
SYMMETRIC AND ASYMMETRIC MULTIPLE CLUSTERS
IN A REACTION-DIFFUSION SYSTEM

JUNCHENG WEI AND MATTHIAS WINTER

Abstract. We consider the following Gierer-Meinhardt system in R:⎧⎨
⎩

ε2A
′′ − A + A2

H = 0, x ∈ (−1, 1),
DH

′′ − H + A2 = 0, x ∈ (−1, 1),
A

′
(−1) = A

′
(1) = H

′
(−1) = H

′
(1) = 0,

where ε > 0 is a small parameter and D > 0 is a constant independent of
ε.

A cluster is a combination of several spikes concentrating at the same
point. In this paper, we rigorously show the existence of symmetric and
asymmetric multiple clusters. This result is new for systems and seems
not to occur for single equations. We reduce the problem to the compu-
tation of two matrices which depend on the coefficient D as well as the
number of different clusters and the number of spikes within each cluster.

1. Introduction

Since the work of Turing [21] in 1952, many models have been derived

and investigated to explore the so-called Turing instability [21]. One of the

most famous models in biological pattern formation is the Gierer-Meinhardt

system [10], [15], [16], which in one dimension can be stated as follows:⎧⎪⎨
⎪⎩

At = ε2∆A − A + Ap

Hq , x ∈ (−1, 1), t > 0,
τHt = D∆H − H + Ar

Hs , x ∈ (−1, 1), t > 0,
A

′
(±, t) = H

′
(±, t) = 0,

(1.1)

where (p, q, r, s) satisfy

1 <
qr

(s + 1)(p − 1)
< +∞, 1 < p < +∞,

and where ε << 1, 0 < D < ∞, τ ≥ 0,

D and τ are constants which are independent of ε.

1991 Mathematics Subject Classification. Primary 92C15, 35K57; Secondary 35J60.
Key words and phrases. Multiple clusters, Singular perturbation, Turing instability.

1



2 JUNCHENG WEI AND MATTHIAS WINTER

In this paper, we consider the steady-state problem of (1.1) and further

assume that (p, q, r, s) = (2, 1, 2, 0). Namely we consider the following elliptic

system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2A
′′ − A + A2

H
= 0, x ∈ (−1, 1),

DH
′′ − H + A2 = 0, x ∈ (−1, 1),

A(x) > 0, H(x) > 0, x ∈ (−1, 1),
A

′
(−1) = A

′
(1) = H

′
(−1) = H

′
(1) = 0.

(1.2)

We remark that our results for (1.2) can be easily generalized to more

general (p, q, r, s) cases. The main difficulty in studying (1.2) is that there

is no variational structure. On the other hand, (1.2) represents a typical

activator-inhibitor in biological pattern formation.

Problem (1.2) has been studied by numerous authors. Let us mention

several important existence results on multiple spike (also called multiple

peak) solutions which are related to our present paper.

1) (Existence of symmetric N−peaked steady-state Solutions)

I. Takagi [20] first established the existence of N -peaked steady-state so-

lutions with peaks centered at

xj = −1 +
2j − 1

N
, j = 1, . . . , N,

for ε << 1, ε√
D

<< 1.

Such solutions are symmetric and they are obtained from a single spike

by reflection. We call them symmetric N−peaked solutions since all the

peaks have the same heights. Takagi’s proof is based on symmetry and the

implicit function theorem.

2) (Existence of asymmetric N−peaked solutions)

By using matched asymptotic analysis, M. Ward and the first author in

[22] showed by asymptotic expansions that for D < DN , where DN is given

explicitly, problem (1.2) has asymmetric N−peaked steady-state solutions.

Such asymmetric solutions are generated by two types of peaks – called type

A and type B, respectively. Type A and type B peaks have different heights.
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They can be arranged in any given order

ABAABBB . . .ABBBA . . .B

to form an N−peaked solution. The existence of such solutions is surprising.

It shows that the solution structure of (1.2) is much more complicated than

one would first expect. The stability of such asymmetric N−peaked solutions

is also studied in [22], through a formal approach. The stability issue of

symmetric and asymmetric N -peaked solutions is addressed in [13] and [22].

We remark that asymmetric patterns can also be obtained for the Gierer-

Meinhardt system on the real line by a dynamical systems approach, see

[7].

In ([26]), we gave a rigorous and unified theoretic foundation for the ex-

istence and stability of general N−peaked (symmetric or asymmetric) solu-

tions. In particular, the results of [13] and [22] were rigorously established.

Moreover, it was shown that if the N peaks are separated, then they are gen-

erated by peaks of type A and type B, respectively. This implies that there

are only two kinds of N -peaked patterns: the symmetric N−peaked solutions

constructed in [20] and the asymmetric N−peaked patterns constructed in

[22].

3) (Existence of a single cluster on the real line)

Recently, Doelman, Kaper and H. van der Ploeg, [7], and independently

Chen, del Pino and M. Kowalczyk [2] considered the Gierer-Meinhardt sys-

tem on the real line. They constructed multiple-spike solutions concentrat-

ing at a single point on the real line. It turns out that the distance between

neighbouring spikes is of the order O(ε log 1
ε
). We call such solution a single

cluster. In other words, a cluster is a collection of multiple spikes concen-

trating at a single point.

Similar results in R2 were obtained in [3]. There the geometry of the spike

locations can be very complex.

The existence of a single cluster or multiple clusters in a higher dimensional

bounded domain has been proved in [12], [4] for a singularly perturbed Neu-

mann problem. It is proved that given nondegenerate local minimum points
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of the mean curvature of the boundary there exist (multiple) clusters concen-

trating at these point(s). In [14] for the nonlinear Schrodinger equation an

analogous result is proved for (nondegenerate local) maximum points of the

potential. To obtain multiple clusters for single equations, we must either

have nontrivial geometry of the domain or nontrivial critical points of the

potential.

The results in this paper imply that a reaction diffusion system can gen-

erate multiple clusters even when the domain is trivial and in the absence

of a potential. Moreover, we will show that there are both symmetric and

asymmetric multiple clusters. The locations of these clusters are deter-

mined by three ingredients: the number of clusters, the number of spikes

within each cluster, and the order of clusters.

Before we state our main results in Section 2, we introduce some notation.

Let L2(−1, 1) and H2(−1, 1) be the usual Lebesgue and Sobolev spaces.

With the variable w we denote the unique solution of the following problem:⎧⎪⎨
⎪⎩

w
′′ − w + w2 = 0, y ∈ R,

w > 0, w(0) = maxy∈R w(y),
w(y) → 0 as |y| → ∞.

(1.3)

In fact, it is easy to see that w(y) can be written explicitly:

w(y) =
3

2
sech2

(
y

2

)
. (1.4)

Let

I := (−1, 1). (1.5)

For z ∈ (−1, 1), let GD(x, z) be the Green function given by{
DG

′′
D(x, z) − GD(x, z) + δz(x) = 0, x ∈ (−1, 1),

G
′
D(−1, z) = G

′
D(1, z) = 0.

(1.6)

We can calculate explicitly

GD(x, z) =

{ θ
sinh(2θ)

cosh[θ(1 + x)] cosh[θ(1 − z)], −1 < x < z,
θ

sinh(2θ)
cosh[θ(1 − x)] cosh[θ(1 + z)], z < x < 1,

(1.7)

where

θ = D−1/2. (1.8)
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We decompose GD(x, z) into a singular part and a regular part:

GD(x, z) = KD(|x − z|) − HD(x, z), (1.9)

where

KD(|x − z|) =
1

2
√

D
e
− 1√

D
|x−z|

(1.10)

is the singular part of GD(x, z) and HD is the regular part HD of GD. Note

that HD is C∞ in both x and z. Moreover,

HD(x, x) =
1

2
√

D
− θ

sinh(2θ)
cosh[θ(1 + x)] cosh[θ(1 − x)].

(1.11)

We use the notation e.s.t to denote an exponentially small term of order

the O(e−d/ε) for some d > 0 in the corresponding norm. By C we denote a

generic constant which may change from line to line.

