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Abstract We consider the Gierer–Meinhardt system with small inhibitor diffusivity, very
small activator diffusivity and a precursor inhomogeneity. For any given positive integer k we
construct a spike cluster consisting of k spikes which all approach the same nondegenerate
local minimum point of the precursor inhomogeneity. We show that this spike cluster can
be linearly stable. In particular, we show the existence of spike clusters for spikes located at
the vertices of a polygon with or without centre. Further, the cluster without centre is stable
for up to three spikes, whereas the cluster with centre is stable for up to six spikes. The
main idea underpinning these stable spike clusters is the following: due to the small inhibitor
diffusivity the interaction between spikes is repulsive, and the spikes are attracted towards
the local minimum point of the precursor inhomogeneity. Combining these two effects can
lead to an equilibrium of spike positions within the cluster such that the cluster is linearly
stable.
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1 Introduction

In 1952, Turing [16] studied how pattern formation could start from a state without patterns.
He explained the onset of pattern formation by a combination of two properties of the system:

(i) presence of spatially varying instabilities
(ii) absence of spatially homogeneous instabilities.

Since Turing’s pioneering work many models have been proposed and studied to explore
the so-called Turing diffusion-driven instability in reaction–diffusion systems to understand
biological pattern formation. One of the most popular of these models is the Gierer–Meinhardt
system [5,12,13], which in two dimensions can be stated as follows:

⎧
⎪⎨

⎪⎩

At = ε2�A − μA + A2

H , in �,

τHt = D�H − H + A2, in �,
∂A
∂ν

= ∂H
∂ν

= 0, on ∂�.

(1.1)

We assume that the diffusivities ε and D are small positive constants satisfying 0 < ε2 �
D � 1

log
√
D
ε

� 1 and τ is a nonnegative constant which is independent of ε. Further, � ⊂ R
2

is a smooth bounded domain and ∂
∂ν

denotes the outward normal derivative at a point on its
boundary ∂�. In this paper we assume that � = BR is a disk around the origin with radius
R. For the standard Gierer–Meinhardt system it is assumed that μ(y) ≡ 1. In this study we
consider a precursor inhomogeneity μ(|y|) which is a positive, rotationally symmetric and
sufficiently smooth function of the spatial variable y defined in the domain �.

The main idea underpinning these stable spike clusters is the following: due to the small
inhibitor diffusivity the interaction between spikes is repulsive and the spikes are attracted
towards the local minimum point of the precursor inhomogeneity. Combining these two
effects can lead to an equilibrium of spike positions within the cluster such that the cluster is
linearly stable. The repulsive nature of spikes has been shown in [4]. The attracting feature
of the local minimum of a precursor has been established in [17].

Problem (1.1) without precursor has been studied by numerous authors. For the one-
dimensional case in a bounded interval (−1, 1) with Neumann boundary conditions, the
existence of symmetric N -peaked solutions (i.e. spikes of the same amplitude in leading
order) was first established by Takagi [15]. The existence of asymmetric N -spikes was first
shown by Ward and Wei [18] and Doelman et al. [3] independently. For symmetric N -peaked
solutions, Iron et al. [8] studied the stability by using matched asymptotic expansions while
Ward and Wei [18] later studied the stability for asymmetric N -spikes. Existence and stability
for symmetric spikes in one spatial dimension was then established rigorously by the first
two authors [23].

For the Gierer–Meinhardt system in two dimensions, the first two authors rigourously
proved the existence and stability of multiple peaked patterns for the Gierer–Meinhardt
system in the weak coupling case and the strong coupling case for symmetric spikes [20–22].
Here we say that the system is in the weak coupling case if D → ∞ as ε → 0 and in the
strong coupling case if the parameter D is a finite constant independent of ε. For more results
and background on the Gierer–Meinhardt system, we refer to [26] and the references therein.

In fact, already in the original Gierer–Meinhardt system [5,12,13], the authors have intro-
duced precursor inhomogeneities. These precursors were proposed to model the localisation
of the head structure in the coelenterate Hydra. Gradients have also been used in the Brus-
selator model to restrict pattern formation to some fraction of the spatial domain [7]. In this
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example, the gradient carries the system in and out of the pattern-forming region of the param-
eter range (for example across the Turing bifurcation). Thus it restricts the domain where
peak formation can occur. A similar localisation effect has been used to model segmentation
patterns for the fruit fly Drosophila melanogaster in [6,11].

In [24] the existence and stability of N -peaked steady states for the Gierer–Meinhardt
system with precursor inhomogeneity has been explored. The spikes in these patterns can
vary in amplitude and have irregular spacing. In particular, the results imply that a precursor
inhomogeneity can induce instability. Single-spike solutions for the Gierer–Meinhardt system
with precursor including spike dynamics have been studied in [17].

Recently, the first two authors in [27] studied the Gierer–Meinhardt system with precursor
in one spatial dimension and proved the existence and stability of a cluster, which consists of
N spikes approaching the same limiting point. More precisely, they consider the existence of a
steady-state spike cluster consisting of N spikes near a nondegenerate local minimum point y0

of the inhomogeneity μ(y), i.e., μ′(y0) = 0, μ′′(y0) > 0, where y ∈ (−1, 1), y0 ∈ (−1, 1).
Further, they show that this solution is linearly stable.

Now we consider this problem in two dimensions. We shall study the existence and stability
of positive k-peaked steady-state spike clusters to (1.1). For simplicity, we shall study the
steady-state problem for positive solutions of (1.1) in the disk BR around the origin with
radius R, which can be stated as follows:

⎧
⎪⎨

⎪⎩

ε2�A − μ(|y|)A + A2

H = 0, in BR,

D�H − H + A2 = 0, in BR,
∂A
∂ν

= ∂H
∂ν

= 0, on ∂BR ,

(1.2)

where ∂
∂ν

denotes the outward normal derivative at a point on ∂BR .
Inspired by the work [1], where the authors constructed multi-bump ground-state solutions

and the centres of these bumps are located at the vertices of a regular polygon, while each
bump resembles, up to translation and multiplication with a constant amplitude, the unique
radially symmetric solution of

�w − w + w2 = 0 in R
2, 0 < w(x) → 0 as |x | → ∞, (1.3)

in this paper we shall prove the existence and stability of a spike cluster located near a
nondegenerate minimum point of the precursor such that the positions of the spikes form
a regular polygon. We note that the presence of such patterned steady state configurations
appears driven by the smallness of the relative size σ 2 = ε2/D of the diffusion rates of the
activating and inhibiting substances. However, there is some difference between our problem
and the one considered in [1]. Here, we also need to take into consideration the precursor
μ(|y|) and further assume that the inhibitor diffusivity D is very small. After introducing the
transformation

y = εx, Â(x) = 1

ξ

ε2

D
A(εx), Ĥ(x) = 1

ξ

ε2

D
H(εx),

and dropping hats, Eq. (1.2) becomes,
⎧
⎪⎨

⎪⎩

�A − μ(|εx |)A + A2

H = 0, in BR/ε,

�H − σ 2H + ξ A2 = 0, in BR/ε,
∂A
∂ν

= ∂H
∂ν

= 0, on ∂BR/ε,

(1.4)

where the explicit definition of ξ will be given in (3.6).
Our first result on the existence of k-spike clusters is the following:

123



142 Page 4 of 40 J. Wei et al.

Theorem 1.1 (Existence of k-spike clusters). Let k ≥ 2 be a positive integer. We assume
μ = μ(|y|) ∈ C3(BR) be a positive, radially symmetric function and μ(0) = 1, μ′(0) =
0, μ′′(0) > 0, where μ′ denotes the radial derivative. Then, for

max

(
ε√
D

, D log

√
D

ε

)

→ 0,

problem (1.2) has a k-spike cluster solution which concentrates at 0. In particular, it satisfies

Aε(y) ∼
k∑

i=1

ξD

ε2 w
( y

ε
− qi
)

, Hε(qi ) ∼ ξD

ε2 , (1.5)

where ξ is given in (3.6) and q1, . . . , qk are the vertices of a k regular polygon. Further,
εqi → 0, i = 1, . . . , k.

Remark 1 Here the assumption on the value of μ(0) = 1 is introduced to make the compu-
tation and representation convenient. Without loss of generality we can always apply some
scaling transformation for the solution (Aε, Hε) to achieve the assumption μ(0) = 1.

Remark 2 The limit

max

(
ε√
D

, D log

√
D

ε

)

→ 0

is equivalent to the two simultaneous limits

ε√
D

→ 0

and

D log

√
D

ε
→ 0.

The first limit
ε√
D

→ 0

means that the diffusivity of the activator A is asymptotically of a higher order than the
diffusivity of the inhibitor H . If this is not satisfied the pattern observed will no longer have
a spike profile.

For the second limit

D log

√
D

ε
→ 0

to hold it is necessary that D → 0. (In fact, this is the condition which occurs in the case

of one spatial dimension.) Here, for two spatial dimensions there is a second factor log
√
D
ε

which tends to infinity due to the first limit. The second factor appears due to the logarithmic
singularity of the Green’s function, see (3.4). The second limit is exactly the condition which
guarantees that the spikes form a cluster, i.e. their distances tend to zero, see (3.1), (3.2).

Remark 3 The exact scaling of qi follows from the balancing condition (4.11) with the
radius Rε defined in (3.2). In this balancing condition there are two contributions: the first
comes from the interactions of neighbouring spikes, the second stems from the precursor
inhomogeneity.
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Key steps in the proof of Theorem 1.1:

Proof Step 1. In Sect. 3 we use an ansatz of an approximate spike cluster solution and
consider the linearised operator around this ansatz. We compute the remainder when this
ansatz is plugged into the Gierer–Meinhardt system. Then we introduce the linearised operator
around this ansatz. Key results for Liapunov–Schmidt reduction will proved in appendix A.
Step 2. In appendix A key results for the method of Liapunov–Schmidt reduction are proved.

It is shown that this linearised operator as well as the conjugate operator are uniformly
invertible modulo the kernel and cokernel consisting of the translation modes. Then
it is shown that the fully nonlinear system has a solution modulo the kernel and cok-
ernel. This implies that the existence problem can be reduced to a finite-dimensional
problem.

Step 3. In Sect. 4 the reduced problem is solved. �
Next we state our second result which concerns the stability of the k-spike cluster steady

states given in Theorem 1.1. Whereas the existence result is valid for any number k ≥ 2 of
spikes, the stability or instability of spike clusters depends on k.

Theorem 1.2 (Stability of k-spike clusters). For max
(

ε√
D

, D log
√
D
ε

)
sufficiently small,

let Aε, Hε be the k-spike cluster steady state given in Theorem 1.1. Then there exists τ0 > 0
which is independent of ε and D but may depend on k such that the k-spike cluster steady state
(Aε, Hε) is linearly stable for 2 ≤ k ≤ 3 and unstable for k ≥ 5 provided that 0 ≤ τ < τ0.

The main existence and stability results can be extended to a cluster with k spikes located
on a regular polygon plus an extra spike in its centre.

Proposition 1.3 For any k ≥ 2 there also exists a (k + 1)-spike cluster steady state similar
to the one given in Theorem 1.1 but with an extra spike in the centre of the regular polygon.
This (k + 1)-spike cluster is linearly stable if k ≤ 5 provided that 0 ≤ τ < τ0 for some
τ0 > 0.

Remark 4 These results suggest that placing a spike in the centre of a polygon can stabilise
the spike cluster in the following sense: by putting a spike in the centre of the polygon it is
possible to get a stable polygonal spike cluster containing six spikes but without a centre the
number of spikes for a stable cluster cannot be five or more.

Remark 5 The stability of a spike cluster with four spikes on a regular polygon remains open.
The stability problem in this case requires further expansion of an eigenvalue which is zero
in the two leading orders. One mode which has to be resolved is that of two opposite spikes
moving towards the centre and the other two spikes moving away from the centre without
changing the distance between neighbours.

Remark 6 One instability of a spike cluster with five or more spikes on a regular polygon
comes from a mode such that the spikes tend to move away from their original positions on a
circle, some to the inside and some to the outside, since this increases the distances between
neighbouring spikes.

