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Abstract

In the last years, experimental evidences have suggested important direct implications of vis-

coelasticity of human cells and cell cytoskeleton dynamics on some relevant collective and at

single cell behaviors such as migration, adhesion and morphogenesis. As a consequence, the me-

chanical properties of single cells as well as how cells respond to mechanical stimuli have been

–and currently are– at the center of a vivid debate in the scientific community.

By making reference to important experimental findings from the literature which have shown

that human metastatic tumor cells are about 70% softer than benign cells, independently from the

cell lines examined, the present authors have very recently theoretically demonstrated that these

differences in stiffness might be exploited to mechanically discriminate healthy and cancer cells,
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for example through low intensity therapeutic ultrasound. In particular, by means of a general-

ized viscoelastic paradigm combining classical and fractional derivative-based models, it has been

found that selected frequencies (from tens to hundreds kHz) are associated to resonance-like phe-

nomena that are prevailing on thermal fluctuations and that could be hence, at least in principle,

helpfully utilized for both targeting and selectively attacking tumor cells.

With the aim of investigating the effect of the prestress –for instance induced in protein filaments

during cell adhesion– on the overall cell stiffness and, in turn, on its in-frequency response, a

simple multiscale scheme is here proposed to bottom-up enrich the spring-pot-based viscoelastic

single-cell models, by incorporating finite elasticity and in this way determining, through sen-

sitivity analyses, the role played by the stretched state of the cytoskeletal elements on the cell

vibration.

Introduction

From the mechanical point of view, single human cells can be seen as viscoelastic systems Del Piero

and Deseri (1997); Deseri et al. (2006); Fraldi et al. (2015); Haase and Pelling (2015); Tschoegl

(1989). However, differently from inorganic materials, living soft matter is inhomogeneous and gener-

ally hierarchically organized (Chen and Pugno (2013); Fraldi (2014); Fraldi and Cowin (2004); Huang

et al. (2014); Pugno et al. (2012)) and thus reacts –over different time scales– to mechanical stimuli

by simultaneously involving protein filaments and supra-molecular and molecular structures present

at different scale levels. As a matter of fact, the cell hierarchical organization works as a complex

transducer device that converts mechanical signals in biochemical and physical coordinated events

which govern the mechanobiology and the mechanosensing of the whole cell, regulating differen-

tiation, growth, morphogenesis, and - through polymerization/depolymerization-based cytoskeleton

structural rearrangements - migration and adhesion phenomena at single-cell and in turn at macro-

scopic (tissue) level as well (Delsanto et al. (2008); DuFort et al. (2011); Guiot et al. (2006); Paszek

et al. (2014)).

Three main mechanically relevant structural systems can be recognized in a human cell, a complex

factory that makes proteins and tissue materials (Cowin and Doty (2007)): the 10-nm thick, very

deformable (0.1 ∼ 1 kPa) lipid bilayer (the cell membrane), the gel-like visco-elastic cytosol and

the cytoskeleton, the main bearing cell structure constituted by a network of elastic protein filaments
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that are embedded within the cytosol and anchored both to the nucleus and to cell membrane, which

mediates mechanical signals, regulates cell shapes during migration and adhesion and somehow pro-

tects the cell. Microtubules (tubes with diameters of about 25-nm made up of two subunits of spiraling

tubulin), actin and intermediate filaments (actin twisted double- and inter-woven rope-strands of 7-nm

and 10-nm in diameter) are the main cytoskeletal filaments whose assembling/disassembling (poly-

merization/depolymerization) drives cell motility and spreading (Bao and Suresh (2003); Brunner

et al. (2009)).

A significant number of scientific works have been dedicated to the analysis of the response of hu-

man cells to mechanical stimuli in the last years and, due to the complexity of the systems, several

behaviors still remain not completely understood. Recently, it has also experimentally observed that

how cells response to ultrasound strongly depends on the associated applied energy and on the related

frequencies as well (Schuster et al. (2013)). Cell membrane damaging were furthermore observed in

leukemic and in blood cells after ultrasound treatment (Ellwart et al. (1988)), laboratory evidences

showing that tumor cells often result more prone to be killed than healthy ones in case of exposure

to ultrasound (Lejbkowicz and Salzberg (1997); Lejbkowicz et al. (1993)). Moreover, adequately

modulated ultrasounds seem to be additionally capable of decreasing malignant cell growth, inhibit-

ing cell proliferation (Chumakova et al. (2006); Honda et al. (2004)) and stimulating or increasing

wound healing (Schuster et al. (2013)), although the authors of these works admit that "the molecular

mechanism of ultrasound induced apoptosis has not yet been clearly understood". In this framework,

Mizrahi et al. (2012) have recently experimentally observed relevant dynamics involving cytoskeleton

remodeling of human airway smooth muscle cells undergoing low intensity ultrasounds administered

both at small strains (10−5) and ultrasonic frequencies (106 Hz) and at moderately large deformation

regimes (10−1) and low (physiological) frequencies (100 Hz).