This paper has the following structure: In Section 2 we introduce our three

main hypotheses, (H1) – (H3) and state our two main results, Theorem 2.1

and Theorem 2.2. In Section 3, we provide some preliminary results. In

Sections 4–6, we construct suitable approximate solutions and give some

calulcations for them, namely about the space dependence of the heights

(Section 5) and the error terms (Section 6). In Sections 7–9, we prove the

existence of multiple-clustered solutions: In Section 7, we use the Liapunov-

Schmidt method to reduce the existence of solutions to (1.2) to a finite

dimensional problem; in Section 8 we solve this finite-dimensional problem

and complete the proof of Theorem 2.2. In Section 9, we prove Theorem 2.1.

Acknowledgements: The work of JW is supported by an Earmarked Grant

of RGC of Hong Kong. MW thanks the Department of Mathematics at

CUHK for their kind hospitality. We thank Professor M. J. Ward for valuable

discussions.



6 JUNCHENG WEI AND MATTHIAS WINTER

2. Main Results: Existence of Symmetric and Asymmetric

Multiple Clusters

Let −1 < x0
1 < · · · < x0

j < · · · < x0
N < 1 be N points in (−1, 1) and let w

be the unique solution of (1.3).

We introduce several matrices for later use: For x = (x1, . . . , xN) ∈
(−1, 1)N , let

GD(x) = (GD(xi, xj)). (2.1)

Recall that

GD(xi, xj) = KD(|xi − xj|) − HD(xi, xj).

Let us denote ∂
∂xi

as ∇xi
. When i �= j, we can define ∇xi

G(xi, xj) in the

classical way. When i = j, KD(|xi − xj|) = KD(0) = 1
2
√

D
is a constant and

we define

∇xi
GD(xi, xi) := −1

2

d

dx

∣∣∣∣∣
x=xi

HD(x, x).

Similarly, we define

∇xi
∇xj

GD(xi, xj) =

=

{
−1

2
d
dx
|x=xi

∂
∂x
|x=xi

HD(x, x), if i = j,
∇xi

∇xj
GD(xi, xj), if i �= j.

(2.2)

Now the derivatives of the matrix GD are defined as follows:

∇GD(x) = (∇xi
GD(xi, xj)), (2.3)

∇2GD(x) = (∇xi
∇xj

GD(xi, xj)). (2.4)

By definition, it is easy to compute that

GD =
θ

sinh(2θ)
(aij), ∇GD =

θ2

sinh(2θ)
(bij), ∇2GD =

θ3

sinh(2θ)
(cij),

where

aij =

⎧⎨
⎩

cosh(θ(1 + xi)) cosh(θ(1 − xj)), if i ≤ j;

cosh(θ(1 − xi)) cosh(θ(1 + xj)), if i > j,
(2.5)
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bij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinh(θ(1 + xi)) cosh(θ(1 − xj)), if i < j;

1
2
sinh(2θxi), if i = j;

− sinh(θ(1 − xi)) cosh(θ(1 + xj)), if i > j,

(2.6)

and

cij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− sinh(θ(1 + xi)) sinh(θ(1 − xj)), if i < j;

cosh(2θxi), if i = j;

− sinh(θ(1 − xi)) sinh(θ(1 + xj)), if i > j.

(2.7)

We now have our first assumption:

(H1) There exists a solution (ξ̂0
1 , . . . , ξ̂0

N) of the following equation

N∑
j=1

GD(x0
m, x0

j)nj(ξ̂
0
j )

2 = ξ̂0
m, m = 1, . . . , N. (2.8)

Next we introduce the following matrix

bij = GD(x0
i , x

0
j)nj(ξ̂

0
j ), B = (bij). (2.9)

Our second assumption is the following:

(H2) It holds that

1

2
�∈ σ(B), (2.10)

where σ(B) is the set of eigenvalues of B.

Remark 2.1: Since the matrix B is of the form GDD, where GD is symmetric

and D is a diagonal matrix, it is easy to see that the eigenvalues of B are

real.

By the assumption (H2) and the implicit function theorem, for x =

(x1, . . . , xN) near x0 = (x0
1, . . . , x0

N), there exists a unique solution ξ̂(x) =

(ξ̂1(x), . . . , ξ̂N(x)) for the following equation

N∑
j=1

GD(xi, xj)nj ξ̂j

2
= ξ̂i, i = 1, . . . , N. (2.11)

Set

H(x) = (ξ̂i(x)δij), (2.12)

N = (niδij). (2.13)
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We define the following vector field:

F (x) = (F1(x), . . . , FN(x)),

where

Fi(x) =
N∑

l=1

∇xi
GD(xi, xl)nlξ̂

2
l (2.14)

= −∇xi
HD(xi, xi)niξ̂

2
i +

∑
l �=i

∇xi
GD(xi, xl)nlξ̂

2
l , i = 1, . . . , N.

Set

M(x) = (∇xj
Fi(x)). (2.15)

Our final assumption concerns the vector field F (x).

(H3) We assume that at x0 = (x0
1, . . . , x0

N):

F (x0) = 0, (2.16)

det (M(x0)) �= 0. (2.17)

Let us now calculate M(x0): Therefore we first compute the derivatives

of ξ̂. It is easy to see that ξ̂(x) is C1 in x and from (2.8) we can calculate:

∇xj
ξ̂i = 2

N∑
l=1

GD(xi, xl)nlξ̂l∇xj
ξ̂l +

N∑
l=1

∇xj
(GD(xi, xl))nlξ̂

2
l .

For i �= j, we have

∇xj
ξ̂i = 2

N∑
l=1

GD(xi, xl)nlξ̂l∇xj
ξ̂l + ∇xj

(GD(xi, xj))nj ξ̂
2
j .

For i = j, we have

∇xi
ξ̂i = 2

N∑
l=1

GD(xi, xl)nlξ̂l∇xi
ξ̂l +

N∑
l=1

∂

∂xi

(GD(xi, xl))nlξ̂
2
l

= 2
N∑

l=1

GD(xi, xl)nlξ̂l∇xi
ξ̂l + ∇xi

(GD(xi, xi))niξ̂
2
i +

N∑
l=i

∇xi
(GD(xi, xl))nlξ̂

2
l ,

since 1
2

d
dxi

GD(xi, xi) = ∇xi
GD(xi, xi).

Note that

(∇xj
GD(xi, xj)) = (∇GD)T .

Therefore, if we denote

∇ξ = (∇xj
ξ̂i), (2.18)
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then we have

∇ξ(x) = (id − 2GDNH)−1[(∇GD)TNH2 + (∇GD)ENH2],
(2.19)

where id is the identity matrix and E is the matrix whose elements are all

equal to 1.

We can compute M(x0) by using (2.19) and definition (2.2):

M(x0) = ∇2GDNH2 (2.20)

+2∇GDNH(id − 2GDNH)−1[(∇GD)TNH2 + (∇GD)ENH2].

Our first result is about the existence of symmetric multiple cluster so-

lution which generalizes the results of I. Takagi [20].

Theorem 2.1. (Existence of symmetric multiple clusters)

Let N and n be two positive integers and

x0
j = −1 +

2j − 1

N
, j = 1, . . . , N.

Then, for ε << 1, problem (1.2) has a solution with N equidistant clusters

which concentrate at x0
1, . . . , x0

N and each of which consists of n spikes. More

precisely, it can be said that

Aε(x) ∼
N∑

j=1

n∑
k=1

ξεξ̂
0w

(
x − xε

j,k

ε

)
, (2.21)

Hε(x
ε
j,k) ∼ ξεξ̂

0, j = 1, . . . , N, k = 1, . . . , n, (2.22)

xε
j,k → x0

j , j = 1, . . . , N, k = 1, . . . , n, (2.23)

where

ξε :=
(
ε
∫

R
w2(z) dz

)−1

. (2.24)

Furthermore,

xε
j,s − xε

j,s−1 = ε log
1

ε
− ε log[

ξ̂0

2D
(s − 1)(n + 1 − s)] + o(ε),

(2.25)
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j = 1, . . . , N, s = 2, . . . , n, and

ξ̂0 =
2tanh θ

N

nθ
. (2.26)

Remark 2.2: If n = 1, this recovers the results of [20]. Theorem 2.1 also

generalizes the results of [2] and [7] to a bounded interval.

Our next result concerns the existence of asymmetric multiple clusters.

Theorem 2.2. (Existence of asymmetric multiple clusters)

Let N,n1, . . . , nN be N + 1 positive integers.