Remark 7 The stability of a spike cluster with spikes on a regular polygon with six vertices
plus its centre remains open. The stability problem in this case requires some new analysis
since each spike now has three neighbours which have the same smallest distance (two spikes
on the circle plus the spike in the centre).

123



142 Page 6 of 40 J. Wei et al.

Remark 8 One instability of a spike cluster with seven or more spikes on a regular polygon
with centre comes from a mode such that the spikes tend to move away from their original
positions on a circle, some to the inside and some to the outside, since this increases the
distances between neighbouring spikes.

Key steps in the proof of Theorem 1.2:

Proof To study the stability of a k-spike cluster we have to study large eigenvalues of order
O(1) and small eigenvalues of order o(1) separately.

Step 1. In Sect. 5 we consider eigenvalues of order O(1). We show, using the results of
Sect. 2, that they all have negative real part. This part applies to all k ≥ 2.

Step 2. In appendix B we consider small eigenvalues and reduce the stability problem to a
finite-dimensional problem. This part applies to all k ≥ 2.

Step 3. In Sect. 6 we study this finite-dimensional problem. The computations depend on the
number k of spikes in an essential way. At the end of Sect. 6 the spectral properties
for different values of k are studied separately. �

Key steps in the proof of Proposition 1.3:

Proof Step 1. The same as Step 1 in the proof of Theorem 1.2.
Step 2. The same as Step 2 in the proof of Theorem 1.2.
Step 3. In Sect. 7 we study the finite-dimensional problem. The computations depend on the

number k of spikes in an essential way. At the end of Sect. 7 the spectral properties
for different values of k are studied separately. �

We confirm and illustrate the main results by a few numerical computations (Figs. 1,2,3).
This paper is organised as follows. In Sect. 2 we present some preliminaries on the spectral

properties of the nonlocal linear operators which will appear in the existence proof and in the
stability proof for the analysis of large eigenvalues of order O(1). We study the existence of
a k-spike cluster solution to (1.2) in Sect. 3 and appendix A (Liapunov–Schmidt reduction)
and Sect. 4 (solving the reduced problem); in appendix A we prove some key results for
Liapunov–Schmidt reduction which are needed in Sect. 3. In Sect. 5 we rigourously study
the large eigenvalues of order O(1) for the linearised problem around the steady state spike
cluster. The small eigenvalues of order o(1) are investigated in appendix C (general theory)
and Sect. 6 (explicit computation of small eigenvalues which decide the stability of spike
clusters). In Sect. 7 we sketch how the approach can be adapted to show existence and stability
of a cluster for which the spikes are located at the vertices of a regular polygon with centre.

Note that in Sect. 6 the number k of spikes plays an explicit role and different values of
k are considered separately. In the same way, in Sect. 7 the number k + 1 of spikes plays a
role and the treatment depends on the value of k. In particular, the different cases of k are
studied towards end of Sects. 6 and 7, respectively. The other sections of the paper apply to
all values of k ≥ 2 in the same way.

Throughout the paper, by C, c we denote generic constants which may change from line
to line. Further, h.o.t . stands for higher order terms.

2 Preliminaries: spectral properties of some eigenvalue problems

In this section we shall provide some preliminaries which will be needed for the existence
and stability proofs.
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Fig. 1 Clustered spiky steady state of (1.2) for ε2 = 0.001, D = 0.01, μ(|y|) = 1 + 5|y|2. Shown is a 3-
spike cluster consisting of 3 spikes on a regular polygon. The activator A is displayed in two three-dimensional
surface plots from different perspectives in the top two graphs and its projection to the domain plane is shown
in the bottom graph

Fig. 2 Clustered spiky steady state of (1.2) for ε2 = 0.001, D = 0.01, μ(|y|) = 1 + 5|y|2. Shown is a 2-
spike cluster consisting of 2 spikes on a regular polygon. The activator A is displayed in two three-dimensional
surface plots from different perspectives in the top two graphs and its projection to the domain plane is shown
in the bottom graph

Let w be the ground state solution given in (1.3), i.e, the unique solution of the problem
{

�w − w + w2 = 0, y ∈ R
2, w > 0,

w(0) = maxx∈R2 w(x), w(x) → 0 as |x | → 0.
(2.1)

Let
L0φ = �φ − φ + 2wφ, φ ∈ H2(R2), (2.2)
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Fig. 3 Clustered spiky steady state of (1.2) for ε2 = 0.0001, D = 0.002, μ(|y|) = 1 + 5|y|2. Because
smaller diffusivities are chosen, we now get more spikes than in Figs. 1 and 2. Shown is a (4 + 1)-spike
cluster consisting of 4 spikes on a regular polygon plus a spike in the centre. The activator A is displayed in
two three-dimensional surface plots from different perspectives in the top two graphs and its projection to the
domain plane is shown in the bottom graph

where

H2(R2) =
{

u ∈ L2(R2) : ∂u

∂xi
∈ L2(R2),

∂2u

∂xi∂x j
∈ L2(R2), i, j = 1, 2

}

and L2(R2) is the space of all square integrable functions defined on R
2.

We first recall the following well known result:

Lemma 2.1 The eigenvalue problem

L0φ = λφ, φ ∈ H2(R2), (2.3)

admits the following set of eigenvalues

λ1 > 0, λ2 = λ3 = 0, λ4 < 0, . . .. (2.4)

The eigenfunction �0 corresponding to λ1 can be made positive and radially symmetric, the
space of eigenfunctions corresponding to the eigenvalue 0 is

K0 := span

{
∂w

∂x j
, j = 1, 2

}

.

Proof This lemma follows from [10, Theorem 2.1] and [14, Lemma C]. �
Next we consider the following nonlocal eigenvalue problem:

�φ − φ + 2wφ − 2

∫

R2 wφ dx
∫

R2 w2 dx
w2 = α0φ, φ ∈ H2(R2). (2.5)
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Problem (2.5) plays a key role in the study of large eigenvalues (See Sect. 5 below). For
problem (2.5), we have the following theorem due to [19, Theorem 1.4].

Theorem 2.2 Let α0 �= 0 be an eigenvalue of the problem (2.5). Then we have�(α0) ≤ −c1

for some c1 > 0.

We shall also consider the following system of nonlocal eigenvalue problems:

L� := �� − � + 2w� − 2

∫

R2 w� dx
∫

R2 w2 dx
w2, (2.6)

where

� := (φ1, φ2, . . . , φk)
T ∈ (H2(R2))k .

Then the conjugate operator of L under the scalar product in L2(R2) is given by

L∗� = �� − � + 2w� − 2

∫

R2 w2� dx
∫

R2 w2 dx
w. (2.7)

We have the following result:

Lemma 2.3 We have
Ker(L) = K0 ⊕ K0 ⊕ · · · ⊕ K0,

and
Ker(L∗) = K0 ⊕ K0 ⊕ · · · ⊕ K0.

Proof The system (2.6) is in diagonal form. Suppose

L� = 0.

For i = 1, 2, . . . , k the i-th equation of (2.6) is given by

�φi − φi + 2wφi − 2

∫

R2 wφi dx
∫

R2 w2 dx
w2 = 0. (2.8)

We claim that (2.8) admits only the solution ∂w
∂xi

, i = 1, 2. Indeed, we note that φ′
i =

∫

R2 wφi dx
∫

R2 w2 dx
w satisfies that

�φ′
i − φ′

i + 2wφ′
i =
∫

R2 wφi dx
∫

R2 w2 dx
w2.

As a result, φi − 2φ′
i satisfies

�
(
φi − 2φ′

i

)− (φi − 2φ′
i

)+ 2w
(
φi − 2φ′

i

) = 0,

and we get

φi − 2φ′
i = c1

∂w

∂x1
+ c2

∂w

∂x2
(2.9)

by Lemma 2.1. Multiplying by w on both sides of (2.9) and integrating, we have
∫

R2 wφi dx =
0. Hence, φi is the solution to

�φ − φ + 2wφ = 0,
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and we get the first conclusion of Lemma 2.3. To prove the second statement, we proceed in
a similar way for L∗, and the i-th equation of (2.7) is given as

�φi − φi + 2wφi − 2

∫

R2 w2φi dx
∫

R2 w2 dx
w = 0. (2.10)

Multiplying (2.10) by w and integrating, we obtain
∫

R2 w2φi dx = 0. Then we have

�φi − φi + 2wφi = 0.

By Lemma 2.1 again, we get the second conclusion and the proof is finished. �

By the result of Lemma 2.3, we have

Lemma 2.4 The operator

L : (H2(R2))k → (L2(R2))k, L� = �� − � + 2w� − 2

∫

R2 w� dx
∫

R2 w2 dx
w2,

is invertible if it is restricted as follows:

L : (K0 ⊕ · · · ⊕ K0)
⊥ ∩ (H2(R2))k → (K0 ⊕ · · · ⊕ K0)

⊥ ∩ (L2(R2))k .

Moreover, L−1 is bounded.

Proof This results follows from the Fredholm Alternative and Lemma 2.3. �

Next we study the eigenvalue problem for L :
L� = α�. (2.11)

We have

Lemma 2.5 For any nonzero eigenvalue α of (2.11) we have �(α) ≤ −c < 0.

Proof Let (�, α) satisfy the system (2.11). Suppose �(α) ≥ 0 and α �= 0. The i-th equation
of (2.11) becomes

�φi − φi + 2wφi − 2

∫

R2 wφi dx
∫

R2 w2 dx
φi = αφi .

By Theorem 2.2, we conclude that

�(α) ≤ −c < 0.

�

It is interesting to observe that for spike clusters the operator in the nonlocal eigenvalue
problem (2.6) and its conjugate operator (2.7) take diagonal form. Thus they can be studied
very easily by considering the scalar nonlocal eigenvalue problem which arises from the
study of a single spike. In other words, for a spike cluster in the nonlocal eigenvalue problem
each spike “feels” only itself and not the other spikes.
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3 Existence I: reduction to finite dimensions

In this section, we shall reduce the existence problem to a finite-dimensional problem. In
the first step, we choose a good approximation to an equilibrium state. Then we shall use
Liapunov–Schmidt reduction to reduce the original problem to a finite-dimensional one.
Some key results for Liapunov–Schmidt reduction are proved in appendix A. In the next
section, we solve the reduced problem.

First of all, let us set the candidate points for the location of spikes to the activator. Let
Qε denote the set of the vertex points of the regular k-polygon:

Qε =
{

q = (q1, . . . , qk) | qi =
(

2Rε cos
2(i − 1)π

k
, 2Rε sin

2(i − 1)π

k

)}

, (3.1)

where Rε is chosen such that

1

C

√
D

ε
log

(
1

D log
√
D
ε

)

≤ Rε ≤ C

√
D

ε
log

(
1

D log
√
D
ε

)

(3.2)

for some constant C > 1 independent of ε and D. If max
(

ε√
D

, D log
√
D
ε

)
→ 0, then we

can see that εRε → 0 and
√
D

εRε
→ 0.

Recall that we want to solve (1.4) which is given by
⎧
⎪⎨

⎪⎩

�A − μ(|εx |)A + A2

H = 0, in BR/ε,

�H − σ 2H + ξ A2 = 0, in BR/ε,
∂A
∂ν

= ∂H
∂ν

= 0, on ∂BR/ε,

where σ 2 = ε2

D .

Next we introduce the cut-off function χε,q j (x) = χ(
x−q j

Rε sin π
k
), where χ is a function

which satisfies

χ(x) =
{

1, |x | ≤ 1
2 ,

0, |x | > 1,
χ ∈ C∞

0 (R2). (3.3)

The gap between 1
2 and 1 is to be filled with an arbitrary function that bridges the two parts

infinitely smoothly.
Let (q1, . . . , qk) be defined as in (3.1) and we set

W =
k∑

j=1

χε,q j (x)w(x − q j ).

Let G(x, z) be the Green function given by
{

�xG(x, z) − G(x, z) + δz(x) = 0 in BR/
√
D,

∂G(x,z)
∂ν

= 0 on ∂BR/
√
D .

