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Abstract

Eliminating faults in software systems is important, because they can have catastrophic conse-

quences. This can be achieved by testing and debugging. Testing involves executing the system with

a test case to obtain an output. The output is evaluated against the tester’s expectations; deviation

from these expectations indicates that a fault has been detected. Debugging involves using informa-

tion about the fault, that was gleaned during testing, to isolate the fault in the system. Coincidental

correctness is a widespread phenomenon in which a fault corrupts a program state, and despite this,

the system produces an output that satisfies the tester’s expectations. Coincidental correctness can

compromise the effectiveness of testing and debugging techniques.

This thesis investigated methods for alleviating coincidental correctness in testing and debugging.

The investigation culminated in four techniques. The first technique is called Interlocutory Testing.

Interlocutory Testing is a framework for the development of test oracles that are referred to as In-

terlocutory Relations. Interlocutory Relations are the first type of oracle that has been specifically

designed to operate effectively in the presence of coincidental correctness.

Metamorphic Testing was pioneered for testing non-testable systems. However, the effectiveness of

this technique can be compromised by coincidental correctness. The second technique, Interlocutory

Metamorphic Testing, is a version of Metamorphic Testing that has been integrated with Interlocutory

Testing, to alleviate the impact of coincidental correctness on Metamorphic Testing.

Interlocutory Mutation Testing is the third technique. This technique uses similar principles

to Interlocutory Testing to alleviate the Equivalent Mutant Problem in the presence of coincidental

correctness and non-determinism. Finally, the fourth technique is Interlocutory Spectrum-based Fault

Localisation. This technique uses Interlocutory Relations to ameliorate the effects of coincidental

correctness on fault localisation.

Each technique was empirically evaluated. The results were promising, and indicated that these

techniques were capable of mitigating the impact of coincidental correctness.
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Chapter 1

Introduction

This chapter outlines the problems being tackled by the thesis, as well as our aim and objectives (see

Section 1.1). It also presents the high level contributions and outline of the thesis. These can be found

in Sections 1.2 and 1.3 respectively.

1.1 Aim and Objectives

The aim of this thesis is to alleviate the impact of coincidental correctness in testing and debugging.

To address this aim, the thesis will attempt to fulfil the following objectives:

• Develop a new testing technique that can operate effectively in the presence of coincidental

correctness.

• Modify Metamorphic Testing to reduce its susceptibility to coincidental correctness.

• Develop a partial solution to the Equivalent Mutant Problem that can tolerate coincidental

correctness and non-determinism.

• Modify Spectrum-based Fault Localisation, to mitigate the impact of coincidental correctness.

The remainder of this section fleshes out the aim and objectives further.

1.1.1 Aim

Coincidental correctness describes a situation in which a corrupt program state manifests in the system

under test (SUT), but despite this the SUT arrives at an output that could have been produced

by a correct version of the SUT1. Coincidental correctness is widespread [119], and can reduce the

effectiveness of various testing and debugging activities and techniques. This thesis aims to counteract

this reduction in effectiveness.

1.1.2 Objectives 1 and 2: Testing and Coincidental Correctness

A developer might make a mistake when writing source code that could ultimately cause the system

to behave incorrectly. In such a scenario, the developer’s action is called an error, the mistake in the

source code is referred to as a fault, bug or defect, and the system’s incorrect behaviours are described
1We refer to such an output as a “plausible output”.
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as a failure. Failures can have catastrophic consequences [79]; it’s therefore important to verify the

correctness of software. This can be achieved by testing. A test case is a set of values that collectively

form an input for the system under test (SUT), and a test suite is a set of test cases. Testing involves

generating a test suite for the SUT, and for each test case in the test suite, predicting the SUT’s

outcome for this test case, executing the SUT with this test case to obtain an output, and finally

comparing this output to the predicted outcome. Comparisons that reveal discrepancies between the

output and predicted outcome are interpreted as evidence that the SUT is faulty.

The testing process described above has three particularly important components; test case gener-

ation, the testing methodology, and test oracles. The coverage of a test case refers to the proportion

of the source code that is executed by that test case, and the coverage of a test suite is the proportion

of the source code that is executed by the test cases within that test suite. Different test cases can

either execute the same or different source code, which means that one’s choice of test cases has an

impact on the overall coverage of the test suite, and therefore the likelihood of executing a fault. Test

case generation is responsible for selecting test cases to be included in the test suite.

The second important component of the testing process is the precise testing methodology that

is used. In particular, whether functional testing/black box-testing or structural testing/white box

testing is applied. A white box testing approach assesses the correctness of the SUT based on the

SUT’s internal program states, whilst black box testing approaches solely base their assessments on

input-output pairs.

The third important component is test oracles. Test oracles are an integral part of testing; they are

responsible for the outcome prediction and comparison tasks outlined above. Unfortunately, testing

has a drawback related to test oracles, called the oracle problem. The oracle problem2 describes a

testing scenario, in which it is infeasible to predict the test outcome or perform the comparison task

discussed above [190]. A sizeable amount of research has been conducted on alleviating the oracle

problem. We conducted a Mapping Study on the oracle problem, which can be found in Chapter 2.

The Mapping Study revealed a suite of techniques that can operate effectively in non-testable systems.

Assertions is an example of such a technique [74].

The Mapping Study also highlighted a related problem — coincidental correctness. Coincidental

correctness describes a phenomenon in testing, where a fault affects the behaviour of the SUT, but

the final output produced by the SUT is plausible [119]. To illustrate, let Prog be a program that

permutes the order of an array of positive integers (List). Prog iterates multiple times. On each

iteration, variables I and J are assigned a random array index from List (I = J is possible). The

values stored at List.get(I) and List.get(J) are swapped. Let Progf be a faulty version of Prog that

does not swap these values, if either I or J refers to the last index of List. The output produced by

Progf is plausible, since in Prog, List.get(I) = List.get(J) is possible, which means that a swap may

also not occur in Prog.

As discussed above, testing techniques report failures if a discrepancy between the actual out-

put and predicted outcome is revealed. Since the actual output can be plausible when coincidental

correctness is present, regardless of whether faulty behaviour manifests, it can match the predicted

outcome, and thus the testing process can erroneously conclude that the system is correct. To illus-

trate, an Assertion may check that every integer in List is a positive number; such a check cannot
2The research community interchangeably refers to systems that have the oracle problem as non-testable systems.
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detect Progf . Coincidental correctness can clearly compromise the effectiveness of traditional testing

techniques. It’s therefore not surprising that the Mapping Study found that most of the techniques

that were covered were not particularly effective in the presence of coincidental correctness, and that

there was no empirical evidence to demonstrate that the remaining techniques were effective under

these circumstances.

Various studies [119, 120, 3, 197] have concluded that coincidental correctness is widespread (see

Section 2.8 for a more detailed discussion). Despite the prevalence and importance of coincidental

correctness, relatively little research has been conducted on alleviating coincidental correctness in

testing. To the best of our knowledge, all of the solutions that have been proposed largely focus

on test case selection; there are no solutions that incorporate test oracles (see Section 2.10). This

motivates our first objective; to develop such a solution.

We observed that the relationship between the input and output of the SUT, in conjunction with

one’s knowledge/expectations about the SUT, can be used to predict aspects of the execution trace.

To illustrate, consider the permutation program example above. Let Input and Output be the state

of List before and after Prog has processed it respectively. If Input = Output, we can predict the

following aspects of the execution trace. Let Listiter, Iiter, and Jiter respectively denote the state

of List, I and J at the start of iteration iter. For array index K in Output, let RelevantIter

be the last iteration in which IRelevantIter = K or JRelevantIter = K. We can predict that if

IRelevantIter = K, then List.get(JRelevantIter) = Input.get(K). Otherwise, if JRelevantIter = K, then

List.get(IRelevantIter) = Input.get(K). The correctness of this prediction is predicated on whether

the SUT’s behaviour mirrors the tester’s expectations. To illustrate, suppose that the permutation

program has the aforementioned fault Progf . Progf can lead to situations in which Input = Output,

IRelevantIter = K, and List.get(JRelevantIter) 6= Input.get(K). It can also create situations in which

Input = Output, JRelevantIter = K, and List.get(IRelevantIter) 6= Input.get(K). The failure to satisfy

the prediction above in such situations shows that the behaviour of the SUT does not satisfy the

tester’s expectations i.e. a fault is present. This demonstrates that an approach that leverages the

relationship between the input and output to make predictions about aspects of the execution trace

can be used for testing in the presence of coincidental correctness. In Chapter 3, we introduce a

technique called Interlocutory Testing, which is an implementation of such an approach. Thus, this

attempts to address our first objective.

Another interesting observation made by the Mapping Study is that Metamorphic Testing (MT)

was one of the most studied techniques, in the context of the oracle problem. In MT, two sets of test

cases are executed. Those in the first set are referred to as source test cases. These test cases can be

generated by any test case selection strategy [35]. Those in the second set are called follow up test cases;

these test cases are generated based on specific source test cases and a metamorphic property [135].

A metamorphic property is an expected relationship between the outputs of source and follow up test

cases. A Metamorphic Relation (MR) is an oracle that is based on MT, and is evaluated by checking

that this relationship holds. For example, let Max(Ints) be a program that returns the maximum

value of a list of integers, Ints. An MR may generate one Source Test Case (SourceTestCase) and one

Follow-up Test Case (FollowupTestCase), such that FollowupTestCase contains two of each of the in-

tegers in SourceTestCase e.g. SourceTestCase = 〈3, 4, 5〉 and FollowupTestCase = 〈3, 3, 4, 4, 5, 5〉.

The MR may check that the output ofMax(SourceTestCase) = Max(FollowupTestCase). As men-
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tioned above, none of the testing techniques that were covered by the Mapping Study were empirically

shown to be effective in the presence of coincidental correctness, and this includes MT [20, 202]. This

inspired our second objective: to alleviate the impact of coincidental correctness on MT. Chapter 4

extends MT with Interlocutory Testing to create a new testing technique called Interlocutory Meta-

morphic Testing. The primary goal of Interlocutory Metamorphic Testing is to enable MT to operate

effectively in the presence of coincidental correctness, and thus to address the second objective.

1.1.3 Objective 3: The Equivalent Mutant Problem, Non-Determinism

and Coincidental Correctness

Information about the effectiveness of a testing technique can inform its design, development, and

application. The process of obtaining this information would ideally involve exercising the testing

technique on a set of real faults and recording the proportion of faults that were detected. Unfor-

tunately, this is usually infeasible because of a lack of fault data. Mutation Testing alleviates this

by generating artificial faults [142], which are intended to be reasonably accurate simulations of real

faults [2].

Mutation Testing operates by applying a minor augmentation (referred to as a mutation) to the

SUT (So) to produce a new version (Sm) [21] called a mutant. For example, a statement X < 5 in So

might be transformed into X > 5 in Sm. Mutations are intended to modify the behaviour of the SUT

to simulate a fault. A testing technique can then be applied to a mutant to deduce whether it can

detect the fault or not; if it can, then the mutant is said to have been killed, otherwise the mutant

is considered to have survived. Let KM be the total number of killed mutants and TM denote the

total number of mutants. The effectiveness of a testing technique can be measured with the mutation

score formula: KM
T M .

Unfortunately, Mutation Testing has several limitations; its propensity to produce equivalent mu-

tants being the most prominent — this is known as the Equivalent Mutant Problem [86]. A mutant,

Sm, is said to be an equivalent mutant, if Sm is semantically equivalent to the SUT, So. For example,

suppose that Math.abs(5) and Math.abs(−5) appear on Line 1 in So and Sm respectively. Sm is an

equivalent mutant because the change doesn’t modify the behaviour of So. Other examples include

mutant injection into dead code or mutants that cause performance improvements [86].

Equivalent mutants are problematic because they can skew empirical results, if one does not identify

and exclude them from experiments. In a study conducted by Yao et al. [199], it was discovered

that equivalent mutants are produced for most programs, regardless of size. Despite the fact that

deducing mutant equivalence is undecidable [19], the prevalence of the equivalent mutant problem

has motivated the development of several techniques that attempt to automate the classification of

mutants as equivalent or non-equivalent. Let So(I) and Sm(I) denote the respective outputs of So

and Sm for a given input I. One commonly used method involves exposing So and Sm to a test suite

to obtain a set of pairs 〈So(I), Sm(I)〉 and assumes that So and Sm are equivalent if the following

condition holds for each pair: So(I) = Sm(I). For ease of reference, we refer to this as the Traditional

Equivalent Mutant Detection Technique (TEMDT). An example of the use of TEMDT can be found

in a study conducted by Sadi et al. [165].

However, this assumption doesn’t always hold. For example, the presence of coincidental correct-

ness can lead to situations in which So and Sm produce the same output, even if Sm is semantically
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different from So. This can lead to non-equivalent mutants being mistakenly classified as equivalent

and bias the results because it could lead to the eradication of certain fault types from the evaluation.

If the technique is particularly adequate for or struggles with these fault types, then the effectiveness

measurements could either be an underestimate or overestimate respectively. The assumption may

also not withstand non-determinism; non-deterministic behaviours may be responsible for discrep-

ancies in the outputs of So and Sm, but one may misconstrue the source of these discrepancies as

having originated from the mutation [21]. Alternative techniques have been proposed to address these

problems, but have limitations (see Sections 2.8.2 and 5.4). Manual inspection is typically necessary

under such circumstances [1], and can be very costly. For example, Zeller and Schuler [203] manually

classified 140 mutants and reported that on average, 14 minutes and 28 seconds was required per

mutant classification. Thus, our third objective is to devise an automated means of alleviating the

Equivalent Mutant Problem in situations in which coincidental correctness and/or non-determinism

is present.

The Progf example in Section 1.1.2 demonstrates that the intuition behind Interlocutory Testing

can be used to distinguish between coincidentally correct and correct behaviours. Since the example

also implements non-determinism, it also shows that the intuition can tolerate non-deterministic

behaviours. Thus, it may be possible to leverage this intuition to ameliorate the Equivalent Mutant

Problem, for non-deterministic systems that are susceptible to coincidental correctness, as follows.

Let S denote the SUT and M be a mutated version of S. Suppose that M is executed with an input

(MInput), and produces an execution trace (MET ), and an output (MOutput). The relationship

between MInput and MOutput can be used in conjunction with the tester’s knowledge about S to

predict aspects of MET . If this prediction is incorrect then this suggests that M is not an equivalent

mutant. We call this approach Interlocutory Mutation Testing. Chapter 5 investigates whether

Interlocutory Mutation Testing could be an effective solution for the Equivalent Mutant Problem,

in the presence of coincidental correctness and non-determinism. Interlocutory Mutation Testing

attempts to address Objective 3.

1.1.4 Objective 4: Fault Localisation and Coincidental Correctness

Fault Localisation is a debugging task that involves using one’s knowledge about the SUT and a failure

to deduce which line of code (LOC) in the SUT is faulty. This is one of the most expensive tasks in

debugging [107] and has therefore inspired a lot of research into how this task could be automated.

One of the most promising techniques that has arisen from this collective effort is Spectrum-based

Fault Localisation (SBFL) [195].

SBFL instruments the SUT with predicates that evaluate to true when noteworthy events occur

in an execution trace. The SUT is then executed with a test suite to produce a set of execution traces

(ET ) based on these predicates. ET is partitioned into two subsets ETp and ETf , such that ETp and

ETf contain the execution traces of passed and failed test cases respectively. The frequency with which

each predicate evaluates to true in ETf and ETp is used as evidence that the event that is represented

by the predicate under consideration is correlated with failure, or the converse respectively. Various

mathematical formula are available e.g. Ochiai, Tarantula and Jaccard [52]; one of these can be used

to leverage the aforementioned frequency information to determine a “suspiciousness score” for each

predicate i.e. the likelihood of each predicate being correlated with failure.
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Figure 1.1: If Statement

Each predicate maps to a set of LOC, such that the event that is captured by the predicate is

dependent on the behaviours of this set of LOC. The suspiciousness score of each predicate is appended

to their set of LOC. For example, consider Figure 1.1. A predicate p1 may be based on the outcome of

the if statement being true and thus map on to Lines 10 to 13 (inclusive) but not 14 to 17 (inclusive).

Thus if p1 obtained a suspiciousness score of 0.7, this will be reflected on Lines 10 to 13 (inclusive).

The LOC in the SUT are finally sorted in descending order based on suspiciousness and this is reported

to the tester.

Ideally, a faulty LOC will be towards the top of this list i.e. have a higher than average sus-

piciousness score. This enables testers to prioritise their investigation of each LOC, based on the

likelihood of it being faulty. Although SBFL has had some promising results, it has also been found

to perform poorly when coincidental correctness is present [191] because test cases that execute faults

may be misinterpreted as passing testing cases [119] and this can confound the suspiciousness score

calculations. Our fourth objective is to mitigate this problem.

Chapter 6 introduces a new variant of SBFL, called Interlocutory Spectrum-based Fault Localisa-

tion (ISBFL), in which the predicates used by SBFL are supplemented with oracles based on Inter-

locutory Testing. The primary goal of ISBFL is to enable effective fault localisation in the presence

of coincidental correctness. ISBFL aims to address Objective 4.

1.2 Contributions

The main, high level contributions of the thesis are:

1. A comprehensive Mapping Study on the oracle problem.

2. A new testing technique called Interlocutory Testing that can operate effectively in the presence

of coincidental correctness, non-determinism, and the oracle problem.

3. An extended version of Metamorphic Testing that is less susceptible to the effects of coincidental

correctness. This extended version is referred to as Interlocutory Metamorphic Testing.

4. A partial solution for the Equivalent Mutant Problem, called Interlocutory Mutation Testing,

that can perform accurate classifications despite the presence of coincidental correctness and/or

non-determinism.

5. Interlocutory Spectrum-based Fault Localisation; a fault localisation technique that can provide

debugging support when coincidental correctness is present.
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1.3 Outline

1. Chapter 2 presents our Mapping Study on the oracle problem. It also presents background ma-

terial on coincidental correctness. Background material that is only relevant to specific chapters

is delegated to those chapters.

2. Chapter 3 introduces Interlocutory Testing. It also presents the results of a series of experiments

that attempted to ascertain the effectiveness and generalisability of Interlocutory Testing. A

comparative analysis between Interlocutory Testing and several other testing techniques in terms

of their effectiveness and usability is also given in this chapter.

3. Chapter 4 introduces Interlocutory Metamorphic Testing, and exercises it in several experiments

to deduce its effectiveness and generalisability.

4. Chapter 5 introduces Interlocutory Mutation Testing, and investigates its effectiveness, gener-

alisability, and the productivity gains that can be ascertained by leveraging the technique. An

experiment that compares Interlocutory Mutation Testing to TEMDT is also presented.

5. Interlocutory Spectrum-based Fault Localisation is introduced in Chapter 6, along with experi-

ments that illustrate its effectiveness.

6. Finally, Chapter 7 outlines our conclusions, discusses the limitations of our work, and presents

possible future research avenues.
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Chapter 2

Background

As mentioned in Section 1.1.2, we conducted a Mapping Study on the Oracle Problem. The Mapping

Study surveyed literature on automated testing techniques that can detect functional software faults in

non-testable systems, and endeavoured to leverage this information to satisfy the following objectives.

The first objective was to present a series of discussions about each of these techniques, from different

perspectives e.g. effectiveness, usability, and efficiency. The second objective was to perform a series

of comparisons between these techniques, based on effectiveness, efficiency and usability. The final

objective was to identify research opportunities. Further details about the Mapping Study can be

found in the Review Protocol, in Section 2.1. This chapter presents background material on the

Oracle Problem, in the form of the outputs of this Mapping Study. In particular, Sections 2.2 to 2.6

present the aforementioned discussions about each technique, and Section 2.7 conducts a series of

comparisons between the techniques. Potential research opportunities are identified throughout these

sections.

This chapter also documents background material on Coincidental Correctness, which can be

found in Section 2.8. Finally, we close this chapter by presenting threats to validity in Section 2.9,

and drawing conclusions and summarising our contributions in Section 2.10.

2.1 Review Protocol

To conduct our Mapping Study, we first defined a Review Protocol, based on the guidelines of Kitchen-

ham [99], Popay et al. [156], Higgins et al. [76], and Shepperd [172]. This section presents our Review

Protocol. In particular, Sections 2.1.1, 2.1.2, 2.1.3 and 2.1.4 outline the scope, search procedure, data

extraction approach, and quality appraisal methodology respectively. Finally, a brief overview of the

synthesis, which forms the majority of the remainder of this chapter, is presented in Section 2.1.5.

2.1.1 Scope

The scope of this Mapping Study was originally automated testing and debugging techniques that

have been designed to detect functional software faults in non-testable systems. Our Review Protocol

(presented in Sections 2.1.2 to 2.1.4) is based on this scope. We decided to narrow the scope of our

synthesis (i.e. Sections 2.1.5 to 2.7) to enhance the focus of the Mapping Study. In particular, our

revised scope does not consider debugging techniques. We realised that Specification-based Testing
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and Model-based Testing depend on the availability of a specification or model, and that the oracle

problem implies that these are not available. To that end, we also decided to omit these techniques

from the scope of our synthesis.

2.1.2 Search

A paper is considered to be relevant if it adheres to the Inclusion and Exclusion Criteria listed in

Table 2.1. To check a paper against these criteria, we adopted an iterative process, where successive

iterations checked the paper in escalating levels of detail [172] against the Inclusion and Exclusion

Criteria; if enough evidence could be accrued during an early iteration to classify the paper, then

the process terminated prematurely. The iterations were as follows: {title}, {abstract, introduction,

conclusion}, {the entire paper}. We conducted a search in mid 2014 to find relevant papers (that

were available before and during mid 2014). We achieved this by applying several search methods

in parallel and iteratively, and checking the relevance of each search result returned by these search

methods, by using the aforementioned iterative process. The remainder of this section outlines these

search methods.

One of our methods included using the search strings listed in Table 2.2 to query six research

repositories: Brunel University Summon, ScienceDirect (using the Computer Science Discipline filter),

ACM (queried using Google’s “site:” function), IEEE, Google (twice — with the filter on, and off),

and Citeseerx (each search term prefixed with “text:”). Let ResultsRR
SS denote the papers that were

returned by a research repository, RR, in response to a search string, SS. It would have been

infeasible to manually check the relevance of all of the papers in ResultsRR
SS . Thus, we used the

following terminating condition: the first occurrence of 50 consecutive irrelevant results. We retained

papers that were found to be relevant before the terminating condition was satisfied.

During the search process, we became aware of several techniques that had been used to solve the

oracle problem. The authors postulated that other studies on these techniques in the context of the

oracle problem may also have been conducted. Thus, a specialised search string for each technique

was prepared; these search strings supplemented those in Table 2.2.

Every paper in the reference list of each relevant paper was also checked for relevance. Again, we

retained papers that were found to be relevant.

We compiled a list of all of the authors that had contributed to the papers that were deemed to be

relevant. Each of these authors had at least one list of their publications publicly available. Examples

of such lists include: author’s personal web page, CV, DBLP, Google Scholar, and the repository the

author’s study was originally discovered in. We selected one list per author, based on availability and

completeness, and checked all of the publications on this list for relevance.

Finally, all of the authors were emailed a list of their papers that had been discovered by the search,

accompanied with a request for confirmation regarding the completeness of the list. This enabled the

procurement of cutting edge works in progress, and also reduced publication bias [99].

The various search methods described above led to the discovery of several papers that we did

not have access to. We were able to obtain some of these papers by contacting the authors. The

rest of these papers were omitted from the Mapping Study. The search methods also returned what

we believed were duplicate research papers. The authors of these papers were asked to confirm our

suspicions, and duplicates were removed.
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Issue Criteria

Problem Domain
The targeted problem domain/context in which testing is under-

taken must be non-testable.

The problem itself must revolve around the lack of a mechanism

to judge the correctness of an output.

The existence of the non-testable aspect must not be considered to

be a fault in itself.

The non-testable characteristic experienced in the SUT must arise

from the software.

The types of faults considered by the paper must be software faults.

The quality attribute of the system being tested must be functional

correctness.

Solution Space
The paper must include some sort of solution to the problem e.g.

a testing technique.

The primary solution to the problem must revolve around an au-

tomated fault detection mechanism.

The solutions must fall under the domains of either testing or

debugging.

Paper Type
Journal articles, conference proceedings, technical reports, book

chapters, and magazines must be included.

Papers that have a broad focus e.g. frameworks or systematic

reviews must contribute a relatively substantial amount of relevant

content. For example, a paper is not deemed to be relevant if all

of its relevant material is comprised of a short aside.

Duplicates must be excluded. We consider rewrites and prelim-

inary/older versions of the same papers to be duplicates. We

also consider journal papers that extend conference papers to be

duplicates, as well as published chapters of theses. Preference is

given to published over non-published papers, the most up-to-date

version, and the paper from the most reputable source. If both

papers are published in reputable journals, the most detailed one

is taken, and in the case that they are precise duplicates of each

other, an arbitrary choice is made.

The paper must be written in English.

The paper must be accessible.

The paper must have been published before mid 2014.

Table 2.1: Relevance Inclusion and Exclusion Criteria

In total, our search methods collectively procured 141 papers.
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Search Strings

((Stochastic OR (Non-deterministic OR nondeterministic OR “non deterministic” OR non-

determinism OR nondeterminism OR “non determinism”)) AND (System OR Software OR Pro-

gram OR Application OR Algorithm) AND Testing

((Stochastic OR (Non-deterministic OR nondeterministic OR “non deterministic” OR non-

determinism OR nondeterminism OR “non determinism”)) AND (System OR Software OR Pro-

gram OR Application OR Algorithm) AND ((“Check” OR “Checking”) OR (“Verification” OR

“Verify”))

((Stochastic OR (Non-deterministic OR nondeterministic OR “non deterministic” OR non-

determinism OR nondeterminism OR “non determinism”)) AND (System OR Software OR Pro-

gram OR Application OR Algorithm) AND (“Fault Localisation” OR “Fault Localization”)

(“Random output” OR “Randomised output” OR “Randomized output” OR “Randomized algo-

rithm” OR “Randomised algorithm”) AND (Systems OR Software OR Programs OR Applications

OR Algorithms) AND Testing

(“Probabilistic System” OR “Probabilistic Program” OR “Probabilistic algorithm”) AND

((“Check” OR “Checking”) OR (“Verification” OR “Verify”))

((“NonTestable” OR “Non-Testable” OR “Non Testable”) OR (“Oracle Problem” OR “no ora-

cle”) OR (“Pseudo-oracle” OR “Pseudo oracle”)) AND (Testing OR ((“Check” OR “Checking”)

OR (“Verification” OR “Verify”)) OR (“fault localisation” OR “Fault localization”) OR (“Debug-

ging” OR “Debug”) OR (“Fault detection” OR “Failure detection” OR “Mutant detection” OR

“Defect detection” OR “Detecting Faults” OR “Detecting Failures” OR “Detecting Mutants” OR

“Detecting Defects”) OR (“Validating” OR “Validate”))

Table 2.2: Search Strings

2.1.3 Data Extraction

We used the data extraction form in Table 2.3 to capture data from relevant papers, that was necessary

to appraise study quality and address the research aims. Unfortunately, many papers did not contain

all of the required data; thus requests were sent to authors to obtain missing data. Where this

approach was unsuccessful, assumptions were made based on the paper and the author’s other work.

For example, if they had not reported the number of mutants used, but tended to use 1000+ in other

papers, one can assume a significant number of mutants were used in the study.

2.1.4 Quality

Our quality instrument is presented in Table 2.4. Each relevant paper was checked against this quality

instrument. Papers that were found to have severe methodical flaws, and to have taken minimal steps

to mitigate bias were deemed to be of low quality. Relatively little research has been conducted on

the oracle problem; thus, many relevant studies are exploratory. Certain study design choices may

have been unavoidable in such studies, and may cause a quality instrument to label these studies as

low quality. This means that these valuable studies could be rejected, despite the fact that they may

have been at the highest attainable quality at the time. To account for this, papers that were deemed

to be of low quality, were only discarded if they did not make a novel contribution. This led to the
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Data Extraction Form

ID: Paper Title:

Question Answer

What evidence is there of there being a suf-

ficient amount of relevant information in the

paper to make a meaningful contribution to

the Mapping Study’s findings?

What evidence is there to suggest the parame-

ters of the experiment were representative and

were they adequate described?

What evidence is there to suggest the exper-

imental set-up, conduct and experiment out-

put analysis was appropriate, robust and un-

biased?

Have adverse effects been reported, and if so,

how were they mitigated?

Are the arguments compelling, critical and

supported by internal and external evidence?

Executive Summary:

Noteworthy points made about Technique 1:

Noteworthy points made about Technique 2:

Noteworthy points made about Technique n:

Table 2.3: Data Extraction Form

elimination of 4 papers. Thus a total of 137 papers were deemed to be suitable for our synthesis.

2.1.5 Synthesis Overview

Synthesis involves analysing and explaining the data that was obtained by the data extraction form

to address the research aims. Narrative Synthesis was used because it is ideal for theory building [172]

and explanations. The synthesis was conducted according to the guidelines of Popay et al. [156],

Cruzes and Dyba [50], Silva et al. [51] and Barnett-Page and Thomas [13]. See Sections 2.2 to 2.7.

The Mapping Study process revealed that five umbrella testing techniques have been developed to

alleviate the oracle problem — N-version Testing, Metamorphic Testing, Assertions, Machine Learn-

ing, and Statistical Hypothesis Testing. Thus, our synthesis focuses on these techniques. The research

community has conducted a different amount of research on each technique, in the context of the or-

acle problem. For example, Metamorphic Testing has received more attention than any other testing

technique. Naturally, the amount of attention that is afforded to each technique, by our synthesis,

was determined by the amount of research that was conducted on that technique.

The disproportionate attention that has been given to Metamorphic Testing suggests that this

technique may have numerous interesting research avenues. Although less attention has been afforded

to the other techniques, they are known to be effective for some situations in which Metamorphic
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Questions Answers

Q1. Does the SUT have the non-testable characteristics that are being studied?

This question is not applicable to “Demonstration Papers” or “Extreme Depth

of Analysis Papers” See below for their definitions.

Q2. Can you identify sources of potential bias in the paper, and are there any

elements of the study design that can minimise bias or justify leaving the source

of bias unchecked? This question is not applicable to “Demonstration Papers”

or “Extreme Depth of Analysis Papers” See below for their definitions.

Q3. If the author used measures or made inferences that are sensitive to the

number of mutants, did they use an appropriate number of mutants? This

question is not applicable to “Demonstration Papers” or “Extreme Depth of

Analysis Papers” See below for their definitions.

Q4. If the author used measures or made inferences that are sensitive to the

number of test cases, did they use an appropriate number of test cases? This

question is not applicable to “Demonstration Papers” or “Extreme Depth of

Analysis Papers” See below for their definitions.

Q5. If the author used measures or made inferences that are sensitive to the

number of participants, did they use an appropriate number of participants?

This question is not applicable to “Demonstration Papers” or “Extreme Depth

of Analysis Papers” See below for their definitions.

Q6. Were the authors’ arguments and inferences backed up by internal and

external evidence?

Q7. Did the authors’ use of language suggest they were biased towards a specific

technique/findings e.g. were positive comments given about the comparison

intervention or negative comments about the authors own technique?

Q8. Was the authors’ study novel? E.g. Extensions, using participants, in-

cluding non-effectiveness measures etc.

Comments:

Definitions

A demonstration paper is one that conducts an experiment, but not for the purpose of

assessing the quality of the technique, but rather, to illustrate how it works/that it does

work. One of the key features of a demonstration paper is that the experiment is not

set-up to be rigorous, but to instead be an effective communication tool - i.e. simple

and intuitive.

“Extreme depth of analysis” papers are papers where either the results themselves have

fairly complex associations amongst each other e.g. every pairwise combination of each

test case and mutant has been individually presented, or if the author has a fairly

extensive discussion about all of the individual cases.

Table 2.4: Quality Instrument
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Testing is not (see Section 2.7). Thus, the number of pages does not reflect how promising they are.

However, it does mean that it is unlikely that all of the useful research avenues that are associated

with these techniques have been explored.

Sections 2.2 - 2.6 present a series of discussions about each technique, and Section 2.7 compares

these techniques. The discussions pertaining to each technique are organised into a set of high level

issues e.g. effectiveness, efficiency, and usability. Some terms that are used to describe certain issues

by one research community may be used to describe different issues by other research communities.

We would therefore like to clarify how such terms are used in this chapter; in particular efficiency and

cost. Efficiency is used to describe the amount of computational resources that are consumed or the

amount of time required to perform a task, whilst cost is used in reference to monetary costs. Although

effort/manual labour can be discussed in the context of cost, effort/manual labour is presented as a

usability issue in this chapter.

2.2 N-version Testing

Let S be the SUT. Another system, SR, is said to be a reference implementation (RI) of S, if it

implements some of the same functionality as S. In N-version Testing, S and SR are executed with

the same test case, such that this test case executes the common functionality in these systems.

The outputs of S and SR that result from these executions are compared. N-version Testing reports

a failure, if these outputs differ [190]. If one has access to multiple RIs, then this process can be

repeated once for each RI.

N-version Testing was originally developed to alleviate the oracle problem. One form of oracle

problem includes situations where the test outcome is unpredictable. Such an oracle problem can

arise if the SUT has been designed to discover new knowledge [190] e.g. machine learning algorithms.

Since an RI mimics the SUT to generate its own output, N-Version Testing does not require the tester

to have prior knowledge about the test outcome. This makes it viable for such oracle problems.

2.2.1 Effectiveness

N-version Testing is fundamentally a black-box testing technique. It’s therefore not surprising that

some have found that N-version Testing cannot test the flow of events [139], and cannot detect certain

fault types e.g. coincidental correctness [18], since white-box oracle information is necessary to achieve

these feats. Let S be a system. In the future, S may be modified due to software maintenance. S′

denotes the modified version of S. Faults may be introduced into S′ during maintenance. Spectrum-

based Fault Localisation is a debugging technique that represents the system’s execution trace as

program spectra. Tiwari et al. [180] suggested using Spectrum-based Fault Localisation to obtain

the program spectras of S and S′, and comparing these program spectras. Disparities between these

program spectra can be an indication of a fault in S′. In their approach, S′ is essentially the SUT, and

S acts as a reference implementation. Thus, their approach can be perceived to be a modified version

of N-version Testing, in which program spectra are compared instead of outputs. Since program

spectra can represent event flow, this modified version of N-version Testing may be able to test the

flow of events. However, there is little evidence to suggest that this approach can generalise outside

of regression testing. Thus, we believe that feasibility studies that explore the use of this approach in

15



other contexts would be valuable.

Let S denote the SUT and SR be a reference implementation of S, such that S and SR have faults

that result in the same failed outputs, So and So
R respectively. Since N-version Testing detects a fault

by checking So 6= So
R [116], it cannot detect these faults. This is referred to as a correlated failure.

Numerous guidelines for reducing the likelihood of correlated failures are available. The remainder of

this section explores these guidelines.

A fault is more likely to be replicated in both S and SR if the same team develop both, because

they might be prone to making the same types of mistakes [137]. Thus, one guideline includes using

independent teams for each system [116] e.g. using 3rd party software as SR. However, this does not

eliminate the problem completely because independent development teams can also make the same

mistakes [137]. This could be because certain systems are susceptible to particular fault types. Thus,

another guideline involves diversifying the systems to reduce the overlap of possible fault types across

systems [116]. This can be achieved by using different platforms, algorithms [113], design methods,

software architectures, and programming languages [116] for each system. For example, pointer related

errors cannot lead to correlated failures if S and SR are encoded in C++ and Java respectively.

The third guideline we consider revolves around manipulating the test suite. Some test inputs lead

to correlated failures, and others do not [18]. Thus, the chance of detecting a fault depends on the

ratio of inputs that lead to a correlated failure (CF ) to inputs that do not (we refer to non-correlated

failures as standard failures (SF )). Since multiple faults may collectively contribute to populating

CF and diminishing SF [18], one could adopt a strategy of re-executing the test suite when a fault is

removed because this may improve the CF : SF ratio. To demonstrate, let f1 and f2 represent two

faults in the SUT, and {1, 2, 3, 4, 5} be a set of inputs that lead to a correlated failure as a result of

f1. Further suppose that {5, 6} is the set of inputs that can detect f2. Since f1 causes 5 to lead to a

correlated failure, only input 6 can detect f2; thus by removing f1, the number of inputs that can be

used to detect f2 doubles, since 5 would no longer lead to a correlated failure.

Although the guidelines discussed above (i.e. using independent development teams, diversifying

the systems, and test suite manipulation) can reduce the number of correlated failures, the extent to

which they do varies across systems. This is because different systems have outputs with different

cardinalities1, which have been observed to influence the incidence of correlated failures [18].

2.2.2 Usability

The only manual tasks in N-version Testing are procuring RIs and debugging; thus discussions re-

garding usability will revolve around these issues. This section discusses the former, and the latter is

covered in Section 2.2.3.

At its inception, the recommended method of procuring RIs for the purpose of N-version Testing

was development [190]. Developing RIs can require substantial time and effort [81]. Many solutions

have been proposed, that might reduce the labour intensiveness of this task. For example, Davis and

Weyuker [53] recognised that the performance of an RI is not important, because it is not intended

to be production quality code. They also realised that programs that are written in High Level

Programming Languages have poorer runtime efficiency, but are quicker and easier to develop [53].

To that end, they suggest using such languages for the development of RIs. Similarly, we suspect that
1Output cardinality refers to the proportion of inputs that map to an output.
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it might be possible to sacrifice other quality attributes, to make RI development faster and easier.

Solutions that can eliminate development effort completely have also been proposed. For example,

it has been reported that the previous versions of the same system [206], or other systems that

implement the same functionality [24] could be used as RIs. RIs could also be automatically generated

e.g. through Testability Transformations [125]. Testability Transformations automatically generate

RIs by modifying the original system’s source code, O, into a syntactically different version, M , such

that M and O are observationally equivalent if O has been implemented correctly, but not if O is

faulty. Although the technique is only applicable to a small range of fault types, it has been argued

that these faults are widespread [125].

Component Harvesting is an alternative procurement strategy. It involves searching online code

repositories with some of the desired RI’s syntax and semantics specification [81]. Hummel et al. [81]

assert that this substantially reduces procurement effort. However, this may not always be true; other

activities may be introduced that will offset effort gains. For example, an RI’s relevant functionality

may depend on irrelevant functionality; such dependencies must be removed [83]. The SUT and RIs

must also have a common input-output structure [37]. Thus, it may be necessary to standardise

the structure of the input and output [150]. Atkinson et al. [10] remark that the effectiveness of

the search depends on how well the user specifies the search criteria. It is therefore possible for the

search to return systems that cannot be used as RIs. Additionally, systems that have unfavourable

legal obligations may also be returned [10]; using these systems as RIs may therefore be infeasible.

Identifying and removing such systems from the search results may be labour intensive.

Suitable RIs may not exist [137]. This means Component Harvesting may be inapplicable in some

cases. Additionally, the applicability of the technique is restricted by its limitation to simple RIs [10]

i.e. RIs that are limited in terms of scale and functionality. This means that the technique can only

support simple SUTs.

Although Testability Transformations and Component Harvesting can substantially improve the

usability of N-version Testing, these techniques clearly have limited generalisability i.e. the former

and latter only cater for a limited range of faults and systems respectively. Further research that

results in improvements in their generalisability could add significant value. For example, Component

Harvesting might be extended to more complex RIs as follows: since the semantics of simple RIs are

understood, it may be possible to automatically combine multiple simple RIs into a more complex RI.

2.2.3 Cost

The cost of N-version Testing is a divisive issue. The cost of obtaining RIs is particularly con-

tentious. Many claim that the RI procurement process is expensive because it may involve the

re-implementation of the SUT [77]. However, others argue that this process can be inexpensive be-

cause it can be automated by procurement strategies like Component Harvesting [81]. However, as

discussed in Section 2.2.2, these strategies are only applicable under certain conditions and so manual

re-implementation may be necessary in some situations. This means that the cost of obtaining RIs

can vary.

In manual testing, the tester must manually verify the output of a test case. In N-version Testing,

this process is automated [18]. This means that test execution can be cheaper in N-version Testing

in comparison to manual approaches; thus N-version Testing could be cheaper if a large number of
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test cases are required. It might be necessary to generate additional test cases because of software

maintenance [9]. Thus, the requirement for a larger number of test cases might be correlated with

update frequency. Update cost can be exacerbated by N-version Testing because changes may have

to be reflected across all RIs [113]. This cost may be further exacerbated, depending on the RI’s

maintainability [116]. This may offset the cost effectiveness gains obtained from cheaper test cases in

some scenarios.

Let V 1 be the SUT and R1 be an RI based on V 1. Suppose that V 1 was updated to become

V 2. Some test cases that are applicable for V 1 (and by implication, R1) may also be applicable for

V 2 [206]. Thus, instead of updating R1 to be consistent with V 2, one could simply restrict testing to

these test cases. This might alleviate update costs. However, such an approach clearly cannot cater

for new functionality [81].

The impact of increasing the number of RIs on cost effectiveness is also unclear. A failure’s cost

can be high [83, 116], which means substantial cost savings may be obtained by detecting a fault that

could result in such a failure. Since the number of RIs is positively correlated with effectiveness [18],

the chance of obtaining these cost savings can improve if more RIs are used. However, as mentioned

above, the cost of developing an RI can be expensive [113]. Thus, increasing the number of RIs will

inherently increase development cost. Clearly, the direction of the correlation between the number of

RIs and cost is dependent on whether a sufficiently expensive fault is found.

It is unclear which system is the source of failure [37]; this means that one must debug multiple

systems. Thus, using more RIs can lead to an increase in debugging costs. However, using multiple RIs

enables the establishment of a voting system, where each RI (and the SUT) votes for its output [146].

Systems that are outnumbered in a vote are likely to be incorrect. Thus, debugging effort can be

directed and therefore minimised. Unfortunately, correct systems can be outnumbered in the vote [83];

therefore a voting system may have limited impact in some situations.

2.2.4 Content-based Image Retrieval

Some systems produce graphical outputs. The correctness of graphical outputs can be verified by

comparing them to reference images [54]. Reference images could be obtained from RIs. Oliveira et

al. [147] proposed combining a Content-based Image Retrieval System with feature extractors and

similarity functions to enable the automated comparison of such outputs with reference images, based

on their critical characteristics.

Unfortunately, the application of their technique is not fully automated. For example, one must

acquire appropriate feature extractors and similarity functions [147]. However, some of this manual

effort may not always be necessary. For instance, many feature extractors and similarity functions are

freely available [147], thus one may not have to develop these, if these free ones are appropriate.

2.3 Metamorphic Testing

In Metamorphic Testing (MT), a set of test cases, called the Metamorphic Test Group (MTG), is

generated. MTG has two types of test cases. Source test cases are arbitrary and can be generated

by any test case generation strategy [35, 71], whilst follow up test cases are generated based on

specific source test cases and a Metamorphic Property [135]. A Metamorphic Property is an expected
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relationship between source and follow up test cases.

For example, consider a self-service checkout that allows a customer to scan product barcodes

and automatically calculates the total price. The Metamorphic Property might state that a shopping

cart that consists of two instances of the same product type should cost more than a shopping cart

with just one. Let B1 and B2 be instances of the same product, and SC1 = {B1, B2} denote a

shopping cart containing both instances. Suppose that SC1 is a source test case. Based on this

Metamorphic Property and source test case, MT might use subset selection to derive two follow up

test cases: SC2 = {B1} and SC3 = {B2}. Thus, the MTG may consist of SC1, SC2, and SC3. The

Metamorphic Property in conjunction with the MTG is called a Metamorphic Relation (MR). MRs

are evaluated by executing the MTG and checking that the Metamorphic Property holds [93] between

these executions; in this case checking that the price of SC1 is greater than the price of SC2, and the

price of SC1 is greater than the price of SC3.

A permutation relation is an MR where changes in the input order has a predictable effect on the

output. For example, consider a sort function, Sort(I), where I is a list of integers. A permutation

relation might develop the following source and follow up test cases: Sort(1, 3, 2) and Sort(3, 1, 2),

with the expectation that their outputs are the same. Some refer to MT as Symmetric Testing in

situations where only permutation relations are used [68].

Like N-version Testing, MT was created to alleviate the oracle problem. In particular, MT attempts

to resolve oracle problems where the test outcome is unpredictable due to a lack of prior knowledge. As

has been made apparent above, MT does not rely on predicted test outcomes to verify the correctness

of the SUT. Thus, MT can operate in the presence of this oracle problem. MT has also been shown

to be effective for a large range of different oracle problems, including complex [71] (i.e. systems

that involve non-trivial processing operations) and data intensive systems [37], because the process of

evaluating an MR can be inexpensive.

2.3.1 Effectiveness

Experiments on MT’s effectiveness have produced varied results, ranging from 5% [137] to 100%

mutation scores [170]. Several factors, that influence effectiveness and thus may explain this disparity,

have been reported. These factors can broadly be categorised as follows: coverage [102], characteristics,

the problem domain, and faults. This section explores these factors. For generalisability purposes,

our discussions are limited to implementation independent issues.

2.3.1.1 Coverage

Numerous strategies for maximising the coverage of MT are available. For example, it has been

observed that some MRs place restrictions on source test cases [101]. Thus, one’s choice of MRs could

constrain a test suite’s coverage. Coverage could be maximised by limiting the usage of such MRs.

Núñez and Hierons [141] observed that certain MRs target specific areas of the SUT. This means

that increasing the number of MRs that are used, such that the additional MRs focus on areas of the

SUT that are not checked by other MRs, could increase coverage. Merkel et al. [126] state that since

testing resources are finite, there is a trade-off between the number of MRs and test cases that can be

used. Therefore, increasing the number of MRs to implement the above strategy could limit the test

suite size. Thus, the aforementioned coverage gains could be offset. The optimal trade-off is context
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dependent.

Let P be a program consisting of three paths P = {{s1, s2}, {s2}, {s2, s3}}, and letMR1 andMR2

be MRs that each have an MTG that consists of two test cases. Suppose that MR1’s MTG covers

the first and second path and thereby executes statements s1 and s2, and that MR2’s MTG covers

the first and third path and so covers all three statements. This demonstrates that an MR’s MTG

can obtain greater coverage, if the paths that are traversed by each of its test cases are different [20].

Several guidelines have been proposed to design MRs to have such MTGs. For example, white box

analysis techniques [58], or coverage information generated by regression testing [20] could assist in

the identification of MRs that have MTGs with different test cases. MRs that use a similar strategy to

the SUT tend to have MTGs that have similar source and follow up test cases [124], and thus should

be avoided. Different MRs can have different MTG sizes [20]. It seems intuitive that MRs that have

MTGs that consist of a larger number of test cases are more likely to have test cases that traverse

dissimilar paths.

2.3.1.2 Characteristics

An MR has many characteristics that can be manipulated to improve its effectiveness. For example,

it has been observed that decreasing the level of abstraction of an MR can improve its fault detection

capabilities [88]. This section explores these characteristics and their relationships with effectiveness.

MRs can vary in terms of granularity e.g. application or function level. In a study conducted by

Murphy et al. [134], it can be observed that MRs that are defined at the application level can detect

more faults than MRs that are defined at the function level, in some systems. This means that MRs

that were defined at a higher level of granularity were more effective for these systems. Interestingly,

the converse was also observed for other systems [134], and so the most effective level of granularity

might depend on the system. Regardless, both MR types found different faults [134], and thus, both

can add value in the same context.

It has been reported that an MR that captures a large amount of the semantics of the SUT (i.e.

an MR that reflects the behaviours of the SUT to a greater degree of completeness and accuracy)

can be highly effective [124]. Let MRr and MRp be two MRs, such that MRr captures more of the

semantics of the SUT than MRp. This suggests that MRr might be more effective than MRp. We

believe that certain test cases can capture some of the semantics of the SUT. Let tc be such a test

case. It may therefore be possible for MRp to obtain a comparable level of effectiveness to MRr, if

MRp is evaluated based on tc, because the additional semantics in tc may counteract the deficit of

such semantics in MRp. However, recall that some MRs place restrictions on test inputs [101]; this

may limit the scope for using test cases like tc with MRs like MRp.

The fourth widely reported characteristic is strength. Let MR1 and MR2 be two MRs, such that

MR1 is theoretically stronger than MR2. This means that if one can confirm that MR1 holds with

respect to the entire input domain, then this implies that MR2 also holds with respect to the entire

input domain [124]. This implies that MR1 can detect all of the faults that can be detected by

MR2, in addition to other faults. Some regard MRs like MR2 to be redundant [176]. Interestingly, a

study conducted by Chen et al. [38] compared the failure detection rate2 of 9 MRs. The weakest MR

obtained the highest failure detection rate for 15/16 of the faults, whilst the strongest MR obtained the
2The failure detection rate measures the proportion of test cases that detect a fault.
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lowest failure detection rate for 13/16 faults. This suggests that strong MRs are not necessarily more

effective than weak MRs [38], and weak MRs are therefore not redundant. Mayer and Guderlei [124]

realised that weak MRs can have more failure revealing test cases than stronger MRs. This may

explain why weak MRs can be more effective.

Black box MT emphasises the development of strong MRs. It is therefore not surprising that the

observation that weak MRs can be more effective than strong MRs led Chen et al. [38] to conclude

that black box MT should be abandoned. Proponents of this argument view an understanding of the

algorithm structure as necessary [38]. Although this argument has a strong theoretical foundation,

Mayer and Guderlei [124] have questioned the practicality of the position. One must consider all

input-output pairs to deduce the relative strength of one MR to another, which can be infeasible in

practice [124]. Thus, opponents contend that categorising MRs based on their strength is impractical,

and by implication, deciding to abandon black box MT based solely on MR strength is nonsensi-

cal [124]. While we agree with Mayer and Guderlei [124] that it may be impractical to determine

whether one MR is stronger than another, we disagree with the notion that this threatens the validity

of the argument of Chen et al. [38], since knowledge about the relative strength of two MRs is not

necessary to leverage the advice of Chen et al. [38].

Tightness is another major characteristic [112]; tighter MRs have a more precise definition of

correctness. For example, a tight MR may check X == (Y × 2); only one answer is acceptable. A

looser MR may check (X > 2); while (X ≤ 2) indicates a fault, an infinite number of answers are

acceptable. Therefore, tighter MRs are more likely to be effective [126]. Although tight MRs are

preferable, they may be unavailable. For example, consider a non-deterministic system that returns

a random output that is approximately two times larger than the input. A tight MR is not available

because predicting the precise output is impossible, however, the following loose MR can be used:

output < (input× 4) [138].

Another important characteristic is the soundness of an MR. A sound MR is one that is expected

to hold for all input values. Conversely an MR that is unsound is only expected to hold for a subset of

the input values [133]. Unlike sound MRs, unsound MRs are prone to producing false positives3 [133].

It might be advisable to avoid using such MRs, to curtail false positives. However, it has been reported

that MRs that are less sound might be capable of detecting faults that cannot be detected by MRs

that are more sound [133]. Thus, such MRs might add value.

2.3.1.3 Problem domain

It has been reported that MT is more effective when one uses multiple MRs, instead of just one

MR [126]. Since MRs are domain specific [37], the total number of potential MRs in one problem

domain can be different than in another. For example, Chen et al. [38] found nine MRs for Dijk-

stra’s Algorithm, whilst Guderlei and Mayer [70] could only find one MR for the inverse cumulative

distribution function. Therefore, the problem domain is likely to directly influence MT’s effectiveness.

Specialised variants of MT have been developed to account for the characteristics of certain problem

domains. For example, Murphy et al. [137] propose Metamorphic Heuristic Oracles to account for

floating point inaccuracies and non-determinism. This approach involves allowing MT to interpret
3In the context of software testing, a testing technique is said to have reported a false positive if it incorrectly reports

a failure.
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values that are similar, as equal [133]. The definition of “similar” is context dependent [137], thus

general guidance is limited.

2.3.1.4 Faults

MT and its variants can detect a diverse range of faults e.g. MT can find faults in the configuration

parameters [141] and specifications [37], and Statistical Metamorphic Testing (see Section 2.6.3) can

find faults that can only be detected by inspecting multiple executions [136]. However, MRs are

necessary, but not sufficient [46]; they are not effective for all fault types e.g. coincidentally correct

faults [20, 202].

