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Abstract 

 
Neuroimaging of humans has gained a position of status within neuroscience. Modern functional 

magnetic resonance imaging (fMRI) technique provides neuroscientists with a powerful tool to 

depict the complex architecture of human brains. fMRI generates large amount of data and many 

analysis methods have been proposed to extract useful information from the data. Clustering 

technique has been one of the most popular data-driven techniques to study brain functional con-

nectivity, which excels when traditional model-based approaches are difficult to implement. How-

ever, the reliability and consistency of many findings are jeopardised by too many analysis meth-

ods, parameters, and sometimes too few samples used. In this thesis, a consensus clustering 

analysis framework for analysing fMRI data has been developed, aiming at overcoming the clus-

tering algorithm selection problem as well as reliability issues in neuroimaging. The framework is 

able to identify groups of voxels representing brain regions that consistently exhibiting correlated 

BOLD activities across many experimental conditions by integrating clustering results from multi-

ple clustering algorithms and various parameters such as the number of clusters 𝐾. In the frame-

work, the individual clustering result generation is aided by high performance grid computing tech-

nique to reduce the overall computational time. The integration of clustering results is imple-

mented by a technique named binarisation of consensus partition matrix (Bi-CoPaM) adapted and 

enhanced for fMRI data analysis. The whole framework has been validated and is robust to par-

ticipants’ individual variability, yielding most complete and reproducible clusters compared to the 

traditional single clustering approach. This framework has been applied to two real fMRI studies 

that investigate brain responses to listening to the emotional music with different preferences. In 

the first fMRI study, three brain structures related to visual, reward, and auditory processing are 

found to have intrinsic temporal patterns of coherent neuroactivity during affective processing, 

which is one of the few data-driven studies that have observed. In the second study, different 

levels of engagement, i.e. intentional to unintentional, with music have unique effects on the au-

ditory-limbic connectivity when listening to music, which has not been investigated and under-

stood well in neuroscience of music field. We believe the work in this thesis has demonstrated an 

effective and competent approach to address the reliability and consistency concerns in fMRI data 

analysis.  
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Chapter 1 Introduction 

 

1.1 Background and motivation 

The invention of magnetic resonance imaging (MRI) technique provides a non-invasive way of 

imaging the various tissues of human and animal body in a very high spatial resolution. The MRI 

technique has been widely applied to research and clinical applications. In 1990, Ogawa et al. 

published a new blood oxygen level dependent contrast in MRI (Ogawa et al., 1990), providing a 

way of measuring brain neural activities from the blood oxygen level within the blood vessels 

spreading across the whole brain, depending on the fact that cerebral blood flow and neuronal 

activation are coupled. Instead of imaging the static structural information of body tissues, the 

blood oxygen level dependent (BOLD) signal reflects the level of neural activation within imaged 

brain areas at a particular time, and by scanning these brain areas every several seconds, the 

whole MRI datasets reflect dynamic changes of neural activities during a period of time. The 

imaging of neural activities through measuring the BOLD changes is called functional MRI (fMRI). 

Since the discovery of BOLD contrast, fMRI has become a dominant brain imaging method to 

study the functions and interactions of different human or animal brain areas, due to the non-

invasive features of the technique and relatively safe environment for participants, i.e., it does not 

require participants to undergo surgery or to be exposed to radiation like X-ray imaging.  

As the acquisition and reconstruction of fMRI signals are complicated and BOLD signals have a 

very low signal to noise ratio (SNR), preprocessing is an important step for fMRI data analysis. 

Standard preprocessing includes the slice timing correction (important for fast event-related ex-

perimental design), head motion correction, spatial normalisation to standard structure brain tem-

plate, and spatial smoothing. These steps will be introduced in Chapter 2 in more details. After 

the preprocessing of fMRI data, next task is how to analyse them. In order to extract meaningful 

information from fMRI data, many computational methods have been designed and applied to 

analyse fMRI data. In general, these methods can be divided into two groups, namely model-

driven and data-driven approaches.  
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General linear model (GLM) is one of the most popular model-driven methods for analysing fMRI 

data. A model is first constructed to describe the BOLD signal changes corresponding to the 

stimulation during fMRI scanning. Statistical test is carried out on each voxel to determine whether 

the voxel’s time-series can match with the pre-defined model that indicates the activated BOLD 

patterns. While GLM has helped neuroscience researchers to discover many important findings, 

it is hard to utilise this technique in some fMRI experiments when the paradigm is very complex 

or even impossible to model, for example, the experiment that researchers do not know when the 

responses elicited by stimulus will happen (Liu et al., 2000). Resting-state fMRI data for studying 

the functional connectivity during rest, where participants do not perform any explicit cognitive 

activities during scanning, also pose challenges to use traditional GLM approach. 

To complement the model-based approaches and provide the researchers with more choices to 

analyse the neuroimaging data, various data-driven methods also have been proposed including 

principal component analysis (PCA), independent component analysis (ICA), clustering analysis, 

and so on. PCA and ICA are decomposition-based methods, meaning the results are on a differ-

ent space from the original data. Clustering technique also have been widely used in various 

neuroimaging study, mainly in the resting-state fMRI data. Clustering analysis belongs to the un-

supervised classification in machine learning domain, in contrast to the supervised classification 

that the data used to train the classifier have known category labels. Note that in machine learning 

field, there is another prediction technique called regression that is used to predict continuous 

values rather than the discrete category labels used in classification methods. Clustering tech-

nique involves the grouping of objects into a set of groups where objects within the same group 

show a high level of similarity and objects in the different groups show a low level of similarity. 

Compared to decomposition-based methods, clustering results may be more comparable to tra-

ditional functional connectivity maps from correlation with the seed regions, as they reflect func-

tional connections between brain regions more directly. The main topic of this thesis is about the 

advanced development of clustering framework of analysing fMRI data. The rest part of the intro-

duction will describe the motivation for the method development and validation in the thesis. 

George E. P. Box, who is considered to be one of the great statistical minds of the 20th century 

(DeGroot, 1987; Peña, 2001), once said “Essentially, all models are wrong, but some are useful”. 
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This statement can also apply to the clustering field. Since the concept of clustering was intro-

duced, a large number of clustering algorithms have been proposed (Estivill-Castro, 2002). Re-

garding the fMRI experiment side, clustering is model-free, meaning no explicit assumptions need 

to be made on the experiment paradigm when running clustering analysis. However, in terms of 

algorithms themselves, each clustering process more or less asserts some underlying assump-

tions such as the data distribution. Nevertheless, these emerging data-driven clustering methods 

provide more possibilities and perspectives of investigating and understanding the neuroimaging 

data that convey some interesting and crucial information for understanding brain mechanisms 

underlying cognitive behaviours. 

Typically, when using clustering analysis in an fMRI study on a certain stimulation paradigm an 

algorithm is chosen based on the authors’ preference or some empirical experience. This raises 

the question of the generalisability of the results from a single method of analysis. Yet, if a second 

study on the same stimulation paradigm would utilize another method of analysis, a discordance 

is very likely to occur. Considering that in neuroimaging field methods of analysis and statistics 

have proliferated, it is inevitable that a somewhat confusing picture of the scientific progress 

gained by fMRI research would emerge. Call for consistent analysis of fMRI data has been made 

based on the finding “Here, we show that the average statistical power of studies in the neurosci-

ences is very low. The consequences of this include overestimates of effect size and low repro-

ducibility of results.” (Button et al., 2013). Moreover, a very recent study points out that some of 

the well-known data analysis software packages (e.g. SPM, FSL, AFNI) are exposed to “bugs” or 

very high false-positive rates especially when not properly implemented or used (Eklund et al., 

2016). 

Motivated by the above situations in fMRI data analysis, we intend to explore the feasible way of 

addressing current issues. We set the scope of this thesis to the clustering analysis in analysing 

fMRI data, aiming to address the discordance of results from different clustering algorithms, which 

is a common phenomenon existing not only in fMRI data analysis but also other applications 

where clustering technique is used.  

In this thesis, a comprehensive consensus clustering analysis of fMRI data framework is designed, 

including a series of methods from initial data processing, individual clustering, high performance 
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grid computing, to tunable consensus clustering results integrations from individual clustering and 

following statistical tests for extracting interesting information from clustering results. The frame-

work is capable of merging results from many analysis methods in order to obtain robust and 

reproducible clusters from various datasets, which has been systematically validated using real 

fMRI datasets. The comparisons between the results obtained from proposed consensus cluster-

ing analysis framework and those from each individual clustering algorithm demonstrate that our 

framework has notable advantages over traditional single clustering algorithms in being able to 

evidence robust connectivity patterns even with complex neuroimaging data, involving a variety 

of stimuli. We believe this can greatly increase the consensual level among the clustering results 

from various clustering methods and neuroimaging data. 

We claim this study to be highly application oriented as intensive collaboration with neuroscience 

researchers went through the whole procedure of framework development and validation. The 

collaborative study is between Brunel University London and Aarhus University in Denmark, with 

the fMRI data collected at the Advanced Magnetic Imaging centre of Aalto university, Finland. 

The valuable feedback from them are crucial to the successful application of the work in this thesis. 

We have applied consensus clustering analysis framework on two real fMRI datasets, namely 

Affect and Affect 2. Affect fMRI study is to investigate the brain responses to music with emotions 

and listeners’ preferences (affective processing). Several brain structures associated with visual, 

reward, and auditory processing consistently exhibiting intrinsic temporal patterns of coherent 

neuroactivity during affective processing have been identified without introducing any explicit 

model regarding the fMRI experiment paradigm. Affect 2 fMRI study is a further step towards 

understanding the neural correlates under different intentional engagement of music listening. 

The results show that the intentionality has different effects on auditory-limbic connectivity during 

affective processing of music, which enriches the relative literature on the neuroscience of music 

research field. The investigation stages of these studies vary. The Affect study has been pub-

lished in a high impact factor journal International Journal of Neural Systems (IJNS) and has been 

shown on Brunel University London news webpage (https://www.brunel.ac.uk/news/arti-

cles/Dead-salmon-bugs-brain-scans-can-we-ever-agree-on-neuroscience-research). The results 

of Affect 2 study are currently under peer review. 
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1.2 Summary of major contributions 

The original contributions of the works presented in this thesis can be grouped into the consensus 

clustering analysis framework development and neuroscientific insights. There are close interac-

tions between computational methods development and application in real neuroimaging study 

throughout the research study. The framework proposed in the thesis has been employed on two 

real fMRI datasets namely Affect and Affect 2. The framework details, validation, and neurosci-

entific explanation and insights are described in Chapter 3, 4, and 5. The rest of this section will 

list some key contributions from this thesis. 

1.2.1 Consensus clustering analysis of fMRI data framework development 

a) Main framework. The consensus clustering analysis of fMRI data framework includes a 

series of methods and techniques that work together to function as a novel and powerful 

data-driven approach for clustering analyse of fMRI data. By applying the framework on 

fMRI data, voxels consistently having intrinsic correlated temporal patterns across many 

clustering experiments and datasets are able to be identified. The framework starts from 

the raw fMRI data processing and correct extraction of BOLD time series corresponding 

to the stimuli in the fMRI experiment. The clustering part includes multiple single cluster-

ing algorithms and a consensus clustering paradigm tailored and adapted to suit the 

needs of analysing fMRI data. Note that the grid computing technique is embedded in the 

framework and employed on individual clustering experiments, attempting to address the 

emerging issues of heavy computational load and large amount of time needed when 

analysing large-scale datasets. The last part of the framework includes the automated 

selection of clusters and filtering on cluster topology to refine the clustering solution. In 

general, the proposed framework has been demonstrated to be very competent in terms 

of cluster completeness and robustness on real fMRI dataset, which is reported in (Liu et 

al., 2017). 

b) Methods for extracting neuroscientific information from clustering results. To com-

plement the main framework, two statistical analyses are designed to make neuroscien-

tific explanations from clusters obtained from consensus clustering. These two analyses 
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consist of investigation into two different aspects of BOLD signal, which are the magni-

tude and temporal patterns. These two analyses can be incorporated into the main frame-

work in a flexible manner, meaning to employ them or not depends on the research ques-

tions asked regarding the fMRI experimental paradigm. Meaningful information has been 

evidenced by these two analyses that are reported in Chapter 4 as well as in (Liu et al., 

2017). 

c) Scalable clustering for the extension of the main framework. A scalable clustering 

algorithm is developed to suit the further extension of the main framework. This algorithm 

aims to address the accurate identification of the number of clusters 𝐾 in the context of 

large-scale neuroimaging data, with the support from the grid computing technique em-

ployed in the main framework. We believe with the help of high performance computing 

and smart design of algorithms and analysis strategy, the consensus clustering frame-

work is able to can deal with large-scale neuroimaging data at a fast speed and, most 

importantly, can accurately and robustly retrieve the important information in a data-

driven manner (Liu, et al. 2015). 

1.2.2 Neuroscientific insights 

a) Exploring the functional connectivity during affective processing. In Affect study, 

we aim to validate the proposed framework in the real fMRI experiment that scans the 

brain activities when listening to music with emotions (happy or sad) and preferences 

(liked or disliked). We have obtained clusters including functionally and anatomically re-

lated neural networks responding to emotional music, which have been spotted in model-

based methods but rarely observed with data-driven approaches. With the statistical anal-

ysis of clusters generated by the consensus clustering framework, the difference between 

musicians and non-musicians in the temporal profiles of the BOLD response for the in-

terconnected cortical areas of visual cortex is identified. In addition, we also attempt to 

disentangle the music emotion and preference that tend to elicit stronger BOLD re-

sponses in observed functional neural networks. These results are reported later in Chap-

ter 4 in more details. 

b) Investigating the effects of attentional and intentional engagement on affective 

processing. An interesting phenomenon of music listening in everyday life is that the 
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engagement with music is not always intentional, such as listening to some background 

music when people are shopping or doing other activities. Very little knowledge has been 

accumulated regarding the effects of intentionality during these listening experiences. In 

this study, we utilise the established consensus clustering framework on a real fMRI da-

tasets including three levels of intentional engagement with the music listening. The re-

sults show that intentionality has different effects on auditory-limbic connectivity during 

affective processing of music and prove that intentionality in judging the hedonic value of 

a musical piece is important in shaping neural connectivity to music, and specifically in 

connecting brain regions related to attention and cognition. These results are reported 

later in Chapter 5 in details. 

1.3 Thesis structure 

Next section of this chapter lists the aim and contributions of the research work. Chapter 2 firstly 

reviews the functional magnetic resonance imaging (fMRI) technique and standard pipeline of 

fMRI data preprocessing. Then the usage of clustering technique in analysing fMRI data is sys-

tematically reviewed, including the traditional single clustering methods and recently adopted con-

sensus clustering concept. Chapter 3 details the methods and techniques that are used in this 

thesis. In terms of clustering technique, three basic single clustering algorithms are included, fol-

lowed by the consensus clustering paradigm employed to integrate clustering results from multi-

ple methods and multiple datasets. In addition, statistical tests designed to analyse the cluster 

data are explained. Chapter 4 and Chapter 5 introduce the consensus clustering analysis on two 

real fMRI datasets (Affect and Affect2) using the methods detailed in chapter 3. The fMRI exper-

iment design, preprocessing, clustering experiment, results, and conclusion are reported in detail 

in each chapter. More specifically, Chapter 4 describes the study exploring the brain functional 

connectivity during listening to music with different emotions and preferences, i.e., affective pro-

cessing. This chapter also serves as a validation of the consensus clustering paradigm in real 

fMRI data analysis by comparing the results between the traditional single clustering and tunable 

consensus clustering strategy. In addition, the robustness and reproducibility are also tested to 

demonstrate the effectiveness of the method. Chapter 5 describes the study investigating the 

effects of intentionality on brain functional connectivity during listening to unfamiliar music. Based 

on the established consensus clustering analysis pipeline in Chapter 4, this chapter focuses more 
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on neuroscientific explanations of the clustering results, highlighting the contributions to the en-

richment of the literature in the study of affect in the field of neuroscience of music. Chapter 6 

summarises and discusses the work in the thesis and provides insights into future work, including 

one developed clustering algorithms designed to obtain clusters with number of clusters 𝐾 auto-

matically detected from a large dataset at a faster speed. 

1.4 List of academic activities 

1.4.1 Academic visiting 

I went to Finland as a visiting research student in University of Helsinki and Aalto University for 

two months during the first year of my PhD study. I worked together with the collaborators in 

University of Helsinki, and Aalto University for 2 months from 1st September 2013 to 31st October 

2013. During this period of time, I attended the simultaneous EEG-MEG data collection experi-

ment and the fMRI data collection.  

In Aalto University, I also worked with the staff in biomedical engineering and computer science 

where I learned the pipeline of preprocessing the EEG/MEG data. Afterwards, I participated in 

the preprocessing work for the free-listening experiment and contributed to the work related with 

Electrooculography (EOG) and electrocardiogram (ECG) artefacts removal. I also took part in 

fMRI data preprocessing training from fMRI school organised by School of Science in Aalto Uni-

versity as well as the experienced SPM software user. 

1.4.2 Journal publication 

1. Liu, C., Abu-Jamous, B., Brattico, E., Nandi, A.K., Towards Tunable Consensus 

Clustering for Studying Functional Brain Connectivity During Affective Processing. 

International Journal of Neural Systems, 27(2), p.1650042, 2017. 

2. Abu-jamous, B., Liu, C., Roberts, D., Brattico, E., Nandi, A.K., Data-Driven Analysis of 

Collections of Big Dataset by the Bi-CoPaM Method Yields Field-Specific Novel Insights. 

Chapter in Lecture Notes in Electrical Engineering, March 2017 (invited book chapter). 
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1.4.3 Submitted journal manuscript 

(Under review) Liu, C., Brattico, E., Abu-Jamous, B., Pereira, C.S., Jacobsen, T., Nandi, 

A.K., “Effects of Intentionality on the Neural Connectivity During Enjoyment of Unfamiliar 

Music – An fMRI and behavioural study”. 

1.4.4 Peer-reviewed and full-length conference papers 

1. Wong, M.L.D., Liu, C., Nandi, A.K., Classification of Ball Bearing Faults using Entropic 

Measures. In Surveillance 7, Chartres, France, 2013. 

2. Nandi, A.K., Liu, C., Wong, M.L.D., Intelligent Vibration Signal Processing for Condition 

Monitoring. Proceedings of the International Conference Surveillance 7, Chartres, 

France, pp.1–15, 2013. 

3. Liu, C., Fa, R., Abu-Jamous, B., Brattico, E., Nandi, A.K., Scalable Clustering Based on 

Enhanced-SMART for Large-scale fMRI Datasets. ICASSP, IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, Brisbane, Australia, pp.962–966, 

2015. 

4. Liu, C., Abu-Jamous, B., Brattico, E., Nandi, A.K., Clustering Consistency in Neuroimag-

ing Data Analysis. In 12th International Conference on Fuzzy Systems and Knowledge 

Discovery (FSKD), Zhangjiajie, China, pp. 1118–1122, 2015. 

5. Liu, C., Fa, R., Li, M., Nandi, A.K., Network Community Degree Based Fast Community 

Detection Algorithm for fMRI Data. In 12th International Conference on Natural Compu-

tation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, pp. 

1739–1743, 2016. 

1.4.5 Poster presentation 

1. Liu, C., Nandi, A. K., “Read Your Mind – Brain Signal Processing”. Presented in School 

of Engineering and Design ResCon13, Brunel University London. 

2. Liu, C., Nandi, A. K., “Brain Signal Processing – A Data Driven Approach”. Presented in 

Graduate School ResCon14, Brunel University London. 

3. Liu, C., Abu-Jamous, B., Brattico, E., Nandi, A.K., “Consensus clustering reveals neural 

networks during affective music processing”. The Neurosciences and Music V, 2014, Di-

jon, France. 
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Chapter 2 Literature Review 

 

This chapter will first introduce the functional magnetic resonance imaging (fMRI) technique, in-

cluding its basic concepts, and the structure of the fMRI image. Secondly, the standard pipeline 

of preprocessing fMRI data is introduced. Next two sections will review the general clustering 

technique in the broader domain and its application in cognitive neuroscience. The last section 

will summarise the reviewed literature and list the issues and challenges in applying clustering 

analysis in modern neuroimaging studies. In general, this chapter will rationalise the motivation 

and aim of the following study in the thesis. 

2.1 Introduction to fMRI technique 

2.1.1 fMRI basics principles 

Magnetic Resonance Imaging (MRI) is an imaging technique utilising the strong artificially gener-

ated magnetic field (in units of Tesla) to create the image of various biological tissues (Huettel et 

al., 2009). The strong magnetic field is used to align the magnetic polarisation of certain atoms 

within the scanning area. While this strong magnetic field itself will not generate any MR signal, 

the actual MR image is created by using a series of changing magnetic gradients and oscillating 

electromagnetic fields, also known as pulse sequence, to alter the alignment of the magnetisation. 

Depending on the frequency of the pulse sequence, energy from the electromagnetic fields may 

be absorbed by certain atomic nuclei. After the energy is absorbed, the electromagnetic energy 

is later emitted by the nuclei, and the amount of emitted energy depends on the number and type 

of nuclei present. The emitted energy will be received by the radiofrequency coils. This detected 

electromagnetic pulse defines the raw MR signal. The pulse sequence can be constructed to 

create different contrasts on the images that reflect the amount of sensitivity to different tissues 

based on their physical properties. For example, the most commonly used structural contrast for 

anatomical images of brain is T1 weighting while the images showing maximal signal in fluid-filled 

regions are T2 weighted. There is another commonly used contrast called T2
* related to functional 

MRI, which will be introduced in the next paragraph. 
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Functional Magnetic Resonance Imaging (fMRI) uses MR imaging technique to measure the met-

abolic changes in blood. The functions of human or other animals’ brain are formed by the activ-

ities of the neuron cells, which demand the energy supplied by chemical reactions of glucose and 

oxygen. The neurons do not reserve energy in the form of sugar and oxygen internally, so the 

active neurons demand these energy substances to be brought in at a greater rate than to the 

inactive neurons. Hemoglobin in the blood is responsible of carrying oxygen. The form of hemo-

globin with oxygen is called oxyhemoglobin existing in oxygenated blood while the form of hemo-

globin without oxygen is called deoxyhemoglobin existing in deoxygenated blood. The intense 

need of oxygen supply by active neurons cause a change of the relative levels of oxyhemoglobin 

and deoxyhemoglobin in the surrounding blood vessels. The work carried out by Pauling & Coryell 

[1936] found that the oxyhemoglobin and deoxyhemoglobin have different magnetic properties. 

In 1990, with the MRI imaging technique already invented, Ogawa and colleagues (Ogawa et al., 

1990) found that the presence of deoxyhemoglobin can decrease the MR signal on images with 

T2
* contrast that is also named blood-oxygen level dependent contrast (BOLD). Since regional 

blood flow is closely related to neuroactivity, large volume of oxygenated cerebral blood will flow 

towards activated brain areas, bringing more oxyhemoglobin to these areas. Thus the bulk effect 

of neuroactivity will cause a regional decrease of deoxyhemoglobin, and an increase of signal 

strength on T2
* weighted images. 

In summary, the fMRI technique is able to measure the neuroactivity when the brain is performing 

certain functions. By designing the appropriate experiment and applying corresponding analysis 

method, the brain regions responding to the experimental paradigm can be identified. The intro-

duction of fMRI provides neuroscientists with a non-invasive approach with high spatial resolution 

and many significant findings on the mechanisms of both human and animal brain have been 

made. 

2.2 Preprocessing of fMRI data 

2.2.1 fMRI data structure 

As introduced in section 2.1.1, MRI technique could image different brain tissues based on the 

contrast predefined. By using T1 contrast, the structural image of the human brain can be ob-

tained. Each volume of brain structural image can be treated as a three dimensional matrix whose 
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elements are voxels (e.g., 2𝑚𝑚×2𝑚𝑚×2𝑚𝑚 cube). Each voxel has a position 𝑣(𝑥, 𝑦, 𝑧) and an 

intensity value 𝐼(𝑥, 𝑦, 𝑧). Figure 2-1 (a) and (b) are examples of T1 and T2 weighted structural brain 

MRI image. 

Each volume of functional MRI images, as illustrated in Figure 2-1 (c), is also represented with a 

voxel matrix. The volumes are sampled repeatedly at a time interval 𝑇. Thus a complete fMRI 

dataset is a four dimensional matrix whose elements are voxels 𝑣 𝑥, 𝑦, 𝑧, 𝑡 = 𝐼.  

Ideally, among all the volumes during one session of fMRI scan, the voxel with the same coordi-

nate (𝑥, 𝑦, 𝑧) should represent the same location in the brain. However, due to various factors 

such as head motion, inhomogeneous magnetic field, and physiological noises (e.g., heart beats 

and respiration), distortion of raw MRI/fMRI data exists. To compensate, preprocessing is essen-

tial to reduce the variability of the data that is unrelated to the experiment.  

2.2.2 Preprocessing of fMRI data 

Slice-timing correction 

Most fMRI data are acquired using two-dimensional pulse sequences that acquire images one 

slice at a time (Huettel et al., 2009). Depending on the capability of scanner, a typical pulse se-

quence might need 24 slices or more to cover the whole brain within 1.5 to 3 seconds. For exam-

ple, one dataset (Affect) in this thesis uses 33 slices obtained in 3 seconds. All the slices are 

acquired at an equal spacing across the whole TR period. The slice-timing issue lies in the fact 

that all these slices covering the whole brain are not acquired at the same time but across a time 

period (TR). In addition, most pulse sequence uses interleaved slice acquisition, which means 

Figure 2-1. Examples of T1, T2, and T2* images. T1, T2 images are from SPM8 software 
templates. Functional image is from the dataset used in the thesis. 

(a) (b) (c) 
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the scanner first collects all the odd slices and then collects all the even slices, to avoid the inter-

ferences from the adjacent slices (cross-slice excitation). For instance, in Figure 2-2, there are 

three successive slices 1, 2, and 3. Assuming the TR is 2 seconds and slice 1 is sampled at time 

𝑡, then the slice 2 is not sampled until 𝑡 + 1 second. However, it is often needed that all the slices 

are sampled at a time point 𝑡 without any delay to accurately model the BOLD signal change. 

Thus, the correction for slice-timing is required. 

The most commonly used slice-timing correction approach is temporal interpolation. Temporal 

interpolation utilises the timing information from adjacent slices to estimate the BOLD signal 

strength at the onset of a particular TR. Ideally, after the correction, the information in all the slices 

will be from the brain state at a time-point 𝑡. However, no matter what interpolation method is 

used, it is impossible to perfectly reconstruct the missing information from samples. In general, 

the interpolation correction is more effective for the data acquired with short TRs than that with 

long TRs (e.g. ≥ 3𝑠). Nevertheless, due to the large time intervals between slice acquisitions, 

data acquired with long TRs has a greater need for accurate slice-timing correction. 

Head motion correction/realignment 

In fMRI data analysis, each voxel is assumed to represent a fixed brain location across all the 

volumes during the whole scanning session. However, if there is head motion happening, the 

above assumption will not be valid anymore. If the MRI signal value of a certain voxel is concat-

enated to form the time-series, the MRI signal value of adjacent voxel might be included due to 

the motion effect, resulting in a mismatch of the location of subsequent images in the time-series. 

1
2
3

 Figure 2-2. Slice-timing demonstration. 
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Even a small amount of head motion is likely to cause great damage to the raw fMRI signal. To 

address the head motion problem, researchers normally use two procedures that are head motion 

restriction and mathematical correction of head motion in fMRI data.  

Like many problems, head motion is easier to prevent than to correct. So before the actual cor-

rection of head motion is carried out, laboratories normally use some facilities to prevent the sub-

jects’ head from moving. Such facilities include biting bars, face masks, paddings, etc. It should 

be noted that although some head restraints approaches, such as biting bars, are very effective, 

they often raise the subject comfortability problems since the head is forced to be immobilised. 

When subjects are uncomfortable, they are likely to be distracted from performing the experi-

mental tasks that they are asked to do, thus reduce the reliability of the data collected. Apart from 

head restraint approaches, head motion effects can also be greatly reduced by subject training. 

Before the real scanning session, subjects take part in a training session that will simulate the 

real experiment situations to let subjects be familiar with what will happen during the scan. By 

doing so, subjects will be more relaxed and comfortable in the real scanning session and can 

focus on the experimental tasks. Those who cannot accept the confinement of the scanner or 

avoid their head from moving too much can be excluded from real scanning session. 

With the head restraints and subject training, head motion effects can be greatly reduced but 

small movement still exists. Thus the head motion correction is needed. The goal of head motion 

correction is to guarantee that brain is in the same position in every image across the whole 

scanning session. The process of spatially matching two images is called coregistration. For mo-

tion correction, all the image volumes are coregistered to a reference volume (e.g. the first volume 

of the whole volume set). Since the type of head motion problem belongs to bulk movement; the 

coregistration is performed by using rigid body transformation. Rigid body transformation uses 

translations (i.e., moving the entire image volume along the 𝑥, 𝑦, and 𝑧 axes) and rotations (i.e., 

rotating the entire image volume around three axes) to impose one image over another. To de-

termine these parameters, most coregistration algorithms use iterative approaches to identify a 

set of parameters that provide the best match between the processed image volume and the 

reference volume. Cost function is used to evaluate how well the two image volumes to be coreg-

istered are matched. The ideal set of parameters should yield a minimum value of the cost func-

tion. But practically, the local minimum of cost function is often used to determine the parameters 
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due to the large amount of possibilities of the six parameters. After a set of translation and rotation 

parameters are computed, the original imaging data with head motion is resampled accordingly 

to estimate the values of voxels when there are no head motions. 

Spatial normalisation 

Almost all the fMRI studies collect data from more than one subjects. The implication is that to 

generalize one’s inference to the population one must have a large number of subjects to reliably 

assess the between-subject variability (Friston et al., 1999). Some recent neuroscientific studies 

such as WU-Minn Human Connectome Project (Van Essen et al., 2012) even scanned  more 

than 1000 subjects’ brain activities during different experimental tasks. To draw the conclusion 

from a group of subjects, researchers often need to compare and summarise the activation within 

the same brain region. However, the human brain has big variabilities across individuals from size, 

shape, to the layout of different brain structures. Thus, the brain images of each subject must be 

transformed into a standard space where the brain images from all the subjects have identical 

size, shape, and structural layout. This process is called spatial normalisation that is important in 

voxel-based fMRI/MRI studies (Friston et al., 2003). 

When the subjects’ fMRI images are transformed into the standard space, each location of the 

brain can be uniquely indicated by a coordinate system also called atlas. The most commonly 

used normalised coordinate spaces are Talairach space (Talairach and Tournoux, 1988) and MNI 

space (Evans et al., 1994, 1992). In this thesis, MNI coordinates are used to indicate positions in 

brain. 

Due to the fact that the spatial resolution of fMRI images is often lower than the structural images, 

a structural MRI brain image of the same subject is commonly obtained during each fMRI scan-

ning. To match the individual functional brain images and the brain structures in a standard space 

more accurately, functional images are firstly registered to the structural images of the same sub-

ject using affine registration. The functional-structural coregistration can also correct the image 

distortion induced by pulse sequenced used to obtain functional images. Secondly, individual 

structural images are normalised into a standard space. Then the same normalisation process for 

normalising structural images into a standard space is applied to the functional images to make 

them match the standard space. 
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Spatial and temporal filtering 

Spatial smoothing is another important step in preprocessing. There are several reasons to do it. 

Firstly, the functional signal to noise ratio (SNR) is very low in fMRI images, spatial smoothing 

can increase functional SNR by filtering out those high frequency background noises. Secondly, 

spatial normalisation cannot completely align brain structures in functional images due to the 

complexity of fMRI/MRI images as well as the limitation of normalisation algorithms. Spatial 

smoothing can blur the functional images for a better match with the brain structures in standard 

space. Thirdly, spatial smoothing can improve the statistical validity. In the statistical analysis of 

fMRI data, multiple comparison problems exist due to the large amount of tests carried out. Spatial 

correction can decrease the number of local maxima showing significant activity. Moreover, sta-

tistical tests commonly assume that error in measurement is normally distributed. Spatial smooth-

ing increases the normality of data as the average of multiple observations tends toward a normal 

distribution (central limit theorem). 