We have

(1) If 0 < |x − z| � 1, we have

G(x, z) = 1

2π
log

1

|x − z| + H(x, z), (3.4)

where H(x, z) is a continuous function and ∇x H(x, z)|x=z = 0.
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(2) If 1 � |x − z| � R, we have

G(x, z) = C |x − z|− 1
2 e−|x−z| (1 + o(1)) , |∇xG(x, z)| = G(x, z)(1 + o(1)) (3.5)

for some generic constant C .

We write

ξ−1 =
∫

BR/ε

G(σq1, σ z)

⎛

⎝
k∑

j=1

χ(εz)w(z − q j )

⎞

⎠

2

dz = 1

2π
log

1

σ

(∫

R2
w2 dz + o(1)

)

.

(3.6)

For a functionu ∈ H2(BR/ε), let T [u] be the unique solution in H2
N (BR/ε) of the following

problem:

�T [u] − σ 2T [u] + ξu2 = 0 in BR/ε, (3.7)

where

H2
N (BR/ε) =

{

u ∈ H2(BR/ε) | ∂u

∂ν
= 0 on ∂BR/ε

}

.

Written differently, we have

T [u](x) = ξ

∫

BR/ε

Gσ (x, z)u2(z) dy, (3.8)

where Gσ (x, z) is the Green function which satisfies (�−σ 2)Gσ (x, z)+ δz(x) = 0 in BR/ε

with Neumann boundary condition. Note that

Gσ (x, z) = G(σ x, σ z) for x, z ∈ BR/ε. (3.9)

System (1.4) is equivalent to the following equation in operator form:

Sε(u, v) =
(
S1(A, H)

S2(A, H)

)

= 0, H2
N (BR/ε) × H2

N (BR/ε) → L2(BR/ε) × L2(BR/ε),

(3.10)

where

S1(A, H) = �A − μ(|εx |)A + A2

H
: H2

N (BR/ε) × H2
N (BR/ε) → L2(BR/ε),

S2(A, H) = �H − σ 2H + ξ A2 : H2
N (BR/ε) × H2

N (BR/ε) → L2(BR/ε).

For Eq. (1.4), we choose our approximate solution as follows,

Aε,q = W, Hε,q = T [W ]. (3.11)

Note that Hε,q satisfies

0 = �Hε,q − σ 2Hε,q + ξ A2
ε,q = �Hε,q − σ 2Hε,q + ξ

k∑

j=1

w(x − q j )
2 + h.o.t..

Further, by our choice of ξ in (3.6), it is easy to see that Hε,q(qi ) = 1, i = 1, . . . , k. We
insert our ansatz (3.11) into (1.4) and calculate

S2(Aε,q, Hε,q) = 0, (3.12)
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and

S1(Aε,q, Hε,q) = �Aε,q − μ(|εx |)Aε,q + A2
ε,q

Hε,q

=
k∑

j=1

[
�w(x − q j ) − μ(|εx |)w(x − q j )

]
+

k∑

j=1

w2(x − q j )H
−1
ε,q + h.o.t.

=
k∑

j=1

(
1 − μ(|εx |))w(x − q j ) +

k∑

j=1

w2(x − q j )
(
H−1

ε,q − 1
)+ h.o.t.

(3.13)

On the other hand, we calculate for j = 1, . . . , k and x = q j + z with q j = (q j,1, q j,2) in
the range |σ z| < δ for δ > 0 small enough:

Hε,q(q j + z) − 1 = ξ

∫

BR/ε

(
Gσ (q j + z, t) − Gσ (q j , t)

)
A2

ε,q dt

= ξ

∫

BR/ε

(
Gσ (q j + z, t) − Gσ (q j , t)

)
w(t − q j )

2 dt

+ ξ

∫

BR/ε

(
Gσ (q j + z, t) − Gσ (q j , t)

) ∑

l, l �= j

w(t − ql)
2 dt

+ O
(
e−2Rε sin( π

k )
)

= ξ

∫

R2

1

2π
log

|t |
|z − t |w

2(t) dt + ξ

(
2∑

l=1

∂F(q)

∂q j,l
σ zl

∫

R2
w2(t) dt

)

+ ξ

2∑

l,m=1

∂2F(q)

∂q j,l∂q j,m
σ 2zl zm

∫

R2
w2(t) dt + O

(
e−2Rε sin( π

k )
)

+ O

(

σ 3|z|2 + σ 2R
− 1

2
σ e−Rσ |z|

)

, (3.14)

where Rσ = 2σ Rε sin
(

π
k

)
and

F(q) =
k∑

i=1

H(σqi , σqi ) +
∑

i, j,i �= j

G(σqi , σq j ). (3.15)

Note that the error term in (3.14) consists of three parts. The first part is very small and
comes from the difference between Aε,q and w due to the decay of the activator component
between spikes and near the boundary. The second part estimates higher order terms in the
expansion of F(q) around q. The third part estimates the smallness of the contribution of
non-neighbouring spikes in F(q). The same three types of error terms appear repeatedly
throughout the paper.

Substituting (3.14) into (3.13), we have the following key estimate,

Lemma 3.1 For x = q j + z, |σ z| < δ and δ > 0 small enough, we have

S1(Aε,q, Hε,q) = S1,1 + S1,2, (3.16)
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where

S1,1(z) = ξHε,q(q j )
−2
(∫

R2
w2(t) dt

)

w2(z)
(
σ z · ∇q j F(q)

+ σ 2
2∑

l,m=1

zl zm
∂2F(q)

∂q j,l∂q j,m
+ h.o.t.

)

+ ε

2∑

l=1

zl

(

μ′′(0) + 1

2
μ′′′(0)ε|q j | + O(ε2|q j |2)

)

εq j,l

k∑

i=1

w(x − qi )

+ O

(

σ 3|z|2 + σ 2R
− 1

2
σ e−Rσ |z| + e−2Rε sin( π

k )
)

, (3.17)

and

S1,2(z) = ξw2(z)R(|z|) + ε2R2
εw(z), (3.18)

where R(|z|) is a radially symmetric function with the property that

R(|z|) = O(log(1 + |z|)).
Further, S1(Aε,q, Hε,q) = e− δ

σ for |x − q j | ≥ δ
σ
, j = 1, 2, . . . , k.

The above estimates will be very important in the following calculations, where (3.10) is
solved modulo kernel and cokernel.

Now we study the linearised operator defined by

L̃ε,q := S′
ε,q

(
Aε,q
Hε,q

)

,

L̃ε,q : H2
N (BR/ε) × H2

N (BR/ε) → L2(BR/ε) × L2(BR/ε).

Set

Kε,q := span

{
∂Aε,q

∂q j,l
| j = 1, 2, . . . , k, l = 1, 2

}

⊂ H2
N (BR/ε),

and

Cε,q := span

{
∂Aε,q

∂q j,l
| j = 1, 2, . . . , k, l = 1, 2

}

⊂ L2(BR/ε).

The operator L̃ε,q is not uniformly invertible in σ and D log 1
σ

due to its approximate
kernel

Kε,q := Kε,q ⊕ {0} ⊂ H2
N (BR/ε) × H2

N (BR/ε). (3.19)

and approximate cokernel

Cε,q := Cε,q ⊕ {0} ⊂ L2(BR/ε) × L2(BR/ε). (3.20)

Then we define

K⊥
ε,q := K⊥

ε,q ⊕ H2
N (BR/ε) ⊂ H2

N (BR/ε) × H2
N (BR/ε), (3.21)

C⊥
ε,q := C⊥

ε,q ⊕ L2(BR/ε) ⊂ L2(BR/ε) × L2(BR/ε), (3.22)

123



Stable spike clusters for the precursor Gierer–Meinhardt… Page 15 of 40 142

where C⊥
ε,q and K⊥

ε,q denote the orthogonal complement with the scalar product of L2(BR/ε)

in the spaces H2
N (BR/ε) and L2(BR/ε), respectively.

Let πε,q denote the projection in L2(BR/ε) × L2(BR/ε) onto C⊥
ε,q, where the second

component of the projection is the identity map. We are going to show that the equation

πε,q ◦ Sε,q

(
Aε,q + φε,q
Hε,q + ψε,q

)

= 0

has a unique solution �ε,q =
(

φε,q
ψε,q

)

∈ K⊥
ε,q if max

(
ε√
D

, D log
√
D
ε

)
is small enough

(Liapunov–Schmidt reduction).
Set

Lε,q = πε,q ◦ L̃ε,q : K⊥
ε,q → C⊥

ε,q. (3.23)

In appendix A we will show the following key results for Liapunov–Schmidt reduction:

1. The linear operator Lε,q is uniformly invertible.

2. There exists �ε,q =
(

φε,q
ψε,q

)

∈ K⊥
ε,q.

Then, in the next section, we will solve the reduced problem and determine the point q ∈ Qε.

4 Existence II: the reduced problem

In this section, we solve the reduced problem and complete the proof of Theorem 1.1.
By Lemma 9.2, for each q ∈ Qε , there exists a unique solution (�ε,q, �ε,q) ∈ K⊥

ε,q such
that

Sε,q

(
Aε,q + �ε,q
Hε,q + �ε,p

)

=
(

�ε,q
0

)

∈ Cε,q.

Our idea is to find q such that Sε,q

(
Aε,q + �ε,q
Hε,q + �ε,q

)

⊥ Cε,q. Let

Wε, j,i (q) := 1

ξ

∫

BR/ε

(

S1
(
Aε,q + �ε,q, Hε,q + �ε,q

)∂Aε,q

∂q j,i

)

dz,

where j = 1, 2, . . . , k and i = 1, 2. We set

Wε(q) = (Wε,1,1(q), . . . ,Wε,k,2(q)
)
.

It is easy to see that Wε(q) is a map which is continuous in q, and our problem is reduced
to finding a zero of the vector field Wε(q). Since the points q1, q2, . . . , qk are the vertices
of a regular k-polygon and μ(ε|x |) is a radially symmetric function, if we can find q ∈ Qε

such that
(
Wε,1,1(q),Wε,1,2(q)

) = 0, then Wε(q) = 0. Further, we note that the approximate
solution (Aε,q, Hε,q) is invariant under rotation by 2π

k . Recall that by (3.1), we have q1 =
(q1,1, 0) = (2Rε, 0). Thus, using [1, Corollary 7.1], Wε,1,2 equals 0. So, all that remains is
finding q such that Wε,1,1(q) = 0.
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We calculate the asymptotic expansion of Wε,1,1(q),

∫

BR/ε

S1(Aε,q + �ε,q, Hε,q + �ε,q)
∂Aε,q

∂q1,1
dz

=
∫

BR/ε

[

�(Aε,q + �ε,q) − μ(Aε,q + �ε,q) + (Aε,q + �ε,q)2

Hε,q + �ε,q

]
∂Aε,q

∂q1,1
dz

=
∫

BR/ε

[

�(Aε,q + �ε,q) − (Aε,q + �ε,q) + (Aε,q + �ε,q)2

Hε,q

]
∂Aε,q

∂q1,1
dz

+
∫

BR/ε

[
(Aε,q + �ε,q)2

Hε,q + �ε,q
− (Aε,q + �ε,q)2

Hε,q

]
∂Aε,q

∂q1,1
dz

+
∫

BR/ε

[
(1 − μ)(Aε,q + �ε,q)

] ∂Aε,q

∂q1,1
dz

= I1 + I2 + I3,

where Ii , i = 1, 2, 3 are defined at the last equality.
For I1, we have by Lemma 9.2,

I1 =
∫

BR/ε

[

�(Aε,q + �ε,q) − (Aε,q + �ε,q) + (Aε,q + �ε,q)2

Hε,q(q1)

]
∂Aε,q

∂q1,1
dz

−
∫

BR/ε

(Aε,q + �ε,q)2

H2
ε,q(q1)

(Hε,q − Hε,q(q1))
∂Aε,q

∂q1,1
dz + O

(
e−2Rε sin π

k

)

= −
∫

BR/ε

[

�(w1 + �ε,q) − (w1 + �ε,q) + (w1 + �ε,q)2

Hε,q(q1)

]
∂w1

∂z1
dz

+
∫

BR/ε

(w1 + �ε,q)2

H2
ε (q1)2 (Hε,q(q1 + z) − Hε,q(q1))

∂w1

∂z1
dz + O

(
e−2Rε sin π

k

)
, (4.1)

where w1(z) = w(q1 + z). Note that by Lemma 9.2, we have �ε,q,2 is radially symmetric
with respect to z. Then we have

∫

BR/ε

[
��ε,q − �ε,q + 2w1�ε,q

]∂w1

∂z1
dz =
∫

BR/ε

�ε,q,1
∂

∂z1
[�w − w + w2] dz = 0

(4.2)

and
∫

BR/ε

(�ε,q)2 ∂w1

∂z1
dz =
∫

BR/ε

�ε,q,1�ε,q,2
∂w1

∂z1
dz

= O

(

σ

(

log
1

σ

)−2

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−2

+
(

log
1

σ

)−1

ε2Rε

)

. (4.3)
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From (4.1)–(4.3), we get

I1 =
∫

BR/ε

w2
1(Hε,q(q1 + z) − Hε,q(q1))

∂w1

∂z1
dz + h.o.t.