Specifications can be used as a source of inspiration for the MR identification process [88, 109]. It

has been reported that the effectiveness of MT can be compromised by errors in the specification [109].

This could be because errors in the specification may propagate to the MRs, if the MRs have been

designed based on the specification. The same specification errors may have also propagated into the

SUT, thus there might be scope for correlated failures (see Section 2.2.1). This might explain why

MT cannot find certain faults. One might reduce this risk by using other sources of inspiration e.g.

domain knowledge [37] or the implementation [135].

2.3.2 Usability

2.3.2.1 Prerequisite Skills and Knowledge

Mishra et al. [129] observed that students performed better on class assignments revolving around

equivalence partitions and boundary value analysis, when compared to MT. This suggests that MT

might be more difficult to grasp than other testing techniques. This could be because MT requires a

wide skillset to operate.

Poon et al. [155] claim that MR implementation requires limited technical expertise. However,

others have stated that the tester might not be competent enough to implement MRs [25], which

indicates that developing MRs might be difficult. These conflicting conclusions suggest that the

difficulty of MR development might be context dependent.

One’s domain expectations might not necessarily match the implementation details of the SUT.

This disparity might be a result of an intended design decision [131]. For example, the SUT’s precision

may be compromised in favour of efficiency. Thus, if one is not aware of such design decisions and

design MRs purely based on domain expectations, the MR might erroneously interpret this disparity

as a failure. Thus, knowledge about the implementation details of the SUT might be important.

Domain experts can identify more MRs, that are more effective, more productively than non-

domain experts [41]. This suggests that domain knowledge is also important. Therefore, if one lacks

adequate domain knowledge, it is advisable to consult domain experts [110]. MRs are identified in

booms and slumps; the SUT is investigated during a slump to develop new intuitions that can be

used to identify MRs, and such MRs are defined in boom periods [45]. This iterative process affords

further opportunities to continuously supplement one’s domain knowledge.

An experiment conducted by Zhang et al. [206] found that different developers can identify different

MRs. This is not surprising because different people have different domain knowledge. It may therefore

be advisable to leverage a team [155], because this may ensure greater coverage over the domain

22



knowledge. A small team e.g. consisting of 3 people has been shown to be sufficient [109].

2.3.2.2 Effort

A number of factors affect the effort required to apply MT. For example, it has been observed that

an MR that has been developed for one system, might be reusable in another system [102]. Thus,

MT might be easier to apply in situations in which MRs that were developed for other systems are

available. Another example is MTG size. Since it is not apparent which test case in the MTG contains

the failure, all test cases must be considered during debugging [25]. This means that effort can be

substantially reduced if the MTG size is reduced. Alternatively, Liu et al. [112] proposed a method

that could provide some indication of the likelihood that a particular test case in MTG executed

the fault. Their method deems a test case to be more likely to have executed the fault, if it was

executed by more violated MRs. This could be used to direct debugging effort. Another alternative

is Semi-Proving, which is covered in Section 2.3.6.

The most significant factor affecting effort is believed to be the difficulty of MR identification.

Thus, most research has been conducted on this factor. For example, Chen et al. [45] found that MR

identification is difficult because inputs and outputs must be considered simultaneously [45]. They

alleviated this by automating input analysis, thereby constraining the tester’s attention to outputs [45].

The technique specifies a set of characteristics, called “Categories”; each is associated with inputs that

manipulate it. These inputs are subdivided into “choices”; all inputs belonging to a particular choice

manipulate the characteristic in the same way.

A test frame is a set of constraints that define a test case scenario. Pairs of test frames (that

correspond to source and follow up test cases) can be automatically generated by grouping various

categories and choices together, such that they are “Distinct” and “Relevant” (i.e. marginally differ-

ent). For example, let Function(a, b, c, x, y, z) be a function with 6 input variables; a distinct and

relevant pair may only differ by one of these variables e.g. z. These test frames produce test cases

that are executed to obtain a set of outputs, which can be manually checked for relationships. The

process of automatically generating test frames and manually analysing them is iterative [45]; since

an infeasible number of pairs typically exist, the terminating condition is the tester’s satisfaction with

the identified pool of MRs [45].

The empirical evidence is promising; people’s performance with respect to MR identification im-

proved, and novices achieved a comparable level of performance to experts [45]. However, the technique

has an important limitation; it can currently only support MRs that are composed of one source and

follow up test case [45].

Kanewala and Biemen [93] alternatively propose training Machine Learning classifiers to recognise

operation sequence patterns that are correlated with particular MRs. Such a classifier can predict

whether unseen code exhibits a particular MR. Results have been promising; the technique has a low

false positive rate, and can identify MRs even when faults are present in the SUT [93].

Although this technique achieves greater automation [93] than the approach devised by Chen et

al. [45], additional human involvement is introduced elsewhere. For example, training datasets are

necessary for the machine learning classifiers [95], and obtaining these can be difficult [45]. One may

wish to extend the classifier with a graph kernel4, that has parameters [95] that might have to be
4A graph kernel is a function that compares graphs based on their substructures.
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tuned to improve accuracy. Furthermore, since each classifier is associated with one MR type [93],

these additional tasks must be repeated for each MR type.

2.3.3 Efficiency

There is a time cost associated with test case generation and execution [31]. As discussed in Sec-

tion 2.3.1.1, different MRs have different MTG sizes. This means that some MRs might incur greater

time costs than others. Thus, one might improve the efficiency of MT by restricting oneself to MRs

with smaller MTGs. However, as was discussed in Section 2.3.1.1, MRs with larger MTGs might

obtain greater coverage, thus such a restriction might reduce the effectiveness of the technique. Alter-

natively, one might consider using parallel processing — the test cases in the MTG can be executed

simultaneously [133].

Other approaches include combining MRs in various ways to make more efficient use of test cases.

For example, one could use the same test cases for different MRs [31]. One method of implementing

such an approach might be Iterative Metamorphic Testing. This involves combining MRs together,

〈MRi,MRi+1,MRi+2...MRn〉, such that the follow up test case(s) of MRi are used as the source

test case(s) of MRi+1 [192]. Combination relations is another possible method.

2.3.4 Combination Relations

Liu et al. [110] suggested defining a new MR that is composed of multiple MRs. For ease of reference,

we called such an MR a “combination relation”. By evaluating this single MR, one implicitly evaluates

all of the constituent MRs, and thus makes more efficient use of test cases. Logic dictates that a single

MR that embodies multiple MRs would have a level of effectiveness that is equivalent to the sum of

its constituent parts [110]. Interestingly however, it has been found that such an MR can actually

obtain a higher level of effectiveness than its constituent MRs [110]. This could be because one MR in

the combination relation may empower another. For example, MRs MRn and MRc may be effective

for numerical and control flow faults respectively; combining the two may extend MRn’s capability

to control flow faults.

Conversely, effectiveness can deteriorate; Liu et al. [110] observed that including a loose MR in a

combination relation can reduce the combination relation’s overall effectiveness. Thus, they advocate

only combining MRs that have similar tightness. They also observed that some MRs might “cancel”

out other MRs either partially or completely [110]. This may also explain why the effectiveness of a

combination relation might deteriorate. These observations suggest that one may be limited in one’s

choice regarding which MRs can be combined, and by implication, the technique might be inapplicable

in some scenarios [130].

Different MRs can accommodate different subsets of the input domain [59]. Since an input must

be suitable for all MRs in the combination relation, additional restrictions might have to be placed on

constituent MRs. For example, suppose that MR1 and MR2 are two MRs in a combination relation.

MR1 can accommodate five test inputs, {ta, tb, tc, td, te}, and MR2 can only accommodate three test

inputs, {ta, tb, tf}. In this situation, it is not possible to use test cases {tc, td, te, tf}. This means that

MRs that can accommodate larger subsets may be more useful [59]. This could also explain why a

combination relation’s effectiveness might deteriorate.
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2.3.5 Metamorphic Runtime Checking

In Metamorphic Runtime Checking, MRs are instrumented in the SUT, and evaluated during the

SUT’s execution. One of the benefits of this approach is that MRs are evaluated in the context of

the entire SUT [134]. This can improve the effectiveness of MT. To illustrate, Murphy et al. [134]

observed that MRs that are evaluated in one area of the system, could detect faults in other areas.

Unfortunately, unintended side effects can be introduced during instrumentation [134]. For ex-

ample, consider a function, F (x), and a global counter variable, I. I is incremented every time

F (x) is executed. A follow up test case that executes F (x) will inadvertently affect I’s state. Thus,

sandboxing may be advisable [133].

Sandboxes introduce additional performance overheads [132]. However, since Metamorphic Run-

time Checking uses test data from the live system [138], the generation of a source test case is no

longer necessary. These efficiency gains may offset the losses from the performance overheads incurred

from sandboxes.

To improve the efficiency of the approach further, some have suggested parallel execution [133]. It

has been observed that the number of times each MR is evaluated is dependent on the number of times

each function is invoked [134]. To illustrate, let f1() and f2() be two functions in the same system,

such that f1() is always invoked twice as many times as f2() because of the control flow of the system.

Suppose that MRs MR1 and MR2 are evaluated each time f1() and f2() are invoked respectively.

Since MR1 is evaluated twice as many times as MR2, MR1 would add more performance overheads

than MR2. Thus, one could prioritise MRs like MR2 over MRs like MR1 to improve performance.

2.3.6 Semi-Proving

An MR’s verdict only indicates the SUT’s correctness for one input. Semi-Proving attempts to use

symbolic execution to enable such a verdict to generalise to all inputs [47].

In Semi-Proving, each member of an MR’s MTG, MetTestGrp = {tc1, tc2, ...tcn}, is expressed,

using symbolic inputs, as constraints that represent multiple concrete test cases. Each test case, tci,

in MTG is symbolically executed, resulting in a set of symbolic outputs, Oi = {oij , oij+1, ...oin},

and corresponding symbolic constraints, Ci = {cij , cij+1, ...cin}, that the output is predicated on.

Let CP be the Cartesian product of each Ci i.e. C1
∏
C2

∏
...

∏
Cn. For each combination comb =

〈C1a, C2b, ...Cnc〉 in CP , the conjunction of all members of comb should either result in a contradiction

or agreement. For each agreement, Semi-Proving checks whether the MR is satisfied or violated under

the conditions represented by comb.

Since all concrete executions represented by a symbolic execution are accounted for, it is possible to

prove the correctness for the entire input domain, with respect to a certain property [47]. However, this

might not always be feasible. For example, in some systems, certain loops, arrays, or pointers could

cause such a large number of potential paths to exist, that it would be infeasible for Semi-Proving

to check them all exhaustively [47]. To alleviate this problem, one could restrict the application

of the technique to specific program paths, replace some symbolic inputs with concrete values, use

summaries of some of the SUT’s functions instead of the functions themselves, or restrict the technique

with upper-bounds [47]. Chen et al. [47] realised that the correctness of some symbolic test cases can

be inferred from others. For example, consider the max function and the following two symbolic test

cases: max(x, y) and max(y, x). Since these test cases are equivalent, only one must be executed
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to deduce the correctness of both. Optimising resource utilisation through this strategy may also

alleviate the problem.

Obtaining such coverage can improve the fault detection effectiveness of MT [47]. Improvements in

effectiveness for subtle faults e.g. missing path faults, has been reported to be particularly noteworthy

by several researchers [47, 69]. Another advantage of greater coverage is improvements in debugging

information. In particular, there is greater scope for the precise failure causing conditions [47] and test

cases [112] to be identified. Whether this improves debugging productivity is questionable though;

investigating this information requires manual inspection of multiple (possibly all) execution paths [47].

2.3.7 Heuristic Test Oracles

Heuristic Test Oracles are a loose variant of Metamorphic Testing. In this approach, expected input-

output relationships are initially identified e.g. input increase implies output decrease. The SUT is

then executed multiple times with different inputs, to obtain a set of outputs. These inputs and outputs

are used in conjunction with each other to check whether the expected input-output relationship

holds [77].

Thus, Heuristic Test Oracles can only be applied to systems that have predictable relationships

between inputs and outputs [77]. Some systems may not have relationships that span the entire

input domain. In such situations, it might be possible to define heuristics for a subset of the input

domain [77]. For example, Sine’s input domain can be split into three subdomains: Subdomain One

= {0 ≤ i ≤ 90}, Subdomain Two = {90 ≤ i ≤ 270}, and Subdomain Three = {270 ≤ i ≤ 360}. A

positive correlation between the input and output can be observed in Subdomain One and Subdomain

Three, whilst a negative correlation is assumed in Subdomain Two [77].

It has been reported that these oracles are effective [113]. Some have also claimed that these oracles

are faster and easier to develop [77] and maintain [113] than N-version Testing based oracles. Heuristic

Test Oracles also have high reuse potential [77], thus implementation may be bypassed completely in

some cases.

2.4 Assertions

Assertions are Boolean expressions that are directly embedded into the SUT’s source code [12]. These

Boolean expressions are based on the SUT’s state variables e.g. X > 5, where X is a state variable.

Assertions are checked during the execution of the SUT, and may either evaluate to true or false; false

indicates that the SUT is faulty [74]. Our general discussions on Assertions in this section are based

on the above definition. We are aware that some people use alternative definitions, for example, some

definitions allow one to augment the SUT e.g. by introducing auxiliary variables (see Section 2.4.1).

Our discussions regarding such alternative definitions of the technique will be clearly indicated in the

text.

Unlike N-version Testing and Metamorphic Testing, Assertions were not originally designed to

alleviate the oracle problem. However, it has been observed that in order to evaluate an assertion, one

does not have to predict the test outcome [12]. This means that assertions are applicable to certain

classes of oracle problem e.g. for situations in which it is not possible to predict the test outcome.
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2.4.1 Effectiveness

Several characteristics of Assertions have been found to influence effectiveness. For example, one

characteristic is that Assertions must be embedded in source code [174]. Unfortunately, this can

cause unintended side effects that manifest false positives e.g. additional overheads [94] may cause

premature time-outs. Thus, one must carefully write assertions to avoid side effects [132].

Assertions can be written in independent programming or specification languages e.g. assertions

can be written in Anna, and be instrumented in a program written in Ada [12]. Some languages are

particularly intuitive for certain tasks e.g. LISP for list manipulation. One could exploit these obser-

vations, by writing Assertions in the most apposite language for the types of tasks to be performed.

This might reduce the chance of introducing unintended side effects. Unfortunately, this approach can

also increase the chance of introducing unintended side effects if it causes deterioration in readability.

One can use polymorphism; assertions can be specified in a parent class, and a child class can inherit

assertions from the parent class [5]. By using such a strategy, one can isolate assertions (in parent

classes) from the system’s source code (in child classes); this might alleviate readability issues.

The code coverage of Assertions can be limited, depending on the nature of the program. For

example, let List be an array. To test List, an Assertion may assert that some property holds for

all members of List. It may be infeasible to evaluate this Assertion, if List has an large number of

elements [12]. Thus, it may be infeasible for assertions to be used in areas of the code that have large

arrays. Consider another example; Assertions can only check a limited range of properties that are

expected to hold at particular points in the program e.g. Age ≥ 0 [74]. This means their coverage

could be limited. According to some alternative definitions of Assertions, auxiliary variables can be

introduced into the system, for the purpose of defining Assertions [12]. Introducing auxiliary variables

might create new properties that can be checked by Assertions, and thus alleviate the problem. For

example, suppose that x is a variable in the system, and y is a newly introduced auxiliary variable;

we might include an assertion such as x > y.

Another facet of coverage is oracle information. One aspect of oracle information is the types of the

properties that can be checked by a technique. For example, Assertions can check the characteristics of

the output or a variable e.g. range checks [174], or how variables might be related to one another [92]

e.g. X 6= Y . This makes Assertions particularly effective for faults that compromise the integrity

of data that is assigned to variables [133]. Another aspect of oracle information is the number of

executions that test data is drawn from. Test data from multiple executions is necessary for certain

faults e.g. the output distributions of a probabilistic algorithm [136]. Assertions are unable to detect

such faults because they are restricted to one execution [136].

Some believe that Assertions can be used to detect coincidentally correct faults [92]. This sup-

position probably stems from the fact that Assertions have access to internal state information, and

thus could detect failures in internal states, that do not propagate to the output. To the best of our

knowledge, there isn’t any significant empirical evidence that demonstrates that Assertions can cope

with coincidental correctness. Thus, investigating this might be a useful future research direction.

It has been observed that the detection of some coincidentally correct faults may require oracle

information from multiple states (see Section 3.3.6.1). Based on an alternative definition of Assertions,

Baresi and Young [12] report that Assertions can check multiple states, if they are used in conjunction

with state caching. However, they also remark that state caching may be infeasible, if a large amount
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of data must be cached. In such situations, Assertions cannot detect such coincidentally correct

faults. Additionally, they observed that Assertions cannot correlate events between two modules

that do not share a direct interface. This means that assertions may not be able to check certain

states simultaneously, and thus may render it incapable of detecting certain coincidentally correct

faults. These observations demonstrate that, despite the fact that assertions have access to internal

state information, they may not necessarily be effective for coincidental correctness, even when state

caching is feasible.

MT has access to information from multiple executions. Sim et al. [174] combined MT and As-

sertions, such that Assertions are evaluated during the execution of a Metamorphic Test’s source and

follow up test cases. This integration may alleviate some of the oracle information coverage issues

described above.

2.4.2 Usability

One key skill that is a part of many developers repertoires is program comprehension i.e. the capability

to understand the logic of a program by inspecting the source code [206]. Developers have experi-

ence with modifying source code [206] e.g. to add new functionality. Therefore, developers will be

comfortable with comprehending and modifying the system’s source code. These tasks are integral to

the application of assertions. This led Zhang et al. [206] to conclude that constructing assertions can

be more natural than developing oracles from other approaches like Metamorphic Testing. However,

Assertions assumes that the tester has knowledge about the problem domain, or the SUT’s implemen-

tation details [92]. This means that an assertion could require more effort to construct in situations

in which the tester has limited knowledge regarding these areas, since they would have to first acquire

this knowledge. Other factors that affect the effort required to construct an assertion include the level

of detail the assertion is specified at [5] and the programming language’s expressiveness [139].

Some tools can support the development of assertions e.g. the assert keyword in some programming

languages [12], and invariant detection tools. Invariant detection tools can be used to automatically

generate assertions. They work by conducting multiple executions and recording consistent condi-

tions [92]; these conditions are assumed to be invariant and so pertain to assertions. It is typically

infeasible to consider all executions; thus only a subset is used. Variant conditions may be consistent

across this subset, and thus may be misinterpreted as invariant. Thus, invariant detection tools can

produce spurious assertions [134]. Therefore, the manual inspection of suggestions from these tools is

necessary [92]. Unfortunately, manual inspection can be error prone; cases have been observed where

50% of the incorrect invariants that were proposed by such a tool were misclassified by the manual

inspection process [74].

2.4.3 Multithreaded Programs

Interference in multi-threaded environments can cause assertions to produce false positives [5]. Several

guidelines have been proposed to circumvent this. Firstly, assertions can be configured to evaluate

under safe conditions e.g. when access to all required data has been locked by the thread [5]. Secondly,

the application of assertions can be restricted to blocks of code that are free from interference [5].

Recall that assertions can add performance overheads. This is problematic in multi-threaded environ-

ments, because these performance overheads can introduce new or remove important interleavings.
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This can be alleviated by load balancing [5].

2.4.4 Further discussion

Research on assertions in the context of the oracle problem is scarce. Most studies either combine

it with other techniques or use it as a benchmark. This implies that Assertions are assumed to be

at least moderately effective for non-testable programs; but this is largely unsubstantiated. Thus,

empirical studies that test this assumption may be valuable.

The literature reported in this Mapping Study did not present guidelines for assertion use in non-

testable systems. We therefore believe that future work that establishes such guidelines in the context

of the oracle problem will be valuable.

2.5 Machine Learning

Machine Learning (ML) Oracle approaches leverage ML algorithms, in different ways, for testing

purposes. One method involves training a machine learning algorithm, on a training dataset, to

identify patterns that are correlated with failure. The SUT can be executed with a test case, and

this trained machine learning algorithm can then be used to check for such patterns in this test case

execution. For example, Chan et al. [24] constructed a training dataset, in which each data item

corresponded to an individual test case, and consisted of a set of features that characterised the input

and output of this test case. Each data item was also marked as “passed” or “failed”. A classifier was

trained on this training dataset, and so became capable of classifying test cases, that were executed by

the SUT, as either passed or failed. Another method involves training a machine learning algorithm

to be a model of the SUT; thus, the ML algorithm becomes akin to a reference implementation in

N-version Testing [146].

ML techniques were not originally developed for testing non-testable programs, but they can be

applied to such programs [92]. To illustrate, ML Oracles draw their oracle information from training

datasets, which can be obtained when information about the expected test outcome is not available

prior execution. This can allow them to test systems for which the expected test outcome is not known

before the execution.

2.5.1 Effectiveness

2.5.1.1 Design and application of ML Oracles

Several factors affect the effectiveness of ML Oracles. The first set of factors concerns the composition

of the training dataset. It has been reported that the balance of passed and failed test cases can affect

bias [24]. Datasets can also vary in terms of size. Larger datasets have less bias [24], and are less

susceptible to the negative effects of noise [64].

A training dataset must often be reduced to a set of features that characterise it, because the form

of the training dataset is seldom appropriate for ML. This is typically achieved by using one or more

feature extractors. The second set of factors revolves around the number of feature extractors one

uses. Several trends between the number of feature extractors used and effectiveness can be observed:

improvement, stagnation, and decline. Two of the feature extractors used in a study conducted by
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Frounchi et al. [64] include the Tanimoto Coefficient TC and Scalable ODI SODI. In this study, it

was observed that one set of features that consisted of {TC} was the most effective set for negative

classifications, and that another set of feature extractors that contained {TC, SODI} was the most

effective set for positive classifications. Clearly, the addition of SODI to a set of feature extractors that

just contains TC can lead to an increase in the accuracy for one type of classification, but a decrease for

another type of classification. This implies that an ML Oracle’s overall effectiveness can be improved

or reduced by adding additional feature extractors, if the improvement in one classification type more

than offsets, or is more than offset by the loss of accuracy for other classification types respectively.

These implications might explain why one may observe the improvement and decline trends.

Let G = {fe1, fe2, ...fej} be a group of feature extractors, such that all fei ∈ G are highly

correlated with one another. Using multiple members from G is unlikely to significantly improve

classification accuracy [64]. This could explain stagnation trends. This suggests that one should limit

the number of members of G, that are used by ML Oracles. Different feature extractors may have

different quality attributes e.g. levels of efficiency [64] or generalisability and so some may be more

favourable than others in certain contexts. Thus, one may consider choosing a subset of G based

on the quality attributes offered by the different feature extractors in G. Techniques like wrappers

and filters can identify and remove feature extractors that will not significantly improve classification

accuracy [64], and thus can purge excess members of such a group.

Naturally, one would expect that one major factor that might affect effectiveness, is the choice of

ML algorithm. However, it has been reported that the choice of algorithm does not have a significant

impact on effectiveness, and thus these algorithms might be interchangeable [64].

2.5.1.2 Limitations

ML Oracles have several limitations, and to the best of our knowledge, these limitations have not been

resolved by the community yet. Recall that ML Oracles either predict the output of the SUT and

then compare this prediction to the SUT’s output, or they classify the output of the SUT as correct

or incorrect. This means that such oracles are fundamentally used for black-box testing. It’s therefore

not surprising that examples of these oracles cannot test event flow [139]. For similar reasons, such

oracles would be hindered by coincidental correctness. Some have also observed that the negative

impact of coincidental correctness on ML Oracles can be exacerbated, if the ML Oracle is trained

based on features of the internal program structure [92, 26]. It has also been reported that some

variants of ML Oracles are incapable of testing non-deterministic systems or streams of events e.g.

ML oracles based on Neural Networks [139]. We believe that resolving these limitations might be

useful avenues for future work.

2.5.2 Usability

2.5.2.1 Design and application of ML Oracles

The previous section revealed that in order to leverage ML Oracles, one must obtain appropriate

training datasets, an ML algorithm, and apposite feature extractors. This section explores the user-

friendliness of these activities.

We begin by considering training dataset procurement. One approach might include obtaining
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an RI of the SUT, and then generating the training dataset from this RI [23]. RIs have several

characteristics that influence dataset quality e.g. the correctness of the RI. To illustrate, an RI might

have a fault, which means that some of the training samples in the dataset may characterise incorrect

behaviours (i.e. failures that manifested from this fault), but be marked as correct behaviours. This

reduction in dataset quality can limit the effectiveness of an ML Oracle. For example, the SUT might

have the same fault as the RI [92], and this can lead to correlated failures. In addition, it has been

observed that the extent to which an RI is similar to the SUT is correlated with accuracy [24], and

that oracles based on similar RIs can be accurate, effective and robust [92]. These discussions reveal

that one must consider a large number of factors during the RI selection process, which could be

difficult.

The nature of the data in the training dataset could also have an impact on effort. As discussed

above, one aspect of a dataset’s composition is test suite balance (in terms of the proportion of passed

to failed test cases). If one’s dataset is imbalanced, it may be necessary to expend additional effort

to obtain additional data to supplement and balance the dataset. The output of an RI characterises

correct behaviours, and the output of mutants of an RI characterise incorrect behaviours [24]. Thus,

if one lacks passed test cases, one could execute an RI with test cases, and if one lacks failed test

cases, one could execute failure revealing test cases over a set of mutants of an RI. However, one may

have to construct raw datasets manually, if a suitable RI does not exist (see Section 2.2.2).

The nature of the input and output data used and produced by an ML algorithm can differ from

that of the SUT. Thus, it could be necessary to translate inputs that are used by the SUT into a

form that is compatible with the ML algorithm, and to translate outputs into a form that is amenable

for comparison with the SUT’s output [154]. If such translations are necessary, the developers of

ML Oracles must either write additional programs to automate this translation task, or perform the

translation task manually.

Experts may have to manually label each training sample in the dataset, if one uses a supervised

machine learning algorithm to train one’s ML Oracle. An example of this can be found in the work

conducted by Frounchi et al. [64]. This obviously means that larger datasets will require substantially

more effort to prepare, in these situations. If multiple experts are used, then there is scope for

disagreement [64]. The resolution of these disagreements will also add to the overall effort required to

apply the technique.

We finally consider feature extractor selection. One’s choice of feature extractors is an important

determinant of the effectiveness of ML Oracles. For this reason, many believe that a domain expert

should be involved in this process [92]. If the developer is not a domain expert, consultation may be

necessary.

2.5.2.2 Debugging

ML Oracles can report false positives [24], which means testers may waste time investigating phan-

tom faults. ML Oracles can also produce false negatives [92]. False negatives introduce a delay,

which means they can also waste resources. Some ML Oracles have tuneable thresholds. Modifying

these thresholds can influence the incidence of false positives and negatives [139], which can enable

management of such classification errors. Unfortunately, the optimal threshold values vary across

systems [139].
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2.5.3 Metamorphic Machine Learning

Metamorphic Machine Learning merges MT and ML, such that an ML Oracle evaluates each member

of the MTG, before they are used to evaluate the MR. The integration of MT with ML has been

found to improve the effectiveness of ML [26]. However, the level of this improvement depends on the

quality of the ML Oracle. To illustrate, Chan et al. [26] observed that the extent of the improvement

for ML Oracles that used more training data (and were therefore of higher quality) was lower. They

rationalised that this was because there was less scope for MT to offer an improvement. Since ML

can detect a fault before all of the test cases in the MTG have been executed [26], one could argue

that the union of MT and ML can also enhance the efficiency of MT, because it may not be necessary

to execute all test cases to detect a fault.

2.6 Statistical Hypothesis Testing

In Statistical Hypothesis Testing (SHT), the SUT is executed multiple times to obtain numerous

outputs, which are aggregated using summary statistics e.g. mean and variance. These aggregated

values characterise the distribution of this set of outputs, and are compared (using a statistical test

e.g. Mann-Whitney U) to values that delineate the expected distribution. Comparisons that do not

yield significant differences can be interpreted as evidence that the SUT behaved correctly [61], and

significant differences are evidence of the contrary.

The test outcome of a system can be unpredictable because of non-determinism, which means that

such systems are instances of the oracle problem. SHT was developed to resolve this specific type of

oracle problem [70]. SHT recognises that such systems may have a typical output distribution, and

that information about this typical output distribution may be available prior to execution, even if

information about the test outcome of a single execution is not. Since it conducts testing by checking

the SUT’s output distribution against the typical output distribution, it can be applied in situations

where it is not possible to predict the test outcome of a single execution.

2.6.1 Assumptions

The generalisability of SHT is limited [176], because the technique makes several assumptions that may

not always hold. For example, the SUT or input generation method must be non-deterministic [123].

Thus, the technique is not applicable to scenarios in which the SUT is deterministic, and random

testing is not used. Another example of such an assumption is that the expected output distribution

is known [122]. One could use reference implementations (RIs) to determine the expected distribu-

tion [70], if this assumption does not hold. Unfortunately, the negative issues that are associated with

the use of RIs may also affect SHT, if this approach is used e.g. correlated failures. Another issue

could be that an RI may not be available [70], thus the technique might not always be applicable.

The statistical techniques used in SHT make assumptions about the data. This means that some

statistics may not be applicable to certain data samples that are produced by a system because

these data samples may not satisfy the assumptions of these statistics. To illustrate, Ševčíková et

al. [61] investigated a simulation package, and found that the data that was produced by this system

either adhered to Normal or Poisson distributions. Parametric statistics assume that the distribution
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is Normal, and so may not be applicable to all of the data samples produced by their simulation

package.

In situations in which a test statistic’s assumptions have been broken, one could use a different

statistic that does not make such an assumption. For example, one could use a non-parametric

statistic, if the data is abnormally distributed. However, it has been reported that non-parametric

statistics are less effective [72], thus doing so may compromise the effectiveness of SHT. Alternatively,

it might be possible to modify data samples to satisfy the broken assumptions. For example, Ševčíková

et al. [61] used a test statistic that assumed that variance was constant across all dimensions of an

output, but remarked that such an assumption may not always hold. They also stated that log

or square root transformations could be used to stabilise the variance [61]. Thus, performing such

transformations may resolve the issue.

2.6.2 Effectiveness

Ševčíková et al. [61] compared the performance of Pearson’s χ2 with a statistic they called LRTSpoisson,

and found that the latter was more powerful. This suggests that the effectiveness of SHT is partly

dependent on the choice of statistical test, and that one should always opt to use the most effective,

applicable statistical tests.

The summary statistics that characterise the distributions are also an important determinant of

effectiveness. To illustrate, Guderlei et al. [72] found that variance was more effective than mean.

Interestingly, they also observed that the variance and mean detected mutants that the other failed

to detect. This indicates that one should use multiple summary statistics.

SHT’s performance was abysmal in an experiment conducted by Guderlei et al. [72]. In this

experiment, SHT only considered characteristics of the SUT’s output, instead of the entire output.

The authors suspect that this explains SHT’s performance. This suggests that one should maximise

the amount of data being considered by SHT to enhance its effectiveness. However, one of the findings

of an experiment conducted by Ševčíková et al. [61] was that tests that considered fewer dimensions of

the output could be more effective. This indicates the converse i.e. reducing some of the data being

considered by SHT could improve effectiveness. These conflicting observations suggest that the most

appropriate amount of data to expose SHT to is context dependent. We believe that future work that

establishes a set of guidelines with respect to the most apposite amount of data to make available to

SHT would be valuable.

Yoo [202] exposed a variant of SHT, called Statistical Metamorphic Testing (see Section 2.6.3),

to different datasets. He observed that the dataset that offered the worst performance may have had

outliers, and suggested that this may explain its comparatively poorer performance to other datasets.

This suggests that the nature of the data is also important.

SHT is necessary, but not sufficient; false positives and negatives are possible [61]. In SHT, one

has control over the significance level. Higher significance levels result in more false positives, but

fewer false negatives [61] and vice versa. Thus, one can tune the significance level to enable better

management of these classification errors.

It is unclear which test cases are incorrect [122]; thus manual inspection of each is necessary.

This suggests that reducing the size of the sample might be beneficial from a debugging perspective.

However, it has also been observed that increasing the sample size can lead to an increase in the
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number of faults that can be detected by the technique [72]. Thus, reducing the size of the test suite

could lead to a reduction in effectiveness. Unsurprisingly, it has been reported that SHT can be very

resource intensive because it requires a large number of executions to produce stable results [72]. This

means reducing the test suite size might also be beneficial from an efficiency viewpoint, but doing so

may compromise the stability of the technique. There are clearly several trade-offs associated with

the sample size that might affect the effectiveness of the technique.

2.6.3 Statistical Metamorphic Testing

Recall that SHT assumes that one either has knowledge about the expected output distribution, or

a reference implementation that can determine the expected distribution. Guderlei and Mayer [70]

combined SHT with MT to ameliorate this assumption. The integrated approach is called Statistical

Metamorphic Testing. The approach operates as follows. For a given MR, the source and follow up

test cases are executed multiple times to obtain two or more sets of outputs. Each set is aggregated

into one statistical value, and a statistical hypothesis test is evaluated based on these values. This

integrated approach also enhances MT’s capability to operate in non-deterministic systems [202].

The integration of these techniques can clearly be advantageous in some respects e.g. from a

generalisability perspective. However, the union of these techniques can also be detrimental in other

ways. For example, it was reported that in Statistical Metamorphic Testing, the most appropriate

statistical analysis is dependent on the MR [202]. This means one must expend additional effort to

determine the most appropriate statistical analysis for each MR, which is an otherwise unnecessary

task in standard MT.

Yoo [202] investigated the effectiveness of Statistical Metamorphic Testing and found that it is

affected by choice of statistical hypothesis test and choice of test cases. He also noted that Statistical

Metamorphic Testing was incapable of detecting faults that failed to propagate to the output i.e. cases

of coincidental correctness.

2.7 Comparing techniques

Sections 2.2 to 2.6 described a series of techniques that were devised to alleviate the oracle problem.

Each technique was explored in terms of its effectiveness, efficiency, and usability. Sections 2.7.1, 2.7.2,

and 2.7.3 compare these techniques on the basis of these issues.

2.7.1 Effectiveness

Certain faults can only be detected by assessing specific oracle information e.g. specific test cases

may be necessary to detect certain faults. Table 2.5 shows that different techniques have access to

different oracle information, and thus may find different faults. For example, since Assertions only

evaluates the SUT based on oracle information from a single execution, it cannot detect faults that

require oracle information from multiple executions. Statistical Metamorphic Testing has access to

such information and so can detect such faults. However, some MRs place restrictions on which test

cases can be used. Let TCF be the set of test cases that can manifest a particular fault, F . If an MR’s

restrictions prevent it from using members of TCF , then it will not be able to detect F . Assertions do

not have this restriction, and so might be able to detect F . Clearly, practitioners should select testing
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Technique Can this

tech-

nique

experi-

ence

corre-

lated

failures?

Is this

tech-

nique

effective

for coin-

cidental

correct-

ness?

Examples of choices

that one can make

with respect to the

design and

application of an

oracle based on this

technique.

Examples of ways in

which the coverage of

this technique is

restricted, in terms of

oracle information.

N-Version

Testing

True False One can choose

whether the

programming

language that an RI is

written in, is the same

as the programming

language of the SUT.

N-version Testing is a

black-box testing technique,

and so it cannot use

white-box oracle

information.

Metamor-

phic

Testing

True False One can choose the

tightness of an MR.

Some MRs place restrictions

on source test cases. This

means the code coverage of

such MRs might also be

restricted.

Assertions Unknown Unknown One can decide

whether or not to

introduce Auxiliary

Variables.

Assertions are limited to

checking a single execution.

Thus, Assertions cannot

draw oracle information from

multiple executions,

simultaneously.

Machine

Learning

Oracles

True False One has a choice over

which feature

extractors will be used

by the technique.

This is a black-box testing

technique, and so is

restricted to verifying the

correctness of the SUT’s

output.

Statistical

Hypothesis

Testing

True False One has a choice over

which statistical tests

will be conducted by

the technique.

If the SUT is deterministic,

then Statistical Hypothesis

Testing mandates that one

uses random testing, as the

test case generation strategy.

Table 2.5: A summary of the effectiveness data for each technique, based on Sections 2.2 to 2.6.
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techniques based on the types of faults that their system is prone to. This highlights some research

opportunities; in particular, it may be possible to extend the types of faults that one technique can

detect, by combining it with another technique that uses different oracle information. An example of

this was presented at the end of Section 2.4.1.

Although different techniques can find different types of faults, they might not be able to detect

all instances of these faults. Every technique has limitations in terms of coverage (see Table 2.5),

thus this potential explanation applies to all of the techniques. Alternatively, correlated failures may

explain this phenomenon for a subset of the techniques (see Table 2.5). A large amount of research has

been conducted on reducing correlated failures for N-version Testing, but very little has been done in

the context of other techniques that are known to experience correlated failures. We therefore believe

that such research could be a valuable asset to the community.

Table 2.5 outlines an example of a design and application option for each technique. Sections 2.2

to 2.6 revealed that some techniques have more design and application options than others. Such

techniques offer a greater degree of control; this might enable better optimisation of the technique for

different contexts. However, it may be more difficult to find a suitable design and mode of application

for such techniques.

One’s choices regarding a technique’s design and application options can have both a positive and

negative impact. For example, increasing the number of feature extractors used by an ML Oracle

can lead to improvements in one type of classification, but reductions in another. Unfortunately,

guidelines on how one should exploit many of these types of design and application options for their

context have not been proposed. Research that leads to the establishment of such guidelines would

be useful.

Unfortunately, to the best of our knowledge, empirical data regarding the effectiveness of Asser-

tions for coincidental correctness is unavailable. We therefore believe that significant value can be

gained by studying this technique in the context of coincidental correctness and the oracle problem.

Interestingly, Sections 2.2 to 2.6 suggest that the remaining techniques can be ineffective for coinci-

dental correctness (see Table 2.5). Thus, research that explores methods of reducing the impact of

coincidental correctness on these techniques would be valuable. For example, Clark and Hierons [48],

and Androutsopoulos et al. [3] developed a series of metrics that estimate the probability of encoun-

tering coincidental correctness on particular program paths. Such metrics can be used to select test

cases that are less susceptible to coincidental correctness.

2.7.2 Efficiency

Table 2.6 reveals that the contexts in which the different techniques perform particularly poorly may

differ. For example, the feature extractors that are available in a certain context may be particularly

inefficient, but the SUT in this context may have very few large arrays. This means that assertions and

machine learning may be efficient and inefficient in this context respectively. Conversely, in another

context, the SUT may contain an abundance of these programming constructs, and so assertions may

be inefficient, but the feature extractors available in this context may be efficient.
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Technique Examples of reasons that may explain why the efficiency

of this technique might vary in different contexts.

N-Version

Testing

RIs must be developed to replicate the functionality of the SUT,

but they do not necessarily have to mimic other quality

attributes, including efficiency. Thus, in some situations, one

might develop an RI to be equally (or more) efficient to the

SUT, but in another situation, one might opt to disregard

efficiency completely.

Metamorphic

Testing

Different MRs have different MTG sizes. Therefore, MT’s

efficiency in a particular context will be partly determined by

the MTG sizes of the MRs that are applied in that context.

Assertions Assertions can be inefficient at testing large arrays. Thus, the

overall efficiency of Assertions in a particular context, will be

determined by the number of large arrays in the SUT that must

be checked by the technique.

Machine

Learning

Some feature extractors are more efficient than others; since the

appropriate choice of feature extractors is domain specific, the

efficiency of ML may vary in different domains.

Statistical

Hypothesis

Testing

There is a trade-off between efficiency and result stability (which

is determined by sample size). In one situation, the tester might

require greater result stability than in another, and thus, might

have to sacrifice efficiency to a greater extent in such a situation.

Table 2.6: A summary of the efficiency data for each technique, based on Sections 2.2 to 2.6.

2.7.3 Usability

Table 2.7 demonstrates that the required effort to apply each technique can vary. Techniques may

differ in terms of the contexts in which they are difficult to use. For instance, it may not be possible

to obtain an RI via component harvesting for the SUT, and so manual construction of an RI may be

necessary in a certain context. In the same context, all of the assumptions of a statistic being used in

SHT may be satisfied by the data, so data transformation tasks are unnecessary. N-version Testing

may require substantial effort in such a scenario, but SHT may not. The converse is also possible.

Table 2.7 also shows that the required expertise for different techniques also varies. Thus, one’s

choice of technique may partly depend on the expertise currently available. For example, if one lacks

knowledge about machine learning, but has an adequate understanding of statistics, then one may be

more inclined to select Statistical Hypothesis Testing, instead of Machine Learning oracles.

2.8 Coincidental Correctness

The Reachability, Infection, and Propagation (RIP) model [106], also referred to as the Propagation,

Infection, and Execution (PIE) model [185], was formulated to describe conditions that are necessary

for fault detection. In particular, the model states that fault detection is predicated on the following
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Technique Examples of reasons that may

explain why the usability of this

technique might vary in different

contexts.

Skills and knowledge

that might be

required to use this

technique.

N-Version

Testing

In some situations, it might be

necessary to implement an RI from

scratch, but this may not be necessary

in other situations.

The capability to write

programs in different

programming languages.

Metamorphic

Testing

The tester may have to spend

additional time and effort studying the

domain to acquire domain knowledge

in situations in which a domain expert

is not available.

Requires domain

knowledge.

Assertions The amount of effort required to write

assertions in a given context will

depend on the programming language

being used in that context.

Requires domain

knowledge.

Machine

Learning

Certain ML tasks are necessary in

some situations, but are unnecessary

in others e.g. labelling dataset items.

Knowledge about

machine learning.

Statistical

Hypothesis

Testing

Tasks like data transformation may be

necessary in some situations, but not

others.

Knowledge about

statistics.

Table 2.7: A summary of the usability data for each technique, based on Sections 2.2 to 2.6.

three conditions: (1) execution of a faulty program statement, (2) resultant infection of a program

state, and (3) propagation of this state to the output. The first two conditions are necessary to

manifest misbehaviour and the last condition is needed to detect it. The RIP model was later extended

to include a fourth condition, which is that a test oracle must be able to reveal the failure by inspecting

the output. This extended version of the RIP model is called the Reachability, Infection, Propagation,

and Revealability (RIPR) model [106].

The RIP model is a useful means of describing different types of coincidental correctness. Suppose

that a test case tcs was executed, and satisfied the first two conditions, but failed to satisfy the third

condition. In other words, tcs executed the faulty program statement, which led to the infection of

a program state, but this infected program state did not propagate to the output. This scenario

is referred to either weak or strong coincidental correctness [119]. Let tcw be another test case, in

which the first condition has been satisfied, but the second and third condition have not. Thus,

the faulty program statement has been executed by tcw, but this did not lead to the infection of a

program state. This scenario is referred to as weak coincidental correctness [119]. Weak coincidental

correctness subsumes strong coincidental correctness. We use the term “coincidental correctness” to

refer to weak coincidental correctness in this thesis.
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Information flow strength describes the percentage of information that propagates between two

program points; a higher percentage indicates greater strength. Thus, information flow strength

determines the likelihood that an infectious state will propagate to the output and by inference the

chance of observing coincidental correctness. Masri et al. [119] investigated weak information flow

strength and found that it’s very prevalent. They examined the information flow strength of six real

world systems and discovered that between 63.76 - 97.58% of the information flows had a strength of 0.

It’s therefore not surprising that they also found that coincidental correctness is widespread [120, 119].

In particular, 96.5% and 72% of the seeded versions of 10 subject programs they investigated, in other

studies, had weak and strong coincidental correctness respectively [120, 119]. A similar analysis was

conducted by Xue et al. [197], who obtained similar results.

Let MUT be a faulty version of the system under test, SUT . Mutation testing is a technique that

can generate MUT from SUT , by injecting an artificial fault into SUT . MUT is said to have been

killed by strong mutation testing, if the outputs of MUT and SUT differ. Weak mutation testing is

said to have killed MUT , if the internal program states of SUT and MUT differ. Androutsopoulos et

al. [3] recognised that coincidental correctness is present in situations where a mutant has been killed

by weak mutation testing, but not strong mutation testing. Such situations have been demonstrated

to be prevalent [144, 143].

As discussed in Chapter 1, coincidental correctness can limit the effectiveness of testing, equiva-

lent mutant detection and debugging techniques. Thus, the ubiquity of coincidental correctness has

motivated research on limiting its impact on such techniques. The remainder of this section presents

this research.

2.8.1 Test case selection

Different program paths have different information flow strength, which means that coincidental cor-

rectness is more likely to manifest on certain program paths [48]. This has motivated the development

of several test case selection strategies that prioritise program paths that are less susceptible to coin-

cidental correctness.

One such strategy was devised by Apiwattanapong et al. [4]. They developed a regression test-

ing technique called MATRIX. MATRIX leverages Dependence Analysis and Symbolic Execution to

identify code that has changed between versions and analyses these changes to deduce the necessary

conditions required for the changes to propagate to the output. Test case selection is then restricted

by these conditions. Such test cases cannot be susceptible to coincidental correctness.

Although MATRIX can successfully select test cases that are not affected by coincidental correct-

ness, it cannot be applied outside of the context of regression testing. Hierons [75] devised a strategy

that can be applied more generally. Boundary Value Analysis (BVA) is a test case generation strategy

that partitions the input domain into a set of subdomains, D = {SD1, SD2, ..., SDn}, such that the

behaviour of the SUT is similar for all inputs that belong to a particular subdomain, SDi, but dif-

ferent from inputs in another subdomain, SDj . BVA selects test inputs that are at the boundaries of

these subdomains. Such test inputs may be susceptible to coincidental correctness. Hierons proposed

selecting two adjacent subdomains, SDi and SDj , and sampling test input values x and y from SDi

and SDj respectively, such that x and y are geometrically close. The tester can execute a specified

behaviour in the SUT with x and y to determine whether it behaves differently in response to these
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inputs; if it does not, then x and y are susceptible to coincidental correctness, and so should not be

used.

An alternative strategy, called Dynamic Impact Analysis, was developed by Goradia [66]. Let si

and sj be two program statements in the SUT, such that sj is dependent on si. Dynamic Impact

Analysis estimates the probability that a failure that propagates from si to sj will cause the value

of sj to be faulty. This is repeated for all pairs of statements in the SUT that have this dependency

relationship. This information can be used to determine the overall likelihood that a failure will

propagate to the output (i.e. coincidental correctness) for a particular test case. Thus, Dynamic

Impact Analysis can be used to prioritise test cases that are less susceptible to coincidental correctness.

Similarly, Clark and Hierons [48] devised a means of quantifying the likelihood of coincidental

correctness affecting a test case, through an analysis of information flows in the system. Clark and

Hierons [48] define a collision as a program point where the behaviour of the system can cause two

or more different states to transition to the same state and realised that collisions were a necessary

condition for coincidental correctness. They therefore developed a metric called squeeziness that

estimates the chance of encountering coincidental correctness by looking at the number of collisions

in the system. Similarly, Androutsopoulos et al. [3] developed five metrics that are also based on the

information flows within the system. Some of these metrics were found to be highly correlated with

coincidental correctness (Spearman ρ: 0.95). Such metrics can be used to direct test effort to avoid

coincidental correctness.

Chen et al. [32] also developed a metric that can be used to predict coincidental correctness. Let

s = a#b be a program statement, such that a and b are two program variables and # is an arbitrary

arithmetic or logic operator. Chen et al. [32] recognised that the probability that the value of s is

correct varies, depending on the correctness of a and b. In particular, the probability that the value of

s is correct can be different in the following four scenarios: both a and b are correct (Scenario1), a is

correct, but b is not (Scenario2), b is correct, but a is not (Scenario3), and a and b are both incorrect

(Scenario4). Chen et al. [32] introduced a metric that capitalises on this observation to estimate the

probability that coincidental correctness is present in a particular test case. Such information can

be used to prioritise test cases that are less susceptible to coincidental correctness. The accuracy of

this metric was hindered by certain control flow constructs in the system. This limitation was later

rectified by Zhou et al. [211].

Finally, Laski et al. [104] proposed using mutation testing to introduce a corrupt state into the

system, and checking if the corrupt state propagates to the output. Failure to propagate to the output

indicates that the test case is susceptible to coincidental correctness, and so should not be used.

2.8.2 Mutation Testing

In the context of mutation testing, coincidental correctness can be described as follows: Let So be

the SUT and Sm be a non-equivalent mutant. Also let sm denote the state in Sm after the mutated

statement executes and so be the corresponding state in So. Coincidental correctness occurs if sm

and so map to the same output, despite the differences in code.

Despite the prevalence of coincidental correctness, little research has been conducted on deter-

mining mutant equivalence in the context of coincidental correctness. To our knowledge, only one

approach has been proposed. Offutt and Lee [144] propose comparing the outputs of So and Sm, as
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well as comparing so with sm. If the outputs of So and Sm are the same, but so with sm differ, then

coincidental correctness has been identified.

2.8.3 Debugging

A sizeable number of approaches have been proposed, that attempt to alleviate the impact of coinciden-

tal correctness on Spectrum-based Fault Localisation (SBFL). This section explores these approaches.

2.8.3.1 Clustering-based strategies

Clustering-based strategies involve grouping executions together based on their behavioural similari-

ties [128]. It is assumed that executions that exercise the same fault exhibit similar behaviours, and

thus will be grouped together by clustering. This enables one to identify passed executions that have

similar behaviours to failed executions; such executions are considered to have a high chance of being

affected by coincidental correctness [127].

Miao et al. [127] implement such an approach with K-Means Clustering. If a particular cluster ci

contains more failed than passed executions, all passed executions in ci are deemed to be coincidentally

correct. Such executions can be relabelled to failed, or removed. The extent to which SBFL can be

improved by their technique varies from negligible to substantial [128].

This approach is susceptible to classification errors e.g. genuine passing executions may be grouped

in clusters that are dominated by failed executions, or a cluster may be dominated by coincidentally

correct test cases. Li and Liu [107, 108] developed two alternative extensions for the technique, that

might alleviate this problem. The first extension combines the suspiciousness scores of executions

within each cluster, to determine the overall suspiciousness of each cluster. One is restricted to only

considering the most suspicious clusters. The other method involves using suspiciousness scores to

estimate the number of coincidentally correct executions that are present. This estimate can be used

to restrict the number of passed test cases that can be reclassified as coincidentally correct.

Masri and Assi [118] developed a suite of related techniques, some of which were based on clustering.

In their first technique, Technique-I, program statements that appear in a large number of failed

executions, and a small number of passed executions are considered to be likely to be correlated with

coincidental correctness. Let CCPS be the set of all such program statements, and CCTC be the set

of all passed executions that executed at least one member of CCPS. Technique-I classifies all test

cases in CCTC as coincidentally correct [118].

For each test case tci in CCTC, their second technique, Technique-II, computes the probability

that tci is coincidentally correct, based on the number of statements in CCPS that are executed by

tci and the suspiciousness of these statements. Technique-II only classifies test cases in CCTC as

coincidentally correct, if they have a particularly high probability [118].

Their third technique, Technique-III, partitions CCTC into two clusters, based on the similarity

of the most suspicious CCPS. The suspiciousness of each cluster is determined by computing the

average suspiciousness of all CCPS in that cluster. The test cases that are in the most suspicious

cluster are marked as coincidentally correct by Technique-III [118].

Masri and Assi developed a fourth technique, which they call Tech-I [119]. In Tech-I, all passing

and failing test cases are partitioned into two clusters, based on the similarity of the most suspicious
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CCPS. All passing test cases that are in the cluster with the highest proportion of failed test cases

are labelled as coincidentally correct.

Finally, the last technique they proposed, Tech-II, is an extended version of Technique-III that

implements fuzzy set membership. In particular, the extent to which a statement is a member of

CCPS is based on the proportion of passed test cases, and the proportion of failed test cases it was

executed in [119]. The clustering approach was modified to account for this.