Temporal filtering is used to remove the artefacts lying in the time domain in fMRI data. The time 

related noises include high frequency ones such as heart beat (~1.0-1.5 Hz) as well as respiration 

(~0.2-0.3 Hz) and low frequency ones such as scanner drift (~0-0.015 Hz). For experiments with 

block design, which has a relatively slow task frequency, the low frequency noise can be really 

problematic when its frequency is close to the task frequency (Huettel et al., 2009). Depending 

on the task frequency, one normally use the high-pass filter with appropriate cut-off frequency to 

remove the low frequency components in the fMRI data. It is important to recognise that, like other 

preprocessing steps, temporal filtering cannot completely eliminate the noises in time domain but 

attenuate them. The inappropriate use of temporal filtering is likely to filter out the useful infor-

mation, and as a result, temporal filtering should be carried out with caution. Thus, when filtering 

is needed in this thesis, commonly accepted procedures are adopted and they have been used 

in published works, indicating its validity. 
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2.3 Review of clustering analysis and its applications in fMRI studies 

2.3.1 Introduction to clustering analysis 

There are two categories of classification problems in machine learning field, namely supervised 

classification and unsupervised classification. Supervised classification predicts the class labels 

of new objects based on the rules extracted from the training objects with known class labels. 

Clustering analysis is an unsupervised classification technique, which organises a set of objects 

without class labels into classes where objects in the same class are similar to each other while 

are dissimilar to the objects in other classes, based on a given similarity or dissimilarity criterion. 

Each of these classes is called a cluster. In the context of clustering analysis of fMRI data, voxels 

exhibiting correlated BOLD responses are grouped into one cluster and voxels in different clusters 

exhibit different response patterns of their time series. For example, clustering algorithms are 

often used in analysing functional connectivity of human brain to parcellate brain into many ho-

mogeneous regions (van den Heuvel and Pol, 2010; Venkataraman et al., 2013).  

2.3.1.1 Proximity measures 

The proximity measures are fundamental elements of clustering, which define the criterion of 

grouping objects into a certain cluster. There are many different terms for proximity measurement; 

for instance, similarity, dissimilarity, distance and correlation. Despite many definitions, they are 

conceptually similar to each other in that higher similarity or higher correlation means that two 

patterns are more similar (with less dissimilarity) or geometrically closer (with less distance).  

There are many distance metrics in the literature. Based on their definition of distance, they can 

be used in different applications. In general, the distance metrics can be grouped into two cate-

gories, which are distances of discrete feature objects and distances of continuous feature objects. 

In this paper, the fMRI data belongs to continuous feature objects as the BOLD signal value of 

one voxel is continuous. Xu and Wunsch (Xu and Wunsch 2005) summarised some common 

properties of these distance metrics, namely symmetry, positivity, triangle inequality, and reflec-

tivity.  
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2.3.1.2 Measuring distances of discrete feature objects 

Two well-known distance metrics for discrete data object are hamming distance and matching 

coefficient. Suppose there are two vector 𝒖 and 𝒗 with equal length 𝑙, whose elements can be 

binary 0,1  or any finite number letters alphabet. The number of positions at which the elements 

need to be changed to turn 𝒖 into 𝒗 (or vice versa) is 𝑚. The hamming distance 𝐻𝐷(𝒖, 𝒗) and 

matching coefficient 𝑀𝐶(𝒖, 𝒗) are defined in Equation (2.1) and (2.2) respectively. 

 𝐻𝐷 𝒖, 𝒗 = 𝑚 (2.1) 

 
𝑀𝐶 𝒖, 𝒗 =

𝑙 − 𝑚
𝑙

 
(2.2) 

2.3.1.3 Measuring distances of continuous feature objects 

Many distance metrics for continuous data were proposed such as Minkowski distance, Euclidean 

distance, Manhattan distance, Chebyshev distance, Mahalanobis distance, Pearson correlation, 

Jackknife correlation, Spearman’s rank correlation, and Cosine similarity. Euclidean distance and 

Pearson correlation are commonly used in many fMRI studies (Ghosh et al., 2013; Liao et al., 

2008; M. van den Heuvel et al., 2008; Yeo and Ou, 2004) to measure the similarity between the 

time series of two voxels. If one voxel’s time series is denoted by a vector 𝒑 = (𝑝@, 𝑝A, 𝑝B, … , 𝑝D) 

and another voxel’s time series is denoted by a vector 𝒒 = (𝑞@, 𝑞A, 𝑞B, … , 𝑞D), the Euclidean dis-

tance 𝑑(𝒑, 𝒒) and Pearson correlation 𝑟(𝒑, 𝒒) are defined in Equation (2.3) and (2.4) respectively. 

 𝑑 𝒑, 𝒒 = (𝑝I − 𝑞I)A
D

IJ@
 (2.3) 

 𝑟 𝒑, 𝒒 =
(𝑝I − 𝑝)(𝑞I − 𝑞)D

IJ@

(𝑝I − 𝑝)AD
IJ@ (𝑞I − 𝑞)AD

IJ@
	 , 𝑝 =

1
𝑛

𝑝I
D

IJ@
	 , 𝑞 =

1
𝑛

𝑞I
D

IJ@
 (2.4) 

It should be remarked that different metrics are not always interchangeable. Choosing an appro-

priate metric depends on the different questions need to be solved. For example, the Euclidean 

distance pretty much sorts the time courses by their means (magnitudes) and ignore the shapes 
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of time courses. While Pearson correlation might be more suitable when the shape of time course 

is more important than the magnitude (Romesburg, 2004). In the context of fMRI data analysis, 

Pearson correlation consider time courses going up and down together as similar (correlated), 

ignoring the magnitude information of BOLD responses. However, when many clustering algo-

rithms such as 𝐾-means are applied, the time courses of voxels are often normalised, thus the 

Euclidean distance can still be used to group those voxels exhibiting similar BOLD responses.  

2.3.1.4 Categories of clustering algorithms 

There are many ways of grouping clustering algorithms into different categories, depending on 

the chosen criteria to differentiate them. In addition, there are a large amount of publications on 

clustering algorithms and it is not easy to place each algorithm into a specific category. Thus, in 

this section, only those commonly used clustering algorithms in analysing neuroimaging data as 

well as the clustering strategy used in this thesis are included and they are grouped into seven 

categories that are partitional clustering, hierarchical clustering, fuzzy clustering, neural network 

based clustering, mixture model clustering, graph based clustering, and consensus clustering. 

The clustering methods used in this thesis will be introduced later in Chapter 3. 

Partitional clustering 

Partitional clustering algorithms aim to partition the dataset into a set of disjoint partitions, with 

each partition representing a cluster, according to a pre-specified optimisation criterion. Each 

cluster contains at least one object and each object belongs to only one cluster. The most repre-

sentative example is K-means algorithm (MacQueen, 1967). There are some variants of K-means 

such as K-medoids (Kaufman and Rousseeuw, 1987) that using medians (data points)  instead 

of means as centres of clusters during iterations. 

Hierarchical clustering 

Hierarchical clustering (Johnson, 1967) clusters the dataset into a set of nested clusters having a 

hierarchical structure that can be graphically represented as a tree structure. The tree structure 

is called dendrogram. In general, there are two types of strategies in hierarchical clustering, 

namely divisive approach and agglomerative approach. The divisive approach is a “top down” 

process that starts from a cluster containing all the data points, and splits are performed as one 
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moves from top to bottom of the hierarchy. The agglomerative approach treats each data point 

as a cluster at the beginning, then pairs of clusters are merged as one moves up the hierarchy. 

Fuzzy clustering 

Fuzzy clustering utilises fuzzy logic to determine which cluster each data point belongs to. Instead 

of assigning each data point to exactly one cluster, fuzzy clustering algorithms allow each data 

point to be associated to more than one cluster with a degree of membership, representing the 

different possibilities of belonging to corresponding clusters. A good example of fuzzy clustering 

category is fuzzy C-means (FCM) (Bezdek, 1983; Dunn, 1974) that has been used in many areas, 

including analysing fMRI data (Valente de Oliveira and Pedrycz, 2007). 

Neural network based clustering 

Neural network-based clustering starts with a set of nodes that are all the same except for some 

randomly initialised parameters that make each node behave slightly differently. Then these 

nodes learn from the data in a competitive fashion: active nodes reinforce their neighbourhood 

within certain regions, while suppressing the activities of other nodes. The nodes in output layer 

carry information of the membership of each data points. A well-known algorithm in this category 

is self-organising map (SOM) (Kohonen, 1982). 

Mixture model clustering 

Mixture model clustering is a model-based approach that assumes the data points within clusters 

follow the distribution of certain models (e.g. Gaussian or Poisson model) and attempts to opti-

mize the fit between the data and the predefined models. The whole dataset is modelled by a 

mixture of these models. The distribution used to model a single cluster is often called component 

distribution. The most commonly used method of this category is based on Gaussian mixture 

model, which models the data points within a certain cluster using Gaussian distribution. By using 

this method, a scalable clustering algorithm has been proposed to cluster large-scale dataset with 

the number of clusters 𝐾 automatically detected (Chapter 6). 
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Graph based clustering 

Graph based clustering utilise the graph theories to partition the data modelled as a network 

represented graphically by a collection of nodes and edges. After the theory that human brain is 

a complex network with large amount of intra- and inter-regional connectivity is well accepted, the 

graph theory has been increasingly used to study the properties such as topological organisations 

of human brain network. One important task of investigating network is to identify communities 

(clusters) that are groups of nodes which are densely connected within each community while 

sparsely connected between communities (Fortunato, 2009). For example, the classical normal-

ised cuts algorithm has been used to investigate the different functional areas in resting-state (i.e., 

without performing any active cognitive tasks) human brain (M. van den Heuvel et al., 2008).  

Consensus clustering 

Consensus clustering, also named ensemble clustering, refers to a situation that multiple cluster-

ings results have been obtained for a particular dataset or a number of datasets and it is desired 

to find a single (consensus) clustering solution which is a better fit in some sense than the existing 

clustering result (Strehl and Ghosh, 2002), which is considered a solution to the problem of in-

consistency of stochastic clustering algorithms or clusterings with different parameters. Normally 

consensus clustering does not operate on data directly, rather it incorporates the results, in terms 

of partition matrix or vector of labels, from multiple algorithms into a single representative or con-

sensus, emphasising the common organisation in the different clustering results. Consensus clus-

tering is expected to possess a set of properties such as providing more robust, more novel and 

more stable clustering results than single clustering algorithms (Ghaemi et al., 2009). The con-

sensus of many clustering algorithms may compensate for possible errors by individual algorithms, 

generating more statistically reliable final clustering results than any single one can. 

In general, there are four classes of consensus clustering methods: 

1) Partition-partition comparison. The objective of this approach is to maximise the similarity 

between the final consensus partition and each individual partition. 

2) Cluster-cluster comparison. In contrast to 1) that compares the partition with partition, 

methods in this class compare single cluster from different partitions. 
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3) Member-in-cluster voting. The first step is to match most-similar clusters from different 

partitions to each other. Then partition vote for the membership/belongingness of each 

object to the corresponding cluster. 

4) Member-member co-occurrence. A co-association matrix is constructed based on the 

frequency of co-occurrence of pairs of objects, i.e., they are clustered in the same cluster 

in different partitions. 

2.3.2 Clustering in fMRI data analysis 

In general, there are two big families of methods of analysing fMRI data, namely hypothesis-

driven approach and data-driven approach. A representative example in hypothesis-driven family 

is the well-known general linear model (GLM) (Friston et al., 1995). The GLM method assumes 

that the observed fMRI data can be modelled as the sum of separate factors along with additive 

Gaussian noise. This assumption often limits the performance and application of the GLM method. 

For example, it requires the accurate estimate of the BOLD signals corresponding to the experi-

ment tasks, which is often very difficult to achieve due to the factors such as the subject variations. 

Besides, some experiment paradigms are very complicated and the BOLD changes correspond-

ing to the tasks are hard or even impossible to model precisely such as the studies of long-term 

memory formation with complex time series data (Hasson et al., 2008) and decoding of intensions 

(Haynes et al., 2007). Recently, the design of some fMRI experiments does not include the peri-

odic tasks such as the naturalistic listening to music (Alluri et al., 2012; Burunat et al., 2016), 

which is even harder to model using GLM approach. Under the circumstances where it is not 

suitable to use GLM, data-driven and machine learning approaches provide a powerful comple-

mentary tool to extract interesting information from data.  

Clustering technique is among the most popular techniques in data-driven family and has been 

applied in analysing fMRI data for more than two decades. However, it still draws a lot of attention 

nowadays, with new algorithms often proposed and discussions on their applications in analysing 

fMRI data. Clustering has been used in detecting brain activation, generating brain parcellations, 

and analysing functional connectivity, with the latter two being the most popular applications of 

clustering analysis nowadays. 
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Functional connectivity is defined as the temporal dependency of neuronal activation patterns of 

anatomically separated brain regions (van den Heuvel and Pol, 2010). Functional connectivity 

study using fMRI (fcMRI) examines regional interactions in the brain and has drawn increasing 

attention in the past years. Brain parcellations divide the brain’s spatial domain into a set of non-

overlapping regions or modules that show some homogeneity with respect to one or more metrics 

that define homogeneity, such as the anatomical connectivity and functional connectivity. The 

rationale behind brain parcellation is the structures of interest are often not at the level of a single 

voxel but at a level of a region consisting of many voxels (Thirion et al., 2014). Using the infor-

mation from multiple voxels can reduce the computational pressure (i.e., parcellation vs individual 

voxel) as well as reduce the noise level from single voxel, which is similar to Gaussian smoothing 

in fMRI data preprocessing.  In the following part, only the brain parcellations based on functional 

connectivity are discussed as other homogeneity measures such as anatomical connectivity are 

based on other neurological data rather than fMRI data. In addition to classical model-driven seed-

based approach, many data-driven methods, such as principle component analysis (PCA), inde-

pendent component analysis (ICA), have been applied to analyse functional connectivity. Clus-

tering technique, which aims to maximise the similarity (i.e., homogeneity in the context of brain 

region activity) between data points within the same cluster and the dissimilarity between the data 

points from different clusters, is therefore also widely applied to analyse functional connectivity or 

generate brain parcellations. Besides, clustering analysis has several advantages over other ap-

proaches used in functional connectivity analysis. For example, ICA-based methods search for a 

number of maximally independent components representing the underlying sources of the ob-

served BOLD signal. But these independent components are often perceived as very difficult to 

understand (Thirion et al., 2014). Other decomposition based methods such as PCA also suffers 

from this issue. On the other hand, clustering analysis groups the voxels, which represent the 

physical brain regions, into clusters and reflect functional connections among different brain re-

gions more directly and thus easier to interpret and more comparable to the classical seed-based 

functional connectivity map (fcMAP). 

Unlike the brain activation detection that is done on task-related data, most functional connectivity 

analysis and brain parcellations are performed on resting-state fMRI (rsfMRI) data that measures 
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the spontaneous brain activity when subjects are instructed to relax and not to perform any inten-

tional tasks (Biswal et al., 1997, 1995). The BOLD signals from resting-state brain are mainly 

dominated by low frequency (<0.1 Hz) components. It is believed that these resting-state BOLD 

fluctuations of cortical and sub-cortical areas originate, at least partly, from spontaneous neuronal 

activity and the temporal correlation between the BOLD time-series of different brain regions re-

flects the functional connectivity between different brain regions during rest. Examining resting-

state brain has many applications. For example it has been shown that several brain regions 

display a high level of correlated BOLD signal activity across heathy subjects (van den Heuvel 

and Pol, 2010). Thus studying the rsfMRI data is useful to diagnose possible neurological or psy-

chiatric diseases by comparing the brain functional organisations between healthy people and 

patients. Apart from the majority of studies using rsfMRI data, there are also research using par-

adigm fMRI data for studying the functional connectivity during certain cognitive tasks (Lashkari 

et al., 2012, 2010; Michel et al., 2012). 

2.3.2.1 Activation detection 

As introduced in the last two paragraphs, model-based methods are most widely used to detect 

activations in brain despite some limitations. Researchers have explored alternative ways to an-

alyse the activation patterns of voxels. Fuzzy clustering such as fuzzy C-means is one of the most 

used clustering methods and has been applied to fMRI data analysis from a very early time. Two 

studies (Baumgartner et al., 1998; Moser et al., 1997) used fuzzy C-means to detect the activation 

within the visual cortex. These two studies considered the time course of each voxel as a vector 

𝑇 with a dimension of 𝑁 that is the number of the time points. Fuzzy C-means was applied directly 

on the time domain to acquire the clusters. The signal changes within each cluster were repre-

sented by the centroid of the corresponding cluster. The cluster whose centroid exhibiting an 

activation pattern is considered the activated regions. They also compared the performance of 

fuzzy C-means with other approaches such as correlation analysis (CA) and concluded that fuzzy 

C-means performs well on fMRI data with typical (low) functional contrast to noise (CNR) level 

and does not require prior knowledge about the stimulation protocol. Despite this claim, there are 

several problems with traditional fuzzy C-means. Firstly, fuzzy C-means is sensitive to noise and 

requires the number of clusters as a user input, which greatly influences the clustering results. 
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The results also depend on the initialisation used. Later another study (Chuang et al., 1999) de-

signed a cascade classification scheme where Kohonen clustering neural network was used in 

the first stage to obtain many small clusters at a faster speed than fuzzy C-means. Then fuzzy C-

means was used to reorganize and merge the identified features into primary ones in the second 

stage. However, in this study, the same questions such as the optimal number of clusters are still 

open to discussions. Fadili et al. discussed the number of clusters and the fuzziness index for 

fuzzy C-means when applied on fMRI data (Fadili et al., 2001). However, the decision on optimal 

number of cluster 𝐾 was based on repeatedly testing 𝐾 value using validation method. This is 

applicable when the size of data is relatively small. But when the size of fMRI data is huge, this 

approach will be very computationally expensive and is almost impossible for average lab com-

puters to execute.  

K-means and hierarchical clustering are two other algorithms that were applied at an early stage 

to analyse fMRI data since the BOLD contrast was discovered. Goutte et al. used 𝐾-means and 

hierarchical clustering together with a cross correlation metric to analyse the activation in human 

brain visual area (Goutte et al., 1999). In this study, both clustering algorithms were carried out 

on cross correlation functions between voxel time series. The authors explored the choice of 

number of clusters 𝐾 and its influence on the homogeneity of the clusters and called it a number 

of cluster/homogeneity dilemma. Then the author stated the combination of the two methods is 

probably a potential way to exploit the attractive features of each algorithm. This is probably the 

first call for a consensus clustering analysis of fMRI data. Later Stanberry et al. designed a den-

drogram sharpening technique combined with a hierarchical clustering algorithm, which does not 

need the number of clusters as user input, to identify brain activation (Stanberry et al., 2003). The 

dendrogram sharpening technique started from removing data from the low-density regions in 

order to obtain a clearer representation of the data structure. Then after the centres of clusters 

were identified, the classification algorithm was run on voxels to reassign them to the detected 

centres of clusters. The disadvantage of this method, which was also mentioned in the discussion 

of the original paper, is that it is highly sensitive to the other parameters needed to carry out the 

dendrogram sharpening. Following the data reduction scheme used in previous two studies, Chen 

et al. presented a neighbourhood correlation (NC) approach to keep the candidates of the actual 

active voxels and then used the hierarchical clustering together with a newly proposed spatial-
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temporal measure, which incorporates the NC and the L1 norm spatial distance, to detect brain 

activations (Chen et al., 2006). This approach has several limitations such as the high sensitivity 

to signal patterns and time delays of the BOLD responses. The incorporation of spatial constraint 

might weaken its ability of detecting separate regions showing similar BOLD responses consid-

ering the wildly accepted theory that the brain is a complex network (Bassett and Bullmore, 2006; 

Bressler and Menon, 2010; van den Heuvel and Pol, 2010).  In addition, to reduce the amount of 

data, the threshold value for the NC map needs careful consideration, whose problem is similar 

to the choice of parameters of clustering algorithms.  

For some experimental paradigms, the timing and location of the activation are completely un-

known. Thus the GLM model is impossible to use. Liu et al. (Liu et al., 2000) studied the temporal 

response of the brain after eating. Since it is not known when and where the BOLD signal start to 

change after food digestion, clustering the whole time series (the continuous functional scan 

lasted for 48 mins) would be computationally expensive and is very likely to suffer from the curse 

of dimensionality in clustering problems. To address this issue, the authors developed temporal 

clustering analysis (TCA), in which the three-dimensional brain was collapsed into a one-dimen-

sional space, to search for the maximal response in a combination of signal intensity and spatial 

extent. TCA method can only detect the largest peak of the activation time windows well when 

applied only once, if multiple response peaks at the same location of the brain occur. Gao and 

Yee developed the iterative temporal clustering analysis for detecting multiple response peaks in 

fMRI (Gao and Yee, 2003). Although these methods proved to be effective, the application is 

limited to the aforementioned experiment scenarios. 

Some studies applied clustering techniques as an auxiliary tool to detect activation in the brain. 

Meyer and Chinrungrueng used clustering to distinguish the activated voxels and non-activated 

voxels by dividing the voxels covering a local brain into two clusters in Fourier domain (Meyer and 

Chinrungrueng, 2005), based on the previous finding that the BOLD response to a periodic stim-

ulus can be well characterised by Fourier coefficients (Lange and Zeger, 1997). Similarly, support 

vector clustering (SVC) was used to classify the Fourier coefficients of fMRI time series (Wang et 

al., 2005), utilising SVC’s features that no shape or number of clusters are required as user input. 

Albeit, in this study, there are two crucial free parameters that influence the effectiveness of this 

approach, i.e., Gaussian kernel width 𝜎, determining how fine the samples are clustered, and 
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regularization constant C that affects the amount of outlier points. No systematic solution of 

choosing the appropriate values of these two parameters was given. Furthermore, the Fourier 

transformation based approaches are limited to periodic experimental paradigms. 

Another interesting work related to activation detection is estimating hemodynamic response 

function (HRF). Badillo et al. used consensus clustering based on random parcellation of fMRI 

data to robustify the HRF estimation by combining hemodynamics results provided by different 

parcellations. The consensus clustering strategy used here consisted of running a clustering al-

gorithm multiple times, with different number of clusters 𝐾, on different perturbations of the origi-

nal data and combining the resulting clusters. The perturbations were generated by randomly 

undersampling the data along the temporal axis. To combine multiple clustering results, the con-

nectivity matrices were averaged to yield a consensus matrix whose entries represent the number 

of times two particular voxels were assigned to the same cluster. Based on the parcellations 

generated by clustering the consensus matrix, the HRF estimation was carried out. Similar to 

(Bellec et al., 2010), this work used a 𝑁×𝑁 matrix, with 𝑁 be the number of voxels in the dataset, 

to indicate the membership of the voxels, which limits its application to ROIs based parcellations 

or clustering a specific area of the whole brain. 

2.3.2.2 Functional connectivity and functional brain parcellations 

Fuzzy clustering 

Golay et al. developed a correlation based fuzzy clustering algorithm to analyse the functional 

connectivity of human brain (Golay et al., 1998). The authors proposed two distance metric 𝐷@ 

and 𝐷A based on Pearson correlation coefficient 𝐶𝐶O,P. 𝐷@ is defined as @QRRS,T
@URRS,T

V
 and 𝐷A is de-

fined as 2(1 − 𝐶𝐶O,P). The distance between two voxels below a predefined threshold is consid-

ered functionally connected. The above two distance metrics were compared by using fuzzy clus-

tering and the distance 𝐷@ was claimed to yield the best results.  

Hierarchical clustering 

Golay et al. computed the Pearson correlation coefficient based on the whole time-series con-

taining all frequency information in addition to the very low frequency (≤ 0.1 Hz) component that 
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reflects the underlying neural activities during rest. Cordes et al. firstly utilised the hierarchical 

clustering to study functional connectivity when brain is at resting-state using a new distance 

based on frequency analysis (Cordes et al., 2002). This study implemented spectral decomposi-

tion (Cordes et al., 2001, 2000) of correlation coefficient 𝑐𝑐Z(𝑝, 𝑞) between two voxels 𝑝 and 𝑞, 

which has a property that the sum over all frequencies will yield the correlation coefficient between 

voxels 𝑝 and 𝑞. Then the author proposed a distance measure 𝑑 𝑝, 𝑞 = 1 − 𝑐𝑐Z(𝑝, 𝑞)[.@\]
ZJ[  to re-

tain the correlation coefficient from the low frequency components in the BOLD signals. Only the 

voxel pairs with 𝑑 ≤ 0.7 (i.e., low frequency correlation coefficient ≥ 0.3) were kept for single link 

hierarchical clustering analysis. A linkage inconsistent coefficient 𝐼 = 0.9 (the difference between 

the current link height and the mean, normalized by the standard deviation) was used as the 

threshold for cluster size identification. The author only chose four slices covering auditory cortex, 

motor cortex and visual cortex rather than ran the experiment on the whole brain fMRI data, par-

tially due to the hardware limitation at that time, which also might be the reason the single linkage 

method was used as it was easy to implement. However, a recent study (Thirion et al., 2014) 

claimed that the Ward’s method (Ward, 1963) in hierarchical clustering yield comparatively better 

clustering results. 

Salvador et al. later also used hierarchical clustering to investigate the basic hierarchy of brain 

functional organisation in healthy volunteers (Salvador et al., 2005). Firstly, the brain images were 

parcellated into 90 regions according to a prior anatomical template. Mean time-series of BOLD 

signals within each region were then computed for each subject. An individual inter-regional par-

tial correlation matrix was constructed from these regional mean time-series for each subject. 

Lastly the group mean inter-regional partial correlation matrix was formed by averaging the indi-

vidual partial correlation matrix of each subject. The author did not explicitly specify the cluster 

number 𝑘 but inspected the hierarchy of dendrogram at three general different levels, namely 

lowest level, intermediate levels, and highest level. It was found that the symmetrical links be-

tween bilaterally homologous cortical and subcortical regions were represented at the lowest level 

of the hierarchy; The symmetrical pairs of homologous regions were clustered together in config-

urations corresponding approximately to sub-lobar or gyral domains at intermediate levels; At 

highest level, six large clusters were formed corresponding to four neocortical/paralimbic systems, 
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one paralimbic/limbic system and one subcortical/limbic system. This study illustrated the ad-

vantage of hierarchical clustering that one can view the data from multiple perspectives, yielding 

different organisations of the data at different hierarchies.  The way that using the mean time-

series to represent the activity of the anatomically separated brain regions was debatable as the 

anatomically homogenous region does not necessarily activate in a similar way. In other word, 

the functional and structural organisation of brain network is not a one-to-one relationship and 

need more investigations (E. Bullmore and Sporns, 2009). Eickhoff et al. applied hierarchical 

clustering using Euclidean distance and Ward merging criterion to combine the individual seed 

voxels, obtained by meta-analytic connectivity mapping, into larger regions (Eickhoff et al., 2011). 

Compared with other studies using K-means, the authors claimed the advantage of hierarchical 

clustering, like in (Salvador et al., 2005), that it allows the multiple-layered views of various pos-

sible clustering results. 

The classical unsupervised hierarchical clustering can also be used in a supervised manner. 

Michel et al. designed a supervised hierarchical clustering that addressed some limitations of the 

unsupervised feature agglomeration approaches (Michel et al., 2012). Firstly, a hierarchical sub-

division of the search domain using Ward merging criterion was constructed. In this step, a con-

nectivity constraint was added so that only the adjacent clusters can be merged together (parcels), 

which was also used later in (Blumensath et al., 2013). Then instead of cutting the dendrogram 

horizontally to yield corresponding parcellations, the dendrogram, which can be viewed as a tree, 

was pruned in a supervised way. The cut was initialised at the highest level of the hierarchy, 

followed by successively finding the new sub-tree that maximise a prediction score. The prediction 

score was generated by a prediction function, such as support vector machine (SVM), instantiated 

with the parcel-wise signal averages at the current step. one parcel was split at each step, where 

the chosen split yielding the highest score was performed. Finally, model selection was used to 

select the sub-tree that generates the optimal value for prediction score, with the corresponding 

parcellation be the final result. Such a supervised cut (SC) scheme requires computational power 

heavily especially for the large scale data, in which case the prediction function needs lower com-

plexity to make the scheme applicable. 
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𝑲-means 

Flandin et al. utilised K-means with geodesic distance to partition the brain into a user defined 

number of regions (Flandin et al., 2002). Then the functional images were oversampled at this 

resolution using spline interpolation, followed by averaging all the voxels’ time-series within each 

cell/region as the mean activity. The aim of this strategy is to increase the sensitivity of detection 

in GLM analysis. By using a cognitive paradigm studying motor task related brain areas, the au-

thors found a large increase in detection sensitivity under 340 and 1700 parcels compared to 

voxel-based GML analysis. A more recent study carried out by Yeo et al. used K-means to par-

cellate the cerebral cortex into networks of functionally coupled regions (Yeo et al., 2011). This 

study used a stability analysis of clustering algorithm to explore the appropriate number of clusters. 

In brief, the region of interests (ROIs) were randomly and repeatedly divided into two groups and 

clustering was run separately on the two groups, followed by measuring the reproducibility of 

clustering algorithm’s results for a certain number of cluster 𝐾. Then for the same 𝐾, all the verti-

ces (18715) were also randomly and repeatedly divided into two groups. The model parameters 

learned from clustering one group of vertices were then used to predict the clustering results of 

the second group of vertices. By comparing the results of prediction and clustering on the second 

group, the generalization power of the clustering with corresponding parameters were measured. 

The stability analysis suggested a relatively coarse solution with 7 clusters and a finer one with 

17 clusters. Nonetheless, none of the conclusions depended on a strong assumption that these 

two number were the correct solution to parcellate the cortex. Later Kahnt et al. used standard K-

means with correlation distance metric to parcellate human orbital frontal cortex (OFC) based on 

functional connectivity (Kahnt et al., 2012). The number of clusters 𝐾 was chosen from 2 to 10 

and various approaches were applied to ensure the accuracy and stability of clustering results. 

For each 𝐾 value, the best result from 100 repetitions with different initialisation methods was 

retained. Squared Euclidean distance was used to rule out the bias caused by the distance metric 

based on the fact that the results generated by two metrics were very similar. When averaging 

the connectivity matrices across subjects, the leave-one-out strategy was used 𝑁 (the number of 

subjects) times to obtain the average stability map. To evaluate the cluster solutions, the variation 

of information (IV) (Meila, 2007) was used and, similar to Yeo et al.’s work, a split half strategy 
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was employed to measure the stability of cluster solutions. The authors examined the OFC par-

cellation with different 𝐾 values (similar to a hierarchical approach) and then tried to identify the 

optimal 𝐾 value (𝐾 = 6 in this study). On choosing the most appropriate parameters, both of the 

above two work relied on repeatedly running the algorithm or dividing the datasets into halves 

and compute the relative scores indicating the quality of clustering results. It is applicable for the 

relatively small range of 𝐾 values or small scale datasets (e.g. part of the brain rather than the 

whole brain) and it becomes increasingly difficult for large scale data (Lichtman et al., 2014). 

Mixture model 

Golland et al. proposed an unsupervised segmentation of fMRI volumes using mixture model 

together with Expectation–maximization (EM) algorithm (Golland et al., 2007). The authors for-

mulated the connectivity analysis as partition of voxels into classes that are well characterized by 

𝑁c representative hypotheses, or time courses, 𝑚@,… 𝑚de based on the similarity of their time 

courses to each hypothesis. At the beginning, random 𝑁c voxels were selected and their time-

courses were used as an initial guess for the cluster means. Then a set of update rules were 

applied at each step before convergence. Various number of classes were used to generate a 

hierarchical view of parcellation. To make sure that the results of segmentation of each subject 

comparable, an approximate algorithm was employed to match the label assignment across sub-

jects so that the same label number indicates the same class. Results of mixture model highly 

depend on the chosen model where this study used a normal distribution to model class-condi-

tional densities. Later several studies also used mixture model to parcellate the fMRI data 

(Lashkari et al., 2012, 2010; Tucholka et al., 2008) where other models such as von Mises-Fisher 

distribution were used.  

