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Calibration error analysis of inertially
stabilized platforms using quaternions
and octonions in rotation
decomposition
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Abstract
In the calibration process of the inertially stabilized platforms with a high-precision turntable and an autocollimator, sig-
nificant calibration errors can result from the axis misalignments between the inertially stabilized platforms and the turn-
table. Based on the relationship between spatial rotations and quaternions or octonions, this article proposes a
representation using octonions to realize the decomposition of the rotation axis in two perpendicular axes and subse-
quently derives the calibration error model. The test results demonstrated that the error is significantly improved after
compensation. The azimuth variance is reduced from 0.1379(�)2 to 0.0492(�)2, which offers a more accurate set of data
for further compensation based on the error model of the platform itself.
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Introduction

As a vector rotates around a straight line in a three-
dimensional (3D) space coordinate system, it is easy to
obtain the rotated vector through a rotation matrix.1–5

Inertially stabilized platforms (ISPs) have been widely
utilized to maintain its sensor’s orientation pointing to
an accurate direction in many applications, such as
vehicles, ships, aircrafts and spacecraft. Its accuracy is
technically vital and affects the capture, location and
tracking of the target.6–9 A two-axial platform is fixed
on a high-precision turntable, with an autocollimator
showing the rotating angular error,10,11 as shown in
Figure 1, where A1 is the azimuth axis of the turntable,
B1 its elevation axis, A2 the azimuth axis of the plat-
form, B2 its elevation axis and C2 the line of sight. At
zero positions, A1 and A2 are vertical, while B1 and B2

are horizontal.
In the calibration process, uPA and uPE are the plat-

form rotation angles in terms of azimuth and elevation,
respectively. The azimuth and elevation angles can be
similarly defined for the turntable (uTA and uTE) and
the autocollimator readouts of axes (dA and dE).
Generally, it is uTA = � uPA and uTE = � uPE. If
uPE =0 and uTE =0, it is obvious that dA = uPA � uTA.
However, if uTE = � uPE 6¼ 0, A1 and A2 are no longer

vertical, which indicates dA 6¼ uPA � uTA. It means
some calibration error is introduced, and it is obliga-
tory to determine the error to calibrate ISPs accurately.

This article first presents the notation and definitions
of quaternions and octonions and then gives a detailed
description of the relationship between rotations and
quaternions or octonions. It obtains the spinor with
octonions as a vector rotates around an axis by means
of decomposing the shaft into two perpendicular axes,
which indicates octonions can also be used in rotations.
The actual test results have demonstrated that the cali-
bration process error can be effectively compensated.
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Quaternions and octonions

Notation and definitions of quaternions

Quaternions are invented by W.R. Hamilton, and they
can be used to speed up calculations involving rota-
tions. A quaternion is represented by just four scalars,
in contrast to a 3 3 3 rotation matrix which has nine
scalar entries.12 A quaternion can be defined as13

Q=ai+bj+ck+q0 ð1Þ

where a, b, c andq0 are real numbers, and i, j andk are
the imaginary units which obey the following multipli-
cation rules

i2 = j2 = k2 = � 1
ij= � ji= k
ki= � ik= j
jk= � kj= i

8>><
>>:
Let q=ai+bj+ck, equation (1) can then be

rewritten as

Q=q0 + q ð2Þ

where q0 denotes the scalar part, and q denotes the vec-
tor part.

Given another quaternion P (P=p0 + p), their
product according to the algebraic rules of multiplica-
tions given above is13

PQ= p0 + pð Þ q0 + qð Þ
=p0q0 � p � q+p0q+q0p+ p3 q ð3Þ

where p � q and p3 q represent the standard inner and
cross products, respectively. Meanwhile, (p0q0 � p � q)
is the product’s scalar part, and (p0q+q0p+ p3 q) is
the vector part.

Assume p0 =0 andq0 =0, thus P= p and Q= q
are pure quaternions. Then, equation (3) becomes

PQ= � p � q+ p3 q ð4Þ

The norm of the quaternion Q is defined as in equa-
tion (5). If the norm is 1, the quaternion is called a unit
quaternion

Qk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 + qjj 2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

2 +a2 +b2 +c2
q

ð5Þ

The quaternion Q�=q0 � q is called the conjugate
of Q. Hence

Q�Q=QQ�= Qk k2 ð6Þ
PQð Þ�=Q�P� ð7Þ
PQk k= Pk k Qk k ð8Þ

An arbitrary quaternion Q can be described as14

Q= Qk k cos u+ n sin uð Þ ð9Þ

where n is the unit vector, and n= q= qk k,
cos u=q0= Qk k and 04u \ p.