Assume that for (x0
1, . . . , x0

N) ∈ (−1, 1)N with x0
1 < x0

1 < . . . < x0
N as-

sumptions (H1), (H2) and (H3) are satisfied. Let (ξ0
1 , . . . , ξ0

N) be given by

(H1). Then for ε << 1, problem (1.2) has a solution with N clusters which

concentrate at xε
1, . . . , xε

N , or more precisely:

Aε(x) ∼
N∑

j=1

nj∑
k=1

ξεξ̂
0
j w

(
x − xε

j,k

ε

)
, (2.27)

Hε(x
ε
j,k) ∼ ξεξ̂

0
j , j = 1, . . . , N, k = 1, . . . , nj, (2.28)

xε
j,k → x0

j , j = 1, . . . , N, k = 1, . . . , nj, (2.29)

xε
j,s − xε

j,s−1 = ε log
1

ε
− ε log[

ξ̂0
j

2D
(s − 1)(nj + 1 − s)] + o(ε),

(2.30)

j = 1, . . . , N, s = 2, . . . , nj.

Remark 2.3: Equation (2.30) expresses the fact that we have two different

scalings in the spike locations: the distance between the centers of clusters

which is of the order O(1) and the distance between spikes within each cluster

which is of the order O(ε log 1
ε
).

Let us now comment on how to check assumptions (H1)–(H3).
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It is difficult to check (H1) directly. Instead, we note that G−1
D is a tridi-

agonal matrix. (See [13] and [22].) More precisely, we calculate

G−1
D = (gij) = 2

√
D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 β1 0
. . . . . . 0

β1 γ2 β2
. . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . βj−1 γj βj 0

. . . . . . . . . . . . . . . . . .

0
. . . . . . 0 βN−1 γN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

γ1 = coth(θ1 + θ2) + tanh(θ1),

γj = coth(θj−1 + θj) + coth(θj + θj+1), j = 2, . . . , N − 1,

γN = coth(θN−1 + θN) + tanh(θN),

βj = −csch(θj + θj+1), j = 1, . . . , N − 1

and θj is given by

θj = θ(x0
j − x0

j−1). (2.31)

(Recall that θ was defined in (1.8).)

Note that

gij = 2
√

D(βj−1δi(j−1) + γjδij + βjδi(j+1)). (2.32)

Verifying (2.8) amounts to checking the following identity

N∑
j=1

gij ξ̂
0
j = ni(ξ̂

0
i )

2, i = 1, . . . , N, (2.33)

which is an easy exercise.

Condition (2.16) prescribes the locations x0 = (x0
1, . . . , x0

N) of the clusters.

Condition (2.17) is a nondegeneracy condition. Combining (2.8) and (2.16),

we see that at x0 we must solve the following ODE:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dh
′′
(x) − h(x) +

∑N
j=1 nj(ξ

0
j )

2δx0
j

= 0, −1 < x < 1,

h(x0
j) = ξ0

j , j = 1, . . . , N,

h
′
(x0

j+) − h
′
(x0

j−) = 0, j = 1, . . . , N,

h
′
(−1) = h

′
(1) = 0.

(2.34)
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The derivation of (2.34) is similar to Section 7 of [26]. From (2.34), we

obtain the following: Given a set of positive integers (n1, . . . , nN), we can

compute the locations of x0 = (x0
1, . . . , x0

N) explicitly. Then we can compute

the matrices B and M.

To verify (H2) and (H3), we need to know the eigenvalues of B and M. In

the same way as for the matrix GD, one can show that B−1 is a tridiagonal

matrix. Even with this piece of information, it is almost impossible to obtain

an explicit formula for the eigenvalues. Numerical software for solving eigen-

value problems of large matrices is indispensable. Numerical computations

do suggest that assumptions (H2) and (H3) are always satisfied for D small.

The main idea in proving Theorem 2.2 consists of the following steps: We

first rewrite (1.2) as a single nonlocal equation:

Sε[A] = ε2A
′′ − A +

A2

T [A]
= 0,

where H = T [A] satisfies

DH
′′ − H + A2 = 0, H

′
(−1) = H

′
(1) = 0.

Step 1: We choose good approximate solutions.

A ∼ wε,x =
N∑

j=1

nj∑
k=1

ξεξj,kw
(

x − xj,k

ε

)
, j = 1, . . . , N, k = 1, . . . , nN ,

where ξj,k and xj,k will have to be chosen carefully. More precisely, we first

choose xj,k such that

x1,1 < x1,2 < . . . < x1,n1 < x2,1 < . . . < x2,n2 < . . . < xN,1 < . . . < xN,nN
,

xj,l−xj,l−1 ∼ ε log
1

ε
−ε log[

ξ̂0
j

2D
(l−1)(nj+1−l)], j = 1, 2, . . . , n, l = 2, . . . , nj−1,

∣∣∣∣∣
∑nj

k=1 xj,k

nj

− x0
j

∣∣∣∣∣ ≤ ηε3/4, j = 1, . . . , N,

where η > 0 is a suitably chosen small constant.

Next we choose ξj,k so that they will solve a system of algebraic equations.

This is done in Section 4.

Step 2: The error terms.
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We then compute the space dependence of the heights, T [wε,x](xj,k +εy)−
T [wε,x](xj,k) and the error term S[wε,x]. This is done in Section 5 and Section

6, respectively.

Step 3: The Liapunov-Schmidt reduction method.

By using the Liapunov-Schmidt reduction method we solve the following

equation

Sε[wε,x + φ] =
∑
j,k

αj,k
dwε,x

dxj,k

,

∫
I
φ

dwε,x

dxj,k

dx = 0, j = 1, . . . , N, k = 1, . . . , nj,

where αj,k = αj,k(x) are some scalar functions depending on x.

This is done in Section 7.

Step 4: The reduced problem.

Finally, we solve the following reduced problem:

αj,k(x
ε) = 0, j = 1, . . . , N, k = 1, . . . , nj.

This is done in Section 8.

A natural question is the following: Are all N−cluster solutions generated

by two types of clusters as is the case for spikes? We believe that this should

be true but the proof may be complicated and is left to a future study.

3. Some preliminaries

In this section, we consider a system of nonlocal linear operators. We first

recall from [26]:

Theorem 3.1. Consider the following nonlocal differential operator

Lφ = φ
′′ − φ + 2wφ − γ

∫
R wφ∫
R w2

w2 = αφ. (3.1)

If γ �= 1, then

Ker(L) = span{w′}.

Next, we consider the following system of nonlocal operators

LΦ := ∆Φ − Φ + 2wΦ
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− 2
(∫

R
w CΦ dy

)(∫
R

w2 dy
)−1

w2, (3.2)

where

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1,1
...
φ1,n1

...
φN,1
...
φN,nN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ (H2(R))|n|,

n = (n1, n2, . . . , nN), |n| = n1 + n2 + . . . + nN ;

C = (cj,k;m,s), cj,k;m,s = GD(xj, xm)ξ̂m

for j,m = 1, . . . , N, k = 1, . . . , nj, s = 1, . . . , nm,

Remark 3.1. The matrix C is the product of a symmetric matrix and a

diagonal matrix. It therefore has only real eigenvalues.

Lemma 3.2. Suppose that (H2) holds. Then

1

2
�∈ σ(C). (3.3)

Proof. Let η = (η1,1, . . . , η1,n1 , . . . , ηN,1, . . . , ηN,nN
) be an eigenvector of C

with eigenvalue λ. Then we have∑
m,s

cj,k;m,sηm,s = ληj,k.

This can be rewritten as∑
m

GD(xj, xm)ξ̂m

∑
s

ηj,s = ληj,k. (3.4)

Summing over k, we obtain∑
m

GD(xj, xm)nj ξ̂m

∑
k

ηj,k = λ
∑
k

ηj,k.

So
∑

k ηj,k is an eigenvector of B. Thus, by (H2), either λ �= 1
2

or
∑

k ηj,k = 0

for j = 1, . . . , N . In the latter case, we then have from (3.4) that ληj,k = 0

and hence λ = 0. In any case, we obtain λ �= 1
2
. �

Assumption (H2) and Lemma 3.2 imply that
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(H2’) It holds that

1

2
�∈ σ(C). (3.5)

For later use, we set

L0u := u
′′ − u + 2wu, (3.6)

where u ∈ H2(R).

The conjugate operator of L under the scalar product in L2(R) is

L∗Ψ = Ψ
′′ − Ψ + 2wΨ

− 2CT
(∫

R
w2Ψ dy

)(∫
R

w2 dy
)−1

w, (3.7)

where

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1,1
...
ψ1,n1

...
ψN,1
...
ψN,nN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ (H2(R))|n|.