An alternative approach was proposed by Yang et al. [198]. They suggest clustering executions

based on the suspiciousness scores of their statements. Passed test cases that are members of clusters

that also contain failed test cases are classified as coincidentally correct.

The approaches discussed above involve applying clustering algorithms to data that have high

dimensionality i.e. program spectra [62]. Weishi and Mao [188] realised that such data could have a

negative impact on the efficiency of these algorithms. This motivated them to devise an approach that

reduces the dimensionality of program spectra. Their approach involves grouping program statements

that are commonly executed together. Such groups are referred to as Dynamic Basic Blocks. A

simplified version of the program spectra is constructed for each test case execution, such that groups

of statements in the program spectra are replaced by their corresponding Dynamic Basic Blocks.

Clustering can then be performed on these program spectra. Again, passed test cases that are clustered

with failed test cases are considered to have a high probability of being coincidentally correct.

Farjo et al. [62] recognised another limitation of applying clustering algorithms to data that has

high dimensionality — the effectiveness of clustering algorithms can be adversely affected by such data.

Thus, they were also motivated to reduce the dimensionality of program spectra. They proposed using

Principal Component Analysis to achieve this [62].

Masri et al. [121] proposed a partially automated clustering approach, that doesn’t rely on clus-

tering algorithms. Thus, such an approach is not susceptible to the aforementioned problems relating

to the dimensionality of program spectra. Their approach involves the automated generation of a

Multivariate Visualisation Scatterplot. Each test case is represented by a data point on this scatter-

plot, and the Euclidean distance between data points communicates their similarity. The similarity

between two test cases is determined by metrics that compare the test cases in terms of their execution

traces. Passed test cases are represented as green data points on the scatterplot, and failed test cases

are represented by red data points. The user can manually perform clustering on this graph.

2.8.3.2 Other approaches

Like many of the approaches discussed above, the approach introduced by Xue et al. [197] also lever-

ages machine learning algorithms. In particular, their approach involves training an Ensemble-based

Support Vector Machine to recognise the difference between passed and failed test cases based on their

program spectra. The Ensemble-based Support Vector Machine can then be applied to the program

spectra of a passed test case; the test case is deemed to be coincidentally correct, if the Ensemble-based

Support Vector Machine classifies it as failed.

Another approach was devised by Bandyopadhyay and Ghosh [11]. Let p denote a passing test

case. They introduced a method of estimating the probability that p is coincidentally correct. Their

method involves summing the suspiciousness scores of all of the statements that were executed by p.

The higher this summed value, the more likely p is coincidentally correct. Using their method, one
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can obtain an estimate for each passed test case in a test suite, and consequently, can rank them based

on these estimates. Let Rank = {p1, p2, ...pn} be the ranked passed test cases, such that p1 has the

highest rank and pn has the lowest rank. They also introduce a means of estimating the number of

coincidentally correct test cases that are present in the system, N , which is computed based on the

number of passing test cases in which the most highly suspicious statements are present. Passed test

cases p1 to pN in Rank are marked as coincidentally correct.

One strategy for alleviating coincidental correctness in SBFL is to identify coincidentally correct

test cases, and either relabel them as failed test cases, or remove them from the test suite. All of the

approaches discussed above leverage this strategy. Alternatively, one can retain such test cases and

establish mechanisms to reduce the impact of coincidental correctness in these test cases.

Such a strategy was adopted by Wang et al. [187]. Let f denote a particular fault type. Wang

et al. [187] observed that the set of data and control flows that immediately precede and succeed

the execution of a fault of type f , is typically the same as the set of data and control flows that

immediately precede and succeed the execution of another fault of type f . These typical data and

control flows are said to be the context pattern of f . They develop context patterns for several

common fault types. Their approach involves using the context patterns to refine program spectra.

In particular, statements in the program spectra that do not exhibit any of the context patterns are

marked as unexecuted. This means that cases where the faulty statement was executed, but did not

result in a failure (coincidental correctness) are removed from the program spectra.

Zhang et al. [208, 207] also adopt such a strategy. They model the SUT as a Control Flow Graph.

Each edge in the graph is associated with a suspiciousness score, which is based on the number

of passing and failing executions that the edge is exercised in. They introduce an algorithm that

calculates the overall suspiciousness of each statement in the graph, based on the suspiciousness of the

edges it is connected to. This suspiciousness score incorporates information about the propagation of

suspicious states, and so accounts for coincidental correctness [208].

One final approach that leverages this strategy was implemented by Zheng et al. [210]. Zheng et

al. [210] distinguish between three types of predicates — Neutral Predicates, Fault Leading Predicates

and Fault Led Predicates. The outcome of an evaluation of a Neutral Predicate is independent of the

test verdict. The outcome of an evaluation of a Fault Leading Predicate is consistent across all failed

and coincidentally correct test cases, but is different from the outcome of evaluating such a predicate

in passed test cases. Finally, the outcome of an evaluation of a Fault Led Predicate is consistent

across all passed and coincidentally correct test cases, but is different from the outcome of evaluating

such a predicate in failed test cases. They demonstrate that various analyses based on the differences

of passed and failed executions can be performed to classify predicates. They also introduce a new

suspiciousness score calculation that incorporates information about each predicates type, to account

for coincidental correctness.

Finally, Zhang et al. [205] adopted a unique strategy. They recognised that coincidental correctness

only affects passed test case executions. To that end, they developed a variant of SBFL that only

leverages information from failed test cases. Such an approach cannot be affected by coincidental

correctness.
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2.9 Threats to validity

This section outlines the main threats to validity and how they were mitigated. Threats are organised

by Mapping Study phase.

2.9.1 Search

Since the first author was unfamiliar with the problem domain at the outset, relevance misclassifi-

cations were possible. To reduce this possibility, edge case papers were conservatively kept for more

detailed analysis, after more knowledge had been accrued.

Many of the titles and abstracts did not give sufficient information about the true intent or scope

of the paper, which may have led to misclassifications. Authors of known relevant papers were emailed

with our list of their relevant papers, and requested to confirm comprehensiveness. This reduced the

impact of this threat.

Another threat is the restrictions placed on the search e.g. number of research repositories. These

were necessary to retain feasibility. To reduce the impact of these restrictions, we applied several

other search strategies e.g. perusing reference lists.

The search facilities offered by many repositories were flawed, which means they may not have

returned all relevant studies. Where necessary, a series of workarounds were used to address this

problem e.g. using Google’s “site:” function for ACM DL.

There are also threats to repeatability; web content is ever growing, and thus the ranking of web

pages are ever changing, which means that 50 consecutive irrelevant results may appear prematurely

in comparison to the first search, or after significantly more results have been examined.

Including grey literature is an important step to combatting publication bias [99] and obtain-

ing cutting edge research. We used research repositories like Google and Citeseerx to obtain such

literature.

Determining the relevance of a paper is a subjective task. To reduce subjectivity, an inter-rater

reliability test was conducted independently by two researchers on the Relevance Inclusion and Ex-

clusion Criteria, on a sample of 12 papers. The results of this test were used to increase the precision

of our criteria.

2.9.2 Data Extraction

The nature of the data being captured was broad, and none of the available data extraction forms were

flexible enough to capture all of the important data. Thus, a data extraction form was specifically

developed for this Mapping Study, with appropriate inbuilt flexibility.

Some of the papers did not report all of the data that was necessary to complete the data extraction

form, and we were unable to elicit some of this data from the authors of these papers. In such cases,

it was necessary to make assumptions about the data. Although these assumptions were informed,

there is a chance that they may have been incorrect.

2.9.3 Quality Criteria

None of the available quality instruments were suitable; adoption of inappropriate quality instruments

may lead to inaccurate classifications. Thus, an appropriate quality instrument was developed. The
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design of our quality instrument was based on the guidelines of Kitchenham [99], and took inspiration

from 27 examples of quality instruments, and domain knowledge.

Measuring the quality of a paper involves some degree of subjectivity. To that end, two researchers

independently conducted a test of inter-rater reliability on the quality instrument, on a sample of 12

papers. We used the results of this test to fine tune our quality criteria.

2.9.4 Throughout the process

Many decisions were necessarily subjective; several practices were adopted to decrease potential bias

introduced through subjectivity. For example, as mentioned above, inter-rater reliability tests were

conducted on several critical, subjective parts of the process. The review protocol was also defined

prior to starting the Mapping Study, which enabled most subjective decisions to be taken before the

data had been explored.

Additionally, where possible, subjectivity in processes was reduced through careful design e.g. the

relevance Inclusion and Exclusion Criteria are based on relatively objective guidelines.

We contacted the authors of the papers that were covered by the mapping study, at various stages

of the process, by email, to elicit information and/or provide confirmation on various issues. We

found that, in some cases, it was not possible to contact the author, and that a large proportion of

the authors did not reply (an author is not considered to have replied if the author did not reply

within a month of the last email that was sent). Given that there was such a large number of authors,

human error is also possible i.e. we may have failed to email a small number of them. Additionally,

even though many of the authors did reply, some of their responses only addressed a subset of the

issues. This could affect our results e.g. people that we did not establish contact with might have

had a paper that could have been included in the mapping study, or had people addressed all of the

issues, making certain assumptions about their work would not have been necessary.

2.10 Conclusion

Although several Systematic Literature Reviews that target associated areas exist, each one explores

the subject matter from a different perspective and thus offers a distinct contribution. For example,

many systematic reviews had different scopes, which means they surveyed different sets of papers.

For example, Kanewala et al. [94], Nardi and Delamaro [139], and Baresi and Young [12] had a more

constrained scope; they were restricted to Scientific Software, Dynamical Systems, and specification-

and model-based testing respectively. Harman et al. [74] had a wider scope e.g. they accounted for

non-automated solutions like crowd sourcing. However, they had a different relevance criteria and

search strategy, so their systematic review procured different studies.

Different systematic reviews also conducted different types of synthesis. Harman et al. [74],

Kanewala et al. [94], and Nardi and Delamaro [139] conducted a higher level synthesis, which means

their synthesis was effective for finding high level research opportunities e.g. measurements for ora-

cles [74], but less capable of identifying lower level research opportunities like a technique’s relationship

with specific fault types. Baresi and Young [12] performed a low level synthesis, but the nature of their

data is different e.g. they explored multiple specification languages from a high level view, instead of a

finer grained inspection of issues that generalise to all specifications. Finally, some systematic reviews
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have additional or different objectives. For example, Pezzè and Zhang [154] and Oliveira et al. [146]

endeavoured to establish a taxonomy to classify oracles and Harman et al. [74] examined trends in

research on the oracle problem.

Since our Mapping Study takes a unique perspective on the Oracle Problem in terms of the

combination of scope, type of synthesis and objectives, it also offers a distinct contribution. In

particular, our Mapping Study surveyed the literature on automated testing techniques that can

detect functional software faults in non-testable systems. It also presented a series of discussions

about each technique, from different perspectives like effectiveness and usability, performed a set of

comparisons between these techniques, and identified research opportunities.

A key observation made by the Mapping Study was that most of the techniques that had been

covered are ineffective for coincidental correctness. The effectiveness of the other techniques that were

covered by the Mapping Study for coincidental correctness has not been empirically demonstrated.

This motivated our exploration of research that had been conducted on coincidental correctness — Sec-

tion 2.8 outlines this research. This exploration revealed that coincidental correctness is widespread,

very little research had been conducted on testing in this context, and that all of the testing solutions

that had been proposed were related to test case generation — there were no test oracle based solu-

tions. We therefore believe that research that offers an oracle-based solution to this problem would

be a substantial contribution. This motivated Objective 1 of the thesis, and thus the research that is

described in Chapter 3.

The Mapping Study also found that Metamorphic Testing is the most widely studied technique

for alleviating the oracle problem, and that this technique can be negatively affected by coincidental

correctness. These observations, in conjunction with the research that indicated that coincidental

correctness is prevalent (see Section 2.8), motivated Objective 2, and by implication, the research that

is described in Chapter 4.

Our exploration of the research on coincidental correctness also demonstrated that very little

research had been conducted on coincidental correctness in the context of mutation testing, despite

its prevalence, and importance in this context. This partly motivated Objective 3, and the research

that is described in Chapter 5. Objective 3, and the research that is described in Chapter 5 were also

partly motivated by the lack of solutions for alleviating the impact of non-determinism on mutation

testing — see Section 5.4. Finally, our exploration of coincidental correctness also revealed that

Spectrum-based Fault Localisation techniques can be negatively affected by coincidental correctness.

The ubiquity of this problem motivated our final objective, Objective 4, and the work that is described

in Chapter 6.
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Chapter 3

Interlocutory Testing

As discussed in Section 1.1.2, coincidental correctness can compromise the effectiveness of traditional

testing techniques. Section 2.8 revealed that coincidental correctness is widespread, and that this has

motivated research on mitigating coincidental correctness in testing. However, it also indicates that

all of this research revolves around test case generation strategies — no oracle-based solutions have

been developed, to our knowledge. In this chapter, we introduce such a solution — Interlocutory

Testing; see Section 3.1. Thus, this chapter attempts to address Objective 1 (see Section 1.1). A

series of experiments were conducted to determine the feasibility, effectiveness and generalisability of

Interlocutory Testing. A description of these experiments can be found in Section 3.2, the results in

Section 3.3, and threats to validity in Section 3.5. Most of the relevant related work for this chapter

was presented in Chapter 2; this material is supplemented in Section 3.4. Finally, conclusions are

drawn in Section 3.6.

In summary, the following contributions are made in this chapter:

• Interlocutory Testing: a testing technique that can operate under the influence of coincidental

correctness.

• Probabilistic Interlocutory Relations: A method for conducting Interlocutory Testing on func-

tionality that is governed by chance, when coincidental correctness is present.

• 48, 4, 1, 1 and 3 oracles based on Interlocutory Testing for the following respective programs:

a Genetic Algorithm for the Bin Packing Problem, Dijkstra’s Algorithm, Bubble Sort, Binary

Search and Knuth-Morris-Pratt.

• An evaluation of the technique’s feasibility, effectiveness and generalisability based on five case

studies.

• A comparative analysis of the effectiveness and usability of Interlocutory Testing and traditional

testing techniques.

3.1 Interlocutory Testing — Technique Description

Interlocutory Testing was designed to perform testing in systems that are susceptible to coincidental

correctness. The technique is introduced in Section 3.1.1, and Section 3.1.2 demonstrates how it can

be extended to cope with non-determinism.
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3.1.1 Interlocutory Testing and Coincidental Correctness

The following running example is used throughout this section. The SUT, Sys, is a Genetic Algorithm,

which is a search optimisation technique. The SUT consists of the following major components: Initial

Population Generator, Crossover, Mutation, and Selection.
Algorithm 1: Selection Operator
Input: A numeric value, PS, that denotes the maximum population size, and a Population,

such that Population.size() ≥ PS.

Output: A modified version of Population

1 Initialisation code;

2 //Population.add(generateRandomIndividual());

3 Initialisation code;

4 while Population.size() 6= PS do

5 SelectedIndividual = selectRandomIndividual(Population);

6 Population.remove(SelectedIndividual);

7 end

Let Sysso denote the Selection component of Sys. Algorithm 1 is the implementation of Sysso.

According to Algorithm 1, the input for Sysso consists of a numeric value, PS, which denotes the

maximum population size, and a Population, such that Population.size() ≥ PS. Let PopulationSOI

denote the state of Population just after Line 3 has executed. Lines 4 – 7 in Algorithm 1 outline the

process used by Sysso to modify Population. In particular, Sysso iteratively removes random elements

of Population until Population.size() == PS. The output of Sysso is the state of Population, after

it has been subjected to this process; PopulationSOO denotes this state.

Let Sysf be a faulty version of Sys. In particular, the implementation of Sysso in Sysf is a version

of Algorithm 1, in which Line 2 is uncommented. The faulty line in Sysf (Line 2 in Algorithm 1) causes

a random individual to be erroneously added to PopulationSOI during the initialisation phase of Sysso.

Since Sysso iteratively removes random individuals from Population until Population.size() == PS,

all traces of an additional member being added to PopulationSOI might be lost by the time the

execution reaches the PopulationSOO state. Thus, Sysf is susceptible to coincidental correctness.

3.1.1.1 Intuition

The relationship between an input and output can be used to predict execution trace behaviours,

and discrepancies between these predictions and the execution trace can reveal coincidentally correct

faults. This is the intuition and basis of Interlocutory Testing. The passages that follow will exemplify

the intuition, by illustrating how it can be used to detect the fault in Sysf .

Suppose that Sysf was executed, and that details of the execution trace were captured in a log

file, LOG. The execution trace of Sysso is a subsequence of LOG. Suppose that PopulationSOI and

PopulationSOO were extracted from this subsequence, and were designated the Input and Output

respectively. One relationship that might exist between Input and Output is PopulationSOI .size() >

PopulationSOO.size().

Such a relationship can be used to reason about how the SUT should have behaved (i.e. how Sys

would have behaved). To illustrate, in a situation in which PopulationSOI .size() > PopulationSOO.si-

ze(), one would expect the selection operator to have removed individuals from the population.
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Since one would be aware that the Sysso is intended to iteratively remove random individuals from

Population until Population.size() == PS, and that the Crossover Operator is intended to be

the only means by which individuals can be added to a Population of size PS, it follows that the

Crossover Operator should have generated some individuals and added them to Population. In partic-

ular, the Crossover Operator should have generated the same number of individuals, as were removed

by the Selection Operator (which should be PopulationSOI .size()− PopulationSOO.size()). The re-

sults of such reasoning can be used to devise predictions about aspects of LOG. In continuation of

the example above, one can predict that the Crossover Operator generated PopulationSOI .size() −

PopulationSOO.size() individuals.

CrossoverN denotes the number of individuals that were generated by the Crossover Operator

during the execution. CrossoverN is reported in LOG. The prediction above can be checked against

LOG by verifying CrossoverN == PopulationSOI .size() − PopulationSOO.size(). This predicate

would evaluate to false because an additional individual would have been added to PopulationSOI by

Sysf ; this indicates that the prediction is incorrect, and thus that a fault is present. The prediction

would have been correct if the fault had not been present.

To reiterate the intuition behind Interlocutory Testing, in the context of the running example; the

relationship between an input and output (PopulationSOI .size() > PopulationSOO.size()) can be

used to predict execution trace behaviours (CrossoverN == PopulationSOI .size()−PopulationSOO.

size()), and that discrepancies between these predictions and the execution trace can reveal coinci-

dentally correct faults (the fault in Sysf ).

Having introduced and demonstrated the intuition behind Interlocutory Testing, we will finally

discuss why such an approach can find coincidentally correct faults. Consider the following; let

ETBf and ETBc be two execution trace behaviours that map to a plausible output O. In a correct

implementation of the system, ETBc is used to produce O. In the context of the example above,

ETBc is the initialisation procedure of Sysso in Sys (i.e. Lines 1 to 3 in Algorithm 1), and O is

PopulationSOO. Coincidental correctness occurs when a different behaviour (ETBf ) is used instead

of ETBc to produce O. In this case, ETBf is the initialisation procedure Sysso in Sysf (i.e. Lines

1 to 3 in Algorithm 1). Since Interlocutory Testing checks whether ETBc was used to produce O, it

directly tests coincidental correctness.
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3.1.1.2 Technique Description

Algorithm 2: Interlocutory Relation
Input: Execution trace log file LOG

Output: Pass/Fail verdict IRV erdict

1 Let IORs be a set of Input-Output Relationships;

2 Let IORV erdicts be an empty list;

3 for IORi ∈ IORs do

4 IORV erdict = IORi.assessIOR(LOG);

5 if IORV erdict = Satisfied then

6 Let IDs be the set of Interlocutory Decisions that are associated with IORi;

7 Let IDV erdicts be an empty list;

8 for IDi ∈ IDs do

9 IDV erdict = IDi.assessID(LOG);

10 IDV erdicts.add(IDV erdict);

11 end

12 if IDsAreSatisfied(IDV erdicts) then

13 IORV erdict = SUTPossiblyCorrect;

14 else

15 IORV erdict = SUTFaulty;

16 end

17 else

18 IORV erdict = Inconclusive;

19 end

20 IORV erdicts.add(IORV erdict);

21 end

22 IRV erdict = IORsAreSatisfied(IORV erdicts);

An oracle in Interlocutory Testing is called an Interlocutory Relation (IR). Algorithm 2 outlines

the procedure for evaluating an IR, and thus how Interlocutory Testing realises the intuition described

in Section 3.1.1.1. In this section, we leverage the running example described above, to explain this

procedure in detail.

According to the intuition behind Interlocutory Testing, the relationship between an input and

output can be used to predict execution trace behaviours. From an implementation perspective,

this can be achieved by associating an input and output (Input-Output pair) with a prediction about

aspects of the execution trace LOG. Devising predictions for every individual Input-Output pair would

be impractical. To that end, IRs use Input-Output Relationships (IORs) to group Input-Output pairs

together. Certain predictions are applicable to all Input-Output pairs in such a group. Consider

the running example; PopulationSOI .size() > PopulationSOO.size() is an IOR, and the following

prediction can be made for all Input-Output pairs that are grouped by this IOR: the Crossover

Operator produced PopulationSOI .size()−PopulationSOO.size() individuals. Let IOR1 denote this

IOR.

The term “Interlocutory Decision” (ID) is used to refer to a prediction that is associated with an

IOR. An ID can take any form, as long as it can unambiguously express one’s prediction and be auto-
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matically compared with the execution trace LOG. For example, as demonstrated in Section 3.1.1.1,

predicates can be used to describe the prediction e.g. CrossoverN == PopulationSOI .size() −

PopulationSOO.size() (this ID is associated with IOR1). Other forms of description may include

Program Spectra [196], Slices [73] or UML Diagrams [103]. Different forms of description are apposite

for different situations. For example, Program Spectra excel at describing control flow behaviours,

but are less useful for state data. Conversely, predicates are excellent for state data but are not as

proficient at describing control flow behaviours.

In Interlocutory Testing, the SUT is executed to produce an execution trace, LOG; LOG serves

as input into Algorithm 2. Lines 4 – 19 in Algorithm 2 outline how a single IOR can be evaluated. In

particular, on Line 4, the Input and Output are extracted from LOG and are used to check whether

the execution satisfied the IOR. With regards to the running example, Input = PopulationSOI ,

Output = PopulationSOO, and IOR1 is satisfied if Input.size() > Output.size(). Lines 5 – 16

state that if the IOR is satisfied, then the IR assesses all of the IOR’s associated IDs against LOG

(e.g. CrossoverN == PopulationSOI .size()− PopulationSOO.size() would be assessed if IOR1 was

satisfied), and if the IDs are collectively satisfied, then the IOR concludes that the SUT might be

correct (SUTPossiblyCorrect), or otherwise, reports that the SUT is faulty (SUTFaulty). Note that

the definition of “collectively satisfied” depends on the IOR e.g. it may be necessary for all IDs to

be satisfied in some IORs (as is the case in the running example), but it may be acceptable if only a

subset of the IDs are satisfied in another IOR.

We call an Input-Output pair I/O valid, if a correct version of the SUT can produce out-

put O in response to input I. IOR1 clearly doesn’t cater for all valid Input-Output pairs i.e.

PopulationSOI .size()==PopulationSOO.size() is possible in a correct version of the SUT. Under such

circumstances, IOR1 can only report that the test was inconclusive (Lines 17 – 19 in Algorithm 2 cater

for this). An IR can be designed to contain multiple IORs. Thus, this can be remedied by creating

more IORs that cover such pairs. For example, PopulationSOI .size() == PopulationSOO.size() can

be IOR2 and CrossoverExecuted == false can be its ID. Lines 1 – 3 and Line 20 in Algorithm 2

allow the IR to apply the process described across Lines 4 – 19 for one or more IORs (in this case

IOR1 and IOR2), and keep a record of their SUTPossiblyCorrect/SUTFaulty/Inconclusive verdicts.

The IR can then make a decision on the SUT’s correctness (i.e. SUTFaulty or SUTPossiblyCorrect)

based on these verdicts (Line 22). The exact implementation of this decision procedure varies for dif-

ferent IRs. In the case of an IR that contains both IOR1 and IOR2 (henceforth referred to as IR1),

if one verdict is SUTFaulty, then the final verdict of IR1 is SUTFaulty, and if at least one verdict is

SUTPossiblyCorrect, and none are SUTFaulty then, the final verdict of IR1 is SUTPossiblyCorrect.

IRs that contain multiple IORs, can define potentially complex relationships between the IORs

to enhance their effectiveness. To illustrate, since IOR1 and IOR2 collectively cover all valid Input-

Output pairs, if a situation arises in which neither IOR1 nor IOR2 are satisfied (both verdicts are

Inconclusive) i.e. PopulationSOI .size() < PopulationSOO.size(), then IR1 can be certain that the

Input-Output pair under consideration is not valid and can thus report SUTFaulty as its final verdict.

3.1.1.3 Implicit IDs

Interlocutory Testing has three major phases. Firstly, during an execution of the SUT, Interlocutory

Testing leverages logging functions to capture and store relevant (for the evaluation of IRs) aspects of
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the execution trace in a log file. Secondly, relevant data from this log file, that can be used to evaluate

an IR, is extracted. To illustrate, consider the example above; the SUT was executed to produce

LOG (Phase 1), and PopulationSOI , PopulationSOO, CrossoverN and CrossoverExecuted were

subsequently extracted from LOG to evaluate IR1 (Phase 2). In the final phase, the IR is evaluated

based on this execution trace data. Phases 2 and 3 are repeated for each IR evaluation.

Interlocutory Testing may transform execution trace data during these phases. For example, during

Phase 1, PopulationSOI might be translated into an XML format, so that it is in an appropriate

form for logging. In continuation of this example, Interlocutory Testing might convert the XML data

pertaining to PopulationSOI into an object, during Phase 2, and in Phase 3, the size of PopulationSOI

may be computed based on this object. In an alternative example, Interlocutory Testing might

compute and store the size of PopulationSOI during Phase 1. In such a situation, the aforementioned

transformation tasks described for Phase 2 and Phase 3 are unnecessary during these phases.

A fault could exist in the SUT that might cause Interlocutory Testing to crash during Phase

1. For example, suppose that Array[i] = CrossoverExecuted, and that a fault exists that causes

Array = null. Since CrossoverExecuted is required by IR1, the logging function will attempt to

access Array[i]. This can lead to an array out of bounds error. Similarly, faults in the SUT may lead

Interlocutory Testing to crash during Phase 2. The following example illustrates this. The crossover

operator leverages an iterative process to add new individuals to the population. Let us suppose

that the logging function logs CrossoverN on the last iteration of this iterative process. A fault

may exist that prevents the execution of the last iteration, and thus the logging function may not

log CrossoverN . During Phase 2, Interlocutory Testing would crash when it attempts to extract

CrossoverN from LOG, since CrossoverN would not exist in LOG. Finally, it is also possible for

Interlocutory Testing to crash during Phase 3, as a result of a fault in the SUT. To illustrate, suppose

that an IR iterates PS number of times over a set of array indexes, and that these indexes are used

to access elements of PopulationSOO. A fault in the SUT may cause PopulationSOO to contain fewer

members than PS, and this would cause an array out of bounds error during the evaluation of the IR.

In essence, the reason that Interlocutory Testing can crash during these phases is because certain

execution trace behaviours that were expected to manifest, failed to do so because of a fault in the

SUT. Such behaviours are “implicit” Interlocutory Decisions, and a crash during these phases indicates

that the execution failed to satisfy these IDs. Let IRi be an IR. If Interlocutory Testing crashes while

logging execution trace data for IRi (Phase 1), extracting data from LOG for the evaluation of IRi

(Phase 2), or while evaluating IRi (Phase 3), then an “implicit” ID was not satisfied, and resultantly,

the final verdict of IRi is SUTFaulty.
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3.1.2 Interlocutory Testing and Non-determinism

In this section we introduce an SUT and an IR for this SUT; these will serve as the running example.
Algorithm 3: Tournament Selection Operator
Input: A numeric value, PS, that denotes the maximum population size, a Population, such

that Population.size() ≥ PS, and another numeric value TS that denotes the

tournament size.

Output: Winners

1 Let Winners be an empty list;

2 while Winners.size() 6= PS do

3 tournament = formRandomTournament(Population,Winners, TS);

4 tournament consists of a set of competitors

tournament = {Competitor1, Competitor2, ..., Competitorn}. One

Competitori ∈ tournament is randomly selected to be the winner of the tournament;

this competitor is denoted as winner. The chance of a particular Competitori being

randomly selected to be the winner is Competitori.getF itnessV alue()
AggregatedF itness

, such that

AggregatedF itness is the sum of fitness values that are associated with all members of

tournament;

5 Winners.add(winner);

6 end

The SUT for the running example is a genetic algorithm. One of the components of the SUT is

the Tournament Selection Operator (TSO); Algorithm 3 describes the implementation of TSO. TSO’s

input consists of three variables: PS and Population, which were introduced earlier, and TS, which

is a numeric value that corresponds to the tournament size. Lines 3 – 5 and 1 of Algorithm 3 describe

the process for conducting one tournament. A tournament is a set of competitors tournament =

{Competitor1, Competitor2, ..., Competitorn}. The first step of the process is to randomly generate

a tournament; Line 3 of Algorithm 3 achieves this. Each Competitori ∈ tournament has a fitness

value. Each competitor has a chance of winning the tournament, that is based on their fitness value,

relative to the aggregated fitness values of all other competitors in the tournament. Thus, even though

any competitor could win, the competitor with the greatest chance of winning is the one with the

highest fitness value. The second step of the process involves randomly selecting one Competitori ∈

tournament to be the winner of the tournament (Line 4 of Algorithm 3 caters for this); winner denotes

the selected competitor. The final step of the process simply consists of recording the winner of the

tournament — this is achieved by Lines 1 and 5 of Algorithm 3. Because of Line 2 of Algorithm 3),

TSO performs PS number of tournaments. The output of TSO is the set of individuals that were

selected to be winners across these PS tournaments.

Having introduced the SUT above, we now describe an IR for this SUT, which will be henceforth

referred to as “TournamentPIR”. As discussed above, an invocation of TSO leads to PS number of tour-

naments being performed. Let AllTournaments be a set containing these tournaments. tournaments

is a set of pairs 〈tournamenti, winneri〉, such that tournamenti ∈ AllTournaments, and winneri is

the winner of that tournament: tournaments={〈tournament1, winner1〉, 〈tournament2, winner2〉, ...,

〈tournamentP S , winnerP S〉}. TournamentPIR consists of one IOR, IORT P IR, that is only satis-

fied when the following condition has been met: For each 〈tournamenti, winneri〉 in tournaments,
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tournamenti contains at least two competitors, Competitorj and Competitork, such that Competitorj

.getF itnessV alue() 6= Competitork.getF itnessV alue().

Let tournamentsstrong be a subset of tournaments, such that for each 〈tournamenti, winneri〉 ∈

tournamentsstrong, winneri was the competitor with the highest fitness in tournamenti. Con-

versely, let tournamentsweak be a subset of tournaments, where in each 〈tournamenti, winneri〉 ∈

tournamentsweak, winneri was the solution that had the lowest fitness. IORT P IR may be associated

with an ID that predicts that tournamentsstrong contains more members than tournamentsweak.

In summary, when every tournament in tournaments has at least two competitors with different

fitness values (this is the IOR), TournamentPIR predicts that tournamentsweak will contain fewer

tournaments than tournamentsstrong (this is the ID). Although it is unlikely, tournamentsweak can

validly contain more tournaments than tournamentsstrong, which means that TournamentPIR can

incorrectly conclude SUTFaulty. We refer to this type of conclusion as a false positive.

3.1.2.1 Intuition

The example above demonstrates that IRs that deal with probabilistic behaviours require an alter-

native evaluation method, to reduce their susceptibility to false positives. We refer to such IRs as

Probabilistic IRs (PIRs). For the sake of clarity, IRs that use the evaluation method described in Sec-

tion 3.1.1 will henceforth be referred to as Deterministic IRs. In this section, we present the intuition

behind the alternative evaluation method used by PIRs.

The discussion above illustrates that certain behaviours can cause the evaluation of a PIR to

result in a false positive e.g. tournamentsstrong contains fewer members than tournamentsweak. The

frequencies with which these behaviours occur are determined by the randomised properties of the

SUT. In other words, a PIR has a typical false positive rate. The intuition behind the PIR evaluation

method is to leverage statistical techniques to compare a PIR’s typical false positive rate to the

proportion of that PIR’s verdicts that were SUTFaulty; if this proportion of verdicts is significantly

higher than the typical false positive rate, then it’s likely that a fault exists in the system, otherwise

it is possible that the system is correct.
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3.1.2.2 Technique Description

Algorithm 4: PIR Evaluation Method
Input: A test suite that contains n test cases ts = {tc1, tc2, ..., tcn}, a numerical value FPRtc

that denotes the typical false positive rate for a test case, and another numerical

value FPRts that denotes the typical false positive rate for a test suite.

Output: V erdict

1 Let TCV erdicts be an empty list;

2 foreach tci ∈ ts do

3 Let count(SUTFaultytci) and count(SUTPossiblyCorrecttci) be the total number of

times the IR reported SUTFaulty and SUTPossiblyCorrect in tci respectively;

4 Rtci
= count(SUTFaultytci

)÷ (count(SUTFaultytci
) + count(SUTPossiblyCorrecttci

));

5 StatisticalTest = Pearsonsχ2(Rtci , FPRtc);

6 if Rtci > FPRtc and StatisticalTest == Significant then

7 PIRC(tci) = SUTFaulty;

8 TCV erdicts.add(PIRC(tci));

9 else

10 PIRC(tci) = SUTPossiblyCorrect;

11 TCV erdicts.add(PIRC(tci));

12 end

13 end

14 Let count(SUTFaultyT CV erdicts) and count(SUTPossiblyCorrectT CV erdicts) be the total

number of SUTFaulty and SUTPossiblyCorrect verdicts in TCV erdicts respectively;

15 RT CV erdicts = count(SUTFaultyT CV erdicts)÷ (count(SUTFaultyT CV erdicts) +

count(SUTPossiblyCorrectT CV erdicts));

16 StatisticalTest = Pearsonsχ2(RT CV erdicts, FPRts);

17 if RT CV erdicts > FPRts and StatisticalTest == Significant then

18 V erdict = SUTFaulty;

19 else

20 V erdict = SUTPossiblyCorrect;

21 end

Algorithm 4 details the evaluation method that is used by a PIR (e.g. TournamentPIR) to reduce

the impact of false positives. The remainder of this section explains this evaluation method.

One part of the input for Algorithm 4 is a test suite ts = {tc1, tc2, ..., tcn}. Let PIR denote the

PIR that is being evaluated with the evaluation method detailed in Algorithm 4. Suppose that the

typical false positive rate of PIR is 30%, denoted by FPRtc. FPRtc is another part of the input for

Algorithm 4. FPRtc can be extrapolated from empirical data, be based on the tester’s expertise, or

be obtained from an analysis of the randomised properties of the SUT.

Lines 3 – 12 of Algorithm 4 outline a procedure for reducing the impact of false positives for a single

test case tci ∈ ts. PIR may be evaluated multiple times during an execution of tci. For example,

TournamentPIR is evaluated each time TSO is executed, which can happen multiple times, depending

on the Generation Number parameter of the Genetic Algorithm. Each evaluation of PIR will either

yield a SUTPossiblyCorrect or SUTFaulty verdict. Lines 3 and 4 of Algorithm 4 computes Rtci to be
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the proportion of verdicts of PIR that are SUTFaulty in tci. Lines 5 and 6 of Algorithm 4 perform a

comparison between Rtci
and FPRtc using Pearson’s χ2. Algorithm 4 then leverages Lines 6 – 12 (with

the exception of Lines 8 and 11) to set PIRC(tci) to either SUTFaulty or SUTPossiblyCorrect, based

on the outcome of this comparison. In particular PIRC(tci) is set to SUTFaulty if Rtci > FPRtc and

the difference is statistically significant, otherwise, the PIRC(tci) is set to SUTPossiblyCorrect. To

illustrate, suppose that PIR was evaluated 100 times and the result was Rtci
= 70%. Since 70% > 30%

and the difference between Rtci
and FPRtc is statistically significant, PIRC(tci) = SUTFaulty.

Conversely, had Rtci = 33%, the difference between Rtci and FPRtc would not have been statistically

significant, and thus PIRC(tci) = SUTPossiblyCorrect. PIRC(tci) is effectively PIR’s verdict for

tci.

To reiterate, Lines 3 – 12 of the PIR evaluation method reduces the impact of false positives for a

single test case. However, this doesn’t completely mitigate the problem; PIRC(tci) can be a false posi-

tive due to non-determinism. We will now explain how Algorithm 4 caters for this. Recall that one part

of the input for Algorithm 4 was a test suite ts = {tc1, tc2, ..., tcn}. Line 2 of Algorithm 4 applies the

procedure that was described across Lines 3 – 12 to each tci ∈ ts, and Lines 1, 8, and 11 record each tci’s

corresponding PIRC(tci) in TCV erdicts i.e. TCV erdicts = {PIRC(tc1), P IRC(tc2), ..., P IRC(tcn)}.

One part of the input for Algorithm 4 is FPRts, which is the typical false positive rate for TCV erdicts,

for the PIR under consideration. FPRts can be obtained using the same methods that can be used to

obtain FPRtc. Lines 14 and 15 compute the proportion of SUTFaulty verdicts in TCV erdicts (this

proportion is denoted by RT CV erdicts), and Lines 16 – 17 compare RT CV erdicts to FPRts, using Pear-

son’s χ2. Finally, Lines 17 to 21 set V erdict to either SUTFaulty or SUTPossiblyCorrect, based on the

outcome of this comparison. In particular V erdict is set to SUTFaulty if RT CV erdicts > FPRts and

the difference is statistically significant, otherwise, the V erdict is set to SUTPossiblyCorrect. V erdict

is the final verdict of PIR.

3.1.3 Multiple IRs

We envision that, in practice, one would leverage multiple IRs. Different IRs may report different

verdicts i.e. SUTFaulty or SUTPossiblyCorrect. This should be interpreted as follows: If at least one

IR reports SUTFaulty, then the SUT should be considered to be faulty. The SUT should only be

assumed to be correct if all IRs report SUTPossiblyCorrect.

3.2 Experimental Design

This chapter addresses the following research questions:

RQ1 Is Interlocutory Testing feasible1? To answer this, we investigate whether Interlocutory

Testing can find faults in four real world systems.

RQ2 How effective is Interlocutory Testing? The primary objective of Interlocutory Testing is

to enable effective testing in the presence of coincidental correctness.
1In the context of this research question, feasibility refers to whether the technique is capable of carrying out its

designated task.
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RQ3 Do the net gains obtained from probabilistic IRs outweigh the potential net losses?

Unlike deterministic IRs, probabilistic IRs can produce false positives. It’s therefore important

to investigate whether the effectiveness gains offered by probabilistic IRs are not offset by the

introduction of false positives.

RQ4 Which IRs should be prioritised? IRs have different characteristics. We investigate the

impact these characteristics have on effectiveness. The results of this investigation should deliver

insights into IR design.

RQ5 How consistent is the effectiveness of Interlocutory Testing across different test

suites? The effectiveness of the technique will be partly determined by the test suite. An

evaluation of the level of consistency of Interlocutory Testing’s effectiveness across different test

suites will provide an indication into how much of the technique’s effectiveness is determined by

the test suite.

We conducted three separate experiments to answer the research questions above. One experiment

was designed to address RQ1. This experiment leveraged four subject programs, 40 mutants (10

mutants per subject program), 400 test cases (100 test cases per subject program), and 9 IRs (in total,

across the subject programs). For ease of reference, we call this the Feasibility Experiment. RQ2 to

RQ4 were handled by the second experiment, in which one larger subject program, 100 mutants, 100

test cases and 48 IRs were used. We refer to this as the Main Experiment. The third experiment

was designed to address RQ5, and uses the same subject program as the Main Experiment, 29 of the

mutants that were used in the Main Experiment, as well as an additional mutant, 30 test suites (one

of which was the same as the one that was used in the Main Experiment), and 47 of the IRs that were

used in the Main Experiment. We call this experiment the Test Suite Experiment.

The remainder of this section describes how these experiments were conducted.

3.2.1 Main Experiment

3.2.1.1 Subject Program

The subject program is a Java implementation of a Genetic Algorithm for solving the Bin Packing

Problem. The subject program was developed by the author using the JAGA Genetic Algorithm API

toolbox [153] and was based on a design by Mladen Jankovic [84]. We made a series of changes to the

subject program to make it suitable for our experiments. In order to exercise our technique, acquisition

of execution trace data is necessary. To obtain such data, we had to instrument the subject program

with a logging function. We also had to make some minor modifications to the subject program’s

source code to accommodate the instrumentation of the logging function.

We applied Interlocutory Testing to the subject program, and found that it was capable of detecting

12 real faults. Some of these faults were inserted by the JAGA Developers, were caused by errors in

Jankovics’ design, the author’s own errors, or a combination. A brief description of these faults can

be found in Appendix B. We successfully removed 11 of these faults — our motivation for doing so

can be found in Section 3.5.1. One of the real faults used double to represent precise floating point

numbers which caused inaccuracies. We managed to alleviate the fault by using an alternative floating

point representation, BigDecimal, but this strategy was incapable of completely eliminating the fault.

Further repairs for this fault were unfortunately infeasible due to time constraints.
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Some of the subject program’s Java files contain a mixture of the subject program’s source code

and the logging function’s source code. As such, it is not possible to accurately measure the size of

the subject program based on the size of these Java files. Let Sysinstru be the subject program. To

that end, we created a copy of Sysinstru called GAUninstru (denoted by Sysuninstru), and removed

the logging function’s source code from Sysuninstru. We measured the size of the subject program

based on the size of Sysuninstru; it consists of 1596 Source Lines of Code (SLOC)2, 29 classes and 244

methods (average 8 per class).

Despite the fact that we leveraged a systematic approach for the identification and deletion of

the logging function’s source code from Sysuninstru, we cannot guarantee that our coverage over the

logging function’s source code was exhaustive. Thus, Sysuninstru may contain a small amount of the

logging function’s source code. Therefore, these measurements should be interpreted as estimates.

The BinPackingCrossover class in Sysuninstru is the largest class (consisting of 243 SLOC) that was

once instrumented with the logging function’s source code. We re-examined the class after a sizeable

amount of time had passed and only found 4 lines of code that were a part of the logging function’s

source code. This suggests that very few of the logging function’s lines of code were included in

Sysuninstru and that the impact of their inclusion had a negligible impact on our estimates.

Three factors motivated the selection of this SUT. Firstly, systems development was conducted

and influenced by multiple people, most being unaware of this research. This improves the represen-

tativeness of the subject program and decreases experimental bias.

Information flow strength describes the percentage of information that propagates between two

program points; a higher percentage indicates greater strength. Masri and Assi [119] observed that pro-

grams with weak information flow strength are vulnerable to coincidental correctness because there’s

a greater chance that a corrupt program state will not propagate to the output. Since Interlocutory

Testing is intended to be a general purpose testing technique that accounts for coincidental correct-

ness, a subject with weak information flow strength is ideal because it’s susceptible to standard and

coincidentally correct faults. The subject has weak information flow strength because it continuously

overwrites information throughout the execution.

The term “non-testable system” describes systems that have characteristics that render output

prediction or comparison infeasible (see Chapter 2). Thus, testers must often weaken their expectations

of the output. To illustrate, a Genetic Algorithm can produce multiple valid outputs for the same

test input, so testers cannot predict the precise output. However, they may be aware of certain

characteristics that a correct output has. For example, the final output only contains one solution.

They may therefore deem all outputs that have this characteristic to be plausible. Clearly, the number

of plausible outputs in non-testable systems can be very high. Coincidental correctness is exacerbated

under these conditions because there is a greater likelihood of an infected state mapping to a plausible

output. Thus, one is more likely to observe coincidentally correct faults in such systems. Our subject

program is an instance of a non-testable system, and we selected it for this reason.
2SLOC was computed using the “Code Lines” metric in the Understand program [167]. This metric ignores blank

and comment lines.
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3.2.1.2 Faults

Mutation Testing tools make minor modifications to the source code [142] of the SUT to simulate real

faults [2]; these augmented programs are referred to as mutants. A mutant is said to have been “killed”

by a testing technique, if the testing technique detects it, or is otherwise said to have “survived”. The

effectiveness of a testing technique can be estimated by generating a set of mutants, M , applying the

testing technique to each mutant (mi ∈M) and determining the proportion of mutants that were killed

i.e. KilledMutants
T otalMutants , where KilledMutants is the number of mutants that were killed by the technique

and TotalMutants denotes the total number of mutants. KilledMutants
T otalMutants is called the Mutation Score

(MS). This chapter leverages this approach, because mutation testing can ensure the availability of

an adequately large sample of representative test subjects to draw meaningful conclusions from.

The MuJava mutation testing tool was used to generate a sample of random mutants [115] be-

cause it’s automated and can therefore reduce experimental bias. MuJava was applied to all classes

that substantially contributed to the SUT’s core functionality. In particular, we excluded the test

case input class, an unused class, 11 interface classes, and a class that added a minor extension to

java.util.random [148] that was intended to make random number generation more convenient. We

also didn’t include 2 abstract classes and 3 simple data classes that stored a single object and largely

implemented getter/setter methods and/or mostly exposed methods that this object already has. For

example, the simple data class may have an ArrayList ArrayObj and a method remove(i), which

simply calls ArrayObj.remove(i). A comparator class was also excluded. Let S be the SUT, and

M1 and M2 be two mutants, such that S 6= M1, S 6= M2, and M1 ≡ M2 [152]. Finally, Let M3

be another mutant such that M3 6= M1 and M3 6= M2. Suppose that the mutant sample already

contains M1; the opportunity cost of including M2, might be the exclusion of M3. Thus, including

multiple mutants that are equivalent to each other can reduce the diversity of faults in the mutant

sample. Alternatively, suppose that M1, M2, and M3 were all included in the mutant sample. Since

the mutation score is calculated based on the number of mutants killed, the fault represented by M1

and M2 will unjustifiably contribute more to the mutation score than the fault represented by M3.

We suspect that a large number of the mutants that could be generated for the abstract, simple, and

comparator classes could be equivalent to mutants that could be generated in a class that interacts

with these classes. Thus, the rationale behind excluding these classes was to reduce the incidence of

mutants that are equivalent to each other, and by implication the problems described above.

Unfortunately, MuJava can generate equivalent mutants; these are augmentations of the code that

are equivalent to the original e.g. x < 5 may be modified to x ≤ 4. The inclusion of such mutants will

negatively skew the results. We manually inspected every mutant in the mutant sample to identify

equivalent mutants, and subsequently removed them. Additionally, MuJava can also produce mutants

that cause the SUT to crash or result in infinite loops; including these mutants would positively

skew the results since the technique isn’t required to detect these mutants. These mutants were

also excluded. Recall that the subject program contains one real fault. This real fault could be a

confounding factor for our experiment, since Interlocutory Testing may misconstrue misbehaviour

emanating from it, as having originated from a mutant. One of the steps taken to remove the impact

of this confounding factor included rejecting mutations to faulty code. 100 mutants were generated,

because a mutant sample of this size is large enough to derive meaningful conclusions from.

Finally, we classified each mutant as coincidentally correct or non-coincidentally correct. This was
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achieved as follows. An oracle was devised to test all of the output properties of the SUT. Each

mutant was executed with the test suite outlined in Section 3.2.1.3 and evaluated with this oracle.

A mutant is classified as coincidentally correct if this oracle does not detect the fault, because this

means that the failure did not propagate to the output. Mutants that were successfully detected on

the other hand, are labelled as non-coincidentally correct. The list below details the conditions that

were checked by our oracle. 62 of the mutants were coincidentally correct and 38 were standard (i.e.

not coincidentally correct).

• Let OutputPop be the output population. OutputPop.size() = PS.

• Let Solutions denote a set that contains all members of OutputPop, and the best individual.

Also let O denote a member of Solutions. Finally, let DataSet be the set of items to be sorted

into bins. O should be a permutation of DataSet.

• O should contain at least one bin.

• O should not contain empty bins.

• O should not contain a bin that has more items than its capacity.

• O should not have a fitness that is greater than the maximum obtainable fitness (Fitness Function

Constant).

Recall that our subject program is a Genetic Algorithm, and as such, one of its components is

a “Mutation Operator”. Since this may be easily confused with Mutation Testing, we refer to the

“Mutation Operator” component as “MO” for the sake of clarity.

3.2.1.3 Test Cases

A test case for the subject program consisted of values for 15 variables: Maximum Bin Size, Initial

Number of Bins, Maximum Item Size, Number of Items, Population Size, Generations, Tournament

Size, Chance of Winning Tournament, Crossover Probability, Mutation Probability, Only Accept Mu-

tation If Better (True/False), Fitness Function Constant, ReplaceXNumberOfItems, MutationDestroy,

and DataSet (see [84] for a clarification of unfamiliar variables). The following procedure was used to

generate a test case: Java’s standard random number generator [148] was used to generate a random

value for each of the first 11 of these variables. DataSet, which is a set of items of varying sizes,

was randomly generated based on these variables. Fitness Function Constant, ReplaceXNumberOf-

Items, and MutationDestroy were always set to 2, 3, and 2 respectively. Randomisation was used to

reduce experimental bias. These random values were constrained by the following main restrictions.

Upper-bounds:

• Maximum Bin Size = 28.

• Initial Number of Bins = 48.

• Maximum Item Size = 18.

• Number of Items = 48.

• Population Size = 18.

60



• Generations = 8.

• Tournament Size = 18.

• Chance of Winning Tournament = 100%.

• Crossover Probability = 100%.

• Mutation Probability = 100%.

Restrictions were necessary to counteract the production of infeasible test cases e.g. 1241421515346

generations. Restrictions on parameters were determined by sensitivity analysis; this involved trial and

error tuning of the parameters to ensure that interesting behaviours and trends were still observable

e.g. 8 generations was sufficient to observe convergence. This procedure was used to randomly generate

a test suite of 100 test cases. A total of 100 test cases was deemed to be sufficient, because a test

suite of this size is large enough to draw meaningful conclusions.

3.2.1.4 Measures

The Mutation Score (MS) and Failure Detection Rate (FDR) were used to measure the technique’s

effectiveness [193]. The former,MS = KilledMutants
T otalMutants , indicates the breadth of faults found. The latter,

FDR = F ailedT estCases
T otalT estCases , measures the proportion of test cases that killed a particular mutant. This

is useful for identifying the likelihood of a fault being detected by the technique. These measures

were used because they are accurate measures of effectiveness and are widely used by the testing

community [169].

3.2.1.5 Interlocutory Relations

48 IRs were designed. The strength of some of the analyses, that were performed to answer some

of the research questions (e.g. RQ4) above, is sensitive to the number of IRs that are used in this

experiment. We felt that 48 IRs were sufficient to cater for such analyses. As mentioned above, a real

fault was present in the system. This real fault could confound the results if any of the IRs can detect

it. Some of our IRs were capable of detecting this fault. One of the steps taken to counteract this

confounding factor included modifying these IRs to remove their sensitivity to the real fault. Please

see Appendix A for a comprehensive list of our IRs, as well as a summary of the main aspects of these

IRs.

3.2.2 Test Suite Experiment

3.2.2.1 Subject Program

One method of establishing the extent to which the effectiveness of Interlocutory Testing is consistent

across different test suites includes conducting comparative analyses between different applications of

the technique, such that these applications vary in terms of test suites, but have minimal variance with

respect to other factors like the subject program, IRs and mutant samples. We decided to implement

this method. We realised that including the test suite from the Main Experiment, henceforth referred

to as TS1, in such analyses would enable us to directly draw conclusions about the generalisability of

the results of the Main Experiment. We therefore decided to include TS1 in this experiment. This

decision necessitates the use of the subject program described in Section 3.2.1.1 in this experiment.
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3.2.2.2 Faults

Let 100NonEquiv = {m1,m2, ...,m100} denote the 100 non-equivalent mutants that were used in the

Main Experiment, and 30NonEquiv be a subset of 100NonEquiv, such that 30NonEquiv consists of

30 mutants, and that for each mi ∈ 30NonEquiv, 1 ≤ i ≤ 30. We had intended to use 30NonEquiv in

this experiment. However, our meta-data pertaining to what two of these mutants were had become

corrupt; although this does not threaten the validity of the findings of the Main Experiment, it presents

a barrier for the use of these two mutants in this experiment. We therefore refined 30NonEquiv, by

replacing these two mutants. One of the mutants was replaced with m31 ∈ 100NonEquiv, and the

other was replaced with a similar mutant. This updated version of 30NonEquiv was leveraged in this

experiment. Since 29 of the mutants in 30NonEquiv also appeared in 100NonEquiv, we used the

same experimental data that was used in the Main Experiment, to represent TS1’s results for these

mutants. New experimental data was obtained for TS1’s remaining mutant, and all of the other test

suites. Our rationale for using these mutants is that their inclusion in this experiment could increase

the strength of the claims that we could make about the generalisability of the results of the Main

Experiment.

