

1. For any v ∈ X, (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0.

2. For any u, v ∈ X:

(u, v) = (v, u), conjugate symmetry if u, v are complex,

(u, v) = (v, u), symmetry if u, v are real.
(A.10)

3. For any u, v, w ∈ X, any α, β ∈ F, (αu+ βv,w) = α(u,w) + β(v, w).

The space X together with the inner product (·, ·) is called an inner product space.

Lemma A.1 [41, Lemma 3.13] Let X be an inner product space and let x, y ∈ X. Then:

(a) |(x, y)|2 ≤ (x, x)(y, y), x, y ∈ X.

(b) The function ‖ · ‖: X → R defined by ‖ x ‖= (x, x)1/2, is a norm on X.

Also, the inequality in part (a) of Lemma A.1 can be rewritten as

|(x, y)| ≤‖ x ‖‖ y ‖, (A.11)

and it is also called the Cauchy-Schwarz inequality.

Definition A.16 [41, Definition 3.23] An inner product space which is complete with respect to the

metric associated with the norm induced by the inner product is called a Hilbert space.

Definition A.17 [41, Definition 4.28] Let X be a normed space over F. The space L(X,F) is called

the dual space of X and is denoted by X ′.

Definition A.18 [45, c.f. 3.92 Definition linear functional] Let X be a normed vector space. A linear

functional on X is a linear map from X to F = R or C. In other words, a linear functional is an

element of L(X,F).

Corollary A.6 [41, Corollary 4.29] If X is a normed vector-space, then X ′ is a Banach space.

Definition A.19 Let X and Y be separable Hilbert spaces over the field C. Let X be dense in Y

and a subspace of Y with the Gelfand triple such that X ⊂ Y ⊂ X ′. For linear and bounded operator

A ∈ L(X,X ′) we define the set

DA := {u ∈ X : Au ∈ Y }. (A.12)

Corollary A.7 The set DA given in Definition A.19, is a non-empty set and is a subspace of X.
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Proof:

Firstly, from the Gelfand triple and the linearity of the operator A ∈ L(X,X ′) then the zero element

is in DA.

Secondly, for any u1, u2 ∈ DA, and ∀α1, α2 ∈ C, with knowing that X and Y are Hilbert spaces and

A is linear,

u1 + u2 ∈ X : Au1 +Au2 = A(u1 + u2) ∈ Y =⇒ u1 + u2 ∈ DA, and ,

α1u1 + α2u2 ∈ X : α1Au1 + α2Au2 = A(α1u1 + α2u2) ∈ Y =⇒ α1u1 + α2u2 ∈ DA. �

Corollary A.8 For DA a subspace of X as shown in Corollary A.7. For all u, v ∈ DA, the following

inner product is defined

(u, v)DA := (u, v)X + (Au,Av)Y and ‖ u ‖DA= (u, u)
1/2
DA
,

then (DA, ‖ · ‖DA) as defined above is a pre-Hilbert space. There also holds

‖ u ‖2X≤‖ u ‖2DA , ∀u ∈ DA ⊂ X,

Proof:

First, is to show that (·, ·)DA is a inner product:

1. Bilinearity, for any u1, u2, v ∈ DA and α1 α2 ∈ C:

(α1u
1 + α2u

2, v)DA = ((α1u
1 + α2u

2), v)X + (A(α1U
1 + α2U

2), Av)Y

= α1(u1, v)X + α2(u2, v)X + α1(Au1, Av)Y + α2(Au2, Av)Y , (linearity of A)

= α1(u1, v)X + α1(Au1, Av)Y + α2(u2, v)X + α2(Au2, Av)Y ,

= α1(u1, v)DA + α2(u2, v)DA = (u1, α1v)DA + (u2, α2v)DA .

2. Symmetry:

By definition and the symmetries of its individual terms

(u, v)DA = (u, v)X + (Au,Av)Y = (v, u)X + (Av,Au)Y = (v, u)DA .

3. Positive definiteness:

For u 6= 0 and by definition

(u, u)DA = (u, u)X + (Au,Au)Y =‖ u ‖2X + ‖ Au ‖2Y> 0,

and this concludes that (u, u)DA = 0 if and only if u ≡ 0.

Second, from above they imply that ‖ u ‖DA= (u, u)
1/2
DA

is a norm in DA for all u ∈ DA and

(u, v)DA ≤‖ u ‖DA‖ v ‖DA .

Also, since X and Y are Hilbert spaces such that

‖ u ‖2X<∞, ∀u ∈ X and ‖ Au ‖2Y<∞, Au ∈ Y then

‖ u ‖2DA=‖ u ‖2X + ‖ Au ‖2Y<∞ =⇒‖ u ‖DA is defined on the whole DA.

Finally, since ‖ Au ‖2Y≥ 0 for all u ∈ DA, then

‖ u ‖2X≤‖ u ‖2X + ‖ Au ‖2Y =‖ u ‖2DA=⇒‖ u ‖X≤‖ u ‖DA . �
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Theorem A.2 [19, Theorem 17.2] A closed subspace of a separable Hilbert space is separable.