We obtain the following

Lemma 3.3. Assume that assumption (H2) holds. Then

Ker(L) = X0 ⊕ X0 ⊕ · · · ⊕ X0, (3.8)

where

X0 = span
{
w

′
(y)

}
and

Ker(L∗) = X0 ⊕ X0 ⊕ · · · ⊕ X0. (3.9)

Here the number of factors is |n|.

Proof: Let us first prove (3.8). Suppose

LΦ = 0.

Let us diagonalize C such that

P−1CP = J,
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where P is an orthogonal matrix and by Remark 3.1 J has diagonal form,

i.e.,

J =

⎛
⎜⎜⎜⎜⎝

σ1 0
σ2

. . .
0 σ|n|

⎞
⎟⎟⎟⎟⎠

with suitable real numbers σj, j = 1, 2, . . . , |n|.
Defining

Φ = P Φ̃

we have

Φ̃
′′ − Φ̃ + 2wΦ̃ − 2

(∫
R

w2 dy
)−1 ∫

R
wJΦ̃ dyw2 = 0. (3.10)

For l = 1, 2, . . . , |n| we consider the l-th equation of system (3.10):

Φ̃
′′
l − Φ̃l + 2wΦ̃l

− 2σl

(∫
R

w2
)−1 ∫

R
wΦ̃l dyw2 = 0. (3.11)

By Theorem 3.1, (3.11) tells us that

Φ̃l ∈ X0. (3.12)

(since by assumption (H2’) we know that σl �= 1/2).

Continuing in the same way for l = 1, . . . , N , we have

Φ̃l ∈ X0, l = 1, . . . , |n|. (3.13)

(3.8) is thus proved.

To prove (3.9), we proceed similarly for L∗.

Using σ(C) = σ(CT ), the l-th equation of the diagonalized system is as

follows:

Ψ̃
′′
l − Ψ̃l + 2wΨ̃l

−2
(∫

R
w dy

)−1

σl

∫
R

w2Ψ̃l dyw = 0. (3.14)

Multiplying (3.14) by w and integrating over the real line, we obtain

(1 − 2σl)
∫

R
w2Ψ̃l dy = 0,
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which implies that ∫
R

w2Ψ̃l dy = 0,

since 2σl �= 1.

Thus all the nonlocal terms vanish and we have

L0Ψ̃l = 0, l = 1, . . . , |n|. (3.15)

This implies that Ψ̃l ∈ X0 for l = 1, . . . , |n|.
�

As a consequence of Lemma 3.3, we have

Lemma 3.4. The operator

L : (H2(R))|n| → (L2(R))|n|

is invertible if it is restricted as follows

L : (X0 ⊕ · · · ⊕ X0)
⊥ ∩ (H2(R))|n| → (X0 ⊕ · · · ⊕ X0)

⊥ ∩ (L2(R))|n|.

Moreover, L−1 is bounded.

Proof: This follows from the Fredholm Alternatives Theorem and Lemma

3.3.

�

4. Computations I: The approximate solutions

Let −1 < x0
1 < · · · < x0

j < · · ·x0
N < 1 be N points satisfying the assump-

tions (H1) – (H3). Let

x0 = (x0
1, . . . , x0

N). (4.1)

In this section, we now construct an approximate solution to (1.2) with N

clusters concentrating at these prescribed N points. As we shall see, these

approximate solutions are to be valid in O(ε3/4).

Let −1 < x1,1 < · · · < x1,n1 < x2,1 < · · · < x2,n2 < · · · < xN,1 < · · · <

xN,nN
< 1 be such that

ε log
1

ε
− ε log[

ξ̂0
j

2D
(l − 1)(nj + 1 − l)] − ηε ≤ xj,l − xj,l−1 (4.2)
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≤ ε log
1

ε
− ε log[

ξ̂0
j

2D
(l − 1)(nj + 1 − l)] + ηε, j = 1, . . . , N, l = 2, . . . , nj,

and ∣∣∣∣∣
∑nj

l=1 xj,l

nj

− x0
j

∣∣∣∣∣ ≤ ηε3/4, (4.3)

where η > 0 is a small number which will be chosen in Section 7. The reason

why we assume (4.2) will become clear in Section 8.

We use Ωη to denote the set of all x = (x1,1, . . . , x1,n1 , . . . , xN,1, . . . , xN,nN
)

satisfying (4.2) and (4.3). We further denote

x0 = (x0
1,1, . . . , x0

1,n1
, . . . , x0

N,1, . . . , x0
N,nN

) (4.4)

and we set

Ω0 = {x0}. (4.5)

To simplify our notation, for x ∈ Ωη we set

wj,k(x) = w
(

x − xj,k

ε

)
· χ

(∣∣∣∣x − xj,k

δ

∣∣∣∣
)

, (4.6)

where χ is a smooth cut-off function which satisfies the following conditions:

χ(x) = 1, for |x| <
1

2
, χ(x) = 0, for |x| >

3

4
, χ ∈ C∞

0 (R),
(4.7)

and

δ =
1

10
ε log

1

ε
.

From (4.2), using that w(y) ∼ e−|y| as |y| → ∞, we derive that

∫ 1

−1
wj,kwm,s dx =

⎧⎪⎨
⎪⎩

e.s.t., if j �= m,
O(ε3), if j = m, |k − s| ≥ 2,
O(ε2), if j = m, |k − s| = 1,

(4.8)

w
(

xj,l − xj,l−1

ε

)
=

ε

2D
ξ̂0
j [(l − 1)(nj + 1 − l)] + O(ηε), j = 1, . . . , N, l = 2, . . . , nj,

(4.9)

where η > 0 is a small number.

For x ∈ Ωη,

wε,x(x) = ξε

N∑
j=1

nj∑
k=1

ξj,kwj,k(x), (4.10)
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where ξε is defined in (2.24) and the numbers ξj,k > 0 will be chosen at the

end of this section. By rescaling Â = ξεA, Ĥ = ξεH, we obtain that (1.2) is

equivalent to the following system for the rescaled functions Â, Ĥ:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε2Â
′′ − Â + Â2

Ĥ
= 0 in (−1, 1),

DĤ
′′ − Ĥ + ξεÂ

2 = 0 in (−1, 1),

Â(x) > 0, Ĥ(x) > 0 in (−1, 1),

Â
′
(−1) = Â

′
(1) = Ĥ

′
(−1) = Ĥ

′
(1) = 0.

(4.11)

From now on, we shall work with (4.11) and drop the hats. We first rewrite

(4.11) as a single equation with a nonlocal term.

For a function A ∈ H2(−1, 1), we define T [A] to be the solution of⎧⎨
⎩

D(T [A])
′′ − T [A] + ξε

A2

T [A]
= 0, −1 < x < 1,

(T [A])
′
(−1) = (T [A])

′
(1) = 0.

(4.12)

It is easy to see that the solution T [A] is unique and positive. Then (4.11)

becomes

Sε[A] := ε2A
′′ − A +

A2

T [A]
= 0, A > 0, A

′
(−1) = A

′
(1) = 0.

(4.13)

Let A = wε,x, where x ∈ Ωη. We are now going to choose ξj,k.

Let us first compute

τm,s := T [wε,x](xm,s). (4.14)

From (4.12), we have

τm,s = ξε

∫ 1

−1
GD(xm,s, z)w2

ε,x(z) dz + e.s.t.

= ξε

∫ 1

−1
GD(xm,s, z)

⎡
⎣ nm∑

k=1

ξ2
m,kw

2
m,k(z) +

∑
k �=l

ξm,kξm,lwm,k(z)wm,l(z)

⎤
⎦ dz

+ξε

∫ 1

−1
GD(xm,s, z)

∑
j �=m

⎡
⎣ nj∑

k=1

ξ2
j,kw

2
j,k(z) +

∑
k �=l

ξj,kξj,lwj,k(z)wj,l(z)

⎤
⎦ dz + e.s.t.