3.2.2.3 Test Cases

We used a total of 30 test suites in this experiment, because this sample size is large enough to draw

meaningful conclusions. As discussed in Section 3.2.2.1, one of these test suites, TS1, was the same

test suite that was used in the Main Experiment. The remaining 29 test suites, referred to as TS2 to

TS30, were generated using the same methodology that was outlined in Section 3.2.1.3.

3.2.2.4 Measures

We used the same measures as were outlined in Section 3.2.1.4, for the same reasons discussed in

Section 3.2.1.4.

3.2.2.5 Interlocutory Relations

We had initially planned to use all 48 of the IRs that were outlined in Appendix A in this experiment.

However, we discovered that one of these IRs, DecidingWhoShouldMutate, could report failures in

response to the real floating point fault when exercised by one of the test suites, TS18. As discussed

in Section 3.2.1.2, such reports could confound the results. An investigation revealed that this IR

could only detect the real floating point fault under one very specific set of conditions, and that

these conditions could only be manifested by test cases that set the mutation rate to 1. Only one

such test case exists across all of the test suites — TS18. This means that the only experimental

data that could have been compromised by this IR, was produced by TS18. We also found that

DecidingWhoShouldMutate did not kill any mutants when it was exercised by the other test suites,

and only killed one mutant when exercised by TS18. We therefore decided to omit this IR from this

experiment, since doing so would mitigate the confounding factor, and would not have a material

impact on the results.
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3.2.3 Feasibility Experiment

3.2.3.1 Subject programs

This experiment leverages four well-known and widely used subject programs: Dijkstra’s Algorithm [163],

Bubble Sort [85], Binary Search [186] and Knuth-Morris-Pratt [17]. These subject programs were se-

lected for two reasons. Firstly, since they are open source, they were developed by people that were

unaware of this research; this reduces experimental bias. Secondly, each program targets a different

problem, which improves the generalisability of our findings. Details about these subject programs

can be found below.

Dijkstra’s Algorithm

For our experiment, we used a Java implementation of Dijkstra’s Algorithm that had been de-

veloped by Rosetta Code [163]. We adapted the subject program by instrumenting it with a logging

function and modified the subject program’s source code to accommodate the instrumentation of the

logging function. We used a mutation testing tool in our experiments (see Section 3.2.3.2). Such

tools can produce equivalent mutants. One obvious source of equivalent mutants includes mutations

to redundant code e.g. unused methods. Another way in which we changed the subject program

included removing some redundant lines of code, to reduce the incidence of such equivalent mutants.

Additionally, some of the source code was not compatible with MuJava and thus had to be modified.

Several examples of such modifications include: implicit Java Generics had to be made explicit e.g.

transforming ArrayList<> to ArrayList<Integer>, Ternary Operators had to be transformed into if

statements and For-Each loops had to be augmented into For Loops e.g. For(Obj o: Objects) to

For(int i = 0; i < Objects.size(); i++){Obj o = Objects.get(i);}.

The presence of real faults in the SUT could be a confounding factor for the experiment because

the technique may mistake a failure originating from a real fault to have been produced by a mutant.

The technique was therefore applied to the SUT before mutation analysis was conducted to determine

whether any real faults were present. Interlocutory Testing detected a real fault in the system. The

developers used a class called Vertex to represent one node in the graph. Amongst other things, a

Vertex object stores data regarding the current known best distance between the node it represents

and the start node. It also includes a method compare(V ertex) that compares it to another Vertex

object based on this distance value. During the initialisation of the algorithm, one Vertex object is

created to represent the start node and is assigned a distance of 0. Additionally, one Vertex object

is created for every other node in the graph, each of which is assigned a distance of infinity. These

distances are updated during the algorithms execution.

A data structure called NavigableSet is used to store all of these Vertex objects. The compare(V ert-

ex) method was intended to be used by the NavigableSet collection to sort the Vertex objects based

on their distances such that the Vertex with the least distance from the start node is positioned at

the head of the list. The compare(V ertex) method fulfils this objective. However, it also means the

NavigableSet interprets two Vertex objects to be equal if they have the same distance, and since it

inherits the characteristics of a Set, an object that is equal to another is deemed to be a duplicate and

therefore removed. This fault led to spurious deletions of Vertex objects from the NavigableSet e.g.

all but one Vertex with an infinity distance and the Vertex representing the start node were deleted

63



during initialisation. We rectified the fault by amending the data structures representation.

To estimate the size of the subject program, we created a copy of the subject program called

DAUninstru (represented by the symbol: SysUninstru), and removed the logging function’s lines of

code from SysUninstru. We also reinstated the redundant lines of code that were removed from

the subject program into SysUninstru. We finally calculated the size the subject program based on

SysUninstru; the subject program has 7 classes, 12 methods and 168 SLOC. There is potential for

this procedure to be uncomprehensive in its coverage over redundant lines of code, as well as the

logging function’s source code. However, as discussed in Section 3.2.1.1, our systematic approach for

the identification and removal of the logging function’s lines of code from SysUninstru is only likely to

have missed a negligible number of lines of code and thus not have had a meaningful impact on our

estimates. Only a small proportion of the subject program’s source code was deemed to be redundant;

thus the potential impact of failing to reinstate some redundant lines of code is likely to be minuscule.

Bubble Sort

The implementation of Bubble Sort used in our experiment was written in Java by Java2Novice [85].

We adapted the source code of this subject program by instrumenting it with the logging function.

Further modifications were also made to the subject program’s source code to support the instrumen-

tation of the logging function. Finally, some redundant lines of code were also removed, to reduce the

incidence of equivalent mutants.

Interlocutory Testing was applied to the subject program to check the code for real faults that

could confound the results. A real fault was found; the outer for loop of the Bubble Sort algorithm

executed one too many times. The impact of the fault was a reduction in performance, since the final

iteration was not necessary.

We used the same procedure that was used to create DAUninstru on the Bubble Sort subject

program, to obtain a copy of Bubble Sort called BSUninstru, in which the logging function’s source

code had been removed, and redundant lines had been reinstated. We then estimated the size of

the Bubble Sort subject program based on BSUninstru. The subject program consists of 1 class, 4

methods and 36 SLOC.

Binary Search

A Java implementation of the Binary Search algorithm was borrowed from Vogella [186]. We

instrumented this subject program with a logging function. Again, we used our IRs to test the program

for real faults that might confound the results, and found one. Let StartIndexi and EndIndexi denote

the start and end of the list on iteration i respectively. The developers determined the middle,Middlei,

of the list by computing (StartIndexi+EndIndexi)÷2. StartIndexi, EndIndexi andMiddlei are all

encoded as integers. Unfortunately, this methodology is susceptible to floating point inaccuracies and

rounding errors, which means that the list can be partitioned incorrectly. We therefore implemented a

more precise mechanism for partitioning the list that was not susceptible to such errors and replaced

this aspect of the subject program with our new implementation.

We leveraged the approach that was used to create GAUninstru (see Section 3.2.1.1) on the Binary

Search subject program, to create a copy of the subject program called BinSeaUninstru, in which the

logging function’s source code had been removed. We estimated the size of the Binary Search subject
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program based on BinSeaUninstru. The subject program consists of 1 class, 10 methods and 135

SLOC.

Knuth-Morris-Pratt

We obtained a Java implementation of the Knuth-Morris-Pratt algorithm from Sanfoundry [17].

This subject program was modified as follows. We instrumented it with a logging function, made

changes to its source code to support the instrumentation of the logging function, and removed some

redundant lines of code. We leveraged the same procedure that was used to obtain DAUninstru on the

Knuth-Morris-Pratt subject program to obtain a copy of the Knuth-Morris-Pratt subject program,

referred to as KMPUninstru, in which the logging function’s source code had been removed, and

redundant lines had been reintroduced. We estimated that the Knuth-Morris-Pratt subject program

consists of 1 class, 4 methods and 60 SLOC, based on KMPUninstru.

3.2.3.2 Faults

We generated 40 mutants across the four subject programs detailed above — 10 mutants were gen-

erated per program. The same mutant generation strategy that was detailed in Section 3.2.1.2, was

also used in this experiment. In particular, MuJava was used to generate random mutants, equiva-

lent and crashed mutants were rejected, and in the case of Dijkstra’s Algorithm, 2 input classes were

excluded from mutation testing. We used this mutant generation strategy for the same reasons that

were outlined in Section 3.2.1.2.

Unfortunately, our modified version of the Binary Search subject program was incompatible with

MuJava. However, the original version produced by Vogella [186] was compatible. We therefore used

MuJava to generate mutants for the original subject program and translated them into the amended

version. Since some of the implementation details between these versions were substantially different,

these translations were necessarily approximations.

3.2.3.3 Test Cases

We generated 100 random test cases for each subject program, using the same procedure as outlined

in Section 3.2.1.3, for the same reasons that were described in Section 3.2.1.3. The remainder of

this section presents the main subject program specific restrictions that were used to counteract the

production of infeasible test cases in this experiment.

Dijkstra’s Algorithm

Dijkstra’s Algorithm used the following restrictions: Maximum Edge Weight = 25, and Maximum

Number of Nodes in the Graph = 100.

Bubble Sort

The following restrictions were used by Bubble Sort: List Size Lower-bound = 2, List Size Upper-

bound = 99, and Maximum Element Size = 999.

Binary Search
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We used the following restrictions for Binary Search: List Size Lower-bound = 1, List Size Upper-

bound = 999, and Maximum Element Size = 499.

Knuth-Morris-Pratt

Let Text be a string and Pattern be the substring we are searching for in Text. Both Text and

Pattern were restricted to characters from the alphabet (duplicates were allowed). Let SubPattern

denote a string, such that SubPattern.size() ≥ 2 and SubPattern.size() ≤ 20. To generate a test

case, we first create a random SubPattern. We then concatenate a random number of copies of

SubPattern together. The upper-bound for the maximum number of copies that can be concatenated

is 5. Let PartialPattern denote this concatenated set of copies. Let PatternNoise be a randomly

generated string, such that PatternNoise.size() ≥ 2 and PatternNoise.size() ≤ 10. PatternNoise

is inserted into random parts of PartialPattern a random number of times. The upper-bound on the

number of insertions is 4. The resulting string is Pattern.

A similar procedure is used to obtain Text. The procedures can be differentiated as follows.

Pattern is used in the place of SubPattern on this occasion; we refer to the resultant concatenations

of copies of Pattern as PartialText. The upper-bound on the number of concatenations on this

occasion is 20. Let TextNoise be the equivalent of PatternNoise for Text. The maximum number

of TextNoise insertions into PartialText is bounded by 29.

3.2.3.4 Measures

The measures that were detailed in Section 3.2.1.4, are used in this experiment, for the same reasons

that were expressed in Section 3.2.1.4.

3.2.3.5 IRs

4, 1, 1, and 3 IRs were also generated for Dijkstra’s Algorithm, Bubble Sort, Binary Search, and

Knuth-Morris-Pratt respectively (see Appendices C to F for a list of these IRs, in addition to a

summary of the main aspects of these IRs.). A sample of 9 IRs was deemed to be sufficiently large to

support the analyses that were conducted based on this sample.

3.3 Results and Discussion

3.3.1 RQ1. Is Interlocutory Testing feasible?

This section uses the Dijkstra’s Algorithm, Bubble Sort, Binary Search and Knuth-Morris-Pratt sub-

ject programs, 40 mutants, and 400 test cases to investigate the feasibility of Interlocutory Testing.

Interlocutory Testing successfully killed 39/40 (9/10 Dijkstra’s Algorithm, 10/10 Bubble Sort,

10/10 Binary Search, 10/10 Knuth-Morris-Pratt) mutants and thereby obtained an MS of 97.5%. As

discussed above, the technique also found real faults in 75% of the subject programs. In addition

to this, false positives were not reported for any of these subject programs. This demonstrates that

Interlocutory Testing is a feasible testing technique, and can be effective for different subject programs.

Additionally, all of the real faults were coincidentally correct, which indicates that Interlocutory

Testing can operate in the presence of coincidental correctness.
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Our results also indicate that the effectiveness of Interlocutory Testing can vary for different

subject programs i.e. the technique obtained an MS of 90% for the Dijkstra’s Algorithm subject

program, compared to 100%, 100%, and 100% for the Bubble Sort, Binary Search and Knuth-Morris-

Pratt subject programs respectively. We conducted a series of Fisher’s Exact Tests3 to compare the

accuracy (as measured by the number of killed and survived classifications) of the technique on every

pairwise combination of subject programs. None of these tests yielded a statistically significant result

(p > 0.05). This suggests that our results may be generalisable, since there was no significant variation

across the subject programs.

We also explored the average FDR of each subject program, based on the mutants that were

detected. The Dijkstra’s Algorithm, Bubble Sort, Binary Search and Knuth-Morris-Pratt subject

programs obtained an average FDR of 88.89%, 95.9%, 86% and 76.3% respectively. The programs

clearly vary more in terms of FDR than MS. This means that, although the diversity of faults that can

be found with Interlocutory Testing is similar across subjects, the likelihood of finding these faults can

vary. Interestingly, however, the worst case was 76.3%, which is a very high chance. This is promising

because it indicates that regardless of which subject program Interlocutory Testing was applied to, it

had a high chance of detecting faults. This again, demonstrates the effectiveness of the technique and

indicates that our results may be generalisable.

We would finally like to highlight that the high mutation scores that were obtained for the four

subject programs studied in this section were derived from a small number of IRs — ranging from 1

to 4. This suggests that Interlocutory Testing can operate effectively with very few IRs.

3.3.2 RQ2. How effective is Interlocutory Testing?

This section, Section 3.3.3, and Section 3.3.4 leverage the Genetic Algorithm subject program, 100

mutants, and 100 test cases to answer RQ2, RQ3, and RQ4 respectively.

3.3.2.1 Real Faults

Recall that Interlocutory Testing successfully detected 12 real faults in the subject program. Details

about these faults can be found in Appendix B. Some of these faults were coincidentally correct and

others were not. This demonstrates that Interlocutory Testing can be effective, and can operate in

the presence and absence of coincidental correctness.

3.3.2.2 Mutation Analysis

Mutation Score

Interlocutory Testing killed 87/100 mutants (49/62 coincidentally correct and 38/38 standard), and

thus achieved a mutation score (MS) of 87%. The technique obtained an MS of 79% for coincidentally

correct faults, which indicates that it can operate effectively in the presence of coincidental correctness.

Thus, the technique has achieved its primary goal. Since these 49 faults were coincidentally correct,
3Fisher’s Exact Test is a test statistic that can be used to compare one proportion against another. The Chi Square

is another test statistic that can also perform such comparisons [151]. One key difference between these test statistics

is that the former is exact, whilst the latter is an approximation [49]. The implication of this is that the Fisher’s Exact

Test is more accurate for small sample sizes [49], and is comparable for large sample sizes [49].
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they were not detected by the standard oracle. This illustrates that Interlocutory Testing can offer

substantial support for coincidentally correct faults, beyond that offered by the standard oracle.

Interlocutory Testing also obtained an MS of 100% for standard faults; this demonstrates that

the technique can be at least as effective as traditional test oracles for these faults, and can thus

operate effectively in the absence of coincidental correctness. The difference in Interlocutory Testing’s

effectiveness (as measured by the number of killed and survived classifications) for standard faults

is significantly different than for coincidentally correct faults (Fisher’s Exact Test: p < 0.05), which

suggests that the effectiveness of the technique can vary for different types of faults.

Figure 3.1: Mutants and IRs Heat Map

Figure 3.1 shows a heat map. The Y axis corresponds to IRs and the X axis represents mutants.

An intersection between the X and Y axis communicates whether the relation represented by the Y

axis killed the mutant on the X axis. A black square means the relation killed the mutant and a white

square means the converse.

Figure 3.1 demonstrates that different IRs found a different number of faults; thus, some were

more effective than others. It also shows that relations that found fewer faults could detect faults that

were not detected by the more effective relations. This suggests that less effective relations may add

value because they might find unique faults.

Interestingly, Figure 3.1 also shows that a large number of IRs find the same faults. This could

mean that some are completely subsumed by others. To verify this, we performed a subsumption anal-

ysis to determine the minimum number of IRs required to obtain the maximum MS. We found that

only 14 IRs were necessary: AverageFitnessGeneration, AverageTounamentPositionWinner, Check-

IfCanReplace, ChoosingCouples, CreateRandomIndividualNewBins, CreateRandomIndividualOver-

flow, CrossoverRate, DecidingWhoShouldMutateFineGrained, DeduceLostItems, FFDIntegrity, Mu-

tateAllController, ShouldUseNewIndividual, TerminateGA, and TournamentComposition. This is

promising because it demonstrates that Interlocutory Testing can operate effectively with a relatively

small number of IRs. This supports our observations in Section 3.3.1. We believe that the development

effort for 14 IRs would be acceptable in most cases.
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Failure Detection Rate

The Failure Detection Rate (FDR) measure is not applicable to probabilistic IRs because these IRs

base a single verdict on all of the test cases in the test suite. Thus our analysis of FDR is restricted

to deterministic IRs. We additionally restricted our analysis to mutants that were detected by deter-

ministic IRs. On average, Interlocutory Testing obtained an FDR of 64.14% (Coincidentally correct

test cases: 3014/4100 and Standard test cases: 1540/3000). This demonstrates that if Interlocutory

Testing could detect a fault, it was very likely to do so. Interestingly, the FDRs for standard and

coincidentally correct faults were 51.33% and 73.51% respectively, which means this Interlocutory

Testing was more likely to find coincidentally correct faults than standard faults. This shows that the

FDR can vary for different fault types.

False Positive Rate

Recall that the verdicts of deterministic IRs are interpreted differently to the verdicts of proba-

bilistic IRs. Since deterministic IRs shouldn’t produce false positives, one can have 100% confidence

in the verdict of a deterministic IR if it reports a failure. Conversely, since probabilistic IRs can report

false positives, there is a chance that their failure verdicts are spurious. Section 3.1.2 described the

mechanism used to curtail the false positives produced by probabilistic IRs. To briefly recap, the total

number of failures reported by a probabilistic IR within and across multiple test cases are compared

to typical false positive rates. If the total number of failures significantly exceeds the typical false

positive rate, then the mutant is said to have been killed.

In order to test the false positive rate of our IRs, we executed a correct version of the SUT with our

test suite 30 times. Thus any reported failures can be interpreted as false positives. As expected, our

deterministic IRs did not report any false positives. Encouragingly, the Probabilistic IRs only reported

1/30 false positives. This shows that our mechanism for curtailing false positives was effective.

3.3.3 RQ3. Do the net gains obtained from probabilistic IRs outweigh the

potential net losses?

As discussed in Section 3.3.2.2, unlike the 42 deterministic IRs, our 6 probabilistic IRs can produce

false positives. In this section we explore whether the additional fault detection effectiveness offered

by these Probabilistic IRs offsets their cost in terms of false positives.

The Deterministic and Probabilistic IRs detected 71 (41 coincidentally correct and 30 standard)

and 56 (19 coincidentally correct and 37 standard) mutants respectively. A Fisher’s Exact Test

revealed that the difference in performance (as measured by the number of killed and survived clas-

sifications) between Deterministic and Probabilistic IRs was statistically significant (p < 0.05). This

suggests that Deterministic IRs are more effective than Probabilistic IRs. Interestingly, more coin-

cidentally correct mutants were killed by deterministic IRs than probabilistic IRs, and the converse

was true for standard mutants. This indicates that each IR type was more effective than the other

for different types of faults. This suggests that Probabilistic IRs can add value.

Figure 3.2 illustrates the total number of faults that were detected by both Deterministic and

Probabilistic IRs and shows which of these faults were uniquely detected by the respective IR types.

The graph shows that although there is a large degree of overlap (i.e. 40 faults were found by both

sets of IRs), each IR type also finds a large number of distinct faults — deterministic IRs find 31
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Figure 3.2: Number of faults detected by deterministic and probabilistic IRs

unique faults and probabilistic IRs find 16 unique faults. These observations provide further evidence

for our hypothesis that Probabilistic IRs can add substantial value.

As discussed above, only 1/30 false positives were reported. This is negligible; given our observa-

tions above, this suggests that the benefits of using Probabilistic IRs outweigh the costs. An analysis

of this false positive revealed that the AverageTounamentPositionWinner IR was responsible. This IR

only detected one unique fault; thus, one could reduce the false positive rate to 0, at a cost of 1% to

the true positive rate.

3.3.4 RQ4. Which IRs should be prioritised?

Different IRs have different characteristics e.g. they emphasise testing different areas of the system,

use different fault detection strategies and vary in terms of the context specificness of the behaviours

they predict. This section investigates the impact that these characteristics have on the technique’s

effectiveness and makes recommendations on which IRs should be prioritised based on the results of

this investigation.

3.3.4.1 Area of the system

Although an IR can test multiple components of the SUT simultaneously, each IR tends to place greater

emphasis on one particular component. We partitioned our IRs into groups, based on which component

they place the most emphasis on. Figure 3.3 presents these groups. “Crossover”, “Crossover and MO”,

“Fitness Function”, “GA Controller”, “Initial Population”, “MO” and “Selection” consists of 16, 10, 2,

3, 5, 8 and 4 IRs respectively. Each group is associated with a bar that communicates the total number

of faults that were detected by the group. Before continuing, we would like to clarify the following;

the group on the bar chart that’s labelled “Crossover and MO” represents IRs that emphasise testing

code that was reused across the “Crossover” and “MO” operators.
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Figure 3.3: Number of mutants detected by IRs (grouped by Components)

Figure 3.3 indicates that IRs that place more emphasis on testing certain components are more

effective than IRs that place more emphasis on testing other components. Interestingly, “Crossover”,

“Crossover and MO”, and “MO” were the three most effective groups of IRs. Coupling describes the

extent to which software components are interdependent. The components targeted by these three

groups are highly coupled together, which suggests that IRs that target areas of the system with high

coupling could be particularly effective and should be prioritised.

Interestingly, Figure 3.3 also demonstrates that IRs that emphasise testing different components

find different types of faults. For example, most of the faults found by “Selection” are coincidentally

correct, whilst the majority of faults found by “Crossover and MO” are standard. This suggests that

the location an IR emphasises testing can also affect the types of faults that can be detected.

Figure 3.4: Number of unique mutants detected by IRs (grouped by Components)

According to Figure 3.4, each group of IRs found unique faults. This is not surprising because

most of these unique faults were coincidentally correct (41 were coincidentally correct and 11 were

standard in total), which means that failures produced by such faults don’t always propagate very far.

Thus, there is less opportunity for IRs that emphasise testing other components to find such faults.

Therefore, value can be gained by developing IRs for components that IRs are less effective for.

3.3.4.2 IR fault detection strategies

Recall that an IR is associated with a set of IORs, IOR, and each iori ∈ IOR is associated with a set

of IDs, IDi. Let IOP be an input-output pair, extracted from an execution trace, tracei. Also recall
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that the first step in evaluating IR involves checking whether each iori ∈ IOR is satisfied by IOP . If

IOP does not satisfy any IORs in IR, and IOR has full coverage over the set of all valid input-output

pairs, then a failure is reported. For ease of reference we call this fault detection scenario IOR-Only-

Detection. If an iori ∈ IOR is satisfied, then iori makes predictions about the execution trace (these

predictions are in the form of IDi). These predictions are finally compared to tracei; any discrepancy

leads to the reporting of a failure. This fault detection scenario is referred to as IOR-ID-Detection.

Also recall that an IR can report a failure, if a crash is experienced during the logging of data required

for IR, extraction of execution trace data from a log file for IR, or during the evaluation of IR (see

Section 3.1.1.3). Such fault detection scenarios are also classified as IOR-ID-Detection.

Let IOROnly be a group of IRs, such that each IR in IOROnly detects more mutants using

the IOR-Only-Detection strategy than the IOR-ID-Detection strategy, and let IORID be the con-

verse. IOROnly consists of 13 IRs, and IORID is composed of 18 IRs. IOROnly detected 33 (10

coincidentally correct and 23 standard) faults, whereas IORID found 65 (37 coincidentally correct

and 28 standard) faults. Thus, IRs that mainly detected faults with the IOR-ID-Detection strategy

detected more faults than IRs that mostly relied on the IOR-Only-Detection strategy. We compared

the effectiveness (as measured by the number of killed and survived classifications) of the IOR-ID-

Detection strategy against the IOR-Only-Detection strategy, using Fisher’s Exact Test, and found

that the difference was statistically significant (p < 0.05). This indicates that IRs that mainly use the

IOR-ID-Detection strategy might be more effective and thus one may consider prioritising such IRs.

A comparison of the number of killed and survived classifications made by IOROnly against the

number of such classifications made by IORID for coincidentally correct and standard faults revealed

that the difference was not significant for standard faults (Fisher’s Exact Test: p > 0.05), but was for

coincidentally correct faults (Fisher’s Exact Test: p < 0.05). This highlights the value of the IOR-ID-

Detection strategy for coincidentally correct faults. Finally, we observed that both of these strategies

found unique faults. In particular, IOROnly detects 6 faults that are not detected by IORID, and

IORID can find 38 faults that are not reported by IOROnly. This demonstrates that using multiple

IRs that emphasise different strategies can add value.

Let PIR be a probabilistic IR. Recall that PIR may execute multiple times and thus generate a

series of verdicts V erdicts = {v1, v2, ..., vn}. Also recall that the final verdict of PIR is based on an

evaluation of all of these V erdicts. A verdict vi ∈ V erdicts may have been determined by a different

strategy than another verdict vj ∈ V erdicts. Thus, a mixture of both strategies may be responsible

for a single probabilistic IR’s final verdict. This means the analysis above was not appropriate for

probabilistic IRs and they were therefore omitted.

3.3.4.3 Context specificness of predicted behaviours

Recall that an IR can have multiple IORs and that these are used to make predictions about execution

trace behaviours. An IR can be designed (based on the assumption that the SUT has been correctly

implemented), such that when it makes predictions, it either uses all (IOR-TypeAll), or some subset

of its IORs (IOR-TypeSome) to simultaneously make multiple predictions for a single evaluation.

IRs were grouped according to these types; 25 and 23 IRs were classified as IOR-TypeAll and IOR-

TypeSome respectively.

IOR-TypeSome IRs include multiple IORs, such that some of these IORs are satisfied in mutually
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exclusive contexts. This is why such IRs cannot use all of their IORs simultaneously to make multiple

predictions for a single evaluation. Recall that in order for an IOR to predict the manifestation of an

execution trace behaviour, this execution trace behaviour must be expected to manifest in the contexts

in which the IOR has been satisfied. Since the aforementioned IORs are not satisfied in all contexts,

they can, and typically do, include predictions on the manifestation of execution trace behaviours that

are not expected to manifest in all contexts. Such predictions are more context specific. By contrast

IOR-TypeAll IRs either only have one IOR, or have multiple IORs that all predict behaviours in the

same context. IORs in such IRs are typically designed to be applicable to most, if not all contexts

and thus predict more common/general execution trace behaviours.

IOR-TypeAll and IOR-TypeSome IRs killed 49 and 81 mutants respectively. This suggests that

IOR-TypeSome IRs are more effective and should be prioritised. As discussed above, since IOR-

TypeSome IRs predict more context specific behaviours than IOR-TypeAll IRs, this also indicates

that IRs that predict more context specific behaviours may be more effective. Although IOR-TypeAll

IRs were less effective, they successfully found 6 faults that were not detected by IOR-TypeSome IRs.

This suggests that it’s important to use a mixture of IRs that range in terms of the execution trace

behaviours they predict i.e. context specific and general behaviours.

3.3.5 RQ5. How consistent is the effectiveness of Interlocutory Testing

across different test suites?

To answer this research question, we conducted a series of comparative analyses between different

applications of Interlocutory Testing, such that each application of the technique varied in terms of

the test suite, but not in terms of other experimental parameters like the subject program, mutants,

and IRs. These comparative analyses are based on the Genetic Algorithm subject program, 30 non-

equivalent mutants, 30 test suites (each consisting of 100 test cases), and 47 IRs. Further details can

be found in Section 3.2.2.

Sections 3.3.5.1 to 3.3.5.3 present our comparative analyses. In particular Section 3.3.5.1 compares

the test suites in terms of the mutation score, Section 3.3.5.2 performs comparisons based on the false

positive rate, and FDR is the basis of the comparisons in Section 3.3.5.3.

3.3.5.1 Mutation Score

Figure 3.5 is a bar chart that shows the total number of mutants that were killed by TS2 to TS30.

The X-Axis is partitioned into three subgroups that correspond to three different groups of IRs —

Deterministic IRs, Probabilistic IRs, and Both IR Types. Each test suite is represented by three bars,

each of which resides in a different subgroup. A bar in a given subgroup communicates the total

number of mutants that were killed by the IRs that are represented by that subgroup, when exercised

with the test suite that is represented by that bar. Each bar also illustrates the proportion of the

faults that were killed, that were standard and coincidentally correct.

Figure 3.5 clearly shows that the Deterministic IRs obtained exactly the same mutation scores

across TS2 to TS30. This suggests that one’s choice of test suite has very little impact on the

effectiveness of Deterministic IRs. Conversely, the table demonstrates that the effectiveness of the

Probabilistic IRs did vary across test suites, and that this is more pronounced for coincidentally

correct than standard faults. Interestingly however, the level of variance was relatively low, and as
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Figure 3.5: Number of mutants killed by TS2 to TS30; results filtered by IR type.

evidenced by the bars in the Both IR Types subgroup, had a very negligible impact on the overall

effectiveness of Interlocutory Testing. These results indicate that the effectiveness of Interlocutory

Testing is very consistent across test suites.

Table 3.1 provides another lens (in the form of descriptive statistics) on the data depicted in

Figure 3.5, as well as data pertaining to the mutation scores of TS1. The table demonstrates that

there was very little difference between the average effectiveness of TS2 to TS30, and the effectiveness

of TS1. We conducted nine Fisher’s Exact Tests, to compare the effectiveness of TS1’s (in terms of

the number of killed and survived mutants) Deterministic, Probabilistic, and Both IRs, against the

effectiveness of TS2 to TS30’s (based on the average number of killed and survived mutants across

these test suites) corresponding IRs, for standard, coincidentally correct, and both fault types. We

also applied the Benjamini-Hochberg correction4 to these statistical tests, and found that none of the

differences were statistically significant. This reinforces our previous observation, and suggests that

the results we obtained across Sections 3.3.2 to 3.3.4.3 can generalise to other test suites.

Figure 3.6 is a bubble chart that illustrates for each IR, the extent to which this IR’s effectiveness

differed when it was exercised by TS1 in comparison to when it was exercised by TS2 to TS30. Each

interval of the X-Axis corresponds to an IR, and the Y-Axis expresses the difference between TS1 and

the other test suites, in terms of the number of killed mutants. The size of a bubble communicates

the number of test suites from TS2 to TS30 that differ from TS1 to the same extent. For example,

consider the bubble that is associated with the last interval of the X-Axis and -1 on the Y-Axis in

Figure 3.6. The size and coordinates of this bubble can be interpreted as follows: 13 test suites from

TS2 to TS30 killed one fewer mutants than TS1 with the IR represented by the last interval of the

X-Axis. Finally, the graph also partitions the results by IR type.

Figure 3.6 demonstrates that, with the exception of three Deterministic IRs, all other Deterministic

IRs obtained a consistent level of effectiveness across TS1 to TS30. One can observe that these three

exceptional IRs vary in terms of the number of test suites that deviate from TS1 and from each other.

This suggests that the likelihood of one Deterministic IR producing different results for different test
4In situations in which one leverages multiple statistical tests, some of the statistical tests may spuriously report a

significant outcome. The Benjamini-Hochberg correction can be used to alleviate this problem [184].
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Deterministic IRs Probabilistic IRs Both IR Types

Descriptive

Statistics

(TS2 to TS30)

SF CCF BF SF CCF BF SF CCF BF

Mean 4.00 15.00 19.00 6.97 6.55 13.52 7.00 18.21 25.21

Standard Deviation 0.00 0.00 0.00 0.19 1.43 1.43 0.00 0.41 0.41

Kurtosis N/A N/A N/A 29.00 0.84 0.97 N/A 0.35 0.35

Skewness N/A N/A N/A -5.39 1.19 1.26 N/A 1.53 1.53

Minimum 4.00 15.00 19.00 6.00 5.00 12.00 7.00 18.00 25.00

Maximum 4.00 15.00 19.00 7.00 10.00 17.00 7.00 19.00 26.00

TS1’s

Results
4.00 15.00 19.00 7.00 5.00 12.00 7.00 18.00 25.00

Table 3.1: Descriptive statistics of the mutation scores obtained by TS2 to TS30, and a summary

of the TS1’s mutation scores. Standard Faults, Coincidentally Correct Faults, and Both Faults are

represented by SF, CCF, and BF respectively.

Figure 3.6: Difference in performance of TS1’s IRs, against the corresponding IRs in TS2 to TS30.

suites, can be higher than for another Deterministic IR. The graph also makes apparent that, across

these three exceptional IRs, the largest deviation between a test suite and TS1 was only by two faults.

This indicates that, in situations in which a Deterministic IR’s performance can vary across test suites,

the severity of the variation is likely to be small.

As discussed above, the overall effectiveness ascertained by Deterministic IRs was consistent across

all of the test suites; this means that the variations in the effectiveness of the three exceptional IRs

had no impact on the overall effectiveness of our Deterministic IRs. Let IRa be a Deterministic IR.

Suppose that IRa can detect mutant m with a test suite tsx, but cannot detect m with another test

suite tsy. Also suppose that another Deterministic IR, IRb, can detect m with tsy. This demonstrates

that the collective fault detection effectiveness of IRa and IRb remain the same for m, despite the fact

that the effectiveness of IRa can vary for m. This example illustrates why the overall effectiveness

of our Deterministic IRs remained constant across test suites despite the minor variations in the
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effectiveness of several individual IRs. The example also highlights the value of developing multiple

IRs that overlap in terms of the faults that they can detect i.e. had IRb not been present, then m

might not have been detected by tsy.

Figure 3.7: Cumulative Frequency Graph

Figure 3.7 is a cumulative frequency graph. A value on the X-Axis pertains to the absolute

difference between TS1 and a given test suite, in terms of the number of killed mutants, and the

Y-Axis represents a percentage of test suites. The intersection between the X-Axis and Y-Axis can

be interpreted as follows: the percentage of test suites on the Y-Axis deviated from TS1 by either

the number of mutants represented by the X-Axis or fewer. Each line on the graph corresponds to a

Probabilistic IR.

It can also be observed in Figure 3.6, that Probabilistic IRs experience more variance than De-

terministic IRs. Interestingly however, Figure 3.7 illustrates that the severity of these variations are

relatively small. For example, it shows that, across all of the Probabilistic IRs, the minimum, average,

and maximum number of test suites that only deviate from TS1 by one or fewer killed mutants, is

86.21%, 93.68%, and 100% respectively. This suggests that Probabilistic IRs perform very comparably

across test suites.

3.3.5.2 False Positive Rate

Figure 3.8 is a scatter plot that shows the difference between TS1 and the other test suites, in terms

of the number of false positives that were reported. The X-Axis corresponds to the difference in

false positives between TS1 and the other test suites, and the Y-Axis is the number of test suites.

The scatter plot shows that there was very little variance between TS1 and the other test suites.

We conducted a Fisher’s Exact Test to compare the false positive rate (measured in terms of the

number of false positives and true negatives) of TS1 against the test suite that obtained the lowest

false positive rate; we did not observe a significant difference. Similarly, we compared TS1 against

the test suite with the highest false positive rate, measured in terms of their false positives and true

negatives, and found that the difference was not statistically significant. These findings suggest that

one’s choice of test suite has a negligible impact on the false positive rate, and also provides a further

indication about the generalisability of the results reported in Sections 3.3.2 to 3.3.4.3.
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Figure 3.8: Difference between TS1’s FPRs and the FPRs of TS2 to TS30.

3.3.5.3 Failure Detection Rate

As discussed in Section 3.3.2.2 the FDR is not applicable to Probabilistic IRs. Thus, only Deterministic

IRs are considered in this section.

Figure 3.9: Cumulative Frequency Graph.

Let 〈TSi,mj〉 be a pair, such that TSi denotes a particular test suite from TS2 to TS30, and

mj denotes a specific mutant. Let Cases denote all such unique pairs. Figure 3.9 is a cumulative

frequency graph. An interval of the X-Axis depicts the absolute difference in FDR between TS1 and a

given test suite, and the Y-Axis corresponds to a percentage of Cases. The height of a bar illustrates

the percentage of Cases that have an FDR that differs from TS1 by a value that is either less than or

equal to the value on the X-Axis interval associated with that bar. The graph indicates that there is

relatively little difference between TS1 and the other test suites in terms of FDR e.g. 87.48% of Cases

only differ from TS1 by at most 7% FDR. We computed the average FDR of each mutant across TS2

to TS30, and compared these averages to the FDRs that were obtained by TS1 for these mutants
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using a Mann-Whitney U Test5. The test revealed that there was no significant difference. These

observations suggest that that test suite has little bearing on the FDR of the technique, and provides

further evidence regarding the generalisability of the results that we reported across Sections 3.3.2

to 3.3.4.3.

Figure 3.10: Difference between TS1’s FDRs and the FDRs of TS2 to TS30.

Figure 3.10 is a bubble chart that shows the extent to which TS2 to TS30 differed from TS1 in

terms of FDR, for each mutant. Each interval of the X-Axis corresponds to a specific mutant, and the

Y-Axis expresses the difference in FDR between TS1 and the other test suites. The size of a bubble

communicates the number of test suites from TS2 to TS30 that differ from TS1 to the same extent.

For example, consider the mutant that is represented by the first interval of the X-Axis, and the

bubble with the lowest value on the Y-Axis in this interval. This bubble demonstrates that one test

suite obtained an FDR that was 5% lower than the FDR that was obtained by TS1, for the mutant

represented by this interval. Figure 3.10 shows that the level of variance in terms of the FDR across

test suites varies substantially for different mutants. This suggests that one’s choice of test suite can

be important for specific types of faults, but less so for others.

3.3.6 Discussion

3.3.6.1 A comparison of the effectiveness of Interlocutory Testing and traditional testing

techniques

Let Intentions denote the user’s intent for how the SUT should operate. Traditional testing techniques

use the Input and Intentions to determine an expected outcome, EOutcome. The SUT is executed

with the Input to produce an Output, and the Output is finally compared to EOutcome. The results

of this comparison are used to determine the correctness of the SUT. Such techniques assume that the

output accurately reflects the execution trace behaviours and thus the correctness of the former implies
5The Mann-Whitney U test statistic can be used to compare two groups based on one continuous measure [151]. It

is a non-parametric technique and can therefore be used when the assumptions of parametric techniques are broken e.g.

normal distribution [151].
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the correctness of the latter. However, this assumption doesn’t hold in the presence of coincidental

correctness. Thus such techniques can be ineffective under these circumstances.

By contrast, Interlocutory Testing uses the Input in conjunction with the Output to determine

Intentions. The SUT is executed with Input to produce an execution trace, tracei, which is sub-

sequently compared with Intentions. Again, the results of this comparison are used to determine

the correctness of the SUT. Thus, Interlocutory Testing directly checks the correctness of execution

trace behaviours. This means that Interlocutory Testing can operate effectively under the influence

of coincidental correctness because it doesn’t rely on the same unfounded assumption as traditional

testing techniques.

Interlocutory Testing can check certain execution trace behaviours more precisely than other tech-

niques because it checks these behaviours directly. For example, probabilistic IRs can test specific

non-deterministic behaviours. By contrast, since other testing techniques base their evaluation on

the output, they can only model the uncertainty introduced by non-determinism in general, into

their expected test outcomes. This often means that they must weaken their thresholds for cor-

rectness [138]. For example, consider the Crossover Operator of a Genetic Algorithm; this operator

generates a random number of random solutions and adds them to a pre-existing population of size

PS. Since techniques like Assertions6 can’t predict the precise output, they must resort to testing

with weak conditions e.g. Population.size() >= PS. This can increase their susceptibility to coinci-

dental correctness because a larger number of outputs are deemed to be plausible, and thus there is

more opportunity for coincidentally correct behaviours to map to a plausible output. It may also be

necessary to prevent Assertions from being evaluated under certain conditions or in certain blocks of

code, to counteract the effects of non-determinism [5]. This means that assertions may not even be

able to test certain instances of such behaviours.

Consider the example in Section 3.1.1. The Crossover Operator’s primary function is to expand a

Population of size PS, such that Population.size() ≥ PS. The exact number of additional individuals

added to the Population is random. Since the Crossover Operator executes before the Selection

Operator, it’s entirely possible that the additional individual that was added to PopulationSOI by

the fault, could have been generated by the Crossover Operator in a correct version of the system.

Thus checking the integrity of PopulationSOI would not reveal the fault. This demonstrates that

failures produced by some coincidentally correct faults can even be plausible in the first state they

influence.

Coincidentally correct faults like these are plausible in all program states. Such faults are impos-

sible to find using traditional testing techniques that are restricted to observing one program state.

However, the example shows that it is possible to detect them by assessing the interplay between

execution trace behaviours across multiple states. This is because a fault that appears plausible in

one state, may not be plausible when considered in the context of multiple states simultaneously. IRs

draw on multiple states simultaneously and so can detect such faults.

Other techniques can also check multiple states, but place restrictions on which states can be

simultaneously considered. This can be detrimental to their fault detection capabilities for such faults.

To illustrate, consider Assertions. Assertions can check multiple states, if state caching is feasible and
6Assertions are Boolean statements that are directly embedded in a system’s source code [12]. If an assertion

evaluates to true, then the test passes, otherwise the test fails [74].
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is used [12]. Let M1 and M2 be two modules, such that a direct interface does not exist between

these modules e.g. the Crossover and Selection components respectively. It has been reported that

Assertions cannot correlate events between M1 and M2 [12]. This means it would not be possible

for Assertions to consider states from Crossover and Selection simultaneously e.g. CrossoverN and

Populationsoo, which means that Assertions cannot detect the coincidentally correct fault that was

described in Section 3.1.1. Since IRs are not subject to such restrictions, their effectiveness is not

compromised in this way.

Other testing techniques like assertions also use predicates. However, they’re used in a differ-

ent way. To illustrate, consider the logic, L, that selects a subset (Parents) of the Population to

crossover, in a Crossover Operator. Predicates used by assertions can only be used to judge the cor-

rectness of logic that affects the outcome of these predicates. For example, an assertion may check

ParentsMod2 == 0 and judge the correctness of L based on this assessment, because L affects this

predicate. Predicates in Interlocutory Testing are not restricted in this way; an assessment of a pred-

icate in Interlocutory Testing can imply the correctness of logic that does not affect the outcome of

this assessment. For example, the ID associated with IOR2 in Section 3.1.1.2 can report a failure in

response to the fault outlined in Section 3.1.1, but the fault actually executes after all of the logic

that was used to evaluate the ID has executed.

3.3.6.2 A comparison of the Usability of Interlocutory Testing and traditional testing

techniques

The SUT is a set of program statements SUT = {s1, s2, ..., sn}. Two program statements si ∈ SUT

and so ∈ SUT are designated the input and output respectively. The user must develop an intuition

into how si and so are related. si, so and this intuition form an IOR. This task is very intuitive,

if one has in-depth domain knowledge. Chen et al. [45] used the Category-Choice Framework to

develop an automated method of finding multiple groups of Input-Output pairs, such that interesting

relationships may exist between these groups. Related analysis approaches may be useful for partially

automating the exploration of relationships between inputs and outputs, and thus could simplify this

task. For future work, we would like to investigate this possibility.

Having identified an IOR, the user must then identify execution trace behaviours that should

manifest in executions in which this IOR is satisfied i.e. IDs. This task can be intuitive, if one has

knowledge about the SUT’s implementation details. It has been reported that such knowledge is

typically readily available in software documentation like functional specifications [9]. Thus, a large

proportion of this task may already be complete in many cases [9]. Several tools can also be used

to partially automate the identification of such execution trace behaviours. For example, Program

Slicing tools can be used to identify execution trace behaviours that either affect, or are affected by

the outcome of an IOR [73]. One could narrow one’s investigation of useful execution trace behaviours

to those that were suggested by Program Slicing tools. Another example includes automated invariant

detection tools like Daikon [74]. Such tools can be applied to executions in which the IOR is satisfied to

identify potential relationships between intermediate state variables; an analysis of such relationships

may expose interesting execution trace behaviours. Again, one could narrow one’s investigation to

such behaviours. These tools have been reported to be capable of reporting false positives [74] i.e.

some of these relationships may be spurious. Thus, by using these tools, the user’s task can be reduced
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to checking the validity of relationships that have been proposed by these tools, and analysing valid

relationships to expose potential execution trace behaviours.

Once multiple IORs have been identified and associated with IDs, the user can finally group IORs

together and define relationships between them to form IRs. Such IORs tend to be highly related and

so this task is typically very natural. For example, two IORs may collectively cover the entire input

domain, but be mutually exclusive; thus, the user must define this mutual exclusivity.

The discussion above reveals that several tasks must be performed to obtain an IR. However, it

also demonstrates that support tools are available that can partially automate the process. For future

work, we would like to develop methods of increasing the degree of automation.

We believe that the effort involved in constructing IRs is comparable to other techniques. To

illustrate this, we compare Interlocutory Testing with other popular techniques in terms of the assumed

prerequisite skill-set of the user, the amount of implementation effort that is required, and the number

of tasks that must be performed.

The discussion above reveals that the user is assumed to have domain knowledge and knowledge

about the SUT’s implementation details. Such a requirement is not uncommon for white box testing

techniques e.g. Metamorphic Testing (see Section 2.3.2.1), Assertions [92] and some Model-based

Testing techniques [140]. Promisingly, Interlocutory Testing requires less knowledge than some testing

techniques. For example, since IDs can be expressed in any form, the user can select the means

of describing the oracle that they are most comfortable with. Other techniques like Specification-

based Testing restrict the user’s avenues of expression to certain languages, some of which require an

understanding of abstract mathematical concepts, that the user may not be familiar with [183].

With regards to the development task; an IR is comparably larger than some other types of oracles

e.g. an assertion. However, one must note that Interlocutory Testing requires very few IRs to be effec-

tive (e.g. only 14 IRs were required for the Genetic Algorithm subject program — see Section 3.3.2.2,

and only 3, 1, 1, and 4 IRs were used for the other subject programs — see Section 3.3.1), whilst other

testing techniques like Assertions may require a large number of assertions [100]. We believe the pro-

portionally higher cost of a single IR may be offset by the fact that fewer are required. Additionally,

many other techniques are likely to involve substantially more programming effort than Interlocutory

Testing. For example, N-version Testing may require the user to develop a second version of the

SUT [81]. By comparison, Interlocutory Testing only requires the user to define associations among

existing program entities — one does not have to implement these program entities [9].

Finally, Interlocutory Testing requires the user to perform several manual tasks to obtain an IR.

Many other popular testing techniques also mandate numerous manual, labour intensive tasks. For

example, Machine Learning based oracles may require the user to manually label training samples

in a training dataset [64], select appropriate feature extractors [92], and write programs to translate

data produced by the SUT into a compatible form for the ML algorithm (see Section 2.5.2.1).

3.4 Related Work

UCov is a tool that can assess the coverage adequacy of a test case in the context of regression

testing [9, 8, 171]. Let Sysv1 be the SUT, and Behav be an execution trace behaviour in Sysv1.

Suppose that a test case tc was generated, with the intention of exercising Behav. In UCov, this
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intention is called a “Test Case Intention”. UCov requires the tester to associate tc with Behav to

explicitly specify their Test Case Intention [9]. UCov can check whether Behav manifests in Sysv1,

when executed with tc. Manifestation of Behav indicates that the Test Case Intention of tc holds

and thus, the coverage of tc is adequate and tc should be added to the test suite. The converse is

true if Behav does not manifest; the test case can be discarded in such situations. Suppose that the

coverage of tc was deemed to be adequate. Further suppose that due to software maintenance, Sysv1

was subsequently modified into Sysv2. Behav may not manifest in Sysv2 with tc, thus the Test Case

Intention of tc may not hold anymore and the coverage of tc may now be deemed to be inadequate.

UCov can recognise this [9], and inform the tester, who may either modify the Test Case Intention of

tc to realign it with Sysv2, or discard tc.

The use of execution trace behaviours is central to both Interlocutory Testing and UCov [9].

However, the execution trace behaviours in each technique serve different purposes. In Interlocutory

Testing, execution trace behaviours specify the intention of the SUT. Thus, checking whether these

intentions hold is tantamount to checking the correctness of the SUT. To illustrate, let tcc and tcf be

two test cases for Sysv1, such that Behav should manifest in both tcc and tcf , but does not manifest

in tcf because of a fault. Interlocutory Testing will detect the fault if Sysv1 is executed with tcf , and

if Interlocutory Testing predicts that Behav will manifest. On the other hand, in UCov, an execution

trace behaviour specifies the intention of a test case [8]. This means that if UCov was presented with

tcf and the aforementioned Test Case Intention (i.e. Behav must be exercised by the test case), it

would simply deem the coverage of tcf to be inadequate, and the test case will be discarded. However,

the converse is true if UCov is presented with tcc. UCov’s use of execution trace behaviours clearly

prevents it from acting as an oracle for Sysv1, however it does enable one to obtain a test case that

will exercise Behav, and so it succeeds as a test case coverage adequacy criterion [9].

Let Sys denote the SUT. Sysc
loop and Sysf

loop are versions of Sys, in which a particular for loop

iterates 50 and 49 times respectively, when these versions are executed with test case tcloop. Sysc
loop

and Sysf
loop are correct and faulty versions of Sys respectively. Let us suppose that Sys ≡ Sysf

loop,

was executed with tcloop, and the fault was detected. The tester applies a bug fix to Sys, and thus

Sys becomes Sys ≡ Sysc
loop. After the bug fix has been applied, UCov expects the tester to associate

tcloop with execution trace behaviours that characterise the fault [8]. For example, in this case,

tcloop may be associated with a predicate that states that the for loop should iterate 50 times. This

strategy guarantees coverage over areas of the code that have historically been faulty. Additionally,

this strategy allows UCov to provide some limited oracle support. In particular, the exact same fault

may resurface. This may happen because of an error in source control management that causes classes

from Sysf
loop to be used, instead of Sysc

loop [8]. Under such circumstances, UCov will recognise that

50 iterations were not observed during the execution of tcloop, and this can be used as an indication

that the fault has resurfaced. Since the oracle that originally detected the fault will also detect the

fault, we believe that this additional oracle support adds little value. The tester may insert a fault

into the aforementioned bug fix, and UCov may be able to detect this [8]. For example, the loop may

iterate 48 times because of a fault in the bug fix. Again, UCov will recognise that 50 iterations were

not observed during the execution of tcloop, and this can be taken as an indication of a fault in the

bug fix.

Unlike Interlocutory Testing, the oracle support provided by UCov has the following severe limi-
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tations. The discussion above demonstrates that UCov’s oracle support is confined to the context of

regression testing e.g. to a narrow range of faults that may exist in bug fixes — it cannot provide

oracle support for the base source code of the system. In UCov, since an execution trace behaviour

is associated with one specific test case [9], UCov can only use this execution trace behaviour as an

oracle when executing this specific test case. Some faults may only result in failures in certain test

cases. It is therefore possible for a fault to exist in a bug fix that does not manifest in this test case,

but does result in a failure in other test cases. Such a fault may not be detected by UCov. Thus, the

effectiveness of the oracle support that UCov can provide may also be limited. Finally, binding specific

oracles to specific test cases can also limit the number of test cases that can be used in practice.