Quaternions and rotations

Let S be an arbitrary inertial reference frame with
i; j andk as basic vectors and Rs be an arbitrary vector.
The unit quaternion Q given in quation (10) can repre-
sent a counterclockwise rotation which rotates an angle
2u around the vector n in the coordinate system14

Q= cos u+ n sin u ð10Þ

The resulting vector R0s can be computed through
rotation transformation by equation (11)

R0s =QRsQ
� ð11Þ

where R0s is the rotated vector.

Proof. As shown in Figure 2, the vector p rotates around
the line l at an angle 2u to q. In order to obtain q, p can
be decomposed into pk which is aligned with l and p?
which is perpendicular to l. p? turns into p0? after rota-
tion, and pk remains the same, while e is the unit vector
of pk. Hence15

p= pk+ p?
q= pk+ p0?

�
ð12Þ

p0?p?= � p? � p0? � p?3 p0?

= � p?k k p0?k k cos 2u� e p?k k p0?k k sin 2u

ð13Þ

where p?, p
0
? and e comply with right-handed coordi-

nate system principle. It then has

p0?= � p?k k p0?k k cos 2u� e p?k k p0?k k sin 2uð Þp�1?
= cos 2u+ e sin 2uð Þp? ð14Þ

It is easy to know that

pk= p � eð Þe= �1
2

pe+ epð Þe= 1

2
p� epeð Þ ð15Þ

Figure 1. Calibration system of ISPs.
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p?= p� pk=
1

2
p+ epeð Þ ð16Þ

Combined with equations (12), (14), (15) and (16), we
obtain

q= pk+ p0?

=
1

2
1+ cos 2uð Þp+ sin 2uep� sin 2upe+ cos 2u� 1ð Þepe½ �

= cos u+ e sin uð Þp cos u� e sin uð Þ

ð17Þ

which is in accord with equation (11); thus, quaternions
can be used to describe the rotations.

Definitions of octonions

Similar to quaternions, the octonions are an eight-
dimensional (8D) algebra with bases 1, i, j, k, l, il, jl
and kl, with their multiplications given in Table 1,
which gives a detailed description of the multiplying
results.16

It is obvious that the octonions are nonassociative
since (ij)l= � i(jl)=kl 6¼ i(jl). An arbitrary octonion
can be described as in equation (18)

O=a0 +a1i+a2j+a3k+a4l+a5il+a6jl+a7kl

ð18Þ

where a0 � a7 are real numbers.

Suppose Q4 is a quaternion and its conjugate Q�4.
Defining an octonion O8, it is easy to find that

Q4O8Q
�
4 = Q4O8ð ÞQ�4 =Q4 O8Q

�
4

� �
ð19Þ

The first four items of octonions in equation (18) are
just a quaternion, which can represent a spatial position
rotation in a three-dimensional (3D) space.

The octonion’s space can be denoted by the quater-
nion’s space combined with a mirror M, as shown in
Figure 3.

In Figure 3, 1, i, j andk are the four bases of quater-
nions (1-space), and il, jl andkl are the images of
i, j andk in the mirror M, which comply with the left-
hand coordinate system. Hence, l, il, jl andkl constitute
another four-dimensional (4D) space (l-space). As a
result, 1, i, j andk and l, il, jl andkl constitute an 8D
space, which are the bases of octonions. p is an arbi-
trary vector in the 1-space, and its image in M is pl.
Similar to pure quaternion, it can be denoted by pure
octonion as OP = p+ pl. It should be noted that this is
only one of the various descriptions for octonions suit-
able for this article.

Rotations and octonions

Since the octonions were discovered independently by
Arthur Cayley in 1845, one of the most familiar appli-
cations is to describe the process whereby an electron
emits or absorbs a photon,16 where it can be used to
describe the spinor.

Octonions in 3D coordinate system

In Figure 2, the resulting vector q= pk+ p0?. pk is not
affected by the rotation, and it remains unchanged after
rotation.

Figure 3. Octonion description by employing a mirror.

Figure 2. Schematic diagram of rotation.

Table 1. Octonion multiplication table.