= ξσ

2∑

k=1

∂F(q)

∂q1,k

∫

R2
w2zk

∂w

∂z1
dz
∫

R2
w2 dz + h.o.t.

= −c1ξσ
∂F(q)

∂q1,1
+ h.o.t., (4.4)

where F(q) is defined in (3.15), c1 = 1
3

∫

R2 w2 dz
∫

R2 w3 dz and h.o.t . represent terms of
the order

σ

(

log
1

σ

)−2

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−2

+
(

log
1

σ

)−1

ε2Rε.

Next we study the term I2. We recall that �ε,q satisfies the following equation

��ε,q − σ 2�ε,q + 2ξ Aε,q�ε,q + ξ�2
ε,q = 0. (4.5)

As for the perturbation term �ε,q, we can also make a decomposition for �ε,q = �ε,q,1 +
�ε,q,2, where

��ε,q,1 − σ 2�ε,q,1 + 2ξ Aε,q�ε,q,1 + ξ
(
�2

ε,q,1 + 2�ε,q,1�ε,q,2

)
= 0,

and

��ε,q,2 − σ 2�ε,q,2 + 2ξ Aε,q�ε,q,2 + ξ�2
ε,q,2 = 0.

Then we can easily see that

‖�ε,q,1‖H2(BR/ε)
= O

(

σ

(

log
1

σ

)−1

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−1

+ ε2Rε

)

and �ε,q,2 is radially symmetric with respect to z. Further, from the Green representation
formula we get that

�ε,q,1(q1 + z) − �ε,q(q1) = ξ

∫

BR/ε

(Gσ (p1, q1 + z) − Gσ (p1, z))
(

2Aε,q�ε,q + �2
ε,q

)
dz

= o(1)ξσ |∇q1F(q)||z| + R1(|z|), (4.6)

where R1(|z|) is a radially symmetric function.
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Substituting (4.5) and (4.6) into I2, we get

I2 =
∫

BR/ε

[
(Aε,q + �ε,q)2

Hε,q + �ε,q
− (Aε + �ε,q)2

Hε,q

]
∂Aε,q

∂q1,1
dz

= −
∫

BR/ε

(Aε,q + �ε,q)2

H2
ε,q

�ε,q
∂Aε,q

∂q1,1
dz

+ O

(

σ

(

log
1

σ

)−2

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−2

+
(

log
1

σ

)−1

ε2Rε

)

= −
∫

BR/ε

1

3

∂w3
1

∂y1
(� − �(q1)) dz

+ O

(

σ

(

log
1

σ

)−2

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−2

+
(

log
1

σ

)−1

ε2Rε

)

= o(1)ξσ |∇q1F(q)| + O

(

σ

(

log
1

σ

)−2

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−2

+
(

log
1

σ

)−1

ε2Rε

)

. (4.7)

For I3, we have

I3 =
∫

BR/ε

(1 − μ)w(x − q1)
∂w(x − q1)

∂q1,1
dx + O

(
e−2Rε sin( π

k )
)

=
∫

BR/ε

(1 − μ(|εq1|))w1
∂w1

∂q1,1
dz +
∫

BR/ε

(μ(|εq1|) − μ(|ε(q1 + z)|))w1
∂w1

∂q1,1
dz

+ O
(
e−2Rε sin( π

k )
)

=
∫

R2

[∂μ(|εq1|)
∂z1

εz1 + ∂μ(|εq1|)
∂z2

εz2

]
w(z)

∂w(z)

∂z1
dz + O

(
e−2Rε sin( π

k )
)

= ε
∂μ(|εq1|)

∂z1

∫

R2
z1w

∂w

∂z1
dz + O

(
e−2Rε sin( π

k )
)

= c2ε
2Rεμ

′′(0) + O
(
e−2Rε sin( π

k ) + ε3R2
ε

)
, (4.8)

where c2 = 2
∫

R2 z1w
∂w
∂z1

dz < 0 is negative and μ′′(0) denotes the second radial derivative
of the radially symmetric function μ at the origin.

From (4.1) to (4.8), we get that Wε,1,1(q) can be represented as follows:

Wε,1,1(q) = −c1ξσ
∂F(q)

∂q1,1
+ c2ε

2Rεμ
′′(0) + h.o.t. (4.9)
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Using the asymptotic behaviour of the Green function Gσ , we have

Wε,1,1(q) = −c1ξσ∂q1,1(Gσ (q1, q2) + Gσ (q1, qk)) + c2ε
2Rεμ

′′(0) + h.o.t.

= c1ξσ R
− 1

2
σ e−Rσ

(
q1 − q2

|q1 − q2| + q1 − qk
|q1 − qk |

)

+ c2ε
2Rεμ

′′(0) + h.o.t.

= 2c1ξσ R
− 1

2
σ e−Rσ sin

(π

k

)
+ c2ε

2Rεμ
′′(0) + h.o.t. =: Ŵε,1,1(q) + h.o.t..

(4.10)

Thus, denoting the leading order contribution of Wε,1,1(q) by Ŵε,1,1(q), it follows that
Ŵε,1,1(q) depends only on Rε. Then we have Ŵε,1,1(q) = 0 for

ξ
(

2σ Rε,0 sin
(π

k

))− 3
2
e−2σ Rε,0 sin( π

k ) + c3D = h.o.t., (4.11)

where c3 = c2μ′′(0)

4c1(sin π
k )2 is negative, and we finally get

Rε,0 = 1

2σ sin
(

π
k

)

(

log
1

D
− 3

2
log log

1

D
− log

ξ

c3
+ O

(
log log 1

D

log 1
D

))

.

If ξ−1D is sufficiently small, then we easily get that Eq. (4.11) admits a unique solution and
it is nondegenerate. As a consequence, in the neighborhood of Rε,0, we can find R̂ε,0 such
that Wε,1,1(q) = 0. Thus, we have solved the reduced problem and the proof of Theorem 1.1
is complete.

5 Stability analysis I: study of large eigenvalues

To prove Theorem 1.2, we consider the stability of the solution (Aε, Hε) for (1.2) which was
given in Theorem 1.1.

Linearizing the Gierer–Meinhardt system (1.1) around the equilibrium states (Aε, Hε),
we obtain the following eigenvalue problem:

{
�xφε − μ(|εx |)φε + 2 Aε

Hε
φε − A2

ε

H2
ε
ψε = λεφε,

�xψε − σ 2ψε + 2ξ Aεφε = τλεσ
2ψε,

(5.1)

Here λε is some complex number and

φε ∈ H2
N (BR/ε), ψε ∈ H2

N (BR/ε).

In this section, we study the large eigenvalues, i.e., we assume that |λε| ≥ c > 0 for ε small.
The derivation of a matrix characterizing the small eigenvalues will be done in appendix B
since this study is quite technical. Finally, in the next section, we discuss the small eigenvalues
explicitly by considering these matrices. That part is central to understanding the stability of
spike clusters.

If �(λε) ≤ −c, we are done. Then λε is a stable large eigenvalue. Therefore we may
assume that �(λε) ≥ −c and for a subsequence in ε, D, we have λε → λ0 �= 0. We shall

derive the limiting eigenvalue problem of (5.1) as max
(

ε√
D

, D log
√
D
ε

)
→ 0 which reduces

to a system of nonlocal eigenvalue problems.
The key references are Theorem 2.2 and Lemma 2.5.
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The second equation in (5.1) is equivalent to

�ψε − σ 2(1 + τλε)ψε + 2ξεAεφε = 0. (5.2)

We introduce the following:
σλε = σ

√
1 + τλε,

where in
√

1 + τλε we take the principal part of the square root. This means that the real
part of

√
1 + τλε is positive, which is possible because �(1 + τλε) ≥ 1

2 .
Let us assume that ‖φε‖H2(BR/ε)

= 1. We cut off φε as follows:

φε, j (x) = φε(x)χε,q j (x),

where the test function χε,q j (x) was introduced in (3.3).
From �(λε) ≥ −c and the exponential decay of w, we can derive from (5.1) that

φε =
k∑

j=1

φε, j + h.o.t. in H2
N (BR/ε).

Since ‖φε‖H2(BR/ε)
= 1, by taking a subsequence, we may also assume that φε, j → φ j in

H2(BR/ε) as max
(

ε√
D

, D log
√
D
ε

)
→ 0 for j = 1, 2, . . . , k. We have by (5.2)

ψε(x) = ξ

∫

BR/ε

Gσλε
(x, z)Aε(z)φε(z) dz. (5.3)

At x = qi , i = 1, 2, . . . , k, we calculate

ψε(qi ) = ξ

∫

BR/ε

Gσλε
(qi , z)

k∑

j=1

w j (z)φε, j (z) dz + h.o.t.

= 1

2π
ξ log

1

σλε

∫

BR/ε

wφ dz + h.o.t. (5.4)

Substituting the above equation in the first equation of (5.1), taking the limit max
(

ε√
D

, D log
√
D
ε

)
→ 0, we get

�xφi − φi + 2wφi − 2

1 + τλ0

∫

R2 wφi dz
∫

R2 w2 dz
w2 = λ0φi , i = 1, 2 . . . , k, (5.5)

where φi ∈ H2(R2). Then we have

Theorem 5.1 Let λε be an eigenvalue of (5.1) such that �(λε) > −c for some c > 0.

(1) Suppose that (for suitable sequencemax
(

ε√
D

, D log
√
D
ε

)
→ 0) we have λε → λ0 �= 0.

Then λ0 is an eigenvalue of the nonlocal eigenvalue problem given in (5.5).
(2) Let λ0 �= 0 with �(λ0) > 0 be an eigenvalue of the nonlocal eigenvalue problem given

in (5.5). Then for max
(

ε√
D

, D log
√
D
ε

)
small enough, there is an eigenvalue λε of (5.1)

with λε → λ0 as max
(

ε√
D

, D log
√
D
ε

)
→ 0.
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Proof (1) of Theorem 5.1 follows by asymptotic analysis similar to the one obtained in
appendix A.

To prove (2) of Theorem 5.1, we follow a compactness argument of Dancer. For the details
we refer to Chapter 4 of [26]. �

We now study the stability of (5.1), by Lemma 2.5, for any nonzero eigenvalue λ0 in (5.5)
we have

�(λ0) ≤ −c0 < 0 for some c0 > 0.

Thus, by Theorem 5.1, for max
(

ε√
D

, D log
√
D
ε

)
small enough, all nonzero large eigenvalues

of (5.1) have strictly negative real parts. More precisely, all eigenvalues λε of (5.1) for which
λε → λ0 �= 0 holds, satisfy �(λε) ≤ −c < 0.

In conclusion, we have finished studying the large eigenvalues (of order O(1)) and derived
results on their stability properties. It remains to study the small eigenvalues (of order o(1))
which will be done in appendix B and the next section.