3.5 Threats to Validity

3.5.1 Internal Validity

There are several threats to internal validity. Firstly, several tools like MuJava, SPSS and Eclipse

were used in this experiment. These tools may contain faults and thus reduce the validity of the

experiment. However, since they are widely used and reputable, it’s likely that most faults would

have been accounted for.

Randomisation was used throughout the experiment where possible e.g. during test case genera-

tion, the SUT’s execution and mutant selection. This served to reduce experimental bias.

To gauge the effectiveness of a testing technique accurately, it is necessary to ensure that it is ex-

ercised on a wide variety of fault types. To maximise the diversity of fault types in the experiment, we

selected all of the available fault types in MuJava, and as discussed in Section 3.2.1.2, certain classes

were excluded from mutation testing to also improve the diversity of the mutant sample. Unfortu-

nately, MuJava could not generate all types of mutants for all classes. For example, in the Genetic

Algorithm subject program, it could not produce any traditional mutants for the BinPackingAnd-

CrossoverCommon class. This is a limitation of MuJava, and reduces the diversity of fault types

within a class. However, fault types that were not available in one class, were available in others.

For example, traditional mutants could be generated for BinPackingCrossover. Thus, this limitation

is unlikely to have a substantial impact on the overall diversity of the mutant samples used in the

experiment.

One of the mutation operators that is offered by MuJava is JSI. This mutation operator transforms

a non-static variable into a static variable. Our experiments did not reset the state of variables that

had been mutated by the JSI mutation operator to their default values at the end of a test case. This

meant that the last state of these variables in one test case became the first state of these variables

in the subsequent test case. In other words, in addition to transforming a non-static variable into a

static variable, JSI also corrupted the initial state of this variable. We note that some of MuJava’s

other mutation operators can also corrupt the initial state of a variable e.g. the AOIU operator

can transform a positive value to a negative value, during the initial assignment of a value to a

variable. Thus, the additional consequence of using the JSI mutation operator is not dissimilar to

other mutation operators. The JSI mutation operator was not used to produce many of the mutants

that were included in our mutant samples e.g. it was only used to produce one mutant for the Genetic

Algorithm subject program and was not used to produce any mutants for the other subject programs.

83



Thus, this redefinition of the JSI mutation operator only affected a negligible number of mutants.

Our method for determining whether a mutant was coincidentally correct, consisted of executing

the mutant with a test suite, and applying a standard oracle to the output of each test case. This

oracle checked every aspect of the output for correctness. If every output was deemed to be correct

by this oracle, then our method concluded that the failures that were produced by the mutant did not

propagated to the output, and thus the mutant was coincidentally correct. A mutant that is classified

as coincidentally correct, based on this test suite, may not be classified as coincidentally correct for a

different test suite. Thus, this is a threat to repeatability. However, this does not affect the validity

of our results, because these classifications are correct in the testing context that our experiment was

conducted in.

The presence of equivalent, infinite loop, and crashed mutants in the mutant sample could have

been a confounding factor, because such mutants can skew empirical results. To eliminate this po-

tential confounder, we manually inspected every mutant to identify equivalent mutants, and removed

them from the sample. We also removed all infinite loop, and crashed mutants. Manual inspection

is an extremely expensive task. It was therefore infeasible to generate an extremely large number of

mutants. However, our sample is sufficiently large enough to obtain meaningful results.

Given that determining a mutant’s equivalence to the original system is undecidable, and that

manual inspection was used to perform this task, human error is possible [203]. We re-examined

the 30 mutants that were used to address RQ5 to determine the extent to which misclassifications

might have affected the validity of our results. We found that only two equivalent mutants had been

misclassified as non-equivalent; these two misclassifications have led to a reduction in the mutation

score. This suggests that the number of misclassifications that were made, was too small to have had

a significant impact on the results.

Another issue was the imbalance of different IR groups e.g. 42 Deterministic vs 6 Probabilistic IRs.

Since the SUT has a limited amount of logic that’s amenable to certain groups, it was unfortunately

impossible to gain a substantial and equal number of IRs for each group. It would have been possible

to remove excess IRs from some groups to equalise the group sizes, but this could have led to a

significant loss of valuable data.

Recall from Section 3.1.1.3 that the first phase of Interlocutory Testing involves capturing data

about the execution trace, during the execution of the mutant, and that Interlocutory Testing can

crash during this phase. In such cases, Interlocutory Testing has effectively detected the mutant.

Our experiment did not distinguish between these crashes and system crashes, and so these mutants

were conservatively removed from the experiment. Therefore, the experimental results presented in

this chapter underestimate the technique’s effectiveness. However, we do not believe that this had a

significant impact on the results, since the technique already detects most of the mutants.

Three IRs had been partially developed for the Genetic Algorithm subject program. These IRs

were not used in our experiments, but despite this, the logging function still captured execution

trace data for these IRs. Certain mutants may potentially cause the logging function to crash while

it is attempting to acquire this execution trace data. In such situations these IRs have effectively

killed the mutant. We could not distinguish between these crashes and system crashes; thus, we

had to conservatively remove these mutants from the experiment. Thus, our experimental results

underestimate the technique’s effectiveness; our estimate for the technique’s effectiveness might have
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been higher, had we leveraged these IRs, and been able to distinguish between different types of

crashes. However, again, we do not believe this could have had a meaningful impact on the results,

because most of the mutants were detected by the technique without these IRs.

Recall that a standard oracle was used to classify mutants as either coincidentally correct or

standard. It might have been possible for certain mutants to cause this oracle to crash. In such

situations, the oracle has effectively killed the mutant; thus the mutant should be classified as a

standard fault. However, we did not distinguish between these crashes and system crashes, and so

we conservatively removed such mutants. Our results demonstrated that Interlocutory Testing was

able to kill 38/38 standard mutants, thus it is highly probable that the technique would have been

able to detect these mutants. Thus, the most likely consequence of removing these mutants is that

our results may underestimate the effectiveness of our technique. Again, this is unlikely to have had

a meaningful impact on the results, because most of the mutants were detected.

Many logging tools are available. Different logging tools offer a distinct set of advantages and

disadvantages. For example, some may have better performance, some may be more storage efficient,

and some may offer greater flexibility than others. We developed our own logging tool, so that we

could have control over the advantages and disadvantages that were offered by the tool. Let Obj be

an object, that contains a private variable v, and a getter method get(v) that returns v. Obj also

contains another method process() that uses v. Suppose that during the execution of a test case tc,

the SUT invoked process(). Further suppose that get(v) was never called during the execution, by the

SUT. The evaluation of an IR, IR, may require v. Our logging tool is instrumented in the SUT and

may execute parts of the SUT to obtain the required data. For example, the logging tool may execute

get(v) to obtain v. Thus, even though the code for the get(v) method was not executed by the SUT,

it was still executed by the logging tool. This demonstrates one advantage of our logging tool — it

can increase code coverage. It is unclear how the technique might perform, when used in conjunction

with a different logging tool. Thus a threat to repeatability might be one’s choice of logging tool. For

future work, we would like to investigate the impact of different logging tools on the technique.

The presence of real faults may confound the results i.e. a test case may result in failure, and one

may believe this to be a consequence of a mutant, when in actuality, the failure may have originated

from a real fault. To address this problem, the test suite was executed on a “correct” version of the

SUT, and real faults were repaired before mutation testing was conducted.

It was infeasible to remove one of the real faults. To prevent the real fault from contaminating the

experiment results, we modified IRs that were sensitive to the real fault to ensure that they could not

detect this fault, and avoided mutants that included mutations to the real fault.

One of the relations that was sensitive to the real fault was DecidingWhoShouldMutate. This

relation could only detect the real fault in an extremely rare set of circumstances. Unfortunately, we

had not encountered these circumstances prior to conducting our experiments and so were unaware of

its sensitivity to the real fault. As such, we neglected to modify the relation to remove its capability

of detecting the real fault, and this initially led to the confounding of the results of RQ5. We cleaned

these results by removing the DecidingWhoShouldMutate relation from them, and this mitigated the

confounding factor. After the results of RQ5 had been cleaned, we did not have a single result set in

which the DecidingWhoShouldMutate relation had reported a failure. This means that this IR could

not have confounded any of our results.
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3.5.2 External Validity

Five subject programs were used in our experiments. These subject programs varied in terms of

size, problem domain, and susceptibility to coincidental correctness. Despite these differences, the

technique obtained similar results across all of the subject programs. This suggests that the technique

may operate effectively regardless of which system it’s applied to, we therefore believe our results

may generalise to a wide range of systems. However, we acknowledge that an investigation of the

technique’s effectiveness across more subject programs would be necessary to verify this conjecture.

We therefore intend to study more subject programs in future work.

All of our subject programs were written in Java, and were object oriented. Thus, our experiments

do not provide any indication about how Interlocutory Testing might perform for programs written

in other languages e.g. C++, Prolog, or Ruby, or in other paradigms e.g. procedural. Additionally,

our experiments only focused on functional testing, and so only demonstrates Interlocutory Testing’s

effectiveness in this context. It is conceivable that Interlocutory Testing might not be as effective

in other contexts. For example, Interlocutory Testing may have little applicability for GUI Testing

because there is unlikely to be many useful Interlocutory Decisions in this context. Additionally,

Interlocutory Testing might be less useful for time sensitive applications, because instrumentation

may reduce the performance of these systems. Again, we believe it would be useful to study more

subject programs, to verify these conjectures, and gain further insights into the effectiveness of the

technique.

We did not use code with known real faults in the experiment because there was not a substantial

amount of data on real faults that had been encountered for the subjects. Regardless, had there been,

their use could have biased the experiment since the author would be aware of the conditions that are

necessary to detect them prior to IR design. Instead, MuJava was used to produce artificial faults.

As previously discussed, research has shown that these are relatively accurate simulations of real

faults and so should not reduce generalisability. Additionally, the technique was capable of detecting

previously unknown real faults, which are representative and can’t bias the experiment.

We adopted an iterative development process to develop our IRs. Thus, the design of each IR

evolved throughout the development process. As such, an incarnation of an IR, IRold, may have

had IORs and/or IDs that are not used in a later incarnation of that IR, IRnew. Despite this,

the logging function still captures the execution trace data that is required for the evaluation of

these IORs and/or IDs and stores them in a log file, and Interlocutory Testing still extracts the

execution trace data pertaining to these IORs and/or IDs from the log file (i.e. Phases 1 and 2 in

Section 3.1.1.3), for IRnew. This means IRnew may have access to additional implicit IDs. We note

that this is compliant with Interlocutory Testing’s technique description, which states that relevant

data is captured/extracted for the assessment of an IR’s IORs and IDs, but does not rule out the

potential for capturing/extracting data that is not relevant for the assessment of these IORs and IDs.

Although one could remove these additional implicit IDs, we believe that testers would realistically

elect to retain them, since they could improve the effectiveness of the testing process. Thus by keeping

them, we have improved the representativeness of our experiments.

Appendices A, C, D, E, and F provide a brief summary of the main aspects of our IRs. These

summaries detail the main checks that are performed by our IRs. For example, a summary of an

IR might state that it checks that a list L1 is a permutation of another list L2. There are different
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methods of implementing such a check. In continuation of the previous example; one could check the

following five conditions: L1 and L2 are the same size (Cond1), for each element in L1 there exists

an equivalent element in L2 (Cond2), and vice versa (Cond3), and for each element in L1 that has

more than one occurrences in L1, this element occurs the same number of times in L2 (Cond4), and

vice versa (Cond5). Alternatively, one could implement this check by only verifying a subset of these

conditions e.g. Cond1, Cond2, and Cond3. One might do this to enhance the performance of the

testing process, or increase the speed of the IR development process. Consider another example; let

Input = {1, 2, ..., n} be a list of integers. Suppose that a loop iterates over all elements of Input. Let

mi be the member of Input being considered on iteration i, and Previ denote the set of members

that were considered on the iterations that executed prior to execution of iteration i. Further suppose

that on each iteration i, the loop stores mi in another list Output. One check that an IR might

perform may include verifying whether the member of the population being considered on a certain

iteration had not been considered before. One method of implementing this check might include the

following: for a given iteration i, check whether mi exists in Previ. Alternatively, one could check

whether Input is a permutation of Output. Thus, one threat to repeatability might include variations

in implementation details.

The results demonstrated that different IRs obtained different levels of effectiveness. Thus, the

effectiveness of the technique may vary considerably, depending on one’s choice of IRs. This may be

a threat to generalisability.

A large number of test case generation strategies are available e.g. branch coverage, statement

coverage, and def-use pair coverage. We only used one strategy for test case generation in our ex-

periments, which was random generation. This strategy is beneficial because it reduces experimental

bias. The technique might perform differently, depending on which test case generation strategy is

used, but since our experiments do not explore other test case generation strategies, it is unclear how

differently the technique might perform. Thus, this might be a threat to generalisability, and a future

research avenue.

Recall that our test case generation strategies involved generating random values for our test

cases. As discussed in Section 3.2, these strategies constrained the selection of allowable values for

our variables, to prevent the generation of infeasible test cases. They were also engineered to be more

likely to select smaller values for some of these variables. This was beneficial because it reduced the

average cost of running test cases e.g. fewer generations for our Genetic Algorithm subject program.

One threat to repeatability might be that other’s may deploy different test case generation strategies.

3.5.3 Construct Validity

Several metrics have been shown to be accurate measures of effectiveness and are widely used by the

testing community e.g. MS, FDR and False Positive Rate. This chapter has only used such metrics.

3.5.4 Statistical Validity

Non-parametric statistics were used in the place of parametric statistics, when the assumptions made

by parametric statistics did not hold e.g. normal distribution.

More precise statistical techniques than those that were used in this chapter may have been avail-

able. However, the statistical techniques used here are ubiquitous and are considered to be robust.
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There is a trade-off associated with the significance threshold of a statistical test. In particular,

if one decreases the significance threshold, this will lead to an increase in the chance of incorrectly

accepting the null hypothesis. Conversely, if one were to increase the significance threshold, then the

chance of incorrectly rejecting the null hypothesis also increases. We used 0.05 as the significance

threshold in every statistical test that was conducted, because we felt that this choice of significance

level offers a reasonable trade-off.

3.6 Conclusion

In this chapter, we explored coincidental correctness; a widespread issue in software testing where the

SUT malfunctions, but the output is plausible. Interlocutory Testing was introduced to resolve this

issue. The feasibility of this technique was established. The experimental results demonstrated that

Interlocutory Testing is effective, obtaining a mutation score of 87%, detecting 1 false positive and 12

real faults. It was able to detect coincidentally correct and standard faults in a non-testable SUT. This

is promising and suggests that Interlocutory Testing might be an effective solution for coincidental

correctness. These results indicate that Objective 1 has been accomplished (see Section 1.1). It also

suggests that it might be a useful technique for non-testable systems in general.

We also investigated whether these results could generalise to other systems. We replicated the

experiment across four subject programs that varied in terms of size and problem domain. Inter-

locutory Testing was capable of detecting 39/40 fault across these subjects, found three real faults

and reported 0 false positives. The consistency of these results with our Genetic Algorithm subject

program suggests that our results can generalise to other systems.

Similarly, we explored whether our results could generalise to other test suites by analysing the

consistency of the technique’s effectiveness across 30 different test suites. We observed that the

technique performed very consistently across these test suites, in terms of the mutation score, failure

detection rate, and the false positive rate. These observations indicate that our results can generalise

to different test suites.

We also determined the minimum number of IRs required to obtain maximum effectiveness — 14

were sufficient for the GA subject program. Additionally, we observed that only 4, 1, 1, and 3 IRs were

used for the other subject programs. This demonstrates that relatively little test effort is required to

realise Interlocutory Testing’s full potential, assuming that the relations are appropriately designed.

We additionally explored how various characteristics of an IR relate to its effectiveness e.g. the most

effective relations have very context sensitive IORs; these preliminary findings provide some insight

into how one might develop a small set of effective IRs e.g. developing IRs for highly coupled areas of

the system. However, these findings do not constitute a comprehensive set of guidelines. For future

work, we believe it would be beneficial to develop such a set of guidelines.

It would also be beneficial to explore the usability of Interlocutory Testing further. In particular,

we would like to devise a partially automated method of generating IRs. We are aware of promising

research that attempts to partially automate the development of oracles, and we believe some of

this research may be useful for Interlocutory Testing. For example, Chen et al. [45] developed an

automated method of finding potentially useful Input-Output pairs for Metamorphic Testing based

on the Category-Choice Framework. We believe that similar technologies may also be useful for the
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IOR identification process.

Recall that the typical false positive rate of a Probabilistic IR is currently either extrapolated from

empirical data, based on the tester’s expertise, or based on an analysis of the randomised properties

of the SUT. Situations may exist in which empirical data doesn’t exist and the tester may not have

any relevant expertise. In such situations, one must analyse the randomised properties of the SUT,

which can be a difficult task. Thus, simpler methods for determining the typical false positive rate, or

a completely different approach that does not use the typical false positive rate warrant investigation.

An example of the latter might incorporate the Holm–Bonferroni method.

Finally, we would like to explore the viability of an IR centric test adequacy criterion. Such a

criterion would deem a test suite to have adequate coverage if each IOR that is associated with each

IR is evaluated at least once by the test suite. Interlocutory Testing may be more effective, if it was

used in conjunction with such a test suite.

In summary, this chapter introduced Interlocutory Testing, a testing technique that can operate

effectively in the presence of coincidental correctness, and fulfilled Objective 1 of the thesis. The

next chapter modifies Metamorphic Testing, by means of combining it with Interlocutory Testing, to

reduce the susceptibility of Metamorphic Testing to coincidental correctness.
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Chapter 4

Interlocutory Metamorphic Testing

Chapter 2 revealed that Metamorphic Testing (MT) is the most widely studied testing technique, in

the context of the oracle problem. It also presented some evidence that indicated that the effectiveness

of this technique can be compromised by coincidental correctness, and that coincidental correctness

is prevalent. We therefore believe that research that alleviates the impact of coincidental correctness

on Metamorphic Testing, could add substantial value. Chapter 3 introduced a new testing technique

called Interlocutory Testing, that can operate effectively in the presence of coincidental correctness.

The motivation for the work described in this chapter was the potential for extending MT with

Interlocutory Testing to enable MT to operate effectively in the presence of coincidental correctness.

Thus, the research that was undertaken in this chapter attempts to address Objective 2 (see Section

1.1). In this chapter, we present an integrated approach called Interlocutory Metamorphic Testing

(IMT), that combines these two techniques, and investigate its prowess in coincidentally correct testing

scenarios.

In summary, this chapter makes the following contributions:

• Further evidence that suggests that MT is ineffective in the presence of coincidental correctness.

• A new testing technique called Interlocutory Metamorphic Testing.

• A set of test oracles based on Interlocutory Metamorphic Testing.

• Case studies that investigate the feasibility and effectiveness of Interlocutory Metamorphic Test-

ing.

All of the relevant background material for this chapter can be found in Chapters 2 and 3. The

structure for this chapter is as follows. IMT is introduced in Section 4.1. We conducted several case

studies that investigate the feasibility and effectiveness of IMT. The experimental design for these

case studies can be found in Section 4.2, the results of these experiments are presented and discussed

in Section 4.3, and factors that may threaten the validity of these results are considered in Section 4.4.

Finally, conclusions are drawn in Section 4.5.
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4.1 Interlocutory Metamorphic Testing — Technique Descrip-

tion

This section leverages the Tournament Selection Operator (TSO) example from Section 3.1.2 as a

running example. To briefly recap the key elements of the example; the input of TSO is a population.

A tournament is a subset of this population. TSO employs an iterative process, in which on a

given iteration, a tournament is randomly formed, and one solution in this tournament is randomly

designated the winner. The random selection of a winner is biased towards solutions with greater

fitness values. Let OutputPopulation denote the set of winners across all of these tournaments. The

termination condition for the iterative process is OutputPopulation.size() == PS, where PS denotes

the maximum population size.

4.1.1 Intuition

As discussed above, the effectiveness of Metamorphic Testing (which was introduced in Section 2.3) can

be negatively affected by coincidental correctness, and Interlocutory Testing (which was introduced in

Section 3.1) can alleviate coincidental correctness. We reasoned that the integration of Interlocutory

Testing into Metamorphic Testing might ameliorate the negative effects of coincidental correctness on

Metamorphic Testing.

Recall that in Metamorphic Testing, an MR has a Metamorphic Test Group (MTG) that consists

of source and follow up test cases, and that these test cases are executed to enable the MR to verify

whether an expected property (Metamorphic Property) between these test cases holds. One method

of integrating Interlocutory Testing into Metamorphic Testing involves recording the execution traces

of these source and follow up test cases, and evaluating these execution traces with IRs. The intuition

behind Interlocutory Metamorphic Testing is to combine Interlocutory Testing and Metamorphic

Testing in this manner, with the expectation that this will reduce the effects of coincidental correctness

on Metamorphic Testing.

As an aside, other researchers have adopted similar approaches for merging Assertions [174] and

Machine Learning Oracles [26] into Metamorphic Testing. Our method of integration was inspired by

these approaches.
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4.1.2 Interlocutory Metamorphic Testing

In this section, we provide a detailed explanation of how Interlocutory Metamorphic Testing realises

the intuition above.
Algorithm 5: Interlocutory Metamorphic Relation
Input: The execution trace log file LOG of a single test case tc from the test suite ts

Output: MRV erdicts, IRV erdicts

1 Let MRV erdicts be an empty list;

2 Let MRET be an empty set;

3 MetRel denotes the Metamorphic Relation that is associated with this IMR. Let

RelevantLOG be the set of all subsequences in LOG that could be used as a source test

case by MetRel;

4 foreach subsequence MRETi in RelevantLOG do

5 MRETi is used to generate additional source and follow up test cases, which are then

executed to produced additional execution traces. Let AdditionalETi denote this set of

additional execution traces;

6 MRV erdict = MetRel.assessMR(MRETi, AdditionalETi);

7 MRV erdicts.add(MRV erdict);

8 MRET .add(〈MRETi, AdditionalETi〉);

9 end

10 Let IRV erdicts be an empty list;

11 foreach execution trace ETj in MRET do

12 The IRs that are associated with this IMR are evaluated based on ETj , using the

methodology outlined in Section 3.1.1.2. The outcomes of these evaluations are stored in

IRV erdicts;

13 end

An oracle in IMT is called an Interlocutory Metamorphic Relation (IMR). Algorithm 5 outlines the

procedure for evaluating an IMR for a single test case. In this section, we first explain this procedure,

and then describe how the output of this procedure should be interpreted.

Let MR be a Metamorphic Relation for TSO. The source test case of MR is select(P1), where

the function select() executes TSO, P1 is a population, and the output of select(P1) is a version of

P1 that has been subjected to tournament selection. Similarly, the follow-up test case associated with

MR is select(P2), where P2 is a superset of P1 that contains one additional member. MR checks that

the output populations of select(P1) and select(P2) have the same size. An IMR contains one MR

e.g. MR.

When the SUT is executed with a test case, an execution trace LOG is produced. LOG serves as

input into Algorithm 5. Some subsequences of LOG can be used as source test cases by IMR’s MR.

For example, there may be multiple subsequences of the execution trace that each capture information

about one invocation of TSO; any one of these subsequences can be used as a source test case forMR.

Line 3 of Algorithm 5 defines RelevantLOG to be the set of all such subsequences.

Let MRET be a subsequence in RelevantLOG. Line 5 of Algorithm 5 uses MRET to gen-

erate additional source and follow up test cases; in the case of MR, this would involve extracting

P1 from MRET and adding an additional random member to it to obtain P2 to produce one fol-
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low up test case — select(P2). Line 5 also executes these additional test cases to produce addi-

tional execution traces. Let AdditionalET denote these execution traces. Line 6 then leverages

MRET and AdditionalET to assess the MR, Lines 1 and 7 record the MR’s SUTPossiblyCor-

rect/SUTFaulty verdict in MRV erdicts, and Lines 2 and 8 store MRET and AdditionalET as a

pair 〈MRET,AdditionalET 〉 in MRET . This process is repeated (by means of Line 4) for each

subsequence in RelevantLOG.

For a given pair 〈MRET,AdditionalET 〉 ∈ MRET , ETj can either be MRET or be a member

of AdditionalET . An IMR is associated with a set of IRs, such that an evaluation of an IR from

this set can be conducted based only on execution trace data in ETj . To illustrate, TournamentPIR,

which was discussed in Section 3.1.2.1 only uses information that is available in a single invocation

of TSO, and so can be associated with an IMR that contains MR. However, such an IMR cannot

be associated with the IR discussed in Section 3.1.1.2 because this IR requires information from the

Crossover Operator, which is not available in ETj . Lines 10 – 12 carry out the following operations:

the IRs that are associated with the IMR are evaluated (using the methodology that was outlined

in Section 3.1.1.2) based on each ETj in MRET , and the outcome of these evaluations are stored in

IRV erdicts. The output of Algorithm 5 is MRV erdicts and IRV erdicts.

The output should be interpreted as follows: The IMR has reported SUTFaulty if MRV erdicts

contains at least one SUTFaulty verdict, or if IRV erdicts contains at least one SUTFaulty verdict

from a Deterministic IR.

The procedure detailed in Algorithm 5 is sufficient for IMRs that only contain Deterministic IRs.

However, an additional step is required, if the IMR contains probabilistic IRs. This step involves using

a modified version of the procedure outlined in Section 3.1.2 for each Probabilistic IR associated with

the IMR. In IMT’s version of the procedure, count(SUTFaultytci
) and count(SUTPossiblyCorrecttci

)

are counts of the SUTFaulty and SUTPossiblyCorrect verdicts in IRV erdicts respectively, for the

Probabilistic IR under consideration. The IMR is said to have reported SUTFaulty if this modified

procedure concludes SUTFaulty for any of the Probabilistic IRs.

In summary, an IMR reports a failure when at least one of its IRs or its MR fails. We envision

that one would use multiple IMRs in practice. Some IMRs may fail, and some may not. This should

be interpreted as follows: the SUT should be considered to be faulty if at least one IMR reports a

failure, and should be deemed to be correctly implemented if none of the IMRs fail.

4.2 Experimental Design

This section outlines our research questions and describes the experiments that were conducted to

answer them.

4.2.1 Research Questions

RQ1 Is Interlocutory Metamorphic Testing a feasible1 testing technique? This research

question assesses the feasibility of Interlocutory Metamorphic Testing by exercising it on a

variety of widely used programs.
1In the context of this research question, feasibility refers to whether the technique is capable of carrying out its

designated task.
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RQ2 How effective is Interlocutory Metamorphic Testing in the presence of coincidental

correctness? The primary objective of IMT is to extend the capability of MT to situations

where coincidental correctness is present. We therefore conducted experiments to measure its

effectiveness under these conditions.

RQ3 What impact does Interlocutory Metamorphic Testing have on the effectiveness

of Interlocutory Testing? The integration of Interlocutory Testing and MT will have had

some influence on the effectiveness of the underlying techniques. The impact on MT is covered

by RQ2. This research question investigates how the effectiveness of Interlocutory Testing is

affected by this union.

RQ4 What effect does the test suite have on the effectiveness of IMT? As discussed in

Section 4.1, IMT generates additional test cases, which is an important aspect of the technique.

Since these additional test cases are generated based on the test suite, it’s possible that the test

suite can influence the effectiveness of IMT. This research question investigates this possibility.

4.2.2 Subject Programs

This chapter leverages the same five subject programs that were used in Chapter 3. A description

of the four subject programs that were used to answer RQ1 (Dijkstra’s Algorithm, Bubble Sort,

Binary Search, and Knuth-Morris-Pratt), and the subject program that was utilised for RQ2 — RQ4

(Genetic Algorithm for the Bin Packing Problem) can be found in Section 3.2.3.1 and Section 3.2.1.1

respectively. Our reasons for selecting these subject programs are the same as those that were outlined

in Section 3.2.3.1 and Section 3.2.1.1.

4.2.3 Test Cases

We generated 400 test cases across the four subject programs that were used to answer RQ1 — 100

test cases were generated per subject program. Descriptions of the test case generation strategies that

were used for each of these subject programs can be found in Section 3.2.3.3.

The subject program that was used for RQ2 — RQ4, has two test suites. The first test suite,

which consists of 100 test cases and is referred to as TS1, is the same test suite that was used in

Chapter 3. The second test suite also consists of 100 test cases, and was generated using the test

case generation strategy that was outlined in Section 3.2.1.3. We refer to this test suite as TS2.

Sections 4.3.2 to 4.3.3.2 use TS1 to answer RQ2 and RQ3. TS1 and TS2 are used in conjunction with

each other to answer RQ4 in Section 4.3.4.

Our justifications for the use of these test case generation strategies and TS1 can be found in

Sections 3.2.3.3 and 3.2.1.3.

4.2.4 Faults

We generated 120 mutants across all five of the subject programs that were listed in Section 4.2.2,

using the same mutant generation strategies that were discussed in Sections 3.2.1.2 and 3.2.3.2. In

particular, a total of 40 mutants were generated across the four subject programs that were used to

answer RQ1 — 10 mutants per program. 80 mutants were generated for the subject program that was

used to answer RQ2 — RQ4; 48 mutants were classified as coincidentally correct and the remaining 32
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were labelled as standard. The same justifications that were presented in Sections 3.2.1.2 and 3.2.3.2

apply to the decisions made in this section.

4.2.5 Interlocutory Metamorphic Relations

In this chapter, we use the same IRs that were used in Chapter 3. The IRs are listed in Appen-

dices A, C, D, E, and F for the Genetic Algorithm for the Bin Packing Problem, Dijkstra’s Algorithm,

Bubble Sort, Binary Search and Knuth-Morris-Pratt subject programs respectively. Each IR is also

accompanied by a description of the main aspects of that IR, as well as a unique identifier. These

groups of IRs were selected because they were large enough to support the various analyses that they

were used for in this chapter. Sections 4.2.5.1 to 4.2.5.5 outline the IMRs that were used in this

chapter. Each IMR, IMR, is described by a pair 〈MR, IRs〉 such that MR and IRs is the MR and

the set of IRs that are associated with IMR respectively. The IRs in this section, are represented by

their unique identifiers. It has been reported that a small number of MRs is typically sufficient [109].

Thus, we limited our experiments to a small number of IMRs to increase the representativeness of the

experiments.

4.2.5.1 Dijkstra’s Algorithm

• IMR1

– MR: Let Dijkstra(G,S,E) be an implementation of Dijkstra’s Algorithm that accepts

a graph, G, Start Node, S, and End Node, E, as input. The total weight of the path

produced by Dijkstra(G,S,E) should be the same as the total weight of the path produced

by Dijkstra(G,E, S).

– IRs: 1 - 4

4.2.5.2 Bubble Sort

• IMR1

– MR: Let Reverse(I) be a function that reverses the order of a list, I. The output of

BubbleSort(I) should be the same as BubbleSort(Reverse(I)).

– IRs: 1

4.2.5.3 Binary Search

• IMR1

– MR: Let Item be the item being searched for in List. If the first element of List is Item,

then incrementing the value of the last element of List should not change the subject

program’s output. Otherwise, decrementing the value of the first element of the list should

not change the subject program’s output.

– IRs: 1
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4.2.5.4 Knuth-Morris-Pratt

• IMR1

– MR: Let PATTERN be the pattern being searched for in TEXT . Additionally, let

PATTERN2 be a prefix of PATTERN , such that PATTERN.size()−PATTERN2.size(

) = 1. If the subject program can find PATTERN in TEXT , then it should also be able

to find PATTERN2 in TEXT .

– IRs: 1 - 3

4.2.5.5 Genetic Algorithm for the Bin Packing Problem

Recall that a real fault is present in the subject program. One of the steps taken to remove the

possibility of this real fault affecting the validity of our results was ensuring that the MRs and IRs

were not sensitive to the real fault.

• IMR1

– MR: Let InitialPopulationSize be an input parameter value denoting the intended pop-

ulation size and GeneratePopulation(I) be a method that creates a random population of

size I. GeneratePopulation(InitialPopulationSize+1).size()−GeneratePopulation(Init-

ialPopulationSize).size() == 1.

– IRs: 1 - 5

• IMR2

– MR: Let P denote a population and adapt(X) be a method that accepts a population

as input and replaces one random member with a new randomly generated member.

generateNextPopulation(Y ) is a controller method that applies crossover, mutation and

selection to a population Y . generateNextPopulation(P ).Size() == generateNextPopul-

ation(adapt(P )).Size().

– IRs: 6, 7, 9, 10

• IMR3

– MR: Let Pi represent the input population and Pp be a permutation of Pi. Furthermore, let

Crossover(Pi) and Crossover(Pp) be the products of applying the crossover operator to Pi

and Pp respectively. Although Pi and Pp contain exactly the same elements, the crossover

operator may transform these populations in different ways, thus Crossover(Pi) may not

be a permutation of Crossover(Pp). However, since the nature of this transformation is

the addition and not removal of individuals, the following conditions should hold: Pi and

Pp should both be subsets of Crossover(Pi) and Crossover(Pp).

– IRs: 15 - 19, 21 - 40

• IMR4

– MR: Let P be the population, mutate(Y ) be a mutation operator that can be applied

to a population and createRandomPopulation(I) be a function that creates a random
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population of size I. mutate(P ).size()∗2 == mutate(createRandomPopulation(P.size()).

addAll(P )).size().

– IRs: 31 - 48

• IMR5

– MR: Let P1 and P2 be two populations, such that P1 is a subset of P2 and P2.size() −

P1.size() == 1. Also, let select(Pi, PSize) denote a population that has been derived from

the application of the selection operator to a population Pi, based on a genetic algorithm’s

population size parameter PSize. select(P1, PSize).size() == select(P2, PSize).size().

– IRs: 11 - 14

4.3 Results and Discussion

In this section, we present the results obtained from our experiments and use them to address the

research questions that were outlined in Section 4.2.

4.3.1 RQ1. Is Interlocutory Metamorphic Testing a feasible testing tech-

nique?

To answer RQ1, we leveraged the following four subject programs: Dijkstra’s Algorithm, Bubble Sort,

Binary Search, and Knuth-Morris-Pratt. Each of these subject programs was associated with 100 test

cases. MuJava was used to generate 10 mutants per subject program, thus a total of 40 mutants were

used across these subject programs. IMT successfully killed all of the mutants, thereby obtaining a

mutation score of 100%. This indicates that IMT is a feasible testing approach. The consistency of

the results across these subject programs also suggests that our findings regarding its feasibility may

be generalisable.

The Failure Detection Rate (FDR) is a measure of the proportion of test cases that detect a

fault. We also observed that the average FDR for Dijkstra’s Algorithm, Bubble Sort, Binary Search,

and Knuth-Morris-Pratt were 100%, 100%, 94.8%, and 78.3% respectively. The FDR fluctuates

substantially, which means that the effectiveness of the technique varied for different subject programs.

This indicates that even though the technique is feasible, one can expect differing levels of effectiveness

for different programs. Promisingly, however, the lowest FDR was 78.3% which is relatively high, and

this could indicate that the support it provides for programs that it is less effective for may be

acceptable.

4.3.2 RQ2. How effective is Interlocutory Metamorphic Testing in the

presence of coincidental correctness?

In this section, we explore RQ2. This research question is particularly important because it focuses

on IMT’s ability to achieve its primary objective — extending MT to scenarios involving coincidental

correctness. To achieve this, we use the Genetic Algorithm subject program, test suite TS1, and 80

mutants.
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Mutants All IMRs IMR1 IMR2 IMR3 IMR4 IMR5

All 78.75% 11.25% 23.75% 40.00% 48.75% 7.50%

Standard 100.00% 15.63% 25.00% 75.00% 71.88% 0.00%

Coincidentally Correct 64.58% 8.33% 22.92% 16.67% 33.33% 12.50%

Table 4.1: IMT’s Mutation Scores

IMR1 IMR2 IMR3 IMR4 IMR5

IMR1 p>0.05 p<0.05 p<0.05 p>0.05

IMR2 p>0.05 p<0.05 p<0.05

IMR3 p>0.05 p<0.05

IMR4 p<0.05

IMR5

Table 4.2: Pairwise comparisons between each IMR, based on Fisher’s Exact Test

4.3.2.1 Mutation Score

Table 4.1 depicts the mutation scores obtained by our IMRs. The results are promising; they demon-

strate that the technique was able to obtain an MS of 78.75%; it detected 32/32 standard faults and

31/48 coincidentally correct faults. When applied using MT, the MRs associated with these IMRs

could not detect any of the coincidentally correct faults. This supports the observations made by

others, that MT is ineffective in the presence of coincidental correctness, and demonstrates that IMT

substantially improves the performance of MT for these faults. Thus, IMT has achieved its primary

objective. Interestingly, these MRs could not detect any of the standard faults either. This indicates

that the improvements offered by IMT generalise to other fault types.

MRs have limited potential with respect to the diversity of fault types they can detect. For example,

the MR for IMR5 can only detect faults that cause the selection operator to remove an incorrect, and

inconsistent (across executions), number of members from the population. MT performed poorly

because the mutant sample did not contain the apposite faults for these MRs. Recall that crashed

mutants were removed from the mutant sample; it is possible that some of these mutants may have

been detectable by our MRs, which may partly explain why the mutant sample did not contain the

appropriate faults for MT. Regardless, we believe that this did not affect the validity of our results

because IMT would also have been able to detect these faults, so the comparison would have yielded

similar results.

The effectiveness of each IMR (as measured by the number of killed and survived classifications)

was compared to the effectiveness of all other IMRs, using multiple Fisher’s Exact Tests. Table 4.2

shows the outcome of these comparisons, after the Benjamini-Hochberg correction has been applied.

Table 4.1 indicates that some IMRs are more effective than others and Table 4.2 shows that the

differences in effectiveness in many cases are statistically significant. This means that the effectiveness

of IMT may vary depending on which IMRs are used. For example, if we had only used IMR3, the

total MS would have been 40%.

Even though some IMRs are generally more effective than others, Table 4.1 also shows that in some

cases, these IMRs may be outperformed by less effective IMRs for certain fault types. To illustrate,

99



Fault Types IMR1 IMR2 IMR3 IMR4 IMR5

Standard 0 8 1 0 0

Coincidentally Correct 2 2 5 4 6

Table 4.3: Number of unique faults found by IMR, broken down by fault type

IMR1 obtains an MS of 11.25%, which is higher than IMR5; IMR5 only obtains an MS of 7.5%. IMR1

can detect 15.63% of the standard faults, whilst IMR5 cannot detect any of these faults. However,

IMR5 obtains an MS of 12.5% for coincidentally correct faults, compared to just 8.33% for IMR1.

Three such cases can be observed — IMR1 and IMR5, IMR2 and IMR3, and IMR3 and IMR4. For

each of these cases, we compared the IMRs in terms of the number of killed and survived classifications,

based on the fault type for which the IMR with greater effectiveness had been outperformed. None

of the comparisons yielded a significant difference (Fisher’s Exact Test: p > 0.05).

Table 4.3 shows the number of faults that were detected by exactly one IMR, and the IMRs that

detected such faults. For ease of reference, we call such faults “unique faults”. Every IMR finds unique

faults and thus adds value, despite their overall effectiveness. This suggests that it may be sensible

to leverage multiple IMRs, because this may increase the diversity of faults that are detectable. The

table also shows that most of these unique faults are coincidentally correct; 9 faults in total are

standard and 19 are coincidentally correct. This is not surprising because an IR’s effectiveness for

coincidentally correct faults is partly determined by the dispersion of program states in the execution

trace that it considers during its evaluation (see Section 3.3.6.1). As discussed above, an IR in IMT

can only consider program states that manifest from lines of code inMRET and AdditionalET . This

restriction means that the dispersion of program states that can be considered by IRs in each IMR

is different; hence they are likely to find different coincidentally correct faults. A greater degree of

overlap for standard faults is expected, since failures resulting from these faults can easily propagate

throughout the SUT.

4.3.2.2 Failure Detection Rate

The previous section demonstrated that Interlocutory Metamorphic Testing can extend Metamorphic

Testing’s fault detection capabilities to a wider range of fault types. However, this is only one facet

of effectiveness; another is the likelihood of detecting a fault. We measured this by calculating the

FDR for all of the mutants that had been detected by deterministic IRs. Since the probabilistic IRs

in IMT leverage all test cases to produce one verdict, the FDR measure is inapplicable to IMT when

it incorporates probabilistic IRs. We therefore excluded probabilistic IRs from this analysis.

The average FDR is 50.8% across all faults, 46.4% for standard faults and 55.8% for coincidentally

correct faults. This is relatively high and suggests that if IMT can detect a fault, it is likely to do

so. Interestingly, the difference in IMT’s FDR for standard and coincidentally correct faults is not

statistically significant (Mann-Whitney U: p > 0.05). This suggests that IMT’s effectiveness, in terms

of FDR, is consistent across fault types. The minimum, maximum, skewness, and kurtosis of the FDR

were 1%, 100%, 0.04, and 0.09 respectively. This demonstrates that IMT’s FDR can vary substantially

for different faults — IMT is more likely to detect certain faults in comparison to others.
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IR Types IMT IT

All IRs 78.75% 82.50%

Deterministic IRs 56.25% 65.00%

Probabilistic IRs 63.75% 52.50%

Table 4.4: Overview of Interlocutory Testing and IMT’s results

4.3.2.3 False Positives

IMR2 to IMR5 encapsulate Probabilistic IRs. Recall that Probabilistic IRs are susceptible to reporting

false positives, because they check non-deterministic behaviours. This means that these IMRs can

report false positives. The incidence of false positives reported by a testing technique is an important

aspect of its effectiveness. We therefore conducted an experiment to determine the false positive rate.

We executed a correct version of the system with our test suite 30 times. Encouragingly, only 1/30

false positives were reported by 1 probabilistic IR.

4.3.3 RQ3. What impact does Interlocutory Metamorphic Testing have

on the effectiveness of Interlocutory Testing?

In the previous section, we discovered that IMT was effective in the presence of coincidental correct-

ness, and thus successfully extends MT to such scenarios. The union of MT and Interlocutory Testing

will also have had an impact on the effectiveness of Interlocutory Testing. This section explores this

impact, and therefore addresses RQ3.

The impact that IMT has on the effectiveness of Interlocutory Testing can be ascertained through a

comparative study of the techniques. We therefore applied Interlocutory Testing to the same mutants

with the same test suite to obtain results that can be compared to those presented above. Interlocutory

Testing was performed using 48 IRs (42 Deterministic IRs and 6 Probabilistic IRs), whilst IMT’s IMRs

only incorporated a subset of these IRs; in particular IMT used 46 IRs — 41 Deterministic IRs and

5 Probabilistic IRs. The remainder of this section details the results of this comparison.

4.3.3.1 Mutation Score and Failure Detection Rate

Table 4.4 shows that Interlocutory Testing (IT) killed 66/80 (32/32 standard and 34/48 coincidentally

correct) mutants, and thereby obtained an MS of 82.50%. The difference in performance (as measured

by the number of killed and survived classifications) between IT and IMT (which detected 63/80

faults) is not significant (Fisher’s Exact Test: p > 0.05). The table breaks down the results by IR

type. It shows that the effectiveness of the Deterministic IRs varied in IMT and IT. A Fisher’s

Exact Test was conducted to compare the number of killed and survived classifications proposed by

IMT’s Deterministic IRs against the number of killed and survived classifications suggested by the

Deterministic IRs of IT. The test revealed that the difference was not statistically significant (Fisher’s

Exact Test: p > 0.05). Similar observations were made for Probabilistic IRs.

We calculated the FDR of IMT and IT for all 45 of the mutants that were killed by the deterministic

IRs of both techniques. IMT and IT obtained an average FDR of 50.8% and 46.47% respectively.

Although the difference was not statistically significant (T-Test2: p > 0.05), we observed that IMT
2The T-Test statistic can be used to compare two groups based on one continuous variable [151]. It is a parametric
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obtained a higher FDR for 82.22% of the mutants and IT only obtained a higher FDR for 2.22%

of the mutants. We compared the proportion of cases in which IMT had outperformed IT and vice

versa, against a hypothetical proportion that represented a scenario in which the two techniques had

outperformed each other in the same number of cases, using a Fisher’s Exact Test. The difference

was statistically significant. This suggests that IMT offers a small improvement in FDR, that can be

observed consistently. This level of improvement may be valuable for subtle faults that rarely result

in failures.

Given this observation, one would expect Deterministic IRs in IMT to subsume the Deterministic

IRs in IT. However, the converse was observed. This means that the higher FDR of IMT did not

enable the Deterministic IRs to detect any additional faults, in this experiment. This could be because

instances of the aforementioned subtle faults that are detectable by these Deterministic IRs were not

present in the experiment. IT outperformed IMT because it used a Deterministic IR, that was not

used by IMT, that detected several unique faults. IMT could not make use of this IR because the IR

draws on data that is not available in any of the IMR’sMRET and AdditionalET . This demonstrates

that IMT’s incapability to leverage certain IRs can hamper its effectiveness.

Figure 4.1: Number of mutants killed by each Probabilistic IR in both techniques

A similar analysis was performed on Probabilistic IRs. Figure 4.1 shows the number of faults that

were found by each Probabilistic IR that detected a fault when applied using IT, that were not found

by the same IR when applied using IMT, and vice versa. CrossoverRate was used by IT, but not IMT,

because this IR requires data that is not available in any of the IMR’s MRET and AdditionalET .

The graph indicates that the Probabilistic IRs performed better in IMT than IT in most cases, in

which the IR was available to both techniques. This is likely to be due to the higher FDR in IMT.

Interestingly, the converse is also observed in some cases. This indicates that the additional test

cases may not have always been effective at exposing failures, because more passes are interpreted

by Probabilistic IRs as more evidence that the SUT is behaving correctly. As mentioned above, the

difference in performance of Probabilistic IRs in IMT and IT, in terms of MS, was not significant. This

could be explained by the demographics of the fault sample used in this experiment; the additional

test cases may not have been particularly effective for a large proportion of these faults.

Figures 4.2 and 4.3 collectively present all of the IRs that detected a fault. IRs in Figure 4.2 are

associated with a unique IMR and by contrast, Figure 4.3 contains IRs that have a relationship with

test statistic and so is more powerful and sensitive than its non-parametric alternatives [151].
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Figure 4.2: IRs that are members of one IMR and their mutation scores

Figure 4.3: IRs that are members of multiple IMRs and their mutation scores

multiple IMRs. Both figures illustrate how their respective IRs performed, when leveraged by IT and

IMT.

Interestingly, Figure 4.3 shows that the performance of a Deterministic IR can vary, depending on

which IMR it is associated with. A close investigation of this revealed the following: all of the IRs in

103



Figure 4.3 draw on execution trace data from code that is reused by two distinct genetic operators

— crossover and mutation. IMR3 and IMR4 are largely concerned with testing the crossover and

mutation operators respectively. This means that although IMR3 and IMR4 share the same subset

of source code coverage, they are confined to completely distinct subsets of the execution trace. This

clearly means that the MRs in IMR3 and IMR4 expose their IRs to different test data, and indicates

that this test data is responsible for the performance of the IRs. This shows that an IMR’s coverage

in terms of the execution trace as well as source code can be important. This may also explain the

performance deviation of the Probabilistic IR, FFDIntegrity, in IMR3 and IMR4.

Let IR be a Deterministic IR that is associated with IMR3 and IMR4. Also let IMR3IR and

IMR4IR be the set of faults that were detected by IR, when it was evaluated based on IMR3 and

IMR4 respectively. We observed that IMR3IR 6= IMR4IR. This suggests that developing multiple

IMRs that include the same IRs can add value. The same IR in IMR3 and IMR4 collectively obtained

the same MS as the corresponding IR in IT, in all but one case. In this case, the IR had successfully

detected a mutant under one technique but not the other, and this mutant was killed by other

deterministic IRs, consistently across both techniques. This suggests that different IRs may have

different FDRs. It also shows that there is value in including multiple IRs in an IMR that overlap in

terms of the faults they can detect.

Interestingly, some IRs that were exposed to test data by IMR3 were more effective than the same

IRs in IMR4 and vice versa e.g. ReplacementOperationIntegrity is less effective under IMR3 than

IMR4, and ReplacementOperationControllerUnassignedItems is more effective under IMR3. This

shows that the test data produced by an IMR can be effective for some IRs, but not others. This

suggests that associating an IMR with IRs that will be effective, when these IRs are evaluated based

on test data that is produced by this IMR, might be an effective strategy. Unfortunately, the results

don’t shed light on which groups of IRs would be apposite for certain IMRs, thus future work is

necessary to devise some guidelines.

The discussion in this section indicates that IMT and IT may have found different faults. To verify

this, we performed an overlap analysis. The analysis revealed that IT found 7 faults that could not

be detected by IMT, and that IMT detected 4 faults that IT missed. When combined, the techniques

obtain an MS of 87.5%. This suggests that IMT may be a useful complementary technique for IT.

4.3.3.2 False Positive Rates

We measured IT’s false positive rate using the same methodology as in Section 4.3.2.3 i.e. a correct

version of the system was executed with the test suite 30 times. IT did not report any false positives.

The difference between IMT and IT’s performance in terms of false positives and true negatives was

not statistically significant (Fisher’s Exact Test: p > 0.05). This means that IMT can offer the

improvements discussed above, without substantially reducing the techniques effectiveness in terms of

false positives.

4.3.4 RQ4. What effect does the test suite have on the effectiveness of

IMT?

This section investigates whether the test suite has a substantial impact on the effectiveness of IMT

and thus answers RQ4. This was achieved by using the same test case generation methodology, as
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detailed in Section 4.2.3, to generate a second test suite. For ease of reference, we refer to the test

suite used in the previous experiments as TS1 and this new test suite as TS2. We executed the first

30 mutants that were generated for the previous experiment with TS2 to obtain TS2’s results, and

compared these to TS1’s results for these mutants. Greater consistency indicates that the test suite

has a limited impact, and lower consistency suggests the converse.

IMT, using TS2, killed 22/30 of these mutants, compared to 23/30 in TS1. We compared the

performance (as measured by the number of killed and survived classifications) of TS1 and TS2 and

found that the difference is not statistically significant (Fisher’s Exact Test: p > 0.05). This suggests

that the test suite had little impact on the additional test cases that were generated by IMT, in terms

of their effectiveness for revealing failures. We conducted a similar analysis for the false positive and

true negative rates; TS2 reported 0/30 false positives, which is again, not statistically significantly

different from TS1, which had only reported 1/30 false positive (Fisher’s Exact Test: p > 0.05).

4.3.5 Discussion

Let Sys be the SUT. Suppose that one applies MT to Sys, and then applies IT to Sys (this application

of IT is independent of the application of MT), or vice versa. Let “MT+IT” denote this scenario. In

this section we explore whether IMT is more than just the sum of its constituent parts, by comparing

IMT to MT+IT.

Let tc be a test case, and suppose that tc was executed to produce an execution trace LOG.

In MT+IT, IRs are evaluated based on LOG. By contrast, in IMT, LOG is first used to generate

additional execution trace data (in the form of AdditionalET ), and IRs are then evaluated based on

both LOG and this additional execution trace data. Therefore, IRs in IMT can be evaluated more

times within tc than IRs in MT+IT. One consequence of this is that an IR in IMT might be more likely

to detect a fault than the same IR in MT+IT. Let PIR be a Probabilistic IR. Another consequence

is that the ratio of pass/fail verdicts reported by PIR might be different in MT+IT and IMT. To

illustrate, suppose that when evaluated based on execution trace data from LOG with either MT+IT

or IMT, PIR passed 9 times and failed once. Further suppose that IMT evaluated PIR 5 additional

times based on additional execution trace data, and that all of these evaluations failed. The failure

rate of PIR would be 10% in MT+IT, and 40% in IMT. This means that Probabilistic IRs might

draw different conclusions i.e. IMT’s Probabilistic IRs might be either more or less effective.

Recall that IMT may not be compatible with certain IRs. This means that MT+IT might be able

to leverage IRs that cannot be used in IMT; thus MT+IT could be more effective for faults that can

be detected by these IRs.