Although the underlying mechanisms through which cells perceive and transduce mechanical vibra-

tions is still a challenging task, theoretical studies (Fraldi et al. (2015); Or and Kimmel (2009)) have

recently explored the possibility that the relative displacement between cell organelles and cytoplasm

induced by ultrasonic waves and due to different inertia of the media plays a key role in resonance-

like phenomena, suggesting that US-induced mechanical oscillations greater than thermal maximal

fluctuations can actually kindle strain regimes at high-frequency and in turn fatigue-like phenomena,

in this way altering signaling pathways within the cell and thus inducing multi-molecular complexes
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conformational shift or disrupting at critical frequencies found both around 45 kHz and 1 MHz (Johns

(2002)).

The interest on the analysis of the in-frequency response of single-cell systems is further increased

by some experimental studies performed in the last years on individual cancer and healthy cells of

different types, which have demonstrated that the first ones were about 70% softer than the latter

(Cross et al. (2008, 2007); Faria et al. (2008); Ketene et al. (2012); Lekka et al. (2012a, 1999, 2012b);

Li et al. (2008); Nikkhah et al. (2010); Prabhune et al. (2012); Rebelo et al. (2013)), regardless of the

cell lines examined and independently from the specific measurement technique used for determining

the mechanical properties (Atomic Force Microscopy, Optical tweezers, etc.). These results cuold be

in fact helpfully utilized for –at least in principle– mechanically targeting and selectively attacking

cancer cells, leading to envisage possible new applications in diagnoses and therapies of cancer dis-

eases (Fraldi et al. (2015); Jonieztz (2012)).

Therefore, motivated by the above mentioned literature findings and with the aim of enriching the

modeling of single-cell systems, in the present work it is investigated the effect of the prestress –for

instance induced in protein filaments during cell adhesion– on the overall cell stiffness, finally deter-

mining its influence on the in-frequency response of the cell. To make this, a simple multiscale scheme

incorporating finite elasticity is first proposed to include, by means of a bottom-up homogenization

procedure, suitable prestress-modified stiffness values into the viscoelastic single-cell models. Suc-

cessively, once the analytical expression of the overall elastic stiffness of an adherent cell has been

obtained, the identification of some key model parameters (i.e. prestretch and number of "active"

filaments) has been determined to fit the realistic stiffness moduli experimentally measured in the

literature for several cell types. Finally, after a short presentation of new generalized spring-pot (frac-

tional derivative-based) viscoelastic models, the role played by the stretched state of the cytoskeletal

elements on the cell vibration is in detail studied through sensitivity analyses.
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Elemental nonlinear elastic model of an adherent cell

Influence of prestress and number of cytoskeleton filaments on the single-cell

stiffness

With the aim of deriving the effect of the pre-stretch accumulated in the cytoskeleton filaments on

the overall single-cell stiffness, in this section it is presented a simple non-linear elastic model of the

cell structure in which the essential features responsible for the mechanical response of the ensemble

(e.g., cytoskeleton protein filaments, cell nucleus and interface conditions with a rigid substrate –say

the extra-cellular matrix, ECM) are taken into account, in this manner determining the cell elasticity

via a bottom-up procedure.

To this purpose, let us consider the sketch in Figure 1. Therein, starting from a generally unknown

initial stress-free configuration (Figure 1a), the cell is assumed to be in an actual prestretched config-

uration (say adherent to the ECM, as shown in Figure 1b), and then subjected to a small displacement

of its nucleus (Figure 1c). In this scheme, as highlighted in the lateral view (see Figure 1), the cell

cytoskeleton is modeled through a structure made of symmetrically and radially placed non-linear

elastic filaments (or filament strands) anchored to the central nucleus and to the substrate through the

focal adhesion points, in this way implicitly assuming that the cell membrane follows the overall ge-

ometry of the model. Also, for sake of simplicity, the entire kinematics is projected in the horizontal

plane (say the plane defined by the focal adhesion points), so neglecting the minor effects of stress

and strain aliquots associated to the out-of-plane filament elongations caused by the cell stretching. In

particular, a reference prestretch (denoted by λp) characterizes the deformed configuration in which

the nucleus is constrained by n elastic strings –representing the actin filaments– arranged uniformly

around the nucleus and identified by an angle φj0 = j
2π

n
.