Spectral clustering 

Thirion et al. combined the parameters in GLM analysis of an event-related paradigm together 

with spectral clustering and K-means (Thirion et al., 2006). K-means clustering algorithm was 

used to derive parcel prototypes on GLM parameters under a spatially constrained setting. Then 

seed voxels were found that correspond to the parcel prototypes defined. Spectral clustering was 

used to assign the voxels in each individual brain to these seed voxels. The author discussed a 

potential alternative to spectral clustering, which is agglomerative clustering, and claimed spectral 
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clustering had advantages over agglomerative approach for irregularly sampled data. In addition, 

agglomerative clustering algorithms are known to be sensitive to noise and outliers. Later Van 

den Heuvel et al. reported a voxel based model-free normalized cut (Ncut) graph clustering ap-

proach with whole brain coverage for group analysis of rsfMRI data (M. van den Heuvel et al., 

2008). Each individual’s rsfMRI dataset was modelled as a weighted and undirected graph with 

nodes representing the voxels and edges connecting two voxels were computed as the correla-

tion between their filtered BOLD time-series. In order to reduce the graph complexity, a cut-off 

threshold 𝑟𝑐 was applied to make the weights of the edges that did not reach 𝑟𝑐 to zero. 𝑟𝑐 was 

set to 0.4 based on the facts that the group clustering results did not vary significantly from indi-

vidual clustering results compared with other 𝑟𝑐 values (0.3 and 0.5). Regarding the number of 

clusters, the authors choose 20, double the number of 6 to 10 networks reported in previous fMRI 

resting-state studies, to avoid the underclustering that is the number of clusters used is less than 

the actual classes in the data. In addition, it was demonstrated that the overclustering at the indi-

vidual level would not affect the nature (e.g. shape or outline) of group clustering results. The 

group clustering was done on the group graph that reflects the RSN consistency across the group 

of subjects. One important aspect in group clustering was parameter setting. The authors firstly 

performed Ncut with respect to different combination of cut-off threshold and number of clusters, 

yielding a 𝑃×𝑄 matrix, with P the range of used numbers of clusters and Q the range of used 

graph complexity thresholds. For each combination, the Ncut cost, defined as the summation of 

the weights of the edges that have to be removed to divide the group in multiple sets, was com-

puted. The combination with the smallest Ncut cost was chosen as the optimal parameters for 

generating the final group clustering results. Spatial constraints can also be introduced in spectral 

clustering. Craddock et al. proposed a spatially constrained spectral clustering of whole-brain 

rsfMRI data by only computing the correlations between a certain voxel and its neighbours (26 

voxels, face and edge touching) when forming the similarity matrices (Craddock et al., 2012). This 

constrained the clusters to contain the contiguous voxels and the spatial constraints resulted in 

sparse similarity matrices, which reduce the computational loads. In terms of parameters selec-

tion, the authors firstly obtained the clustering results from all the combination of parameters, 

similar to (M. van den Heuvel et al., 2008),  and evaluated them using leave-one-out cross-vali-

dation (LOOCV) and silhouette width (SI).  
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In addition to the classical spectral clustering, Chen et al. used a multi-view spectral clustering 

approach (Kumar and Daumé, 2011) to inspect the group-wise consistent multimodal (diffusion 

tensor imaging (DTI) and rsfMRI) brain networks (Chen et al., 2013) based on 358 ROIs devel-

oped in an earlier work (Zhu et al., 2013). A co-training approach based on spectral clustering to 

maximize the agreement between the structural network and functional network, and then the 

agreement between subjects, to find the group-wise consistent multimodal connectomes of the 

human brain. The agreement between DTI and rsfMRI views was achieved by projecting the data 

affinity matrix of one view to the eigenspace of the other view. The final fused connection matrix 

can be obtained by calculating the average normalized matrix between different subjects and 

views. Base on fused connection matrix, the final multi-modal connectomes of human brain will 

be obtained directly by applying classical spectral clustering algorithm. During the co-training 

stage, the affinity matrix was projected to the first 𝐾 eigenvectors of the graph Laplacian. Ideally, 

𝐾 should be set equal to or larger than the number of clusters in the data. The authors tested 

different 𝐾 values and set 𝐾 to 25, considering the number of nodes in the constructed network 

was 358. 

Network-based community detection 

Note that spectral clustering deals with a network constructed from the datasets and in the field 

of network theory, the clustering problem is commonly called community detection. Human brain 

has been identified as a complex network based on structural connectivity or functional interde-

pendence (Bressler and Menon, 2010; Sporns, 2014). Graph theory has become the main ana-

lytical tool in the quantitative analysis of complex networks, and has naturally been employed in 

the studies of brain networks topology and organisation (E. T. Bullmore and Sporns, 2009). Iden-

tifying network communities is one of the important contributions of graph theoretic network anal-

ysis. Community detection techniques, which are data driven methods, have gained great popu-

larity in the study of identifying RSNs and functionally connected regions (Crossley et al., 2013; 

Power et al., 2011; Schwarz et al., 2009; Sporns, 2014; M. P. van den Heuvel et al., 2008). In 

addition to the Ncut algorithm introduced in the spectral clustering section, a leading eigenvector 

community detection algorithm by Newman (Newman, 2006) was used in a meta-analysis of a 

large primary literature that used fMRI or PET to measure task-related activation (Crossley et al., 

2013). The major issue of Newman ’s algorithm is that matrix decomposition (same as Ncut) is 
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required and this limits its use in the large-scale voxel-based network analysis. Schwarz and col-

leagues employed the ‘Fast Modularity’ algorithm (Clauset et al., 2004) in their study of the re-

sponse of the rat brain to acute pharmacological challenge (Crossley et al., 2013). Although 

claimed to be “fast”, in practice, the ‘Fast Modularity’ algorithm takes a relatively long processing 

time in large-scale networks analysis. Power and colleagues (Power et al., 2011) utilised the In-

foMap algorithm, which was developed by Rosvall and Bergstrom (Rosvall and Bergstrom, 2008) 

to test their hypothesis that specific patterns of high correlation within functional systems would 

be reflected as sub-graphs within a brain-wide resting state fMRI network. The InfoMap algorithm 

is faster than the ‘Fast Modularity’ algorithm; however, because of its stochastic nature of random 

walk strategy, like other traditional clustering algorithms, each run of the algorithm will provide 

different community results. Obtaining meaningful and stable networks require multiple trials and 

evaluations. Nevertheless, InfoMap is very competitive among the community detection algo-

rithms. 

Consensus clustering 

Consensus clustering has not been often used in fMRI data analysis. To date, only a few studies 

adopted this concept including published works from this thesis (Liu et al., 2017, 2015a). The 

rationale behind consensus clustering is to extract the stable features from the clustering results 

and thus reduce the random effects from clustering algorithms. Bellec et al. proposed a generic 

statistical framework called bootstrap analysis of stable clusters (BASC), implemented with K-

means, to quantify the stability of RSNs. Because it is often impossible or impractical to repeat 

fMRI data acquisition for an experiment multiple times, BASC utilized bootstrapping to generate 

a large number of samples from the existing data and applied a clustering algorithm (K-means in 

this case) on them, followed by averaging all the adjacency matrices from one subject into an 

individual stability matrix. At the group level, bootstrapping was applied to the individual stability 

matrices. To mimic random variations in subject recruitment, 𝐵 sets of subjects were generated 

by drawing subjects (with replacement) from the existing (original) group of subjects, with each 

set having the same number of subjects as the original. Then within each new set of subjects, 

individual stability matrices from the subjects in this set were averaged to create an average sta-

bility matrix. Next a clustering algorithm was applied to each average stability matrix to generate 

a group-level adjacency matrix. All group-level adjacency matrices were then averaged to create 
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a group stability matrix. Finally, a clustering algorithm was run on the group stability matrix to 

derive the stable clusters. In general, BASC is a generic method to investigate the stability of any 

random clustering process. A core part of the method is resampling new simulated data based 

on the existing data. Note that in Bellec’s study, the time-series were mean time-series from ROIs 

rather than from voxels and the Monte-Carlo simulation is known to be computationally expensive, 

especially when the scale of simulated data is large (e.g. voxel-wise time-series). Nevertheless, 

the BASC is a good attempt to address the stability of clustering results. Later, based on the 

results from aforementioned BASC, Bellec proposed a method to select a limited number of 

scales (i.e. the number of clusters 𝐾) that are representative of the full hierarchy of the clustering 

results with different choices of 𝐾. The estimation of the result quality with a certain scale was 

done through interpolating the results with existing scales. The author stated that the mathemat-

ical criterion used to select the number of scales is heavily influenced by the size of the clusters 

and whether the multiscale clustering is actually hierarchical or not. And clustering algorithms are 

likely to affect the selection more than the data itself. Elucidating these questions is an important 

future research direction.  

The BASC together with the scale selection were used further to investigate whether the rich 

variety of responses observed, associated with task performance, across the brain is functionally 

meaningful and consistent across individuals (Orban et al., 2015). Thus the task-evoked fMRI 

data was used in this study. The task-evoked hemodynamic response at each voxel was esti-

mated by interpolating the time points within the task window and averaging them across all the 

aligned events. The clustering analysis was done for 957 regions, formed by region growing al-

gorithm (Bellec et al., 2006), rather than voxel-wise to reduce the computational burden. Then the 

BASC was applied to these region-wise averaged hemodynamic responses to obtain the task-

evoked brain network. From the methodological aspect, this is one of the few studies that incor-

porate consensus clustering strategy into the analysis of paradigm fMRI data. 

In addition to the work based on BASC, Kelly et al. studied the functional architecture of insula 

using a different consensus clustering strategy (Kelly et al., 2012). A distance metric called 𝑒𝑡𝑎A 

was used to quantify the similarity between all possible pairs of intrinsic functional connectivity 

(iFC) maps associated with voxels within insula. The 𝑒𝑡𝑎A was defined as follows: 
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 𝑒𝑡𝑎A = 1 −
(𝑎I − 𝑚I)A − (𝑏I − 𝑚I)AD

IJ@

(𝑎I − 𝑀)A − (𝑏I − 𝑀)AD
IJ@

 (2.5) 

where 𝑎I and 𝑏I are the iFC values at voxel 𝑖 in two iFC maps a and b, 𝑚I is the mean value of 

the two images at voxel 𝑖 and 𝑀 is the grand mean iFC value across all voxels in both iFC maps. 

It is claimed that 𝑒𝑡𝑎A takes into account differences in scaling and offset between images, which 

does not affect spatial correlation value. Spectral clustering together with K-means were applied 

to 𝑒𝑡𝑎A matrix to generate parcellations. Then adjacency matrix was constructed at individual level 

and consensus matrix was formed by averaging multiple adjacency matrix from multiple number 

of clusters 𝐾, and multiple data collection sites. Lastly, spectral clustering was applied to generate 

final cluster solutions. In general, the consensus strategy used here follows the same idea as 

BASC, which is to combine multiple adjacency matrix to yield a consensus matrix reflecting the 

agreement that certain two voxels/ROIs belong to the same cluster.  

Another recent work about consensus clustering analysis of fMRI data was proposed by Ryali et 

al. (Ryali et al., 2015). In this work, a consensus clustering evidence accumulation (CC-EAC) 

framework was developed to combine multiple clustering methods for segmenting brain regions 

using rsfMRI. Correlation between voxel time-series was used as the distance metric. CC-EAC 

consists of base clustering algorithm (e.g. K-means, spectral clustering, hierarchical clustering) 

and consensus clustering. Several combinations of base clustering algorithm and algorithm  in 

consensus clustering were used such as K-means with hierarchical (Bellec et al., 2010), K-means 

with spectral clustering, and spectral clustering with spectral clustering (Kelly et al., 2012). To 

determine the optimal number of clusters 𝐾, five object criteria, namely normalised mutual infor-

mation (NMI), variation of information (VI), Rand index (RI), probabilistic Rand index (PRI), and a 

modified silhouette used in (Bellec et al., 2010), were used. Depending on the definition of these 

criteria, the 𝐾 that yielding the optimal average criterion between all pairs of subjects was consid-

ered the optimal. Based on the results, a combination of 𝐾-means and consensus hierarchical 

clustering, together with the probabilistic Rand index and modified silhouette, is effective in un-

covering the optimal number of stable clusters from simulated and experimental rsfMRI datasets.  
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Note that all the aforementioned works have only used one clustering algorithm and combined 

the results from multiple samplings, data modalities, parameters, or collection sites in their con-

sensus strategy. In fact, repeating a single clustering algorithm and combining the results will 

reduce the random effects from factors such as different parameters. However, it will not change 

the underlying assumption of a certain clustering algorithm, which is likely to introduce an algo-

rithm bias towards the clustering results. Nevertheless, in Ryali’s work, the authors realised the 

potential and flexibility of consensus clustering and further proposed an idea in the future work 

section, which is combining complementary clustering methods as opposed to using just one 

clustering method.  

2.4 Summary of current issues and challenges in clustering analysis 

of fMRI data 

1. Individual clustering algorithm often requires some pre-defined parameters to execute, 

such as the popular 𝐾-means, fuzzy C-means, and SOM. The accuracy and efficiency of 

the clustering results largely depend on the choice of these parameters. From the meth-

odological side, users often use some heuristic approaches to estimate parameters like 

the number of clusters 𝐾. Alternatively, clustering can be run with a range of parameters 

first and then each solution will be validated and compared with each other, followed by 

choosing the best solution based on the validation results. This is possible when the size 

of data is relatively small, but in the context of neuroimaging data whose size keeps in-

creasing due to the higher spatial and temporal resolution as well as more and more 

participants recruited in a single fMRI experiment, the brutal exhaustive search becomes 

more and more impractical. 

2. A large number of clustering algorithms have been proposed to address various problems. 

Each of these algorithms has some underlying assumptions such as the data structure, 

the way objects connect with each other and so on. Traditionally, one can use the dis-

criminative approach such as model selection procedure to rank the competing algo-

rithms, like the parameters selection in single clustering algorithm, from a series of inten-

sive computational simulations. Or one can employ the generative approach to model the 

data generation process and create a model that suits the data best. However, due to the 
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lack of ground truth in clustering problems and the large scale of datasets, the discrimi-

native approach become increasingly difficult. The generative approach provides a fea-

sible way of modelling the data structure when the fMRI experiment design is relatively 

simple but when the data generation process is complicated such as the two fMRI exper-

iments used in this thesis, it is also difficult to employ. 

3. The aforementioned two problems and challenges are more or less related to the large 

scale of datasets to be analysed. In this era filled with big data in many areas such as the 

neuroimaging field, the development of computational methods needs to consider not 

only the accuracy and validity but also the capability of dealing with large-scale datasets 

regarding the available computational resources. To achieve this goal, both the hardware 

platform and algorithms themselves need to cope with each other when a particular anal-

ysis strategy is developed. In other words, in addition to the smart design of the analysis 

paradigm or framework, the included methods also need to be fit in the high performance 

computing technique rather than indiscriminately feeding everything into a high perfor-

mance computer and let the hardware-side deal with the rest. 
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Chapter 3 Methodology 

 

This chapter details the methods and techniques in the consensus clustering analysis framework 

that have been adopted to produce the results presented and discussed in the subsequent chap-

ters. Firstly, the details of fMRI data collection are described, followed by the introduction of the 

preprocessing of the raw data and the preparations of the data for clustering analysis. Then the 

clustering paradigm is described, including single clustering algorithm and integration of multiple 

clustering results for consensus analysis. The last part of this chapter details the usage of grid 

computing technique for reducing the total execution time as well as two statistical tests for ana-

lysing strong BOLD responses elicited by stimuli and response shapes respectively.  

3.1 fMRI data collection and preprocessing 

3.1.1 Data collection 

The data collection was carried out by the research staff and students at Aalto University and 

University of Helsinki in Finland. There are two fMRI studies inspecting the different aspects of 

brain responses to music. In this section, only the common data collection procedure is introduced 

and the experiment paradigm for each fMRI experiment will be introduced later in the chapters 

that report the procedure of the fMRI data analysis and the results.  

There are two MRI scanners used to collect the data. One was conducted with a 3 Tesla scanner 

(3.0T Signa VH/I General Electric) in the advanced magnetic imaging (AMI) Centre at Aalto. An-

other one was performed using a 3T MAGNETOM Skyra whole-body scanner (Siemens 

Healthcare, Erlangen, Germany) and a standard 20-channel head-neck coil, also at the AMI Cen-

tre. Different scanning parameter settings were used on these two scanners based on their per-

formances to get high quality fMRI images. The detailed parameters (e.g. field of view, oblique 

slice thickness, and spacing) will be specified in the chapters later. Despite of the different set-

tings, all the data collection procedures strictly conform to the neuroscientific standard and were 

carried out by experienced researchers and technicians to ensure the quality of the data. For 

example, in order to eliminate the static magnetic field interruption from the magnetic coil located 
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in the normal earphones, the sound signal (music) was sent to the participants via an fMRI com-

patible earphone. In addition, the fMRI studies were approved by the ethical committee of the 

Helsinki University Central Hospital and complied with the Helsinki Declaration. 

3.1.2 Preprocessing 

Functional MRI scans were preprocessed on a MATLAB platform using SPM8 (Statistical Para-

metric Mapping), VBM for SPM (Voxel Based Morphometry; Wellcome Department of Imaging 

Neuroscience, London, UK), and customized scripts developed by the researchers and techni-

cians in Finland. For each participant, low-resolution images were realigned on six dimensions 

using rigid body transformations (translation and rotation corrections did not exceed 2 mm and 2° 

respectively), segmented into grey matter, white matter, and cerebrospinal fluid by using VBM, 

and registered to the corresponding segmented high-resolution T1-weighted structural images. 

These were in turn normalized to the MNI segmented standard a priori tissue templates using a 

12-parameter affine transformation. Functional images were then blurred to best accommodate 

anatomical and functional variations across participants as well as to enhance the signal-to-noise 

by means of spatial smoothing using 8 mm full-width-at-half-maximum Gaussian filter. 

Note that the raw fMRI data preprocessing steps follow a commonly accepted procedure. Alt-

hough one cannot guarantee the noise and misalignment are completely removed by these pro-

cedures, no perfect preprocessing pipeline exists. And the work of preprocessing performance 
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Figure 3-1. Demonstration of high-pass filtering of the BOLD signal. The top one is the 
original time-series and the bottom one is the filtered time-series. 
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improvement is out of the scope of the studies in this thesis. Nevertheless, the processed data 

have been used in other published works using classical hypothesis-driven approaches. 

3.1.3 Preparation of data for clustering analysis 

3.1.3.1 Scanner drift removal 

The 3D volume data was converted to a vector (228453×1) by using a standard brain mask. The 

above step was applied to every 3D volume scan from each subject and all the scans (along the 

time domain) of each subject were combined sequentially, forming the fMRI time series of each 

subject. During the scanning, the baseline signal may change over time, i.e. the general BOLD 

magnitude measured at a certain time is different from the general magnitude at another time. 

This phenomenon is called scanner drift. Many sources can lead to the scanner drift, including 

the common cause of the change in the resonant frequency of hydrogen protons associated with 

subtle changes in the strength of the static field (system noise). Even though it is powered by 

superconducting currents, the main magnet still experiences minute drifts in stability over time. In 

addition, the physiological noise is also thought to contribute to the low frequency drift in the voxel 

time-series. Since the signal changes from low frequency drift is not caused by the experiment 

stimulus, it would add non-relevant signal to the real BOLD signal changes caused by the exper-

iment stimulus, thus the accuracy of either hypothesis-driven or data-driven analysis would be 

undermined. Figure 3-1 demonstrates the effect of the low frequency drift removal. Note in GLM 

approach, low frequency drift can be modelled as confounding effects during statistical data anal-

ysis. But in data-driven analysis such as clustering, the drift has to be removed before further data 

processing. In this thesis, a high-pass filter with a cut-off frequency 1/120 Hz is used to remove 

the low-frequency BOLD signal drift (Brattico et al., 2011). 

3.1.3.2 Extracting paradigm time-series 

During the whole fMRI scanning session, not every image is related to the experiment paradigm. 

For example, the participant could have a short rest between two tasks. The images sampled at 

these non-task time windows should be excluded for clustering analysis as they do not contain 

the information of brain activities from the tasks the subjects perform.  
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When the MRI machine is scanning the brain states of the participants, all the events are recorded 

in a logfile, including stimulus onset time, timing of each pulse, and the responses of subjects 

(e.g. code indicating left or right button pressed). Through the information in logfile together with 

the paradigm design parameters, the fMRI images related to the tasks can be extracted out. Fig-

ure 3-2 is an example of  a logfile of a random subject whose data is used in this thesis. There 

are a lot of information in the file but two types of them are particular important for extracting the 

paradigm related fMRI images. The first one is the stimulus type, which is marked with red rec-

tangle. The second one is the onset time of each stimulus, which is marked with blue rectangle. 

In this example, 147900 indicates 14.79 seconds after the scanning starts. Another information 

needed is the duration of each stimulus. Then the set of fMRI images covering a particular stim-

ulus is calculated according to Formula (3.1). 

 𝑖𝑚𝑎𝑔𝑒_𝑟𝑎𝑛𝑔𝑒 = 𝑐𝑒𝑖𝑙
𝑜𝑛𝑠𝑒𝑡
𝑇𝑅

+ 1 : 𝑓𝑙𝑜𝑜𝑟
𝑜𝑛𝑠𝑒𝑡 + 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑅
+ 1  (3.1) 

The 𝑐𝑒𝑖𝑙 and 𝑓𝑙𝑜𝑜𝑟 functions are used to ensure only the fMRI images within the period of stimu-

lus are included when the onset time is between two adjacent images, which is often the case. 

Figure 3-2. An example of information recorded in the logfile during fMRI experi-
ment. 
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Note that all the 𝑇𝑅𝑠 are not exactly the same as the logfile shows, however, this is not an issue 

considering the small differences and the slow hemodynamic response changes. 

Then for each subject and each stimulus, the above process is applied to extract the correspond-

ing BOLD time-series. These time-series are grouped according to their categories and used later 

for clustering analysis. 

3.2 Individual clustering algorithms 

3.2.1 K-means 

The K-means algorithm is arguably the most commonly used partitional clustering algorithm for 

vector data in the clustering family (Thirion et al., 2014). The goal of K-means is to obtain the 

partition that minimises the within-cluster dissimilarities for a given number of clusters. Given a 

set of voxel’s time-series 𝒕@, 𝒕A, 𝒕B, … , 𝒕D   with each voxel’s time-series having 𝑑 BOLD response 

values, K-means partitions these time-series into 𝐾 clusters (𝐾 ≤ 𝑛) 𝑪 = 𝑪@, 𝑪A, 𝑪B, … , 𝑪v  so as 

to minimize the within-cluster sum of squared-error. The objective function is defined in Equation 

(3.2).  

 arg	min
𝑪

𝒕 − 𝝁I A

𝒕∈𝑪�

v

IJ@

 (3.2) 

where 𝝁𝒊 is the mean time-series of all the members in cluster 𝑪I. The procedure of K-means is 

described as follows: 

Algorithm K-means: 

1. Initialise 𝐾 clusters either randomly or deterministically; 

2. Do: 

    { 

    a. Assign each time-series to its nearest cluster 𝑪I, where 𝑖 = argmin 𝒕 − 𝝁I ; 

b. Update the centroid of each cluster 𝝁I =
𝟏
d�

𝒕𝒕∈𝑪�  after membership reassignment (𝑁I is the 

number of members in cluster 𝑪I); 

} 

Until (convergence or the iteration number is larger than the predefined value); 
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The optimisation problem to find the optimal partition minimising the total squared-error is a non-

deterministic polynomial-time hard (NP-hard) problem. According to the standard algorithm, the 

global optimum is not guaranteed to achieve. Although the standard algorithm is guaranteed to 

converge at a local optimum. In practice, the number of iterations is often defined manually in 

advance to stop the iterations.  

As described above, the result of iterations depends on the initialisation of 𝐾 clusters at the first 

step. Kaufman approach (KA) is a deterministic initialisation method (Kaufman and Rousseeuw, 

1990). A work carried out later showed that KA and random partition initialisation perform better 

than the other initialisation methods (Peña et al., 1999). When using random initialisation, multiple 

runs with different initialisations and the same other parameters (e.g., number of clusters) is often 

employed to remove the random effects. Considering the size of data in this thesis, the KA ap-

proach is chosen as the initialisation method for K-means. The implementation of K-means is 

from the 𝑘𝑚𝑒𝑎𝑛𝑠 function in Statistics and Machine Learning Toolbox in MATLAB. 

3.2.2 Hierarchical clustering 

Hierarchical clustering is also one of most popular clustering methods in the literature. In contrast 

to partitional clustering such as K-means, which attempts to directly divide the dataset into a set 

of disjoint clusters, a hierarchical clustering method is a procedure of forming a nested partition 

from a proximity matrix, which can be graphically represented by a tree, called a dendrogram. By 

cutting the dendrogram at a certain level, the number of clusters 𝐾 and the corresponding partition 

is obtained. Cutting the dendrogram at different levels will lead to different clustering results. 

There are two strategies for hierarchical clustering, namely agglomerative and divisive strategies. 

In general, the complexity of hierarchical clustering makes it not as fast as K-means for clustering 

large dataset. In addition, the divisive strategy is even slower than agglomerative approach. Here, 

the agglomerative strategy is chosen as the base hierarchical clustering algorithm. The procedure 

of agglomerative hierarchical clustering is described as follows: 

Algorithm agglomerative hierarchical clustering: 

1. Each individual object/voxel is considered as a cluster. Calculate the initial distance matrix for 

all clusters; 
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2. Do: 

    { 

    a. Merge the two clusters with the minimal distance in the current distance matrix; 

b. Calculate the updated distance matrix for the newly merged cluster and the other clusters; 

} 

    Until (all objects/voxels are in one cluster); 

In step 2-a, the minimal distance between certain two clusters are used as the criterion to merge 

these two clusters. There are many different definitions of the distance between clusters, namely 

single linkage, complete linkage, average linkage and Ward linkage. Ward linkage is generally 

very efficient compared to other linkage methods and recently its efficiency and accuracy are 

further discussed (Thirion et al., 2014). In this thesis, the agglomerative hierarchical clustering 

with Ward linkage is chosen. 

Ward linkage is also known as Ward’s minimum variance method, originally presented by Ward 

(Ward, 1963). Similar to K-means, the objective of Ward linkage is to minimise the total within-

cluster variance. To achieve this, the minimum distance in step 2-a is defined as the minimum 

between-cluster variance and the two clusters that lead to the minimum increase in total within-

cluster variance after merging will be merged together. Therefore, the distance function between 

two clusters in Ward linkage is defined as the within-cluster variance by considering them as one 

cluster as shown in Equation (3.3). The within-cluster variance is also called error sum of squares 

(ESS). 

 𝐸𝑆𝑆 = 𝒕I − 𝝁 A

𝒕�∈𝑪

 (3.3) 

After the hierarchy of the dataset is constructed, represented by dendrogram, the number of clus-

ters 𝐾 is given to cut the dendrogram and form the corresponding partition of the data. The im-

plementation of hierarchical clustering is from the function 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in Statistics and 

Machine Learning Toolbox in MATLAB. 
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3.2.3 SOM 

SOM is one of the most popular clustering algorithms, ideally suited to exploratory data analysis, 

allowing one to facilitate easy visualisation and interpretation of the clustering results. SOM be-

longs to the neural network based clustering family, which is generally based on competitive 

learning (CL) model. The competitive learning is a process that different neurons or processing 

elements compete on who is allowed to learn to represent the current input. In the case of SOM, 

neighbouring cells in a neural network compete in their activities by means of mutual lateral inter-

actions, and develop adaptively into specific detectors of different signal patterns.  The objective 

of SOM is to represent high-dimensional input patterns with prototype vectors that can be visual-

ised in a usually two-dimensional lattice structure.  

The SOM clustering algorithm starts with a pre-defined neuron grid whose shapes can be rectan-

gular, hexagonal, circular, and so on. Assume that are 𝐾 neurons in the grid, each neuron has a 

weight vector denoted by 𝒘I, 𝑖 = 1: 𝐾 that is initialised randomly. The input data is denoted by 

𝑻 = 𝒕I 𝑖 = 1,2, … , 𝑁 . In the case of clustering fMRI data, the vector 𝒕I can be voxel time-series 

or other computed features of the voxels. The Euclidean distances between input data 𝑿 and 

weight vectors 𝒘 are calculated, and then, for each input data vector 𝒕I, the best match unit (BMU) 

that minimises the Euclidean distance between 𝒕I and weight vectors is found. BMU is expressed 

in Equation (3.4). 

 𝐵𝑀𝑈 = arg	min
𝒋

𝒕I − 𝒘�  (3.4) 

After the BMU for each input vector is found, the weight vector of corresponding BMU is updated. 

The winner-take-all (WTA) paradigm only allow BMU to update its weight vector. Virtually, SOM 

employs the WTM paradigm, where at each learning step all neurons within a neighbourhood set 

(a set of neurons) around BMU can also be updated. The width or radius of this neighbourhood 

set is time-varying: it shrinks monotonically with time and ends with only BMU in the set. Let 𝑁c 

denote the neighbourhood set. The basic weight vector updating process in time t is expressed 

in Equation (3.5). 

 𝒘𝑖 𝑡 + 1 =
𝒘𝑖 𝑡 + ℎ 𝑡 𝒕𝑗 − 𝒘𝑖 𝑡 				𝑖𝑓	𝑖 ∈ 𝑁𝑠 𝑡
𝒘𝑖 𝑡 																																										𝑖𝑓	𝑖 ∈ 𝑁𝑠 𝑡

 (3.5) 
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where ℎ 𝑡  is the neighbourhood function defined in Equation (3.6). 

 ℎ 𝑡 = 𝛼(𝑡)exp −
𝒓𝐵𝑀𝑈 − 𝒓𝑖2

2𝜎2 𝑡
 (3.6) 

where 𝛼(𝑡) is the monotonically decreasing learning rate, 𝒓 represents the position of correspond-

ing neuron, and 𝜎 𝑡  is the monotonically decreasing kernel width function. The procedure of 

SOM is summarised as follows: 

Algorithm SOM: 

1. Initialise the topology of SOM and each node’s weights 𝒘I, 𝑖 = 1: 𝐾, randomly; 

2. Do: 

    { 

a. Find the BMU by calculating the distance between the input vector and the weights of each 

node, as shown in Equation (3.4); 

b. The radius of the neighbourhood around the BMU is calculated. The size of the neighbour-

hood decreases with each iteration according to Equation (3.6); 

c. Each node in the BMU’s neighbourhood has its weights updated, according to Equation (3.5), 

to become more like the BMU. Nodes closest to the BMU are altered more than the nodes 

furthest away in the neighbourhood; 

} 

    Until (convergence or iteration number is larger than the predefined value); 

The implementation of SOM is done by combining several functions in neural network toolbox in 

MATLAB R 2013b, namely 𝑛𝑒𝑤𝑠𝑜𝑚, which initialises a SOM network, 𝑡𝑟𝑎𝑖𝑛, which trains the SOM 

network, and 𝑠𝑖𝑚, which performs the clustering using the trained network. The input data to the 

𝑡𝑟𝑎𝑖𝑛 function are the same as those to the 𝑠𝑖𝑚 function for clustering purposes. 

3.3 Consensus clustering for robustness and stability 

3.3.1 Individual partition generation 

The individual partitions are from the clustering results of the excerpt fMRI time-series recorded 

when certain type of stimuli are presented. For example, if 𝑀 functional images are acquired when 

a certain music excerpt is presented and the number of voxels covering the whole brain is 𝑁, then 
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the excerpt fMRI time-series is a 𝑁×𝑀 matrix with its rows representing voxels and columns rep-

resenting the time profiles of each voxel. Figure 3-3 is the demonstration of 50 random voxels’ 

time-series during a random stimulus. These time-series are used to define the activities of voxels, 

based on which the voxels sharing a similar activity pattern are grouped together by clustering 

algorithms. 

For each aforementioned excerpt fMRI time-series, a clustering algorithm with a parameter setting 

is applied. The clustering result is denoted by a 𝐾×𝑁 matrix 𝑼 called partition matrix, where 𝐾 is 

the number of clusters and 𝑁 is the number of voxels in total. The elements of partition matrix 

represent the membership of each voxel. Each combination of clustering algorithm and parameter 

setting will yield a partition matrix for one excerpt fMRI time-series. In total, there are 𝑃𝑎𝑟𝑎II  

partitions generated for each excerpt time-series, where 𝑃𝑎𝑟𝑎I is one combination of clustering 

algorithm and parameter used. 