Let MR be an MR that is composed of one source and two follow up test cases. In IMT, an IMR

that is associated with MR is responsible for procuring the execution traces of these three test cases

(MRET , AdditionalET1 ∈ AdditionalET , and AdditionalET2 ∈ AdditionalET ), and evaluating a

set of IRs on these execution traces. One method of implementing this might include adopting an

iterative procedure in which one execution trace is procured and used for the evaluation of IRs on each

iteration. For example, in this case, the first iteration may procureMRET and evaluate IRs based on

MRET , the second iteration might procure AdditionalET1 and evaluate IRs based on AdditionalET1,

and the last iteration might procure AdditionalET2 and evaluate IRs based on AdditionalET2. If

such an implementation approach was adopted, and a Deterministic IR reported a failure during an
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early iteration e.g. on the second iteration, then IMT would have sufficient evidence to conclude that

the SUT is faulty before all of the execution traces have been procured. One would then have the

option to force IMT to terminate prematurely e.g. after the second iteration in this case. Thus, if

one were to adopt such an implementation approach, then IMT could be more efficient than MT from

MT+IT because it might not be necessary to execute the entire Metamorphic Test Group in IMT.

However, as discussed above IMT might involve more IR evaluations than IT from MT+IT and so it

could be less efficient than IT. It is unclear to what extent these efficiency deteriorations would be

offset by the aforementioned efficiency gains, but there is potential for IMT to have a different level

of efficiency, when compared to MT+IT.

The discussions above demonstrate that there is an interplay between MT and IT in IMT, and

that this interplay means that IMT is fundamentally different from MT+IT. Therefore, IMT is more

than just the sum of its constituent parts.

4.4 Threats to validity

All of the threats to validity that were outlined in Section 3.5 are relevant to the experiments conducted

in this chapter. In addition to these threats, we also observed that the experiments only made use

of nine IMRs. Many researchers e.g. Liu et al. [109] have reported that a small number of MRs is

sufficient. We therefore believe that our sample size of IMRs was representative. Focusing on a small

number of IMRs also afforded us the opportunity to do some detailed analysis that would not have

been possible with a larger sample size.

One of the threats to validity in Section 3.5 was concerned with the mutant sample size. We would

like to remark that the results revolving around the overall effectiveness of Interlocutory Testing in

this chapter was comparable to the corresponding results in Chapter 3. This stability in the results

suggests that the mutant sample was large enough to characterise the typical distribution of faults

that can and can’t be detected by our IRs.

The implementation of AverageFitnessGeneration was slightly different in IT and IMT. Both of

these implementations are viable alternatives i.e. the difference does not represent a fault. Thus,

the results pertaining to each individual technique has not been adversely affected. However, there

is potential for this difference to confound the comparisons of these techniques. We investigated this

possibility and found that had IT used the same implementation of this IR as IMT, the results would

have been exactly the same. Alternatively, had IMT used the same implementation of the IR as

IT, the IR would have killed one less mutant. This mutant was killed by another probabilistic IR.

Thus, this difference either has no impact, or a negligible impact that does not have any meaningful

consequences for the results, depending on whether the former or latter implementation is adopted

respectively.

Due to a version control error, an older version of the FitnessController IR was used by IMT.

We investigated the impact that this might have on the results. We found that this IR would have

detected one additional mutant, had the new version been used. We also observed that other IRs

successfully detected this mutant, and obtained an FDR of 100% for this mutant. Thus, this error has

no consequences for the overall results, and only minor, immaterial implications for the lower level

results.
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In our implementation of IMT, some of our IMT code reuses the system’s source code (e.g. to

generate a follow-up test case for an IMR in our Genetic Algorithm subject program, the IMR might

use the SUT’s individual factory class), and thus extends the coverage of our test cases. One threat

to repeatability might be that other’s adopt an alternative implementation approach, in which the

system’s source code is not reused.

Finally, it might have been possible for certain mutants to cause the IMT code (e.g. code that

logs execution trace data that is necessary for MR evaluation) to crash during the execution of these

mutants. In such situations, IMT has effectively detected the mutant, but we did not distinguish

between such crashes and system crashes, and so would have conservatively removed such mutants.

This means that IMT’s effectiveness may have been underestimated. We note however, that IMT

detected most of the mutants, and so this is unlikely to have had a significant impact on the results.

4.5 Conclusions

In this chapter, further evidence that suggests that MT is ineffective in the presence of coincidental

correctness was ascertained. We also introduced IMT, an extended version of MT that can conduct

testing in the presence of coincidental correctness. The feasibility of IMT was demonstrated on four

subject programs and a sample of 40 mutants. IMT was also shown to be effective in testing scenarios

that involve coincidental correctness and the oracle problem — IMT obtained an MS of 78.75%, an

FDR of 50.8% and only reported 1/30 false positives. Thus, we illustrated that IMT can extend the

generalisability of MT to such scenarios. These findings suggest that Objective 2 has been satisfied

(see Section 1.1).

We also performed a comparative analysis between IMT and IT to determine what the impact

of IMT is on IT. We observed that the techniques can find different faults. IT can find faults that

cannot be detected by IMT because it may have access to IRs that are not available to IMT, and IMT

can find additional faults because it has a higher FDR. This suggests that IMT would be a useful

complementary technique for IT.

Various insights into the effectiveness of IMT were also obtained. For example, we observed that

some IMRs empowered some IRs, whilst others decreased the effectiveness of some IRs. Such insights

have revealed promising future research directions. For example, it’s unclear which IRs should be

associated with which IMRs to enhance their effectiveness; future research that explores this would

be beneficial. Our comparative analysis between IMT and IT provided some evidence that suggested

that IMT had various effects on IT. For example, since IMT has a higher FDR, it’s more likely to

find a subtle fault than IT. However, we did not observe any such cases for the Deterministic IRs, and

a non-significant number of cases for Probabilistic IRs. This is likely to be because there was not a

substantial number of appropriate faults in the experiment to demonstrate the effect more significantly.

Thus, future work that explores this further in different testing scenarios may be beneficial.

To summarise, this chapter modified Metamorphic Testing, by integrating Interlocutory Testing

into it. The result of this integration was a reduction in the susceptibility of Metamorphic Testing to

coincidental correctness. Thus, this chapter fulfilled Objective 2 of the thesis. In the next chapter,

we explore whether Interlocutory Testing can be used as a partial solution to the Equivalent Mutant

Problem, that can tolerate coincidental correctness and non-determinism.
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Chapter 5

Interlocutory Mutation Testing

Techniques that are used to classify mutants as either equivalent or non-equivalent, and thereby resolve

the Equivalent Mutant Problem, can be inaccurate for systems that are susceptible to coincidental cor-

rectness and/or that are non-deterministic (see Section 1.1.3). Despite the prevalence of coincidental

correctness, very few solutions have been proposed to ameliorate the effects of coincidental correctness

on such techniques (see Section 2.8.2). Similarly, relatively few solutions have been proposed for non-

deterministic systems (see Section 5.4). This motivated the work that is presented in this chapter. In

Chapter 3, we introduced a new testing technique called Interlocutory Testing, that can suppress the

effects of coincidental correctness, and operate effectively in the presence of non-determinism. This

chapter explores how Interlocutory Testing can be used to alleviate the Equivalent Mutant Problem

in such systems. We call the approach Interlocutory Mutation Testing (IMuT). Thus, this chapter

attempts to address Objective 3 (see Section 1.1).

This chapter makes the following main contributions:

1. A new technique called IMuT that can classify mutants as equivalent or non-equivalent in

programs with coincidental correctness and/or non-deterministic behaviours.

2. An evaluation of the accuracy of IMuT, and an assessment of whether the results obtained from

this evaluation can generalise.

3. An evaluation of the impact IMuT might have on productivity, and an assessment of whether

the results obtained from this evaluation can generalise.

4. An experiment that compares IMuT to TEMDT.

IMuT is introduced in Section 5.1. Section 5.2 describes the experimental design for a series of

experiments, which are presented in Section 5.3. In Section 5.4, we present related work revolving

around the Equivalent Mutant Problem and non-deterministic systems, and Weak Mutation Testing.

Related work on the Equivalent Mutant problem in the context of coincidental correctness can be

found in Section 2.8.2. Other related work is discussed in Section 3.4. Threats to validity are outlined

in Section 5.5, and finally, conclusions are drawn in Section 5.6.
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5.1 Interlocutory Mutation Testing — Technique Description

Algorithm 6: Bubble Sort
Input: A sequence of integers List

Output: A modified version of List

1 for j = 1 to n, where n = List.size() do

2 for i = 0 to n− 2 do

3 if List.get(i) > List.get(i+ 1) then

4 List = swap(List, i, i+ 1);

5 end

6 end

7 end

8 //List.set(0, randomInteger());

IMuT was developed to enable the classification of equivalent and non-equivalent mutants for pro-

grams that are non-deterministic and/or are susceptible to coincidental correctness. This section in-

troduces IMuT and uses two versions of the Bubble Sort algorithm as a running example. Algorithm 6

describes one of these versions; this version is the original version and will henceforth be referred to

as the Bubbleo. The other version, which will be referred to as Bubblem, is a non-equivalent mutant

of Bubbleo, in which line 8 is uncommented. In Bubblem, the value of the first element of the output

is overwritten with a random value. For more complicated examples that include non-determinism

and coincidental correctness, please see Section 3.1.

5.1.1 Intuition

Interlocutory Testing is an effective means of conducting testing, despite the presence of coincidental

correctness and non-determinism. To briefly recap; let S denote the SUT. In Interlocutory Testing,

an IR predicts a set of execution trace behaviours, such that these execution trace behaviours are

expected to manifest in S. These predictions are verified by checking whether they actually manifest

in S.

LetM be a mutant of S. Interlocutory Testing can be modified to support the mutant classification

process as follows. Instead of being designed to predict behaviours that are expected to manifest in

S, IRs are designed to predict behaviours that actually manifest in S, and instead of verifying these

predictions by checking that they actually manifest in S, these predictions are verified by checking

that they actually manifest in M . This modified version of Interlocutory Testing is tantamount to

checking whether the behaviours of M are the same as the behaviours of S. This is the intuition

behind IMuT.
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5.1.2 Technique Description

Algorithm 7: Interlocutory Mutation Testing
Input: Let ts be a test suite consisting of n test cases. Suppose that each test case tci ∈ ts

was executed on a mutant M of the original version of the SUT S. Let

LOGs = {LOG1, LOG2, ..., LOGn} be the resultant set of execution trace log files.

LOGs is the input for this algorithm.

Output: Classification

1 Let IRs be a set of IRs, such that each IR ∈ IRs makes predictions that are based on how S

actually operates;

2 IRs in IRs are evaluated based on LOGs, using the same methodologies that were described

in Section 3.1. Let Results denote the outcomes of these evaluations;

3 if At least one of the outcomes in Results is SUTFaulty then

4 Classification = Non-equivalent Mutant;

5 else

6 Classification = Equivalent Mutant;

7 end

Algorithm 7 describes the process of applying IMuT. This section explains the process in detail.

Let S be a system e.g. Bubbleo. In IMuT, IRs are developed (see Section 3.1) based on S. For

example, let Input and Output be two sequences of integers. Input and Output are the input and

output of the Bubble Sort algorithm respectively. An IR called BubbleIR may be developed, and be

associated with the following IOR: Input 6= Output, and this IOR may be associated with an ID that

predicts that the Swap Operator was invoked at least once. In Interlocutory Testing, IRs are designed

to make predictions that are based on the tester’s intentions for how S should operate. By contrast,

IRs in IMuT are designed to make predictions that are based on how S actually operates. Line 1 of

Algorithm 7 defines IRs to be a set of such IRs.

As an aside, this means that unlike IRs that are based on Interlocutory Testing, IRs that are

based on IMuT cannot detect faults in S. It’s also worth mentioning that there can be some degree of

overlap between the IRs in Interlocutory Testing and IMuT in practice, because IRs can be designed

to make predictions that are based on the tester’s intentions for how the S should operate, and also

accurately reflect how S actually operates.

Let M be a mutant that was derived from of S e.g. Bubblem. The input for Algorithm 7 is a set

of execution traces that were produced by test cases that were executed on M . Line 2 of Algorithm 7

evaluates the IRs in IRs against these execution traces (using the same methodologies that were

described in Section 3.1). To illustrate, let MInput and MOutput denote the input and output of

Bubblem respectively. The mutation in Bubblem can lead to situations in which MInput 6= MOutput

and the swap operator was not invoked; thus BubbleIR’s prediction could be incorrect. Lines 3 – 7 of

Algorithm 7 leverage the outcomes of these evaluations to classify the mutant. In particular, if at least

one of the outcomes is SUTFaulty, then Algorithm 7 concludes that M is an non-equivalent mutant,

because this indicates that the behaviour of M deviated from the behaviour of S. Conversely, if all

of the outcomes are SUTPossiblyCorrect, then this indicates that the behaviour of M did not deviate

from the behaviour of S, and so M is classified as an equivalent mutant. In the case of our example,

BubbleIR’s prediction could be wrong; thus Bubblem can be classified as a non-equivalent mutant.
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As discussed above, IMuT assumes that an IR is encoded with accurate information about how S

works. It is important to note that, this assumption may not hold if a real fault exists in the system

or IRs. To reduce the impact of this assumption, we recommend applying the IRs to S with a test

suite. If any of the IRs indicate that the S is non-equivalent, then the assumption doesn’t hold. In

such cases, one can either modify the system and/or IRs, or remove IRs until all IRs report that S is

equivalent. The same test suite should then be used for conducting IMuT.

5.2 Experimental Design

This section presents our research questions and the design of the experiments that were conducted

to explore them.

5.2.1 Research Questions

RQ1: How accurate is IMuT in the presence of coincidental correctness and non-determini-

sm? The primary goal of IMuT is to be an effective means of classifying mutants as either equiva-

lent or non-equivalent, in the presence of coincidental correctness and/or non-determinism. This

research question explores its aptitude for this task.

RQ2: What impact might IMuT have on productivity? One motivation for the use of auto-

mated mutant classification techniques is to improve one’s productivity. This research question

attempts to quantify the productivity gains that one can obtain by using IMuT.

RQ3: How does IMuT compare to other mutant classification techniques? This research

question attempts to quantify the difference in the effectiveness of our technique against the

effectiveness of widely used mutant classification techniques.

RQ4: Can our findings revolving around the accuracy of IMuT generalise to deterministic

systems without coincidental correctness? This research question explores whether our

results pertaining to the accuracy of IMuT can generalise to other testing contexts.

RQ5: Can our findings revolving around the productivity gains offered by IMuT generalise

to other problem domains? This research question explores the generalisability of our results

pertaining to the productivity gains offered by IMuT.

We conducted a series of experiments to answer the research questions above. For ease of reference,

we call the three experiments that were conducted to address RQ1 — RQ3 the main experiments,

the experiment that explores RQ4 the Generalise-Accuracy experiment, and the experiment that

investigates RQ5 the Generalise-Productivity experiment.

5.2.2 Subject Programs

A total of five subject programs are used across the experiments. One subject program is used in

the main experiments; a Genetic Algorithm for the Bin Packing Problem — a description of this

subject program can be found in Section 3.2.1.1. This subject program was selected for the same

reasons that were discussed in Section 3.2.1.1. Similarly, the Generalise-Accuracy experiment also

uses one subject program — an implementation of Dijkstra’s Algorithm. Details about this subject
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program are presented in Section 3.2.3.1. This subject program was selected for this experiment

because it is deterministic and is unlikely to be susceptible to coincidental correctness, since its

information flows aren’t particularly weak e.g. there are very few overwriting operations that could

obscure enough information to mask a fault. This makes it ideal for answering RQ4. Finally, the

Generalise-Productivity experiment uses three subject programs: Bubble Sort, Binary Search and

Knuth-Morris-Pratt. Please see Section 3.2.3.1 for a description of these subject programs. Our

reasons for selecting these subject programs can be found in Section 3.2.3.1.

5.2.3 Interlocutory Relations

A total of 57 IRs were used across all of the experiments. A list of the 48, 4, 1, 1, and 3 IRs that were

used for Genetic Algorithm, Dijkstra’s Algorithm, Bubble Sort, Binary Search, and Knuth-Morris-

Pratt subject programs respectively, can be found in Appendices A, C, D, E and F respectively. Each

IR is also associated with a summary of the main aspects of that IR. These groups of IRs were deemed

to be large enough to support the types of analysis that were conducted based on these groups.

5.2.4 Mutants

Refactoring is a technique that changes the internal structure of source code, without changing its ob-

servable behaviour [63]; this is essentially what equivalent mutants are. Thus, automated refactoring

tools can be used to generate equivalent mutants. AutoRefactor is such a tool [164]. We used Au-

toRefactor to generate most of the equivalent mutants because all mutants produced by AutoRefactor

were guaranteed to be equivalent mutants. This eliminated the need for manual inspection (for some

of the mutants) that would have otherwise been necessary had MuJava been used. Thus, the use of

AutoRefactor reduced the potential for human error. IMuT was exposed to total of 113 non-equivalent

mutants and 11 equivalent mutants that were generated by MuJava (see Section 3.2.1.2), and 60 equiv-

alent mutants that were generated based on refactorings produced by AutoRefactor, across all of the

experiments.

5.2.4.1 Main Experiments

The first of the main experiments was designed to address RQ1. This experiment uses two sets

of mutants: 30 non-equivalent mutants and 30 equivalent mutants. We obtained the set of 30 non-

equivalent mutants, by using the same mutant generation strategy that was outlined in Section 3.2.1.2.

15 of these mutants were coincidentally correct, and 15 were standard faults. Our justifications for

the use of this strategy are presented in Section 3.2.1.2. We used AutoRefactor to generate a set of 30

random equivalent mutants. Two samples of 30 equivalent and 30 non-equivalent mutants were large

enough to support an investigation into the mutant classification accuracy of IMuT for equivalent and

non-equivalent mutants respectively.

The second of the main experiments was developed to explore RQ2. We conjectured that one’s

mutant classification productivity might be affected by the proportion of the mutant sample that

was equivalent and non-equivalent. To that end, we felt that it was necessary to generate a mutant

sample that contained both types of mutants. We therefore generated a sample of 30 mutants; the

sample consists of 7 equivalent and 23 non-equivalent mutants. To obtain these mutants, we used a

modified version of the mutant generation strategy that is outlined in Section 3.2.1.2; the difference

112



between the two strategies, is that the mutant generation strategy used here does not reject equivalent

mutants. All of the justifications presented in Section 3.2.1.2, apart from the justification concerning

the rejection of equivalent mutants, are relevant for this experiment.

The last of the main experiments evaluates RQ3. Only 30 equivalent mutants were required for

this experiment. We decided to leverage the same equivalent mutants that were used in the first of

the main experiments in this experiment, because using the same mutant sample would increase our

confidence in the results of comparative analyses that are based on the results of these experiments.

30 equivalent mutants were sufficient to demonstrate that TEMDT could not provide any mutant

classification support in situations in which coincidental correctness and non-determinism are present.

5.2.4.2 Generalise-Accuracy Experiment

This experiment leverages 30 non-equivalent and 30 equivalent mutants. These 30 non-equivalent

mutants were generated using the same strategy that was presented in Section 3.2.3.2. We applied

AutoRefactor to the subject program and found that it could not generate a sufficient number of

equivalent mutants. To that end, we retained all of the equivalent mutants that were generated by

the tool. Let AllMutants denote these mutants. The following procedure can be used to generate

an equivalent mutant, based on AllMutants: select a random subset of mutants from AllMutants,

and then create a new mutant, such that this mutant contains all of the mutations from the random

subset of selected mutants. This procedure was used multiple times to generate additional equivalent

mutants, to supplement AllMutants and make up the deficit. Our justifications with regards to the

mutant generation strategy that was used for the non-equivalent mutant sample are the same as those

that were presented in Section 3.2.3.2, and our reasons concerning the use of one non-equivalent and

one equivalent mutant sample, consisting of 30 mutants each, are the same as those that were given

for the first main experiment (see Section 5.2.4.1).

5.2.4.3 Generalise-Productivity Experiment

This experiment used a total of 30 non-equivalent mutants and 4 equivalent mutants, across the Bub-

ble Sort, Binary Search, and Knuth-Morris-Pratt subject programs. 10 non-equivalent mutants were

generated for each of these subject programs, using the procedure outlined in Section 3.2.3.2. All of

the equivalent mutants that were generated during the production of these 30 non-equivalent mutants

were retained, to be used as the set of equivalent mutants in this experiment; 0, 2, and 2 equivalent

mutants were produced for the Bubble Sort, Binary Search, and Knuth-Morris-Pratt subject programs

respectively. All of the justifications that were posited in Section 3.2.3.2 are relevant for this experi-

ment, apart from the justification regarding the rejection of equivalent mutants. The decision to use a

single sample of mutants that consists of both equivalent and non-equivalent mutants was motivated

by the same reasons that were discussed for the second main experiment (see Section 5.2.4.1).

5.2.5 Test Cases

100 test cases were procured for each subject program; thus there were a total of 500 test cases across

all of the experiments. The 100 test cases that were used for the Genetic Algorithm subject program,

were the same test cases that were used in Chapter 3. The test cases for the other subject programs

were generated using the same test case generation strategies that were outlined in Section 3.2.3.3.
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The reasoning behind the use of these test case generation strategies and the test suite from Chapter 3

is presented in Sections 3.2.3.3 and 3.2.1.3 respectively.

5.2.6 Benchmark

As discussed in Section 1.1.3, TEMDT is one of the most widely used methods for estimating whether

a mutant is equivalent or not. We therefore selected it as a benchmark technique because many

researchers will be familiar with such a technique’s level of effectiveness.

5.3 Results and Discussion

5.3.1 RQ1. How Accurate is IMuT in the Presence of Coincidental Cor-

rectness and Non-determinism?

IMuT’s accuracy can be determined by analysing the proportion of equivalent and non-equivalent

mutants that were correctly and incorrectly classified. To conduct such an analysis, we leveraged the

Genetic Algorithm subject program, 30 non-equivalent mutants (generated by MuJava), 30 equivalent

mutants (generated by AutoRefactor), and 100 test cases. Sections 5.3.1.1 and 5.3.1.2 presents our

results for non-equivalent and equivalent mutants respectively.

5.3.1.1 Non-Equivalent Mutants

IMuT correctly classified 28/30 non-equivalent mutants. This suggests that IMuT’s classification

accuracy can be high for non-equivalent mutants. Since the SUT is non-deterministic, this also

demonstrates that the technique’s classification accuracy for these mutants was not hampered by

non-determinism. Specifically, 15/15 and 13/15 standard and coincidentally correct mutants were

correctly classified. We compared the number of correct and incorrect classifications made by IMuT

for standard mutants against such classifications for coincidentally correct mutants; the difference is

not significant (Fisher’s Exact Test: p > 0.05). This indicates that IMuT can be effective for standard

and coincidentally correct faults.

Recall that there are two types of IRs — Deterministic and Probabilistic IRs. Also recall that

we have a sample of 42 Deterministic IRs and 6 Probabilistic IRs. These IRs are distinguished

by the types of logic they are applied to — deterministic IRs are applied to aspects of the system

that behave deterministically, whilst probabilistic IRs are applied to non-deterministic aspects of

the system. To that end, each approach has different evaluation methods; the difference being,

Probabilistic IRs leverage statistical techniques to factor out the effect of false positives that arise

due to non-determinism. We therefore decided to further break down the analysis by these IR types.

Deterministic IRs correctly classified 23/30 (13/15 standard and 10/15 coincidentally correct) non-

equivalent mutants. The number of correct and incorrect classifications made by Deterministic IRs

for standard mutants, was not significantly different to the number of such classifications made by

these IRs for coincidentally correct mutants (Fisher’s Exact Test: p > 0.05). This demonstrates that

one can leverage these IRs in contexts where coincidental correctness is present, or absent. Each

bar in Figure 5.1 represents a Deterministic IR that correctly classified a mutant. The height of the

bar denotes the number of correctly classified non-equivalent mutants. Each bar also represents the
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Figure 5.1: Number of mutants that were correctly classified by Deterministic IRs, broken down by

mutant type

proportion of mutants that were standard or coincidentally correct. Figure 5.1 demonstrates that

some IRs are more accurate than others for different mutants. For example, the IR represented by

the third bar correctly classifies standard mutants, but not coincidentally correct mutants, and the

converse is true for the IR that is represented by the second bar.

Figure 5.2: Number of mutants that were correctly classified by Probabilistic IRs, broken down by

mutant type

21/30 (14/15 standard and 7/15 coincidentally correct) non-equivalent mutants were correctly

classified by Probabilistic IRs. A comparison of the performance (as measured by the number of correct

and incorrect classifications) of Deterministic and Probabilistic IRs for standard faults revealed that

the difference was not statistically significant (Fisher’s Exact Test: p > 0.05). Similarly, the difference

was not statistically significant for coincidentally correct faults (Fisher’s Exact Test: p > 0.05). This

suggests that the effectiveness of Probabilistic IRs is comparable to Deterministic IRs in situations

in which coincidental correctness is present or absent. Since Probabilistic IRs have the potential for

reporting false positives that arise due to non-determinism, this indicates that one should prioritise

Deterministic IRs over Probabilistic IRs, since IMuT would achieve a similar level of effectiveness,

without introducing the risk of reporting such false positives. However, we observed that 3 of the

coincidentally correct faults, and 2 of the standard faults that were found by IMuT were uniquely
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identified by Probabilistic IRs, which means that they can add value. Figure 5.2 presents the same

information as in Figure 5.1, but for Probabilistic IRs; similar observations can be made to those in

Figure 5.1.

As discussed above, all of the IRs collectively, correctly classified 28/30 non-equivalent mutants.

Deterministic IRs and Probabilistic IRs correctly classified 23 and 21 mutants respectively, which

means that neither IR type correctly classified all of the mutants on their own. This demonstrates

that both IR types can add value.

Interestingly, these results also suggest that there was a substantial degree of overlap in terms of

the number of mutants that were correctly classified by the IRs. We therefore decided to perform a

subsumption analysis to determine the smallest number of IRs that would be required to obtain the

same results. We found that only 10 were necessary: AverageFitnessGeneration, CreateRandomIn-

dividualNewBins, CrossoverRate, DecidingWhoShouldMutateFineGrained, DeduceLostItems, FFD-

Integrity, GAController, MutateIndividual, ShouldUseNewIndividual, and TournamentComposition.

This shows that the technique can be effective with relatively few IRs.

Let IMuTSubsumption denote results of the subsumption analysis above (i.e. the 10 IRs listed

above), and IMuTMutants be the mutant sample that was used in this subsumption analysis. Recall

that we performed another subsumption analysis in Section 3.3.2.2; similarly, let ITSubsumption

denote the results of that subsumption analysis (14 IRs), and ITMutants be the mutant sample

that was used in that subsumption analysis. We decided to perform a comparative analysis between

IMuTSubsumption and ITSubsumption. We observed that the sizes of IMuTSubsumption and

ITSubsumption were different. We also found that, even though the majority of IRs in IMuTSubsump-

tion were also in ITSubsumption and vice versa (IMuTSubsumption overlapped with ITSubsumption

on 8 IRs), IMuTSubsumption did not overlap with ITSubsumption on all of the IRs. In particu-

lar, 6 of the IRs in ITSubsumption did not appear in IMuTSubsumption and 2 of the IRs in

IMuTSubsumption did not appear in ITSubsumption. This demonstrates that the most effective,

smallest set of IRs was different for IMuTMutants and ITMutants.

The main differences between the experiments that were conducted to obtain IMuTSubsumption

and ITSubsumption were the composition of the mutant samples and non-determinism. Thus, these

may explain some of the differences between IMuTSubsumption and ITSubsumption. Let IRa and

IRb be two IRs, such that IRa finds exactly the same faults as IRb. In such cases, the choice of

retaining either IRa or IRb is arbitrary. Thus, this may also partly explain some of the differences in

IMuTSubsumption and ITSubsumption.

Recall that ITSubsumption correctly classified 87/100 mutants, when it was applied to ITMutants.

We decided to apply ITSubsumption to IMuTMutants to determine its accuracy for these mutants;

we found that it could correctly classify 26/30 mutants. A comparison of the effectiveness (as mea-

sured by the number of correct and incorrect classifications) of the application of ITSubsumption to

ITMutants against the application of ITSubsumption to IMuTMutants revealed that the difference

was not statistically significant (Fisher’s Exact Test: p > 0.05). This suggests that ITSubsumption

can obtain a comparable level of effectiveness for different mutant samples. Also recall that IMuTSubs-

umption correctly classified 28/30 of the mutants in IMuTMutants. We applied IMuTSubsumption

to ITMutants; 70/100 mutants were correctly classified. A comparison of the effectiveness (again, in

terms of the number of correct and incorrect classifications) of IMuTSubsumption for these mutant

116



samples yielded statistically significant results (Fisher’s Exact Test: p < 0.05). The results of this

comparison indicate that, unlike ITSubsumption, the effectiveness of IMuTSubsumption is partly

dictated by the mutant sample.

We decided to compare the effectiveness of ITSubsumption and IMuTSubsumption on the dif-

ferent mutant samples. We found that the effectiveness of ITSubsumption on ITMutants (87/100)

was substantially different from IMuTSubsumption on ITMutants (70/100), and that the effec-

tiveness of ITSubsumption on IMuTMutants (26/30) was comparable to IMuTSubsumption on

IMuTMutants (28/30). These results suggest that ITSubsumption is preferable to IMuTSubsumpt-

ion because it outperformed IMuTSubsumption in the best case, and obtained comparable re-

sults in the worst case. However, we observed that ITSubsumption consists of 4 more IRs than

IMuTSubsumption, and so is more expensive. This means that IMuTSubsumption may be more

preferable in situations in which its effectiveness is comparable to ITSubsumption.

5.3.1.2 Equivalent Mutants

Promisingly, IMuT correctly classified 30/30 equivalent mutants. The classification accuracy of the

Deterministic IRs for these equivalent mutants may partly be explained by the fact that Deterministic

IRs don’t check non-deterministic aspects of the system, and so are not susceptible to false positives

that arise from non-determinism, and because the assumption detailed in Section 5.1 held.

In theory, a Deterministic IR could report a false positive, if an equivalent mutant’s mutation

prevents certain execution trace behaviours from manifesting. To illustrate, let F1() and F2() be two

functions that implement the same functionality. An equivalent mutant might invoke F1() in the place

of F2(), and a Deterministic IR that expects F2() to have been invoked might resultantly conclude

that the mutant is non-equivalent. The results indicate that such scenarios are unlikely.

Since Probabilistic IRs check non-deterministic aspects of the system, false positives that arise

from non-determinism may be possible. To that end, we extended the evaluation method used by

Probabilistic IRs, as described in Section 3.1.2, to curtail the incidence of false positives. These results

illustrate that this evaluation method was successful in achieving this goal.

5.3.2 RQ2: What Impact Might IMuT have on Productivity?

5.3.2.1 Impact on Manual Inspection Effort

Deterministic IRs are very unlikely produce false positives, as long as the assumption detailed in

Section 5.1 holds. This is supported by our findings on the accuracy of Deterministic IRs for equivalent

mutants; they obtained 100% classification accuracy (see Section 5.3.1.2). This means that all non-

equivalent mutant classifications suggested by Deterministic IRs can be trusted, since it is likely that

none of the equivalent mutants would have been misclassified as non-equivalent. Thus, the manual

effort required to inspect mutants for equivalence can be reduced because testers don’t have to check

any of the mutants that have been classified as non-equivalent by Deterministic IRs.

However, the results also demonstrated that Deterministic IRs can misclassify non-equivalent mu-

tants as equivalent. Thus, one’s confidence in their equivalent mutant classifications will be lower and

so it will be necessary for testers to manually inspect mutants that have been classified as equivalent

by these IRs.
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Similarly, the results indicate that Probabilistic IRs can misclassify non-equivalent mutants as

equivalent; thus manual inspection of these classifications is necessary. Although Probabilistic IRs

can theoretically report false positives and thus misclassify equivalent mutants as non-equivalent, the

results suggest that this scenario is improbable. Thus, one can have a high degree of confidence in

non-equivalent mutant classifications from Probabilistic IRs, and so might choose not to manually

inspect mutants that are marked as non-equivalent by these IRs. Again, this can lead to a reduction

in manual inspection effort.

In summary, one can trust non-equivalent mutant classifications, but not equivalent mutant classi-

fications. To empirically investigate how this might affect productivity, we used MuJava to generate 30

random mutants based on the Genetic Algorithm subject program; see Section 5.2.4.1. This random

sample contained 7 equivalent and 23 non-equivalent mutants.

IMuT was applied to these mutants with 100 test cases; it correctly classified 24/30 mutants.

6/7 equivalent mutant classifications, and 18/23 non-equivalent mutant classifications were correct.

Since one can trust all of the non-equivalent mutant classifications, but not the equivalent mutant

classifications, this means only 11/30 (i.e. the 6 correctly classified equivalent mutants, and 5 non-

equivalent mutants that were misclassified as equivalent) mutants must be manually inspected. This

reduces the total number of mutants that must be manually inspected by 63.33%. These reductions

are substantial.

5.3.3 RQ3: How does IMuT Compare to Other Mutant Classification

Techniques?

We used the same subject program, test suite, and 30 equivalent mutants that were used to explore

RQ1 as the basis for a comparison of IMuT and TEMDT. Let TS = {tc1, tc2, ..., tc100} be a sequence

of test cases, and denote the test suite. We first executed the subject program Sys with each test case

in TS to obtain a corresponding sequence of outputs Outp = {o1, o2, ..., o100}, where oi represents the

output of tci. To apply TEMDT to one equivalent mutant we applied the following procedure: we

executed the equivalent mutant FSys with TS to obtain another corresponding sequence of outputs

FOutp = {fo1, fo2, ..., fo100}, where foi represents the output of tci. For each test case tci ∈ TS, the

corresponding outputs oi ∈ Outp and foi ∈ FOutp are compared. A single comparison is achieved

as follows. The subject program has two elements in its output; the solution and fitness value. The

solution and fitness value in oi is compared to the solution and fitness value in foi respectively. If

either of these comparisons reveal a discrepancy, then the equivalent mutant is said to have been

misclassified as non-equivalent. This procedure was repeated once, for each equivalent mutant.

The results indicated that TEMDT could not classify any of the equivalent mutants correctly.

We believe that this is due to non-determinism. This suggests that the technique can’t distinguish

between equivalent and non-equivalent mutants in this scenario. This substantially contrasts with

IMuT and thus demonstrates the effectiveness of our approach.

Recall that TEMDT’s classification of equivalent mutants in this experiment was based on two

different aspect of the output i.e. the solution s and fitness value f . We observed that had the

experiment only been conducted based on s, or only conducted based on f , none of the mutants

would have been classified correctly. However, we also observed that the extent to which each mutant

would have been misclassified would have been substantially different. In particular, in the situation
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in which only s was used, the average number of test cases that misclassified an equivalent mutant

would have been 56.83/100 test cases, and in a scenario in which only f was used, the average number

of test cases that did not classify the equivalent mutant correctly would have been 23.50/100. We

believe this is due to output cardinality i.e. they have a different number of possible outputs for the

same input. There are an enormous number of item and bin permutations which means s has high

output cardinality. By contrast, many of these permutations score the same fitness value, thus f has

a lower output cardinality than s. Lower output cardinalities means there is less opportunity for the

outputs between two executions to deviate. This suggests that using different subsets of the output

for TEMDT can have a substantial impact on its effectiveness. We believe that research that explores

which subsets are particularly effective will therefore be beneficial.

5.3.4 RQ4: Can Our Findings Revolving Around the Accuracy of IMuT

Generalise to Deterministic Systems without Coincidental Correct-

ness?

Figure 5.3: Summary of results

To assess RQ4, we repeated the experiment used to evaluate RQ1, on a deterministic system that

is less susceptible to coincidental correctness — Dijkstra’s Algorithm. 30 non-equivalent mutants, 30

equivalent mutants, and 100 test cases were also used in this experiment. Figure 5.3 is a bar chart

that summarises the results of this and the previous experiments conducted in this chapter. There

are six bars which are divided into two clusters; one cluster contains the results for non-equivalent

mutants, and the other consists of the results for equivalent mutants. Each cluster has three bars,

each of which represents one of the experiments undertaken in this chapter. RQ1, RQ2, and RQ4

refer to the experiments described in Sections 5.3.1, 5.3.2, and in this section respectively. The Y-Axis

depicts classification accuracy.

Figure 5.3 shows that RQ1, RQ2, and RQ4 achieve an equivalent mutant classification accuracy

of 100%, 85.71%, and 100% respectively. There is no difference between RQ1 and RQ4, and the

differences (in terms of the number of correct and incorrect classifications) between these experiments

and RQ2 is not statistically significant (Fisher’s Exact Test: p > 0.05). Similarly, no difference was

observed between RQ1 and RQ4 with regards to non-equivalent mutant classification accuracy, and
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the difference (again, in terms of the number of correct and incorrect classifications) between RQ2

and RQ4 was not found to be statistically significant (Fisher’s Exact Test: p > 0.05). This means

that IMuT’s accuracy was consistent across both subject programs. This suggests that many of our

findings about IMuT’s mutant classification accuracy may generalise to broader types of systems.

We also made several other noteworthy observations regarding IMuT’s effectiveness based on Di-

jkstra’s algorithm. For example, only Deterministic IRs were used in this experiment because we

couldn’t identify any Probabilistic IRs. This demonstrates that certain IR types may not be available

in all systems. Since Probabilistic IRs were shown to be effective in the experiments addressing RQ1

and RQ2, this could mean that the effectiveness of IMuT may vary from system to system. However,

this also means that the deterministic IRs in the RQ4 experiment performed as well as both the de-

terministic and probabilistic IRs in the other experiments, which suggests that IR types that remain

present may still be able to produce comparably accurate classifications.

Another interesting observation is that substantially fewer IRs are used in the RQ4 experiment in

comparison to the RQ1 and RQ2 experiments; we only constructed four IRs for Dijkstra’s Algorithm

compared to 48 for the Genetic Algorithm. This shows that IMuT can be effective with a very small

number of IRs which supports the findings of our subsumption analysis (see Section 5.3.1.1). It also

illustrates that the number of IRs in the test set may not positively correlate with accuracy.

5.3.5 RQ5: Can Our Findings Revolving Around the Productivity Gains

Offered by IMuT Generalise to Other Problem Domains?

In this section, we investigate whether our findings regarding the productivity gains offered by IMuT

can generalise to other systems — RQ5. To do this, we obtained three subject programs (Bubble Sort,

Binary Search, and Knuth-Morris-Pratt) and three test suites that each consist of 100 test cases (one

for each subject program), generated 30 non-equivalent mutants across these programs and retained

all equivalent mutants were discovered while acquiring these 30 non-equivalent mutants; 4 equivalent

mutants were found across the three subject programs. Further details about the experimental design

can be found in Section 5.2.

It’s not surprising that all four equivalent mutants were correctly classified because all of the IRs

were Deterministic IRs. These results are consistent with our observations for the Genetic Algorithm

subject program and so suggest that our observations regarding equivalent mutants will generalise

to broader types of systems. For example, the user doesn’t have to manually check any of the non-

equivalent mutant classifications for Deterministic IRs, because none of the equivalent mutants are

likely to have been misclassified as non-equivalent by these IRs. Only Deterministic IRs were leveraged

for these subjects because we were unable to identify Probabilistic IRs for these subject programs.

This supports our previous observation that certain IR types may not be available in some systems.

All 30 non-equivalent mutants were also correctly classified. Since all non-equivalent mutant

classifications suggested by Deterministic IRs can be trusted, the user only needs to manually inspect

the 4 equivalent mutants. Thus, the total number of mutants that must be manually inspected by the

user is reduced by 88.24%. These productivity gains (as measured by the number mutants that must

be manaully inspected and the number of mutants that do not have to be manually inspected) are

significantly higher than those reported for RQ2 (Fisher’s Exact Test: p < 0.05). This is because the

IRs used for RQ5 performed better, and because MuJava generated proportionally fewer equivalent
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mutants; if more equivalent mutants had been generated, then the user would have had to inspect

more mutants, since equivalent mutant classifications cannot be trusted. This is consistent with the

findings of Zeller and Schuler [203] who also found that mutant samples that are composed of a

greater proportion of equivalent mutants require more manual inspection effort. This demonstrates

that the productivity gains offered by IMuT can vary in different subject programs. Regardless,

the improvements were substantial in all cases, which suggests that the technique can add value for

different types of systems.

5.4 Related Work

5.4.1 The Equivalent Mutant Problem and Non-Deterministic Systems

Non-deterministic systems are becoming increasingly prevalent e.g. concurrency can lead to alternative

interleavings. For example, consider a variable X that is instantiated with a value of 3. Suppose we

have two threads t1 and t2 and that t1 applies the following operation to X: X = X + 1. Further,

suppose that t2 updates the value of X to X = X × 2. The order of the interleavings affects the final

state of X i.e. if t1 executes first, then X = 8 and if t2 executes first X = 7.

This complicates the mutant classification process. Several proposals have been made to address

this. For example, Carver [21] identifies two methods - Multiple Execution Testing (MET) and

Deterministic Execution Testing (DET). In MET, confidence is improved by executing the original

So and mutant Sm versions multiple times and observing their output distributions. DET involves

forcing the SUT to execute deterministically by manipulating conditions e.g. a Genetic Algorithm’s

Mutation Rate can be set to 100% or 0% to force deterministic execution of the Mutation Operator.

Both strategies are viable, but have limitations. For example, MET is dictated by chance; thus

there is scope for misclassification. It’s also expensive because it uses multiple executions. On the

other hand, DET limits test case selection; thus some mutation points may not be reachable with

allowable test cases. Carver [21] attempted to reduce the impact of these weaknesses by combining

MET and DET.

Gligoric et al. [65] suggest executing So with a test case t, and then establishing whether the mutant

statement in Sm could have been reached by this execution. Non-reachability implies equivalence for

t. This approach is limited to the identification of equivalent mutants in unexecuted code.

Finally, Papadakis et al. [152] propose comparing the object code of Sm to the object code of So.

If the object code of Sm matches the object code of So, then we can guarantee that So is equivalent

to Sm. However, if the comparison reveals that there are discrepancies, Sm may either be equivalent

or non-equivalent to So. Although the approach can’t correctly classify all mutants, it is inexpensive

and so can be a valuable complementary equivalent mutant classification technique.

5.4.2 Weak Mutation Testing

Let S be the system. Suppose that mutation testing was applied to S to obtain a mutant M . Let m

denote the point in M that the mutation was inserted, and s be the corresponding point in S. Weak

Mutation Testing involves executing S and M with the same test case and comparing the state that

immediately manifests after s with the state that immediately manifests with m [86]. Discrepancies
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are interpreted to be an indication that M is not equivalent to S, and M is otherwise considered to

be equivalent to S if the converse is true.

Weak Mutation Testing is similar to IMuT, in that both techniques classify mutants based on

internal state information, but there are some noteworthy differences. For example, since Weak

Mutation Testing immediately checks the program state that manifests after m, it may be more likely

to correctly classify non-equivalent mutants than IMuT. However, this also means that it could be

more likely to misclassify equivalent mutants.

Consider another example; an oracle in Weak Mutation Testing is associated with one point in

the program, and can only provide classification support for mutants that have mutated this point

in the program. Thus, one must develop one oracle per distinct mutation point. By contrast, an IR

in IMuT is not restricted to one program point, and so can potentially provide classification support

for a wider range of mutants. The implication of this disparity are as follows. IMuT has a larger

initial cost because of the IR development task that must be carried out before mutation testing is

undertaken, but this cost is fixed. By contrast, there is a marginal cost associated with each distinct

mutation point in Weak Mutation Testing because an oracle must be developed for each distinct

mutation point. Thus, if a large number of mutants are required in an experiment and there are a

large enough number of distinct mutation points among these mutants, the cost of Weak Mutation

Testing can exceed IMuT’s cost. To that end, the most cost effective choice of technique is context

dependent.

Another noteworthy difference includes the following. IMuT only requires one to execute M ,

whilst Weak Mutation Testing necessitates the execution of S and M . Thus, IMuT might be cheaper

to apply because it requires fewer executions. However, IMuT requires one to execute the entire

program, whilst Weak Mutation Testing can terminate an execution after the mutation point has

been reached [86]. Thus, an execution in IMuT might be more expensive; this may offset the cost

savings that are accrued from requiring fewer executions.

5.5 Threats to Validity

All of the threats to validity that were outlined in Section 3.5 are relevant to the experiments conducted

in this chapter.

Recall that TEMDT was applied to the Genetic Algorithm subject program based on the output

solution, and its fitness value. Mutant classifications based on the fitness value, and thus the validity

of our results concerning the effectiveness of TEMDT when it is only applied based on the fitness

value, may have been affected by the real fault. However, this would not have changed our conclusions

regarding the overall effectiveness of TEMDT, since mutant classifications based on the output solution

were not affected by the real fault and led to the misclassification of all of the mutants.

We used a refactoring tool to generate some of the equivalent mutants, instead of using MuJava.

Since the changes made by the refactoring tool may be different to the changes made by MuJava, it

could be possible that our technique may have performed differently, had MuJava been used. However,

we observed that IMuT obtained a comparable level of effectiveness for equivalent mutants produced

by both of the tools, which suggests that the use of the refactoring tool did not have a meaningful

impact on the results.
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In Section 4.4, we noted that the results concerning the effectiveness of our IRs in Chapters 3 and 4

were comparable. Encouragingly, we observe that the effectiveness of our IRs in this chapter are also

comparable to these results. This reinforces our supposition that the mutant sample was large enough

to characterise the typical distribution of faults that can and can’t be detected by our IRs.

5.6 Conclusion

In this chapter, we proposed Interlocutory Mutation Testing, a mutant classification technique that

can be applied in the presence of coincidental correctness and/or non-determinism. The technique

correctly classified 93.33% of the non-equivalent mutants and 100% of the equivalent mutants despite

the presence of coincidental correctness and non-determinism, which suggests that the technique is

capable of producing highly accurate results in this context. This indicates that Objective 3 has been

addressed (see Section 1.1). We also determined that IMuT can reduce the manual effort required

to determine the equivalence of mutants by 63.33%, and can thus improve productivity. Finally, we

explored the generalisability of these results and discovered that these findings are likely to generalise

to other systems.

We also compared our technique to a widely used technique that we refer to as Traditional Equiv-

alent Mutant Detection Technique (TEMDT). In TEMDT, the original version of the SUT, So, and

mutant version, Sm, are executed with a test suite to obtain a set of pairs 〈So(O), Sm(O)〉, where

So(O) and Sm(O) are the outputs of So and Sm respectively. TEMDT assumes the following: if each

So(O) = Sm(O), then So and Sm are equivalent. We found that IMuT was able to substantially

outperform TEMDT. During this comparison we uncovered compelling evidence that indicates that

mutant classification accuracy might be improved by restricting the mutation testing tool to certain

subsets of the output. We believe that this finding may generalise to other mutation testing tools and

techniques and thus suggest investigating this possibility in future research.

One limitation of our work is the effort required to apply the technique. Our experiments that

were based on the Genetic Algorithm subject program leveraged 48 IRs, which may be unacceptable

in some cases. In Section 5.3.1.1, we observed that a small proportion (10) of these IRs subsumed all

of the other IRs. We also observed that only 4, 1, 1, and 3 IRs were required to obtain a similar level

of effectiveness in the other subject programs. This demonstrates that the technique can be applied

with relatively few IRs (which may be more acceptable in the aforementioned cases), if one restricts

their development effort to a small set of effective IRs. Unfortunately, the results did not indicate

how one might do this. We would therefore like to investigate this in future work.

In Section 3.3.6.2, we detailed the partially automated process that is used to develop IRs. In-

creasing the degrees of automation further will also reduce the effort required to use the technique

and so can reduce the impact of the limitation above. Thus, for future work, we would like to explore

methods of automating the development of IRs further.

In summary, this chapter introduced a partial solution to the Equivalent Mutant Problem, that can

tolerate coincidental correctness and non-determinism, and therefore satisfied Objective 3. The nature

of this partial solution was a problem domain specific methodology for applying Interlocutory Testing.

In the next chapter, we investigate how Interlocutory Testing can be integrated into Spectrum-based

Fault Localisation to mitigate the impact of coincidental correctness on Spectrum-based Fault Local-
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isation.
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Chapter 6

Interlocutory Spectrum-based Fault

Localisation

Spectrum-based Fault Localisation (SBFL) is a debugging technique that uses the coverage informa-

tion in passed and failed test cases to determine the likelihood that a program statement is faulty. As

discussed in Section 1.1.4, coincidental correctness can reduce the effectiveness of traditional testing

techniques; thus failed test cases can be mislabelled as passed. This mislabelling can compromise

the effectiveness of SBFL. Section 2.8 revealed that coincidental correctness is widespread, and thus

indicates that this issue is ubiquitous. This motivated us to develop a solution for this problem.

Chapter 3 introduced Interlocutory Relations, which are test oracles based on Interlocutory Testing,

and demonstrated their effectiveness for testing in the presence of coincidental correctness. In this

chapter, we introduce Interlocutory Spectrum-based Fault Localisation (ISBFL); an extended version

of SBFL, that incorporates Interlocutory Relations to tolerate coincidental correctness. Thus, this

chapter attempts to address Objective 4 (see Section 1.1).

The main contributions of this chapter are:

1. A new SBFL technique called ISBFL that extends the generalisability of SBFL to systems with

coincidental correctness.

2. An evaluation of the fault localisation effectiveness of ISBFL.

3. A comparative analysis between ISBFL and three well-known SBFL techniques — Tarantula,

Ochiai and Jaccard.

Sections 2.8 and 3.4 presents relevant background material for this chapter, and Section 6.1 intro-

duces ISBFL. In Section 6.2, we describe the experiments that were conducted to evaluate ISBFL, and

discuss the results of these experiments in Section 6.3. Threats to validity are outlined in Section 6.4,

and conclusions are finally drawn in Section 6.5.
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6.1 Interlocutory Spectrum-based Fault Localisation — Tech-

nique Description

As mentioned above, SBFL (which was introduced in Section 1.1.4) can be negatively affected by

coincidental correctness, and Interlocutory Testing (which was introduced in Section 3.1) is an effective

means of suppressing the effects of coincidental correctness. Therefore, one solution for mitigating

the impact of coincidental correctness on SBFL might be the integration of SBFL with Interlocutory

Testing. We call such a solution ISBFL.

Recall that SBFL techniques leverage the coverage information in passed and failed test cases to

determine the likelihood that a program statement is faulty. Also recall that Interlocutory Testing

has two types of IRs — Deterministic and Probabilistic IRs. Probabilistic IRs judge the correctness

of the entire SUT, based on execution trace data from across all of the test cases in the test suite.

This means that such IRs cannot distinguish between passed and failed test cases. Since Deterministic

IRs judge the correctness of the SUT based on execution trace data that is available in a single test

case, they do not suffer from this limitation. These differences necessitate different strategies for the

integration of SBFL with Interlocutory Testing, depending on the types of IRs that are used. In this

section, we introduce two variants of ISBFL; one is based on Deterministic IRs (we call this variant

of ISBFL Deterministic ISBFL (DISBFL)), and the other is based on Probabilistic IRs (this variant

of ISBFL is called Probabilistic ISBFL (PISBFL)). The former is described in Section 6.1.1, and the

latter is presented in Section 6.1.2.

6.1.1 Interlocutory Spectrum-based Fault Localisation: Deterministic IRs

This section draws on the example used in Section 3.1. To reiterate, the system in this example

is a Genetic Algorithm that is composed of four major components: Initial Population Generator,

Crossover, Mutation, and Selection. PopulationSOI and PopulationSOO denote the input and output

of the Selection component respectively, and CrossoverN quantifies the number of solutions that

were generated by the Crossover component. IR1 is an IR that predicts that CrossoverN ==

PopulationSOI .size()−PopulationSOO.size(), when PopulationSOI .size() > PopulationSOO.size().