To find how the cell structure influences the overall cell stiffness when its filaments are prestressed,

by making reference to a small-on-large approach, the nucleus is displaced of u in an arbitrary (say

horizontal) direction: as a consequence, maintaining prescribed the focal adhesion points, each fil-

ament will result to be stressed to follow the nucleus and the corresponding Piola-Kirchhoff stress
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tensor can be generally written as

Pj =


PLj 0 0

0 PTj 0

0 0 PTj

 (1)

where –for the -jth filament– PLj denotes the longitudinal stress component and PTj is the transverse

stress one, in this case to be set equal to zero. Once the force fu to be applied to the nucleus for

obtaining the displacement u is determined, the related equivalent tangent stiffness can be formally

derived as follows

Keq =
∂fu
∂u

∣∣∣
u=0

(2)

Obviously, the force fu – the resultant of the axial forces of the n filaments (see Figure 2) – will

depend on u, the prestretch λp of each single filament, the initial stiffness (related to the stress-free

configuration), the geometrical parameters, the number n of filaments and the constitutive assumption,

say the type of hyperelastic law chosen fot the strings. Therefore, one has

fu +
n∑
j=1

Nj cos (φj) = 0 (3)

where Nj = PLjA is the contribute of the -jth filament due to the longitudinal stress times the refer-

ence cross-section area A = Aj and φj is the angle of the -jth filament in its current configuration.

The constitutive model for the strings is here fixed by following Holzapfel (2000), in the case of

compressible Neo-Hookean solids in which the Strain Energy Density Function (SEDF) is written in

terms of the first invariant, I1, of the right Cauchy-Green tensor C = FTF (chosen as measure of

the deformation) which in the so-called coupled form – where the isochoric and volumetric parts are

interacting – is given by:

ΨNH =
G

2
(I1 − 3) +

G

2β

(
J−2β − 1

)
with β =

ν

1− 2ν
(4)
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where J = detF and G and ν denote the shear modulus and the Poisson’s ratio, respectively. The

principal stresses will hence depend on the principal stretches in the form

Pj =
∂ΨNH
∂λj

(5)

and furthermore

PLj = G

(
λLj −

(
λLjλ

2
Tj

) 2ν
2ν−1

λLj

)
, (6)

PTj = 2G

(
λTj −

(
λLjλ

2
Tj

) 2ν
2ν−1

λTj

)
(7)

Algebraic manipulations lead to observe that prescribing uniaxial stress states in each filament (PTj =

0) reduces to impose λT = λ−νL , finally obtaining the longitudinal stress as follows

PLj = GλLj

(
1− λ−2(1+ν)

Lj

)
(8)

The total stretch in the generic -jth filament strand can be multiplicatively written as:

λLj = λpλuj (9)

in which λp =
L

L0

is the initial prestretch related to the current filament length L referred to the

initial configuration L0 –whose values are here assumed to be the same for all the elements due to the

symmetry of the initial cell shape – λuj being the stretch of the -jth string due the displacement u and

explicitly given by

λuj =

√
L2 sin2 φj + (L cosφj − u)2

L
(10)

where

sinφj =
L sinφj0√

L2 sin2 φj0 + (L cosφj0 − u)2
, cosφj =

L cosφj0 − u√
L2 sin2 φj0 + (L cosφj0 − u)2

(11)
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Finally, by substituting eqs (8) and (3) into (2), after some further algebraic manipulations, one

obtains the stiffness K which varies with the displacement u as follows

K = −GAλp
n∑
j=1

(
(1 + (1 + 2ν)λ−(1+2ν)

p λ
−2(1+ν)
uj ) cosφj

∂λuj
∂u
− (λuj − λ−2(1+ν)

p λ
−(1+2ν)
uj ) sinφj

∂ φj
∂u

)
)

(12)

from which one finally has

Keq = K
∣∣∣
u=0

= GAL−1λp

n∑
j=1

(1 + λ−2(1+ν)
p (ν + (1 + ν) cos 2φj0)) (13)

that represents the analytical form –explicitly depending on both the geometrical and mechanical

parameters– of the tangent stiffness of the adherent single-cell structure, associated to the imposed

displacement u. It is worth to notice that, from (13) and for an arbitrary couple of filaments with

prescribed angles φj0 and φj0 + π respectively, the prestretch influences the stiffness in a non linear

way, whose form depends on the Poisson’ratio ν. It is then natural to ask if the stiffness is monotonic

with the prestretch. By calculating the derivative of the j-th addend (and its coaxial) in Keq, say Keqj ,

with respect to λp and equating it to zero, one finds

∂Keqj

∂λp
= GAL−1 cosφj0λp

(
1 + (1 + 2ν)λ−2(1+ν)

p

)
= 0 (14)

whose in closed-form solution is

λp = |1 + 2ν|
1

1+ν (15)

which gives compatible (positive) stretches for any angle φj0 and Poisson ratios belonging to the clas-

sical thermodynamically consistent range ]− 1,
1

2
[.