In the case of crisp clustering where each object belongs exclusively to one cluster, the partition 

matrix 𝑼 is a binary matrix with the value 1 at position (𝑘, 𝑛) representing the 𝑛-th voxel belongs 

to the 𝑘-th cluster. In the general case of fuzzy clustering, the elements can have any value be-

tween 0 and 1 inclusively. In general, a partition matrix 𝑼v×d fulfils the following three conditions. 

 𝑼�×D ∈ 0,1 , ∀𝑘, ∀𝑛 (3.7) 

Figure 3-3. Demonstration of 50 voxel’ time-series during a 
randomly selected stimulus. The horizontal axis indicates the 
number of functional images that are sampled and the vertical 
axis indicates the response strength at different time. 
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= 1, ∀𝑛 (3.8) 

 0 < 𝑼�×D

d

DJ@

< 𝑁, ∀𝑘 (3.9) 

Equation (3.8) necessitates that the total membership of any given voxel in all of the clusters 

should be 1 because the fuzzy membership values represent the probability of the voxel’ belong-

ingness to different clusters. 

3.3.2 Partition matrices relabelling 

Clustering algorithm is unsupervised, thus the order of the cluster label is not guaranteed to be 

aligned. For example, the 𝑘-th cluster in a given partition may not correspond to the 𝑘-th cluster 

in other partitions. The summation of unaligned partitions will mix the irrelevant clusters together, 

making the whole following procedure meaningless. Therefore, before the next stage, it is essen-

tial to reorder the clusters in all of the partitions such that they are aligned. After the alignment, 

the 𝑘-th cluster in a given relabelled partition corresponds to the 𝑘-th cluster in each one of the 

other partitions. 

Depending on the specific applications, the priorities of relabelling may differ. In some applications, 

all of the resulting clusters are of interest for investigation, and the priority in this case is to opti-

mise the overall relabelling accuracy. On the other hand, many applications only need the few 

focused high-quality clusters while ignoring the rest of the clusters. Two relabelling technique 

called min-min and min-max were proposed by Abu-jamous et al., which facilitate the pipeline 

used later. Min-max approach is for overall relabelling accuracy (Abu-Jamous et al., 2013) and 

min-min approach is for obtaining focused high-quality clusters (Abu-Jamous et al., 2015a). When 

carrying out the connectivity analysis in this thesis, the main objective is to identify the brain struc-

tures that consistently having highly correlated BOLD responses across different stimuli types 

rather than partitioning the whole brain into many small regions (brain parcellation). So the fo-

cused high-quality clusters are more interesting to investigate than the overall parcellation of the 

brain. Consider these research objectives, the min-min approach is chosen as the relabelling 

method for aligning the large amount of individual excerpt partition matrices. 
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Relabelling a partition matrix 𝑼 to be aligned with a reference partition matrix 𝑼��Z aims at finding 

a matrix 𝑼 which represents one of the permutations of the rows of 𝑼 such that its similarity to 

𝑼��Z is maximised. Finding the optimal labelling correspondence is an NP-complete combinatorial 

problem (Ayad and Kamel, 2010), which has a search space of 𝐾!, making exhaustive search 

impractical for not so large value of 𝐾. Thus the heuristic algorithms, e.g., min-min method, are 

often used to approximate the solution. The min-min relabelling method consists of four steps: 

Step 1. A dissimilarity matrix 𝑺v×v is constructed with pairwise Euclidian distances between the 

rows (clusters) of the matrix 𝑼 and the rows of the reference matrix 𝑼��Z. 

Step 2. The minimum value in each column of 𝑺 is found, followed by identifying the minimum 

value of these minima. Then the rows (clusters) from 𝑼 and 𝑼��Z which correspond to this dissim-

ilarity value are mapped to each other, i.e., these two clusters are considered to have the same 

cluster label.  

Step 3. The row and the column that intersect at the aforementioned dissimilarity value are de-

leted from the similarity matrix 𝑺. Then the minimum of the column’s minima in the reduced matrix 

is further identified leading to mapping next pair of clusters from 𝑼 and 𝑼��Z. 

Step 4. Repeat step 2 and 3 until all rows (clusters) from 𝑼 are mapped to their corresponding 

rows (clusters) in 𝑼��Z. 

In summary, after the relabelling of any two partition matrices, the rows of the two partition matri-

ces indicate the same cluster label. So they can be further manipulated (e.g., summation or sub-

traction) to yield more information from the clustering results. Next section will introduce how the 

relabelling method is used to generate the consensus partition matrix from integrating multiple 

individual clustering partition matrices. 

3.3.3 Fuzzy consensus partition matrix generation 

3.3.3.1 Merging multiple partition matrices into consensus partition matrix 

A fuzzy consensus partition matrix (CoPaM) is a matrix from combining many clustering partition 

matrices (clustering results). The membership of each voxel in the CoPaM is derived from its 

memberships in different partition matrices. In the last section, the relabelling method is intro-

duced. To combine 𝑅 partition matrices 𝑼@, 𝑼A, … , 𝑼�  into a single CoPaM, all these R partition 
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matrices need to be aligned to a reference partition matrix first. There are several strategies of 

relabelling and combining. For example, one can randomly choose one partition matrix as the 

reference and relabel the others to this reference matrix, following by generating the CoPaM from 

the 𝑅 partition matrices 𝑼@, 𝑼A, … , 𝑼� . This approach has a risk of choosing a poor partition ma-

trix as the reference at the first step, undermining the effects of relabelling as all the other partition 

matrices are relabelled to a poor clustering result. One can also use an intermediate fuzzy CoPaM 

𝑼ID���(I) that is initialised with the first partition 𝑼@, and then the rest partitions are relabelled and 

fused with this intermediate matrix one by one while considering 𝑼ID���(I) as the reference at each 

step. Let the function 𝑅𝑒𝑙𝑎𝑏𝑒𝑙(𝑼, 𝑼��Z) denote relabelling the partition matrix 𝑼 by considering 

𝑼��Z  as the reference partition, 𝑼�  be the relabelled partition matrix of the partition 𝑼� , and 

𝑼ID���(�) be the intermediate CoPaM, which is the reference partition matrix for the next partition 

to be relabelled, after relabelling and fusing the first k partitions 𝑼@, 𝑼A, … , 𝑼� . The procedure of 

generating fuzzy CoPaM is described below: 

1. 𝑼ID���(I) = 𝑼@ 

2. for 𝑟 = 2 ∶ 𝑅 

a. 𝑼� = 	𝑅𝑒𝑙𝑎𝑏𝑒𝑙(𝑼�, 𝑼ID���(�Q@)) 

b. 𝑼ID���(�) = @
�
𝑼� + �Q@

�
𝑼ID���(�Q@) 

3. 𝑼ZID�� = 𝑼ID���(�) 

In summary, the final fuzzy CoPaM 𝑼ZID�� is generated through the accumulated evolution of in-

termediate CoPaM that serves as the reference partition matrix for the relabelling of the next 

partition matrix to be merged. The iteration keeps running until all the partition matrices are 

merged into a final single fuzzy CoPaM. 

3.3.3.2 The order of merging multiple partition matrices 

When choosing the first partition matrix 𝑼@, it can be the case that 𝑼@ is selected randomly from 

all the partition matrices to be merged. However, it is not guaranteed that the chosen initial refer-

ence partition matrix is a good clustering result. Also, the order of the rest partition matrices to be 

merged into the intermediate CoPaM influences the overall quality of final CoPaM when some of 
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the clustering results are very noisy. Thus clustering results evaluation is needed to yield a rea-

sonable partition matrices merging procedure. It is generally considered that a good clustering 

result should consist of clusters having a small intra-cluster variance and large inter-cluster dis-

similarity. To achieve this goal, an appropriate number of clusters 𝐾 needs to be identified to avoid 

under or over clustering of the data. But intense evaluation of optimal 𝐾 in the context of large-

scale datasets, such as the fMRI data used in this thesis, is often impractical. So a fast evaluation 

method, incorporating the neuroscientific fact that brain activations often cover relatively large 

and continuous area, is designed.  

The mean squared error (MSE) metric has been used in many studies to evaluate the quality of 

clusters by quantifying the dispersion within the cluster. Here a modified version of MSE is pro-

posed named cluster-wise MSE (clustMSE). Two factors, cluster size and clustMSE, are consid-

ered to evaluate the quality of a certain clustering result. For a partition consisting 𝐾 clusters 

𝐶@, 𝐶A, … , 𝐶v , the cluster size, i.e. the number of voxels included, and cluster-wise mean square 

error are calculated for each cluster 𝐶�. The cluster-wise MSE is defined in Equation (3.10). 

 𝑐𝑙𝑢s𝑡𝑀𝑆𝐸 =
1

𝑀 ∙ 𝑁�
𝒕I − 𝒕 A

d¡

I

 (3.10) 

where 𝑀 is the number of time point in the time series, 𝑁� is the number of voxels in the cluster 

𝐶�, 𝒕I is the normalised BOLD time-series of 𝑖-th voxel, and 𝒕 is the mean time-series of all the 

voxels. Since each cluster has a pair of values (clustMSE, N) that can be seen as a point in a two 

dimensional space, a coordinate system whose horizontal axis is clustMSE and vertical axis is 

cluster size is defined on which all the clusters are plotted. In order to make these values compa-

rable among partitions, clustMSE and cluster size are normalised to the range [0, 1] by dividing 

the biggest clustMSE value and total number of voxels respectively. Figure 3-4 shows a naive 

example of this coordinate system. 

The black square denotes the cluster having a normalised clustMSE value of 0.5 and normalised 

cluster size 0.4. The blue dot at the top left corner indicates an ideal scenario that the cluster has 

a very big size (in this case, all of the voxels are included) and zero clustMSE value. The length 

of the arrow, which can also be considered as the distance, connecting the black square and blue 
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dot indicates “how far a cluster is from a perfect case”. The shorter the distance, the better the 

quality of this cluster is. 

The general quality of a partition, denoted as meanDist, is obtained by firstly computing all the 

distances between each cluster and the top left corner, followed by averaging these distances. 

The mathematical expression is shown in Equation (3.11).  

 𝑚𝑒𝑎𝑛𝐷𝑖𝑠𝑡 =
1
𝐾

𝑐𝑙𝑢𝑠𝑡𝑀𝑆𝐸I − 0 A + 𝑁I − 1 A
v

IJ@

 (3.11) 

where 𝑐𝑙𝑢𝑠𝑡𝑀𝑆𝐸I is the normalised cluster-wise mean square error of the 𝑖-th cluster and 𝑁I is the 

normalised size of the 𝑖-th cluster. The smaller the meanDist value, the better the general quality 

of this partition. Suppose there are 𝑅 partitions to be merged to form the final fuzzy CoPaM, these 

partitions are firstly ranked according to their meanDist values, then the partition having the small-

est meanDist value will be taken as the first reference partition matrix and the rest partitions, 

which are already ranked in an order, will be merged into the intermediate CoPaM sequentially. 

This evaluation approach will also be adopted later when addressing the cluster selection. 

3.3.4 Binarisation of the consensus partition matrix (Bi-CoPaM) 

The fuzzy consensus partition matrix includes the membership values ranging from 0 to 1 for all 

of the voxels in each of the 𝐾 clusters. A membership value of 1 indicates the full belongingness 

of the given voxel to the corresponding cluster while a membership of 0 means the given voxel is 

never considered a member in the corresponding cluster. The membership value between 0 and 

Figure 3-4. Example of scattering clusters on a coordi-
nate system (clustMSE and size of cluster).  
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1 indicates the respective possibilities that the given voxel belongs to different clusters. If all of 

the individual partitions have always assigned a given voxel to the same cluster, the membership 

of this voxel in that cluster in the final fuzzy CoPaM will be 1 while being nil in all of the other 

clusters. However, if some individual partitions have disagreement in assignment of a certain 

voxel, its membership value is distributed over all of the clusters to which some partitions assign 

this voxel. In summary, the membership value of the voxel to different clusters is set to be pro-

portional with the number of individual partitions which assigned this voxel to those clusters re-

spectively. 

It is easy to determine the memberships of voxels having a value 1 in final CoPaM as all the 

individual partitions consensually assign them to the same clusters. However, when there are 

disagreements on the membership in some of the individual partitions, the decision of final mem-

berships of voxels is made based on the fuzzy values in the final CoPaM. In brief, a fuzzy mem-

bership value of a voxel will be binarised to 1 or 0 to indicate the belongingness to one or more 

clusters. To achieve this, the easiest way is to apply a manually defined threshold and then the 

fuzzy values above this threshold become 1 and the other values below it become 0. Or one can 

further simply this procedure by assigning a voxel to the cluster in which this voxel has the largest 

fuzzy membership value. Here, a tunable binarisation approach is adopted, allowing the different 

membership assignment with respect to different cluster tightness level. 

Let the final binary CoPaM be 𝑩 that has 𝐾 rows (clusters) and 𝑁 columns (voxels). The element 

in 𝑩 is denoted by 𝑏�,I, representing the binary membership of 𝑖-th voxel in the 𝑘-th cluster. The 

fuzzy CoPaM before binarisation is 𝑼 with the elements 𝑢�,I ranging from 0 to 1 inclusively. The 

tunable binarisation approach assigns a voxel to the cluster in which it has its maximum member-

ship value only if this value is far from the closest competitive cluster at least by the value of the 

tuning parameter 𝛿 that has a continuous value from 0 to 1 inclusively; it is not assigned to any of 

the clusters otherwise. This approach is named difference threshold binarisation (DTB) and the 

assignment criteria is expressed in Equation (3.12). 

 𝑏�,I =
1,							𝑢�,I ≥ max 𝑢�,I + 𝛿 , 1 ≤ 𝑗 ≤ 𝐾, 𝑗 ≠ 𝑘
0,							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																	

 (3.12) 
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When the 𝛿 is equal to 0, each voxel is assigned to the cluster in which this voxel has the largest 

fuzzy membership value. When 𝛿 increases, some voxels’ largest fuzzy membership value can-

not exceed the second largest value by 𝛿 and those voxels are not assigned to any cluster as a 

result. In another word, the DTB starts to tighten the clusters. When the maximum value of 𝛿 is 

reached, i.e. 1, only those voxels having a membership value of 1 will be assigned to the corre-

sponding cluster, yielding the tightest consensus clustering result while abandoning many voxels 

unassigned. At 𝛿 = 1, DTB may generate many empty clusters, however, this result would not be 

trivial if some of the clusters still preserved a considerable number of voxels that covering a rela-

tively large and continuous brain region. 

In summary, Bi-CoPaM has an important feature that is tunable. As clusters are tightened, many 

voxels are unassigned from clusters and are left without being assigned to any other cluster, and 

smaller and more focused clusters are generated. Some clusters might become completely empty 

at relatively low 𝛿 values while others would resist higher levels of tightening. In general, the role 

of many of the clusters that become empty at low 𝛿 values is to contain and then filter out the 

majority of the voxels that are irrelevant to the context. On the other hand, the voxels that resist 

higher 𝛿 values are those which have been assigned to the same cluster by higher numbers of 

individual partitions, and are therefore expected to be more consistently correlated and more rel-

evant to the context. 

3.3.5 Evaluation and selection of the final consensus clustering results 

After using DTB approach to convert the final fuzzy CoPaM to multiple binary consensus partition 

matrices with respect to different 𝛿 values (e.g. from 0.0 to 1.0 with 0.1 steps) and number of 

cluster 𝐾 , clusters with varying levels of tightness are generated. Not only there are a large 

amount of clusters generated but also they largely vary in size, which significantly affects the 

validity of known validation techniques rendering them unreliable in this particular context. So a 

customised cluster evaluation and validation technique is adopted to address this problem. Simi-

lar to the partition quality ranking introduced in section 3.3.3.2, the evaluation starts from calcu-

lating two values of each cluster generated, which are cluster-wise MSE over all of the datasets, 

and the number of voxels included in the cluster, or more specifically, the logarithm of this number 
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(Liu et al., 2017, 2015a). The average MSE per voxel for the 𝑘-th cluster can be calculated ac-

cording to Equation (3.13). 

 𝑀𝑆𝐸¥�¦c��� � =
1

𝐿 ∙ 𝑁�
𝒕D� − 𝒖D�
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D∈R¡

¨
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 (3.13) 

where 𝐿 is the number of datasets, 𝑁� is the number of voxels in the 𝑘-th cluster, 𝐶� is the set of 

voxels in the 𝑘-th cluster, 𝒕D�  is the normalised BOLD signal vector of the 𝑛-th voxel in the cluster 

from the 𝑙-th dataset. 𝒖D�  is the average normalised BOLD signal vector of the voxels in the 𝑘-th 

cluster from the 𝑙-th dataset. The objective it to maximize the number of voxels included in the 

clusters while minimising the dispersion within the clusters measured by the modified MSE metric. 

All of the individual clusters that appear in the results are scattered on a 2D plot where the hori-

zontal axis (𝑀) represents the cluster-wise MSE values of the cluster over all of the datasets, and 

the vertical axis (𝑁) represents the logarithm of the number of voxels in the cluster. Both axes are 

normalized to have unity length. Figure 3-5 shows an example of 𝑀-	𝑁 scatter plot. The cluster 

closest to the top left corner (red dot) of the plot is selected as the best cluster (blue dot). This 

cluster is expected to be large with many voxels (high vertical axis value), yet tight with high 

correlation (low horizontal axis value). The selected cluster and all of the other clusters that have 

overlaps with it, even by a single voxel, are removed from the plot. Then, the closest remaining 

cluster to the top left corner of the plot is selected as the second best distinct cluster. The steps 

of selecting clusters and removing those with overlaps with the selected ones are repeated itera-

tively up to a pre-set maximum number of clusters or earlier when the scatter plots are empty. 

Figure 3-5. Example of M–N scatter plots technique. 
The horizontal axis is average MSE for a certain 
cluster across all the datasets. The vertical axis is 
the normalised size of the cluster. 
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The final number of clusters is not pre-determined as it depends on when the plot becomes com-

pletely empty. Moreover, the produced clusters are ordered in a descending manner regarding 

their tightness and size measured by their closeness to the top left corner. Practically, the top 

selected clusters are of interest to the downstream analysis while most of the low ranked clusters 

may be considered as containers of irrelevant voxels and are thus discarded. 

3.3.6 Topological refinement of raw consensus clustering results. 

The topological refinement contains two steps. Firstly, the original clusters selected by M-N scat-

ter plot are filtered by discarding those voxels with weak responses (voxels whose time series 

have a small variance), since the data used to be clustered are normalised and thus lost the signal 

magnitude information. In this analysis, the voxels whose variance corresponded to less than half 

of the mean of the variance for all the voxels from one subject are discarded. After repeating this 

process for 𝑁 subjects, 𝑁 thresholded partitions are obtained. Then if more than 70% percent of 

the subjects show a strong response at a certain voxel, this voxel is retained for the following 

analysis. Secondly, the resulting clusters from the previous step are filtered by using the hyper-

geometric distribution test that discards isolated voxels. Voxels covering large connected brain 

area would feature a very small p value (normally below 0.001 level) while those covering tiny 

isolated brain structures would result in a relatively high p value (normally above 0.1 level). We 

choose p equals to 0.001 to distinguish the large clusters from the isolated voxels. After this step, 

the clusters only contain voxels having strong BOLD responses as well as covering large and 

continuous brain regions. The brain regions within each cluster are defined by using Automated 

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). 

3.4 Other methods aiding clustering analysis 

3.4.1 Grid computing for clustering large-scale datasets 

Grid computing is a computing network consisting of a collection of computer resources from 

multiple locations. Each computer’s resources (e.g., processing powers and storage spaces) are 

shared with other computers in the system. Different from the traditional high performance com-

puting system where the computers are physically coupled to carry out the same job in parallel, 

grid computing system consists of loosely-coupled computers to perform large tasks, with non-
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interactive workloads that involves a large number of files. Due to this non-interaction feature, grid 

computing can be more heterogeneous, meaning each worker (computer) can carry out different 

tasks from the others as they do not exchange task information with each other. 

The clustering experiments in this thesis often consist of thousands of single clustering processes 

on a certain dataset, e.g., an excerpt BOLD response time-series. These large amount of clus-

tering results are to be combined through the consensus clustering paradigm later but when the 

clustering results are generated, each clustering process does not share voxel’s information with 

other clustering processes. For example, when 𝐾-means clustering is running on dataset 𝐷© with 

number of clusters 𝐾 = 20 and hierarchical clustering is running on dataset 𝐷D with 𝐾 = 100, they 

carry out the two clustering process independently. This independent clustering process means 

all the individual clustering can be performed in parallel and fit the grid computing platform per-

fectly where each worker in the grid computing system can carry out an individual clustering ex-

periment. 

To make the MATLAB clustering functions compatible with the grid computing environment, the 

MATLAB compiler 𝑚𝑐𝑐 function under version 2013b is used to compile the MATLAB dependent 

code into standalone application. The machines in grid computing system is installed with 

MATLAB runtime that can execute compiled MATLAB application or components without in-

stalling MATLAB. After the standalone applications are generated, next step is to submit these 

applications together with the data to be clustered to the grid computing system. London grid 

computing system that Brunel University London contributes part of the computing resources is 

used for the large-scale clustering experiment in this thesis. A grid user certificate is applied to 

allow the jobs to be submitted and executed. 

Pion2 workstation in tower D at Brunel University London is used as an interface machine for the 

London grid computing system. An interface machine is a computer running essential softwares 

that can allow grid computing users to submit the jobs to the grid system. Pion2 is a powerful 

workstation equipped with high-end hardware to facilitate the demanding jobs. The specification 

of Pion2 is as follows. 

• A Supermicro 1U SC818G chassis with a X8DTG-DF motherboard 

• Dual quad-core Intel Xeon X5550 processors @ 2.67GHz 
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• 24 GB of 1333 MHz registered DRAM 

• 3x1 TB drives (one for system, two RAIDed into one volume for user data) 

• 1x C2060 GPU and 1x GTX460 GPU 

• Scientific Linux CERN 6 operating system 

• glite middleware for grid operations 

Pion2 and the worker nodes within Brunel are installed with MATLAB 2013b runtime, enabling 

the aforementioned MATLAB standalone application to be executed on these worker nodes. The 

specification of worker nodes in the grid system varies, with some be powerful computers and 

some be average. 

Ideally, the total computation time can be reduced to the longest time a certain individual cluster-

ing process takes, where each worker node performs only one single clustering process. How-

ever, in practice, the number of the worker nodes installed with MATLAB runtime is limited and 

these worker nodes are shared among users. Together with the fact that the number of clustering 

experiments is huge (e.g., more than 20,000), it is almost impossible to have more than 20,000 

available worker nodes for the jobs. Thus the job distribution in this thesis is done based on sub-

jects, which means all the clustering experiments for the datasets from one subject will be run on 

one worker node and cannot be divided further. In this case, if there are around 30 available 

worker nodes with MATLAB runtime installed, the total computation time will be reduced to 1/30 

of that needed on a single computer. Even when there are less than 30 available worker nodes 

the moment jobs are submitted or some nodes have relatively lower performance, the usage of 

grid computing still greatly accelerates the data processing speed. 

3.4.2 Hypergeometric test 

The hypergeometric test uses the hypergeometric distribution to calculate the statistical signifi-

cance of having drawn specific 𝑘 successes out of 𝑛 total draws without replacement from the 

population whose size is 𝑁 and has 𝐾 successes. Equation (3.14) is the formula for calculating 

the probability. 

 𝑃 𝑋 = 𝑘 𝑁, 𝐾 =
v
�

dQv
DQ�
d
D

 (3.14) 
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where the bracket is the binomial coefficient (Rice, 2007). Hypergeometric test is often used to 

identify which sub-population is over or under represented in a sample. Here, the hypergeometric 

cumulative distribution function (CDF) is used to compute the p value. The hypergeometric CDF 

is shown in Equation (3.15). 

 𝑃 𝑋 ≥ 𝑘 𝑁, 𝐾 = 𝑃 𝑋 = 𝑖
D

IJ�

 (3.15) 

The P in Equation (3.15) is the probability of getting equal or more than 𝑘 instances of class a if 

one randomly selects n instances from a population whose size is 𝑁 and has 𝐾 class a. For ex-

ample, this test is used in later chapter to examine the distribution of two different classes of 

stimulus categories and one class of subject groups, i.e., liked music versus disliked music and 

happy music versus sad music as well as musician versus nonmusician, compared with their 

background frequency (𝑁, 𝐾 in the above formula). We take the null hypothesis to be that different 

categories or groups have equal effects on the BOLD signal. If a certain stimulus category or 

subject group is significantly over represented in terms of p value (e.g., 𝑝	 < 	0.005), we drew the 

conclusion that this category or group has effect on the BOLD signal in the corresponding condi-

tion. 

3.4.3 Excerpt BOLD pattern analysis  

By utilizing the fact that the clustering experiment is based on the BOLD response shapes corre-

sponding to stimuli, a method for inspecting the differences in response shapes is designed to 

test the hypothesis that different stimulus categories (e.g., listening to happy music or listening to 

sad music) or different group of participants (e.g., musician versus nonmusician) would elicit dis-

tinct shapes. Once the final clusters are obtained, the time series of the voxels within each final 

cluster were averaged for each stimulus, which represents the mean time profile for this stimulus 

within this cluster, based on which we carried out the hypergeometric test on the response 

shapes. Figure 3-6 illustrates the excerpt data averaging process. 

The averaged excerpt data are further clustered into groups with each one having distinct re-

sponse shapes. Hypergeometric tests are carried out between different groups of participants, 

different comparison of stimulus type (e.g., liked versus disliked stimuli), or other possible con-

trasts that would yield interesting information. If in a particular cluster one stimulus category or 
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participants’ group is significantly represented, then this category or group would be declared to 

tend to have the corresponding response shape. 

3.4.4 “Strong” BOLD responses analysis 

In analysing fMRI data, stimuli causing strong BOLD responses are an important and interesting 

aspect to be investigated. When the BOLD responses levels between different stimulus catego-

ries are compared, the categories that tend to elicit stronger BOLD signal response than others 

can be identified. To achieve this research goal, an analysis pipeline based on the time series of 

the clustering results is designed. In the case of a particular participant, for one cluster that con-

tains 𝑉 voxels and for each voxel having a time series of 𝑁 time points (scans), it gives 𝑉×𝑁 time 

points in total. Each of these data values (amplitudes), corresponding to 𝑉×𝑁 time points, is as-

signed a number from 1 to 4 corresponding to its position in quantile 1 to quantile 4 of all the data 

values. 

After obtaining the quantile data matrix (𝑉×𝑁) for a particular subject, the modes of the quantile 

values within the time windows covering the duration of each stimulus (e.g. music clips) are ex-

amined. If in a certain time window, the mode would be 4, then this would be taken to mean that 

the “strong” response dominates during this stimulus. Hence, the excerpt categories eliciting the 

“strong” responses for that particular subject are extracted out, and this is repeated for every 

cluster for that subject, and then for every other subject and all clusters. To compensate for the 

Voxel	1
Voxel	2

Voxel	3

Voxel	n-1
Voxel	n

Sub	1

Sub	N

Brain

Brain

Cluster

Averaged	response	
shape	for	stimuli	p

Average Average

Averaged	response	
shape	for	stimuli	q

M averaged	response	
shapes	for	one	subject

N×M	averaged	response	
shapes	were	generated	
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Figure 3-6. Illustration of excerpt BOLD responses shape 
averaging. For each subject and each excerpt, the time 
series of the voxels within each final cluster were aver-
aged to obtain the mean time profile for this stimulus 
within this cluster. Repeating the averaging process on 
all the data for 29 subjects gives 1856 (= 29 subjects ×64 
excerpts) averaged time profiles for each cluster. 
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individual variability in the BOLD response strength, i.e. some participants might have generally 

stronger responses than others no matter what stimulus is given, subjects’ response values are 

coded in the range from 1 to 4, irrespective of the range of the original responses, and without 

reference to anybody else’s responses. Furthermore, for a particular subject, the score of each 

excerpt was also computed without reference to any other excerpts of any category for this sub-

ject. This ensures that the scores of the excerpts are independent subject-wise, category-wise, 

and excerpt-wise. Afterwards, the distribution differences among all the stimulus categories and 

the two participant groups are tested to inspect which type of stimuli or subject group tend to elicit 

stronger responses than others within the same cluster. 

3.5 Summary of the consensus clustering analysis framework 

This chapter systematically introduces the technical details of proposed consensus clustering 

analysis framework for fMRI data. The main framework includes: 

a. Data preparation. This step is for extracting the time-series of voxel corresponding to 

different stimuli, which are used for clustering experiment. 

b. Individual clustering experiment. This step contains the individual clustering experiment 

with support of high performance computing facility (grid computing). 

c. Clustering results integration, selection, and validation. The partition relabelling allows 

multiple clustering results to be merged together, forming the fuzzy consensus partition 

matrix. The binarisation of consensus partition with respect to different threshold yields 

Figure 3-7. The structure of consensus clustering 
analysis framework for fMRI data. 
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consensus clustering results with different tightness level. The M-N scatter plot strikes 

the balance between the intra-cluster similarity and cluster size, which selects the non-

trivial clusters. The validation gives the information such as how robust is the framework 

and whether the consensus clustering solutions are stable and reproducible. 

d. Two statistical tests. The excerpt BOLD pattern analysis is for analysing the shape of the 

voxel’s time-series while the “strong” BOLD response analysis is for the amplitude of the 

voxel’s time-series. These two tests are optional in the framework. To carry it or not de-

pends on the fMRI experiment paradigm design and research questions. 

The structure of the whole framework is demonstrated in Figure 3-7. This framework will be em-

ployed on two real fMRI datasets in the next two chapters. 
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Chapter 4 Investigation of Functional Brain 

Connectivity during Affective Processing 

 

This chapter will detail the comprehensive clustering analysis of an fMRI dataset, named Affect, 

that explores the brain activations and functional connectivity during the affective processing of 

music excerpts with different preferences and emotions. By obtaining stable and reproducible 

clusters from a model-free tunable consensus clustering approach and analysing of the spatial 

and temporal features of these clusters, the neuroscientific insights are found and discussed. This 

study serves as a validation of a novel consensus clustering analysis of fMRI data as well as an 

exploration of decoding the brain functional connectivity during affective processing when listen-

ing to music, which is an important area within cognitive neuroscience of music. The results show 

the consensus clustering paradigm has notable advantages over traditional single clustering al-

gorithms in being able to evidence robust connectivity patterns even with complex neuroimaging 

data involving a variety of stimuli and affective evaluations of them. This work is published in 

International Journal of Neural System (IJNS) with an impact factor of 6.5 at the time of its ac-

ceptance. 

 

4.1 Background of the analysis of fMRI data in affective processing 

The 1990s is known as “the decade of the brain” (Jones and Mendell, 1999) during which the 

neuroimaging research gained great attention with mass funding initiatives, publications in prom-

inent journals as Nature, Science, and lavish attention from the press. In the next decades neu-

roimaging of humans has gained a position of status within neuroscience, and data-driven ap-

proaches and functional connectivity analyses of fMRI data are increasingly favoured to depict 

the complex architecture of human brains. However, the reliability of these findings is jeopardized 

by too many analysis methods and sometimes too few samples used, which leads to discord 
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among researchers. There is currently a vein of scepticism towards neuroimaging findings. Pa-

pers making the headlines announced significant brain activity in dead salmon or evidenced mag-

ical high correlations between behavioural and brain data (Vul et al., 2009). Although the fascina-

tion of brain data can still blur critical thinking in front of a crudely-built mock brain scanner (Ali et 

al., 2014), scientists are questioning the reliability of neuroimaging and the danger of false posi-

tives and reverse inference, hence compromising the relevance of a whole field for the general 

scientific community (Abbott, 2009). A recent main criticism relies on the wide variety of analysis 

strategies, combined with small sample sizes, used to investigate regional brain activity measured 

with fMRI and leading to inconsistent findings (Button et al., 2013). To overcome the limitations 

of model-based methods, data-driven methods imposed by the researchers, such as clustering, 

independent component analysis (ICA), seed-based functional connectivity analysis (van den 

Heuvel and Pol, 2010) and inter-subject correlation analysis (Hasson et al., 2004) are increasingly 

adopted. However, new algorithms are often proposed, augmenting the discrepancies in the re-

sults and the difficulty of choosing the most appropriate data-driven method. Calls for consensus 

in analysis and meta-analysis methods for neuroimaging have been made (Kriegeskorte et al., 

2010). 

