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Abstract. The limiting factor for the employment of advanced 3D CFD tools in the analysis and 

design of rotary vane machines is the unavailability of methods for generation of computational 

grids suitable for fast and reliable numerical analysis. The paper addresses this challenge 

presenting the development of an analytical grid generation for vane machines that is based on 

the user defined nodal displacement. In particular, mesh boundaries are defined as parametric 

curves generated using trigonometrical modelling of the axial cross section of the machine while 

the distribution of computational nodes is performed using algebraic algorithms with transfinite 

interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced 

for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality 

in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the 

sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by 

maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air 

compressor and a small-scale expander for Organic Rankine Cycle applications have been 

investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability 

and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are 

presented. 

1.  Introduction 

Sliding vane machines are widely employed in industry nowadays. Typical applications where these 

devices are one of the leading technologies are compressed air systems, automotive thermal management 

(oil and cooling circuits), oil and gas applications. Nonetheless, unlike other positive displacement 

technologies that can rely on the design tools at the state of the art to improve and accelerate R&D and 

product development tasks, sliding vane machine designers cannot entirely benefit from these resources. 

In fact, the limiting factor for the employment of advanced 3D CFD tools in the analysis and design of 

rotary vane machines is the unavailability of methods for generation of computational grids suitable for 

fast and reliable numerical analysis. 

In the literature, scientists and engineers have been investigating sliding vane devices both through 

experimental and numerical approaches. In particular, the modeling approaches that have been 

http://creativecommons.org/licenses/by/3.0
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developed mostly consider lumped parameter formulations of the conservation equations that 

undoubtedly benefit of reduced computational cost [1-4]. On the other hand, they do not allow 

possibilities of identifying and optimizing key issues in positive displacement machines such as the 

leakage paths, which in these models are schematized as equivalent orifices [5]. 

In recent years, the lack of a standardized and parameterized approach to discretize the fluid volume 

that stator, rotor and blades identify in a sliding vane machine has been started to be addressed by an 

increasing number of research works. Most of the developed procedures focused on expanders for waste 

heat to power generation based on an Organic Rankine Cycle architecture (ORC). For instance, 

Kolasiński and Błasiak performed experimental and numerical studies on a micro ORC sliding vane 

expander with circular stator and radial inlet and outlet ports [6] while Montenegro et al., investigated a 

sliding vane expander with an elliptic stator [7]. Working fluids were R123 and R245fa while CFD 

solvers employed in the afore mentioned studies were ANSYS CFX and OpenFOAM respectively. In 

both the research works, correction terms had to be introduced to deal with inaccuracies in the rotor 

grids. In addition to these research works, in commercial software such as Simerics PumpLinx or 

ANSYS there are templates on vane machines [8, 9]. However, they introduce a rather severe 

approximation when considering a flat blade profile. In fact, together with the stator, the tip of the blade 

forms a converging-diverging nozzle whose local curvature affect the overall leakage. 

Among the available approaches for grid deformation, user defined nodal displacement was found 

to be the most suitable strategy to create a set of grids representing nodal locations for each time step 

externally, prior to the numerical flow solution in the calculation domain [10, 11]. User defined nodal 

displacement methodology was successfully applied to screw machine geometries and led to the 

development of two different strategies for grid generation. An algebraic approach was pursued by the 

research group at City, University of London [12] while a hybrid differential approach was considered 

at the University of Ghent [13]. Both the grid generation methods allowed to perform three-dimensional 

single and multi-phase simulations on screw compressors and expanders in recent years. In particular, 

the algebraic approach revealed more suitable for extension of grid generation to variable lead and 

variable profile rotors, while the hybrid differential approach resulted in better grid smoothing and 

adaptability to variety of rotor profiles such as hook and claw type positive displacement machines [11]. 