= I1 + I2 + e.s.t., (4.15)

where I1 and I2 are defined by the last equality.
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The integral I2 is easy to compute:

I2 = ξε

∑
j �=m

nj∑
k=1

ξ2
j,k

[
GD(xm,s, xj,k)ε

∫
R

w2(y) dy + O(ε2)
]

+ξε

∑
j �=m

∑
k �=l

[
ξj,kξj,l

∫
I
GD(xm,s, z)wj,k(z)wj,l(z) dz + O(ε2)

]

= ξεε
∫

R2
w2(y) dy

⎡
⎣∑

j �=m

nj∑
k=1

ξ2
j,kGD(xm,s, xj,k) + O(ε)

⎤
⎦ ,

(4.16)

using the estimate (4.8).

For I1, we have

I1 = ξε

nm∑
k=1

ξ2
m,k

∫
I
GD(xm,s, z)w2

m,k(z) dz

+ ξε

∑
k �=l

ξm,kξm,l

∫
I
GD(xm,s, z)wm,k(z)wm,l(z) dz. (4.17)

Let us now compute∫
I
GD(xm,s, z)w2

m,k(z) dz =
∫

I
GD(xm,s, z)

(
w

(
z − xm,k

ε

))2

dz.

If k �= s, we have ∫
I
GD(xm,s, z)w2

m,k dz

= GD(xm,s, xm,k)
(
ε
∫

R
w(y)2 dy + O(ε2)

)
. (4.18)

If k = s, we have ∫
I
GD(xm,s, z)w2

m,s(z) dz

=
∫

I

[
1

2
√

D
e−|xm,s−z|/

√
D − H(xm,s, z)

]
w2

m,s(z) dz

=

[
1

2
√

D
− H(xm,s, xm,s)

] (
ε
∫

R
w2(y) dy + O(ε2)

)

= GD(xm,s, xm,s)
(
ε
∫

R
w2(y) dy + O(ε2)

)
. (4.19)

In conclusion, we have∫
I
GD(xm,s, z)w2

m,k(z) dz = GD(xm,s, xm,k)
(
ε
∫

R
w2(y) dy + O(ε2)

)
.
(4.20)
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Next, for k �= l,∫
I
GD(xm,s, z)wm,k(z)wm,l(z) dz = O

(
ε2

∫
R

w2(y) dy
)

(4.21)

by (4.8).

Combining (4.20) and (4.21), we have

I1 = ξεε
∫

R
w2(y) dy

[
nm∑
k=1

ξ2
m,kGD(xm,s, xm,k) + O(ε)

]
. (4.22)

Substituting (4.16) and (4.22) into (4.15), we conclude that

T [wε,x](xm,s) = τm,s =
∑
j,k

ξm,sξj,kGD(xm,s, xj,k) + O(ε).
(4.23)

We now choose ξj,k such that

ξm,s =
∑
j,k

ξm,sξj,kGD(xm,s, xj,k). (4.24)

To see that (4.24) has a unique solution, we note that in the limit ε → 0

(4.24) becomes

ξ0
m,s =

N∑
j=1

( nj∑
k=1

(ξ0
j,k)

2

)
GD(x0

m, x0
j). (4.25)

By (H1), (4.25) has a solution with ξ0
m,s = ξ0

m. By (H2), Lemma 3.2, and the

implicit function theorem, (4.24) has a solution. From (4.23) and (4.24), for

this solution it follows that

τm,s = ξm,s + O(ε). (4.26)

This concludes the construction of our approximate solutions.

5. Computations II: The space dependence of the heights

In this section, we compute the space dependence of the heights which is

given by the difference T [wε,x](x)−T [wε,x](xm,s) for x ∈ Ωη and |x−xm,s| <

δ. This is an important step in determining the spike and cluster locations.

To simplify our notation, we let

Hε,x = T [wε,x]. (5.1)

Let x = xm,s + εy. Similar to Section 4, we calculate

Hε,x(xm,s + εy) − Hε,x(xm,s)
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= ξε

∫
I
[GD(xm,s + εy, z) − GD(xm,s, z)]

×
⎛
⎝ nm∑

k=1

ξ2
m,kw

2
m,k(z) +

∑
k �=l

ξm,kξm,lwm,k(z)wm,l(z)

⎞
⎠ dz

+ξε

∫
I
[GD(xm,s + εy, z) − GD(xm,s, z)]

×
⎛
⎝∑

j �=m

nj∑
k=1

ξ2
j,kw

2
j,k(z) +

∑
j �=m

∑
k �=l

ξj,kξj,lwj,k(z)wj,l(z)

⎞
⎠ dz

= J1 + J2, (5.2)

where J1 and J2 are defined by the last equality.

We first calculate J2:

J2 = ξε

∫
I
[GD(xm,s + εy, z) − GD(xm,s, z)]

×
⎛
⎝∑

j �=m

nj∑
k=1

ξ2
j,kw

2
j,k(z) +

∑
j �=m

∑
k �=l

ξj,kξj,lwj,k(z)wj,l(z)

⎞
⎠ dz

= ξε

∫
I

[
∇xm,sGD(xm,s, z) + O(ε|y|)

]
εy

×
⎛
⎝∑

j �=m

nj∑
k=1

ξ2
j,kw

2
j,k(z) +

∑
j �=m

∑
k �=l

ξj,kξj,lwj,k(z)wj,l(z)

⎞
⎠ dz

=

⎡
⎣∑

j �=m

nj∑
k=1

ξ2
j,k∇xm,sGD(xm,s, xj,k) + O(ε|y|)

⎤
⎦ εy (5.3)

by (4.8). For J1, we have

J1 = ξε

∫
I
[GD(xm,s + εy, z) − GD(xm,s, z)]

×
⎛
⎝ nm∑

k=1

ξ2
m,kw

2
m,k(z) +

∑
k �=l

ξm,kξm,lwm,k(z)wm,l(z)

⎞
⎠ dz

= ξε

nm∑
k=1

ξ2
m,k

∫
I
[GD(xm,s + εy, z) − GD(xm,s, z)] w2

m,k(z) dz

+ξε

∑
k �=l

ξm,kξm,l

∫
I
[GD(xm,s + εy, z) − GD(xm,s, z)] wm,k(z)wm,l(z) dz

= ξε

nm∑
k=1

ξ2
m,k

∫
I
[GD(x, z) − GD(xm,s, z)] w2

m,k dz + O(ε2y2)
(5.4)
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by (4.8). Note that∫
I
[GD(x, z) − GD(xm,s, z)] w2

(
z − xm,k

ε

)
dz

=
∫

I

[
1

2
√

D

(
e−|x−z|/

√
D − e−|xm,s−z|/

√
D
)
− (HD(x, z) − HD(xm,s, z))

]

×w2
(

z − xm,k

ε

)
dz

=
1

2
√

D

∫
I

(
e−|x−z|/

√
D − e−|xm,s−z|/

√
D
)
w2

(
z − xm,k

ε

)
dz

−∇xm,sH(xm,s, xm,k)
(
ε2y

∫
R

w2(z) dz
)

+ O(ε3y2). (5.5)

Let z = xm,k + εz̃. If k = s, we have

1

2
√

D

∫
I

(
e−|x−z|/

√
D − e−|xm,s−z|/

√
D
)
w2

(
z − xm,k

ε

)
dz

=
1

2
√

D
ε
∫

R

(
e−ε|y−z̃|/

√
D − e−ε|z̃|/

√
D
)
w2 (z̃) dz̃ (1 + O(ε|y|))

=
1

2
√

D
ε
[
ε
∫

R
(|z̃| − |y − z̃|) w2 (z̃) dz̃ + O(ε2y2)

]

=
1

2
√

D
ε
[
εT0(y) + O(ε2y2)

]
, (5.6)

where

T0(y) =
∫

R
(|z̃| − |y − z̃|) w2(z̃) dz̃ (5.7)

is an even function. If k �= s, then

1

2
√

D

∫
I

(
e−|x−z|/

√
D − e−|xm,s−z|/

√
D
)
w2

(
z − xm,k

ε

)
dz

=
ε

2
√

D

∫
R

(
e−|xm,s−xm,k+ε(y−z̃)|/

√
D − e−|xm,s−xm,k−εz̃|/

√
D
)
w2 (z̃) dz̃

=
ε

2
√

D

∫
R

⎡
⎣ 1√

D
(|xm,s − xm,k − εz̃| − |xm,s − xm,k + ε(y − z̃)|)

+O(|xm,s − xm,k|2)
⎤
⎦w2 (z̃) dz̃

=
ε

2
√

D

⎡
⎣ 1√

D

(
− xm,s − xm,k

|xm,s − xm,k|

)
εy + O

(
ε2 log2 1

ε

)⎤
⎦ ∫

R
w2(y)dy.