1 i j k l il jl kl

1 1 i j k l il jl kl
i i 21 k 2j il 2l 2kl jl
j j 2k 21 i jl kl 2l 2il
k k j 2i 21 kl 2jl il 2l
l l 2il 2jl 2kl 21 i j k
il il l 2kl jl 2i 21 2k j
jl jl kl l 2il 2j k 21 2i
kl kl 2jl il l 2k 2j i 21
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In Figure 4, assume X, Y and Z axes are rotated
around the Z axis by an angle of 2u, then we obtain

X axis : O0x =QzOxQ
�
z

= i cos 2u+ j sin 2uð Þ+ il cos 2u� k sin 2uð Þ
ð20Þ

Yaxis : O0y =QzOyQ
�
z

= �i sin 2u+ j cos 2uð Þ+ jl cos 2u� k sin 2uð Þ
ð21Þ

Zaxis : O0z =QzOzQ
�
z = k+ kl cos 2u� k sin 2uð Þ

ð22Þ

where Qz = cos u+ k sin u, Q�z = cos u� k sin u, Ox =
i+ il, Oy = j+ jl and Oz = k+ kl.

It is obvious that (i cos 2u+ j sin 2u), (� i sin 2u+
j cos 2u) and k represent the spatial position vectors,
while il( cos 2u� k sin 2u), jl( cos 2u� k sin 2u) and
kl( cos 2u� k sin 2u) describe the rotation processes.

Suppose three lines L1, L2 and L3 are in the planes
XOY and YOZ and the space OXYZ, respectively,
with the same inclined angle a with Y axis as shown in
Figure 4. The vectors of the three lines can be described
as

L1 : V1 = i sina+ j cosa ð23Þ

L2 : V2 = j cosa+ k sina ð24Þ

L3 : V3 = � i sina sinb+ k sina cosb+ j cosa

ð25Þ

where b is the angle between the Z axis and the projec-
tion of L3 in the plane XOZ.

Define an octonion

O=Op +Or ð26Þ

where Op =a0 +a1i+a2j+a3k, denoting the position
vector, Or =a4l+a5il+a6jl+a7kl, denoting the rota-
tion angle vector. Since the position vector is the same
as the quaternions described above during the rotation,
here we only focus on the rotation angle vector.

Suppose that Y axis is rotated 2u around L1, L2 and
L3, respectively, then we obtain

L1 : Or1 =Ql1OryQ
�
l1

= � l sin 2u cosa+ j cos 2u� k sin 2u sinað Þ
ð27Þ

L2 : Or2 =Ql2OryQ
�
l2

= � l sin 2u cosa+ j cos 2u+ i sin 2u sinað Þ
ð28Þ

Or3 =Ql3OryQ
�
l3

= � l sin 2u cosa+ j cos 2u½
+ i sin 2u sina cosb+ k sin 2u sina sinbð Þ�

ð29Þ

where Ql1 = cos u+V1 sin u, Q�l1 = cos u� V1 sin u,
Ql2 = cos u+V2 sin u, Q�l2 = cos u� V2 sin u, Ql3 =
cos u+V3 sin u, Q�l3 = cos u� V3 sin u and Ory = jl.

The results indicate that ( sin 2u cosa) is a constant;
(j cos 2u) is the segment related to the rotated vector (Y
axis); (�k sin 2u sina), (i sin 2u sina) and ½(i cosb+k
sinb) sin 2u sina� are the segments describing the per-
pendicular vector that complies with the left-hand coor-
dinate system with the rotation axis and Y axis.
Combined with equations (20), (21) and (22), the rota-
tion process of a vector around an axis can be denoted
by two rotation segments of an octonion, that is, the
rotating component around a perpendicular axis and
the spinor, the coefficients are invariant in different
coordinate systems and are determined by the rotation
quaternion.

Arbitrary nonorthogonal rotation

An arbitrary nonorthogonal rotation can be shown in
Figure 5, OA

*
makes an inclined angle a (0\ a \ p=2)

with OP and rotates 2u (042u \ p) around OP to OB
*

.
Define the original vector OA as OY1 axis; OY0,
OY1, OZ0 and OZ1 are in the same plane; OZ2 is per-
pendicular to OA

*
and OB

*
; and OX0?OY0?

OZ0, OX0?OY1?OZ1, OX2?OY1?OZ2 and AM
*

?OA
*?OX0, AM

*
could be used to denote the spin-

ning angle of O
(

A.
In the coordinate system OX0Y1Z1, the rotation is

same as the rotation around L2 in Figure 4. Take O
(

A
and O

(

B as unit vectors, the result can be described as

OOB1 =QOPOOAQ
�
OP

= � l sin 2u cosa+ jl cos 2u+ il sin 2u sina

ð30Þ

where QOP= cos u+(j cosa+ k sina) sin u and
Q�OP= cos u� (j cosa+ k sina) sin u andOOA = jl.