Regardless of the technology, positive displacement machines involve similar issues in the 

development of a deforming grid generation i.e. from clearance regions to the main core the aspect ratio 

of the geometry is 1000th of order of magnitude, the computational cells need to maintain continuity 

through these highly deforming volumes and the cell structure needs to be maintained in order to avoid 

solution interpolation from one time step to the other. Hence, in the current study some of the algebraic 

algorithms developed for screw machinery have been applied to a sliding vane machine geometry and 

this led to the development of a novel general grid generation methodology. This innovative meshing 

procedure was tested with reference to two applications that highly differ for dimensions, operating 

parameters, working fluids and mode of operation. In particular, test cases presented in this paper are an 

oil injected air compressor and an ORC expander. After recalling the main steps of the grid generation 

for vane machines, the paper aims at highlighting similarities and differences occurred in the two 

simulation sets. 

2.  Grid Generation Procedure  

In a sliding vane geometry, the working chamber is formed by the volume entrained between the 

housing, the rotor and the end plates. As the rotor carrying the set of vanes turns, each vane divides the 

full volume into successive chambers that undergo suction, compression/expansion and discharge 

phases. At the tip of each vane there is a thin gap that needs to be treated as the leakage. Even though 

the change in volume of this gap is very small compared to the core region, because of the eccentricity 

between rotor and stator, the relative shape of these gaps change with rotor positions. Altogether, the 

combined core and leakage gap form a O grid topology. Several algorithms for the structured meshing 

of O type domain topology are available in practice showed that algebraic algorithms with transfinite 

interpolation, post orthogonalisation and smoothing are the most efficient ones for applications like twin 
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screw compressors where a number of mesh files are required to be generated and supplied to the CFD 

solvers in order to treat mesh deformation [14]. Similar algebraic grid generation principle was used in 

this work for the vane geometry rotor domain mesh.  

Flow chart in Figure 1 lists the main stages of the grid generation procedure. A standalone parametric 

geometry program built as a Matlab application is used to produce the rotor profile along with the vane 

at the initial rotor position. For a given set of rotor, stator diameters and number of vane with vane 

thickness, the program provide coordinate of the points on the chamber boundaries. This profile is an 

input to the meshing algorithm. Successive rotor positions appear to be rigid body rotations for the rotor 

while for the fluid volume that is deforming, it is a complex boundary motion where rotor rotates, stator 

is stationary and each of the vane is undergoing a general body motion. For simplification, blade tip 

clearance gap changes were not accounted in the presented analysis, but the meshing algorithm allows 

the possibility to further introduce a gap variation function. 

 

 
Figure 1. Vane geometry mesh generation procedure 

 

The first stage in the meshing procedure is to discretize the boundaries. At this stage, inputs regarding 

the number of nodes and parameters for various control functions are taken from the user. The boundary 

discretization produces the distribution into the topology of an ‘O’ grid, as shown in Figure 2.b. An ‘O’ 

structure for the rotor mesh was purposely selected because it avoids any inaccuracies that can be 

introduced due to a non-matching mesh connection between core and leakage regions. The sudden 

transition from the leakage gaps to the core was handled by the introduction of stretching functions that 

gradually flare the radial mesh lines from leakage gap into the core as seen in Figure 2.c and Figure 2.d. 

At the position where the core region topology does not remain rectangular, as it happens when the 

vane slides inside the rotor, a simplification has been introduced to convert the vane side walls into short 

segments on the rotor surface. It is anticipated that the leakage flow will not be influenced by this 

simplification as the gap clearance does not change but it significantly eases the O grid mesh generation. 

The second stage in mesh generation is distribution of interior nodes. Transfinite interpolation, 

orthogonalisation and smoothing as described in [14] were used in these procedures to get a good quality 

hexahedral cell structure as seen in Figure 2.e. Once the 2D mesh is generated for all rotor positions, the 

mesh is assembled into 3D volume in the required format of the solver (Figure 2.f). In the current 

implementation there is possibility to export the mesh in solvers such as ANSYS CFX, ANSYS 

FLUENT, STAR CCM+ and Simerics PumpLinx. The entire meshing procedure was implemented in 

the software package SCORG™ developed at City, University of London [16]. 