6 Stability analysis III: study of the matrix Mµ(q)

In this section, we shall study the matrix Mμ(q) which was derived in appendix B. The
eigenvalues of this matrix will determine the stability of small eigenvalues. Up to a constant
positive factor, Mμ(q) is given by the hessian matrix of the term

∏
(q) =

∑

i, j, i �= j

ξ
1

(σ |qi − q j |) 1
2

e−σ |qi−q j | + c3

k∑

i=1

μ(|εqi |), (6.1)

where c3 = − c2
c1

with c1, c2 given in (4.4) and (4.8) respectively.
Using

|q1 − q2| = 1

σ

(

log
1

D
− 3

2
log log

1

D
− log

ξ

c3
+ O

(
log log 1

D

log 1
D

))

, (6.2)

(see (4.11)), it is not difficult to see that in leading order

∂2

∂q1,i∂q1, j

∏
(q) ∼ ξσ

3
2 e−σ |q1−q2| 1

|q1 − q2| 5
2

(q1 − q2)i (q1 − q2) j ,

+ ξσ
3
2 e−σ |q1−qk | 1

|q1 − qk | 5
2

(q1 − qk)i (q1 − qk) j ,

where i, j = 1, 2. By rotational symmetry, it is enough to compute

∂2

∂q1,i∂q1, j
,

∂2

∂q1,i∂q2, j
,

∂2

∂q1,i∂qk, j
, i, j = 1, 2.

Terms which depend on qm are obtained by suitable rotation of terms which contain q1. By
straightforward computation, we have

∂
∏

(q)

∂q1,i
= −ξσ

1
2 e−σ |q1−q2| (q1 − q2)i

|q1 − q2| 3
2

− ξ
1

2σ
1
2

e−σ |q1−q2| (q1 − q2)i

|q1 − q2| 5
2

− ξσ
1
2 e−σ |q1−qk | (q1 − qk)i

|q1 − qk | 3
2

− ξ
1

2σ
1
2

e−σ |q1−qk | (q1 − qk)i

|q1 − qk | 5
2

+ h.o.t.,
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and

∂2∏(q)

∂q1,i∂q1, j
= ξσ

3
2 e−σ |q1−q2| (q1 − q2)i (q1 − q2) j

|q1 − q2| 5
2

+ ξσ
3
2 e−σ |q1−qk | (q1 − qk)i (q1 − qk) j

|q1 − q2| 5
2

+ h.o.t.. (6.3)

For the terms ∂2∏(q)

∂q1,i ∂q2, j
, i, j = 1, 2, we note that

∂
∏

(q)

∂q1,1
= ξσ

1
2 e−σ |q2−q1| (q2 − q1)1

|q2 − q1| 3
2

+ ξ
1

2σ
1
2

e−σ |q2−q1| (q2 − q1)1

|q2 − q1| 5
2

+ h.o.t.,

and

∂
∏

(q)

∂q1,2
= ξσ

1
2 e−σ |q2−q1| (q2 − q1)2

|q2 − q1| 3
2

+ ξ
1

2σ
1
2

e−σ |q2−q1| (q2 − q1)2

|q2 − q1| 5
2

+ h.o.t..

Then we get

∂2∏(q)

∂q1,1∂q2,i
= −ξσ

3
2 e−σ |q2−q1| (q2 − q1)1(q2 − q1)i

|q2 − q1| 5
2

+ h.o.t., i = 1, 2, (6.4)

and

∂2∏(q)

∂q1,2∂q2,i
= −ξσ

3
2 e−σ |q1−q2| (q2 − q1)2(q2 − q1)i

|q1 − q2| 5
2

+ h.o.t., i = 1, 2. (6.5)

Similarly, for the terms ∂2∏(q)

∂q1,i ∂qk, j
, i, j = 1, 2, we have

∂2∏(q)

∂q1,1∂qk,i
= −ξσ

3
2 e−σ |qk−q1| (qk − q1)1(qk − q1)i

|qk − q1| 5
2

+ h.o.t., i = 1, 2, (6.6)

and

∂2∏(q)

∂q1,2∂qk,i
= −ξσ

3
2 e−σ |qk−q1| (qk − q1)2(qk − q1)i

|qk − q1| 5
2

+ h.o.t., i = 1, 2. (6.7)

We now compute these expressions in a coordinate system of tangential and normal coordi-
nates around each spike. We remark that these coordinates are the same as in [2]. The spike
locations are given by

q0
j =
(

Rσ

σ sin
(

π
k

) cos θ j ,
Rσ

σ sin
(

π
k

) sin θ j

)

, j = 1, . . . , k, (6.8)

where

θ j = ( j − 1)2π

k
+ α

and α ∈ R. Note that the phase shift α appears in the problem due to the rotational invariance
of μ = μ(|y|) and we can choose α = 0. Then in local coordinates we can write

q j = q0
j + q j,1

q j

|q j | + q j,2
q⊥
j

|q⊥
j | , j = 1, . . . , k, (6.9)
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where q j is the radial (normal) vector and the tangential vector q⊥
j is obtained from q j by

rotation of π/2 in anti-clockwise direction.
From (6.3) to (6.7), using the local coordinate frames and elementary trigonometry, the

leading order of the matrix Mμ(q) is

Mμ(q) = ξσ
3
2 e−σ |q1−q2| 1

|q1 − q2| 5
2

[(
sin π

k

)2
(A1 + 4I ) sin π

k cos π
k A2

− sin π
k cos π

k A2 − (cos π
k

)2
A1

]

+ h.o.t.,

(6.10)

where

A1 =

⎡

⎢
⎢
⎢
⎣

−2 1 0 · · · 0 1
1 −2 1 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 1 −2

⎤

⎥
⎥
⎥
⎦

and A2 =

⎡

⎢
⎢
⎢
⎣

0 1 0 · · · 0 −1
−1 0 1 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · −1 0

⎤

⎥
⎥
⎥
⎦

.

Before analyzing the matrix in (6.10), we need some basic facts about circulant matrices.
We follow the presentation in [3,13] and include this material here for completeness. Denote
the k-dimensional complex vector space and the ring of k × k complex matrices by C

k and
Mk , respectively. Let b = (b1, b2, . . . , bk) ∈ C

k , we define a shift operator S : Ck → C
k by

S(b1, b2, . . . , bk) = (bk, b1, . . . , bk−1).

Definition 6.1 The circulant matrix B = circ(b) associated to the vector

b = (b1, b2, . . . , bk) ∈ C
k

is the k × k matrix whose nth row is Sn−1b:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b1 b2 · · · bk−1 bk
bk b1 · · · bk−2 bk−1
...

...
. . .

...
...

b3 b4 · · · b1 b2

b2 b3 · · · bk b1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We denote by circ(k) ⊂ Mk the set of all k × k complex circulant matrices.

With this notation, both A1 and A2 are k × k circulant matrices. In fact,

A1 = circ{(−2, 1, 0, . . . , 0, 1)} and A2 = circ{(0, 1, 0, . . . , 0,−1)}.
Let ε = e

2π i
k be a primitive kth root of unity, we define

Xl = 1√
k

(
1, εl , ε2l , . . . , ε(k−1)l

)T ∈ C
k, for l = 0, . . . , k − 1,

and

Pk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1 1
1 ε · · · εk−2 εk−1

...
...

. . .
...

...

1 εk−2 · · · ε(k−2)2
ε(k−2)(k−1)

1 εk−1 · · · ε(k−1)(k−2) ε(k−1)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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For the circulant matrix B = circ(b), let

λl = b1 + b2ε
l + · · · + bkε

(k−1)l , for l = 0, . . . , k − 1.

A simple computation shows that BXl = λl Xl . Hence λl is an eigenvalue of B with nor-
malised eigenvector Xl . Since {X1, . . . , Xk} is a linearly independent set of vectors in C

k ,
all of the eigenvalues of B are given by λl , l = 0, . . . , k − 1. By direct computation, the
eigenvalues of A1 are

λ1,l = −2 + εl + ε(k−1)l = −4 sin2 lπ

k
, for l = 0, . . . , k − 1,

and the eigenvalues of A2 are

λ2,l = εl − ε(k−1)l = 2i sin
2lπ

k
, for l = 0, . . . , k − 1.

Let diag(a1, a2, . . . , ak) denote the diagonal matrix with diagonal entries a1, a2, . . . , ak and

M =
[(

sin π
k

)2
(A1 + 4I ) sin π

k cos π
k A2

− sin π
k cos π

k A2 − (cos π
k

)2
A1

]

.

From the above discussion for the circulant matrix, using

P =
[
Pk 0k
0k Pk

]

and

0k = diag (0, 0, 0, . . . , 0) ,

we have

P−1MP =
[
P−1
k 0k
0k P−1

k

][(
sin π

k

)2
(A1 + 4I ) sin π

k cos π
k A2

− sin π
k cos π

k A2 − (cos π
k

)2
A1

][
Pk 0k
0k Pk

]

=
[

4
(
sin π

k

)2
(I − D1) i sin 2π

k D2

−i sin 2π
k D2 4

(
cos π

k

)2
D1

]

,

where

D1 = diag

(

0,
(

sin
π

k

)2
,

(

sin
2π

k

)2

, . . . ,

(

sin
(k − 1)π

k

)2
)

,

and

D2 = diag

(

0, sin
2π

k
, sin

4π

k
, . . . , sin

2(k − 1)π

k

)

.

Next we divide the matrix P−1MP into k two by two matrices, where the l−th matrix
(l = 0, 1, . . . , k − 1) is given by

[
4
(
sin π

k

)2 (cos lπ
k

)2
i sin 2π

k sin 2lπ
k

−i sin 2π
k sin 2lπ

k 4
(
cos π

k

)2 (sin lπ
k

)2

]

. (6.11)
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It is easy to see that the determinant of the above matrix is 0 and its trace is positive. Further,
we see that the zero eigenvector of the above matrix is

(

cos
π

k
sin

lπ

k
, i sin

π

k
cos

lπ

k

)T

. (6.12)

Since the leading order matrix M admits zero eigenvalues with geometric multiplicity k,
we have to expand the matrix Mμ(q) to the next order to determine if these small eigenvalues
have positive or negative real part.

Before doing that, we point out a useful fact. Let us consider for example the term ∂2∏(q)

∂q2,1∂q1,1
.

By direct computation we get

∂
∏

(q)

∂q1,1
= ξσ

1
2 e−σ |q1−q2| 1

|q2 − q1| 3
2

(q2 − q1)1

= K̃ (|q1 − q2|)(q2 − q1)1.

(6.13)

Computing another derivative of K̃ (|q1 − q2|)(q2 − q1)1 with respect to q2,1, we note that
there are two types of terms:

[
∂ K̃ (|q1 − q2|)

∂q2,1

]

(q2 − q1)1(q2 − q1)1 and K̃ (|q1 − q2|) ∂(q2 − q1)1

∂q2,1
.

The first term is of the same symmetry class as the leading order term (i.e., the higher order
term differs from the leading order term only by some small factor). Therefore, this term can
be absorbed into the leading-order matrix M.

However, the second term is different and it has to be taken into account. In fact, we will
see that this type of terms can be used to resolve the stability problem. We can re-write the
second term as follows:

K̃ (|q1 − q2|) ∂(q2 − q1)1

∂q2,1
= −K̃ (|q1 − q2|)1

2

∂2

∂q2,1∂q1,1
|q2 − q1|2. (6.14)

Hence, up to some factors it is enough for us to consider the terms 1
2

∂2

∂q2, j ∂q1,i
|q1−q2|2, i, j =

1, 2. These terms together with c3ε
2μ′′(0) are the next order terms in the matrix Mμ(q).

Using the local coordinate frames of q1 and q2 to express Cartesian local coordinates
xi, j , i, j,= 1, 2, we get

x1,1 = q1,1, x1,2 = q1,2,

x2,1 = q2,1 cos
2π

k
− q2,2 sin

2π

k
, x2,2 = q2,1 sin

2π

k
+ q2,2 cos

2π

k
.