(5.8)
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Combining (5.3), (5.6), and (5.8), we have

Hε,x(xm,s + εy) − Hε,x(xm,s)

=
ε

2
√

D
∫
R w2(y) dy

T0(|y|)ξ2
m,s

+
ε

2D

∑
k �=s

ξ2
m,k

(
− xm,s − xm,k

|xm,s − xm,k|

)
y

−
nm∑
k=1

ξ2
m,k∇xm,sHD(xm,s, xm,k)εy

+
∑
j �=m

nj∑
k=1

ξ2
j,k∇xm,sGD(xm,s, xj,k) εy +

N∑
j=1

nj∑
k=1

ξ2
j,k(ε

2|y|2). (5.9)

6. Computations III: The error terms

In this section, we compute the error terms.

Recall from (4.12) that

Sε[A] := ε2A
′′ − A +

A2

T [A]
, (6.1)

where T [A] is defined by (4.12). We now compute the error term

Sε[wε,x] = Sε

⎡
⎣ N∑

j=1

nj∑
k=1

ξj,kwj,k

⎤
⎦

= ε2∆

⎛
⎝ N∑

j=1

nj∑
k=1

ξj,kwj,k

⎞
⎠−

N∑
j=1

nj∑
k=1

ξj,kwj,k

+

(∑N
j=1

∑nj

k=1 ξj,kwj,k

)2

Hε,x

=

∑N
j=1

(∑nj

k=1 ξj,kwj,k

)2
+ e.s.t.

Hε,x

−
N∑

j=1

nj∑
k=1

ξj,kw
2
j,k

=
N∑

j=1

( nj∑
k=1

ξ2
j,k

(
1

Hε,x

− 1

ξj,k

)
w2

j,k

)

+
N∑

j=1

∑
k �=l

ξj,kξj,lwj,kwj,l
1

Hε,x

+ e.s.t.

=
N∑

j=1

⎛
⎝ nj∑

j=1

ξj,k
(ξj,k − τj,k) + (τj,k − Hε,x)

Hε,x

w2
j,k

⎞
⎠
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+
N∑

j=1

∑
k �=l

ξj,kξj,lwj,kwj,l
1

Hε,x

+ e.s.t. (6.2)

By (4.9), (4.26) and (5.9), this implies that

‖Sε[wε,x]‖L2(− 1
ε
, 1
ε
) = O(ε). (6.3)

The estimates derived in this section provide an important step that will

make our approach work in the rest of the paper.

7. The Liapunov-Schmidt Reduction Method

In this section, we use the Liapunov-Schmidt reduction method to solve

the problem

Sε

⎡
⎣ N∑

j=1

nj∑
k=1

ξj,kwj,k + v

⎤
⎦ =

N∑
j=1

nj∑
k=1

βj,k
dw̃j,k

dx
(7.1)

for real constants βj,k and a function v ∈ H2(−1
ε
, 1

ε
) which is small in the

corresponding norm, where ξj,k is given by (4.24), wj,k is defined by (4.6),

and x = (x1,1, . . . , x1,n1 , . . . , xN,1, . . . , xN,nN
) ∈ Ωη.

To this end, we need to study the linearized operator

L̃ε,x : H2(Iε) → L2(Iε)

defined by

L̃ε,x := S ′
ε[A]φ = ε2φ

′′ − φ +
2Aφ

T [A]
− A2

(T [A])2
(T

′
[A]φ),

where A =
∑N

j=1

∑nj

k=1 ξj,kwj,k, Iε = (−1
ε
, 1

ε
), and for a given φ ∈ L2(I) we

introduce T
′
[A]φ as the unique solution of⎧⎨

⎩
D(T

′
[A]φ)

′′ − (T
′
[A]φ) + 2ξεAφ = 0, −1 < x < 1,

(T
′
[A]φ)

′
(−1) = (T

′
[A]φ)

′
(1) = 0.

(7.2)

We define the approximate kernel and co-kernel, respectively, as follows:

Kε,x := span

⎧⎨
⎩dwj,k

dx

∣∣∣∣∣∣j = 1, . . . , N, k = 1, . . . , nj

⎫⎬
⎭ ⊂ H2(Iε),

Cε,x := span

⎧⎨
⎩dwj,k

dx

∣∣∣∣∣∣j = 1, . . . , N, k = 1, . . . , nj

⎫⎬
⎭ ⊂ L2(Iε).
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Recall the definition of the following system of linear operators from (3.2):

LΦ := ∆Φ − Φ + 2wΦ

−2
(∫

R
wCΦ dy

)(∫
R

w2 dy
)−1

w2,

where

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1,1
...
φ1,n1

...
φN,1
...
φN,nN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ (H2(R))|n|.

By Lemma 3.4, we know that

L : (X0 ⊕ · · · ⊕ X0)
⊥ ∩ (H2(R))|n| → (X0 ⊕ · · · ⊕ X0)

⊥ ∩ (L2(R))|n|

is invertible with a bounded inverse.

We also introduce the projection π⊥
ε,x : L2(Iε) → C⊥

ε,x and study the opera-

tor Lε,x := π⊥
ε,x ◦ L̃ε,x. By letting ε → 0, we will show that Lε,x : K⊥

ε,x → C⊥
ε,x

is invertible with a bounded inverse provided ε is small enough. For this

we will use the fact that the operator L is the limit of the operator Lε,x as

ε → 0.

This statement is contained in the following proposition.

Proposition 7.1. There exist positive constants ε̄, η, λ such that for all ε ∈
(0, ε̄), x ∈ Ωη, we have

‖Lε,xφ‖L2(Ωε) ≥ λ‖φ‖H2(Iε). (7.3)

Furthermore, the map

Lε,x = π⊥
ε,x ◦ L̃ε,x : K⊥

ε,x → C⊥
ε,x

is surjective.

Proof of Proposition 7.1: This proof follows the method of Liapunov-

Schmidt reduction which was also used in [1], [11], [12], [9], [18], [19], and

[26].
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Suppose that (7.3) is false. Then there exist sequences {εk}, {xk}, {φk}
with εk → 0, xk ∈ Ωη, such that

‖Lεk,xkφk‖L2(Iεk
) → 0, as k → ∞, (7.4)

‖φk‖H2(Iεk
) = 1, k = 1, 2, . . . . (7.5)

We define φε,j,k, j = 1, 2, . . . , N, l = 1, . . . , nj and φε,|n|+1 as follows:

φε,j,l(x) = φε(x)χ
(

x − xj,l

δ

)
, x ∈ I, (7.6)

φε,|n|+1(x) = φε(x) −
∑
j,l

φε,j,l(x), x ∈ I.

At first (after rescaling) φε,i are only defined on Iε. However, by a standard

result they can be extended to R such that their norm in H2(R) is still

bounded by a constant independent of εk and xk for ε small enough. In the

following, we will study this extension. For simplicity, we keep the same

notation for the extension. Since for j = 1, 2, . . . , N, l = 1, . . . , nj each

sequence {φk
i } := {φεk,j,l} (k = 1, 2, . . . ) is bounded in H2

loc(R), it has a weak

limit in H2
loc(R), and therefore also a strong limit in L2

loc(R) and L∞
loc(R). Call

these limits φi. Then Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1,1
...

φ1,n1

...
φN,1

...
φN,nN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

solves the system

LΦ = 0.

By Lemma 3.3, Φ ∈ Ker(L) = X0 ⊕ · · · ⊕ X0. Since φk ∈ K⊥
εk,xk by taking

k → ∞ we get Φ ∈ Ker(L)⊥. Together, these two statements give Φ = 0.

By elliptic estimates, we get ‖φεk,j,l‖H2(R) → 0 as k → ∞ for j = 1, 2, . . . , N, l =

1, . . . , nj.

Furthermore, φε,|n|+1 → φ|n|+1 in H2(R), where Φ|n|+1 satisfies

∆φ|n|+1 − φ|n|+1 = 0 in R.

Therefore, we conclude that φ|n|+1 = 0 and ‖φk
|n|+1‖H2(R) → 0 as k → ∞.
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This contradicts ‖φk‖H2(Iεk
) = 1. To complete the proof of Proposition 7.1,

we just need to show that the operator which is conjugate to Lε,x (denoted

by L∗
ε,x) is injective from K⊥

ε,x to C⊥
ε,x. Note that L∗

ε,xψ = πε,x ◦ L̃∗
ε,x with

L̃∗
ε,xψ = ε2∆ψ − ψ +

2Aψ

T [A]
− T

′
[A]ψ

A2

(T [A])2
.