The rotor domain is eventually connected to suction and discharge ports via non-conformal 

interfaces, as usually occurs in CFD analysis on positive displacement machines [12]. Ports meshing is 

usually carried out using standard tools and with reference to a tetrahedral cell structure to better capture 

the real geometry. 

In the presented analysis, ANSYS CFX solver was used to calculate the oil injected flow fields in 

the air compressor in the first test case and a real gas fluid definition was used in the calculation of a 

ORC expander in the second test case. ANSYS CFX provides a model called Junction Box Routine that 
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is a user defined library to specify mesh deformation from custom applications such as SCORG. The 

solver updates the nodes coordinates from set of pre-generated coordinate files after every crank angle 

step (or its submultiples). Solver time step size finally results from the selected crank angle step and 

revolution speed of the rotor. 

 

 
 

Figure 2. Grid generation procedure: (a) CAD drawing, (b) boundary generation, (c) boundary 

discretization, (d) stretching function applied to stator, (e) internal node distribution, (f) 3D grid 

3.  Numerical setups  

Two test cases were analyzed using the new grid generation procedure developed in this work as 

represented in Table 1. 

Table 1. Summary of geometrical and mesh specifics 

 Oil injected Air Compressor ORC Expander 

Rotor Diameter 195 mm 65 mm 

Axial Length 540 mm 60 mm 

Tip Clearance 50 µm 10 µm 

 Ports Core Ports Core 

Cell type Tetrahedral hexahedral Tetrahedral hexahedral 

Node count (Million) 0.353 0.4735 0.135 0.157 

Maximum aspect ratio 221 138 23 228 

Minimum orthogonality 8.6 14.9 10.0 11.6 

3.1.  Case I: Oil injected air compressor.  

The operating conditions that were considered as benchmark for the numerical results were 980 RPM 

as revolution speed and 8.70 bara as outlet pressure. Inlet pressure was 1.01 bara, inlet temperature 25.4 

°C. The oil mass flow rate obtained from measurements was 2.9 kg/s and was used to specify the oil 

injection pressure so as to achieve this mass injection. Oil injection pressure was set at  6.6 bara, oil 

injection temperature was 65.0 °C. Under these conditions, the measurements showed that air mass flow 
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rate was 0.203 kg/s, compressor indicated power was 68.2 kW and shaft power recorder was 82.8 kW. 

Table 1 presents a summary of the geometry and CFD model mesh data for the case. 

3.2.  Case II: Real Gas, ORC application expander.  

Table 1 also presents a summary of the geometry and CFD model mesh data for the expander case. From 

the tests performed in refs. [17, 18], the operating conditions that were considered as benchmark for this 

case were 1551 RPM as revolution speed and 12.11 bara as inlet pressure with 90.5 °C as inlet gas 

temperature. Outlet pressure was 4.57 bara. Aungier Redlich Kwong (ARK) real gas model was used to 

specify the coefficients of the polynomials to define material properties and equation of state. 

Coefficients for specific heat and critical state temperature and pressure were supplied to generate a 

thermodynamic table in the temperature range of 273 and 400 K, while the pressure range was 2.0 and 

60.0 bara. 

 

  
Figure 3. Compressor ports mesh Figure 4. Expander ports mesh 

 

Figure 3 shows the tetrahedral mesh used for the static ports of the oil injected compressor. Suction 

port, discharge port interface with the deforming rotor domain and the oil injection rail have been 

highlighted as in the colour scheme. Low pressure inlet and high pressure outlet boundaries are also 

seen. Similarly, Figure 4 represents the tetrahedral mesh used for the static ports of the real gas ORC 

expander. High pressure inlet, Low pressure outlet and the axial interface of low pressure port with the 

deforming rotor domain has been highlighted by the colour scheme. Radial interface of the high pressure 

port with the rotor is not seen. All these interfaces have been defined in the ANSYS CFX solver as non-

conformal conservative flux type of fluid-fluid interfaces. 