From the biomechanical point of view, this enough counter-intuitive result implies that, as the stiff-

ness varies with increasing prestretches, a minimum must be found (see Figure 3) and thus –at least

in principle– during a monotonic stretching of the substrate or in searching optimal cytoskeleton con-

figuration, an adherent cell could find minimal energy positions at nonzero strains as well.
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Identification of the model parameters to describe actual cell stiffness

The above nonlinear elastic model has been introduced to quantitatively estimate the effect of pre-

stress and number of filaments on the overall stiffness of an adherent (prestretched) single cell. With

reference to the experimentally measured cell stiffness values (see for a synoptic frame the tables in

Fraldi et al. (2015)) and by making use of (13), it is possible to determine the equivalent overall

elastic Young modulus of the cell in an arbitrary prestretched configuration, Eeq, by considering in-

compressibility condition –that is G ' E

3
, G being the first Lamé modulus– as follows (the symbol

C0G = 6πGR will be afterwards used for the stiffness)

Eeq '
3Keq

6πR
(16)

where R represents the cell nucleus radius, as reported by Or and Kimmel (2009). This expression –

which will be used in the following viscoelastic schemes– implicitly takes into account the prestretch

as well as the number of filaments, all these parameters being included in Keq. As a consequence,

the formula furnishes a direct first estimation of the equivalent cell Young modulus Eeq –once all the

mechanical and geometrical parameters are known– but, because of its elementary structure, it can be

also used to identify the number of "active" cytoskeleton elements in an experimental measurement,

as well as to determine the average prestress of an adherent cell.

In Figure 4 are illustrated the results of the parametric analyses conducted on the equivalent stiffness

for three values of the Poisson’s ratio of the filaments (ν = 0, 0.25, 0.5), initial filament length L0

equal to 50 µm and circular cross sections with diameters of 7nm, all these values being coherent

with the literature data. In particular, the equivalent cell Young moduli of a cell have been carried out

by both considering 75 active protein filaments for a single cell strand, making variable the prestretch

(see Figure 4a), and complementary prescribing a prestretch (λp = 1.3), thus plotting the cell stiffness

against the number of filaments (see Figure 4b). Both the graphics show how the whole range of

elastic moduli measured through different techniques and reported in the literature for a vast class

of cell lines (Fraldi et al. (2015)) can be obtained with a good agreement, modulating the prestretch

and the number of "active" filaments within experimentally documented intervals. An instructive

numerical example can be easily done by considering the case of cell stiffness measured by Cross

et al Cross et al. (2008) for human healthy cells and corresponding abnormal carcinoma of the lung,
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estimated about 2100 Pa and 560 Pa, respectively. In this case, setting ν = 0.4, the stiffer value

associated to the healthy cells can be obtained through the proposed model by assuming a prestretch

λp = 1.32 and considering n = 75 active protein filaments, the cancer cell elastic modulus being

caught by merely reducing to about 26 the number of active filaments to simulate possible lower levels

of polymerization in the cytoskeleton structure of cancer cells to facilitate squeezing and metastatic

migration abilities.

In–frequency response of adherent single-cell viscoelastic systems

incorporating cytoskeleton prestress

By exploiting the results obtained in the previous Sections with reference to the effects of the pre-

stretched/prestressed cytoskeleton filaments on the cell stiffness and by starting from an approach

proposed by Or and Kimmel (2009) and recently further developed by Fraldi et al. (2015) to analyze

the case of vibrating cell nucleus in a viscoelastic environment excited by Low Intensity Therapeutic

Ultra-Sound (LITUS), let us consider a single-cell system whose dynamics is reduced to an oscillat-

ing mass immersed in a viscoelastic medium (see Figure 5). To represent the nucleus, a rigid sphere

of radius R is thus considered, by ideally concentrating in it the entire mass of the cell and modeling

the environment as a homogeneous and isotropic viscoelastic medium. Under these hypotheses, the

whole cell dynamics is completely governed by one degree of freedom stimulated by a velocity law

taken in the form

vm(t) = vm0e
−iω0t (17)

where vm represents the velocity prescribed to the medium, vm0 is the amplitude of the complex

velocity phasor, with ω0 = 2πf denoting the oscillations angular frequency and f the measured

frequency in Hz. Accordingly to the above cited Literature, the motion can be described by the

equation

fm = mobaob =
4

3
πR3ρob

d2uob
dt2

= fac − fres (18)