6.1.1.1 Intuition

The process of applying SBFL can be broken down into four major steps:

1. Let ts = {tc1, tc2, ..., tcn} be a test suite that consists of n test cases. The following pro-

cedure can be used to process one test case tci ∈ ts. tci is executed, and the distinct set

of program statements that executed during the execution of this test case is recorded. Let

Spectrai denote this set of program statements. Each stmtj ∈ Spectrai was executed be-

fore stmtj+1 ∈ Spectrai. SBFL applies this procedure to each test case in ts, to produce a

set Spectras = {Spectra1, Spectra2, ..., Spectran}, where Spectrai ∈ Spectras corresponds to

tci ∈ ts. This constitutes the first step of the SBFL process.

2. The second step of the process involves leveraging an arbitrary testing technique to classify each

tci ∈ ts as passed or failed.
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3. During the third step of the process, SBFL computes PSpectras to be a subset of Spectras, such

that each Spectrai ∈ PSpectras is associated with a passed test case. FSpectras is computed

to be a subset of Spectras, such that each Spectrai ∈ FSpectras is associated with a failed test

case.

4. The final step consists of SBFL computing a suspiciousness score for each program statement

stmtj in the program, that is based on the frequency with which stmtj appears in PSpectras

and FSpectras.

Interlocutory Testing can be integrated into SBFL by altering the process described above as

follows. In the first step of the process, during the execution of a given test case tci, the step can be

modified to additionally capture the execution trace LOGi of tci. Thus, in addition to Spectras, the

first step of the process also produces a set LOGs = {LOG1, LOG2, ..., LOGn}, such that LOGi ∈

LOGs corresponds to tci ∈ ts. The second step of the process can be replaced with the following

iterative procedure. For each test case tci ∈ ts, let Spectrai and LOGi be the distinct set of program

statements that executed during tci, and the execution trace of tci respectively. IRs are evaluated

based on LOGi; if at least one IR fails, then tci is classified as failed, or is otherwise classified as passed.

The results of these IR evaluations provide some evidence regarding the location of the fault. This

evidence is finally used to refine Spectrai. The intuition behind DISBFL is to combine Interlocutory

Testing with SBFL in this manner.
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6.1.1.2 Technique Description

Algorithm 8: Deterministic Interlocutory Spectrum-based Fault Localisation
Input: TestSuite

Output: SuspiciousnessScores

1 Let ProgramSpectrasp and ProgramSpectrasf be empty lists;

2 foreach tci ∈ TestSuite do

3 The SUT is executed with tci. Let ExecutionTracei = 〈State1, State2, ..., Staten〉 denote

the execution trace;

4 A set of IRs IRs are evaluated (as described in Section 3.1.1) based on ExecutionTracei;

5 An IRInstance, IRInstancex, is a pair 〈IRy, Statesx〉, such that Statesx is a subset of

ExecutionTracei and execution trace data was extracted from all states in Statesx for

an evaluation of IRy ∈ IRs. Let IRInstancesi be the set of all IRInstances in

ExecutionTracei;

6 Let FailedIRInstancesi be an empty list;

7 foreach IRInstancea = 〈IRy, Statesa〉 ∈ IRInstancesi do

8 Let LastStatea ∈ Statesa, such that all other program states in Statesa manifested

earlier than LastStatea. IRInstancea is associated with a distinct set of program

statements, such that these program statements executed before LastStatea

manifested;

9 IRInstancea is also associated with the pass/fail verdict that was determined by the

evaluation of IRy.evaluateIR(Statesa);

10 if IRInstancea is associated with a fail verdict then

11 FailedIRInstancesi.add(IRInstancea);

12 end

13 end

14 if FailedIRInstancesi.isEmpty() then

15 Let ProgramSpectrai be a distinct set of program statements, such that these

program statements executed at least once during the execution of tci;

16 ProgramSpectrasp.add(ProgramSpectrai);

17 else

18 Let ProgramSpectrai be the set of program statements that are associated with

FailedIRInstancei, such that FailedIRInstancei is the IRInstance in

FailedIRInstancesi that is associated with the fewest program statements;

19 ProgramSpectrasf .add(ProgramSpectrai);

20 end

21 end

22 Let SuspiciousnessScores be an empty set;

23 foreach program statement s in the SUT do

24 SuspiciousnessScores.add(〈s, computeSuspiciousnessScore(s, ProgramSpectrasp, P rogram

Spectrasf )〉);

25 end

26 SuspiciousnessScores is sorted in descending order, based on the suspiciousness scores;
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Algorithm 8 describes how DISBFL realises the intuition above. This section explains Algorithm 8

in detail.

Let Sys be the SUT, and tci be a test case for Sys. Lines 3 – 20 of Algorithm 8 outline DISBFL’s

procedure for obtaining the program spectra of tci. The first step of this procedure involves executing

Sys with tci (Line 3 of Algorithm 8). The Execution Trace of tci is a sequence of program states

ExecutionTracei = 〈State1, State2, ..., Staten〉, such that each Statej ∈ ExecutionTracei manifested

during the execution of tci, and each Statej manifested before Statej+1. Let IRs be a set of IRs

that were developed for Sys. The second step of the procedure consists of evaluating IRs based on

ExecutionTracei (as described in Section 3.1.1).

An IRInstance, IRInstancex, is a pair 〈IRy, Statesx〉; Statesx is a subset of the set of states that

appear in ExecutionTracei, such that execution trace data was extracted from all states in Statesx

for an evaluation of IRy ∈ IRs. To illustrate, consider the Genetic Algorithm program example.

Suppose that this program was executed with test case tcex, which performed two generations, and

produced the following Execution Trace: ExecutionTraceex = {State1, State2, ..., Staten}. Suppose

that states State51 to State100 correspond to program states that manifested during the first gen-

eration, and that State60, State70 and State75 correspond to program states that contain execution

trace data pertaining to CrossoverN , PopulationSOI and PopulationSOO respectively. Suppose that

this execution trace data was extracted from these three program states, for an evaluation of IR1, as

described in Section 3.1.1.2. Thus, an IRInstance would be IRInstanceex1 = 〈IR1, Statesex1〉, such

that Statesex1 consists of State60, State70 and State75.

Since IRy may be evaluated multiple times with execution trace data from different states, or mul-

tiple IRs in IRs may be evaluated in tci, there may be multiple IRInstances in ExecutionTracei. To

illustrate the former case, consider the previous example; suppose that states State101 to State150

correspond to program states that manifested during the second generation, and that State110,

State120 and State125 correspond to program states that contain execution trace data pertaining

to CrossoverN , PopulationSOI and PopulationSOO respectively. Let us suppose that this execution

trace data was extracted from these three program states, for another evaluation of IR1. Thus, an-

other IRInstance would be IRInstanceex2 = 〈IR1, Statesex2〉, such that Statesex2 consists of State110,

State120 and State125. Line 5 of Algorithm 8 defines IRInstancesi to be the set of all IRInstances in

ExecutionTracei.

Figure 6.1: Sample Program Fragment

Lines 7 – 13 iterate over each IRInstance in IRInstancesi. On a given iteration, IRInstancea =

〈IRy, Statesa〉 denotes the IRInstance being considered on this iteration. Three noteworthy operations

are performed during an iteration. Let LastStatea be a program state in Statesa, such that LastStatea

manifested at a later point in the execution trace than all other states in Statesa. For example, the

LastStateex1 of IRInstanceex1 would be State75, because State75 manifests after State60 and State70.

Line 8 of Algorithm 8 performs the first noteworthy operation; it associates IRInstancea with the
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distinct set of program statements that executed before LastStatea manifested. To illustrate, suppose

that the sample program in Figure 6.1 was executed with a test case tcsample that set b = 0, and two

IRs were evaluated during the execution — let IRInstancesample1 and IRInstancesample2 be the

IRInstances that are based on these evaluations. Since the condition for leaving the for loop was not

immediately satisfied, all program statements in the sample program would have been executed. Let

us suppose that the state that manifested after the execution of statement 4 is the LastStatesample1

of IRInstancesample1, and that the state that manifested after the execution of statement 5 is the

LastStatesample2 of IRInstancesample2. This means that IRInstancesample1 and IRInstancesample2

are both associated with statements 1 to 4, and IRInstancesample2 is additionally associated with

statement 5.

During the execution of Line 4 of Algorithm 8, IRInstancea’s IRy was evaluated with execution

trace data from IRInstancea’s Statesa and this would have produced a pass/fail verdict. Line 9 of

Algorithm 8 implements the second noteworthy operation; the line associates IRInstancea with this

verdict. The final noteworthy operation is performed by Lines 6 and 10 – 12. These lines are used

to define FailedIRInstancesi to be a subset of IRInstancesi, such that FailedIRInstancesi only

contains IRInstances that are associated with a fail verdict.

tci is deemed to have failed if FailedIRInstancesi 6= ∅, or is otherwise considered to have passed.

Lines 14 – 20 then adopt one of two methodologies for computing the program spectra of tci; the

exact choice of methodology depends on whether tci passed or failed. In particular, if tci is a failed

test case, then its associated ProgramSpectrai is the set of statements that are associated with

FailedIRInstancei, such that FailedIRInstancei is the IRInstance in FailedIRInstancesi that is

associated with the fewest program statements. In continuation of the previous example, suppose

that IRsample1 and IRsample2 both failed, and therefore tcsample failed. Since IRInstancesample1

is associated with fewer lines of code than all other IRInstances that are associated with a failed

verdict i.e. IRInstancesample2, the program spectra ProgramSpectrasample of tcsample will consist

of the program statements that are associated with IRInstancesample1 — in the case of the running

example, statements 1 to 4.

However, if tci is a passed test case, then its associated ProgramSpectrai is the set of all distinct

program statements that executed at least once, during the execution of tci. In continuation of the

example above, if tcsample passed, then its program spectra, ProgramSpectrasample, would consist of

the following statements: statements 1 to 5.

To briefly recap, the entire discussion above pertains to Lines 3 – 20 of Algorithm 8, and outlines

the procedure that is used by DISBFL for computing the program spectra of a test case. The input

for Algorithm 8 is a test suite TestSuite, which is a set of test cases. The procedure defined across

Lines 3 – 20 is applied to each test case in TestSuite; Line 2 of Algorithm 8 facilitates this. Thus, one

program spectra will have been computed for each test case in TestSuite. Let ProgramSpectrasp be

a subset of these program spectras, such that each program spectra in this subset was computed based

on a passed test case. Similarly, let ProgramSpectrasf be a subset of these program spectras, such

that each program spectra in ProgramSpectrasf was computed based on a failed test case. Lines 1,

16, and 19 of Algorithm 8 are used to compute these subsets.

The suspiciousness score of a program statement is a numerical value that quantifies the likeli-

hood of that program statement being faulty. Let Faileds be the number of program spectras in
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ProgramSpectrasf that program statement s appears in. Similarly, let Passeds be the number

of program spectras in ProgramSpectrasp that s appears in. The Ochiai Formula is a method of

computing the suspiciousness score of s. The Ochiai Formula [52] is:

Ochiai = Faileds ÷
√

(Passeds + Faileds)× ProgramSpectrasf .size()

DISBFL uses the Ochiai formula in conjunction with ProgramSpectrasp and ProgramSpectrasf , to

compute the suspiciousness score of each program statement in Sys. This is achieved by Lines 22 –

25.

To illustrate, suppose that the SUT is the program in Figure 6.1, and that the SUT is faulty.

In particular, statement 3 should be “y = y + 2”. Also suppose that the SUT is associated with

one IR, and that this IR results in exactly one IRInstance IRInstanceexample regardless of which

test case is used. The LastStateexample of IRInstanceexample is the program state that always

manifests after the execution of statement 4. Finally, let us suppose that TestSuite consists of three

test cases tcp1, tcp2 and tcf . tcp1 and tcp2 sets b = 6 and b = 7 respectively, and are passed test

cases, thus, the ProgramSpectrap1 of tcp1 and the ProgramSpectrap2 of tcp2 consist of the following

statements: 1, 2, 4 and 5. tcf sets b = 3 and causes the IR to fail; thus tcf is a failed test case,

and its ProgramSpectraf is associated with statements 1, 2, 3 and 4. To compute the suspiciousness

score of statement 1, we first obtain Failed1 = 1, since it appears in only one failed test case’s

program spectra. We also ascertain ProgramSpectrasf .size() = 1, because there is only one failed

test case. Similarly, we obtain Passed1 = 2 because statement 1 executes in two passed test cases,

and ProgramSpectrasp.size() = 2 because there are two passed test cases in total. Using the Ochiai

formula, we obtain the following suspiciousness score for statement 1: 0.58. Repeating this process

for the remaining statements 2, 3, 4 and 5 yields the following respective suspiciousness scores: 0.58,

1, 0.58 and 0. The faulty statement has been awarded the highest suspiciousness score.

Finally, all program statements in Sys are sorted in descending order of suspiciousness by Line 26.

6.1.2 Interlocutory Spectrum-based Fault Localisation: Probabilistic IRs

6.1.2.1 Intuition

Recall that Probabilistic IRs judge the correctness of the system based on the entire test suite, which

means that these IRs cannot distinguish between passed and failed test cases. However, despite this,

it is possible to distinguish between passed and failed Probabilistic IRs. We therefore reasoned that it

might be possible to create IR specific program spectra, instead of test case specific program spectra,

and use this new type of spectra for fault localisation. This is the intuition behind PISBFL.
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6.1.2.2 Technique Description

Algorithm 9: Probabilistic Interlocutory Spectrum-based Fault Localisation
Input: TestSuite

Output: SuspiciousnessScores

1 The SUT is executed with TestSuite to obtain a set of execution traces ExecutionTraces;

2 A set of Probabilistic IRs IRs are evaluated based on ExecutionTraces, as described in

Section 3.1.2. Let IRsf be the set of all Probabilistic IRs that reported a failure;

3 Let ProgramSpectras be an empty list;

4 foreach IRi ∈ IRsf do

5 Let PartialSpectrasi be an empty list;

6 foreach ExecutionTracej ∈ ExecutionTraces do

7 PartialSpectrai
j = getPartialSpectra(IRi, ExecutionTracej);

8 PartialSpectrasi.add(PartialSpectrai
j);

9 end

10 Let ProgramSpectrai be the set of distinct program statements across all

PartialSpectrai
j ∈ PartialSpectrasi;

11 ProgramSpectras.add(ProgramSpectrai);

12 end

13 Let SuspiciousnessScores be an empty set;

14 foreach program statement s in the SUT do

15 Let SuspiciousnessScore denote the number of program spectras in ProgramSpectras

that s appears in;

16 SuspiciousnessScores.add(〈s, SuspiciousnessScore〉);

17 end

18 SuspiciousnessScores is sorted in descending order, based on the suspiciousness scores;

Algorithm 9 describes the procedure for conducting ISBFL with probabilistic IRs, and therefore

explains how the intuition above is implemented.

Let Sys be the SUT, IRs be a set of Probabilistic IRs that were developed for Sys and TestSuite

be a set of test cases. Algorithm 9 first executes Sys with TestSuite, to obtain a set of execution

traces ExecutionTraces (Line 1 of Algorithm 9). In PISBFL, each IRi ∈ IRs is evaluated based on

ExecutionTraces, as described in Section 3.1.2. This is achieved by Line 2 of Algorithm 9. Let IRsf

be the set of Probabilistic IRs that reported a failure.

Let getPartialSpectra(IRi, ExecutionTracej) be a function that accepts a Probabilistic IR, IRi,

and an Execution Trace, ExecutionTracej , as input. The function operates as follows. It first obtains

all of the IRInstances, IRInstancesj , from ExecutionTracej . It then computes IRInstancesi
j to

be a subset of IRInstancesj , such that for each IRInstancea = 〈IRy, Statesa〉 in IRInstancesi
j ,

IRy = IRi. Let IRInstancei be the IRInstance in IRInstancesi
j that is associated with the most

program statements. PartialSpectrai
j is the set of statements that are associated with IRInstancei.

PartialSpectrai
j is the output of the function.

Lines 5 – 10 of Algorithm 9 outline a two step process that can be used to compute the program

spectra ProgramSpectrai, of a specific IRi (e.g. TournamentPIR from Section 3.1.2). Lines 6 – 9 of

Algorithm 9 describe the first step of this process: for each ExecutionTracej ∈ ExecutionTraces, the
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function described above is invoked, such that the input to the function is IRi and ExecutionTracej ,

to obtain PartialSpectrai
j . Thus, on each iteration, we obtain a PartialSpectrai

j , that corresponds

to the ExecutionTracej ∈ ExecutionTraces being considered on that iteration, and IRi which is

considered on all iterations. Lines 5 and 8 of Algorithm 9 are used to define PartialSpectrasi to be a

set of all PartialSpectrai
j that were produced across these iterations. The second step of the process

is implemented by Line 10 of Algorithm 9; the step defines the program spectra, ProgramSpectrai,

of IRi to be the distinct set of program statements across all PartialSpectrai
j ∈ PartialSpectrasi.

By means of Lines 3, 4, and 11, PISBFL leverages the two step process described above to compute

a program spectra, ProgramSpectrai, for each IRi ∈ IRsf , and defines ProgramSpectras to be the

set of these program spectras. The suspiciousness score of a program statement s is a count of the

number of program spectras in ProgramSpectras that s appears in. Lines 13 – 17 of Algorithm 9

determine the suspiciousness score of each program statement in the SUT, and Line 18 finally sorts

all of the program statements in Sys in descending order of suspiciousness.

6.1.3 Applying Interlocutory Spectrum-based Fault Localisation

Situations may exist, in which one has access to both Deterministic and Probabilistic IRs. In such

situations, ISBFL first applies DISBFL to compute the suspiciousness of each line of code. If at

least one program statement is associated with a suspiciousness score that is greater than 0, ISBFL

returns these suspiciousness scores as its output. Otherwise, it then applies PISBFL to compute the

suspiciousness scores, and returns these suspiciousness scores as the output.

In other words, ISBFL only leverages PISBFL, when DISBFL fails to provide any fault localisation

support. The rationale for prioritising DISBFL over PISBFL is two-fold. Firstly, unlike PISBFL,

DISBFL is not susceptible to false positives. Secondly, we suspect that DISBFL is likely to provide

better fault localisation, because it can capitalise on the distinction between passed and failed test

cases, unlike the PISBFL.

6.2 Experimental Design

6.2.1 Research Questions

In this chapter, we attempt to address the following research questions:

RQ1 Is ISBFL a feasible1 debugging technique? This research question assesses the feasibility

of ISBFL.

RQ2 How effective is ISBFL at localising faults? To address this research question, we explore

the extent to which ISBFL can minimise the number of LOC that must be manually inspected

to find a fault.

RQ3 What are the factors that affect the fault localisation effectiveness of ISBFL? We

investigate factors that may correlate with the effectiveness of the ISBFL.
1In the context of this research question, feasibility refers to whether the technique is capable of carrying out its

designated task.
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RQ4 How does the fault localisation effectiveness of ISBFL compare to other SBFL tech-

niques? We addressed this research question by comparing the fault localisation effectiveness

of ISBFL with three well-known SBFL techniques — Tarantula, Ochiai, and Jaccard.

Two different experiments were conducted to answer these research questions. The first addresses

RQ1, and second addresses RQ2 — RQ4. The remainder of this section presents the experimental

design for these experiments.

6.2.2 Subject Programs

We leveraged four subject programs across the two experiments. In particular, we used the Di-

jkstra’s Algorithm, Bubble Sort, and Knuth-Morris-Pratt subject programs that were described in

Section 3.2.3.1 in the experiment that was designed to address RQ1. The Genetic Algorithm subject

program that was described in Section 3.2.1.1 was used in the experiment for RQ2 — RQ4. Our

justifications for the use of these subject programs can be found in Section 3.2.3.1 and Section 3.2.1.1.

6.2.3 Test Cases

100 test cases were obtained for each subject program described in Section 6.2.2. Thus, a total of 400

test cases were used throughout our experiments. The test cases for the Dijkstra’s Algorithm, Bubble

Sort, and Knuth-Morris-Pratt subject programs were generated using the same test case generation

strategies that were detailed in Section 3.2.3.3. We used these test case generation strategies for the

reasons outlined in Section 3.2.3.3. In this experiment, the Genetic Algorithm subject program used

the same 100 test cases that were used in Chapter 3. This test suite was used for the reasons described

in Section 3.2.1.3.

6.2.4 Faults

We used the same mutant generation strategies that were outlined in Sections 3.2.3.2 and 3.2.1.2

for the RQ1 subject programs, and RQ2 — RQ4 subject program respectively (see Sections 3.2.3.2

and 3.2.1.2 for justifications regarding these decisions). A total of 90 mutants were generated. 30

mutants were generated across the RQ1 subject programs (10 each), and 60 mutants were generated

for the RQ2 — RQ4 subject program. 38 of these mutants were coincidentally correct, and 22 were

standard.

6.2.5 Interlocutory Relations

We leveraged the same 56 IRs that were used in Chapter 3. In particular, 48, 4, 1, and 3 IRs were

used for the Genetic Algorithm, Dijkstra’s Algorithm, Bubble Sort, and Knuth-Morris-Pratt subject

programs respectively. A list of these IRs can be found in Appendices A, C, D and F respectively.

Each IR is also associated with a summary of the main aspects of that IR. We envisage a scenario

in which one applies ISBFL after one has completed testing by means of either Interlocutory Testing

or Interlocutory Metamorphic Testing. Realistically, in such a scenario, all of the IRs that were

utilised during testing would be leveraged in ISBFL. Thus, our decision to include all of the IRs that

were leveraged by Interlocutory Testing/Interlocutory Metamorphic Testing in Chapter 3/Chapter 4

was partly motivated by the opportunity to improve the representativeness of the experiment, with
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respect to this scenario. Our decision was also motivated by the fact that this collection of IRs was

large enough to support the types of analysis that were conducted in this chapter.

6.2.6 Measures

The EXAM Score is a measure of the number of lines of code that must be manually inspected,

before the faulty line has been found [191]. We use three variants of this measure for our exper-

iments. Let MoreSuspicious and EquallySuspicious be two sets of statements, such that all of

the lines of code in MoreSuspicious and EquallySuspicious are more and equally suspicious than

the faulty statement respectively. EquallySuspicious also contains the faulty line of code. Since

the user must check each line of code in order of suspiciousness, they will first manually inspect

all of the lines of code in MoreSuspicious (and will not find the fault). Afterwards, they must

inspect the lines of code in EquallySuspicious. In the best case, the first line of code that they

inspect in EquallySuspicious may be the faulty line. Thus, we define a metric, EXAMBest, as

follows: EXAMBest = MoreSuspicious.size() + 1. In the worst case, the last line of code they

inspect in EquallySuspicious may be the faulty line. We define another metric, EXAMWorst to be:

EXAMWorst = MoreSuspicious.size() + EquallySuspicious.size(). Finally, in the average case,

the tester will have to inspect approximately half of EquallySuspicious, thus we define a final metric,

EXAMAverage to be: EXAMAverage = MoreSuspicious.size() + (EquallySuspicious.size() ÷ 2).

See Section 6.4.3 for our motivations for adopting these measures.

6.2.7 Benchmark Techniques

We leverage three benchmark techniques. All three of these benchmarks use the standard SBFL

process outlined in Section 1.1.4, but each one uses a different suspiciousness score formula. The

benchmarks are: Tarantula, Ochiai, and Jaccard. The Ochiai Formula was introduced in Sec-

tion 6.1.1. The formula for Tarantula and Jaccard are defined as follows [52, 89]. Let TotalPassed

and TotalFailed be the total number of passed and failed test cases respectively, and Passeds and

Faileds be the number of passed and failed test cases that executed program statement s respectively.

Tarantula = (Faileds ÷ TotalFailed)÷ ((Passeds ÷ TotalPassed) + (Faileds ÷ TotalFailed)) and

Jaccard = Faileds ÷ (TotalFailed + Passeds). These benchmark techniques were selected because

they are amongst the most widely used SBFL techniques [161]; researchers will be familiar with their

level of effectiveness, and thus be able to more accurately gauge the effectiveness of ISBFL from a

comparative analysis of the techniques.

Recall that an oracle was introduced in Section 3.2.1.2. A mutant is classified as a coincidentally

correct fault if this oracle passed all of the test cases that the mutant was executed with, or is

otherwise classified as a standard fault. This oracle was used to classify passed and failed test cases

for Tarantula, Ochiai and Jaccard. As such, these techniques cannot provide any fault localisation

support for coincidentally correct mutants, and so the comparison of these techniques with ISBFL

was limited to standard faults. Since the classification of mutants as standard faults only requires

some test cases to be labelled as failed by this oracle, there may be some passed test cases, and

some of these passed test cases may be labelled as such because of coincidental correctness. In other

words, coincidental correctness might affect standard faults. Thus, a comparison based on these faults

can still be useful for drawing conclusions about the effectiveness of these techniques and ISBFL on
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coincidental correctness.

6.2.8 LOC and Logging

Our fault localisation analysis only considers a subset of the LOC in each subject program. For ex-

ample, consider the Genetic Algorithm subject program. Recall from Section 3.2.1.2 that we applied

mutation testing to 9 classes. These 9 classes consist of 947 of the subject program’s LOC (this

was calculated based on GAUninstru, which was introduced in Section 3.2.1.1). Our fault localisa-

tion analysis is restricted to these 947 LOC, for this subject program. Similarly, only the subject

program’s LOC that reside in the classes that we applied mutation testing to, in the other subject

programs, were included in the fault localisation analysis of these subject programs. In particular,

137, 36, and 60 LOC were considered for Dijkstra’s Algorithm, Bubble Sort and Knuth-Morris-Pratt

respectively (these were computed based on DAUninstru, BSUninstru, and KMPUninstru respectively

(see Section 3.2.3.1)). In other words, our fault localisation analysis was restricted to classes that were

relevant to our experiments.

During the execution of a test case tci, a logging tool is used to produce a log file ExecutionTracei,

which is a record of the program statements that executed during the execution of tci. One feature

of the logging tool that was used in our experiments is that it does not log the execution of import

statements, package declarations, exceptions and statements that simply mark blocks of code e.g.

“{”, “}”, or “catch(Exception e){}”. Additionally, a small number of redundant lines of code exist

in DAUninstru, BSUninstru, and KMPUninstru, that were removed from the Dijkstra’s Algorithm,

Bubble Sort and Knuth-Morris-Pratt subject programs; consequently the logging tool does not log

the execution of these lines. Thus, the logging tool is restricted to a subset of the aforementioned

947, 137, 36, and 60 LOC in the Genetic Algorithm, Dijkstra’s Algorithm, Bubble Sort, and Knuth-

Morris-Pratt subject programs respectively. The same logging tool and LOC restrictions are used for

ISBFL, and the other three benchmark techniques detailed above. This ensures fairer comparisons

between the techniques i.e. the differences in the effectiveness of the techniques cannot be explained

by the logging function.

6.3 Results and Discussion

Recall that 30 mutants were generated for the experiment that was designed to address RQ1. In-

terlocutory Testing was applied to these mutants; 29/30 were killed. Section 6.3.1 explores ISBFL’s

feasibility using these 29 mutants. Similarly, we exposed the 60 mutants, that were generated to an-

swer RQ2 — RQ4, to Interlocutory Testing. 47/60 of these mutants were killed. Several experiments

were conducted, in which ISBFL was applied to these 47 mutants; Sections 6.3.2 to 6.3.4 present the

results of these experiments.

6.3.1 RQ1. Is ISBFL a feasible debugging technique?

To determine whether ISBFL is a feasible debugging technique, we used 100 test cases to exercise

ISBFL on 29 mutants that were derived from Dijkstra’s Algorithm, Bubble Sort, and Knuth-Morris-

Pratt.
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Figure 6.2: ISBFL’s EXAMBest, EXAMAverage, and EXAMWorst measures for Bubble Sort, Di-

jkstra’s Algorithm and Knuth-Morris-Pratt

Figure 6.2 shows the percentage of code that one must inspect to locate a fault in the SUT, with

the assistance of ISBFL. Different areas of the graph correspond to different subject programs. The

graph indicates that ISBFL can offer some degree of fault localisation support for all of the programs.

This demonstrates that the technique is feasible.

The graph also indicates that ISBFL obtained a comparable level of performance across each of

the subject programs. This suggests that the technique can offer a similar level of fault localisation

support for different subject programs. Interestingly, one can also observe that the level of fault

localisation support offered by ISBFL can vary for different mutants. This phenomenon will be

explored in Section 6.3.3.

6.3.2 RQ2. How effective is ISBFL at localising faults?

This section and Section 6.3.3 use the Genetic Algorithm subject program, 100 test cases, and 47

mutants to address RQ2 and RQ3 respectively.

Figure 6.3 shows the percentage of code that must be inspected to find the faulty line in each

mutant, with the assistance of ISBFL, as measured by EXAMWorst, EXAMAverage, and EXAMBest.

The graph illustrates that ISBFL’s fault localisation effectiveness varies substantially for different

mutants. We applied K-Means Clustering to EXAMAverage and identified three distinct clusters

of mutants. These clusters are highlighted in the graph. We compared these clusters, in terms of

their EXAMAverage, using the Kruskal Wallis H test2, and found that the difference was statistically

significant (p < 0.05).

Table 6.1 presents descriptive statistics of each cluster, based on their EXAMAverage. It shows that

ISBFL can substantially reduce the number of LOC that must be manually inspected to find a fault.

Interestingly, the table also shows that each cluster is tight. This means that the fault localisation

effectiveness of ISBFL is similar for mutants that are members of the same cluster. Given that the
2The Kruskal Wallis H test is a test statistic that can be used to compare three or more groups, based on a continuous

variable [151]. This test statistic is non-parametric, and so can be used in situations in which a parametric statistic’s

assumptions have not been satisfied [151].
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Figure 6.3: ISBFL’s EXAMBest, EXAMAverage, and EXAMWorst measures

Cluster 1

EXAMAverage

Cluster 2

EXAMAverage

Cluster 3

EXAMAverage

Minimum 0.05% 12.72% 27.82%

Mean 4.87% 14.93% 31.44%

Maximum 7.76% 18.80% 35.16%

Count 28 5 14

Standard Deviation 0.022293 0.020847 0.026816

Table 6.1: Descriptive statistics of each cluster, based on EXAMAverage

fault localisation effectiveness of ISBFL is significantly different for mutants in different clusters, this

suggests that the fault localisation effectiveness of ISBFL may be dictated by fault type.

Let MoreSus be the number of LOC that are more suspicious than the faulty line. Recall that

EXAMBest = MoreSus + 1. Thus, EXAMBest is a very close approximation of MoreSus (i.e. it

only deviates by +0.11% in this experiment). As such, it can be used to gauge the percentage of

LOC that must invariably be inspected first, before the faulty line has a chance of being inspected.

Figure 6.3 illustrates the EXAMBest measures of each mutant. 26 mutants have an EXAMBest of

0.11%, and 7, 6, and 8 mutants have EXAMBests ranging from 0.32 to 1.69%, 3.70 to 7.50%, and

15.95 to 20.91% respectively. EXAMBest varies substantially for different mutants. However, most

mutants obtain a low EXAMBest, which means very few LOC were deemed to be more suspicious

than the faulty line in most cases.

We define EXAMDiff to be the difference between EXAMWorst and EXAMBest (EXAMDiff =

EXAMWorst − EXAMBest). EXAMDiff represents the percentage of LOC that have the same

suspiciousness score as the faulty line. Low measures of EXAMDiff means that there is a higher

probability that the faulty line will be found sooner, when one is inspecting the set of LOC represented

by EXAMDiff. Figure 6.3 shows that EXAMDiff’s between 0 to 4.96%, 6.02 to 14.36%, and 23.86 to

29.67%, and an EXAMDiff of 66.84% were obtained by 10, 18, 13 and 6 mutants respectively. The

variations in EXAMDiff are extreme, but tend to skew more towards lower measures.
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The graph also shows that the majority of mutants obtain a low EXAMBest and EXAMDiff. One

can also observe that the mutants that obtain the highest measures of EXAMBest don’t have the

highest EXAMDiff, and that the mutants that obtain the highest measures of EXAMDiff have low

measures of EXAMBest.

Figure 6.4: Box Plots of the EXAMAverage of standard and coincidentally correct faults

Figure 6.4 presents two box plots that summarise the descriptive statistics of the EXAMAverage

for standard and coincidentally correct faults. The box plots show that ISBFL obtains a comparable

level of effectiveness for standard and coincidentally correct faults. The difference is not significant

(Mann-Whitney U: p > 0.05). This suggests that the technique can operate to a similar degree of

effectiveness when coincidental correctness is either present or absent. This indicates that the findings

in this section e.g. the substantial reductions in the number of LOC that must be manually inspected,

are applicable to both standard and coincidentally correct faults.

6.3.3 RQ3. What are the factors that affect the fault localisation effec-

tiveness of ISBFL?

Section 6.3.2 revealed that the fault localisation effectiveness of ISBFL varied for different mutants.

This section presents a series of observations that were made, that may explain this variation.

6.3.3.1 Observation One: PISBFL

Our first observation is that all 6 of the mutants that were handled by PISBFL were grouped in

the same cluster — Cluster 3. Since ISBFL performed worse for mutants in this cluster than for

mutants in other clusters, this suggests that DISBFL is more effective than PISBFL. To confirm this,

we computed the average EXAMAverage of DISBFL and PISBFL, which were 10.98% and 33.47%

respectively, and compared the EXAMAverage of DISBFL and PISBFL with the Mann-Whitney U

test. The difference was statistically significant.

We inspected the 6 mutants that were handled by PISBFL. We found that all 6 of these mutants
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were only detected by 1 probabilistic IR. Thus, in all 6 cases, all of the LOC that were deemed to

be suspicious by probabilistic IRs, were awarded an equal suspiciousness score. Additionally for each

mutant, these probabilistic IRs were evaluated after a large number of LOC had been executed, so

a large number of program statements were deemed to be suspicious by these IRs. This explains

why EXAMAverage was particularly high for these mutants. However, PISBFL is only used when

DISBFL fails to provide any fault localisation support. Thus, despite PISBFL’s comparatively poor

performance, it did add value.

These 6 mutants are also the mutants in Figure 6.3 that have an extremely high EXAMDiff, with

a very low EXAMBest. The discussion above also explains this phenomenon.

6.3.3.2 Observation Two: Frequencies of Constant and Transient Program Statements

The discussions in this section are limited to mutants that were detected by DISBFL. We call a

program statement a “constant program statement”, if it executes in all test cases. Conversely, we

define a “transient program statement” to be a program statement that executes in some test cases,

but not others.

We observed that the average EXAMAverage of mutants in which the faulty LOC was a transient

program statement was 4.63%, and the average EXAMAverage of mutants in which the faulty LOC

was a constant program statement was 15.96%, and that the difference was statistically significant

(Mann-Whitney U: p < 0.05). This suggests that the nature of the fault is an important determinant

of fault localisation effectiveness. The faulty program statement in each mutant in clusters 2 and 3

was a constant program statement. All of the mutants in which the faulty program statement was a

transient program statement are in cluster 1. This explains why cluster 1 has a lower EXAMAverage

than clusters 2 and 3.

Interestingly, the faulty line in 10/28 of the mutants in cluster 1 were also constant program

statements, and yet these mutants obtained a significantly lower EXAMAverage than mutants in

clusters 2 (Mann-Whitney U: p < 0.05) and 3 (Mann-Whitney U: p < 0.05). We investigated this

phenomenon. We found that in the mutants that are members of clusters 2 and 3, a large number of

constant program statements were executed before the IR instance that detected the fault had been

evaluated. This meant that these faulty program statements were deemed to be equally suspicious

to a large number of constant program statements; thus these mutants were skewed towards higher

measures of EXAMDiff. The difference in EXAMDiff between clusters 2 and 3 is not significant

(Mann-Whitney U: p > 0.05). The IRs that detected the 10 aforementioned mutants in cluster 1,

were evaluated after fewer constant program statements were executed. This meant that these 10

mutants obtained a lower EXAMDiff than the mutants in clusters 2 and 3. A Mann-Whitney U

test demonstrated that this was significant (p < 0.05). This may explain why the EXAMAverage of

mutants in cluster 1 was lower than mutants in clusters 2 and 3. These findings suggest that the point

in the execution trace that an IR is evaluated at is an important determinant of fault localisation

effectiveness.

The discussion above exposes why mutants in cluster 1 obtained a lower EXAMAverage than

mutants in clusters 2 and 3, but does not explain why mutants in cluster 2 achieved a lower EXAM-

Average than mutants in cluster 3. We therefore decided to investigate this. We found that the faults

in these mutants were only detected by IRs that were evaluated after a large number of transient
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program statements had an opportunity to execute. The number of transient program statements

that were executed in mutants in clusters 2 and 3 were comparable (Mann-Whitney U: p > 0.05).

Unlike the faulty program statements in these mutants, these transient program statements may not

have executed in all passed test cases, or in all failed test cases before the failed IR was evaluated,

which means that they can appear in a different proportion of passed program spectra, and a dif-

ferent proportion of failed program spectra, and therefore can be either awarded a higher or lower

suspiciousness score than the faulty statement, depending on these proportions. In the case of cluster

3, a large number of transient program statements obtained a higher suspiciousness score than the

faulty program statement. This explains why these mutants are skewed towards higher EXAMBest’s.

Far fewer transient program statements in mutants in cluster 2 obtained a higher suspiciousness score

than the faulty statement. Thus, cluster 2 obtained a significantly lower EXAMBest than cluster

3 (Mann-Whitney U: p < 0.05); this explains why mutants in cluster 2 have a significantly lower

EXAMAverage than mutants in cluster 3. This suggests that the control flow of the program is an

important determinant of fault localisation effectiveness, since control flow determines which program

statements are executed in each test case. It also indicates that the fault, IR, and test data are

important, since these determine which test cases are passed and failed test cases.

Finally, we also observed that in 2/10 of the aforementioned mutants in cluster 1, significantly fewer

transient program statements had the opportunity to execute before the fault had been detected by

IRs, in comparison to clusters 2 and 3 (Mann-Whitney U: p < 0.05). This meant that the total

number of program statements that had the scope to be deemed more suspicious than the faulty

line was smaller for these mutants. This explains why these mutants obtain a low EXAMBest. The

comparatively larger number of transient program statements in the other 8/10 mutants were largely

deemed to be less suspicious than the faulty line. The EXAMBest of cluster 1 is comparable to the

EXAMBest of cluster 2 (Mann-Whitney U: p > 0.05).

6.3.3.3 Observation Three: IRs

Figure 6.5 shows the minimum, average and maximum EXAMAverage of each IR(s). The graph

clearly indicates that average EXAMAverage varies considerably, depending on which IR(s) detected

the fault. This suggests that one’s choice of IRs can have a substantial impact on fault localisation

effectiveness.

The graph illustrates that most of the IRs had a very similar minimum, average and maximum

EXAMAverage. This indicates that the performance of most IRs is reasonably consistent. However,

TerminateGA and TournamentComposition varied substantially, in terms of their measures of EXA-

MAverage. We decided to investigate this. The faulty LOC in each of the mutants that had been

handled by TerminateGA were constant program statements, and were therefore equally suspicious to

all other constant program statements. We found that the number of constant program statements

that executed in these mutants varied substantially because of the way in which each of these mutants

modified the SUT’s control flow. This supports our previous observation that the nature of the fault

is an important determinant of fault localisation effectiveness. With regards to TournamentComposi-

tion; the difference in performance for different mutants can be explained by the number of transient

program statements that were deemed to be more suspicious than the faulty line — see Section 6.3.3.2.
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Figure 6.5: Minimum, Average, and Maximum EXAMAverage of each IR(s)

6.3.3.4 Observation Four: Fault Location

Figure 6.6: Minimum, Average and Maximum EXAMAverage by class

Figure 6.6 shows the minimum, average and maximum EXAMAverage obtained by ISBFL for
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faults in different Java classes. We can observe that the average EXAMAverage of ISBFL varies for

faults in different classes. This suggests that the location of the fault can have an impact on ISBFL’s

fault localisation effectiveness.

The Bins and BinsFactory classes have the lowest maximum EXAMAverage and amongst the lowest

average EXAMAverage. The LOC in these classes are involved in the initialisation of the algorithm.

This meant that faults in these classes manifested early in some test cases. These faults were also

detected by IRs, early in the execution trace. This explains why ISBFL’s fault localisation effectiveness

for faults in these classes was particularly high. Interestingly, the LOC in the FitnessAlgorithm class

are also used in the initialisation phase, but faults in this class were skewed towards higher measures

of EXAMAverage. An investigation revealed that faults in this class were invariably detected by IRs

that are evaluated at a late point in the execution trace. This supports our findings above, regarding

the importance of the location of the IR.

The graph also shows that there is a large amount of variance in terms of the minimum, average

and maximum EXAMAverage for mutants in several classes. This indicates that the stability of

ISBFL’s performance for different classes can vary. It also suggests that other important factors may

influence fault localisation effectiveness and are responsible for this variance e.g. as discussed above,

the location of the IRs that detected the faults.

6.3.4 RQ4. How does the fault localisation effectiveness of ISBFL compare

to other SBFL techniques?

In this section, we compare ISBFL to three well-known SBFL techniques — Tarantula, Ochiai, and

Jaccard. Our comparisons are based on the same subject program and test cases, and a subset of the

mutants that were used to address RQ2 and RQ3. In particular, our comparisons are based on the

fault localisation effectiveness of these techniques, for mutants that all of these techniques can provide

fault localisation support for. As discussed in Section 6.2.7, Tarantula, Ochiai, and Jaccard were only

applicable to standard faults. Thus, we narrowed our focus to these faults.

Figure 6.7: Difference in EXAMAverage between ISBFL and the benchmark techniques

Each cluster of bars in Figure 6.7 corresponds to one mutant and each bar in the cluster represents
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one of the benchmark techniques. The height of a bar communicates the difference in EXAMAverage

between ISBFL and the benchmark technique represented by that bar. For example, the first, second

and third bar on the graph shows that Tarantula’s EXAMAverage was 1.95% higher than ISBFL’s,

Ochiai’s EXAMAverage was 1.11% lower than ISBFL’s, and Jaccard’s EXAMAverage was 1% lower

than ISBFL’s respectively, for the mutant represented by that cluster of bars.

The graph shows that ISBFL outperforms the benchmark techniques for most mutants. The

average EXAMAverage of ISBFL, Tarantula, Ochiai and Jaccard are 12.74%, 21.18%, 14.28% and

15.95% respectively. We conducted a series of Mann-Whitney U tests that compared ISBFL to each

of the benchmark techniques, and all of the comparisons yielded a statistically significant result.

Despite this, the graph also shows that some of the benchmark techniques outperformed ISBFL for

five mutants. An investigation of these mutants revealed that they were all handled by PISBFL.

PISBFL only handled 6 mutants in total, thus it outperformed the benchmark techniques in one case.

This suggests that some of the benchmark techniques are typically more accurate than PISBFL.

This also means that DISBFL outperformed the benchmark techniques in all cases, which indicates

that DISBFL may be generally more effective than the benchmark techniques. There are two possible

explanations for this. Let tc be a test case that was marked as failed by both DISBFL and the

benchmark techniques. In DISBFL, the program statements that executed in tc, after the failed IR in

tc was evaluated, were excluded from the program spectra of tc. These program statements would not

have been excluded from the failed program spectra used by the benchmark techniques; thus there

would have been more program statements that had the potential to be deemed to be equally, or more

suspicious than the faulty line in the benchmark techniques.

Figure 6.8: Number of test cases that are classified as failed by DISBFL and SBFL.

Secondly, coincidental correctness may have caused some of the failed test cases to be misin-

terpreted as passed test cases by the three benchmark techniques, and may not have affected the

classification of these test cases for DISBFL. We investigated this possibility. Figure 6.8 shows the

total number of test cases that were marked as failed test cases by DISBFL and the three benchmark

techniques. The difference between the three benchmark techniques in our experiment is solely the

suspiciousness score metrics that were used; thus the same test cases were deemed to be passed and

failed by the benchmark techniques. To that end, we represented all three techniques in Figure 6.8

with the “SBFL” bar. The graph clearly shows that DISBFL always classifies at least as many test

cases as failed as SBFL, and classifies more test cases as failed very often. The test cases that are

classified as failed by DISBFL and passed by SBFL are coincidentally correct. This suggests that
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the second possibility was realised, and indicates that ISBFL can reduce the impact of coincidental

correctness on SBFL techniques.

6.3.5 Discussion

Interestingly, the overall fault localisation effectiveness obtained by ISBFL for the subject programs

that were used to answer RQ1, was 20.63%, which is comparable to the overall fault localisation

effectiveness that was observed for the subject program that was used to explore RQ2 — RQ4, which

was 13.86%. This supports our findings in Section 6.3.1.

However, a comparison of Figures 6.2 and 6.3, revealed that the nature of the fault localisation

support offered to these subject programs varied substantially. In particular, ISBFL offers a more

consistent level of fault localisation support for the three subject programs that were used for RQ1,

than for RQ2 — 4.

The control flow of a system determines whether a program statement can be a transient program

statement. To illustrate, consider a program statement p. If p is the first LOC in the system, then it

must be invariably executed in all test cases and so cannot be transient. Alternatively, suppose that

p is in the body of an if statement; p can be transient because the conditional may allow it to execute

in some test cases, but prevent it from executing in others. Since each of the subject programs have a

different control flow structure, they would also have had a different number of transient and constant

program statements. This disparity may explain the differences in results.

As was discussed in Section 6.3.3.3, different IRs offer different levels of fault localisation support.

Different IRs were used in each of the experiments. This might also explain the difference in results.

Section 6.3.3.4 revealed that the location of the fault has an important impact on the effectiveness of

fault localisation. This could be another factor that could explain the difference in results.

The discussion in this section suggests that the nature of the fault localisation support offered by

ISBFL may vary for different systems. Interestingly, with the exception of different IRs being used

across different experiments, all of the factors that could be responsible for this variance could also

affect standard fault localisation techniques.

6.4 Threats to Validity

The threats to validity that were discussed in Section 3.5 are relevant to the experiments conducted

in this chapter. There were also several additional threats to validity that affected the experiments

in this chapter, and some of the threats that were discussed in Section 3.5 warrant further, context

specific discussions. This section outlines these additional threats and presents these discussions.

6.4.1 Internal Validity

The Genetic Algorithm subject program was non-deterministic. Let tc be a test case for this subject

program. Suppose that tc was executed twice, and produced two execution traces, et1 and et2. Because

of non-determinism in the system, et1 6= et2. Thus, if the effectiveness of ISBFL and a benchmark

technique was measured based on et1 and et2 respectively, the differences in the effectiveness of these

two techniques might be partly explained by the differences in et1 and et2. To mitigate this as
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a confounding factor for the comparison, we executed each test case tci once to produce a single

corresponding execution trace eti. ISBFL and all of the benchmark techniques were all applied to eti.

Recall from Section 3.5 that our logging tool can increase code coverage. Since ISBFL and the

benchmark techniques used the same execution trace (that was produced by this logging tool), they

would have all been affected by this. Other logging tools may not extend a test cases coverage, and

thus ISBFL and these benchmarks may achieve a higher level of effectiveness with these logging tools.

Thus a threat to repeatability might be one’s choice of logging tool.

Recall from Section 6.2.8 that our logging tool can only record the execution of a subset of the lines

of code of the SUT. In order to configure our logging tool to be able to record the execution of these

lines of code, it was necessary to manually annotate every one of these lines of code. Such a task has

scope for errors e.g. we may have accidentally annotated a logging function line of code. However, the

approach that we used to systematically identify lines of code that should be annotated was similar

to the approach that was used in Section 3.2.1.1 to systematically identify lines of code that should

contribute towards an estimate of the subject program’s size. Thus, the number of annotation errors

is likely to be low, and thus the impact on the results would have been negligible.

Let IRInstancea = 〈IRy, Statesa〉 be an IRInstance i.e. execution trace data was extracted from

all of the program states in Statesa to evaluate IRy. Also let LastStatea be a program state in

Statesa, such that LastStatea manifests at a later point in the execution trace than all other program

states in Statesa. In Section 6.1.1 we explained that in ISBFL, IRInstancea is associated with the

distinct set of program statements that executed before LastStatea manifested. In our implementation

of the technique, IRInstancea is instead associated with all of the program statements that executed

before our logging tool decided to commit LastStatea to the log file. This decision could be made

after program statements that are preceded by LastStatea have executed. This could reduce the

effectiveness of ISBFL, and thus cause our results to underestimate its effectiveness.

6.4.2 External Validity

We used four subject programs to evaluate ISBFL. These subject programs varied in terms of size,

problem domain, and susceptibility to coincidental correctness. Our evaluation revealed that the

overall effectiveness of ISBFL was comparable across this diverse range of systems. However, it

also revealed that the nature of the fault localisation support that can be offered by ISBFL can

vary for different subject programs. These observations provide us with some indication about the

generalisability of the results. However, we recognise that four subject programs is not a sufficiently

large sample to make absolute claims about the overall generalisability of the technique. We would

therefore like to address this in future work.

6.4.3 Construct Validity

The EXAM Score is a measure of the percentage of LOC that must be checked before the first faulty

program statement has been found [191]. Let EquallySus be the set of LOC in the SUT that have

the same suspiciousness score as the faulty line. Wong and Debroy [191] explain that (in addition

to checking all of the LOC that are more suspicious than the faulty program statement) the user

may only have to check one line in EquallySus in the best case, and all of lines in EquallySus in

the worst case. They state that there are two variants of the EXAM Score — one that assumes the
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best case, and the other which assumes the worst case. Our EXAMBest and EXAMWorst metrics

correspond to these measures. These measures have been used by many researchers in the debugging

community. In this chapter, we also used a metric called EXAMAverage, which assumes that one

must check approximately half of the LOC in EquallySus, and is intended to represent the typical

case. This metric is correlated with the two aforementioned metrics.

6.5 Conclusions

The fault localisation effectiveness of SBFL techniques can be compromised by coincidental correct-

ness. Interlocutory Testing is a testing technique that was devised for testing systems that are prone

to experiencing the effects of coincidental correctness. In this chapter, we introduced a new variant of

SBFL called ISBFL, that is the amalgamation of SBFL and Interlocutory Testing. The primary goal

of ISBFL was to alleviate the impact of coincidental correctness on SBFL.

We confirmed the feasibility of the technique and investigated its effectiveness. Our investigation

revealed that the approach could substantially reduce the number of LOC that must be manually

inspected by the tester, despite the presence of coincidental correctness. Thus, we have addressed

Objective 4 (see Section 1.1). We also found that the fault localisation effectiveness of the technique

varied significantly, depending on which mutants it was applied to. We explored and confirmed several

sources of this variation. For example, the location of the IR, fault, and the control flow of the SUT

were important factors that determined the fault localisation effectiveness of the technique.

We finally performed a comparative analysis between ISBFL and three widely used benchmark

techniques — Tarantula, Ochiai, and Jaccard. The results of these comparisons indicated that ISBFL

substantially outperformed these techniques in most cases, because of its capability to account for

coincidental correctness. We observed that the DISBFL variant of ISBFL was largely responsible for

ISBFL’s comparatively better performance; DISBFL consistently outperformed the benchmark tech-

niques. However, the effectiveness of the PISBFL variant was lower than these benchmark techniques

in the majority of cases. This indicates that future work that explores alternative, more effective,

strategies for conducting ISBFL with Probabilistic IRs might be beneficial.

Another avenue of future work that we would like to explore includes extending ISBFL to incorpo-

rate program slicing. Program slicing is a program dependency analysis technique that can compute

dependencies between program statements [73]. Such a technique could be used by ISBFL to fur-

ther refine failed program spectra. In particular, instead of including all of the program statements

AllStmts that executed before the failed IR was evaluated in a failed program spectra, program slicing

could be used to further filter AllStmts, by removing program statements in AllStmts that did not

affect the evaluation of the IR.

In this chapter, we only applied ISBFL to four subject programs. Although the experiments that

were based on these subject programs provide some insights into the generalisability of the technique,

it does not fully confirm it. Thus, we believe that future work that explores the effectiveness of the

technique on more subject programs would be beneficial.