Meanwhile, in the coordinate system OX2Y1Z2, the
rotation can be divided into rotating around OZ2

which represents the position rotation process and spin-
ning around itself. As O

(

A rotates 2u around O
(

P,
based on two rotation quaternions, ( cosg +k sing)
and ( cos d+ j sin d), the combined quaternion vector is
defined as

Figure 4. 3D coordinate system.
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Q0 = cos u+ k sing+ j sin d ð31Þ

where 2g is the rotating angle (around OZ2) and 2d is
the spinning angle (around OY1) in the coordinate sys-
tem OX2Y1Z2. It can be shown sin2g+sin2d=sin2u.
Then, we obtain

OOB2 =Q0OOAQ
�
0

= � l2 sin d cos u+ jl cos 2u+ il2 sing cos u

ð32Þ

From OOB1 =OOB2, we obtain

2d=2sin�1 sin u cosað Þ
2g =2sin�1 sin u sinað Þ

�
04a4

p

2
, 04u, d, g \ p

� �

ð33Þ

According to Figure 5, it is facile to find that 2g is
\AOB, and 2d is the rotation angle of AM around
O
(

A; since OZ2 is not parallel to AM, in the rotating
process of O

(

A around OZ2, AM would produce minor
rotation around O

(

A, which means 2d is not the real
spinning angle of O

(

A. However, as the inclined angle
of AM and OZ2 is minute, this article chooses 2d as the
spinning angle of O

(

A, and the minor error is hence
neglected.

Calibration error analysis

In section ‘‘Rotations and octonions,’’ the rotation has
been realized by means of decomposing the axes, com-
pared to the decomposition of the rotated vector
described in section ‘‘Quaternions and octonions.’’ In
Figure 6, MN is the surface axis (surface normal) of the
reflecting mirror, MH the horizontal axis and MV the
vertical axis. PA and PE are the azimuth axis and the
elevation axis of the platform, respectively. TA and TE

are the medium axis and the outer axis of the turntable,

respectively. At zero positions, PA and TA are vertical,
and PE and TE are horizontal.

As described in section ‘‘Introduction,’’ the azimuth
and elevation angles are defined for the platform (uPA
and uPE), the turntable (uTA and uTE) and the autocolli-
mator readouts of axes (dA and dE). When
uTE = � uPE =a 6¼ 0, if the turntable rotates O
around TA, the mirror will rotate at the same angle
around MV, if the platform continues rotating �O
around PA, according to equation (33), the mirror will
only rotate �½2sin�1( sin (O=2) cosa)� around MV with
a spinor of �½2sin�1( sin (O=2) sina)� around MH. The
spinning of the mirror will result in the coupling error
in the azimuth and elevation, but the angle is minute in
this calibration process. The rotation angle will intro-
duce an angular error h in the azimuth

h=O� 2sin�1 sin
O
2
cosa

� 	
 �
ð34Þ

With O changing from 240� to 40� and a from
220� to 20�, the calibration error in simulation is
shown in Figure 7. Since the calibration error signifi-
cantly increases with O and a, it is necessary to sepa-
rate the error.

Experimental results

The pointing errors have been acquired with a high-
precision turntable and an autocollimator at the

Figure 5. Arbitrary nonorthogonal rotation.

Figure 7. Calibration error’s effect.

Figure 6. Experimental setup and data acquisition system.
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azimuth of 220�, 215�, 210�, 25�, 0�, 5�, 10�, 15� and
20� and at the elevation of 220�, 215�, 210�, 25�, 0�,
5� and 10�. The compensation results calculated by
equation (34) (the elevation angle is a, and the azimuth
angle is the rotated angle O) are shown in Figure 8 and
Table 2, which have shown that the calibration error
has been compensated effectively. However, in order to
improve its pointing accuracy further, it is necessary to
analyze errors that result from the platform’s misalign-
ment error, nonperpendicularity, initialization error
and so on, and then relevant compensation models can
be adopted. The detailed information has been pre-
sented and reported in Hong et al.9 and Tang et al.17

Conclusion

With respect to the ISPs, calibration process with a
high-precision turntable and an autocollimator, this
article has developed a novel approach to the rotation
decomposition to determine the calibration errors. It
has shown that octonions can represent the rotation
process completely, including the rotation around a

space vector and the spinning around itself. It has rea-
lized a new representation of the rotation by means of
decomposing the rotation axis into two perpendicular
axes. The error in the calibration process is then derived.
According to the test results, the accuracy after error
correction is significantly improved with the variance in
azimuth decreased from 0.1379(�)2 to 0.0492(�)2, which
offers a more accurate set of data for further compensa-
tion based on the error model of the platform itself.
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