In eq. (18), t is the time, fm is the inertial force, mob represents the nucleus mass of density ρob, uob is

the displacement and the driving force that is kindled by the acoustic pressure gradients triggered by

the ultrasound transducer in the system is fac. It is worth to highlight that –in the case under analysis–
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the object is very small if compared with the acoustic wavelength and thus the form of the acoustic

force can be simply reduced to a force which ideally would act on a sphere of the same radius, in

absence of the object (Maxey and Riley (1983)); this permits to write

fac =
4

3
πρmR

3Dvm
Dt
≡ 4

3
πρmR

3dvm
dt

(19)

where ρm is the density of the medium. Additionally, dimensional analyses show that the convective

term is small and, as a result, the absence of spatial variability allows to adopt in eq. (19) time-

differentiation d/dt instead of the substantial derivative D/Dt (Or and Kimmel (2009)). It has to be

also noticed that fres represents the response force applied to the object by its surrounding, due to

their relative motion, and thus it will depend on the overall rheological features of the environment.

In order to catch possible further insights on the single-cell behavior, this force incorporates, in a

parametric way, key geometrical and mechanical properties of interest.

The analyses will be performed by first utilizing two quasi-standard viscoelastic models (Voigt and

Maxwell), then introducing a generalized standard linear Kelvin model in which dashpot and spring

elements are replaced by so-called Spring-Pot systems, in different ways recently used to describe

with success the mechanical behavior of biological materials (Deseri et al. (2013)).

Additionally, by recalling the well-known relationship between Laplace and Fourier transforms (i.e.

F [·] = L [·]
∣∣
s=iω

), the Laplace transform is utilized in what follows to solve the differential problem

at hand, in this manner obtaining the response of the systems directly in terms of frequency (Fraldi

et al. (2015)).

With respect to the assigned initial conditions, in all the simulations the single-cell system is assumed

to be initially at rest, that is

uob
∣∣
t=0

= 0 ,
duob
dt

∣∣
t=0

= 0 (20)

By therefore Laplace transforming the eq. (18), one finally obtains

Fm =
4

3
πR3ρobs

2Uob = Fac − Fres (21)

in which s denotes the Laplace variable and all the (Laplace-)transformed terms are indicated with

capital letters. Accordingly, Fac that appears in eq. (21) represents the Laplace transforming of the
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acoustic force fac reported in the eq. (19), so obtaining

Fac =
4

3
πρmR

3sVm =
4

3
πρmR

3s2Um (22)

The reader can find some further details of the viscoelastic models presented below by making refer-

ence to Fraldi et al (Fraldi et al. (2015)).

Enhanced Voigt and Maxwell models for single-cell

As known, the Voigt idealization assumes that viscous and elastic elements are placed in parallel to

each other (see Figure 5). In this way, the resulting overall force can be determined by the simple sum

of the forces due the the single constituting elements as

fres = fµ + fG (23)

where fµ represents the viscous contribution and fG the elastic response. In case of rigid object

rapidly vibrating in a viscous fluids, the viscous term can be helpfully represented with the following

explicit form, as suggested by Basset (1888), Landau and Lifshitz (1987) and Or and Kimmel (2009)

fµ = 6πRµ

1 +

√
ωR2

2η

 (vob − vm) +
2

3p
πR3ρm

(
1 +

9p

2

√
2η

ωR2

)
(v̇ob − v̇m) (24)

with η and µ kinematic and dynamic medium viscosities, respectively, and v = u̇ the velocity.

Note that, in eq. (24), the structure of the viscous force is different from the standard Stokes one,

frequency-dependent terms as well as an inertial (spurious) contribution 3πR3ρm

√
2η

ωR2
, named

added mass(Brennen (1982)), additionally appearing, p (here is p = 2) being the number of ele-

ments in parallel ad hoc introduced in Fraldi et al. (2015) to solve an ambiguous situation already

pointed out by Or and Kimmel (2009). In fact, as already highlighted in Fraldi et al. (2015), to avoid

contrived solutions to remove "the excessive added-mass term" that "erroneously twice appears" in