IRs are central to ISBFL. ISBFL leveraged 18 IRs in this experiment. In some situations, the

user may find the notion of defining such a large number of IRs unacceptable. As was discussed in

Section 3.3.6.2, the process of defining IRs can be partially automated. For future work, we would like
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to develop a means of increasing this degree of automation further, since this may alleviate the issue.

In the meantime, we hope that the cost of developing IRs for fault localisation might be justified by

the fact that they could also be used for testing.

To summarise, this chapter introduced ISBFL, a modified version of SBFL that incorporates

Interlocutory Testing for the purpose of mitigating the impact of coincidental correctness on SBFL; this

chapter satisfied Objective 4. This chapter in conjunction with the previous chapters have collectively

satisfied all of the objectives of the thesis. The next chapter will finally conclude the thesis.
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Chapter 7

Conclusions

Many testing and debugging techniques assume that corrupt program states will propagate to the

output, and can therefore be detected by inspecting the output. Coincidental correctness is a phe-

nomenon in which a fault corrupts a program state, and this state does not propagate to the output.

Thus, coincidental correctness violates this assumption. The violation of this assumption can com-

promise the effectiveness of such testing and debugging techniques e.g. Metamorphic Testing and

Spectrum-based Fault Localisation respectively. The ubiquity of coincidental correctness has been

empirically demonstrated by several researchers (see Section 2.8), motivating the research that was

described in this thesis. In particular, our research culminated in four techniques that can reduce the

impact of coincidental correctness on some of these testing and debugging techniques.

Section 7.1 presents the main contributions of the thesis, and Section 7.2 outlines and discusses

the main limitations of our techniques and research, and highlights possible future research directions.

Finally, Section 7.3 presents a brief summary of the thesis.

7.1 Contributions

This section outlines the main contributions of the thesis. We conducted a mapping study on the oracle

problem; Chapter 2 describes this mapping study. A summary of the main contributions pertaining

to the mapping study can be found in Section 7.1.1. The mapping study revealed that coincidental

correctness can limit the effectiveness of testing and debugging techniques that assume that corrupt

program states will propagate to the output. This inspired the aim of the thesis — to reduce the

impact of coincidental correctness on these techniques.

To address the aim of the thesis, we fulfilled the following objectives: Develop a new testing

technique that can operate effectively in the presence of coincidental correctness (Objective 1), modify

Metamorphic Testing to reduce its susceptibility to coincidental correctness (Objective 2), develop a

partial solution to the Equivalent Mutant Problem that can tolerate coincidental correctness and non-

determinism (Objective 3), and modify Spectrum-based Fault Localisation, to mitigate the impact

of coincidental correctness (Objective 4). These objectives were tackled in Chapters 3, 4, 5, and 6

respectively. A summary of the main contributions that were made in these chapters can be found in

Sections 7.1.2 to 7.1.5 respectively.
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7.1.1 Mapping Study

The mapping study surveyed research on automated testing techniques that can detect functional

software faults in non-testable systems. Discussions about each technique were presented, along with

a comparison of these techniques. The material enabled the identification of research opportunities.

The mitigation of coincidental correctness from various testing and debugging techniques are examples

of such research opportunities. We actively perused some of these research opportunities in this thesis

— see Sections 7.1.2 to 7.1.5.

7.1.2 Interlocutory Testing

Coincidental correctness occurs when the output produced by the SUT is plausible, but the execution

trace behaviours that should have been responsible for the production of this output were not. We

observed that one can predict aspects of the execution trace, based on the nature of the relationship

between the input and output. Comparing these predictions against the execution trace is akin to

checking whether the output manifested as a consequence of these predicted behaviours; thus, such

comparisons are tantamount to directly testing for coincidental correctness. We developed a testing

technique that performs such comparisons, called Interlocutory Testing.

Interlocutory Testing has two types of oracles — Deterministic IRs and Probabilistic IRs. Deter-

ministic IRs are applied to aspects of the system that behave deterministically, whilst probabilistic IRs

are applied to non-deterministic aspects of the system. Unfortunately, we realised that Probabilistic

IRs were susceptible to false positives. To that end, we developed a statistics-based evaluation method

that could be adopted by Probabilistic IRs, to reduce the incidence of false positives. This evaluation

method was empirically demonstrated to be an effective means of reducing false positives.

48, 4, 1, 1 and 3 IRs were developed for the Genetic Algorithm, Dijkstra’s Algorithm, Bubble Sort,

Binary Search and Knuth-Morris-Pratt programs respectively. Three experiments were conducted

based on these IRs and programs. These experiments indicated that Interlocutory Testing is a fea-

sible testing technique, can be effective in the presence or absence of coincidental correctness with

a relatively small number of IRs, was capable of operating in a wide range of systems e.g. systems

that vary in terms of their susceptibility to the oracle problem, coincidental correctness, and degrees

of non-determinism/determinism, and that one’s choice of test suite has little impact on the overall

effectiveness of the technique. This means that Interlocutory Testing satisfied Objective 1.

The experiments also indicated that Deterministic IRs can be more effective than Probabilistic IRs,

context specific IRs might be more effective than general IRs, IRs that mainly employ the IOR-ID-

Detection strategy could be more effective than IRs that mostly use the IOR-Only-Detection strategy,

and that IRs that emphasise testing highly coupled areas of the SUT have the potential to be more

effective than IRs that emphasise testing other areas of the SUT. We also found that it could be

beneficial to leverage multiple IRs that can detect the same faults, and that one’s choice of test suite

can be more important for certain types of faults than for others.

Finally, a comparative analysis of Interlocutory Testing and traditional testing techniques, in terms

of effectiveness and usability, was presented.
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7.1.3 Interlocutory Metamorphic Testing

It has been reported that the effectiveness of Metamorphic Testing can be negatively affected by

coincidental correctness. Our empirical results in Section 4.3.2 supported these reports.

This motivated us to extend Metamorphic Testing with Interlocutory Testing, to alleviate the

impact of coincidental correctness on Metamorphic Testing. This extended version of Metamorphic

Testing is called Interlocutory Metamorphic Testing (IMT). An oracle in IMT is called an IMR. An

IMR consists of one MR and a set of IRs. In IMT, an IMR’s MR is first evaluated multiple times to

obtain a set of execution traces. The IMR’s IRs are then evaluated based on these execution traces.

If the MR or any of these IRs fail, then the IMR reports a failure.

Nine IMRs were developed for the five programs listed in Section 7.1.2. We conducted a series of

experiments based on these IMRs and programs. Some of the experiments explored the feasibility and

effectiveness of IMT. The results indicated that IMT is feasible for a diverse range of programs. They

also demonstrated that IMT could improve the effectiveness of Metamorphic Testing for both coinci-

dentally correct and standard faults. These findings demonstrate that we have completed Objective

2.

Another experiment investigated the differences between Interlocutory Testing and IMT. This

experiment revealed that IMT might have access to fewer IRs than Interlocutory Testing, and that

this means that Interlocutory Testing can detect a wider range of faults. It also indicated that IMT

has a higher FDR, which means that IMT is more likely to detect a fault. The techniques found

different faults, which suggests that IMT is a useful complementary technique. This investigation also

exposed some additional insights about Interlocutory Testing e.g. different IRs might have different

FDRs. It also unearthed some insights about IMT. For example, an IMR’s coverage in terms of the

execution trace is important — not just the source code.

The final experiment explored the impact of the test suite on IMT. The results demonstrated that

IMT’s performance for one test suite was not significantly different than for another.

7.1.4 Interlocutory Mutation Testing

Techniques have been developed to alleviate the Equivalent Mutant Problem e.g. TEMDT. Such

techniques can be hindered by coincidental correctness and non-determinism. This motivated us to

develop a new technique that can alleviate this problem under these conditions, called Interlocutory

Mutation Testing (IMuT). In IMuT, IRs are developed to make predictions that are based on how the

SUT actually operates (instead of how it should operate). Such IRs can be applied to mutants. The

failure to satisfy an IR means that the behaviour of the mutant deviated from the SUT’s behaviour,

and thus indicates that the mutant is non-equivalent. If all of the IRs are satisfied, then the mutant

is said to be equivalent.

We conducted a series of experiments that explored the mutant classification accuracy of IMuT,

as well as the resultant manual inspection effort reductions. These experiments indicated that IMuT

can classify mutants accurately in either the presence or absence of coincidental correctness and/or

non-determinism, with a relatively small number of IRs. By implication, this means that Objective

3 has been accomplished. These results were comparable across subject programs. Conversely, the

extent to which manual inspection effort was reduced by IMuT varied across subject programs. Some

of the reasons for this variance included the fact that different IRs had been used, and that a different
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proportion of equivalent to non-equivalent mutants had been generated by MuJava. Despite this, the

results indicated that the manual inspection effort reductions were substantial in all cases.

We also performed a comparative study between IMuT and TEMDT. The study revealed that

IMuT substantially outperformed TEMDT. Recall that TEMDT operates by comparing (aspects of)

the outputs of the SUT and mutant. The study also indicated that the mutant classification accuracy

of TEMDT might be dependent on the aspects of the output it bases its comparisons on.

7.1.5 Interlocutory Spectrum-based Fault Localisation

Coincidental correctness can reduce the effectiveness of Spectrum-based Fault Localisation (SBFL)

techniques. To that end, we combined SBFL with Interlocutory Testing, to form Interlocutory

Spectrum-based Fault Localisation (ISBFL). ISBFL uses IRs to classify test cases as passed or failed,

and refine program spectra. The precise method (i.e. either DISBFL or PISBFL) that is used to

achieve this depends on the IR type.

Two experiments were conducted and demonstrated that ISBFL is feasible, and can offer sub-

stantial reductions in the number of LOC that one must inspect to find the faulty LOC, despite the

presence of coincidental correctness. ISBFL therefore satisfies Objective 4. We explored factors that

affect the effectiveness of ISBFL. Some of the most prominent factors included: whether DISBFL or

PISBFL was used, the nature and location of the fault, the choice of IRs and their location, test data,

control flow, and the frequency of constant and transient program statements across passed and failed

test cases.

The results also indicated that ISBFL offered a similar level of fault localisation support for

different subject programs, but the nature of this support differed. Potential reasons for this include

the aforementioned factors that affect the effectiveness of ISBFL. Finally, we also compared ISBFL

to three well-known benchmark techniques — Tarantula, Ochiai, and Jaccard. The results indicated

that ISBFL is more effective than these techniques because of its capability to reduce the impact of

coincidental correctness.

7.2 Limitations and Future Work

In this section we outline the main limitations of our techniques and research, and highlight potential

areas of future work.

7.2.1 Limitations of the Techniques

The main limitations of our techniques revolve around usability. This section explores these limita-

tions. One issue concerns the amount of effort that is required to construct an IR. The IR identification

and development process is currently highly manual, and requires the user to have in-depth knowl-

edge about the problem domain and the SUT’s implementation details. Thus, the technique can be

expensive and/or difficult to apply. Although several tools and techniques exist that might partially

automate the IR construction process and thus alleviate these issues e.g. program slicing tools like

Indus [159] or WALA [82], and invariant detection tools like Daikon [74] (see Section 3.3.6.2), we

believe that there is scope for further automation. Thus, we would like to explore this possibility in

future work.
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Secondly, the evaluation method that is used with PIRs to curtail false positives can be difficult

to apply. This evaluation method requires one to be aware of the typical false positive rate of each

Probabilistic IR in terms of a test case, and an entire test suite; determining these typical false positive

rates can be difficult. As discussed in Section 3.1.2.2 these values can be extrapolated from empirical

data. Such data is easily accessible by IMuT — one can simply generate the data from the SUT.

However, such data may not be readily available to the other techniques — one’s ability to obtain

such data may depend on external factors e.g. availability of a reference implementation. In cases

where an RI is not available, one may have to rely on one’s own expertise, consult domain experts,

or analyse the randomised properties of the SUT. The former two alternatives are ad-hoc and lack

systematic guidance, and it is unclear how one might implement the third alternative. We therefore

believe that future work that explores different evaluation methods would be beneficial. One such

evaluation method was proposed in Section 3.6.

We made four observations that we believe are particularly important for informing the design

of effective IRs. In particular: context specific IRs can obtain a greater level of effectiveness than

general IRs, IRs that that prioritise the IOR-ID-Detection strategy might be more effective than

IRs that largely use the IOR-Only-Detection strategy, the location that an IR emphasises testing is

important e.g. IRs that target highly coupled areas of the system tend to perform more effectively,

and Deterministic IRs can obtain a greater level of effectiveness than Probabilistic IRs. However, this

set of observations does not constitute a comprehensive set of guidelines on how one should design

effective IRs. Thus, another issue is the lack of such a comprehensive set of guidelines. This will be

explored in future work.

7.2.2 Limitations of the Research

There are two particularly noteworthy limitations of our research. As discussed in Section 7.2.1,

our techniques require the user to have an in-depth understanding of the problem domain and the

implementation details of the SUT. This affected the total number and type of subject programs

that could be feasibly included in our experiments. The first issue in our research is the number of

subject programs that were used to evaluate our techniques; throughout our experiments, we only

used five subject programs. This limited the strength of the claims that we could make about the

generalisability of our techniques. For example, none of the five subject programs had graphical user

interfaces (GUI), thus it is unclear how our techniques might perform when applied in this specific

context. Another example includes the fact that none of our subject programs are the size of industrial

scale systems, and so it is unclear whether our techniques can scale up to such systems. However, we

would like to remark that our results do suggest that one could use our techniques for small, critical

parts of such systems. Despite this, the five subject programs varied considerably in terms of size,

problem domain, and susceptibility to coincidental correctness. The consistency of our results across

such a diverse range of subject programs provides some evidence regarding their generalisability. For

future work, we would like to investigate the effectiveness of our techniques on more subject programs,

to strengthen the evidence base for these claims.

Let R1 and R2 denote the results of the main experiment in two different chapters. We postulated

that if a noteworthy difference was observed between R1 and R2, then some interesting insights about

the techniques that were explored in these respective chapters might be revealed by a comparative

153



analysis between R1 and R2. Such an analysis would be susceptible to various confounding factors

e.g. mutants, non-determinism, and the test suite. To increase our confidence in the results of such

an analysis, we therefore decided to eliminate one of the confounding factors — the test suite. This

was the rationale behind using the same test suite for the main experiment in each chapter. The lack

of test suite diversity across the main experiments from each chapter is another noteworthy limitation

of our research.

This lack of diversity is unlikely to have had a meaningful impact on our results, since the main

experiments primarily used the Genetic Algorithm subject program, which generated most of the

test data randomly. Thus, different executions of the same test suite would have exposed the IRs

to different test data. Our experiments also indicate that increasing the diversity of test suites is

unlikely to have had a meaningful impact on the results. For example, Section 3.3.5 demonstrated

that effectiveness of the technique was very consistent across 30 different test suites. Additionally, the

experiment that was described in Section 4.3.4 compared the effectiveness of our IRs on two different

test suites and the difference was not statistically significant. Furthermore, our IRs for the other four

subject programs obtained a consistent level of performance across chapters, despite being exposed to

different test suites.

7.2.3 Future work

There are a plethora of other potential future research directions that could be investigated. For

example, as discussed in Section 6.5, the fault localisation effectiveness of ISBFL may be improved

by integrating ISBFL with program slicing. Another example might be an IR centric test adequacy

criterion, where a test suite is deemed to have adequate coverage, if each IOR in each IR is evaluated

at least once by the test suite. The effectiveness of our techniques may improve if they were used in

conjunction with such a test suite.

In this thesis, we only assessed our techniques based on their feasibility and effectiveness, and to

some extent their usability. Other important quality attributes remain unexplored. For example, we

did not investigate the performance of our techniques, which is an important factor in certain contexts

e.g. time sensitive software applications and multi-threaded programs. Other areas of future work

may include an investigation of such quality attributes.

Another potential avenue of future work includes replication studies. Throughout this thesis, we

have made information available, that is necessary to enable the replication of our work. To illustrate,

Sections 3.2, 3.5, 4.2, 4.4, 5.2, 5.5, 6.2, and 6.4, and Appendices A, C, D, E, and F provide information

about our subject programs, mutant generation strategies, test case generation strategies, IRs, the

standard oracle, and measures.

7.3 Summary

In this thesis, we conducted a mapping study on automated testing techniques that can detect func-

tional software faults in non-testable systems. We believe that this mapping study will be a useful

resource for researchers that are attempting to familiarise themselves with/navigate the field. The

mapping study highlighted several potential research opportunities, which may serve to steer the

direction of future research endeavours.
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This thesis also introduced a new testing technique called Interlocutory Testing, which is the first

oracle-based approach for alleviating the impact of coincidental correctness on testing. It is our hope

that this technique will be useful to practitioners. The thesis also demonstrated that one’s method

of applying of Interlocutory Testing can be modified to repurpose the technique for other problems.

In particular we developed a new technique called Interlocutory Mutation Testing that describes a

strategy for applying Interlocutory Testing to alleviate the Equivalent Mutant Problem in the presence

of coincidental correctness and/or non-determinism. We hope that practitioners will make use of this

technique. We envisage that researchers may also be able to adapt Interlocutory Testing to solve other

problems.

This thesis also demonstrated that the theoretical underpinnings of Interlocutory Testing can be in-

tegrated into other techniques e.g. Metamorphic Testing (to form Interlocutory Metamorphic Testing)

and Spectrum-based Fault Localisation (to form Interlocutory Spectrum-based Fault Localisation),

and that the resultant impact of this is an improvement in the effectiveness of these techniques for

coincidental correctness. Thus, we conjecture that other’s may also be able to integrate the princi-

ples of Interlocutory Testing into other techniques to improve the effectiveness of these techniques for

coincidental correctness. Again, we hope that practitioners will adopt these techniques.
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Chapter 9

Appendices

A Interlocutory Relations - Genetic Algorithm Subject Pro-

gram

IR1: InitialPopulation

IOR: Population Size Parameter (input) == pop.size() (output)

ID: params.getIndividualsFactory().createRandomIndividual(params) must have been in-

voked pop.size() number of times

IR2: CreateRandomIndividual

IOR: The total weight of the solution should be the same as the total weight of DataSet

ID: ChosenItem must not be an item that has already been considered

ID: DataSet (input) is a permutation of bins (output)

ID: The total weight of a specific item id in the solution should be the same as the corre-

sponding item in the dataset

ID: DataSet.size() and Solution.size() should be the same (i.e. contain the same number

of items)

IR3: CreateRandomIndividualOverflow

IOR: Maximum Bin Size (input) >= the bin with the most weight (output)

ID: When the else statement in the while loop that determines whether a new bin should

be spawned is executed, the following condition should be false: (MaximumBinSize-

CurrentBin.Size())>=(ItemToBeAdded.size())

IR4: CreateRandomIndividualNewBins

IOR: getInitialNumberOfBins (input) == bins.size() (output) (before removeEmptyBins() is in-

voked)

ID: The else statement in the while loop that determines whether a new bin should be

spawned is never executed
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IOR: getInitialNumberOfBins (input) < bins.size() (output) (before removeEmptyBins() is in-

voked)

ID: The else statement in the while loop that determines whether a new bin should be

spawned is executed (bins.size() (output)- bins.size() (input)) number of times

IR5: BinsRemoveEmptyBins

IOR: Bins.size() (input) == Bins.size() (output)

ID: For each bin in Bins, bin.size() > 0

IOR: Bins.size() (input) > Bins.size() (output)

ID: After removing the bin, Bins (before input) should still have the same number of items

as Bins (after output)

ID: After removing all empty bins... for each bin in Bins, bin.size() > 0

IR6: FitnessController

IOR: Each member of the population has a fitness value

ID: updateIndividualFitness(Individual indiv, GAParameterSet params) is invoked pop.si-

ze() number of times

ID: During the for loop, at an arbitrary iteration, the member of the population under

consideration hasn’t been checked before

IR7: FindBestFitness

IOR: best (input) < result.getBestFitness() (output)

ID: Add the best (input) and best (output) to the population and perform a sort based on

fitness... the last element of the list should be best (output)

IOR: best (input) == result.getBestFitness() (output)

ID: Add the best (input) to the population and perform a sort based on fitness... the last

element of the list should be best (input)

IR8: TerminateGA

IOR: terminationConditionApplies() == false

ID: The distance between GenerationNumber and params.getMaxGenerationNumber() sh-

ould be 1 less than the previous iteration

IOR: terminationConditionApplies() == true

ID: The distance between GenerationNumber and params.getMaxGenerationNumber() sh-

ould be 1 less than the previous iteration

ID: The distance between the current iteration number and max iterations should be 0

IR9: GAController

IOR: oldPop.size() == newPop.size()
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ID: The Crossover operator, Mutation operator, updatePopulationFitness method, the

method that finds the individual in the population with the best fitness, and Selection

operator should be invoked once by the generateNextPopulation method.

ID: The population size should not have contracted after the execution of the Crossover

Operator, Mutation Operator, updatePopulationFitness method, or the method that

finds the individual in the population with the best fitness. The population size should

also not have expanded after the execution of the Mutation operator, updatePopu-

lationFitness method, the method that finds the individual in the population with

the best fitness, and Selection operator. The population size returned by the method

should be the same size as the population returned by the Selection Operator.

IR10: AverageFitnessGeneration

IOR: The average fitness of oldPop is less than the average fitness of newPop

ID: The average fitness of the new solutions provided by crossover are above the average

of oldPop AND/OR

ID: Mutation managed to mutate some individuals AND getOnlyAcceptMutationIfBetter

== true OR

ID: Mutation mutated some individuals and these individuals fitness is greater than they

were before (on average across all changed individuals) AND getOnlyAcceptMutation-

IfBetter == false AND/ OR

ID: Selection deleted individuals that were below average

IOR: The average fitness of oldPop is greater than the average fitness of newPop

ID: The fitness of the new solutions provided by crossover are below the average of oldPop

AND/OR

ID: Mutation mutated some individuals and these individuals fitness is less than they were

before (on average across all changed individuals) AND getOnlyAcceptMutationIfBet-

ter == false AND/OR

ID: Selection deleted individuals that were above average

IOR: The average fitness of oldPop is equal to the average fitness of newPop

ID: Let Input, Crossover, Mutation and Selection represent the population at that point in

time e.g. Crossover = population just after crossover. Let DifferenceInputCrossover,

DifferenceCrossoverMutation, DifferenceMutationSelection, DifferenceInputMutation,

and DifferenceCrossoverSelection represent the difference in fitness between the two

stated elements in each one. Assuming that Crossover and Mutation occurred, the sum

of DifferenceInputCrossover, DifferenceCrossoverMutation and DifferenceMutationSe-

lection must be 0. Alternatively, assuming that Crossover did not occur, but Mutation

did, the sum of DifferenceInputMutation must be 0. Alternatively, assuming that

Crossover occurred, but Mutation did not occur, the sum of DifferenceInputCrossover

and DifferenceCrossoverSelection must be 0.

IR11: SelectionController
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IOR: The population (input) is the same size as the postapocalyptic population (output)

ID: population size should be the same size as the params.getPopulationSize()

ID: population should be a permutation of postapocalyptic population

ID: select(Population population, int GenerationNumber, GAParameterSet params) should

be executed params.getPopulationSize() number of times and output number of times

IOR: The population (input) is larger than the postapocalyptic population (output)

ID: Post apocalyptic population should be == params.getPopulationSize()

ID: postapocalyptic population should be a subset of population

ID: select(Population population, int GenerationNumber, GAParameterSet params) should

be invoked gaparameterset.getPopulationSize() number of times and output.size() num-

ber of times

IR12: TournamentComposition

IOR: Population.size() == Tournament Size

ID: population.size() == tournament parameter size OR population.size() < tournament

parameter size AND the size of the tournament is ! = the tournament parameter size

AND the size of the tournament == population.size()

ID: The tournament is a permutation of population

ID: The tournament shouldn’t contain any duplicates

ID: Let Chosen denote the winner of this tournament, and winners of the previous tour-

naments. Also let LeftOvers denote solutions that have not won a tournament. The

union of Chosen and LeftOvers should be a permutation of the input population.

IOR: Population.size() > the size of the tournament

ID: The tournament should be a subset of population

ID: The size of the tournament == the tournament parameter size

ID: The tournament shouldn’t contain any duplicates

ID: Let Chosen denote the winner of this tournament, and winners of the previous tour-

naments. Also let LeftOvers denote solutions that have not won a tournament. The

union of Chosen and LeftOvers should be a permutation of the input population.

IR13: AverageTounamentPositionWinner

IOR: The winner of a tournament (output) should be a member of the tournament (input)

ID: On average the members that have an above average fitness in the tournament should

win more often than the members with the lowest fitness. For example let Tournament

be a set of sorted fitness values: Tournament=1, 1.5, 1.6, 1.9, 2, then members 3 and

4 (by array index convention) have a higher chance of winning than members 0 and 1.

Therefore on average, positions 3 and 4 should have more winners than 0 and 1 across

all tournaments

IR14: AverageDifferenceSelection
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IOR: The average fitness of “selection” (i.e. basically the output population) is higher than the

original input population

ID: Then solutions that were moved to the output population from the input population

had more of a positive impact i.e. solutions that were added to the population that were

above average brought the average up more than solutions that were below average

IOR: The average fitness of “selection” (i.e. basically the output population) is lower than the

original input population

ID: inverse of the ID above

IOR: The average fitness of “selection” (i.e. basically the output population) is the same as the

original input population

ID: Then solutions that were moved to the output population from the input population

had no impact i.e. solutions that were added to the output population that increased

the average were counterbalanced by solutions that were added that decreased the

average.

IR15: NumberOfParentsControllerLevel

IOR: The input size is less than the output size

ID: getParents(population, params) returned either 2 or more parents

ID: These parents are a subset of the input

IOR: The input size is half the size of the output

ID: getParents(population, params) returned a permutation of the input

ID: The input population size % 2 == 0

IOR: The input size is equal to the output size

ID: getParents(population, params) returned 0 parents

IR16: CrossoverConvergence

IOR: (In the while loop) parents that were used in previous iterations can’t be used in the current

iteration... (so only parents that haven’t been considered yet can be selected (and all have

an equal opportunity))... all parents must have been considered

ID: The difference between parents.size() and 0 is 2 smaller than was the case in the last

iteration and is divisible by 2

IR17: NumberOfChildrenControllerLevel

IOR: Children.size() == (original) parents.size()

ID: CrossOver returned 2 children each time

ID: The while loop was executed Parents.size()/2 times

IR18: ChoosingPairsOfParents

IOR: The output should have an even size
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ID: if parents.size()%2 ! = 0 (post for loop) then the if statement responsible for removing

a random individual should be invoked and the size of parents.size() should decrease

by 1 as a result. Also inverse this. for == 0

IOR: The output size is 0

ID: if parents.size() == 0 (post for loop) OR

ID: if parents.size() == 1 (post for loop)

IR19: ChoosingPairsOfParentsComposition

IOR: The output is a subset of the input

ID: The for loop iterated population.size() number of times

IR20: CrossoverRate

IOR: The crossover rate is 0 and getParents(population, params) returned input.size() number

of parents

ID: The number of parents in the population % 2 == 0

IOR: The crossover rate is 0 and getParents(population, params) returned input.size()-1 number

of parents

ID: The number of parents in the population % 2 ! = 0

IOR: The crossover rate is 1 and the output is the same size as the input

ID: getParents(population, params) should have returned 0 parents

IOR: (1 > the crossover rate > 0)

ID: on average the number of selected parents should be >= ((1-crossover rate)/2)% of the

population. This ID is inconclusive if the input population size is 1.

IR21: ChoosingCouples

IOR: Given a set of parents, they should be paired for reproduction

ID: When choosing two parents to reproduce, these two individuals should not be a member

of any other pairing

IR22: CrossOverDuplicate

IOR: Child.size() (input) == Child.size() (output) (OF removeDuplicates)

ID: UnassignedItems.size() is 0

ID: There are no duplicates in the input

IOR: Child.size() (input) > Child.size() (output) (OF removeDuplicates)

ID: Let X be reference to the set of all bins that were removed by removeDuplicates. All

unassigned items must be members of X.

ID: Every member in X contains at least one duplicated item

ID: All nonduplicates in X should be a member of unassigneditems

ID: Every bin in X contains at least one item that is in Middle.
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ID: The bins that were removed were not members of middle (unless the exact same bin

was duplicated on one of the 2 sides)

ID: There are duplicates in the input

ID: There are no duplicates in the output

ID: The output contains every element that’s in the input apart from UnassignedItems and

duplicates

ID: Unassigned items contains no duplicates in the input

IR23: CrossOverController

IOR: Two children that are together permutations of both parents (in terms of items)

ID: makeCopyOfParents, chooseCrossoverPoints, swapBinsBetweenCrossoverPoints must

be invoked

ID: removeDuplicates, deduceLostItems and reinsertUnassignedItems must be invoked twice

IR24: ChildXPermutationParentX

IOR: Child 1 is a permutation of Parent 1 (Same works for Child 2)

ID: The middle sections that were traded between child 1 and 2 were the same; thus the

middle sections of child 1 and child 2 did not change.

IOR: Child 1 is not a permutation of Parent 1 (Same works for Child 2)

ID: The middle sections that were traded between child 1 and 2 were different; thus the

middle sections of child 1 and child 2 did change.

IR25: CrossoverClone

IOR: The output should be a replica of the input

ID: Making a change to the output object should not lead to a change in the input object

IR26: ChoosingCrossoverPoints

IOR: The four selected crossover points must be valid crossover points in their respective children

i.e. The first 2 crossover points should be >= 0 and < child1.size() and The second 2

crossover points should be >= 0 and < child2.size()

ID: There should only be four crossover points

ID: Crossover point 1 <= Crossover point 2 and Crossover point 3 <= Crossover point 4

ID: The random number generator has a chance of generating a value between 0 and

childx.size()

IR27: SwappingMiddleSection

IOR: The two children should be a permutation of the two parents combined

ID: Child1 should contain two subsequences that are in parent1 and one subsequence from

parent2, and vice versa for child2. The start and end of these subsequences should be

determined by the crossover points.

IR28: PartitionChild
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IOR: The output must consist of three lists, each of which contains a subset of the input

ID: Each list should be a subsequence of the input

ID: There should be no duplicates i.e. overlap between these sequences

ID: The three lists combined size should equal to the input.size()

IR29: RemoveDuplicates

IOR: The Prefix shrunk

ID: The middle section should be the same

ID: The prefix shrunk by the number of duplicates there were across the prefix and middle

ID: The prefix contains all of the items that it originally did, except for the duplicates

IOR: The Prefix stayed the same

ID: The middle section should be the same

IOR: The Suffix shrunk

ID: The middle section should be the same

ID: The suffix shrunk by the number of duplicates there were across the suffix and middle

ID: The suffix contains all of the items that it originally did, except for the duplicates

IOR: The suffix stayed the same

ID: The middle section should be the same

IR30: DeduceLostItems

IOR: (Child + KnownUnassignedItems + DisplacedItems) should be a permutation of either

parent

ID: (Child + KnownUnassignedItems + DisplacedItems).size() == DataSet.size()

ID: Lost items should be == all items that were in the middle that was traded, but were

not returned back in the traded middle

IR31: ReinsertUnassignedItems

IOR: Child.size() (output) == (Child.size() (input) + UnassignedItems.size())

ID: replacementOperationController and FirstFitDecreasing were invoked

IR32: ReplacementOperationController

IOR: The average size of UnassignedItems should not be larger than in the previous iteration

(considers multiple iterations)

ID: AnyChanges should be true

IOR: The average size of UnassignedItems is the same as in the previous iteration (considers last

iteration)

ID: AnyChanges should be false

IR33: ReplacementOperationControllerUnassignedItems

IOR: Child (output) is the same as Child (input)
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ID: UnassignedItems (output) is the same as UnassignedItems (input)

ID: replacementOperation must have provided false as output on the first iteration

IOR: Child (output) is not the same as Child (input)

ID: UnassignedItems (output) is not the same as UnassignedItems (input)

ID: UnassignedItems (Output) + Child (Output) is a permutation of UnassignedItems

(Input) + Child (Input)

ID: replacementOperation must have executed for more than 1 iteration

IR34: ReplacementLoop

IOR: The outer most for loop must iterate UnassignedItems.size() number of times

ID: Every item must have been considered once and only once

IR35: ReplacementLoopNestedBinsLoop

IOR: Iterated Child.size() number of times

ID: canReplace returned false throughout the entire loop and performReplacement did not

execute, or returned canReplace returned true on the last iteration and performRe-

placement executed on the last iteration

IOR: Iterated < Child.size() number of times

ID: Let “Iterated” be the iteration canReplace returns true on... canReplace returned false

throughout, but returned true on “Iterated”, and performReplacement was invoked on

this iteration too and no more iterations were performed after that.

IR36: ReplacementOperationIntegrity

IOR: UnassignedItems.size() (input) < UnassignedItems.size() (output)

ID: canReplace.getResult()[1].size() > 1 during at least one iteration

ID: The child (input) should have more remaining capacity than child (output)

ID: None of the childs bins should exceed capacity before, and after the replacement oper-

ation has executed

ID: The number of items in the child should decrease

ID: The number of bins in the child should stay the same

ID: ReplacedItems should be a superset of the Child (input) items that were used in re-

placements

ID: Child (output) should not contain any items that are in ReplacedItems

ID: Child (output) should contain at least one of the replacement items.

IOR: UnassignedItems.size() (input) == UnassignedItems.size() (output) AND Child.GetRemai-

ningCapacity() is smaller

ID: canReplace.getResult()[1].size() was at most 1 during the entire loop

ID: The child (input) should have more remaining capacity than child (output)

ID: None of the childs bins should exceed capacity before, and after the replacement oper-

ation has executed
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ID: The number of items in the child should stay the same

ID: The number of bins in the child should stay the same

ID: ReplacedItems should be a superset of the Child (input) items that were used in re-

placements

ID: Child (output) should not contain any items that are in ReplacedItems

ID: Child (output) should contain at least one of the replacement items.

IOR: UnassignedItems.size() (input) == UnassignedItems.size() (output) AND Child.GetRemai-

ningCapacity() is the same

ID: canReplace.getResult()[1] was empty throughout

ID: AnyChanges should be false under this condition

ID: None of the child’s bins should exceed capacity before, and after the replacement

operation has executed

ID: The number of items in the child should stay the same

ID: The number of bins in the child should stay the same

IR37: CheckIfCanReplace

IOR: Replacement.size() <= ReplaceXNumberOfItems

ID: For loop i should be > 0 <= ReplaceXNumberOfItems

ID: For loop should iterate ReplaceXNumberOfItems number of times OR FoundSuit-

ableReplacement is true

ID: i should never be the same as i was in any other iteration

ID: The size of all of the returned Permutations should be == i

IR38: isSuitableForReplacement

IOR: Method returns false

ID: ((UnassignedItemSize>OnePermutationTotalSize) == false) OR ((((TotalWeightOfB-

in-OnePermutationTotalSize)+UnassignedItemSize) <= Capacity) == false)

IOR: Method returns true

ID: Opposite conditions to the first IOR

IR39: FFDIntegrity

IOR: The difference between Child.size() (input) and Child.size() (output) should be unas-

signeditems size

ID: (Child (input) + UnassignedItems) should be a permutation of Child (output)

ID: When the current item under consideration in the for loop is about to be placed into

a bin, it should be able to fit this bin and should not be able to fit any of the previous

bins.

ID: After each iteration, child should increases by 1 item

ID: The item under consideration should not be in child at first, but at the end of the

iteration should be in child
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ID: The average spare capacity of the bins on the left hand side should be less (than or

equal to) the average spare capacity of the bins on the right hand side

IR40: FFDController

IOR: The number of bins in the output child == the number of bins in the input child

ID: Child.getRemainingCapacity() (input) >= UnassignedItems total weight

ID: At no point in the for loop was there a situation where the item under consideration

didn’t fit in a bin

ID: ItemAdded should be true throughout the entire loop

IOR: The number of bins in the output child > the number of bins in the input child

ID: During the for loop, a situation was encountered where the item under consideration

couldn’t fit in any bin

ID: ItemAdded should be == to false on some occasions, thereby forcing the if statement

to run... it should run (child.size() (output) minus child.size() (input)) number of times

IR41: SelectedMutants

IOR: WontMutate.size() + MightMutate.size() == population.size()

ID: WontMutate should be a subset of the population

ID: MightMutate should also be a subset of the population (before MutateAll is invoked)

ID: WontMutate and MightMutate are a permutation of the population

ID: WontMutate and MightMutate contain distinct individuals

IR42: ThoseWhoShouldntMutateDidnt

IOR: The output of MutateAll should be the same size as MightMutate.size()

ID: WontMutate (before invocation of MutateAll) is equivalent to WontMutate (after the

invocation of MutateAll)

IR43: DecidingWhoShouldMutate

IOR: The mutation rate is 0 and MightMutate.size() == population.size()

ID: WontMutate.size() == 0

IOR: The mutation rate is 1 and MightMutate.size() == 0

ID: WontMutate.size() == population.size()

IOR: The mutation rate is not 0 or 1

ID: Pass

IR44: DecidingWhoShouldMutateFineGrained

IOR: MightMutate.size() > 0

ID: MightMutate.size() + WontMutate.size() == population.size()

ID: MightMutate + WontMutate is a permutation of population

ID: MutationRate > 0
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ID: MightMutate.size() == the number of times the dice was rolled >MutationProbability

ID: When an item is being added to MightMutate, it must be a member of population,

and not a member of WontMutate

ID: When an item is being added to WontMutate, it must be a member of population, and

not a member of MightMutate

IOR: MightMutate.size() == 0

ID: WontMutate.size() == population.size()

ID: Either the mutation rate == 1 OR

ID: the number of times the dice rolled > MutationProbability is 0

IR45: MutateAllController

IOR: MightMutate.size() (input) == MightMutate.size() (output)

ID: The second for loop must have considered every member of MightMutate

IR46: MutateAllIntegrity

IOR: MightMutate (input) is a permutation of MightMutate (output)

ID: Either all accepted mutations produced solutions that were equivalent to the originals

e.g. 1,2,3 and 2,1,3 − > 2,1,3 and 1,2,3

ID: OR getOnlyAcceptMutationIfBetter == true AND ShouldUseNewIndividual always

returned false

IOR: MightMutate (input) only has some common solutions that MightMutate (output) has

ID: Let NumberOfMutations be the number of successful mutations. Let count be the

number of items that exist in MightMutate (input) that don’t exist in MightMutate

(output). NumberOfMutations should be >= count

IOR: MightMutate (input) contains no solutions that are the same as in MightMutate (output)

ID: If all of the solutions were successfully mutated, then none of the mutations were

equivalent to anything in the input

ID: if getOnlyAcceptMutationIfBetter == true, ShouldUseNewIndividual returned true

throughout the entire loop

IR47: MutateIndividual

IOR: The input should be the same size as the output

ID: The input should be a permutation of the output

ID: The difference between Individual.size() before and after the “selecting bins to delete”

should be == getMutationDestroy().

ID: The bins in SelectedBins should be a subset of the input and these bins should not

exist in ThisIndividualsbins (during “selecting bins to delete”)

ID: The SelectedBins should not contain duplicates i.e. the same bin shouldn’t be selected

twice for deletion during (“selecting bins to delete”)...

ID: reinsertUnassignedItems must execute to put them back in
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IR48: ShouldUseNewIndividual

IOR: The method returns true

ID: Mutated has either the same or less spare capacity than Original

IOR: The method returns false

ID: Mutated has either the same or more spare capacity than Original
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B Real Faults

In this appendix, we describe the 12 real faults that were found in the Genetic Algorithm subject pro-

gram, record whether the fault was coincidentally correct, and/or caused a crash during the execution

of the SUT. A fault is assumed to be non-coincidentally correct, if it causes such a crash.

Fault 1. The JAGA Developers represented floating point numbers with Double. This caused

several rounding errors because Doubles are imprecise [125].

- Coincidentally correct: True

- SUT crashed: False

Fault 2. Given a set of items, DataSet, the BinsFactory class is responsible for generating random

solutions based on DataSet. Fault 2 caused it to include items that were not in DataSet.

- Coincidentally correct: False

- SUT crashed: False

Fault 3. Let DataSet be the set of items to be organised into bins. DataSet is intended to be a

read-only variable; however some methods were manipulating it, instead of using a copy.

- Coincidentally correct: False

- SUT crashed: True

Fault 4. The removeEmptyBins method deletes all bins that contain no items, from a solution.

This was achieved by iterating over the list of bins in the solutions from left to right and deleting

all empty bins that were encountered. The list representation was ArrayList; deletion of elements

in an ArrayList causes elements in the list to shuffle to the left and thus offsets the pointer. This

meant that, when two consecutive bins were empty the code would delete the first bin, causing the

next empty bin to shuffle in its place, and the pointer would be subsequently incremented to the next

element; thereby failing to remove the second empty bin.

- Coincidentally correct: False

- SUT crashed: False

Fault 5. Crossover expands the population, whilst selection contracts it. PopParam specifies

the size that the population should be at the end of a generation. Thus, there are two strategies;

either crossover first expands the population and selection subsequently removes the excess solutions,

or selection removes members of the population first and crossover generates solutions to account for

the deficit. We opted for the former approach, whilst the JAGA Developers leveraged the latter [153].

The combination of these two approaches meant neither operator would execute because selection

wouldn’t contract the population unless there was an expansion and crossover wouldn’t expand the

population unless there was a contraction.

- Coincidentally correct: True

- SUT crashed: False
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Fault 6. Fault 5 was repaired by adopting the former strategy. However, the JAGA toolbox’s

ordering of these operators had been retained i.e. selection was executed first. This meant that

selection didn’t execute on the first iteration and the output population of a generation could exceed

PopParam.

- Coincidentally correct: False

- SUT crashed: False

Fault 7. Let Population be the population that is being subjected to the selection operator and

Survivors be a set of individuals that have been selected from Population to be passed on to the

next generation. During the selection process, once a member of Population has been chosen to be

a member of Survivors, it should not be possible to choose that individual again, because this will

create duplicates. However the JAGA Developers code allows for this.

- Coincidentally correct: True

- SUT crashed: False

Fault 8. In tournament selection, the same individual should not be entered into the same

tournament more than once i.e. it shouldn’t be able to compete against itself, however, this is possible

in the JAGA Developers code.

- Coincidentally correct: True

- SUT crashed: False

Fault 9. Recall that the JAGA Developers leveraged a strategy, in which the selection operator

first removes a set of individuals from the population, and then crossover makes up the deficit. Also

recall that we leveraged the opposite strategy i.e. crossover first expands the population, and selection

then removes excess individuals. The mechanism that determines the number of individuals to be

removed from the population, by the selection operator, was still based the JAGA Developers strategy,

instead of the strategy we adopted, and was therefore removing an incorrect number of individuals.

- Coincidentally correct: False

- SUT crashed: True

Fault 10. Jankovics’ design document specifies the use of two point crossover [84]; this involves

selecting two parent solutions P1 and P2, and randomly partitioning each of these solutions into

three sublists e.g. P1prefix, P1middle and P1suffix. The middle partitions of these solutions are

finally swapped and the partitions are recombined e.g. P1 = {P1prefix, P2middleP1suffix}. Jankovic

identified that it is possible to encounter scenarios in which an item I exists in either P1prefix or

P1suffix and P2middle, which means that when the middle partition is swapped, the child that is

composed of these three partitions will have duplicate items; thus, he includes the removal of such

duplicates in his design [84]. However, since one solution has a duplicate, and in our implementation,

bins are moved, not copied, this implies that the other child (from which P2middle was taken, in

exchange for P1middle) doesn’t have I at all. This was not accounted for, and so the integrity of some

solutions was compromised.
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- Coincidentally correct: False

- SUT crashed: False

Fault 11. As a part of his design of the MO operator, Jankovic specified a variable called

MutationDestroy, which denotes the number of bins in the solution that should be removed, causing

the items in these bins to become unassigned (to be reinserted later) [84]. Unfortunately, his design

doesn’t account for cases where MutationDestroy is greater than the number of bins in the solution.

This overlooked detail in the design specification propagated to the SUT.

- Coincidentally correct: False

- SUT crashed: True

Fault 12. According to Jankovics’ design, it’s necessary to generate every combination of items in

a certain bin (bounded by the GA parameter: ReplaceXNumberOfItems) [84]. Each combination

must be checked against a certain criterion to identify whether the fitness can be improved by replacing

them with an unassigned item. This exhaustive check should be prematurely terminated when a

suitable replacement is found; unfortunately this didn’t happen.

- Coincidentally correct: False

- SUT crashed: True
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C Interlocutory Relations - Dijkstra’s Algorithm

IR1: StartEndNodeRelation

IOR: Start Node ≡ End Node

ID: The outputted path size should be 1 and the node on the path should be ≡ Start Node

ID: The total weight of the path should be 0

IOR: Start Node 6= End Node

ID: The outputted path should start with start node and end with end node

ID: The path must be valid

ID: Let Edges be the set of all edges in the path. The sum of each Edge ∈ Edges in graph,

should be the same as the total weight of the path.

ID: The total number of nodes in the path should not exceed the total number of nodes in

the graph

ID: The path should be a subset of the graph

ID: There should be no cycles in the path

IR2: PathGraphRelation

IOR: The path is a permutation of the graph

ID: The size of the path is ≡ to the size of the graph

IOR: The path is not a permutation of the graph

ID: The size of the path < the size of the graph

ID: The path should be a subset of the graph

IR3: GraphSizeRelation

IOR: The graph consists of multiple nodes

ID: Let NumNodes denote the total number of nodes in the graph. The algorithm executes

NumNodes number of times

ID: Visited nodes should increase by 1 and Unvisited nodes should decrease by 1 each

iteration

ID: The gained/removed nodes by these sets should be the selected node on their respective

iterations

ID: Visited and Unvisited nodes should always be subsets of the graph

ID: The combination of both Visited and Unvisited nodes should always be a permutation

of the graph

ID: The combination of both Visited and Unvisited nodes should not contain any duplicated

elements on any iteration

IOR: The graph consists of one node

ID: The algorithm executes once

ID: The outputted path size should be 1 and the element should be ≡ Start Node
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ID: The total weight of the path should be 0

ID: Visited nodes should contain one item and unvisited nodes should contain 0 items (post

execution)

IR4: PartialPathConstructionRelation

IOR: When a partial path is updated, the new path should be cheaper than the old path

ID: Partial paths must always contain the start node at the start

ID: Partial paths must always be valid

ID: Partial paths must never contain any cycles

ID: Each edge in each partial path must have the same weight as the weight of the corre-

sponding edge in the graph

ID: The selected partial path must be the one with the lowest total weight, on each iteration

ID: If a selected partial path offers a cheaper route to it’s neighbour, then it’s neighbours

previous node should be updated to reflect this. The converse also applies.
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D Interlocutory Relations - Bubble Sort

IR1: BubbleSort

IOR: The output is a permutation of the Input such that the ordering is different

ID: At the end of each iteration of the outer for-loop, n + 1 −m number of elements on

the right hand side should be sorted

ID: There must be Input.size()× (Input.size()− 1) number of comparisons

ID: A swap should only take place if the item under consideration is greater than the

adjacent element to its right. The converse is also true.

ID: Only adjacent elements should be swapped

IOR: The output is a permutation of the Input such that ordering is the same

ID: At the end of each iteration of the outer for-loop, n + 1 −m number of elements on

the right hand side should be sorted

ID: There must be Input.size()× (Input.size()− 1) number of comparisons

ID: Every comparison of adjacent pairs should have yielded a “No Swap” decision; the

element at position i is less than or equal to the element i+ 1.
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E Interlocutory Relations - Binary Search

IR1: BinarySearch

IOR: Input.size() > 0 and Output ≡ true

ID: Let ParentList denote a list being cut in half. Also let Child1 and Child2 be the two

halves respectively. Child1.size() +Child2.size() ≡ ParentList.size() should hold for

all partitioning operations

ID: Child1.size() ≈ Child2.size(), (tolerance of 1 element acceptable - the left hand side

must be greater than the right hand side by 1) in all cases

ID: Sum(List) is a function that gets the sum of all elements in List. Sum(ParentList) ≡

Sum(Child1) + Sum(Child2) in all cases

ID: The element of interest should be in the list that has been selected for the next iteration

ID: On the last iteration, the last element of Child1 should be the element we are looking

for. On all other iterations, the last element of Child1 should not be the element we

are looking for

IOR: Input.size() > 0 and Output ≡ false

ID: Let ParentList denote a list being cut in half. Also let Child1 and Child2 be the two

halves respectively. Child1.size() +Child2.size() ≡ ParentList.size() should hold for

all partitioning operations

ID: Child1.size() ≈ Child2.size(), (tolerance of 1 element acceptable - the left hand side

must be greater than the right hand side by 1) in all cases

ID: Sum(List) is a function that gets the sum of all elements in List. Sum(ParentList) ≡

Sum(Child1) + Sum(Child2) in all cases

ID: On all iterations, the last element of Child1 should not be the element we are looking

for

ID: On the last iteration, Child1 should not have more than one item left

ID: The input list does not contain the input element

IOR: Input.size() ≡ 0 and Output ≡ false

ID: There should be no iterations of the loop
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F Interlocutory Relations - Knuth-Morris-Pratt

IR1: FailureArray

IOR: All values in the failure array are -1

ID: There are no more than one occurences of PATTERN[0] in PATTERN

ID: The for loop in the failure array generator should have executed PATTERN.length−1

number of times

ID: If failure[j] ≡ −1, then PATTERN.get(failure[j − 1] + 1) 6= PATTERN.get(j)

IOR: There is at least one non -1 value in the failure array

ID: There are more than one occurences of PATTERN[0] in PATTERN

ID: The for loop in the failure array generator should have executed PATTERN.length−1

number of times

ID: On a given iteration j, let PREFIX be a subsequence of PATTERN, such that PREFIX

contains element 0 to failure[j]. Also let SUFFIX be a subsequence of PATTERN,

such that SUFFIX contains elements j − failure[j] to j. The PREFIX should be

equivalent to the SUFFIX. (only applicable when failure[j] 6= −1)

ID: If failure[j] ≡ −1, then PATTERN.get(failure[j − 1] + 1) 6= PATTERN.get(j)

IR2: KMPController

IOR: The algorithm located the PATTERN in the TEXT

ID: Let WholeString be a subsequence of TEXT, such that the first element of WholeString

is 0 and the last element of WholeString is the END, where END is x + y − 1, such

that x is the index of the beginning of the pattern found in TEXT and y is the length

of the pattern. The PATTERN should be equivalent to elements (x to x + y − 1) in

WholeString

ID: The value of I should either increase by 1 or stay the same every iteration

ID: On the first iteration, I should be equal to 0, and on the last Iteration I should be

equal to WholeString.size()− 1

IOR: The algorithm did not locate the PATTERN in the TEXT

ID: The value of I should either increase by 1 or stay the same every iteration

ID: On the first iteration, I should be equal to 0, and on the last Iteration I should be

equal to TEXT.length− 1

ID: The algorithm should not have executed the if portion of the if statement lenp number

of times in a row

IR3: KMPPatternPointer

IOR: Let Js denote the value of J at the start of the iteration and Je be the value of J at the

end of the iteration. Je − Js ≡ 1 (the IR assumes that the initial value of j is 0 on the first

iteration)
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ID: Let PATTERNSEQ be a subsequence of PATTERN, such that PATTERNSEQ is

formed from elements 0 to Js (inclusive). i denotes the value of i at the start of the

iteration. Similarly, let TEXTSEQ be a subsequence of TEXT, such that TEXTSEQ

is composed of elements i − Js to i (inclusive). PATTERNSEQ should be equivalent

to TEXTSEQ

IOR: Je − Js ≡ 0

ID: TEXT.charAt(i) 6= PATTERN.charAt(0)

IOR: Je − Js < 0

ID: Let PATTERNSEQ-1 be a subsequence of PATTERN, such that PATTERNSEQ-1 is

formed from elements 0 to js − 1 (inclusive). Similarly, let TEXTSEQ-1 be a sub-

sequence of TEXT, such that TEXTSEQ-1 is composed of elements i − js to i − 1.

PATTERNSEQ-1 should be equivalent to TEXTSEQ-1

ID: PATTERNSEQ should not be equivalent to TEXTSEQ

ID: je − 1 ≡ failure[js − 1]
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