In research fields characterized by the sheer complexity of the stimulus parameters and the sub-

jectivity of the individual mental state, such as the investigation of musical emotions, the afore-

mentioned difficulties are even more reflected in the wide discrepancy of results. In a recent meta-

analysis of 21 fMRI studies on musical emotions, the amygdala (Gosselin et al., 2007), the ante-

rior cingulated cortex, the insula (Damasio et al., 2000), the orbitofrontal cortex (Blood and Zatorre, 

2001; Khalfa et al., 2005) and the reward circuit (Mitterschiffthaler et al., 2007) were found to be 

associated with any musical emotion. While this meta-analysis shows a consistent view, the pic-

ture becomes more fragmented when looking at different types of emotions. Very recently, data-

driven methods, such as graph theory (Karmonik et al., 2013), eigenvector centrality mapping 

(Koelsch and Skouras, 2014), network science (Ahmadlou et al., 2014, 2012; Wilkins et al., 2014) 

and ICA (Cong et al., 2013) have been only marginally adopted to investigate functional connec-

tivity during listening to music. Clustering analysis (Liao, 2005; Shi et al., 2011) has instead not 

been applied to music neuroscience. In the broader domain of cognitive neuroscience, many 

methods have been used to address the clustering problem such as K-means (Bello-Orgaz et al., 
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2012), hierarchical clustering (Goutte et al., 1999), artificial neural network (Ahmadlou and Hojjat, 

2010) based self-organizing maps (SOMs) (Haykin, 1999), graph clustering (Ahmadlou and Adeli, 

2011; Bello-Orgaz et al., 2012), and fuzzy clustering (Baumgartner et al., 1998). As introduced in 

Chapter 2, there is one critical procedure that determines the appropriate algorithm and related 

parameters such as the number of clusters 𝐾. Traditionally, one can either use the discriminative 

approach such as model selection method to rank the competing algorithms, which are K-means, 

hierarchical clustering and SOM in this study, based upon some given criteria or use the genera-

tive approach to model the data generation process. However, obtaining the most appropriate 

algorithm and parameters from discriminative approach becomes increasingly difficult due to the 

lack of ground truth in clustering problems and large dimension of data. The generative approach 

is also difficult when the data generation process is complicated such as the fMRI paradigms used 

in this study. 

To achieve consensus results in a model-free context and provide a more feasible alternative to 

generative design, we employ the consensus clustering (Ghaemi et al., 2009) framework to ana-

lyse fMRI data. Rather than ranking the different clustering algorithms, Bi-CoPaM in the frame-

work integrates the results generated by multiple clustering methods. Moreover, the results are 

able to be tuned in terms of the consensus level reflecting the quality of the clusters. In this study, 

three widely used clustering algorithms in neuroimaging are selected, namely the K-means (Kahnt 

et al., 2012), hierarchical clustering (Blumensath et al., 2013; Ferrarini et al., 2009) and SOM 

(Goutte et al., 1999; Liao et al., 2008; Peltier et al., 2003), to be fed into the framework to produce 

consensus results. The clusters are extracted from many (1856) datasets consisting of fMRI trials 

associated with each subject’s listening to hundreds of emotional music clips and seeks the ones 

characterized by consistently synchronized fMRI signal changes in most of the datasets. By using 

the developed framework, we found that several brain structures related to visual, reward, and 

auditory processing have intrinsic temporal patterns of coherent neuroactivity during affective pro-

cessing without defining any explicit model. 
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4.2 Affect fMRI dataset and consensus clustering analysis 

4.2.1 Participants 

Twenty-nine healthy subjects without any hearing, neurological or psychological problem partici-

pated in this study (15 females). Among these twenty-nine participants, thirteen are musicians 

who possessed formal musical training, on average, for 16.1 ± 6 (SD) years. The others were 

non-musicians who did not receive any formal musical training but nevertheless had an interest 

in listening to music consistently. At the time of experiment, musicians reported that they practice 

their instruments, on average, for 2.2 ± 1.3 (SD) hours per day and non-musicians declared that 

they listened to music 7.6 ± 5.6 (SD) hours per week. The study is approved by the ethical com-

mittee of the Helsinki University Central Hospital and complied with the Helsinki Declaration. The 

dataset is a subset of a larger data collection, parts of which have been published in (Brattico et 

al., 2016, 2011; Saarikallio et al., 2012). 

4.2.2 Music (Stimuli) 

Four stimulus categories were used in the fMRI experiment. These categories consist in music 

that was classified by subjects to be liked and happy (LH), liked and sad (LS), disliked and happy 

(DH), and disliked and sad (DS). Four music pieces were chosen for each category, giving 16 

pieces in total. Two 18-second long music excerpts with 500ms fade-in and fade-out were se-

lected from each music piece using Adobe Audition and on the basis of a listening test where 

participants were asked to rate the familiarity of music excerpts with a scale from 1 to 5 with 1 

representing unfamiliar and 5 be familiar. This yielded 32 excerpts with 8 in each stimulus cate-

gory for each participant. 

4.2.3 fMRI experiment procedure 

The fMRI measurements were conducted with a 3 Tesla scanner (3.0T Signa VH/I General Elec-

tric) in the advanced magnetic imaging (AMI) Center at Aalto. Participants rested on the scanner 

bed in a supine position. Music was presented via fMRI compatible earphone with about 30dB of 

gradient noise attenuation. Thirty-three oblique slices covering the whole brain (field of view 

20mm; 64×64 matrix; thickness 4mm; spacing 0 mm) were acquired using an interleaved gradient 
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echo-planar imaging (EPI) sequence with TR equal to 3s, echo time 32ms and flip angle 90º, 

sensitive to BOLD contrast.  

During the fMRI experiment, participants listened to the 32 18-s excerpts of music selected as 

described above. The music excerpts were delivered to the participants via high fidelity MR com-

patible earphone. Each participant was presented with 32 excerpts for two times in a random 

order, prompted by a visual cue on the screen (one time it shows like? Dislike?, and another time 

it shows sad? happy?) to keep the participants concentrating on the emotional aspects of the 

stimuli. Following the end of the stimuli was a 3-second interval without music stimuli during which 

another cue asked the participants to answer the questions showed on the screen when they 

listened to the previous music excerpt by pressing a MR compatible button pads with the second 

and the third fingers of the left or right hands; After the interval a sinusoidal tone indicated the 

start of next trial. The scanning session lasted for 23 minutes. After a short break, anatomical T1 

weighted MR images (field of view 26 mm; 256×256 matrix; thickness 1 mm; spacing 0 mm) were 

acquired for about 9 minutes. 

4.2.4 Data preprocessing and preparation 

The fMRI data preprocessing follows the general procedure described in Chapter 2. In brief, the 

whole-brain images were preprocessed by statistic parametric mapping 8 (SPM8) and voxel-

based morphometry (VBM) for SPM. Each participant’s images were segmented, realigned, spa-

tially normalized into the Montreal Neurological Institute (MNI) template and spatially smoothed 

by Gaussian filter with an FWHM of 6 mm. For preparing the data for the consensus clustering 

Subject(1(

Subject(2(

Subject(29(

LS1( LH1( LH1( DS1( DS1(

LH2( LS2( DS2( DH2(

DH29(

LS2(

LH29( DS29( DS29( LS29(

Figure 4-1. Structure of music excerpts where DH stands for disliked 
happy music, DS for disliked sad music, LH for liked happy music, and 
LS for liked sad music. Note that each category has different music ex-
cerpts for different subjects. For example, LS1 listened by subject 1 is 
different from LS2 listened by subject 2. Also, one certain category has 
different music excerpts for one particular subject. For example, in sub-
ject 1, the music representing the first DS1 is not necessarily the same as 
the last DS1. 
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analysis two steps are applied using the fMRItoolbox (implemented at the University of Jyväskylä 

in MATLAB environment): vectorization and segmentation. In vectorization step, the 3D volume 

data was converted to a vector (228453×1) by using a standard brain mask. The above step has 

been applied to every 3D volume scan from each subject and all the scans were combined se-

quentially, forming the fMRI time series of each subject. According to the order that musical ex-

cerpts were played, the whole fMRI time series were segmented into 64 EPI brain volumes, each 

containing 6 or 7 time points (covering 18 seconds at a sampling rate of 3 second), and each 

corresponding to instances when the participants were listening to music clips. Figure 4-1 illus-

trates the order each music excerpt was presented (partial). 

For one excerpt we used a 228,453×6 (or 7) matrix with the row corresponding to the voxels and 

the column corresponding to the time profile for this excerpt. In total, there are 1856 excerpts for 

all subjects, resulting in 1856×228,453×6 (or 7) data points that were used in the following clus-

tering analysis. 

4.2.5 Clustering experiment 

There are totally 1856 excerpt data for all the 29 participants. Each of these excerpt data (nor-

malized to 0 mean and unit variance) is clustered by K-means, Hierarchical and Self Organizing 

Map (SOM) with the number of clusters 𝐾 equals to 10, 25, 50, and 100. These clustering results 

generated by the three algorithms with four different cluster numbers are combined using the Bi-

CoPaM paradigm and selected by M-N scatter plot, yielding the consensus clustering results. The 

raw clusters are filtered using the method introduced in section 3.3.6.  

A sensitivity test is carried out with respect to the filtering parameters that are the percentage of 

the total participants and the percentage of the mean variance. The filtering process is run with 

different parameter combinations of percentage of total data and percentage of mean variance. 

The filtered cluster sizes are compared to investigate the filtering impact on the results. 

4.2.6 Comparison among multiple clustering algorithms combination and single algorithm 

To evaluate the advantage of consensus clustering against single clustering algorithm, the clus-

tering results obtained by the following four experimental scenarios are compared:  

1. K-means only 
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2. Hierarchical clustering only 

3. SOM only 

4. The combination of all the three methods in 1, 2, and 3. 

Another question is that whether and how the number of clustering algorithm used in consensus 

clustering paradigm affect the final clustering results. To find out the answer, three more method 

combination scenarios are also used: 

5. K-means and hierarchical clustering 

6. K-means and SOM 

7. Hierarchical clustering and SOM 

To quantitatively assess the similarities or differences between any two clustering results, the 

Jaccard index is used. Jaccard index is defined as 𝑋 ∩ 𝑌 𝑋 ∪ 𝑌 , where 𝑋 and 𝑌 are two clus-

tering results and ∩ and ∪ are standard set operations (intersection and union). The range of 

Jaccard index is from 0 to 1, with 0 representing absolutely different and 1 be exactly matched. 

4.2.7 Robustness test against individual functional data variability 

Each participant is unique in a way that the brain activity to a certain stimulus vary among different 

individuals, i.e., different set of participants might yield different analysis results. This raises the 

problem whether the algorithm could give reasonable results regarding the functional data varia-

tion among individuals. To test the consensus paradigm’s capability of dealing with the individual 

variability, the robustness test is carried out. 

The design of the test is as follows. Two groups of subsets are generated for test purpose. One 

is created by randomly selecting 75% of the musicians (10 out of 13) and non-musicians (12 out 

of 16) as well as 75% of the excerpts for each participant, which yields a subset consisting ap-

proximately 56% of all the data from the fMRI experiment. The above random selection is re-

peated 10 times and these 10 subsets form group A. Similarly, a different ratio of 90% of the 

musicians (12 out of 13) and non-musicians (14 out of 16) as well as 90% of the excerpts for each 

participant is chosen, when the data are randomly selected. Repeating the selection with new 

ratio for ten times form group B consisting approximately 80% of all the data.  Then Bi-CoPaM 

paradigm is applied on these subsets and the clustering results are recorded. Dice’s coefficient 
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is then used to quantitatively compare the similarity between any two clustering results. Dice’s 

coefficient is used. Dice’s coefficient is defined as 2 𝑋 ∩ 𝑌 𝑋 + 𝑌 , where 𝑋  and 𝑌  are the 

number of voxels included in the two indices, and 𝑋 ∩ 𝑌  is the number of voxels shared by the 

two indices. The range of Dice’s coefficient is from 0 to 1, with 0 representing absolutely different 

and 1 be exactly matched. 

To evaluate the robustness, two key aspects need to be looked at to determine the performance. 

One is whether all the subsets of participants can yield the clusters covering the similar interesting 

brain regions and the other is the indices of these clusters should be as similar as possible. In 

another word, the more similar among the results from different subsets of participants, the more 

robust the method is.  

4.2.8 Statistical test of clustering results 

The differences in response shapes are investigated to test the hypothesis that different music 

categories (DH, DS, LH, LS) or different group of participants (musician vs. non-musician) would 

elicit distinct BOLD responses shapes. Following the procedure introduced in Chapter 2, the 1856 

averaged excerpt data are further clustered into groups with each one having distinct response 

shapes. Hypergeometric tests are then carried out between groups of musicians and non-musi-

cians, liked vs. disliked stimuli, as well as sad vs. happy stimuli. Another test applied is the strong 

response analysis that searches the musical categories that tend to elicit strong BOLD signal 

response.  

4.3 Results 

4.3.1 Advantages of combining multiple clustering results from single algorithm 

As described in section 4.2.6, seven scenarios with respect to different combinations of clustering 

algorithms and only with single algorithm are designed to demonstrate the advantages of com-

bining multiple clustering results. The results are reported in two parts with one comparing the 

clustering results between consensus paradigm and single clustering algorithm and the other 

comparing the different combinations within consensus paradigm. 
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Figure 4-2. The Venn diagram for comparing the set relationship 
among different clustering experiment settings. Each ellipse rep-
resents the clustering results with the value indicating the number 
of voxels in each set. KM represents K-means, HC represents hi-
erarchical. 
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4.3.1.1 Multiple versus single 

Figure 4-2 shows the relationships among the results obtained by different clustering algorithm 

settings (KM for K-means, HC for hierarchical clustering) for three clusters covering visual area 

(cluster A Visual), reward system (cluster B Reward), and auditory system (cluster C Auditory). 

From the Venn diagrams, all the four experimental scenarios could detect cluster A Visual, alt-

hough the size and accurate position of the voxels contained in the cluster are different depending 

on the paradigm used. For cluster B Reward, the hierarchical clustering fails to detect the cluster 

within subcortical regions related to brain reward system. Bi-CoPaM with all the three methods 

not only contains the common parts of the results from the other two experiment paradigms, but 

also included 988 voxels that are not included in the results obtained with either KM or SOM 

method. Cluster C Auditory is not found in the results by the single SOM algorithm and similarly, 

the Bi-CoPaM with all the 3 methods successfully find clusters around the bilateral auditory cortex 

with 89 voxels not included in the results with either KM or HC method. Thus the current findings 

show that Bi-CoPaM with multiple clustering methods outperforms the results from the single 

clustering algorithm scenarios, with the fact that it never misses the three important clusters (Vis-

ual, Reward, Auditory). 

4.3.1.2 Different method combinations 

This part reports the results from different method combinations in consensus clustering frame-

work. To make the comparison more complete, the results from the single methods are also in-

cluded. Table 4-1 shows the Jaccard index between different method combinations for cluster 

covering visual area. Table 4-2 shows the Jaccard index between different method combinations 

for cluster covering reward system, and Table 4-3 shows the Jaccard index between different 

method combinations for cluster covering auditory system. From the three Tables, it is easy to 

spot the differences between any combinations of two or three clustering algorithms on all three 

important clusters. Note that for those methods or method combinations having all zeros Jaccard 

index, it means this method or method combination was not able to detect the corresponding 

cluster. For example, in Table III, the method combination of K-means and hierarchical clustering 

(KM & HC) did not group the voxels within the auditory system into a cluster. So, all the members 
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for clusters covering the visual areas end up producing a value of zero in the Jaccard index be-

tween KM & HC and any other method combinations. 

Table 4-1. Jaccard index for cluster covering visual area. 
Visual

KM HC SOM KM+HC KM+SOM HC+SOM KM+HC+SOM
KM 0.48 0.70 0.70 0.78 0.73 0.40
HC 0.48 0.38 0.57 0.53 0.56 0.26
SOM 0.70 0.38 0.58 0.66 0.62 0.50
KM+HC 0.70 0.57 0.58 0.76 0.84 0.32
KM+SOM 0.78 0.53 0.66 0.76 0.82 0.37
HC+SOM 0.73 0.56 0.62 0.84 0.82 0.35

KM+HC+SOM 0.40 0.26 0.50 0.32 0.37 0.35  

Table 4-2. Jaccard index for cluster covering reward system. 
Reward

KM HC SOM KM+HC KM+SOM HC+SOM KM+HC+SOM
KM 0.00 0.56 0.41 0.53 0.52 0.53
HC 0.00 0.00 0.00 0.00 0.00 0.00
SOM 0.56 0.00 0.43 0.57 0.55 0.57
KM+HC 0.41 0.00 0.43 0.33 0.33 0.37
KM+SOM 0.53 0.00 0.57 0.33 0.67 0.61
HC+SOM 0.52 0.00 0.55 0.33 0.67 0.60

KM+HC+SOM 0.53 0.00 0.57 0.37 0.61 0.60  

Table 4-3. Jaccard index for cluster covering auditory system. 
Auditory

KM HC SOM KM+HC KM+SOM HC+SOM KM+HC+SOM
KM 0.49 0.00 0.00 0.41 0.71 0.62
HC 0.49 0.00 0.00 0.35 0.51 0.56
SOM 0.00 0.00 0.00 0.00 0.00
KM+HC 0.00 0.00 0.00 0.00 0.00
KM+SOM 0.41 0.35 0.00 0.00 0.48 0.40
HC+SOM 0.71 0.51 0.00 0.00 0.48 0.65
KM+HC+SOM 0.62 0.56 0.00 0.00 0.40 0.65  

There are in total 18 final clusters with 7 representing visual areas, 6 representing reward system, 

and 5 representing auditory system by different single methods and method combinations. To 

make the differences of these results more straightforward, the 3D rendering of these clusters are 

produced to reflect the positions of these clusters in the actual brain. To make the visualisation 

easy to inspect, the 3D transparent glass brain is used as the brain model and the clusters are 

rendered in red color. Thus the topology of the clusters can be viewed directly. Figure 4-3, Figure 

4-4, and Figure 4-5 are the visualisation of the cluster topologies for the clusters covering visual, 

reward, and auditory system. In summary, the consensus clustering framework with all three 

methods never fails to detect any of the three important clusters, providing the most complete set 

of solutions. 
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Figure 4-3. 3D illustrations of clusters covering visual area detected by seven 
different method combinations. 

Figure 4-4. 3D illustrations of clusters covering reward system detected by six 
different method combinations. 

KM HC KM+SOM

HC+SOM KM+HC+SOM

Figure 4-5. 3D illustrations of clusters covering auditory system detected by 
five different method combinations. 
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4.3.2 Sensitivity of filtering 

As shown in section 4.3.1, the consensus paradigm with all the three clustering algorithms (K-

means, hierarchical clustering, and SOM) yields the most complete set of solutions. Therefore, 

the filtering test is done by incorporating all the three algorithms in the framework. From Table 

4-4 to Table 4-6, with the number in each cell representing the size of the cluster, we could verify 

that as long as the filtering parameter combinations were not extremely strict (bottom right corner 

of each table), the performance remained very stable. The rectangles in all the tables indicate the 

parameter combination used in this study. Furthermore, we do not claim that these choices are 

absolutely optimal, they are rather explorations of a new analysis strategy. 

Table 4-4. Filtering results for cluster Visual. 

Percentage of Total Data for Cluster Visual 
 % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

Pe
rc

en
ta

ge
 o

f 
m

ea
n 

va
ria

nc
e 12.5 429 429 429 429 429 429 429 429 429 

25.0 429 429 429 429 429 429 429 429 428 
37.5 429 429 429 429 429 429 429 421 398 
50.0 429 429 429 429 429 421 410 379 277 
62.5 429 429 427 425 415 389 339 249 121 
75.0 429 427 424 410 363 295 200 116 43 
87.5 429 423 396 340 251 153 84 36 7 

Table 4-5. Filtering results for cluster Reward. 

Percentage of Total Data for Cluster Reward 
 % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

Pe
rc

en
ta

ge
 o

f 
m

ea
n 

va
ria

nc
e 12.5 4777 4777 4777 4777 4777 4777 4777 4777 4777 

25.0 4777 4777 4777 4777 4777 4777 4777 4777 4776 
37.5 4777 4777 4777 4777 4777 4773 4748 4678 4407 
50.0 4777 4774 4747 4696 4606 4483 4293 4026 3384 
62.5 4763 4639 4491 4300 4132 3865 3510 2973 1894 
75.0 4622 4307 4058 3725 3341 2850 2216 1492 732 
87.5 4330 3870 3342 2747 2219 1550 1049 599 317 

Table 4-6. Filtering results for cluster Auditory. 

 Percentage of Total Data for Cluster Auditory 
 % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

Pe
rc

en
ta

ge
 o

f 
m

ea
n 

va
ria

nc
e 12.5 3145 3145 3145 3145 3145 3145 3145 3141 3112 

25.0 3145 3145 3141 3137 3125 3096 3053 2962 2644 
37.5 3140 3133 3111 3076 3016 2938 2774 2372 1614 
50.0 3133 3110 3045 2952 2790 2522 2123 1513 767 
62.5 3122 3063 2911 2675 2349 1948 1422 847 308 
75.0 3101 2952 2652 2321 1868 1339 869 438 79 
87.5 3055 2781 2356 1864 1318 877 518 155 5 

 

4.3.3 Robustness of consensus paradigm 

Table 4-7 and Table 4-8 illustrate that in most of the trials, the three important clusters (Visual, 

Reward and Auditory) were always identified despite the different subsets being used. Meanwhile, 
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when the proportion of data used increased, the results became more stable. For example, the 

Reward cluster was missed three times in the first test reported in Table 4-7 but was never missed 

in the second test reported in Table 4-8. On one hand, this proved the framework is robust to 

variability of participants’ data and thus generated reproducible results; on the other hand, it also  

showed the benefits of using a large number of subjects for more reliable results in data-driven 

analysis of functional brain imaging data. 

Table 4-7. Results of test group A (56% of the full data). Final size is the obtained cluster size by using the 
whole participants’ data. Trial size is the cluster size obtained in different trials. Intersection is the size of the 
part that the clusters in each trial intersect with the clusters obtained by using the whole participants’ data. 

Clusters  Trial 
 1 2 3 4 5 6 7 8 9 10 Mean 

Visual 

Final Size 410 410 410 410 410 410 410 410 410 410  
Trial Size 551 1031 961 900 924 1838 713 877 2027 651  

Intersection 357 410 410 410 405 410 396 409 410 393  
Dice Coeff. 0.74 0.57 0.6 0.63 0.61 0.36 0.71 0.64 0.34 0.74 0.594 

Reward 

Final Size 4293 4293 4293 4293 4293 4293 4293 4293 4293 4293  
Trial Size 2857 2591 4646 0 3263 1028 0 1620 0 4168  

Intersection 1479 2046 3218 0 2278 915 0 1403 0 3303  
Dice Coeff. 0.41 0.59 0.72 0 0.6 0.34 0 0.47 0 0.78 0.391 

Auditory 

Final Size 2123 2123 2123 2123 2123 2123 2123 2123 2123 2123  
Trial Size 2381 3477 1452 2980 1576 2191 1801 2161 856 2006  

Intersection 1738 2021 16 1995 439 1581 1459 1343 797 1673  
Dice Coeff. 0.77 0.72 0 0.78 0.24 0.73 0.74 0.63 0.54 0.81 0.596 

Table 4-8. Results of test group B (80% of the full data). 

Clusters  Trial         
 1 2 3 4 5 6 7 8 9 10 Mean 

Visual 

Final Size 410 410 410 410 410 410 410 410 410 410  
Trial Size 591 991 385 821 803 1119 784 1216 821 803  

Intersection 402 410 326 406 406 410 407 410 406 406  
Dice Coeff. 0.8 0.59 0.82 0.66 0.67 0.54 0.68 0.5 0.66 0.67 0.66 

Reward 

Final Size 4293 4293 4293 4293 4293 4293 4293 4293 4293 4293  
Trial Size 3028 2867 3118 4381 1813 4390 4426 2362 4381 1813  

Intersection 1273 1027 2467 3308 1519 3157 3461 1891 3308 1519  
Dice Coeff. 0.35 0.29 0.67 0.76 0.5 0.73 0.79 0.57 0.76 0.5 0.592 

Auditory 

Final Size 2123 2123 2123 2123 2123 2123 2123 2123 2123 2123  
Trial Size 476 1948 2910 1348 2496 3158 3036 771 1348 2496  

Intersection 458 1548 1997 338 1855 2051 1704 578 338 1855  
Dice Coeff. 0.35 0.76 0.79 0.19 0.8 0.78 0.66 0.4 0.19 0.8 0.572 

 

4.3.4 Topology of final clusters 

The first 20 clusters (ranked by M-N plots algorithm) are inspected, as these clusters show very 

strong similarity in the response shapes as well as covered large continuous regions, thus com-

plying with expectations based on knowledge of brain physiology (Huettel et al., 2009). Among 

these clusters, we find that emotion and sensory-related brain areas are grouped into 3 clusters  
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Cluster A Visual 

Area 
Size (in 
voxel 

2×2×2mm2) 
MNI 

Calcarine 
Fissure and 
surrounding 
cortex (L) 

209 (-3 -77 11)  
 

Calcarine 
Fissure and 
surrounding 
cortex (R) 

95 (7 -78 11)  
 

Cuneus (L) 70 (0 -80 19)  

Cuneus (R) 36 (6 -81 18)  

Cluster B Reward 
Area Size (in 

voxel) MNI 

Putamen (L) 830 (-25 3 0)  

Putamen (R) 881 (28 4 0) 

Globus pallidus 
(L)  102 (-20 0 0)  

Globus pallidus 
(R)  111 (22 0 1)  

Thalamus (L)  168 (-11 -19 1) 

Thalamus (R) 176  (14 -21 1) 

Caudate nucleus 
(L) 116 (-12 13 3)  

Caudate nucleus 
(R) 116 (16 16 3)  

Amygdala (L) 50 (-25 -2 -15 )  

Amygdala (R) 38 (28 -2 -14)  

Insula (L) 121 (-33 3 -2)  

Olfactory cortex 
(L)  34 (-20 7 -15)  

Olfactory cortex 
(R)  17 (23 10 -14)  

Cluster C Auditory 

Area Size (in 
voxel) MNI 

Middle 
temporal 
gyrus (L)  

517 (-61 -28 0) 

Superior 
temporal 
gyrus (L)  

572 (-59 -16 4)  

Superior 
temporal 
gyrus (R)  

947 (61 -17 5)  

Heschl's 
gyrus (L)  10 (-58 -12 8)  

Heschl's 
gyrus (R) 42 (56 -9 6) 

Rolandic 
operculum 

(R)  
35 (60 -9 9) 

Figure 4-6. The 3D illustrations of clusters and the size of each sub-cluster 
with voxels falling within a known anatomical brain structure, identified with 
the AAL atlas. 
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separately (Figure 4-6) which correspond well with the literature studying music emotions with the 

model-based approach (Brattico et al., 2011). Cluster A comprises bilateral visual areas, namely  

the calcarine fissure and the cuneus. Cluster B comprises bilateral neural structures of the reward 

system, namely the ventral striatum - extending to the globus pallidus - the thalamus, the amyg-

dala, the orbitofrontal cortex, and the left insula. Cluster C comprises the auditory areas, namely 

the bilateral superior temporal gyrus, Heschl’s gyrus, the left middle temporal gyrus, as well as 

one region of the somatosensory cortex, namely the right rolandic operculum. 

4.3.5 Distinct temporal features elicited by non-musicians 

The response shape analysis is carried out in the 3 final clusters Visual, Reward and Auditory 

with respect to the contrasts between experimental conditions and groups: liked vs. disliked, 

happy vs. sad, musician vs. non-musician. In cluster A Visual, we found the response difference 

in musician vs. non-musician group as shown in Figure 4-7. For the response shape (initially 

reduces and then steadily rises till the end of the stimuli) shown in the figure, non-musician is 

significantly over represented with 𝑝 value equal to 0.00053. Additionally, no significant difference 

in the shape of the BOLD responses was found on the contrasts liked vs. disliked and happy vs. 

sad in this cluster A. For cluster B Reward and cluster C Auditory, we did not find any significant 

difference between the response shapes among any of the contrasts. 

1 2 3 4 5 6−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time Point

BO
LD

 R
es

po
ns

e

 

 

Figure 4-7. Response pattern in cluster A Visual. There are 248 excerpt re-
sponses (248 six-points temporal profiles) that were grouped together. Of these 
similar BOLD response shapes, 87 come from musicians (blue lines) and 161 
come from non-musicians (red lines). The p value for the over representation of 
non-musician in this distribution is 0.00053, indicating non-musicians are more 
likely to elicit the above response shape than musicians. 
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4.3.6 Music categories and participant groups that cause “strong” BOLD response level 

Following the procedure introduced in Chapter 2. Each BOLD value from one participant is coded 

with 1 to 4 (quantiles) indicating its response strength. Figure 4-8 is the visualization of the quan-

tile data of a random cluster. 

To demonstrate the individual variability of the BOLD response strength. The threshold values 

defining the “strong” response for each participant are scattered as shown in Figure 4-9. As can 

be seen from the figure, these thresholds values vary among different participant. If all the partic-

ipant data use a global threshold, it is very likely that certain participants always have “strong” 

responses while some never exhibit “strong” responses. This is why the threshold value is defined 

participant-wise rather than group-wise. 

We extracted out the stimuli that caused the “strong” BOLD response (predominantly higher am-

plitudes) for the clusters A Visual, cluster B Reward and cluster C Auditory. HyperGeo tests were 

A"

B"

Figure 4-8. Visualization of cluster data from one random subject. (A) is the 
raw time series of the voxels within this cluster and (B) is the heat map. 
Values in first quantile (Q1) are plotted as blue, values in fourth quantile are 
plotted as red (Q4), and values in between are plotted with two other colors 
(Q2 and Q3). The visible vertical patterns through the whole scan session 
indicate the synchronized responses among the voxels within this cluster. 
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then carried out based on these distributions (Table 4-9) with respect to contrasts liked vs. dis-

liked, happy vs. sad and musician vs. non-musician. 

Table 4-9. Distribution of the number of excerpts with strong BOLD responses in corresponding categories. 
Mus stands for group musician and NMus stands for group non-musician. 

  DH DS LH LS Total 

Cluster A Mus 58 53 57 50 218 

 NMus 84 73 87 58 302 

 Total 142 126 144 108  

Cluster B Mus 57 49 63 72 241 

 NMus 75 69 113 78 335 

 Total 132 118 176 150  

Cluster C  Mus 105 86 69 43 303 

 NMus 129 94 97 60 380 

 Total 234 180 166 103  

All Clusters Mus 18 16 19 10 63 

 NMus 33 18 32 22 105 

 Total 51 34 51 32  

 

We identified the stimulus categories that are more likely to elicit “strong” responses (higher BOLD 

response levels) with the Bonferroni-corrected 𝑝 value 0.017 (original 𝑝 = 0.05). In the cluster A 

Visual (calcarine fissure and cuneus), a larger number of excerpts of happy music than sad music 

elicited stronger responses (𝑝 = 0.0042). In the cluster B Reward (striatum, thalamus, amygdala, 

globus pallidus, and olfactory cortex), a larger number of excerpts of liked music than disliked 

music elicited stronger responses (𝑝 = 0.000083). In the cluster C Auditory (superior and middle 

temporal gyrus, Heschl’s gyrus and Rolandic operculum), a larger number of excerpts of happy 
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Figure 4-9. The threshold values/third quartiles for strong 
response in Reward cluster of all the 29 subjects. 
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music than sad music elicited stronger responses (𝑝 = 1.1e-8). It also showed that a larger num-

ber of excerpts of disliked music than liked music elicited stronger responses in the brain regions 

encompassed by cluster C Auditory (𝑝 = 1.8e-12). We also tested the stimuli that simultaneously 

elicited the strong and most similar responses in the brain areas within all the three clusters. 