The proof for L∗
ε,x follows along the same line as the proof for Lε,x and is

therefore omitted. �
Now we are in a position to solve the equation

π⊥
ε,x ◦ Sε(wε,x + φ) = 0. (7.7)

Since Lε,x|K⊥
ε,x

is invertible (call the inverse L−1
ε,x) we can rewrite this as

φ = −(L−1
ε,x ◦ π⊥

ε,x ◦ Sε(wε,x)) − (L−1
ε,x ◦ π⊥

ε,x ◦ Nε,x(φ)) ≡ Mε,x(φ),
(7.8)

where

Nε,x(φ) = Sε(wε,x + φ) − Sε(wε,x) − S ′
ε(wε,x)φ (7.9)

and the operator Mε,x is defined by (7.8) for φ ∈ H2(Iε). We are going to

show that the operator Mε,x is a contraction on

Bε,r0 ≡ {φ ∈ H2(Iε)|‖φ‖H2(Iε) < r0}

if r0 and ε are small enough. We have by (6.3) and Proposition 7.1

‖Mε,x(φ)‖H2(Iε) ≤ λ−1
(
‖π⊥

ε,x ◦ Nε,x(φ)‖L2(Iε)

+
∥∥∥π⊥

ε,x ◦ Sε(wε,x)
∥∥∥

L2(Iε)

)
≤ λ−1C(c(r0)r0 + ε),

where λ > 0 is independent of r0 > 0, ε > 0 and c(r0) → 0 as r0 → 0.

Similarly, we show

‖Mε,x(φ) − Mε,x(φ
′
)‖H2(Iε)

≤ λ−1C(c(r0)r0)‖φ − φ
′‖H2(Iε),

where c(r0) → 0 as r0 → 0. If we choose r0 = εα for α < 1 and ε small

enough, then Mε,x is a contraction on Bε,r0 . The existence of a fixed point

φε,x now follows from the standard contraction mapping principle and φε,x

is a solution of (7.8).
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We have thus proved

Lemma 7.2. There exist ε > 0 η > 0 such that for every pair of ε,x with

0 < ε < ε and x ∈ Ωη, there is a unique φε,x ∈ K⊥
ε,x satisfying Sε(wε,x+φε,x) ∈

Cε,x. Furthermore, we have the estimate

‖φε,x‖H2(Iε) ≤ Cεα, (7.10)

where α < 1.

Remark 5.1: By one more iteration, it can actually be shown that

‖φε,x‖H2(Iε) ≤ Cε. (7.11)

8. The reduced problem

In this section, we solve the reduced problem. This complete the proof of

our main existence result given by Theorem 2.2.

By Lemma 7.2, for every x ∈ Ωη, there exists a unique solution φε,x ∈ K⊥
ε,x

such that

Sε[wε,x + φε,x] = vε,x ∈ Cε,x. (8.1)

Our idea is to find xε = (xε
1,1, . . . , xε

1,n1
, . . . , xε

N,1, . . . , xε
N,nN

) ∈ Ωη near

x0 = (x0
1,1, . . . , x0

1,n1
, . . . , x0

N,1, . . . , x0
N,nN

) ∈ Ω0

such that also

Sε[wε,xε + φε,xε ] ⊥ Cε,xε (8.2)

and therefore Sε[wε,xε + φε,xε ] = 0.

(Recall that Ω0 contains only one point.)

To this end, we let

Wε,m,s(x) := ε−1
∫

I
Sε[wε,x + φε,x]

dwm,s

dx
dx,

Wε(x) := (Wε,1,1(x), . . . ,Wε,N,nN
(x)) : Ωη → R|n|.

Then Wε(x) is a map which is continuous in x and our problem is reduced

to finding a zero of the vector field Wε(x).

We note that

ε−1
∫

I
Sε[wε,x + φε,x]

dwm,s

dx
dx
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= ε−1
∫

I

⎡
⎣Sε[wε,x] + S ′

ε[wε,x](φε,x) + O(‖φε,x‖2
H2(Iε))

⎤
⎦dwm,s

dx
dx

= ε−1
∫

I
Sε[wε,x]

dwm,s

dx
dx + O(ε)

since

ε−1
∫

I
S ′

ε[wε,x](φε,x)
dwm,s

dx
dx

= ε−1
∫

I

⎡
⎣ε2φ

′′
ε,x − φε,x +

2wε,x

T [wε,x]
φε,x −

w2
ε,x

(T [wε,x])2
(T ′[wε,x]φε,x)

⎤
⎦dwm,s

dx
dx

= ε−1
∫

I

⎡
⎣[

1

T [wε,x]
− 1

ξj,k

]2wε,xφε,x −
w2

ε,x

(T [wε,x])2
(T ′[wε,x]φε,x)

⎤
⎦dwm,s

dx
dx

= ε−1
∫

I

⎡
⎣(ξj,k − τj,k) + (τj,k − T [wε,x]

T [wε,x]ξj,k

2φε,x−
w2

ε,x

(T [wε,x])2
(T ′[wε,x]φε,x)

⎤
⎦dwm,s

dx
dx

= O(ε−1‖φε,x‖H2(Iε)ε)

= O(Sε[wε,x]L2(Iε)) = O(ε).

Thus it remains to compute

1

ε

∫
I
Sε[wε,x]

dwm,s

dx
dx = cm,s. (8.3)

Let x = xm,s + εy. By (5.9), we have

1

ε

∫
I
Sε[wε,x]

dwm,s

dx
dx =

1

ε

∫
R
Sε[wε,x]w

′(y) dy + O(ε),

where

w′(y) =
dw(y)

dy
.

For clarity, we set

w′
m,s(y) = w′(y) since x = xm,s + εy.

We calculate by (5.9) and (6.2)

cm,s =
1

ε

∫
R
Sε[wε,x]w

′(y) dy

=
1

ε

N∑
j=1

nj∑
k=1

ξj,k

∫
R

ξj,k − Hε,x

Hε,x

w2
j,kw

′
m,s dy

+
1

ε

N∑
j=1

∑
k �=l

ξj,kξj,l

∫
R

wj,kwj,l

Hε,x

w′
m,s dy + O(ε)
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=
1

ε

nm∑
k=1

ξm,k

∫
R

ξm,k − Hε,x

Hε,x

w2
m,kw

′
m,s dy

+
1

ε

∑
k �=l

ξm,kξm,l

∫
R

wm,kwm,l

Hε,x

w′
m,s dy + O(ε)

=
1

ε
ξm,s

∫
R

ξm,s − Hε,x

Hε,x

w2
m,sw

′
m,s dy

+
1

ε

∑
k �=s

ξm,k

∫
R

ξm,k − Hε,x

Hε,x

w2
m,kw

′
m,s dy

+
1

ε

∑
k �=l

ξm,kξm,l

∫
R

wm,kwm,l

Hε,x

w′
m,s dy + O(ε)

= E1 + E2 + E3 (8.4)

where E1, E2, and E3 are defined by the last equality.