Theorem A.3 (Lax-Milgram)[42, c.f. Theorem 4.20.] Let Z be a Hilbert space. Let a : Z × Z → C
be a Hermitian form which satisfies the following:

|a(u, v)| ≤M ‖ u ‖Z‖ v ‖Z , ∀ u, v ∈ Z, continuity, (A.13)

and

a(u, u) ≥ α ‖ u ‖2Z , ∀ u ∈ Z, ellipticity, (A.14)

for 0 < M,α ∈ R. Then with L ∈ Z ′ there is a unique u ∈ Z:

a(u, v) = L(v), ∀v ∈ Z. (A.15)

Corollary A.9 Let A : Z → Z ′; A ∈ L(Z,Z ′). Let a( , ) be the form which satisfies the properties

given in Theorem A.3:

〈Au, v〉Z′×Z := a(u, v), ∀u, v ∈ Z, (A.16)

then

‖ A ‖Z,Z′ ≤M and ‖ A−1 ‖Z′,Z≤
1

α
. (A.17)

Proof of (A.17):

Firstly, with defining

‖ A ‖Z,Z′ := sup
u∈Z

‖ Au ‖Z′
‖ u ‖Z

,

and using the properties in (A.13) and (A.14) given in Theorem A.3:

〈Au, v〉Z′×Z := a(u, v) ≤M ‖ u ‖Z‖ v ‖Z and

〈Au, v〉Z′×Z := a(u, u) ≥ α ‖ u ‖2Z ,
(A.18)

then

‖ A ‖Z,Z′ := sup
u∈Z

‖ Au ‖Z′
‖ u ‖Z

= sup
u∈Z

sup
v∈Z

〈Au, v〉Z′×Z
‖ v ‖Z
‖ u ‖Z

≤ sup
u∈Z

sup
v∈Z

M ‖ u ‖Z · ‖ v ‖Z
‖ v ‖Z
‖ u ‖Z

≤ sup
u∈Z

M ‖ u ‖Z
‖ u ‖Z

= M.

Secondly, from (A.18) and Theorem A.3, there exists A−1 6= 0: such that with u = A−1(Au) :=

A−1(l) ∈ Z, and with letting l ∈ Z ′, then

‖ A−1 ‖Z′,Z := sup
l∈Z′

‖ A−1l ‖Z
‖ l ‖Z′

= sup
Au∈Z′

‖ A−1Au ‖Z
‖ Au ‖Z′

= sup
u∈Z

‖ u ‖Z
‖ Au ‖Z′

,

⇐⇒ 1

‖ A−1 ‖Z′,Z
= inf

u∈Z

‖ Au ‖Z′
‖ u ‖Z

= inf
u∈Z

sup
v∈Z

〈Au, v〉Z′×Z
‖ u ‖Z‖ v ‖Z

≥ inf
u∈Z

〈Au, u〉Z′×Z
‖ u ‖Z‖ u ‖Z

≥ inf
u∈Z

α ‖ u ‖2Z
‖ u ‖Z‖ u ‖Z

= α,

and that implies that

‖ A−1 ‖Z′,Z≤
1

α
.

�
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Theorem A.4 [28, c.f. Theorem 2.15 (Babuška)] Assume that a Hermitian form b : V1× V2 → C on

Hilbert spaces V1, V2 satisfies

1. Continuity:

∃M > 0 : |b(u, v)| ≤M ‖ u ‖V1‖ v ‖V2 , ∀u ∈ V1, v ∈ V2. (A.19)

2. Inf-sup Condition:

∃β > 0 : β ≤ sup
06=v∈V2

|b(u, v)|
‖ u ‖V1‖ v ‖V2

, ∀ 0 6= u ∈ V1. (A.20)

3. “Transposed” Inf-sup Condition:

sup
06=u∈V1

|b(u, v)| > 0, ∀ 0 6= v ∈ V2,

and let f : V2 → C be bounded functional defined on V2. Then there exists a unique element u0 ∈ V1

such that

b(u0, v) = f(v), ∀v ∈ V2.

Corollary A.10 [17, c.f. Corollary 3.1.6] Let X be a normed space and u ∈ X. If 〈l, u〉X′×X = 0 for

all l ∈ X ′, then there holds u = 0.

Theorem A.5 [41, c.f. Theorem 1.52] A infinite-dimensional Hilbert space H is separable if and only

if it has an orthonormal basis.

Definition A.20 [16, c.f. D.2. Hilbert spaces] Let H be a Hilbert space:

(i) Two elements u, v ∈ H are orthogonal if (u, v) = 0.

(ii) A countable basis {wk}∞k=1 ⊂ H is called orthonormal if{
(wk, wl) = 0, ( at k 6= l)

‖ wk ‖= 1.

If u ∈ H and {wk}∞k=1 ⊂ H is an orthonormal basis, we can write

u =
∞∑
k=1

(u,wk)wk.