Results showed that a larger number of excerpts of happy music than sad music elicited a 

stronger large-scale brain response network (𝑝 = 0.0023). 

4.4 Neuroscientific insights and discussion 

In this study, we have tested a novel data-driven consensus clustering framework with an aim to 

integrate results from several clustering algorithms (rather than applying a single one) to a com-

plex research question related to brain processing of musical emotions. By doing this we obtained 

several brain regions having consistent and robust pattern of functional connectivity in response 

to different musical emotions. Based on the clusters obtained from the framework, we found the 

music categories that elicited strong responses in visual, reward and auditory brain regions. In 

addition, we also obtained different BOLD responses between musicians and non-musicians.  

We used the following criteria to ensure the quality of the clustering results. Firstly, we chose 

three commonly used clustering methods that have been used in the study involving the analysis 

of fMRI data. Secondly, we did not give any spatial information but clustered the fMRI data purely 

based on its time series. In other words, voxels are clustered based on their temporal profiles and 

not on their topology in the brain. In addition, the fact that the overall size of the clusters was 

much larger than the Gaussian spatial smoothing kernel size (about 30 voxels) means it is not 

likely that this similarity comes from the preprocessing step, which made the results more reliable. 

Finally, the Bi-CoPaM paradigm and M-N scatter plot within the framework generated and se-

lected the non-trivial clusters with a large number of members showing consistently synchronized 

activities during most of the experimental conditions. In neuroimaging studies, the signal to noise 

ratio is often very low (Bennett and Miller, 2010; Welvaert and Rosseel, 2013), making it hard to 

draw any conclusion based on a single or even several experiments. The paradigm in this study 

has overcome this issue, since integrating the results from 1856 independent clustering pro-

cesses means that the results are reproducible: if certain clusters would only appear in few clus-

tering trials, then they would be most likely due to random error or other factors and would not be 
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included in the final results. Remarkably, we obtained these results with a stimulation paradigm 

that included stimulus sets that varied across participants, and a subjective task related to affec-

tive ratings of the stimuli. Hence, the robust findings contrasted the variability of the experimental 

paradigm. 

We further explored how the tunable consensus clustering results from individual clustering meth-

ods differ compared with the same from the framework utilizing all three clustering methods. The 

differences of the results mainly come from the integration process Bi-CoPaM, so in the following 

discussion, Bi-CoPaM will replace the term “framework” temporally. To compare the differences, 

for each of the three clusters described above and obtained from all three methods, we obtained 

the clusters generated by 𝐾-means and Bi-CoPaM, hierarchical clustering and Bi-CoPaM, as well 

as SOM and Bi-CoPaM separately. We compared the coherences and differences and found that 

the three individual methods give different clustering results. For example, hierarchical clustering 

did not identify the cluster B Reward and SOM did not identify the cluster C Auditory. Yet, by using 

the same experimental data, the clusters generated by Bi-CoPaM with all three methods not only 

include the intersections among the results from three individual methods but also areas that were 

not identified by any individual method on its own. Therefore, the fact that Bi-CoPaM with multiple 

algorithms detected clusters that could not be identified by a single algorithm, demonstrates the 

advantages of integrating multiple methods over using a single specific method. 

The consensus clustering framework allows us to find clusters including functionally and anatom-

ically related neural networks responding to emotional music. After the cluster generation and 

selection, emotion-related brain structures responsible for rewarding and pleasurable sensations 

such as the basal ganglia, thalamus, insula (Salimpoor and Zatorre, 2013), and other areas in-

volved with processing of auditory features such as the Heschl’s gyrus, the Rolandic operculum 

and the superior temporal gyrus (Alluri et al., 2012) were grouped into corresponding clusters 

separately. One of the most important findings of this study is that, without any predetermined 

model assigning a value to each stimulus, the framework was able to obtain a single cluster in-

cluding the anatomically connected subcortical and cortical structures of the reward circuit, re-

sponding selectively to liked, enjoyed music. This is one of the few studies obtaining such finding 

with a data-driven method. In a recent study using a data-driven network science method to study 

affective music processing (Wilkins et al., 2014), no reward circuit activity was found. Our study 
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confirms findings on the neural structures related to musical emotions obtained with model-based 

approaches (Barrett and Wager, 2006; Brattico et al., 2013, 2011, Koelsch, 2014, 2010; Koelsch 

et al., 2006; Salimpoor and Zatorre, 2013). Neural structures of the reward circuit have also been 

found to be more or less connected only in other functional connectivity analysis studies such as 

one studying attention-deficit/hyperactivity disorder (ADHD) (Tomasi and Volkow, 2012). 

In our statistical tests, we also investigated the response shapes elicited by the different stimulus 

categories (liked, disliked, happy, and sad music) and experimental groups (musicians and non-

musicians). Unlike the traditional statistical tests for fMRI data that compare the response strength 

differences using a general linear model (Friston et al., 1995), which often have been questioned 

(Poline and Brett, 2012), the clustering analysis of the mean excerpt response shape would dis-

tinguish the response shape difference, providing a finer temporal information than comparing the 

response magnitude level alone. The neurodynamics of functional connections related to affective 

responses to music have been previously studied only with model-based approaches and only 

within selected regions of interests, such as the caudate and the nucleus accumbens (Alluri et al., 

2015; Salimpoor et al., 2013).  With the current results, we replicated those findings without falling 

into the risks of circular analysis (Kriegeskorte et al., 2010). Moreover, we evidenced a difference 

between musicians and non-musicians in the temporal course of the BOLD response for the inter-

connected cortical areas of cluster A including the calcarine fissure and the cuneus. This finding 

suggests a larger involvement of visual processes that might be related to imagery or even to a 

relaxation state in non-musicians accumulated and achieved as a consequence of listening to 18 

seconds of emotionally-loaded music. A similar result of tightened connectivity in visual clusters 

was found by Luo et al. (Luo et al., 2014) with participants lying in the MR scanner at rest with 

eyes closed, confirming the coupling of these areas during relaxation. Remarkably, while the au-

thors focused the analysis of the differences between musicians and non-musicians on other 

regions, a tendency for a larger recruitment of visual clusters seems to be present in non-musi-

cians, similarly to the current study.  

On the other hand, when the same dataset was analysed using a model-driven approach for 

evidencing regional activations during music listening, musicians showed larger regional activa-

tions in somatomotor areas, such as the precentral and post-central cerebral gyri and the cere-

bellar declive, in musicians over non-musicians, whereas the latter group of participants did not 
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show any larger brain activity as compared with musicians. The apparent discrepancy with previ-

ous findings obtained with the same dataset relates to the divergent approaches used. In the 

current study functional coupling among areas within the same cluster was computed and the 

temporal dynamics of the BOLD response within each cluster was then compared between mu-

sicians and non-musicians for all the stimulus conditions, whereas in the study by Brattico et al. 

(Brattico et al., 2016) the overall magnitudes of the BOLD regional responses in the whole brain 

were compared between groups with the general linear model and post-hoc t-tests. Moreover, 

since in the current study our main goal was to validate a new clustering approach rather than 

testing the neural adaptations to affective music listening as a consequence of musical training, 

we did not proceed in studying the differences in the response shape patterns between musicians 

and non-musicians for each of the stimulus categories. In our previous study with the general 

linear model approach, we obtained new evidence for larger activations of reward-related areas 

in musicians than non-musicians, in the line of previous findings by Chapin et al. (Chapin et al., 

2010) or James et al. (James et al., 2008). As discussed already in Ref. (Reybrouck and Brattico, 

2015) future model-based and data-driven studies should solve the issue on the role of expertise 

in shaping emotional responses to music in the brain. 

In summary, we first clustered the data not with one clustering algorithm but with three clustering 

algorithms independently. Then consensus clustering framework generates consensus among 

the three sets of clusters. This takes out the risks of capturing artefacts of an individual clustering 

algorithm. Furthermore, we analyse the data not with one set of parameters but with many sets 

of parameters. For example, different binarisation thresholds explore consensus clusters with dif-

ferent degrees of tightness, which naturally avoids the pitfalls of a single set of clusters found 

using a single set of parameters. Thus, we believe the proposed consensus clustering framework 

provides a robust solution for obtaining the consistently strong activation patterns in neuroimaging 

studies of the affect dataset. 
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Chapter 5 Investigation on Effects of 

Intentionality on The Functional 

Connectivity during Enjoyment of Unfamiliar 

Music 

 

The consensus clustering framework has been applied on read fMRI data and it has been demon-

strated to be effective and powerful to detect the brain areas consistently exhibiting highly corre-

lated BOLD activities during certain experimental conditions. In this chapter, the consensus clus-

tering paradigm is used to differentiate the functional connectivities under different experimental 

conditions, namely intentional listening and naturalistic listening. Distinct stable functional net-

works are obtained, subserving musical emotion processing during three levels of attentional and 

intentional engagement with the music, from naturalistic listening to descriptive and non-evalua-

tive listening up to intentional evaluative listening. Results indicate the intentionality has different 

effects on auditory-limbic connectivity during musical emotion perceiving. 

5.1 Background on intentionality in affective processing 

Although enjoyment of music is a very common phenomenon, listening to music is not always 

intentional, since it often accompanies daily activities such as shopping or TV watching. According 

to a study by (Sloboda and O’Neill, 2001) using the experience sampling method, about 44% of 

the events recorded involved music but in only 2% of them music was listened to intentionally and 

attentively. In these instances of casual and unfocused listening, we do not necessarily carry out 

a conscious evaluation of the music heard in terms of aesthetic properties, such as beauty, struc-

ture or mastery. According to music psychologist (Sloboda, 2010), in everyday life the expression 

and induction of basic emotions such as joy or sadness by music are prioritized over “aesthetically 

tinged” emotions such as deep enjoyment, awe or frissons (Sloboda, 2010, p. 503). According to 

a recent account (Brattico, 2015; Brattico et al., 2013; Brattico and Pearce, 2013; Nieminen et al., 
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2011; Reybrouck and Brattico, 2015), a full musical experience includes final outcomes such as 

aesthetic emotions or reward (often accompanied by bodily changes such as goose bumps on 

the skin, accelerated heartbeat, or tears in the eyes), aesthetic judgments (“this music is so beau-

tiful”) and the formation of specific preferences and musical taste (“I love chamber music”). In a 

broader framework encompassing all experiences of an art object, Chatterjee and Vartanian 

(2016) propose that all art phenomena emerge from the interaction between three main mental 

and neural system, a sensory-motor one (sensation, perception, motor system), a knowledge-

meaning one (expertise, context, culture) and an emotion-evaluation one (reward, emotion, want-

ing/liking). Also in the framework by (Juslin, 2013) aesthetic judgment was viewed as the final 

outcome of several different emotion-inductive mechanisms. In several accounts, though, addi-

tional factors are listed that enable to reach a full aesthetic experience. Among them, one that is 

considered especially crucial is a dedicated, conscious intention toward the art object, also de-

scribed as a special attitude (“aesthetic stance”), focus (Hodges, 2016) or intentionality (Brattico 

et al., 2013; Brattico and Pearce, 2013). Even if this intentionality factor is feasible to study, very 

little research has been dedicated to determine its role in an aesthetic response during music 

listening, such as pleasure or enjoyment. 

In an analytic study of aesthetic processes in the visual modality, (Höfel and Jacobsen, 2007a) 

instructed participants to passively view abstract black and white patterns or to contemplate them 

aesthetically, i.e., to reflect upon the beauty of those shapes, although without giving an overt 

aesthetic judgment. The electric brain potentials elicited during the two experimental conditions 

evidenced that aesthetic evaluation occurred during contemplation only and not during mere view-

ing, as indexed by a late positive potential visible only in the contemplation condition. Further-

more, an early frontocentral negativity to “not beautiful” shapes reflecting impression formation 

and previously observed during tasks involving overt aesthetic judgments (Jacobsen and Höfel, 

2003) was not found in that subsequent study (Höfel and Jacobsen, 2007a). The authors hence 

postulated a distinction between aesthetic mode or “central processes of thinking about aesthetic 

value” and “deciding upon an aesthetic judgment”.  
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In terms of brain structures distinguishing intentional from involuntary pleasure, a rare meta-anal-

ysis by Kühn and Gallinat (2012) has combined results from 39 neuroimaging studies related to 

pleasure as induced by odour, taste, music or visual stimuli. Overall, positive correlates of con-

scious, subjective pleasure were selectively obtained in medial orbitofrontal cortex, left nucleus 

accumbens (ventral striatum), pregenual cortex, left thalamus, and mid cingulate cortex. Several 

of those structures are consistently found in relation to motivational stimuli, as well as expected 

or reward anticipation (Mueller et al., 2015). Particularly, the nucleus accumbens is described as 

the “hot spot” of the brain (Peciña et al., 2006). These results replicated a previous meta-analysis 

by (Brown et al., 2011). The latter study additionally identified the anterior insula as a hub common 

to all sensory modalities in association with pleasurable stimuli (whether consciously evaluated 

for their affective qualities or not). In the meta-analysis by (Kühn and Gallinat, 2012) the clusters 

of activation found in the selected studies were further subdivided into the ones in which partici-

pants judged pleasantness during scanning (18 studies) from those in which they judged the 

stimuli outside the scanner (11 studies). The main interest by the authors of the study was in 

testing the hypothesis of a medial orbitofrontal function for self-referential processes involving 

conscious hedonic decisions. However, no difference was found although a relation between left 

amygdala activation and conscious pleasure judgments done during scanning was noticed. This 

meta-analysis, while commendable in trying to discern neural correlates of distinct psychological 

processes, puts forward the need for further empirical work within each sensory modality. 

In the music domain, a growing number of studies (including few meta-analyses) has looked at 

the brain structures and neural connections associated with perceived or felt musical emotions. 

Nevertheless, very little knowledge has been accumulated when it comes to intentionality during 

these emotional experiences. A rare attempt to study intentionality during affective processing 

with neuroimaging method has been done by (Bogert et al., 2016). In their study 30 music ex-

cerpts from blockbuster film soundtracks lasting 4 seconds were presented twice to subjects in 

two separate (counterbalanced) conditions. In one condition subjects were asked to pay attention 

to the numbers of instruments playing in the clip (implicit condition); in the other condition they 

were instructed to classify the emotions conveyed by the music (explicit condition). In the implicit 

condition (contrasted with the explicit one) the music stimuli activated bilaterally the inferior pari-

etal lobule, premotor cortex, as well as reward-related areas such as the caudate (dorsal striatum) 
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and ventromedial frontal cortex. In contrast, dorsomedial prefrontal and occipital areas, previously 

associated to emotion recognition and cognitive processing of music, were active during explicit 

classification of musical emotions. Indeed, according to the conceptual-act model of emotions by 

(Barrett and Wager, 2006; Lindquist et al., 2012), discrete emotions occur only after the neuro-

physiological states of valence and arousal (which form what is called ‘core affect’) meet with an 

act of categorization and labeling happening in dorsolateral prefrontal and parietal cortices. This 

conceptual act occurs “in the moment” and uses pre-existing knowledge of emotions and lan-

guage systems in the brain to attribute a lexical category (Barrett, 2006). 

In a recent experiment we studied the chronometry of the neural responses during categorisation 

of musical emotions by using neurophysiological methods (Ellison and Brattico, 2015). We chose 

a very simplified paradigm in order to measure the phase-locked event-related responses allow-

ing very fine temporal resolution in the order of milliseconds. Stimuli were chord cadences ending 

with a major or minor chord that could be tuned or mistuned in the middle note. Results showed 

that negatively rated (sad or incorrect) cadence endings in both tasks elicited early neural re-

sponses whereas only later responses peaking at around 500 ms, differed between sad and in-

correct stimuli, suggesting a neural chronometry of music listening in which feature encoding and 

sensory memory processes are followed at a medium latency by affective classification, after 

which an evaluative stage takes place (similar findings have been obtained also in the visual 

domain: Höfel and Jacobsen, 2007b; Jacobsen, 2014; Jacobsen and Höfel, 2003).  

To complement the scarcely available literature, in the present study, we set out to depict whether 

intention, i.e., attention focused on carrying out an explicit liking judgments of music (as opposed 

to attention to the making descriptive judgment of the music or to listening per se), is necessary 

to co-activate limbic, paralimbic and reward system regions of the brain. In other words, we 

wanted to determine whether liking and enjoyment are spontaneous affective processes during 

listening, even when attention is diverted towards some specific aspects of the music, or the mind 

is concentrated on the listening itself. To this aim, we used fMRI to scan the brain activities of 

healthy adult volunteers while they passively listened to 15 seconds music excerpts selected by 

the experimenters, varying in musical genre, acoustic features, and emotional connotations, or 

else they classified the excerpts based on the gender of the singer or based on whether they 

enjoyed the excerpts or not. Human brain has been considered to be a very efficient network and 
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examining the connectivity between different brain regions have drawn great attention these days 

(M. P. van den Heuvel et al., 2008; Wilkins et al., 2014). For the analysis of the interconnected 

neural networks, we adopted the developed consensus clustering framework to identify the sub-

set of voxels that are consistently correlated under different circumstances (Abu-Jamous et al., 

2015b, 2013). In the work reported in Chapter 4 (Liu et al., 2017), the consensus clustering frame-

work successfully identified the brain structures functionally connected to evaluative liking judg-

ments of music. In this study, we predicted co-activation in a network of mesiotemporal limbic 

structures, including the nucleus accumbens, in response to the liked musical stimuli, irrespec-

tively of the experimental task performed by the subjects, namely irrespectively of whether they 

were focusing on making a liking evaluation or not. In turn, we anticipated functional connectivity 

within prefrontal and parietooccipital regions specifically in association with the conscious deci-

sion processes of liking judgment. Moreover, we predicted that the decision process might down-

regulate the activity and connectivity of the limbic and reward networks during listening to the 

liked music excerpts. For the disliked musical excerpts, we expected the involvement of the amyg-

dala, insula and auditory cortices, similarly to the findings in Chapter 4 including liked and dislike 

music across all the experimental conditions, but particularly for the conditions not requiring the 

conscious liking decision (Burunat et al., 2015). 

5.2 Affect 2 fMRI dataset 

5.2.1 Participant 

A total of 25 healthy volunteers (16 females and 9 males) without any hearing, neurological or 

psychological problem are included in this study. Before the experiment, participants were con-

tacted by e-mail and asked to name three or four genres (or sub-genres) of music that they prefer 

and other three or four genres that they strongly dislike, along with examples. This information 

was used to select songs within three different sub-genres of the pop-rock repertoire that could 

accommodate the preferences of all the participants. The experiment is approved by the ethical 

committee of the coordinating Uusimaa and Helsinki Hospital and complied with the Helsinki Dec-

laration. 
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5.2.2 Stimulation 

According to the information provided by the participants, the music excerpts are selected by 

researchers. There are 36 audio excerpts from commercially available pop/rock songs. These 

excerpts varied in musical genre, acoustic features, and emotional connotations to minimise the 

possible effects of these factors on people’s perception of the sound and emotions. Each music 

excerpt lasts 15 seconds. Table 5-1 lists the information of the stimuli used in this study. 

Table 5-1. Stimulus information. 

Stimulus Name Artist

1 No	I	in	Threesome Interpol

2 The	Greatest Cat	Power

3 Lover,	You	Should've	Come	Over Jeff	Buckley

4 Once	Upon	A	Time Air

5 Karma	Police Radiohead

6 Glory	Box Portishead

7 Transmission Joy	Division

8 Son	of	Sam Elliott	Smith

9 No	Brakes The	Bravery

10 Shadow	Valley Castanets

11 Temptation Jeremy	Warmsley

12 Souvenirs Architecture	in	Helsinki

13 Closer Ne-Yo

14 Ride	It Jay	Sean

15 No	One Alicia	Keys

16 Better	in	Time Leona	Lewis

17 One	Step	at	A	Time Jordin	Sparks

18 Run	The	Show Kat	DeLuna	Feat.	Busta	Rhymes

19 Beautiful	Liar Beyoncé	&	Shakira

20 Ayo	Technology 50	Cent	Feat.	Justin		Timberlake

21 Whenever,	Wherever Shakira

22 Ass	Like	That Eminem

23 Disturbia Rihanna

24 Take	A	Bow Rihanna

25 Thunderstruck AC/DC

26 Ace	of	Spades Motörhead

27 School's	Out Alice	Cooper

28 Child	in	Time Deep	Purple

29 Bridges	in	The	Sky Dream	Theater

30 The	Wicker	Man Iron	Maiden

31 Iron	Man Black	Sabbath

32 Locomotive	Breath Jethro	Tull

33 Death	Row Judas	Priest

34 Immigrant	Song Led	Zeppelin

35 The	Beautiful	People Marilyn	Manson

36 Nothing	Else	Matters Metallica  
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5.2.3 fMRI experiment procedure 

The experiment was conducted at the Advanced Magnetic Imaging (AMI) Centre at Aalto Univer-

sity, Espoo, Finland. Upon arrival at the laboratory, and before entering the scanner, participants 

were asked to listen to the stimuli to allow them to be equally familiar with them and thereby to 

minimise the possible bewilderment from unfamiliarity factor, which was previously shown to have 

a strong influence in the pleasure response of listeners to music (Pereira et al. 2013). Subse-

quently they changed their clothes and were prepared to enter the scanner room. Participants’ 

fMRI responses were acquired while they listened to each of the musical stimuli in some random 

order. For each participant the stimuli loudness was adjusted to a comfortable but audible level 

inside the scanner room (around 75 dB (SPL)) and the sound was delivered via MRI compatible 

earphone that did not cause interferences with the magnetic field generated by MRI machine.  

For each participant, there are in total three scanning sessions, where different experimental con-

ditions are set for each session. The following describe what participants were asked to do in 

corresponding session. 

• Naturalistic listening session: participants were asked to listen to the music naturalistically 

without making any explicit judgments. 

• Gender classification session: participants were asked to determine the gender of the singer 

in each music excerpts presented. 

• Liking classification session: participants were asked to decide whether they like or dislike 

each excerpt. 

The first scanning session is always naturalistic listening for everyone. The orders of gender clas-

sification session and liking classification session were counterbalanced across subjects, i.e., 

some had gender classification session as the second one while others had liking classification 

session as the second. This design is to neutralise the possible effects on the decisions from the 

order of the sessions that participants took. When each music excerpt was played, participants 

were asked to look at the fixed cross symbol at the centre of screen in the scanner. After each 15 

seconds long music excerpt, there was a 3.5 seconds interval for the participants to response to 

the question shown on the screen by pressing the corresponding button. The order of the answer 

each response button represents (e.g.: left for like, right for dislike) was counterbalanced between 
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subjects. Then there was a ten seconds long silence period before delivering the next music 

excerpt.  Figure 5-1 illustrates the experimental paradigm in each block. 

5.2.4 data acquisition and preprocessing 

Scanning was performed using a 3T MAGNETOM Skyra whole-body scanner (Siemens 

Healthcare, Erlangen, Germany) and a standard 20-channel head-neck coil, at the AMI Centre. 

Using a single-shot gradient echo planar imaging (EPI) sequence, 33 oblique slices (field of view 

= 192×192 mm; 64×64 matrix; slice thickness = 4 mm, interslice skip = 0 mm; echo time = 32 

ms; flip angle = 75°) were acquired every 2 seconds, covering the whole-brain for each partici-

pant. T1-weighted structural images (176 slices; field of view = 256×256 mm; matrix = 256×256; 

slice thickness = 1 mm; interslice skip = 0 mm; pulse sequence = MPRAGE) were also collected 

for individual coregistration. 

Functional MRI scans were preprocessed on a MATLAB platform using SPM8 (Statistical Para-

metric Mapping), VBM for SPM (Voxel Based Morphometry; Wellcome Department of Imaging 

Neuroscience, London, UK), and customized scripts developed by the technicians and research-

ers who took part in the data collection and preprocessing. For each participant, low-resolution 

images were realigned on six dimensions using rigid body transformations (translation and rota-

tion corrections did not exceed 2 mm and 2° respectively), segmented into grey matter, white 

matter, and cerebrospinal fluid by VBM, and registered to the corresponding segmented high-

S"mula"on	Sequence	

s"muli	 silence	 music	 response	

10	seconds	 15	seconds	 3.5	seconds	

×	36	

+	 ques"on	screen	

Figure 5-1. Schematic representation of the experimental tri-
als used for each of the three sessions constituting the com-
plete experiment (naturalistic listening, gender classification 
and liking classification). 
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resolution T1-weighted structural images. These were in turn normalized to the MNI (Montreal 

Neurological Institute (Evans et al., 1994)) segmented standard a priori tissue templates using a 

12-parameter affine transformation. Functional images were then blurred to best accommodate 

anatomical and functional variations across participants as well as to enhance the signal-to-noise 

ratio by means of spatial smoothing using 8 mm full-width-at-half-maximum (FWHM) Gaussian 

filter. 

The preparation of the data for the consensus clustering analysis follows the same procedure as 

used in Chapter 4. In brief, fMRItoolbox (implemented at the University of Jyväskylä in MATLAB 

environment, e.g., used in (Alluri et al., 2012; Burunat et al., 2016, 2015) is the main tool for 

preparing the data. Firstly, the 3D volume data was converted to a vector (228453×1) by using a 

standard brain mask. The above step had been applied to every 3D volume scan from each sub-

ject and all the scans were combined sequentially, forming the fMRI time series of each subject. 

The time series were high pass filtered with a cut-off frequency of 1/120Hz to remove the linear 

trend and scanner drift. Then, for each participant, according to the order that musical excerpts 

were played and responded by the participant, the whole fMRI time series were segmented into 

36 segments, each containing 7 or 8 time points (covering 15 seconds at a sampling rate of 2 

second per whole-brain image), and each corresponding to instances when the participants were 

listening to music excerpts. 

After obtaining all the music excerpts time-series data, next step is to categorise them, that is 

which session each excerpt is played and what response is given to the corresponding excerpt. 

For each participant, all the 36 music excerpts were labelled as liked or disliked according to the 

responses the participants gave to each music excerpt in liking classification session. In gender 

classification block and naturalistic listening block, although the participants did not perform the 

liking judgment, the excerpts were still labelled as liked or disliked according to the response each 

excerpt received in liking classification block to study the effect of listening to liked or disliked 

music when participants were not actively performing liking judgments. In summary, there are six 

categories of music excerpts from each participant: 

• LL: liked music excerpts in liking classification session (19 excerpts avg.) 

• LD: disliked music excerpts in liking classification session (17 excerpts avg.) 
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• GL: liked music excerpts in gender classification session (19 excerpts avg.) 

• GD: disliked music excerpts in gender classification session (17 excerpts avg.) 

• NL: liked music excerpts in naturalistic listening session (19 excerpts avg.) 

• ND: disliked music excerpts in naturalistic listening session (17 excerpts avg.) 

For each category, different participant might have different number of music excerpts. In general, 

the average number of liked and disliked music per participant are roughly the same (liked: 19 

excerpts on average; disliked: 17 excerpts on average). 

5.2.5 Clustering experiment 

5.2.5.1 Cluster generation 

Following the same procedure used in generating individual clustering results from single cluster-

ing algorithms, each excerpts data (normalized to 0 mean and unit variance) was clustered by K-

means, hierarchical clustering  and SOM  with the number of clusters 𝐾 equals to 10, 25, 50, and 

100 in separate partitions. The clustering index for each excerpt data had a label that was the 

same as the label of the corresponding music excerpt category (LL, LD, GL, GD, NL, ND). These 

labels are used later to form the dataset corresponding to different experimental conditions (e.g., 

liking judgment session) in the consensus clustering analysis. 

The six music excerpt categories are divided into various combinations to reflect the correspond-

ing experimental conditions. For example, by combining the clustering results from datasets LL 

and LD, the brain structures that consistently showing synchronised BOLD responses during lik-

ing judgment tasks were identified. This consensus clustering analysis procedure has been 

demonstrated effective against traditional single clustering algorithm analysis in Chapter 4. By 

obtaining robust clusters in different experimental conditions, the differences and common prop-

erties of the clusters can be compared, indicating the distinct brain functional connectivity under 

different level of affective processing of music emotions and preferences, i.e., intentional on liking 

judgment, naturalistic, and intentional but on gender judgment. The following list shows the music 

excerpt combination scheme: 

• Liking judgment block (LL, LD) 

• Gender judgment block (GL, GD) 
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• Naturalistic listening block (NL, ND) 

Note the above three dataset combinations reflect the real fMRI experiment design, i.e., three 

sessions. Each of the dataset combination is fed into the consensus clustering framework to gen-

erate the consensus clustering results, following the methods introduced in Chapter 3 and 4. 

5.2.5.2 Filtering 

After the clusters are generated by Bi-CoPaM, the topological refinement introduced in section 

3.3.6 is applied, which is also used in the study in Chapter 4. Note a slightly adapted procedure 

for removing the voxels with weak responses (voxels whose time series have a very small vari-

ance) is used. Since this fMRI experiment has three sessions, the decision of which original voxel 

time-series to use to determine the strong BOLD activities depends on the dataset combination 

that yields the clusters to be filtered. For example, the clusters from combination of LL and LD 

should be filtered using the voxel time-series in the liking judgment session. However, for the 

clusters from combination of LL, GL, and NL, all the voxel time-series from three fMRI sessions 

should be used as the generation of these clusters included all the data from these three sessions. 

Following the established parameters used in previous chapter, the criteria of keeping a voxel is 

that its variance has to be greater than half of the mean of the variance for all the voxels in a 

particular cluster. Then if more than seventy percent of the participants show a strong fluctuation 

in the whole session at a certain voxel, this voxel is retained. When data from multiple sessions 

are used in the filtering, then another criterion is added, which is the kept voxel has to show a 

strong fluctuation in all the sessions involved. Finally, we used the fMRItoolbox developed by 

University of Jyväskylä to remove the scattered tiny or even single voxel clusters.  

5.3 Results 

In each experimental condition, we inspected the first 20 clusters (ranked by M-N plots algorithm), 

as these clusters showed very strong similarity in the response shapes as well as covered large 

continuous regions, which complies with expectations based on knowledge of brain physiology. 
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5.3.1 Topology of clusters 

The topology of clusters in each experimental condition is rendered on a standard structural 3D 

brain. Several slices covering the important brain structures are plotted separately to give a better 

view of the position and shape of the clusters.  Each cluster has a number (e.g., C6), indicating 

its order selected by MN-plot technique, and marked with a colour to be distinguished from the 

other clusters within the same 3D brain.  

5.3.1.1 Liking judgment session (LL+LD) 

The anatomical labels, size, and MNI coordinates are shown in Table 5-2. Figure 5-2 illustrates 

the topology of clusters from liking judgment. Cluster C3 comprises areas such as the supra-

marginal and postcentral gyri, previously related to language and somatosensory processing as 

well as the middle temporal gyrus, Rolandic operculum, and inferior frontal gyrus, previously as-

sociated with the cognitive processing of sounds. In addition, brain regions related to action ob-

servation and motor preparation, such as the supplementary motor area (SMA), the precentral 

gyrus, are also included, as well as the bilateral angular gyri. Cluster C5 mainly includes higher-

order structures involved with visual information processing, namely the cuneus, lingual gyrus, 

middle, inferior and superior occipital gyri, and fusiform gyrus. 

Figure 5-2. Topology of clusters from liking judgment session. There are two clusters with C3 coloured as 
red and C5 as blue. 

Figure 5-3. Topology of clusters from gender judgment session. There are two clusters with C3 coloured 
as red and C5 as blue. 
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5.3.1.2 Gender judgment session (GL+GD) 

The anatomical labels, size, and MNI coordinates are shown in  

Table 5-3. Figure 5-3 illustrates the topology of clusters from gender judgment. Cluster C3 in-

cludes three major systems, namely the auditory processing system (middle and superior tem-

poral gyri) limbic system (thalamus, amygdala, parahippocampal gyrus, orbitofrontal gyrus, in-

sula, putamen) and the cerebellum. Cluster C5 comprises a broad area of the auditory cortex and 

he bilateral insula. Other structures interconnected in this cluster are the bilateral inferior frontal 

gyrus, the SMA, the right supramarginal gyrus, the precentral and postcentral gyri, plus a small 

bit of the right putamen. 