Or and Kimmel (2009), the viscoelastic forces are here set to obtain that any combined viscoelastic

scheme derived from the general fractional-based SLK model contains the sole added-mass and vir-

tual friction contributions to be considered.
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Following Ilinskii et al. (2005), the elastic force fG can be given by

fG = 6πGR (uob − um) + 6πR2
√
Gρm (u̇ob − u̇m) +

2

3p
πR3ρm (üob − üm) (25)

Similarly to the viscous force, the elastic contribution in (25) is presented in a somehow enhanced

version with respect to the standard Hooke law, to include key effects of the cell nucleus–environment

dynamic interactions which characterize the actual physical behavior of the overall system due to

rapid fluctuations. In eq. (25), the physics is then caught through two additional dissipative and

inertial terms, respectively equal to 6πR2
√
Gρm (the virtual friction) and the so-called added mass,

G representing the first Lamé modulus of and um the vibrational displacement of the medium. Also,

for convenience, it is assumed that

c0G = 6πGR, c1G = 6πR2
√
Gρm, c2G =

2

3p
πR3ρm (26)

c1µ = 6πRµ

1 +

√
ωR2

2η

 , c2µ =
2

3p
πR3ρm

(
1 +

9p

2

√
2η

ωR2

)
(27)

a further dimensionless parameter being

ζ =
ρob
ρm

=
1

1 + γ
(28)

where γ = ρmρ
−1
ob − 1. At the end, the modified Voigt viscoelastic equation is obtained as

fres = c0G (uob − um) + (c1µ + c1G) (u̇ob − u̇m) + (c2µ + c2G) (üob − üm) (29)

from which, by Laplace transforming, one finally has

Fres = (Uob − Um)
[
c0G + (c1µ + c1G) s+ (c2µ + c2G)s

2
]

(30)

and, replacing (30) and (22) in (21) and after some algebraic passages, the following equation is

found [
c0G + (c1µ + c1G) s+

(
(c2µ + c2G) +

4

3
πρobR

3

)
s2
]
∆U =

4

3
πγρobR

3sVm (31)
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where ∆U = Uob − Um . By solving the eq. (31), the analytical solution of the the in-frequency

response of the system –in terms of relative displacement ∆U of the cell nucleus with respect to the

envinronment– is obtained in the form

|∆U |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣∣
4

3
πγζρmR

3sVm

c0G + (c1µ + c1G) s+

(
(c2µ + c2G) +

4

3
πρobR3

)
s2

∣∣∣∣∣∣∣∣
∣∣∣∣∣
s=iω

(32)

Complementary to the case of Voigt, Maxwell systems present elastic and viscous elements ideally

placed in series (see Figure 5). The overall response is therefore found by imposing the following

isostress condition

FG = Fµ = Fres (33)

thus equating the sum of the viscous and the elastic displacement contributions to the total relative

displacement, that is

∆U = ∆UG +∆Uµ (34)

where FG and Fµ represent the Laplace transforms of the elastic and viscous forces respectively given

in eqs. (25) and (24), so obtaining

FG = (c0G + c1Gs+ c2Gs
2)∆UG, Fµ = (c1µs+ c2µs

2)∆Uµ (35)

from which the elastic and viscous displacements can be explicitly written as

∆UG =
FG

c0G + c1Gs+ c2Gs2
, ∆Uµ =

Fµ
c1µs+ c2µs2

(36)

By recalling Fres from eq. (21) and considering eq. (36), the closed-form solution for the in frequency

response of the enhanced Maxwell system is found as
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|∆U |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣∣
4

3
πγρobR

3sVm

1 +
4

3
πρobR3s2

(
1

c1µs+ c2µs2
+

1

c0G + c1Gs+ c2Gs2

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
s=iω

(37)

Single-cell response through generalized fractional derivative–based Standard

Linear Kelvin paradigms

Added mass and virtual friction in Spring-Pot models

In a viscoelastic medium employing Fractional Derivatives, the mechanical behavior is interpreted

through the introduction of so-called Spring-Pot systems. The first time that the fractional derivative

concept is traced in an epistolary correspondence between de L’Hospital and Leibniz dated back to

1695, where they tried to give an answer to the question: "What does the derivative dnf(x)/dxn mean

if n = 1/2?". From that time, a new branch of mathematics –fractional calculus, a generalization of

the commonly used integer-order differentiation and integration– has been formally developed. The

basic idea, as suggested by Riemann-Liouville, is in fact to interpret the fractional derivative as the

inverse operation of a fractional integral. The use of fractional derivatives in viscoelasticity can be

traced in the work by Nutting (1921), where, from the best fitting of experimental curves, he noted

the possibility of describing the relationship between deformation and time through a power law, i.e.

u ∝ tnFm, in which F is the force and u represents the displacement. Successively, in 1949, Blair

and Caffyn (1949) analytically justified this experimental curve by means of the fractional derivatives,

also introducing the Spring-Pot model. Afterwards, Caputo (1969) in detail proposed a fractional

derivative operator, namely C
aD

α
t , which could be used in "real world":

C
aD

α
t f(t) =

1

Γ (n− a)

∫ t

a

(t− s)n−α−1fn(s) ds ∀ n− 1 ≤ α ≤ n (38)

Γ representing the Euler Gamma function and f(t) being integrable in [a, t].