In addition

‖ u ‖2=

∞∑
k=1

(u,wk)
2.
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A.4 Bochner spaces; Spaces involving time

Definition A.21 (Bochner integral) [36, Definition 1.2.9] Let −∞ < a < b <∞ and let (X, ‖ · ‖X)

be a real Banach space.

a) A function s : [a, b] → X is called simple if there are ϕ1, · · · , ϕN ∈ X and Lebesgue-measurable

disjoint sets M1, · · · ,MN ⊂ [a, b] with |Mi| <∞, i = 1, · · · , N , such that

s(t) =

N∑
i=1

XMi(t)ϕi t ∈ [a, b], (A.21)

XMi denotes the indicator function of the set Mi ⊂ [a, b].

b) For a simple function s(t) =

N∑
i=1

XMi(t)ϕi the following is defined

∫ b

a
s(t) dt :=

N∑
i=1

|Mi|ϕi ∈ X. (A.22)

c) A function f : [a, b] → X is Bochner-measurable if there exists a sequence of simple functions

{sk}k∈N such that

lim
k→∞

sk(t) = f(t) for almost all t ∈ [a, b]. (A.23)

d) Beyond that, a Bochner-measurable function f : [a, b]→ X is Bochner-summable if

lim
k→∞

∫ b

a
‖ sk(t)− f(t) ‖X dt = 0. (A.24)

e) For a Bochner-summable function f : [a, b]→ X the following is defined∫ b

a
f(t) dt := lim

k→∞

∫ b

a
sk(t) dt. (A.25)

Theorem A.6 [36, Theorem 1.2.10] A Bochner-measurable function f : [a, b] → X is Bochner-

summable if and only if t 7→‖ f(t) ‖X is Lebesgue-summable. In this case

‖
∫ b

a
f(t) dt ‖X≤

∫ b

a
‖ f(t) dt ‖X dt. (A.26)

Definition A.22 [36, Definition 1.2.11] For −∞ < a < b < ∞, p ∈ [1,∞] and a Banach space

(X, ‖ · ‖X) the following is defined:

a) The Lebesgue space

Lp(a, b;X) := {f : [a, b]→ X : f is Bochner-measurable and ‖ f ‖Lp(a,b;X)<∞}, (A.27)

where the corresponding norm is defined as

‖ f ‖Lp(a,b;X):=

[∫ b

a
‖ f(t) ‖pX dt

]1/p

<∞, for p <∞. (A.28)
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The spaces Lp(a, b;X) equipped with its respective norm ‖ · ‖Lp(a,b;X) is a Banach space and

Hölder’s inequality (to be mentioned in the proceeding sections) holds in the Lebesgue space

Lp(a, b;X).

Definition A.23 For k ≥ 1. The following Bochner space is defined

W k−1,2(J ;Z) := {u ∈ L2(J ;Z),
dk−1

dtk−1
u ∈ L2(J ;Z)}, (A.29)

see [52, c.f. 23.6. The Sobolev Space W 1
p (0, T ;V,H)].

Definition A.24 (Weak derivative)[36, Definition 1.2.13] Let (X, ‖ · ‖X) be a real Banach space and

suppose f, g ∈ L2(a, b;X). Then, for g as the weak derivative of f , provided∫ b

a
f(t)ϕ′(t) dt = −

∫ b

a
g(t)ϕ(t) dt, for all ϕ ∈ C∞0 (a, b), (A.30)

where where C∞0 (a, b), denotes the C∞0 -functions with compact support in (a, b). For the weak deriv-

ative f ′ := g

Theorem A.7 [26, Theorem 6.41] Let Z ↪→ H ↪→ Z ′ be a Hilbert triple. If u ∈ L2(J ;Z) and

∂tu ∈ L2(J ;Z ′), then u ∈ C([0, T ];H). Moreover:

(1) For any v ∈ Z, the real-valued function t 7→ (u(t), v)H is weakly differentiable in J and

d

dt
(u(t), v)H = 〈∂tu, v〉Z′×Z .

(2) The real-valued function t 7→‖ u(t) ‖2H is weakly differentiable in J , and

d

dt
‖ u ‖2H= 2〈∂tu, u〉Z′×Z .

A.5 Important inequalities

Lemma A.2 (Young’s inequality), Peter-Paul inequality[15, Lemma 0.5 ] If s, q ∈ (1,+∞), 1
s+ 1

q = 1

and a, b ≥ 0, then

ab ≤ as

s
+
bq

q
.

In particular, if s = q = 2, and λ = 1, then

ab ≤ 1

2
a2 +

1

2
b2.

Lemma A.3 For any a, b ≥ 0, the following holds

a+ b ≥
√
a2 + b2, and a+ b ≤

√
2
√
a2 + b2,

(see [1, 2.2 Lemma] with p = 2).

181



Theorem A.8 [16, Gronwall’s inequality, differential form] Let u(·), be a non-negative, absolutely

continuous function on [0, T ], which satisfies

u′(t) ≤ q(t)u(t) + h(t),

q(t), and h(t) are non-negative, summable functions on [0, T ].

Then

u(t) ≤ e
∫ t
0 q(s) ds

[
u(0) +

∫ t

0
h(s) ds

]
, for all 0 ≤ t ≤ T.
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