5.3.1.3 Naturalistic listening session (NL+ND) 

The anatomical labels, size, and MNI coordinates are shown in Table 5-4. Figure 5-4 illustrates 

the topology of clusters from naturalistic listening. Cluster C4 includes various parts of the orbital 

frontal cortex (inferior, middle, and superior) extending to a small part of the left middle and inferior 

temporal gyrus. Cluster C5 mainly contains structures related to visual processing, e.g., occipital 

gyrus, cuneus, and fusiform gyrus. Cluster 6 comprises structures that have a similar topology to 

the cluster C3 in gender judgment condition, namely the auditory and limbic system plus a small 

part of cerebellum. Cluster C8 includes bilateral anterior cingulate and paracingulate gyrus as 

well as bilateral insula, where the left insula is very small compared to the right part, plus various 

positions of inferior frontal cortex (triangular, orbital, and opercular). Cluster C9 is a combination 

of the auditory processing related structures (middle and superior gyrus, Heschl’s gyrus) and right 

insula. Cluster C11 is the smallest one including three structures within the right hemisphere. 

Figure 5-4. Topology of clusters from naturalistic listening session. There are six clusters with C4 coloured 
as red, C5 as blue, C6 as green, C8 as violet, C9 as yellow, and C11 as cyan. 
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5.3.2 Cluster topology interaction 

In order to compare the differences of clusters between two experiment sessions, Venn diagram 

is used to show the overlaps and exclusive brain structures between any two sets of clusters from 

corresponding experiment sessions, giving a more straightforward view than comparing the two 

sets of clusters individually. Nevertheless, the area information (anatomical labels, size, and MNI 

coordinates) is also extracted out to provide finer information when biological insights are dis-

cussed.  

5.3.2.1 Liking judgment and naturalistic listening 

The comparison between liking judgment and naturalistic listening (Figure 5-5, Table 5-5) shows 

only one overlapped area in cluster C5 in both conditions (C5_N and C5_L) is found. The struc-

tures included are scattered across various brain regions such as postcentral gyrus, inferior frontal 

cortex, supramarginal gyrus, precentral gyrus, and other two structures having only one voxel 

each. The majority of the brain structures included in each experiment session are not overlapped. 

Figure 5-5.  Cluster topology interaction between liking judgment and gender judg-
ment. Solid circles represent clusters from liking judgment condition and dashed cir-
cles represent clusters from gender judgment condition. The colour label within each 
circle indicates the colour of the corresponding cluster and the number of voxels indi-
cates the size of different clusters/brain regions. 
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5.3.2.2 Liking judgment and gender judgment 

For the comparison between liking judgment and gender judgment (Figure 5-6, Table 5-6), it 

shows almost no overlapping between the two sets of clusters from liking judgment condition and 

gender judgment condition. Only 27 voxels representing part of the visual processing system are 

shared by cluster C3 in liking judgment (C3_L) and C5 in gender judgment (C5_G).	

Figure 5-6. Cluster topology interaction between liking judgment and gender judg-
ment. Solid circles represent clusters from liking judgment condition and dashed cir-
cles represent clusters from gender judgment condition.   

Figure 5-7. Cluster topology interaction between gender judgment and nat-
uralistic listening. Solid circles represent clusters from gender judgment con-
dition and dashed circles represent clusters from naturalistic listening con-
dition. 
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5.3.2.3 Gender judgment and naturalistic listening 

In contrast to the previous two comparisons (liking judgment and naturalistic listening, liking judg-

ment and gender judgment), the cluster topology interaction between gender judgment and nat-

uralistic listening shows several overlapping areas (Figure 5-7, Table 5-7). All of the two clusters 

in gender judgment (C3_G and C5_G) have overlaps with four out of six clusters in naturalistic 

listening (C4_N, C6_N, C8_N, and C9_N). Among all the overlapped areas (i1 to i6), i2 and i6 

contain large amount of voxels. Area i2 is the intersection between the auditory-limbic systems in 

gender judgment and naturalistic listening respectively, plus the difference in cerebellum. Area i6 

contains the overlapped auditory cortex between the two experiment conditions compared. Other 

overlapped areas (i1, i3, i4, and i5) are smaller and contain no more than two structures as shown 

in Table 5-7. 

Table 5-2. Anatomical information for clusters in liking judgment session. 

     
 C3(red)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Supramarginal gyrus (R)' [59,-28,32] 195  
 'Postcentral gyrus (R)' [46,-26,44] 162  
 'Postcentral gyrus (L)' [-53,-21,37] 133  
 'Supramarginal gyrus (L)' [-58,-28,33] 64  
 'Supplementary motor area (R)' [6,5,52] 75  
 'Inferior parietal, but supramarginal and angular gyri (L)' [-49,-27,42] 53  
 'Inferior frontal gyrus, opercular part (L) ' [-55,9,16] 35  
 'Middle temporal gyrus (L)' [-53,-55,6] 67  
 'Precentral gyrus (R)' [48,-3,40] 45  
 'Rolandic operculum (R)' [51,2,13] 28  
 'Inferior parietal, but supramarginal and angular gyri (R)' [45,-38,49] 25  
 'Supplementary motor area (L)' [-1,1,52] 24  
 'Median cingulate and paracingulate gyrus (R)' [4,8,42] 10  
 'Precentral gyrus (L)' [-55,6,26] 8  
 'Rolandic operculum (L)' [-54,4,12] 1  
 'Median cingulate and paracingulate gyrus (L)' [-1,0,47] 2  
     
 C5 (blue)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Middle occipital gyrus (R)' [33,-86,9] 143  
 'Middle occipital gyrus (L)' [-38,-82,12] 162  
 'Superior occipital gyrus (R)' [23,-89,20] 68  
 'Fusiform gyrus (L)' [-29,-68,-12] 68  
 'Inferior occipital gyrus (R)' [41,-81,-6] 44  
 'Superior occipital gyrus (L)' [-18,-91,32] 25  
 'Cuneus (R)' [18,-96,11] 15  
 'Calcarine fissure and surrounding cortex (R)' [7,-88,4] 17  
 'Fusiform gyrus (R)' [30,-72,-11] 20  
 'Inferior occipital gyrus (L)' [-33,-76,-9] 10  
 'Lingual gyrus (L)' [-22,-72,-12] 13  
 'Lingual gyrus (R)' [25,-66,-1] 10  
 'Calcarine fissure and surrounding cortex (L)' [4,-90,5] 5  
 'Cuneus (L)' [-10,-89,37] 2  
     

 



102 

 

Table 5-3. Anatomical information for clusters in gender judgment session. 

     
 C3(red)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, superior temporal gyrus (L)' [-40,12,-22] 596  
 'Temporal pole, superior temporal gyrus (R)' [41,12,-23] 409  
 'Crus I of cerebellum (L)' [-30,-80,-25] 374  
 'Parahippocampal gyrus (L)' [-17,-10,-22] 234  
 'Superior temporal gyrus (L)' [-48,-5,-8] 256  
 'Lobule III of cerebellum (R)' [12,-34,-19] 88  
 'Vermis III of cerebellum' [2,-40,-12] 77  
 'Crus I of cerebellum (R)' [40,-76,-28] 218  
 'Temporal pole, middle temporal gyrus (L)' [-42,14,-31] 126  
 'Lobule III of cerebellum (L)' [-9,-37,-18] 67  
 'Lobules IV-V of cerebellum (L)' [-12,-39,-14] 149  
 'Parahippocampal gyrus (R)' [21,-3,-24] 134  
 'Amygdala (L)' [-22,0,-20] 61  
 'Insula (R)' [40,3,-8] 139  
 'Temporal pole, middle temporal gyrus (R)' [44,14,-29] 83  
 'Vermis IV-V of cerebellum' [1,-55,-1] 64  
 'Amygdala (R)' [29,1,-24] 34  
 'Hippocampus (L)' [-19,-17,-16] 62  
 'Thalamus (L)' [-3,-21,8] 66  
 'Vermis I-II of cerebellum' [1,-38,-20] 8  
 'Inferior frontal gyrus, orbital part (R)' [36,23,-18] 55  
 'Crus II of cerebellum (L)' [-8,-87,-26] 59  
 'Olfactory cortex (L)' [0,12,-9] 15  
 'Vermis VI of cerebellum' [-1,-73,-10] 17  
 'Lobules IV-V of cerebellum (R)' [10,-44,-9] 27  
 'Gyrus rectus (L)' [0,28,-18] 21  
 'Olfactory cortex (R)' [30,10,-20] 1  
 'Gyrus rectus (R)' [1,23,-17] 4  
 'Inferior temporal gyrus (L)' [-56,-55,-24] 31  
 'Hippocampus (R)' [21,-3,-21] 3  
 'Caudate nucleus (L)' [-2,15,0] 2  
 'Fusiform gyrus (L)' [-18,-35,-19] 8  
 'Inferior temporal gyrus (R)' [54,-55,-26] 13  
     
 C5(blue)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [41,-2,3] 415  
 'Superior temporal gyrus (R)' [55,-24,6] 662  
 'Superior temporal gyrus (L)' [-53,-18,4] 405  
 'Rolandic operculum (R)' [49,-10,13] 231  
 'Rolandic operculum (L)' [-47,-11,10] 182  
 'Heschl''s gyrus (R)' [45,-18,9] 108  
 'Heschl''s gyrus (L)' [-43,-18,9] 72  
 'Insula (L)' [-42,0,0] 158  
 'Middle temporal gyrus (L)' [-56,-25,-1] 233  
 'Postcentral gyrus (R)' [57,-15,38] 181  
 'Inferior frontal gyrus, opercular part (R)' [49,14,11] 88  
 'Inferior frontal gyrus, opercular part (L) ' [-55,10,11] 72  
 'Precentral gyrus (R)' [58,2,33] 115  
 'Supramarginal gyrus (R)' [53,-31,25] 56  
 'Supplementary motor area (R)' [9,-3,63] 30  
 'Putamen (R)' [33,7,7] 3  

     

Table 5-4. Anatomical information for clusters in naturalistic listening. 

     
 C4(red)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Middle frontal gyrus, orbital part (R)' [33,52,-14] 88  
 'Inferior frontal gyrus, orbital part (R)' [39,31,-18] 77  
 'Inferior frontal gyrus, orbital part (L)' [-40,37,-16] 76  
 'Middle frontal gyrus, orbital part (L)' [-27,56,-13] 49  
 'Gyrus rectus (R)' [5,56,-20] 31  
 'Temporal pole, middle temporal gyrus (L)' [-48,15,-30] 27  
 'Superior frontal gyrus, orbital part (R)' [13,57,-19] 23  
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 'Superior frontal gyrus, orbital part (L)' [-15,60,-15] 23  
 'Gyrus rectus (L)' [-3,59,-21] 19  
 'Inferior frontal gyrus, medial orbital (R)' [7,66,-12] 17  
 'Inferior frontal gyrus, medial orbital (L)' [-3,65,-10] 8  
 'Middle temporal gyrus (L)' [-60,-1,-27] 20  
 'Inferior temporal gyrus (L)' [-57,-4,-29] 7  
     
 C5(blue)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Calcarine fissure and surrounding cortex (L)' [-7,-74,10] 227  
 'Calcarine fissure and surrounding cortex (R)' [11,-76,8] 166  
 'Cuneus (R)' [11,-83,23] 135  
 'Cuneus (L)' [-3,-82,21] 101  
 'Lingual gyrus (R)' [13,-65,1] 72  
 'Superior occipital gyrus (R)' [20,-89,22] 54  
 'Middle occipital gyrus (L)' [-34,-83,18] 78  
 'Lingual gyrus (L)' [-10,-67,0] 63  
 'Superior occipital gyrus (L)' [-19,-89,26] 49  
 'Fusiform gyrus (L)' [-29,-70,-11] 25  
 'Middle occipital gyrus (R)' [29,-81,16] 4  
 'Inferior occipital gyrus (L)' [-32,-78,-12] 1  
     
 C9(yellow)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Superior temporal gyrus (R)' [57,-17,3] 177  
 'Superior temporal gyrus (L)' [-55,-11,2] 69  
 'Middle temporal gyrus (L)' [-59,-27,-2] 39  
 'Insula (R)' [43,-9,-1] 24  
 'Heschl''s gyrus (R)' [46,-19,7] 11  
 'Heschl''s gyrus (L)' [-50,-16,7] 2  
     
 C6(green)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, superior temporal gyrus (L)' [-37,10,-23] 153  
 'Parahippocampal gyrus (L)' [-16,-10,-23] 107  
 'Lobule III of cerebellum (R)' [12,-33,-19] 53  
 'Temporal pole, superior temporal gyrus (R)' [39,9,-22] 83  
 'Lobule III of cerebellum (L)' [-11,-35,-20] 31  
 'Superior temporal gyrus (L)' [-46,-6,-9] 63  
 'Lobules IV-V of cerebellum (L)' [-12,-36,-17] 44  
 'Vermis III of cerebellum' [1,-39,-12] 24  
 'Parahippocampal gyrus (R)' [19,-7,-21] 41  
 'Amygdala (L)' [-21,1,-21] 15  
 'Insula (R)' [42,6,-10] 33  
 'Vermis I-II of cerebellum' [0,-37,-19] 5  
 'Amygdala (R)' [29,3,-27] 6  
 'Hippocampus (L)' [-14,-6,-21] 9  
 'Temporal pole, middle temporal gyrus (L)' [-40,9,-28] 5  
 'Lingual gyrus (L)' [-11,-36,-7] 7  
     
 C11(violet)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [41,20,-3] 29  
 'Anterior cingulate and paracingulate gyrus (L)' [-1,37,8] 27  
 'Inferior frontal gyrus, orbital part (R)' [41,29,-7] 23  
 'Inferior frontal gyrus, triangular part (R)' [47,24,4] 24  
 'Inferior frontal gyrus, triangular part (L)' [-46,22,2] 24  
 'Inferior frontal gyrus, opercular part (R)' [51,15,5] 19  
 'Anterior cingulate and paracingulate gyrus (R)' [3,41,7] 7  
 'Inferior frontal gyrus, orbital part (L)' [-45,22,-4] 3  
 'Insula (L)' [-39,22,1] 2  
     
 C11(cyan)  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Angular gyrus (R)' 121 [50,-59,32]  
 'Middle frontal gyrus (R)' 20 [31,16,46]  
 'Inferior parietal, but supramarginal and angular gyri (R)' 11 [52,-58,44]  
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Table 5-5. Cluster topology interaction between liking judgment and naturalistic listening. 

     
 C5_N ∩ C5_L  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Superior occipital gyrus (R)' [21,-91,21] 13  
 'Middle occipital gyrus (L)' [-38,-80,16] 9  
 'Fusiform gyrus (L)' [-29,-74,-11] 4  
 'Calcarine fissure and surrounding cortex (R)' [7,-90,4] 3  
 'Middle occipital gyrus (R)' [29,-80,16] 2  
 'Superior occipital gyrus (L)' [-22,-90,30] 1  
 'Lingual gyrus (R)' [22,-70,2] 1  
     
 C5_N − C5_N ∩ C5_L  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Calcarine fissure and surrounding cortex (L)' [-7,-74,10] 227  
 'Calcarine fissure and surrounding cortex (R)' [11,-76,8] 163  
 'Cuneus (R)' [11,-83,23] 135  
 'Cuneus (L)' [-3,-82,21] 101  
 'Lingual gyrus (R)' [13,-65,1] 71  
 'Lingual gyrus (L)' [-10,-67,0] 63  
 'Superior occipital gyrus (L)' [-19,-89,26] 48  
 'Middle occipital gyrus (L)' [-34,-83,18] 69  
 'Superior occipital gyrus (R)' [20,-88,23] 41  
 'Fusiform gyrus (L)' [-29,-70,-11] 21  
 'Inferior occipital gyrus (L)' [-32,-78,-12] 1  
 'Middle occipital gyrus (R)' [29,-81,15] 2  
     
 C5_L − C5_N ∩ C5_L  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Middle occipital gyrus (R)' [33,-86,9] 141  
 'Middle occipital gyrus (L)' [-38,-82,12] 153  
 'Superior occipital gyrus (R)' [24,-89,20] 55  
 'Fusiform gyrus (L)' [-30,-68,-12] 64  
 'Inferior occipital gyrus (R)' [41,-81,-6] 44  
 'Superior occipital gyrus (L)' [-18,-91,32] 24  
 'Cuneus (R)' [18,-96,11] 15  
 'Fusiform gyrus (R)' [30,-72,-11] 20  
 'Inferior occipital gyrus (L)' [-33,-76,-9] 10  
 'Calcarine fissure and surrounding cortex (R)' [7,-88,3] 14  
 'Lingual gyrus (L)' [-22,-72,-12] 13  
 'Lingual gyrus (R)' [26,-66,-1] 9  
 'Calcarine fissure and surrounding cortex (L)' [4,-90,5] 5  
 'Cuneus (L)' [-10,-89,37] 2  
     

Table 5-6. Cluster topology interaction between liking judgment and gender judgment. 

     
 C5_G ∩ C3_L  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Postcentral gyrus (R)' [54,-20,35] 13  
 'Inferior frontal gyrus, opercular part (L) ' [-57,8,12] 7  
 'Supramarginal gyrus (R)' [55,-26,29] 3  
 'Precentral gyrus (R)' [58,4,26] 2  
 'Rolandic operculum (R)' [54,4,16] 1  
 'Supplementary motor area (R)' [10,-2,58] 1  
     
 C5_G − C5_G ∩ C3_L  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [41,-2,3] 415  
 'Superior temporal gyrus (R)' [55,-24,6] 662  
 'Superior temporal gyrus (L)' [-53,-18,4] 405  
 'Rolandic operculum (R)' [49,-10,13] 230  
 'Rolandic operculum (L)' [-47,-11,10] 182  
 'Heschl''s gyrus (R)' [45,-18,9] 108  
 'Heschl''s gyrus (L)' [-43,-18,9] 72  
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 'Insula (L)' [-42,0,0] 158  
 'Middle temporal gyrus (L)' [-56,-25,-1] 233  
 'Postcentral gyrus (R)' [57,-14,39] 168  
 'Inferior frontal gyrus, opercular part (R)' [49,14,11] 88  
 'Inferior frontal gyrus, opercular part (L) ' [-54,10,11] 65  
 'Precentral gyrus (R)' [58,2,33] 113  
 'Supramarginal gyrus (R)' [53,-31,24] 53  
 'Supplementary motor area (R)' [9,-4,63] 29  
 'Putamen (R)' [33,7,7] 3  
     
 C5_G − C5_G ∩ C3_L  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Supramarginal gyrus (R)' [59,-28,32] 192  
 'Postcentral gyrus (R)' [45,-26,44] 149  
 'Postcentral gyrus (L)' [-53,-21,37] 133  
 'Supramarginal gyrus (L)' [-58,-28,33] 64  
 'Supplementary motor area (R)' [6,5,52] 74  
 'Inferior parietal, but supramarginal and angular 

gyri (L)' 
[-49,-27,42] 53  

 'Middle temporal gyrus (L)' [-53,-55,6] 67  
 'Inferior frontal gyrus, opercular part (L) ' [-54,9,17] 28  
 'Precentral gyrus (R)' [48,-4,41] 43  
 'Rolandic operculum (R)' [50,2,13] 27  
 'Inferior parietal, but supramarginal and angular 

gyri (R)' 
[45,-38,49] 25  

 'Supplementary motor area (L)' [-1,1,52] 24  
 'Median cingulate and paracingulate gyrus (R)' [4,8,42] 10  
 'Precentral gyrus (L)' [-55,6,26] 8  
 'Rolandic operculum (L)' [-54,4,12] 1  
 'Median cingulate and paracingulate gyrus (L)' [-1,0,47] 2  
     

Table 5-7. Cluster topology interaction between gender judgment and naturalistic listening. 

     
 i1  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, middle temporal gyrus (L)' [-49,14,-28] 9  
 'Inferior frontal gyrus, orbital part (R)' [39,26,-20] 9  
     
 i2  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, superior temporal gyrus (L)' [-37,10,-23] 143  
 'Parahippocampal gyrus (L)' [-16,-9,-23] 106  
 'Lobule III of cerebellum (R)' [12,-33,-19] 46  
 'Temporal pole, superior temporal gyrus (R)' [40,9,-22] 68  
 'Lobule III of cerebellum (L)' [-11,-35,-20] 30  
 'Parahippocampal gyrus (R)' [19,-7,-22] 39  
 'Superior temporal gyrus (L)' [-46,-6,-9] 49  
 'Lobules IV-V of cerebellum (L)' [-13,-35,-18] 36  
 'Vermis III of cerebellum' [2,-39,-12] 16  
 'Amygdala (L)' [-21,1,-21] 15  
 'Amygdala (R)' [29,3,-27] 6  
 'Insula (R)' [43,3,-9] 14  
 'Vermis I-II of cerebellum' [0,-37,-19] 3  
 'Hippocampus (L)' [-14,-6,-21] 9  
 'Temporal pole, middle temporal gyrus (L)' [-40,9,-28] 5  
 'Olfactory cortex (L)' [-2,10,-14] 1  
     
 i3  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Superior temporal gyrus (L)' [-52,-9,-1] 11  
 'Insula (R)' [43,-11,-2] 10  
     
 i4  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [43,3,-8] 9  
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 'Superior temporal gyrus (L)' [-48,-2,-6] 2  
     
 i5  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [39,19,-2] 4  
 'Inferior frontal gyrus, opercular part (R)' [52,17,4] 2  
     
 i6  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Superior temporal gyrus (R)' [55,-18,4] 50  
 'Superior temporal gyrus (L)' [-54,-13,2] 24  
 'Heschl''s gyrus (R)' [45,-18,7] 8  
 'Insula (R)' [45,-7,-1] 8  
 'Middle temporal gyrus (L)' [-57,-27,0] 8  
 'Heschl''s gyrus (L)' [-50,-16,7] 2  
     
 C6_N − i2 − i4  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, superior temporal gyrus (R)' [35,8,-21] 15  
 'Vermis III of cerebellum' [-1,-38,-12] 8  
 'Lobule III of cerebellum (R)' [12,-35,-18] 7  
 'Temporal pole, superior temporal gyrus (L)' [-40,11,-20] 10  
 'Superior temporal gyrus (L)' [-45,-6,-9] 12  
 'Insula (R)' [41,14,-11] 10  
 'Lobules IV-V of cerebellum (L)' [-11,-41,-10] 8  
 'Lingual gyrus (L)' [-11,-36,-7] 7  
 'Vermis I-II of cerebellum' [1,-37,-19] 2  
 'Lobule III of cerebellum (L)' [-4,-38,-16] 1  
 'Parahippocampal gyrus (R)' [16,-3,-18] 2  
 'Parahippocampal gyrus (L)' [-20,-28,-24] 1  
     
 C3_G − i1 − i2 − i3  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, superior temporal gyrus (L)' [-41,13,-22] 453  
 'Temporal pole, superior temporal gyrus (R)' [41,13,-23] 341  
 'Crus I of cerebellum (L)' [-30,-80,-25] 374  
 'Crus I of cerebellum (R)' [40,-76,-28] 218  
 'Superior temporal gyrus (L)' [-48,-5,-8] 196  
 'Parahippocampal gyrus (L)' [-18,-11,-22] 128  
 'Temporal pole, middle temporal gyrus (L)' [-41,14,-31] 112  
 'Vermis III of cerebellum' [2,-40,-12] 61  
 'Lobules IV-V of cerebellum (L)' [-11,-40,-13] 113  
 'Parahippocampal gyrus (R)' [22,-2,-25] 95  
 'Insula (R)' [40,4,-9] 115  
 'Temporal pole, middle temporal gyrus (R)' [44,14,-29] 83  
 'Amygdala (L)' [-22,0,-20] 46  
 'Vermis IV-V of cerebellum' [1,-55,-1] 64  
 'Lobule III of cerebellum (L)' [-7,-39,-16] 37  
 'Lobule III of cerebellum (R)' [12,-35,-19] 42  
 'Thalamus (L)' [-3,-21,8] 66  
 'Hippocampus (L)' [-19,-19,-15] 53  
 'Amygdala (R)' [29,1,-24] 28  
 'Crus II of cerebellum (L)' [-8,-87,-26] 59  
 'Inferior frontal gyrus, orbital part (R)' [35,22,-17] 46  
 'Vermis VI of cerebellum' [-1,-73,-10] 17  
 'Lobules IV-V of cerebellum (R)' [10,-44,-9] 27  
 'Olfactory cortex (L)' [0,12,-9] 14  
 'Vermis I-II of cerebellum' [1,-38,-20] 5  
 'Gyrus rectus (L)' [0,28,-18] 21  
 'Inferior temporal gyrus (L)' [-56,-55,-24] 31  
 'Olfactory cortex (R)' [30,10,-20] 1  
 'Gyrus rectus (R)' [1,23,-17] 4  
 'Hippocampus (R)' [21,-3,-21] 3  
 'Caudate nucleus (L)' [-2,15,0] 2  
 'Fusiform gyrus (L)' [-18,-35,-19] 8  
 'Inferior temporal gyrus (R)' [54,-55,-26] 13  
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 C5_G − i4 − i5 − i6  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [40,-2,3] 394  
 'Superior temporal gyrus (R)' [55,-24,6] 612  
 'Superior temporal gyrus (L)' [-53,-18,4] 379  
 'Rolandic operculum (R)' [49,-10,13] 231  
 'Rolandic operculum (L)' [-47,-11,10] 182  
 'Heschl''s gyrus (R)' [45,-18,9] 100  
 'Insula (L)' [-42,0,0] 158  
 'Heschl''s gyrus (L)' [-43,-18,9] 70  
 'Middle temporal gyrus (L)' [-56,-25,-1] 225  
 'Postcentral gyrus (R)' [57,-15,38] 181  
 'Inferior frontal gyrus, opercular part (R)' [49,14,11] 86  
 'Inferior frontal gyrus, opercular part (L) ' [-55,10,11] 72  
 'Precentral gyrus (R)' [58,2,33] 115  
 'Supramarginal gyrus (R)' [53,-31,25] 56  
 'Supplementary motor area (R)' [9,-3,63] 30  
 'Putamen (R)' [33,7,7] 3  
     
 C9_N − i3 − i6  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Superior temporal gyrus (R)' [58,-16,2] 127  
 'Superior temporal gyrus (L)' [-58,-11,2] 34  
 'Middle temporal gyrus (L)' [-60,-27,-2] 31  
 'Heschl''s gyrus (R)' [48,-20,7] 3  
 'Insula (R)' [43,-7,0] 6  
     
 C4_N − i1  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Temporal pole, superior temporal gyrus (L)' [-40,12,-22] 596  
 'Temporal pole, superior temporal gyrus (R)' [41,12,-23] 409  
 'Crus I of cerebellum (L)' [-30,-80,-25] 374  
 'Parahippocampal gyrus (L)' [-17,-10,-22] 234  
 'Superior temporal gyrus (L)' [-48,-5,-8] 256  
 'Crus I of cerebellum (R)' [40,-76,-28] 218  
 'Lobule III of cerebellum (R)' [12,-34,-19] 88  
 'Lobules IV-V of cerebellum (L)' [-12,-39,-14] 149  
 'Vermis III of cerebellum' [2,-40,-12] 77  
 'Lobule III of cerebellum (L)' [-9,-37,-18] 67  
 'Temporal pole, middle temporal gyrus (L)' [-41,14,-31] 117  
 'Parahippocampal gyrus (R)' [21,-3,-24] 134  
 'Amygdala (L)' [-22,0,-20] 61  
 'Insula (R)' [40,3,-8] 139  
 'Temporal pole, middle temporal gyrus (R)' [44,14,-29] 83  
 'Vermis IV-V of cerebellum' [1,-55,-1] 64  
 'Amygdala (R)' [29,1,-24] 34  
 'Hippocampus (L)' [-19,-17,-16] 62  
 'Thalamus (L)' [-3,-21,8] 66  
 'Crus II of cerebellum (L)' [-8,-87,-26] 59  
 'Vermis I-II of cerebellum' [1,-38,-20] 8  
 'Inferior frontal gyrus, orbital part (R)' [35,22,-17] 46  
 'Olfactory cortex (L)' [0,12,-9] 15  
 'Vermis VI of cerebellum' [-1,-73,-10] 17  
 'Lobules IV-V of cerebellum (R)' [10,-44,-9] 27  
 'Gyrus rectus (L)' [0,28,-18] 21  
 'Olfactory cortex (R)' [30,10,-20] 1  
 'Inferior temporal gyrus (L)' [-56,-55,-24] 31  
 'Gyrus rectus (R)' [1,23,-17] 4  
 'Hippocampus (R)' [21,-3,-21] 3  
 'Caudate nucleus (L)' [-2,15,0] 2  
 'Fusiform gyrus (L)' [-18,-35,-19] 8  
 'Inferior temporal gyrus (R)' [54,-55,-26] 13  
     
 C8_N − i5  
 Anatomical labels MNI coordinates Size  
  [x, y, z]  [voxels]  
 'Insula (R)' [41,-2,3] 411  
 'Superior temporal gyrus (R)' [55,-24,6] 662  
 'Superior temporal gyrus (L)' [-53,-18,4] 405  
 'Rolandic operculum (R)' [49,-10,13] 231  
 'Rolandic operculum (L)' [-47,-11,10] 182  
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 'Heschl''s gyrus (R)' [45,-18,9] 108  
 'Heschl''s gyrus (L)' [-43,-18,9] 72  
 'Insula (L)' [-42,0,0] 158  
 'Middle temporal gyrus (L)' [-56,-25,-1] 233  
 'Postcentral gyrus (R)' [57,-15,38] 181  
 'Inferior frontal gyrus, opercular part (R)' [49,14,11] 86  
 'Inferior frontal gyrus, opercular part (L) ' [-55,10,11] 72  
 'Precentral gyrus (R)' [58,2,33] 115  
 'Supramarginal gyrus (R)' [53,-31,25] 56  
 'Supplementary motor area (R)' [9,-3,63] 30  
 'Putamen (R)' [33,7,7] 3  
     

 

 

5.4 Neuroscientific insights and discussion 

In this real fMRI study, the consensus clustering framework is employed on fMRI data from three 

different sessions to study whether and how the conscious evaluation of the music heard in terms 

of aesthetic properties would modulate the emotion- and reward-related brain connectivity. We 

obtained distinct neural networks subserving music enjoyment during three levels of attentional 

and intentional engagement with the music, from naturalistic listening, to descriptive, non-evalu-

ative listening up to intentional evaluative listening. Results support our hypothesis on the role of 

intentionality in auditory-limbic connectivity during music enjoyment. The obtained clusters clearly 

point at auditory-limbic connectivity between areas such as thalamus, superior temporal gyrus, 

amygdala, and parahippocampal gyrus, or between orbitofrontal regions or between supratem-

poral regions, insula and putamen, only during unfocussed, unintentional listening, namely when 

participants were asked to either classify the gender of the voice in the music excerpts or to simply 

passively listen to them. When participants were asked to decide whether they liked or not the 

music excerpt, only two clusters of intercommunicating brain regions were found: one including 

regions related to cognitive processing of sounds (middle temporal gyrus, rolandic operculum, 

inferior frontal gyrus), and regions related to action observation and motor preparation (supple-

mentary motor areas, precentral gyrus); the other cluster comprises higher-order structures in-

volved with visual processing (cuneus, lingual gyrus, middle, inferior and superior occipital gyri, 

fusiform gyrus).  