Table 2 presents the details of the CFD solver numerical setup. Most settings remained common 

between the two cases, except for the working fluid and solver relaxation parameters. Additionally since 

compressor case was solved as an oil injected flow, an eulerian-eulerian two phase solution was 

calculated. Air was the primary phase and constant density oil as liquid was set as the secondary 

continuous phase. Further details of oil injected compressor modelling can be found in Rane et al (2016). 

In terms of difficulty of solution, the compressor flow poses a challenge. In the compressor, the leakage 

flow through the tip gaps is in opposite sense to the main positive flow. Because of this and also due to 

the presence of oil phase, a gradual rise in discharge pressure was required to be specified. At the same 

time the solver relaxation factors were of lower order. On the other hand even though ARK real gas 

equation of state was defined with fixed table limits, a relatively easy convergence of the solver was 

observed. This could be due to the lower time step size and also the leakage flow sense in the same 
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direction as the main gas flow. A relatively higher solver relaxation factor could be specified in this 

case. 

Table 2. Details on the numerical setups in the ANSYS CFX solver 

 Air Compressor ORC Expander 

Mesh deformation User defined nodal displacement via junction box routines in FORTRAN 

Mesh in ports 
Tetrahedral with boundary layer refinements  

(Generated by ANSYS pre-processor) 

Turbulence model SST – k Omega (Standard Wall Functions)  

Inlet boundary condition Opening (Specified total pressure and temperature) 

Outlet boundary 

condition 

Opening (Static pressure 

In case of backflow used as total pressure and temperature) 

Control volume 

gradients 
Gauss divergence theorem 

Advection scheme Upwind 

Pressure-Velocity 

coupling 
Co-located layout (Rhie and Chow 4th order) 

Transient scheme Second order (Fully implicit Backward Euler) 

Transient inner loop 

coefficients 
Up to 20 iterations per time step 

Convergence criteria r.m.s residual level 1e-03 

Working fluid Air Ideal Gas + Liquid oil R236fa (NIST coefficients ARK table) 

Relaxation parameters Solver relaxation fluids (0.1) Solver relaxation fluids (0.4) 

 

4.  Results and Discussion 

4.1.  Case I: Oil injected air compressor.  

Figure 5 reports the pressure contours in a cross section of the machine at 75 mm with respect to a full 

axial length of 540 mm. The sealing of the high pressure port from the suction port is apparent from the 

pressure distribution.  

  
Figure 5. Compressor pressure - axial cross 

section at 14% of rotor length 

Figure 6. Compressor oil volume fraction - axial 

cross section at 14% of rotor length 
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The last 6th chamber is open to the discharge pressure of 8.7 bara but shows a slightly higher internal 

pressure of about 10.0 bara due to continued compression of the gas being discharged. Figure 6 reports 

the distribution of oil volume fraction in the same cross section at the same rotor position. From the 

leakage paths, oil is getting passed into the 1st suction chamber on the low pressure side. High oil 

concentration is visible in the injection rail and a radial jet of oil flow is visible in the 5th compression 

chamber. The pressure in this chamber is about 4.0 bara. About 6 – 8% oil volume fraction is observed 

in the discharge port. 

Figure 7.a presents the distribution of gas temperature in this cross section while Figure 7.b is a 3D 

distribution of gas temperature with an oil iso-surface with 10% volume fraction superimposed in 

greyscale colors. Despite the sealing action of the lubricant, the clearance at the vane tip induces a 

backflow driven by adverse pressure gradient in opposite direction to the counter clockwise revolution 

speed sense in Figure 7.b. In turn, the overall flow field in the compressor vane is affected by a 

recirculation region whose magnitude is gradually lowered as the leakage flow interacts with the main 

one (which is aligned with the rotation sense). This phenomenon contributes to enhance the heat transfer 

between the compressing air and the oil that, after the radial injection shown in Figure 7.a, spreads along 

the leading side of the vane and mixes with air. The oil accumulation on the walls of the rotor, i.e. on 

the metallic surfaces which define the vane in reality, can be seen in the bottom left of Figure 7.b. These 

oil layers allow to lower friction losses between surfaces, namely stator with blade tip and blade side 

walls with rotor slots. 