In the last years, several scientific papers involving fractional calculus–based viscoelasticity has been

presented, for both approaching standard problems and analysing complex systems in pioneering

physical and engineering fields (see for example Atanackovic et al. (2007); Bagley (1983); Deseri

et al. (2013, 2014); Di Paola et al. (2009, 2013); Grillo et al. (2015); Mainardi (2012); Metzler and
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Klafter (2000); Schiessel and Blumen (1993)). For the present purpose, however, the Spring-Pot

model is essentially that firstly proposed by Blair and Caffyn (1949), here ad hoc generalized to inte-

grate added mass and virtual friction as additional system features. As a consequence, the following

definition of the Spring-Pot response force fSP is introduced

fSP := Cα
(
C
0D

α
t (uob − um)

)
+ c1SP (u̇ob − u̇m) + c2SP (üob − üm) (39)

in which C
0D

α
t represents the Caputo’s fractional time-derivative of order α (α ∈ [0, 1] being over

the time interval (0, t)) and Cα is a suitable frequency-dependent parameter written by starting from

Koeller (1984) as follows

Cα = c0G

(
c1µ
c0G

)α
(40)

In particular, dissipative and inertial terms were incorporated in the model by postulating the simplest

mathematical structure

c1SP = (1− α)c1G, c2SP = c2G

(
1 + α

9p

2

√
2η

ωR2

)
(41)

in this manner reproducing the elastic and viscous models proposed byOr and Kimmel (2009) as

special limit cases, that is α = 0 and α = 1, respectively.

At the end, by substituting eq. (39) into eq. (21) and invoking the fractional derivative rule allowing

to Laplace transform by preserving the classical (integer) derivative law for the Laplace variable

s, namely C
0D

α
t

L−→ sα, the in-frequency response of the spring-pot model, in terms of nucleus-

environment relative displacement, can be finally found in the following form

∀α ∈ [0, 1], |∆U |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣∣
4

3
πγρobR

3sVm(
4

3
πρobR3 + c2SP

)
s2 + c1SP s+ Cαsα

∣∣∣∣∣∣∣∣
∣∣∣∣∣
s=iω

(42)

Generalized SLK model incorporating Spring-Pot systems

To enrich Maxwell and Voigt viscoelastic behaviors, different so-called Standard Linear Solid (SLS)

systems can be encountered in the Literature (Tschoegl (1989)). Among these, one of the most uti-
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lized scheme is constituted by the Standard Linear Kelvin (SLK) model, obtained by placing in series

an elastic spring with a Voigt system, the so-called Maxwell-Wiechert model representing an alter-

native –and somehow complementary– configuration where an elastic spring is positioned in parallel

with a Maxwell system, whose multi-element version leads to the well-known Prony series method.

Given that the Spring-Pot might be physically interpreted as a viscoelastic system intrinsically ca-

pable to smoothly generate intermediate mechanical responses as the above mentioned parameter α

moves from zero to one, in the limit cases respectively giving purely elastic and viscous behaviors, a

possible generalization of the SLK model can be envisaged by replacing in it each dashpot and spring

with a spring-pot, as shown in Figure 5, by furthermore enhancing the resulting model by suitably

including added mass and virtual friction terms. In this way, a powerful (linear) low-parameter vis-

coelastic system can be realized with the important advantage that, by essentially following the above

proposed strategies, analytical solutions of the corresponding in-frequency system response can be al-

ways derived for any modulation and combination of the spring-pot parameter α. As a result, a wide

range of otherwise unforeseeable viscoelstaic responses can be caught and all the simpler viscoelastic

models –and the related analytical solutions– recalled above, including the Or and Kimmel (2009)

ones, can be obtained as special limit cases of the proposed generalized SLK scheme as well.

With reference to the configuration of the spring-pot in the proposed generalized SLK viscoelastic

system (see Figure 5), let us write equilibrium among forces and compatibility for the displacements

as

fSLK = fP = fSP3 (43)

∆uSLK = ∆uP +∆uSP3 (44)

in which fSLK represents the total force, fP = fSP1 + fSP2, fSP1, fSP2 and fSP3 being the single

contributions given by the three spring-pots whose explicit forms are furnished by the eqn (39) and

the displacement ∆uP = ∆uSP1 = ∆uSP2.