Using (6.8) and (6.9), this implies

|q1 − q2|2 =
∣
∣
∣
∣
∣

(

q0
1 + q1,1

q1

|q1| + q1,2
q⊥

1

|q⊥
1 |

)

−
(

q0
2 + q2,1

q2

|q2| + q2,2
q⊥

2

|q⊥
2 |

)∣
∣
∣
∣
∣

2

=
(
Rσ cos

π

k
+ x2,2 − x1,2

)2 +
(
Rσ sin

π

k
− x2,1 + x1,1

)2

= R2
σ + 2Rσ

(

cos
2π

k
q2,2 + sin

2π

k
q2,1 − q1,2

)

cos
π

k

+ 2Rσ

(

− cos
2π

k
q2,1 + sin

2π

k
q2,2 + q1,1

)

sin
π

k
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+
(

cos
2π

k
q2,2 + sin

2π

k
q2,1 − q1,2

)2

+
(

− cos
2π

k
q2,1 + sin

2π

k
q2,2 + q1,1

)2

= R2
σ + 2Rσ

(

cos
2π

k
q2,2 + sin

2π

k
q2,1 − q1,2

)

cos
π

k

+ 2Rσ

(

− cos
2π

k
q2,1 + sin

2π

k
q2,2 + q1,1

)

sin
π

k

+ q2
1,1 + q2

1,2 + q2
2,1 + q2

2,2 − 2q1,1q2,1 cos
2π

k
+ 2q1,1q2,2 sin

2π

k

− 2q1,1q2,2 cos
2π

k
− 2q1,2q2,1 sin

2π

k
.

As a consequence, we have

∂2|q1 − q2|2
∂2qi, j

= 2, i, j = 1, 2,
∂2|q1 − q2|2
∂q1,1∂q2,1

= ∂2|q1 − q2|2
∂q1,2∂q2,2

= −2 cos
2π

k
, (6.15)

∂2|q1 − q2|2
∂q1,1∂q2,2

= 2 sin
2π

k
,

∂2|q1 − q2|2
∂q1,2∂q2,1

= −2 sin
2π

k
,

∂2|q1 − q2|2
∂q1,1∂q1,2

= ∂2|q1 − q2|2
∂q2,1∂q2,2

= 0. (6.16)

Similarly, in local coordinates q1, q2 we have

|q1|2 =
∣
∣
∣
∣
∣
q0

1 + q1,1
q1

|q1| + q1,2
q⊥

1

|q⊥
1 |

∣
∣
∣
∣
∣

2

= R2
σ + q2

1,1 + q2
1,2 + 2q1,1|Rσ |,

where we used q1 · q⊥
1 = 0. This implies

∂2|q1|2
∂q2

1,1

= ∂2|q1|2
∂q2

1,2

= 2,
∂2|q1|2

∂q1,1∂q1,2
= 0. (6.17)

For the terms c3ε
2μ′′(0), from (4.10) we derive that

4
(

sin
π

k

)2
K̃ (|q1 − q2|) = c3ε

2μ′′(0). (6.18)

From the above discussion and (6.13)–(6.18), expanding the matrix Mμ(q) we get the fol-
lowing second order contribution:

−K̃ (|q1 − q2|)M2 = −K̃ (|q1 − q2|)
[

cos 2π
k A1 − sin 2π

k A2

sin 2π
k A2 cos 2π

k A1

]

. (6.19)

By using the matrix Pk , we diagonalise the matrix M2,

[
P−1
k 0
0 P−1

k

]

M2

[
Pk 0
0 Pk

]

= −K̃ (|q1 − q2|)
[−4 cos 2π

k D1 −2i sin 2π
k D2

2i sin 2π
k D2 −4 cos 2π

k D1

]

.
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From the discussion of the leading-order matrix P−1MP , we know that the vectors

vl,1 =

⎛

⎜
⎜
⎝0, . . . , cos

π

k
sin

lπ

k︸ ︷︷ ︸
l+1

, 0, . . . , i sin
π

k
cos

lπ

k︸ ︷︷ ︸
k+l+1

, . . . , 0

⎞

⎟
⎟
⎠

T

, (l = 0, 1, . . . , k − 1)

are the eigenvectors with zero eigenvalues of the diagonal form. To show the stability of the
eigenvalues in the linear subspace spanned by these eigenvectors, we have to evaluate the
bilinear form with respect to these eigenvectors and show that

μl = 〈(P−1M2P)vl,1, vl,1〉
〈vl,1, vl,1〉 ≥ 0, (l = 0, 1, . . . , k − 1).

If 〈(P−1M2P)vl,1, vl,1〉 = 0 some further study is needed. We compute

μl = 〈(P−1M2P)vl,1, vl,1〉
〈vl,1, vl,1〉 = −4 cos

2π

k

(

sin
lπ

k

)2

+ 4 sin 2π
k sin 2lπ

k cos π
k sin π

k cos lπ
k sin lπ

k
(
cos π

k

)2 (sin lπ
k

)2 + (sin π
k

)2 (cos lπ
k

)2 .

Next we discuss when all eigenvalues are positive (linearly stable solution) or some eigen-
values are negative (linearly unstable solution).

For l = 0 we have μl = 0. This eigenvalue and its eigenvector are connected to rotational
invariance of solutions.

For l = 1 we compute the numerator in the expression for μ1 as

−8 cos
2π

k

(
sin

π

k

)4 (
cos

π

k

)2 + 16
(

sin
π

k

)4 (
cos

π

k

)4

= 8
(

sin
π

k

)4 (
cos

π

k

)2
> 0.

For l = k − 1 we compare with the case l = 1. The terms sin 2lπ
k and cos lπ

k change sign,
the other terms are the same as for l = 1. The result is the same as for l = 1. The eigenvalues
l = 1 and l = k − 1 together with their eigenvectors correspond to translations and they are
stable.

For l = 2 we compute the numerator of μ2 as

−4 cos
2π

k

(

sin
2π

k

)2
[
(

cos
π

k

)2
(

sin
2π

k

)2

+
(

sin
π

k

)2
(

cos
2π

k

)2
]

+4 sin
2π

k
sin

4π

k
cos

π

k
sin

π

k
cos

2π

k
sin

2π

k

= −4 cos
2π

k

(

sin
2π

k

)2
[
(

cos
π

k

)2
(

sin
2π

k

)2

+
(

sin
π

k

)2
(

cos
2π

k

)2

−
(

sin
2π

k

)2 ((
cos

π

k

)2 −
(

sin
π

k

)2
)]

= −4 cos
2π

k

(

sin
2π

k

)2 (
sin

π

k

)2
.
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Thus μ2 > 0 for k = 3, μ2 = 0 for k = 4 and μ2 < 0 for k = 5, 6, . . ..
The eigenvalue for l = 2 and k = 4 is zero in the first two leading orders. To decide if

it possibly contributes to an instability, further expansions are required. This computation is
beyond the scope of this paper. We expect that the eigenvalue will be stable and the cluster
with 4 spikes on a regular polygon is linearly stable.

The eigenvalue for l = 2 and k = 5, 6, . . . is negative and so the cluster with 5 or more
spikes is linearly unstable.

In summary we have considered the small eigenvalues and shown the following: The
clusters with 2 spikes or 3 spikes on a polygon are both linearly stable. The clusters with 5 or
more spikes are linearly unstable. The borderline case is the cluster with 4 spikes for which
one eigenvalue requires further investigation to determine its stability.

Next we consider clusters with spikes located on a regular polygon plus a spike in its
centre.

7 Cluster of spikes on a polygon with centre

In this section, we sketch how the approach can be adapted to show existence and stability of
a cluster for which the spikes are located at the vertices of a regular k-polygon with centre.
The spike positions are

Qε =
{

q = (q1, . . . , qk, 0) | qi =
(

2R̃ε cos
2(i − 1)π

k
, 2R̃ε sin

2(i − 1)π

k

)}

, (7.1)

where R̃ε is chosen such that

1

C

√
D

ε
log

(
1

D log
√
D
ε

)

≤ R̃ε ≤ C

√
D

ε
log

(
1

D log
√
D
ε

)

(7.2)

for some constant C > 1 independent of ε and D.
To get the radius for the equilibrium position, we compute

W̃ε,1,1(q) = c1ξσ R̃−1/2
σ e−R̃σ + c2ε

2 R̃εμ
′′(0) + h.o.t. = 0,

where R̃σ = σ R̃ε. We get

R̃ε,0 = 1

σ

(

log
1

D
− 3

2
log log

1

D
− log

ξ

c3
+ O

(
log log 1

D

log 1
D

))

.

Due to symmetry we also have W̃ε,1,2(q) = 0 and W̃ε,k+1,1(q) = W̃ε,k+1,2(q) = 0. From
this we get the existence of a steady state of spikes located at the k vertices of a polygon and
its centre, where k can be any natural number.

Next we consider the stability of this spike cluster steady state. We assume that k ≤ 5.
We take the same rotated coordinates as above around the vertices of the polygon. For the
origin located in the centre of the polygon we keep Cartesian coordinates x1 and x2.

The matrix M̃μ(q) is now given as follows:

M̃μ(q) = ξσ
3
2 e−σ |q1| 1

|q1| 5
2

[
M̃1 M̃2

M̃3 M̃4

]

+ h.o.t.

= ξσ
3
2 e−σ |q1| 1

|q1| 5
2

M̃ + h.o.t.,
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where

M̃1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0 −1
0 1 0 · · · 0 − cos 2π

k
0 0 1 · · · 0 − cos 4π

k
...

...
...

. . .
...

...

−1 − cos 2π
k − cos 4π

k · · · − cos 2(k−1)π
k

k
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

M̃2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 − sin 2π

k
0 0 0 · · · 0 − sin 4π

k
...

...
...

. . .
...

...

0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

M̃3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 − sin 2π
k − sin 4π

k · · · − sin 2(k−1)π
k 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

M̃4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 k
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

We multiply M̃ from the right by the vector a = (a1, a2, . . . , ak, ak+1, 0, 0, . . . , 0, a2k+2)
T ,

i.e. we assume that the components k+2, k+3, . . . , 2k+1 are all zero, and we also multiply
M̃ from the left by the transpose of this vector. Further, we set ak+1 = α, a2k+2 = β, where
α and β are some real numbers. Then we get

aTM̃a =
k∑

l=1

(

al − α cos
2(l − 1)π

k
− β sin

2(l − 1)π

k

)2

.

This means the matrix M̃ is positive semi-definite if it is restricted to the components
1, 2, . . . , k, k + 1, 2k + 2. The eigenvalue of any eigenvector in this class is always nonneg-
ative. It is zero if and only if

al = α cos
2(l − 1)π

k
+ β sin

2(l − 1)π

k
for l = 1, 2, . . . , k,

where α and β are some real numbers which are independent of l. These eigenvectors have
positive eigenvalues for the second-order part of the matrix. Similar to the computation for a
polygon without centre it can be shown that there are positive contributions to the eigenvalues
coming from the components k + 1 and 2k + 2 which are related to the spike at the centre.
Note that these eigenvectors correspond to translations.

In addition we have to study the eigenvalue of any eigenvector orthogonal to this class,
i.e. for which the components 1, 2, . . . , k, k + 1, 2k + 2 are zero and the components k +
2, . . . , 2k + 1 are arbitrary. The leading-order matrix M for the cluster of the polygon
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without centre defined in Sect. 6 is the second-order contribution here. It is positive semi-
definite in this class (since A1 is positive semi-definite). It is strictly positive definite except
for the eigenvector (0, 0, . . . , 0, 1, 1, . . . , 1)T which has zero eigenvalue (since A1 has zero
eigenvector (1, 1, . . . , 1)T ). Note that this eigenvector corresponds to rotations. Here the
components k + 2, . . . , 2k + 1 for the polygon with central spike become the components
k + 1, . . . , 2k of the vector for the polygon without centre since the components k + 1 and
2k + 2 are dropped.

These computations show that the eigenvalues of M̃ are nonnegative and they are zero
only for eigenvectors which correspond to the rotational invariance of the problem. Together
we get the stability of the cluster with spikes located at the vertices of a regular polygon with
k ≤ 5 vertices plus one spike at its centre.