  
Figure 7. Compressor gas temperature: (a) cross section at 14% of rotor length, (b) 3D inner wall with 

injection rail and iso-surface having an oil volume fraction of 10% 

 

4.2.  Case II: Real Gas, ORC application expander.  

Figure 8.a reports the pressure distribution of gas in case of the ORC expander simulation. Pressure from 

the high pressure port is at 12.11 bara and 90.5 °C. With expansion, a smooth decrease in gas pressure 

is visible across the chambers. Finally, pressure is at lower level of 3 bara from the 4th chamber onwards, 

when low pressure port is exposed. Figure 8.b represent the pressure distribution on the 3D rotor surface 

along with the vanes. A uniformity of pressure distribution is seen is individual chambers. Across the 

vane tip leakages, pressure gradients are observable. Similarly, Figure 9.a reports the gas temperature 

in the cross section and Figure 9.b presents gas temperature on the 3D rotor surface. In the cross section 

gradual reduction in gas temperature is visible. On the 3D rotor surface in chambers 1 and 2, a small 

non-uniformity of gas temperature distribution is seen due to the length of the intake port not covering 

the full rotor length and presence of axial low pressure ports on the two axial ends of the rotor. 
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Figure 8. Expander pressure variation: (a) cross section at 50% of rotor length, (b) 3D inner wall 

 

  
Figure 9. Expander gas temperature: (a) cross section at 50% of rotor length, (b) 3D inner wall 

 

Table 3 presents the computational time required for generation of the grids using the developed 

algorithm and the time required by the CFD solver for calculation of a one boundary condition. 

 

Table 3. Summary of computational time for grid generation and CFD calculations 

 Oil injected Air Compressor ORC Expander 

Generation for 720 positions   

2D cross section grid  120 seconds 120 seconds 

3D grid  900 seconds 720 seconds 

CFD solver computational time per case 

 Count Time Count Time 

Per time step 5 convergence 

iterations per step 
700 seconds 

3-5 convergence 

iterations per step 
50 -55 seconds 

Cyclically stabilised flow 1440 time steps 160 hours 1440 time steps 4 hours 
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5.  Conclusions 

The research work presented in this paper is the development of a robust and fast, deforming grid 

generation procedure for CFD analysis of sliding vane machines. Available literature suggested that 

only limited approaches to solving a full 3D numerical simulation in vane machines is currently 

available and the major limitation was found to be in the generation of deforming grids for the rotor 

domain. The developed grid and numerical methodology was eventually tested using the ANSYS CFX 

solver. Two vital test cases have been reported in the paper. First case is an industrial sliding vane oil 

injected air compressor and the second case is an ORC application, R236fa operated expander.  

Multiphase simulations on the oil injected air compressor were successful in revealing the non-

uniformity of gas temperature and oil distribution during the operation of the machine. Such a full scale 

model allowed to track a recirculation region induced in the vane flow field by the leakage flow through 

the clearance at the tip. Furthermore, the convective heat transfer with air showed the cooling 

capabilities of the lubricant even when supplied into the vanes as liquid jets. On the other hand, the oil 

temperature rise decreased its dynamic viscosity and, in turn, its hydrodynamic potential to prevent dry 

contact between blades and stator. 

Real gas ARK model was successfully applied in the ORC expander analysis. The simulations 

provided information on the expander filling losses, internal expansion phenomenon and performance 

parameters could be evaluated at various operating conditions. Although due to the scope of this paper, 

flow results only from one of the selected operating conditions have been presented here.  

These new procedures for grid generation of sliding vane machines will allow further design 

improvements and performance prediction of the machines with design modifications can be performed 

better. The effects of a variable tip clearance due to oil temperature and blade dynamics will be taken 

into account in future upgrades of the numerical methodology. 
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