By (5.9), we have

E1 =

⎡
⎣ ∑

k �=s

1

2D

xm,s − xm,k

|xm,s − xm,k|
ξ2
m,k

−
nm∑
k=1

ξ2
m,k∇xm,sH(xm,s, xm,k)

+
∑
j �=m

nj∑
k=1

ξ2
j,k∇xm,sGD(xm,s, xj,k)

⎤
⎦1

3

∫
R

w3(y) dy, (8.5)

E2 =
∑
k �=s

ξ2
m,kO(ε),

E3 =
1

ε

∑
k �=s

ξm,kξm,s

∫
R

wm,kwm,sw
′
m,s

Hε,x

dy + O(ε)

=
1

ε

∑
k �=s

ξm,k

∫
R

w2
m,sw

′
m,k dy + O(ε)

=
1

ε

∑
k �=s

ξm,k

∫
R

w2(y)w′
(
y +

xm,s − xm,k

ε

)
dy + O(ε)

=
1

ε

∑
k �=s

ξm,kw
(

xm,s − xm,k

ε

)
xm,s − xm,k

|xm,s − xm,k|
1

3

∫
R

w3(y) dy + O(ε).
(8.6)

In summary, we obtain the following vector field

cm,s

(
1

3

∫
R

w3(y) dy
)−1
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=
1

ε

(
1

3

∫
R

w3(y) dy
)−1 ∫

I
Sε[wε,x]

dwm,s

dxm,s

dx

=
∑
k �=s

(
1

2D
ξ2
m,k −

1

ε
ξm,kw

(
xm,s − xm,k

ε

))
xm,s − xm,k

|xm,s − xm,k|

+
∑
j �=m

nj∑
k=1

ξ2
j,k∇xm,sGD(xm,s, xj,k)

−
nm∑
k=1

ξ2
m,k∇xm,sH(xm,s, xm,k) + O(ε)

=
∑
k �=s

(
1

2D
ξ2
m,k −

1

ε
ξm,kw

(
xm,s − xm,k

ε

))
xm,s − xm,k

|xm,s − xm,k|
+

∑
j �=m

∇xmGD(xm, xj)njξ
2
j

−∇xmH(xm, xm)nmξ2
m + O(ε3/4). (8.7)

Note that when x = x0 = (x0
1,1, . . . , x0

1,n1
, . . . , x0

N,1, . . . , x0
N,nN

) ∈ Ω0 we have

∑
k �=s

(
1

2D
ξ2
m,k(x

0) − 1

ε
ξm,k(x

0)w

(
x0

m,s − x0
m,k

ε

))
x0

m,s − x0
m,k

|x0
m,s − x0

m,k|

= O

⎛
⎝∑

m,k

|ξm,k(x
0) − ξ0

m|
⎞
⎠ = O(ε3/4)

since ∑
k �=s

(
1

2D
(ξ0

m)2 − 1

ε
ξ0
mw

(
x0

m,s − xm,k

ε

))
x0

m,s − x0
m,k

|x0
m,s − x0

m,k|
+ O(ε)

=
1

2D
(ξ0

m)2(2s − 1 − nm)

+
1

ε
ξ0
m

(
w

(
x0

m,s+1 − x0
m,s−1

ε

)
− w

(
x0

m,s − x0
m,s−1

ε

))
+ O(ε)

= O(ε)

since

w

(
x0

m,s+1 − x0
m,s

ε

)
− w

(
x0

m,s − x0
m,s−1

ε

)
=

ε

2D
ξ0
m(nm − 2s + 1) + O(ε2),

w

(
x0

m,2 − x0
m,1

ε

)
=

ε

2D
ξ0
m(nm − 1) + O(ε2),

w

(
x0

m,s − x0
m,s−1

ε

)
=

ε

2D
ξ0
m(nm − 1) + O(ε2).
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Furthermore,∑
j �=m

∇x0
m
GD(x0

m, x0
j)njξ

2
j −∇x0

m
H(x0

m, x0
m)nmξ2

m = O(ε3/4)

by assumption (H3).

Let

F1,m,s(x) =
∑
k �=s

(
1

2D
ξ2
m,k −

1

ε
ξm,kw

(
xm,s − xm,k

ε

))
xm,s − xm,k

|xm,s − xm,k| (8.8)

+
∑
j �=m

∇xmGD(xm, xj)njξ
2
j −∇xmH(xm, xm)nmξ2

m.

Then we have

Wε,j,k = F1,j,k(x) + O(ε3/4) (8.9)

and

Wε,j,k(x
0) = O(ε3/4). (8.10)

We need the following lemma.

Lemma 8.1. Let

Fm(x) =
∑
j �=m

∇xmGD(xm, xj)njξ
2
j −∇xmH(xm, xm)nmξ2

m

and F1,m,s(x) be given by (8.8).

Suppose that

det(∇xi
Fj(x

0)) �= 0. (8.11)

Then

det(∇xj,k
F1,m,s(x

0)) �= 0. (8.12)

Proof: We denote

(∇xi
Fj(x

0)) = (mij).

Note that mij is the (i, j)-th element of the matrix M defined by (2.15).

Then, by definition, it is easy to see that

w

(
x0

m,s − x0
m,s−1

ε

)
=

ε

2D
ξ0
m[(s − 1)(nm + 1 − s)] + o(ε), s = 2, . . . , nm,

w

(
x0

m,s − x0
m,k

ε

)
= O(ε2), |s − k| ≥ 2,
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∇xj,t
F1,i,s =

{
mij, if i �= j,
c0(i)a

i
st + mii, if i = j,

where c0(i) =
ξ0
i

2D
> 0 and ai

st is the (s, t)-th element of the following (ni×ni)

matrix

Ai = (ai
st) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ai
11 ai

12 0
. . . . . . 0

ai
21 ai

22 ai
23

. . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

0
. . . . . . 0 ai

ni(ni−1) ai
nini

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(8.13)

where

ai
11 = (ni − 1), ai

12 = −(ni − 1),

ai
s(s−1) = −(s−1)(ni+1−s), ai

ss = −(ni+1−2s), ai
s(s+1) = s(ni−s), s = 2, . . . , ni−1,

ai
ni(ni−1) = −(ni − 1), ai

nini
= ni − 1.

Observe that
ni∑

t=1

ai
st =

ni∑
s=1

(−1)sai
st = 0 (8.14)

and zero is a simple eigenvalue of Ai. (See [2].)

Suppose that we have

N∑
i=1

ni∑
s=1

∇xi,s
F1,j,tηi,s = 0, j = 1, . . . , N, t = 1, . . . , nj.

This implies

0 =
N∑

i=1

ni∑
s=1

∇xj,t
F1,i,sηi,s

=
N∑

i=1

mij

ni∑
s=1

ηi,s +
N∑

i=1

c0(i)
ni∑

s=1

ai
stηi,s.

By (8.14),

0 =
nj∑
t=1

N∑
i=1

mij

ni∑
s=1

ηi,s +
N∑

i=1

c0(i)
ni∑

s=1

( nj∑
t=1

ai
st

)
ηi,s

=
N∑

i=1

mijnj

ni∑
s=1

ηi,s.
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By assumption (8.11),

ni∑
s=1

ηi,s = 0.

Hence, we have

ni∑
s=1

ai
stηi,s = 0,

ni∑
s=1

ηi,s = 0. (8.15)

This implies that

ηi,t = 0

by (8.14) and since zero is a simple eigenvalue of Ai. This proves (8.12).

�
By Lemma 8.1, at x0, we have F1(x

0) = O(ε3/4) and

det(∇x0F1(x
0)) �= 0.

Therefore we may write Wε as

Wε(x) = F1(x) + O(ε3/4)

= ∇F1(x
0)(x − x0) + O(|x − x0|2) + O(ε3/4).

By Lemma 8.1 and Brouwer’s fixed point theorem it follows that for ε << 1

there exists a xε ∈ Ωη such that Wε(x
ε) = 0.

Thus we have proved the following proposition.

Proposition 8.2. For ε sufficiently small there exist points xε with xε → x0

such that Wε(x
ε) = 0.

Finally, we prove Theorem 2.2.

Proof of Theorem 2.2: By Proposition 8.2, there exists xε → x0 such

that Wε(x
ε) = 0. In other words, Sε[wε,xε + φε,xε ] = 0. Let Aε = ξε(wε,xε +

φε,xε), Hε = ξεT [wε,xε + φε,xε ]. By the Maximum Principle, Aε > 0, Hε > 0.

Moreover (Aε, Hε) satisfies all the properties of Theorem 2.2.

�
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9. Proof of Theorem 2.1

In this section, we show how Theorem 2.1 can be proved easily without

any assumption on D. In fact, by reflection, we may assume that N = 1.

We may further assume that A(−x) = A(x), H(−x) = H(x). There are two

cases to be considered: n is even or n is odd. We choose x1 < x2 < . . . < xn

to be such that

ε log
1

ε
− ε log[

ξ̂0
l

2D
(l − 1)(n + 1 − l)] − ηε ≤ xl − xl−1

≤ ε log
1

ε
− ε log[

ξ̂0
l

2D
(l − 1)(n + 1 − l)] + ηε (9.1)

and
n∑

j=1

xj = 0 (9.2)

Thus we have (n − 1) independent variables from (x1, . . . , xn). On the

other hand, the matrix Ai with ni = n has exactly (n − 1) nonzero eigen-

values and one zero eigenvalue. So if we proceed as in Section 8, we have

nondegeneracy. Similar arguments as in Section 8 give the conclusion of

Theorem 2.1.
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