8 Discussion

We have shown the existence of spike clusters located near a nondegenerate minimum point
of the precursor gradient for the Gierer–Meinhardt system such that the spikes are located
on regular polygons. We have proved that these solutions are stable for two or three spikes
and unstable for five or more spikes. We have considered the problem in the rotationally
symmetric case. We have assumed that the precursor and the domain are both rotationally
symmetric.

It will be interesting to extend these results to the case that the precursor and the domain
are not rotationally symmetric. We are currently studying these effects using the approach
in [2], where the existence of spiky patterns for the Schrödinger equation has been extended
from the case of a rotationally symmetric potential to the general case. If μ is not rotationally
symmetric generically there will be certain possible orientations of the spike cluster and
we expect to have stable and unstable equilibrium orientations. If the domain is not a disk
higher order terms coming from the regular part of the Green’s function will determine
the orientation of the spike cluster and we expect to have stable and unstable equilibrium
orientations. Because of the smallness of the inhibitor diffusivity we expect that the influence
of μ will dominate that of the domain boundary.

Further analysis is needed to resolve the stability issue for a 4-spike cluster (regular
polygon with 4 vertices). Further calculations are required to show that the (k + 1)-spike
cluster for k ≥ 6 (regular polygon with k vertices plus a spike in the centre) is stable or
unstable. The stability problem in this case requires some new analysis since the interaction
between spikes is of a different type from the one considered in this paper. These issues are
currently under investigation.

Whereas in one spatial dimension the spikes in a cluster are aligned with equal distance in
leading order (although they differ in higher order) [27], in two spatial dimensions a variety of
different spike configurations are possible. In this paper we have considered regular polygons
and polygons with a spike in the centre. Other arrangements include concentric multiple
polygons or positions close to regular polygons. Similar configurations have been studied in
[1].

Biologically speaking, the precursor is the information retained from a previous stage
of development and the patterns discovered in the reaction–diffusion system at the present
will be able to determine the development in the future. The Gierer–Meinhardt system with
precursor can be considered a minimal model to describe this behaviour. Generally one has
to study larger systems which take into account other effects to make more reliable biological
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predictions. Therefore it will be interesting to consider reaction–diffusion systems of three
and more components and investigate the role which spike clusters play in such systems.
One such system is a consumer chain model for which existence and stability of a clustered
spiky pattern has been investigated by the first two authors [25]. However, a more systematic
approach will be needed to gain a better understanding of the role played by spike clusters
in guiding biological development.
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9 Appendix A: Some results for Liapunov–Schmidt reduction in Sect. 3

In this appendix we will prove some results which are needed for Liapunov–Schmidt reduc-
tion in Sect. 3. In particular, we are going to show that the equation

πε,q ◦ Sε,q

(
Aε,q + φε,q
Hε,q + ψε,q

)

= 0

has a unique solution �ε,q =
(

φε,q
ψε,q

)

∈ K⊥
ε,q if max

(
ε√
D

, D log
√
D
ε

)
is small enough.

Recall that

Lε,q = πε,q ◦ L̃ε,q : K⊥
ε,q → C⊥

ε,q.

We will first show that this linear operator is uniformly invertible. Then we will use this

to prove the existence of �ε,q =
(

φε,q
ψε,q

)

.

As a preparation, in the following two propositions we show the invertibility of the cor-
responding linearised operator Lε,q.

Proposition 9.1 Let Lε,q be given in (3.23). There exists a positive constant δ̄ such that for

all max
(

ε√
D

, D log
√
D
ε

)
∈ (0, δ̄), we can find a positive constant C which is independent

of ε, D such that
‖Lε,q�‖L2(BR/ε)

≥ C‖�‖H2(BR/ε)
(9.1)

for arbitrary q ∈ Qε, � ∈ K⊥
ε,q. Further, the map Lε,q is surjective.

Proof of Proposition 9.1 Suppose (9.1) is false. Then there exist sequences {εn}, {Dn}, {qn},
{φn}, {ψn} such that max

(
εn√
Dn

, Dn log
√
Dn
εn

)
→ 0, qn ∈ Qε, φn = φεn ,Dn ,qn , n = 1, 2, . . .

and

‖Lεn ,qn�n‖L2(BR/ε)
→ 0 as n → ∞, (9.2)

‖φn‖H2(BR/ε)
+ ‖ψn‖H2(BR/ε)

= 1, n = 1, 2, . . . . (9.3)
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On the other hand, we note ψn satisfies

�ψn − σ 2ψn + 2Aεn ,qnφn = 0.

It is easy to see from the above equation we get ‖ψn‖H2(BR/ε)
≤ C‖φn‖H2(BR/ε)

. Then we
can assume ‖φn‖H2(BR/ε)

= 1. We define φn,i , i = 1, 2, . . . , k and φn,k+1 as follows:

φn,i (x) = φn(x)χ

(
x − qi
Rε sin π

k

)

and φn,k+1(x) = φn(x) −
k∑

i=1

φn,i (x), (9.4)

where χ(x) is defined in (3.3). Since for i = 1, 2, . . . , k each sequence {φn,i }, n = 1, 2, . . .

is bounded in H2
N (R2) it has a weak limit in H2

N (R2), and therefore also a strong limit in
L2(R2) and L∞(R2). Call this limit φi . Then � = (φ1, . . . , φk)

T solves the system L� = 0,
where L is given in (2.6). By Lemma 2.4, � ∈ Ker(L) = K0 ⊕· · ·⊕K0. Since φn ⊥ Kεn ,qn ,
by taking n → ∞ we get � ∈ Ker(L)⊥. Therefore, � = 0.

By elliptic estimates we have ‖φn,i‖H2(BR/ε)
→ 0 as n → ∞ for i = 1, 2, . . . , k. Further,

since φn,k+1 → φk+1 we get

�φk+1 − φk+1 = 0 in BR/ε.

Therefore we conclude φk+1 = 0 and ‖φn,k+1‖H2(BR/ε)
→ 0 as n → ∞. This contradicts to

‖φn‖H2(BR/ε)
= 1.

To complete the proof of Proposition 9.1 we just need to show that conjugate operator to
Lε,q (denoted by L∗

ε,q) is injective from K⊥
ε,q to C⊥

ε,q and the proof for L∗
ε,q follows almost

the same process as for Lε,q and we omit it. Thus we finish the proof of Proposition 9.1. �
Now we are in position to solve the equation

πε,q ◦ Sε,q

(
Aε,q + φ

Hε,q + ψ

)

= 0. (9.5)

Since Lε,q |K⊥
ε,q

is invertible (call the inverse L−1
ε,q), we can rewrite (9.5) as

� = −
(
L−1

ε,q ◦ πε,q

)(

Sε,q

(
Aε,q
Hε,q

))

−
(
L−1

ε,q ◦ πε,q)(Nε,q(�)
)

≡ Mε,q(�), (9.6)

where

� =
(

φ

ψ

)

, Nε,q(�) = Sε,q

(
Aε,q + φ

Hε,q + ψ

)

− Sε,q

(
Aε,q
Hε,q

)

− S′
ε,q

(
Aε,q
Hε,q

)[
φ

ψ

]

,

and the operator Mε,q is defined by (9.6) for � ∈ H2
N (BR/ε) × H2

N (BR/ε). We are going to
show the operator Mε,q is a contraction map in

Bε,D =
{
� ∈ H2

N (BR/ε) × H2
N (BR/ε) | ‖�‖H2(BR/ε)

< η
}

provided max
(

ε√
D

, D log
√
D
ε

)
is small enough. We have by Lemma 3.1 and Proposition 9.1

that

‖Mε,q(�)‖H2)N (BR/ε)
≤ C
(
‖πε,q ◦ Nε,q(�)‖L2(BR/ε)

+
∥
∥
∥
∥πε,q ◦ Sε,q

(
Aε,q
Hε,q

)∥
∥
∥
∥
L2(BR/ε)

)

≤ C(c(η)η + cε,D),
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where C > 0 is independent of η, c(η) → 0 as η → 0 and cε,D → 0 as

max

(
ε√
D

, D log

√
D

ε

)

→ 0.

Similarly we can show
∥
∥Mε,q(�) − Mε,q(�′)

∥
∥
H2(BR/ε)

≤ Cc(η)‖� − �′‖H2(BR/ε)
.

If we choose η sufficient small, then Mε,q is a contraction map on Bε,D . The existence of the
fixed point �ε,q together with an error estimate now follow from the contraction mapping
principle. Moreover �ε,q is a solution of (9.6).

Thus we have proved the following lemma.

Lemma 9.2 There exists δ̄ > 0 such that for

max

(
ε√
D

, D log

√
D

ε

)

∈ (0, δ̄)

and q ∈ Qε , we can find a unique (�ε,q, �ε,q) ∈ K⊥
ε,q satisfying

Sε,q

(
Aε,q + �ε,q
Hε,q + �ε,q

)

∈ Cε,q

and

‖(�ε,q, �ε,q)‖H2(BR/ε)
≤ C

(
1

log
√
D
ε

+ ε2R2
ε

)

. (9.7)

In the following, we need more refined estimates on �ε,q. We recall that S1 can be
decomposed into the two parts S1,1 and S1,2, where S1,1 is in leading order an odd function
and S1,2 is in leading order a radially symmetric function. Similarly, we can decompose �ε,q:

Lemma 9.3 Let �ε,q be defined in Lemma 9.2. Then for x = qi + z, |σ z| < δ and δ > 0
small enough, we have

�ε,q = �ε,q,1 + �ε,q,2, (9.8)

where �ε,q,2 is a radially symmetric function in z and

‖�ε,q,1‖H2(BR/ε)
= O

(

ε2Rε + σ

(

log
1

σ

)−1

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−1
)

. (9.9)

Proof Let S[u] := S1(u, T [u]). We first solve

S
[
Aε,q + �ε,q,2

]− S
[
Aε,q
]+

k∑

j=1

S1,2(x − q j ) ∈ Cε,q, (9.10)

for �ε,q,2 ∈ K⊥
ε,q. Then we solve

S
[
Aε,q + �ε,q,2 + �ε,q,1

]− S
[
Aε,q + �ε,q,2

]+
k∑

j=1

S1,1(x − q j ) ∈ Cε,q, (9.11)
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for �ε,q,1 ∈ K⊥
ε,q. Using the same proof as in Lemma 9.2, both Eqs. (9.10) and (9.11)

have unique solution for max
(√

D
ε

, D log
√
D
ε

)
sufficiently small. By uniqueness, �ε,q =

�ε,q,1 + �ε,q,2. It is easy to see that

‖S1,1‖L2(BR/ε)
= O

(

ε2Rε + σ

(

log
1

σ

)−1

R
− 1

2
σ e−Rσ + σ 2

(

log
1

σ

)−1
)

and S1,2 ∈ C⊥
ε,q. Then we can conclude that �ε,q,1 and �ε,q,2 have the required properties.

�

10 Appendix B: Stability analysis II: study of small eigenvalues

In this section, we shall study the small eigenvalues for Eq. (5.1). Namely, we assume λε → 0

as max
(

ε√
D

, D log
√
D
ε

)
→ 0. We shall show that the small eigenvalues are related to μ′′(0)

and the Green function.
Again let (Aε, Hε) be the equilibrium state constructed for equation (1.2). Let

Aε, j = χε,q j (x)Aε(x), j = 1, 2, . . . , k,

where χε,q j is defined before (3.3). Then it is easy to see that

Aε =
k∑

j=1

Aε, j + h.o.t. in H2
N (BR/ε). (10.1)

In last section, we have derived the nonlocal eigenvalue (5.5). Let us now set λ0 = 0 in
(5.5), we have that

�φi − φi + 2wφi − 2

∫

R2 wφi dx
∫

R2 w2 dx
w2 = 0, (10.2)

which is equivalent to

L0

(

φi − 2

∫

R2 wφi dx
∫

R2 w2 dx
w

)

= 0, i = 1, . . . , k,

where L0 is defined in (2.2). By Lemma 2.1, we have

φi − 2

∫

R2 wφi dx
∫

R2 w2 dx
w ∈ span

{
∂w

∂x j
, j = 1, 2

}

, i = 1, 2, . . . , k. (10.3)

Multiplying (10.3) by w and integrating over R2 and summing up, we have
∫

R2 wφi dx = 0,
and hence

φ j ∈ K0 = span

{
∂w

∂x j
, j = 1, 2

}

, i = 1, 2, . . . , k. (10.4)

(10.4) suggests that, at least formally, we should have

φε ∼
k∑

j=1

2∑

i=1

aε
j,i

∂w

∂xi
(x − q j ), (10.5)

where aε
j,i are some constant coefficients.