The choice of consensus clustering strategy is an answer to the recent criticisms on the most 

common analysis methods in fMRI (Eklund et al., 2016). Typically, an fMRI study on a certain 

stimulation paradigm would adopt a single method of analysis and statistical thresholding and if 
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a second study on the same stimulation paradigm would utilize another method of analysis diver-

gent results would occur. Considering that methods of analysis and statistics have proliferated in 

the field, it is paramount to avoid a scattered picture of the results gained by fMRI (Kriegeskorte 

et al., 2009). The consensus clustering framework allows us to merging many analysis methods 

and to obtaining robust and reproducible clusters from various datasets. In Chapter 4, we point 

out that different clustering algorithms (K-mean, SOM and hierarchical) produce partly divergent 

sets of clustering results, whereas Bi-CoPaM with all the three algorithms generates consensus 

among them, thus reducing the risks of capturing artefacts from single clustering algorithm. Fur-

thermore, current results show nontrivial clusters covering large continuous brain regions, con-

firming the robustness of the method. Remarkably, unlike some algorithms that artificially intro-

duce the spatial constraints to the clustering generation process (Blumensath et al., 2013; 

Craddock et al., 2012), our spatial information free strategy guaranteed that the voxels in fMRI 

data were clustered purely based on the similarities of their BOLD time series rather than on their 

topologies in the brain. It should be mentioned though that, similarly to other methods, the pro-

posed consensus clustering framework for studying functional connectivity does not provide in-

formation on the temporal succession of increased connectivity in each obtained clusters. 

The first finding of this study is the separation of clusters of correlated neural activity between the 

three experimental conditions. The conditions not requiring a conscious evaluation of liking of the 

music excerpts were most similar to each other in terms of shared voxels in the resulting clusters 

as evidenced by the topology interaction analyses. While the naturalistic listening condition 

showed similar functional connectivity only between visual areas than the liking judgment condi-

tion (particularly parts of the bilateral middle and superior occipital gyri), and it showed similarly 

correlated neural activity than that to the gender judgment condition only in fronto-parietal areas 

(particularly the right postcentral gyrus and the pars opercularis of the left inferior frontal gyrus), 

it did share four clusters with the gender judgment condition, meaning that it had similar increased 

connectivity between auditory (temporal pole, bilateral superior and middle temporal gyri, 

Heschl’s gyrus), frontal (orbital part of inferior frontal gyrus), and limbic areas (parahippocampal 

gyrus, amygdala, insula, hippocampus).  
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When comparing the clusters obtained for each of the three experimental conditions, the connec-

tivity of motor-related with the Rolandic operculum was much more evident for the Gender judg-

ment condition as opposed to the Liking judgment condition, with only one shared voxel between 

the two. While the Rolandic operculum has been related to musical pleasure in previous studies 

(Green et al., 2012; Koelsch et al., 2006), it is also implicated in both overt and covert singing and 

speaking (Jeffries et al., 2003; Riecker et al., 2000; Wildgruber et al., 1996). One can thus spec-

ulate that the focus on the vocal properties of the stimulus would have prompted participants to 

recruit sound production planning areas of the brain.  

Chatterjee and Vartanian (2016) recently proposed that all art phenomena emerge from the in-

teraction between three main mental/neural systems: a sensory-motor one (sensation, percep-

tion, motor system), a knowledge-meaning one (expertise, context, culture) and an emotion-eval-

uation one (reward, emotion, wanting/liking). Also Juslin (2013) viewed aesthetic judgment as the 

final outcome of a summation of different emotion-inductive mechanisms. In our previous work 

(Brattico et al., 2013; Brattico and Pearce, 2013; Nieminen et al., 2011; Reybrouck and Brattico, 

2015), we proposed a detailed spatiotemporal road map of music aesthetic processes in the brain, 

suggesting a distinction between unconscious, low-level perceptual-emotional stages and reflec-

tive processes involving cognitive control and leading to the three main outcomes of an aesthetic 

experience, namely emotion, preference and judgment. The early and late emotional processes 

during a musical experience can be modulated by what Hodges (Hodges, 2016) has termed “fo-

cus”, namely the act of paying attention to the music. Here and in previous work (Brattico et al., 

2013), we extended this concept to intentionality as an internal state predisposing to attentive 

watching/listening in the case of performance arts or contemplation in the case of static arts, also 

inspired by previous proposals (Bundgaard, 2015; Hargreaves et al., 2012). Based on these 

premises, we here hypothesize that the individual’s psychological state or internal context, par-

ticularly intentionality, is an important predictor of the emotion-related brain processes occurring 

during music listening.   

Our findings of connected regions within the ventral and dorsal attention networks, including pa-

rietal regions (bilateral supramarginal and angular gyri), and frontal regions (bilateral precentral 

and postcentral gyri, supplementary motor area, cingulate cortex), and within visual structures 

(including bilateral middle, superior occipital gyri, cuneus, lingual gyrus) is in line with the notion 
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that focused attention on the music aimed at providing an evaluation, as in the liking judgment 

condition, recruited supramodal cognitive and attention areas of the brain. Interestingly, a previ-

ous study (Bogert et al., 2016) compared two conditions contrasting evaluative and descriptive 

judgments of the same musical material also showed regional activations in fronto-parietal and 

occipital brain structures (such as bilateral superior frontal gyrus, inferior occipital gyrus, lingual 

gyrus, fusiform gyrus) specifically for the condition requiring the explicit classification of the emo-

tions perceived in the music (the choice was between the three categories of happy, sad and 

fearful). Crucially, while in music domain the intentionality for an emotional listening mode seems 

to down-regulate subcortical emotion-related neural activity, in the visual-art domain the effect 

seems divergent based on a neurophysiological study showing neural correlates of affective pro-

cesses only when the participants were focused on giving an evaluative beauty judgment of ab-

stract black-white patterns (Höfel and Jacobsen, 2007a). 

In turn, the condition in which participants were asked to focus on descriptive aspects of the music 

excerpts, namely whether they contained one, few or many instruments, elicited more subcortical 

neural structures such as in the caudate, pallidum, and cortical areas previously linked to emotion 

processing, such as the inferior parietal lobule (see also Chapin et al., 2010; Flores-Gutiérrez et 

al., 2007; Satoh et al., 2011). Also in this study, the connected regions activated by the gender 

judgment task have been formerly clearly related to emotion processing: parahippocampal gyrus, 

amygdala, insula, hippocampus, thalamus, medial orbitofrontal cortex, caudate nucleus, and the 

vermis of the cerebellum, in a network closely communicating with ventral stream auditory regions 

such as the anterior superior temporal gyrus. A second network involved with the gender judg-

ment task included sensorimotor regions coupled with the bilateral insula and the right putamen. 

Naturalistic listening produced coupled activity in several overlapping regions than those elicited 

by the gender judgment condition, although with a more scattered pattern showing six separate 

clusters over attention-, perception- and emotion-related areas. Overall, the degree of connectiv-

ity between striatal areas, ventrolateral prefrontal regions and auditory cortices have been repeat-

edly found in recent studies to be crucial for determining the subjective experiment of enjoyment 

in music (Blood and Zatorre, 2001; Martínez-Molina et al., 2016; Sachs et al., 2016; Salimpoor et 

al., 2013). 
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Notably, the activity and connectivity of sensorimotor areas (such as the precentral and postcen-

tral gyri and the supplementary motor area) found for all the three experimental conditions and 

particularly for the gender judgement condition, have been consistently observed in response to 

music-induced emotions (Blood and Zatorre, 2001; Bogert et al., 2016; Mitterschiffthaler et al., 

2007; (Brattico et al., 2015). The connected areas found here (particularly the opercular part of 

the inferior frontal gyrus and the inferior parietal lobule) also partially overlap with the action ob-

servation network, also termed “mirror neuron” system, that is activated both by motor production 

by an individual and by perception of motor acts by others (Morin and Grèzes, 2008; Rizzolatti et 

al., 1996). Some proposed theories in music psychology argue that motor mimicking of sounds 

resembling an emotional vocalization is a crucial mechanism for inducing emotions (Juslin, 2013; 

Juslin and Västfjäll, 2008). 

In conclusion, the study prove that intentionality in judging the hedonic value of a musical piece 

is important in shaping neural connectivity to music, and specifically in connecting brain regions 

related to attention and cognition. In turn, when attention is focused on non-evaluative aspects of 

the music areas related to emotions and pleasures become more coupled. Here it is relevant to 

state that the findings are obtained with music unfamiliar to the participants. Based on previous 

findings obtained with another paradigm (Brattico et al., 2015), we might expect opposite effects 

with highly familiar music. The current results inform theories about aesthetic experience of music 

and call for further research in combined music and visual-art domains. 
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Chapter 6 Summary and Future Work 

 

This thesis adopts the concept of consensus clustering to analyse brain functional connectivity, 

aiming to reduce the bias from the underlying hypothesis that single clustering algorithms have. 

A complete flexible framework of analysing brain functional connectivity using consensus cluster-

ing is designed and validated. We demonstrate that the proposed framework improves over tra-

ditional single clustering algorithm in terms of the completeness of clusters and features the ca-

pability of producing robust clustering results in terms of cross-participant variability, which are 

the essential requirements for every good analysis strategy. The framework is applied on two 

datasets from real fMRI experiments (Affect and Affect 2) in the thesis, which yield several novel 

and important neuroscientific findings. In this chapter, the whole thesis is briefly summarised first, 

followed by discussing the future directions of the consensus clustering analysis of brain func-

tional connectivity. 

6.1 Summary 

6.1.1 Consensus clustering framework for analysis fMRI data 

In this thesis, a novel consensus clustering framework for analysing fMRI data is designed to 

meet the call for consensus and consistent analysis of neuroimaging data. The framework starts 

from processing the raw BOLD time-series, then forms the appropriate subsets of data that cor-

respond to the experimental paradigm, followed by clustering experiments and integration of mul-

tiple clustering experiments consisting of more than one clustering algorithms and many datasets. 

The evaluation procedure of the results is also embedded into the framework, including filtering 

parameters design, robustness test against individual variability, and the selection of non-trivial 

clusters. In the rest of this section, the important aspects of the framework are discussed. 

The correct analysis starts with the data with good quality. In this thesis, the preprocessing of 

fMRI data is carried out following a well-established pipeline and have been used in several pub-

lished works (Brattico et al., 2016, 2011). There is no perfect preprocessing pipeline for every 

fMRI study as the detailed procedure often depends on the type of the experiment (e.g. event-
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related or block design) and the performance of the scanner. When extracting out the BOLD time-

series corresponding to each stimulus, i.e. music excerpts in this thesis, the whole time-series is 

firstly detrended and filtered using a high-pass filter to exclude the low frequency components like 

scanner drift that might introduce artificial correlation or similarity between voxel time-series. This 

ensures the voxels are clustered purely based on the similarity of their BOLD activities, together 

with the strategy that no spatial constraints are put on either individual clustering experiments or 

consensus clustering results generation. 

Regarding the individual clustering experiments, only the clustering algorithms that have been 

widely used in analysing neuroimaging studies are adopted, i.e., 𝐾-means, hierarchical clustering, 

and SOM in the thesis. These algorithms are relatively computationally efficient and can cope 

with the large-scale voxel-wise clustering strategy, compared with other methods such as spectral 

clustering that requires matrix decomposition. Grid computing is used to further reduce the time 

for obtaining a large amount of individual clustering experiments (at least thousands) by running 

multiple experiments at the same time, thanks to the feature that individual clustering results do 

not need to communicate with each other before consensus integration. And for each dataset, 

i.e., excerpt BOLD time-series, three methods with multiple number of clusters 𝐾𝑠 are applied, 

providing a multi-perspective views of clustering solutions. These solutions form the basis for the 

consensus cluster generation in the later stage. 

The clustering results integration starts from fuzzy consensus partition matrix formation. For a set 

of partition matrices with the same number of clusters 𝐾, a reference partition matrix is selected 

first and then the rest partition matrices are aligned and fused into the reference partition matrix. 

This step is often done by randomly permuting the order of the partition matrices and then adding 

them one by one sequentially (Abu-Jamous et al., 2015b, 2014). To minimise the random effect 

in this step, an intermediate quality ranking is done for all the partition matrices to be merged. The 

ranking is done by scattering all the clusters from a partition, denoted by a dot, in a two dimen-

sional coordinate with horizontal axis representing the cluster-wise MSE value and vertical axis 

representing the size of clusters (normalised). Then a score equal to the mean distance between 

all the clusters and the top left corner (the criterion of best cluster) is calculated, indicating the 

general quality of this partition in terms of the balance between the size of clusters and their intra 

cluster variability. All the partition matrices are then ranked in a descend order according to the 
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score of each partition. Through this ranking, partitions with high scores are firstly merged to yield 

the fuzzy memberships for those high quality clusters. Then the partitions with low scores are 

merged later. This strategy avoids the scenario where a partition with poor clustering result is 

taken as the reference at the very first step in the random permutation of partition matrices, thus 

undermine the power of integrating multiple clustering solutions. 

After obtaining the fuzzy consensus partition matrix, a binarisation step is adopted to assign the 

consensus membership for each voxel. The difference threshold binarisation approach is chosen 

as it considers the competitiveness of the clusters when assigning each data point to a certain 

cluster. Thus it generates tight clusters not only based on the absolute fuzzy membership value 

for each voxel but also considers the competitiveness of the clusters over the same voxel. The 

threshold for binarisation is a free parameter ranging from 0 to 1. To provide a complete set of 

binarisation results, here we do not arbitrarily set the threshold to a certain value but set multiple 

values between 0 and 1 at an equal spacing. Thus a collection of clusters with different tightness 

levels are generated. Because this step brings in a large numbers of clusters, the question of 

which ones are better arises. We address this issue by adopting a cluster selection procedure 

that follows the logic of ranking the partitions with respect to their qualities. To define the good 

clusters, we combine the methodological definition together with the neuroscientific interpretation, 

where a good cluster should have very small intra-cluster variability and cover a relatively large 

area of the brain. To satisfy this criterion, the good clusters should be as close to the top left 

corner as possible since the top left corner indicates a cluster with zero cluster-wise MSE and the 

largest size among all the scattered clusters. The selection starts with the cluster (dot) having the 

shortest distance between itself and the top left corner, followed by removing the clusters having 

conjunctions with it. Then for the rest of clusters, the one that is closest to the top left corner is 

selected and other clusters having overlaps with it are removed. Repeating these steps will yield 

unique clusters one by one that do not have any overlaps with each other. This procedure stops 

until no cluster is left or the number of clusters selected reaches a pre-defined value. As for how 

many clusters to be selected and analysed, researchers could inspect all the selected ones or 

choose the first 𝐶 clusters, depending on the computational resources available. 

The cluster filtering is a further refinement that makes clusters more focal by removing those 

voxels that are likely to be grouped together randomly or showing weak BOLD responses in most 
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of the participants. This is achieved by firstly applying the hypergeometric test on the area infor-

mation of each cluster. If the ratio of a certain brain area (BA) within one particular cluster is 

similar to the percentage of the whole BA within the whole brain, then this can be achieved by 

randomly sampling a cluster having the same size of this cluster. In this case, this area will be 

removed as it poses a risk of being included randomly. Another filtering followed is to remove the 

voxels that having weak responses. This is due to the fact that during the clustering experiments, 

the BOLD time-series is normalised and thus lose part of the magnitude information. We want to 

keep the voxels showing not only highly correlated BOLD activities but also strong responses 

(magnitudes). Note that the systematic validation of the filtering parameters has been demon-

strated in Chapter 4 and it provides a guide of avoiding inappropriate parameter that significantly 

change the topology of clusters. In summary, both of these filterings are not performed directly 

on the time-series, which might change the BOLD activity shapes. Rather they are mainly used 

for establishing the topology of clusters based on the neuroscientific facts. 

For the whole consensus clustering analysis framework, we have done the following two experi-

ments to demonstrate its validity and robustness respectively. We firstly compared the differences 

among various clustering algorithm combinations against single clustering algorithms. It shows 

that the combination of all the three clustering algorithms used in this thesis provides the most 

complete set of clusters that covers the crucial brain areas related to the fMRI experiment para-

digm. Importantly, all the studies to date using consensus clustering analysis strategy only employ 

one algorithm. We believe our multiple algorithms integration greatly improve the accuracy, con-

sistency, and completeness of clustering results. Secondly, the frameworks’ robustness against 

individual BOLD response variability is tested. We find the designed framework can cope with the 

variability well and produce consistent and reasonable clustering solutions from different subsets 

of all the participants. This robustness is important as most fMRI experiments use limited number 

of participants due to the time and financial constraints. To draw sound conclusions from these 

participants, the most consistent parts of the clustering results have to be extracted out. In this 

test, we also find the benefits from recruiting more participants for the fMRI experiments. With 

more participants to counter the individual variability together with the framework itself, the clus-

tering results become more solid and consistent. As a matter of fact, some undergoing brain 
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projects such as the WU-Minn Human Connectome Project has recruited 1200 healthy partici-

pants to carry out the neuroimaging study. 

Besides the main framework, two statistical analyses are also designed to extract interesting in-

formation from the consensus clustering results, namely analysis of stimuli that tend to elicit 

stronger responses and response shape analysis, with the former related to the BOLD response 

magnitudes and the later related to the BOLD response shape. These two analysis are applied 

on Affect study (Chapter 4), yielding meaningful results that correspond well to the existing liter-

ature on study of affect processing. Note these two methods are not fixed in the main framework, 

one can decide to use them or not depending on what research questions are asked. For example, 

in Affect 2 study (Chapter 5), the main goal is to differentiate the brain functional connectivity 

among different levels of intentionality on listening to music, thus only the main framework is 

applied without carrying out the strong responses analysis and BOLD response shape analysis. 

6.1.2 Neuroscientific insights 

In addition to the proposed consensus clustering analysis framework, another important part of 

this research study presented in this thesis is the close collaborations with researchers from neu-

roscience field to investigate the neuroscientific meaning of various consensus clustering results. 

This starts from my academic visiting in Finland in my first year where I took part in neuroimaging 

data collection and processing and later through the whole period of time when the intensive data 

analysis and interpretation are done. We believe the close collaborations with the people from the 

neuroscience help us exploit the advantages of the framework by receiving valuable feedbacks 

at different stages during the development of the framework. The rest part of this section will 

summarise the novel neuroscientific findings we have obtained. 

In Affect study, we find clusters including functionally and anatomically related neural networks 

responding to music with different emotions (happy or sad) and preferences (liked and disliked). 

Emotion-related brain structures responsible for rewarding and pleasurable sensations comprise 

of brain structures such as the basal ganglia, thalamus, insula. Other areas involved with pro-

cessing of auditory features (Heschl’s gyrus, the Rolandic operculum and the superior temporal 

gyrus) and visual information processing (Bilateral calcarine fissure and cuneus) are grouped into 

corresponding clusters separately. One of the most important findings of this study is that, without 
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any predetermined model that is compulsory in traditional GLM approach, the proposed consen-

sus clustering analysis framework is able to obtain a single cluster including the anatomically 

connected subcortical and cortical structures of the reward circuit, responding to music with emo-

tions and preferences. This is one of the few studies obtaining such finding with a data-driven 

method. Note that a recent study applied network theory, which is also a data-driven approach, 

to study affective music processing (Wilkins et al., 2014), but no reward circuit activity was found. 

Our study confirms findings on the neural structures related to musical emotions. The reward 

circuit is an important brain area that is found not only associated with affective processing but 

also with attention-deficit/hyperactivity disorder (ADHD). With the response shape analysis, we 

evidence a difference between musicians and non-musicians in the temporal course of the BOLD 

response for the interconnected cortical areas of visual cortex including the calcarine fissure and 

the cuneus. This finding suggests a larger involvement of visual processes that might be related 

to imagery or even to a relaxation state in non-musicians accumulated and achieved as a conse-

quence of listening emotionally-loaded music. The music categories, i.e., the combination of emo-

tion and preference, that tend to elicit strong BOLD responses are also evidenced within all the 

three functional networks related to affective processing as detailed in Chapter 4.  

In Affect 2 study, we aim to depict whether the intentionality has effects on the neural functional 

connectivity during affective processing of musical emotions and preference, considering the fact 

that listening to music is not always intentional. Towards this aim, an fMRI experiment was de-

signed to incorporate three levels of attentional and intentional engagements with the music (liking 

judgment, gender judgment, and naturalistic listening). The proposed framework is employed on 

each scanning session corresponding to one particular level. We find that different levels of at-

tentional and intentional engagements with the music have different effects on auditory-limbic 

connectivity during affective processing of music. A very novel finding of this neuroimaging study 

is the separation of functionally connected neural networks between the three experimental con-

ditions. Then by the designed cluster topology interaction illustration, the differences and con-

cordance between any two experimental conditions can be inspected. Notably, the functional net-

work encompassing sensorimotor areas (such as the precentral and postcentral gyri and the sup-

plementary motor area) found for all the three experimental conditions and particularly for the 

gender judgement condition, have been consistently observed in response to music-induced 
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emotions. In summary, the study proves that intentionality in judging the hedonic value of a mu-

sical piece is important in shaping neural connectivity to music, and specifically in connecting 

brain regions related to attention and cognition. In turn, when attention is focused on non-evalu-

ative aspects of the music areas related to emotions and pleasures become more coupled. Con-

sidering these findings are based on music that are unfamiliar to the participants, future fMRI 

experiment might incorporate the highly familiar music to participants to investigate the functional 

brain connectivity under the different levels of attentional and intentional engagements with the 

music.  

6.2 Future work 

6.2.1 Scalable clustering algorithm for large-scale dataset with number of clusters auto-

matically detected. 

The very first step of consensus clustering analysis is the partition generation from the single 

clustering algorithms. The problems of excessive computational load and limited clustering per-

formance arise in the context of large-scale dataset such as fMRI data. Although some classical 

algorithms such as 𝐾-means are fast, the results of clustering largely depend on the user-defined 

number of clusters 𝐾. A scalable clustering paradigm to address the aforementioned problems 

with number of clusters 𝐾 automatically detected has been developed and published. Since it has 

not been extensively integrated into the main consensus clustering analysis of fMRI data frame-

work in the thesis, the method is described and discussed here for further enhancement of the 

framework. 

The basic logic within the method is sampling and combination. After sampling, the data scale 

becomes smaller but the data distribution information is still kept. Then for each sample of the 

data, a clustering method called E-SMART (enhanced splitting merging awareness tactics) (Fa et 

al., 2014, 2013) is applied. E-SMART can partition the data into clusters with number of clusters 

𝐾 automatically detected, but it suffers from poor performance on large datasets. But on smaller 

sampled data the speed is much quicker. The clustering results of each sampled dataset are then 

combined to form the final partition for the whole dataset. The procedure is detailed in next sec-

tion. 
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6.2.1.1 Algorithm 

a. Sampling 

Sampling is drawn randomly from the original dataset at the rate 1/𝑠. Here, we use sampling 

without replacement, so all 𝑠 sampled subsets are generated with each one contains absolutely 

different data points from others and the union of them is the original dataset. Theoretically, the 

smaller 𝑠 is, the more information of original dataset is kept. We recommend to set 𝑠 as small as 

possible as long as the hardware can deal with the size of sampled data using E-SMART in a 

reasonable time. 

b. Combination 

In total, 𝑠 partitions 𝑷I|𝑖 = 1, … , 𝑠  are generated by E-SMART. Each partition 𝑃I(𝑖 = 1… 𝑠) has 

its number of clusters detected as 𝐾I, then there will be 𝐾I cluster centroids which are denoted as 

𝑪�|𝑘 = 1, … , 𝑠 . To combine these intermediate results into a final partition, we use the following 

steps: 

1) Put all the cluster centroids 𝑪�|𝑘 = 1, … , 𝑠  into a new dataset 𝑪, which is the assembly 

of all the cluster centroids detected. 

2) Cluster centroid set 𝑪 is further clustered by hierarchical clustering with Ward linkage. 

3) Calculate the cluster number 𝐾 for the whole dataset was calculated as the mode of {𝐾I}, 

denoted as	𝐾©. 

4) Retrieve the clustering results of step (2) by choosing cluster number 𝐾©, yielding a new 

partition for the centre set 𝐶, denoted as 𝑷¥. 

5) Calculate the mean of each cluster in 𝑃¥, which yielding 𝐾© centre points. 

6) For each datum in original dataset, assign it to its nearest centre from 𝐾© centre point 

obtained in step (5) using Euclidian distance. 

6.2.1.2 Validation 

Synthetic dataset 
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The method is validated using several synthetic datasets, whose dimension is 200000×7, that 

mimic the size of the real fMRI datasets (228453×6or7or8) used in the thesis. When the data is 

generated, white Gaussian noise 0, 𝜎A  with 𝜎 equal to 0.01, 0.1, 0.2 and 0.3 are added. We 

firstly use these synthetic datasets for a quantitative evaluation of the method’s capability of de-

tecting the number of clusters and general accuracy. E-SMART is applied on samples and the 

original synthetic data and then the results of our method are compared with those obtained by 

𝐾-means, which is relatively fast in the classical clustering family. For 𝐾-means, we arbitrarily set 

an interval for number of clusters ranging from 45 to 55 and run 𝐾-means on each subset with all 

the 𝐾 value. In the data with number of clusters unknown, the 𝐾 needs to be chosen from a wider 

range. Silhouette index is used to evaluate the clustering results quality and determine the esti-

mated 𝐾. The estimated 𝐾 is chosen as the one that yields highest average Silhouette index. 

Then we compare the mode of these cluster numbers with the ground truth (𝐾 = 50) of the syn-

thetic datasets. We use adjusted Rand index (ARI) (Rand, 1971) and normalized mutual infor-

mation (NMI) (McDaid et al., 2011) as the metrics to evaluate the clustering membership accuracy 

on the synthetic dataset. The time we aim to compare includes two parts which are the time 

needed to specify appropriate cluster number and the actual execution time. The reason is that 
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Figure 6-1. Number of clusters detected by E-SMART and k-means on each sam-
ple under different noise levels. 
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here the detection of the number of clusters 𝐾 is emphasised. So it is important to include the 

time needed to specifying the cluster number together with the execution time. 

As shown in Figure 6-1, in the low noise level condition, the proposed method can detect the 

number of clusters correctly on all samples while the results from 𝐾-means fluctuate across the 

whole 𝐾 value range we set. With the increased noise level, our method still generates more 

stable estimation of the number of clusters than that from 𝐾-means. The comparisons of the ac-

curacies of assigning object membership are shown in Figure 6-2. We note that the proposed 

method has the perfect accuracy in the high SNR situation and very competent results compared 

to K-means on samples and 𝐾-means on original dataset under different noise level for the middle 

SNR situation, especially compared with the 𝐾-means on original data. Even when the SNR is 

low, the proposed method still achieves the highest accuracy both in NMI and ARI. 

Table 6-1 compares the execution time of proposed method and 𝐾-means on the sampled sub-

sets.  Note the time for proposed method is the mean of the duration of the experiment on each 

of the 20 subsets. In a parallel manner, all these 20 subsets can be clustered simultaneously, so 

the total time is not calculated as the sum of the time on each subset. The 𝐾-means (Sample) is 

the estimated time of applying 𝐾-means with all the possible 𝐾 values which should approxi-

mately range from 1 to 𝑛/2 (~300 in this study) in this experiment. And the time values in 𝐾-

means (Original) are the time for single run and evaluation on the whole synthetic dataset. 
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Figure 6-2. The normalized mutual information (NMI) and adjusted Rand index (ARI) 
comparison under different noise levels. 
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Table 6-1. Execution time on subsets under different noise level. 

Noise Level Method Mean Time (sec) 

𝜎	 = 	0.01 

(40𝑑𝐵) 

Proposed method 277 

𝐾-means (Sample) 5600 

𝐾-means (Original) 9400 

𝜎 = 	0.1 

(20𝑑𝐵) 

Proposed method 1700 

𝐾-means (Sample) 6000 

𝐾-means (Original) 9700 

𝜎	 = 	0.2 

(14𝑑𝐵) 

Proposed method 3050 

𝐾-means (Sample) 6000 

𝐾-means (Original) 9650 

𝜎	 = 	0.3 

(10.5𝑑𝐵) 

Proposed method 3400 

𝐾-means (Sample) 6400 

𝐾-means (Original) 10100 

 

Real fMRI dataset 

The real data come from an fMRI listening experiment related to the music emotions (Alluri et al., 

2013; Brattico et al., 2011) carried out in the University of Helsinki. The whole fMRI experiment 

for one participant has 450 scans (TR=2s) including 32 music categories with each one repeated 

Figure 6-3. The number of clusters detected in real fMRI data and the execution 
time on each sample. 
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twice and each scan contains 228,453 voxels after preprocessing. In this paper, we use only one 

condition from one random subject in the experiment and apply our paradigm to it. 

On the real fMRI data with no ground truth of the number of clusters, our method detects stable 

estimation of 𝐾 which is around 170 (Figure 6-3). The execution time increases due to the large 

𝐾 in the data, compared with the time on samples with 𝐾 equal to 50. But the speed is still com-

petent compared with the case that use k-means to do the exhaustive search on real data.  

6.2.1.3 Future application 

One important feature of our proposed method is the experiments can be run simultaneously on 

multiple machines, as it does not need data communications between different sampled subsets 

before the combination. With the help of the power of distributed computation technique as used 

in this thesis, each worker node can handle more than one sample clustering tasks. So in ideal 

case, no matter how big the data is, the completion time for clustering the whole data is equal to 

the longest time needed by the algorithm for one sample. This algorithm is able to be extended 

in the future to do the random sampling repeatedly and combine all these clustering results, which 

would benefit from the diversity of the sampling, yielding more sound clustering results. Once this 

method is well established, the clustering results can be seen as the results from a single clus-

tering algorithm and incorporated in the consensus clustering framework 

6.2.2 From partition matrix to adjacency matrix 

The consensus clustering framework in this thesis utilises the partition matrix as the medium for 

integrating clustering results from multiple algorithms on multiple datasets. Because the nature of 

partition matrix, partition matrices with different 𝐾 have different number of rows (when row is 

used to represent the clusters). So they cannot be summed like how they are integrated with the 

same 𝐾. The adjacency matrix has been used in few fMRI data parcellation study using consen-

sus clustering concept, although with only one clustering method and without tunable feature. By 

using adjacency matrix, clustering results from different 𝐾 can be merged together as it does not 

include a matrix wise summation. Instead, the consensus is defined as how often two particular 

voxels belong to the same cluster in various clustering experiment. The following paragraph de-

scribes two main issues with adjacency matrix approach and their possible solution.  
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One is the high requirement for RAM as the size of adjacency matrix is 𝑁×𝑁 where 𝑁 is the num-

ber of voxels. For the dataset in this thesis, it would be a 228453×228453 matrix, resulting in 

around 400GB for just storing the adjacency matrix in the RAM when the type of each element is 

stored as double type (8 Byte per value). The demand for memory can be reduced by using 

sparse matrix. However, the actual RAM needed might still be very large when a clustering with 

small 𝐾 is used, i.e., each voxel and a large portion of the total voxels have been grouped in the 

same cluster. A simple and straightforward solution is using high performance computing facility 

with large amount of memory. Another solution is analysing the functional data parcellation-wise 

rather than voxel-wise, thus the value of 𝑁 is reduced. Another issue is the consensus adjacency 

matrix needs to be clustered again to yield final clustering solutions. In the existing literature 

(Bellec et al., 2010; Kelly et al., 2012; Orban et al., 2015; Ryali et al., 2015), this is done by using 

K-means, hierarchical clustering, or spectral clustering on the consensus adjacency matrix to 

generate final clusters. Note this step introduces new free parameters such as number of clusters 

for the consensus adjacency matrix. Following the binarisation logic within the consensus clus-

tering framework in this thesis, the final consensus adjacency matrix can be binarised to yield the 

binarised matrix, where the elements/membership are either 0 or 1, with respect to different bi-

narisation threshold (e.g., from 0.1 to 1 at a step of 0.1). Then these binarised adjacency matrices 

can be treated as unweighted graphs and further clustered using community detection algorithm 

without specifying the number of clusters 𝐾.  

In summary, by introducing the adjacency matrix as the medium of merging results from multiple 

clustering experiments, clustering solutions from different number of clusters 𝐾 can be integrated. 

This can be further explored as an extension to the existing framework. 

6.3 Closing comments 

We believe that the developed consensus clustering framework for analysing brain functional 

connectivity is a progress of addressing the inconsistency and stability issues among the many 

clustering algorithms. Also, this framework is data-driven, providing the capability of dealing with 

functional MRI data from more and more complex experiment designs, where traditional model-

based methods might fail or be very difficult to implement. In addition to the framework develop-

ment, the exploration and investigation of two real fMRI data yield many novel findings in cognitive 
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neuroscience of music, more specifically, the affective processing of music. This work greatly 

enriches the fMRI data analysis strategies as well as the literature on understanding brain func-

tions in the context of neuroscience. 
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