123



Stable spike clusters for the precursor Gierer–Meinhardt… Page 35 of 40 142

Next we find a good approximation of ∂w
∂xi

(x − q j ). Note that Aε, j (x) ∼ w(x − q j ) in

H2(BR/ε), and Aε, j satisfies

�Aε, j − μ(|εx |)Aε, j + Aε, j

H2
ε

+ h.o.t. = 0.

Then we find
∂Aε, j
∂xi

satisfies

�
∂Aε, j

∂xi
− μ(|εx |) ∂Aε, j

∂xi
+ 2

Aε, j

Hε

∂Aε, j

∂xi
− A2

ε, j

H2
ε

∂Hε

∂xi
− εμ′(|εx |) xi

r
Aε, j + h.o.t. = 0,

(10.6)

and we have
∂Aε, j
∂xi

= (1 + o(1)) ∂w
∂xi

(x − q j ).
We now decompose

φε =
k∑

j=1

2∑

i=1

aε
j,i

∂Aε, j

∂xi
+ φ⊥

ε (10.7)

with complex numbers aε
j,i , where

φ⊥
ε ⊥ K̃ε,q := span

{
∂Aε, j

∂xi
| j = 1, 2, . . . , k, i = 1, 2

}

. (10.8)

Our idea is to show that this is a good choice because the error φ⊥
ε is small in a suitable norm

and thus can be neglected.
For the inhibitor eigenfunction ψε , we make the following decomposition according to

φε

ψε =
k∑

j=1

2∑

i=1

aε
j,iψε, j,i + ψ⊥

ε , (10.9)

where ψε, j,i is the unique solution of the following problem,

�ψε, j,i − σ 2(1 + τλε)ψε, j,i + 2ξεAε, j
∂Aε, j

∂xi
= 0 in BR/ε, (10.10)

and
�ψ⊥

ε − σ 2(1 + τλε)ψ
⊥
ε + 2ξεAεφ

⊥
ε = 0 in BR/ε. (10.11)

Suppose that ‖φε‖H2(BR/ε)
= 1. We have aε

j,i =
∫

BR/ε
φε

∂Aε, j
∂xi

dx
∫

R2 ( ∂w
∂x1

)2 dx
, therefore, we get |aε

j,i | ≤ C .

Substituting the decomposition of φε and ψε into the first equation in (5.1), we have

k∑

j=1

2∑

i=1

aε
j,i

A2
ε, j

H2
ε

(
− ψε, j,i + ∂Hε

∂xi

)
+ ε

k∑

j=1

2∑

i=1

aε
j,i

∂μ(|εx |)
∂yi

Aε, j

+ �φ⊥
ε − μ(|εx |)φ⊥

ε + 2
Aε

Hε

φ⊥
ε − A2

ε

H2
ε

ψ⊥
ε − λεφ

⊥
ε + h.o.t.

= λε

k∑

j=1

2∑

i=1

aε
j,i

∂Aε, j

∂xi
.

(10.12)
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We set

I1 =
k∑

j=1

2∑

i=1

aε
j,i

A2
ε, j

H2
ε

(

−ψε, j,i + ∂Hε

∂xi

)

+ ε

k∑

j=1

2∑

i=1

aε
j,i

∂μ(|εx |)
∂yi

Aε, j , (10.13)

and

I2 = �φ⊥
ε − μ(|εx |)φ⊥

ε + 2
Aε

Hε

φ⊥
ε − A2

ε

H2
ε

ψ⊥
ε − λεφ

⊥
ε . (10.14)

Next we shall first derive the estimate for φ⊥
ε . Using (10.12), since φ⊥

ε ⊥ K̃ε,q, then
similar to the proof of Proposition 9.1, we have that

‖φ⊥
ε ‖H2(BR/ε)

≤ C‖I1‖L2(BR/ε)
. (10.15)

So our aim is to estimate the term I1. We note that

∂Hε

∂xi
= ξ

∫

BR/ε

∂

∂xi
Gσ (x, z)A2

ε(z) dz

= ξ

∫

BR/ε

∂

∂xi
(Kσ (x, z) + Hσ (x, z))A2

ε(z) dz + h.o.t.

and (for τ = 0)

ψε, j,i (x) = 2ξ

∫

BR/ε

Gσ (x, z)Aε, j
∂Aε, j

∂zi
dz

= ξ

∫

BR/ε

(Kσ (x, z) + Hσ (x, z) + o(σ 2))
∂

∂zi
A2

ε, j dz,

where Kσ (x, z) and Hσ (x, z) refer to the singular and the regular part of the Green function
Gσ (x, z), respectively. For τ > 0 the last formula should use Gσλε

instead of Gσ . Since
λε → 0 it can be shown by comparing the two Green functions that the error from this term
does not contribute to the small eigenvalues in leading order. We omit the details.

Then from the above two formulas, we have

∂Hε

∂xi
− ψε, j,i (x) = ξ

∫

BR/ε

∂

∂xi
Kσ (x, z)A2

ε, j (z) − Kσ (x, z)
∂

∂zi
A2

ε, j dz

+ ξ

∫

BR/ε

∂

∂xi
Hσ (x, z)A2

ε, j (z) − Hσ (x, z)
∂

∂zi
A2

ε, j dz

+ ξ

∫

BR/ε

∂

∂xi

∑

l,l �= j

Gσ (x, z)A2
ε,l dz + h.o.t..

Using the fact that

∂

∂xi
Kσ (x, z) + ∂

∂zi
Kσ (x, z) = h.o.t., for x �= z, (10.16)

and integrating by parts, we get

∂Hε

∂xi
− ψε, j,i (x) = ξ

(
∂

∂xi
Fj (x) + h.o.t.

)∫

R2
w2 dz, (10.17)
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where Fj (x) = Hσ (x, q j ) +∑l,l �= j Gσ (x, ql). Then from (10.13), we get

I1 =
k∑

j=1

2∑

i=1

aε
j,i

(

ξ
∂Fj (q j + εx)

∂xi

∫

R2
w2 dz + εμ′(|εq j |) xi

r
w(x) + h.o.t.

)

,

where r =
√

x2
1 + x2

2 . Note that

∂Fj (q j )

∂xi
= 1

2

∂F(q)

∂q j,i
.

From the proof of Theorem 1.1, we observe that

w2(x)ξ
∂Fj (x)

∂xi

∫

BR/ε

w2 dz + εμ′(|εq j |) xi
r

w(x) = o(ε2Rε).

Hence, we have

‖I1‖L2(BR/ε
= o

⎛

⎝ε2Rε

k∑

j=1

2∑

i=1

|aε
j,i |
⎞

⎠ (10.18)

and

‖φ⊥
ε ‖H2(BR/ε)

≤ C‖I1‖L(BR/ε)
= o

⎛

⎝ε2Rε

k∑

j=1

2∑

i=1

|aε
j,i |
⎞

⎠ . (10.19)

Using the equation for ψ⊥
ε and (10.19), we obtain that

‖ψ⊥
ε ‖L∞(�) = o

⎛

⎝ε2Rε

k∑

j=1

2∑

i=1

|aε
j,i |
⎞

⎠ . (10.20)

We calculate
∫

BR/ε

I2
∂Aε,l

∂xm
dx =
∫

BR/ε

(
A2

ε,l

H2
ε

(
∂Hε

∂xm
φ⊥

ε − ∂Aε,l

∂xm
ψ⊥

ε

))

dx − λε

∫

BR/ε

φ⊥
ε

∂Aε,l

∂xm
dx

=
∫

BR/ε

A2
ε,l

H2
ε

(
∂Hε

∂xm
(ql + x) − ∂Hε

∂xm
(ql)

)

φ⊥
ε dx

+
∫

BR/ε

A2
ε,l

H2
ε

(
∂Hε

∂xm
(ql)

)

φ⊥
ε dx − λε

∫

BR/ε

φ⊥
ε

∂Aε,l

∂xm
dx

−
∫

BR/ε

A2
ε,l

H2
ε

∂Aε,l

∂xm
(ψ⊥

ε (ql + x) − ψ⊥
ε (ql)) dx

− λε

∫

BR/ε

ψ⊥
ε (ql)

A2
ε,l

H2
ε

∂Aε,l

∂xm
dx

= o

⎛

⎝σε2Rε

k∑

j=1

2∑

i=1

|aε
j,i |
⎞

⎠ . (10.21)
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Then we study the algebraic equation for aε
j,i . Multiplying both sides of (10.12) by ∂Aε,l

∂xm
and integrating over R2, we obtain

r.h.s. = λε

k∑

j=1

2∑

i=1

aε
j,i

∫

BR/ε

∂Aε, j

∂xi

∂Aε,l

∂xm
dx

= λε

k∑

j=1

2∑

i=1

aε
j,iδ jlδim

∫

R2

(
∂w

∂z1

)2

dz (1 + o(1))

= λεa
ε
l,m

∫

R2

(
∂w

∂z1

)2

dz (1 + o(1)).

For the left hand side, we have

l.h.s. =
k∑

j=1

2∑

i=1

aε
j,i

∫

BR/ε

A2
ε

H2
ε

(
∂Hε

∂xi
− ψε, j,i

)
∂Aε,l

∂xm
dx

+
k∑

j=1

2∑

i=1

aε
j,i

∫

BR/ε

εμ′(|εq j |) xi
r
Aε, j

∂Aε,l

∂xm
dx +
∫

BR/ε

I2
∂Aε,l

∂xm
dx . (10.22)

Using (10.17), we obtain

l.h.s. =
k∑

j=1

2∑

i=1

aε
j,iξ

(
∂2

∂ql,m∂q j,i
F(q)

) ∫

R2
w2 ∂w

∂zm
zm dz

∫

R2
w2 dz

+
k∑

j=1

2∑

i=1

aε
j,i

∫

BR/ε

ε2μ′′(|εq j |)xi Aε, j
∂Aε,l

∂xm
dx

+ o

⎛

⎝σε2Rε

k∑

j=1

2∑

i=1

|aε
j,i |
⎞

⎠ . (10.23)

Note that in (10.23) there is no summation over m. From (10.22) and (10.23), we have

l.h.s. = −c1ξ

k∑

j=1

2∑

i=1

aε
j,i

∂2

∂ql,m∂q j,i
F(q) + c2ε

2
k∑

j=1

2∑

i=1

aε
j,iδ jlδmiμ

′′(|εqi |) + h.o.t.,

(10.24)

where c1, c2 have been introduced in (4.4) and (4.8), respectively. Combining the l.h.s. and
r.h.s., we have

k∑

j=1

2∑

i=1

aε
j,i

(

−c1ξ
∂2

∂ql,m∂q j,i
F(q) + c2ε

2δ jlδmiμ
′′(|εq j |)

)

+ h.o.t.

= λεa
ε
l,m

∫

R2

(
∂w

∂z1

)2

dz (1 + o(1)). (10.25)

123



Stable spike clusters for the precursor Gierer–Meinhardt… Page 39 of 40 142

From (10.25), we see that the small eigenvalues with λε → 0 and are related to the eigenvalues
of the 2k × 2k matrix Mμ(q), where the ( j + ki, l + km)-th component is the following

(Mμ(q)) j+ki,l+km = −c1ξ
∂2

∂ql,m∂q j,i
F(q) + c2ε

2δ jlδmiμ
′′(|εq j |),

1 ≤ j, l ≤ k, 1 ≤ i,m ≤ 2.

In Sect. 6 this matrix has been studied further and its eigenvectors and eigenvalues have been
computed explicitly.
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