By Laplace transforming fP and fSP3, fractional derivative rule C
0D

α
t

L−→ sα gives

FP =
[
Cα1s

α1 + Cα2s
α2 + (c1SP1 + c1SP2) s+ (c2SP1 + c2SP2) s

2
]
∆UP (45)

FSP3 =
[
Cα3s

α3 + c1SP3s+ c2SP3s
2
]
∆USP3 (46)
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Algebraic manipulations allow to write

∆UP =
FP

Cα1sα1 + Cα2sα2 + (c1SP1 + c1SP2) s+ (c2SP1 + c2SP2) s2
(47)

∆USP3 =
FSP3

Cα3sα3 + c1SP3s+ c2SP3s2
(48)

and therefore, by recalling the previously obtained relationship for Fres, the closed-form in-frequency

solution for the SLK system is finally determined as

|∆USLK |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣
4

3
πγρobR

3sVm

(
1

s(c1SP1+c1SP2)+s2(c2SP1+c2SP2)+Cα1sα1+Cα2sα2
+ 1

s(c1SP3+c2SP3s)Cα3sα3

)
4

3
πρobR3s2

(
1

s(c1SP1+c1SP2)+s2(c2SP1+c2SP2)+Cα1sα1+Cα2sα2
+ 1

s(c1SP3+c2SP3s)+Cα3sα3

)
− 1

∣∣∣∣∣∣∣
∣∣∣
s=iω

(49)

This equation gives thus the analytical response of a generalized SLK model capable to cover a wide

ranges of possible intermediate viscoelastic behaviors reproduced by tuning the fractional deriva-

tive order α characterizing the spring-pots, also incorporating added mass and virtual friction effects

(Fraldi et al. (2015)) and replicating –as limit cases– all the simpler (viscous and elastic) as well as

non-standard single-cell literature models (Or and Kimmel (2009)). Some systems, obtained by mod-

ulating the parameters α in the proposed model, are summarized in Table 1 with reference to selected

cases afterwards utilized for simulating the in-frequency response of single cells to mechanical loads,

say Elastic, Viscous, Voigt (V), Maxwell (M) and standard linear Kelvin (SLK) limit cases, as well as

the three intermediate chosen configurations, say SLK_1, SLK_2 and SLK_3.

The resonance hypothesis in adherent cells: the role of prestretch

and number of active cytoskeleton filaments

In a recent paper by some of the present authors (Fraldi et al. (2015)) the in-frequency response of

single-cell systems has been in detail analyzed through simple (one-degree of freedom) visco-elastic

schemes, by also conducting sensitivity analyses aimed to gain information about positioning and

magnitude of the response peaks for envisaging possibilities of exploiting the stiffness discrepancies

experimentally observed between healthy and tumor cells for mechanically targeting and selectively
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attacking cancer cells. To make this, the above recalled authors explored the in-frequency responses

of a wide class of viscoelastic single-cell paradigms, by ad hoc introducing a new generalized frac-

tional derivative–based SLK model and constructing the related analytical solutions, whose results

were referred to ranges of mechanical properties and physical parameters actually measured at single-

cell level and reported in the consolidated literature.

However, when dealing with living systems, the measures of stiffness can be significantly affected

by intrinsic structural changes of the biological matter, for example by the reorganization dynamics

guided by polymerization-depolymerization processes which change the internal configuration of the

cytoskeleton, so regulating adhesion and migration cell capabilities and in turn provoking non homo-

geneous cell deformations and changes in stiffness (Bao and Suresh (2003); Brunner et al. (2009);

Rodriguez et al. (2013)), with Young’s moduli also oscillating from about 100 Pa to 10 kPa (Caille

et al. (2002); Cross et al. (2008, 2007); Faria et al. (2008); Ketene et al. (2012); Lekka et al. (2012a,

1999, 2012b); Li et al. (2008); Nikkhah et al. (2010); Prabhune et al. (2012); Rebelo et al. (2013)).

Nevertheless, the vast majority of the experimental data somewhat considers stiffness of "round"

(suspended) cells and –at the best authors knowledge– no many efforts have been devoted, from the

modeling standpoint, to mechanically relate the overall change of cell stiffness to its stretched config-

uration, as well as to the average number of active/assembled cytoskeletal filaments.

Therefore, by starting from the literature experimental results and taking into account the ranges

within which actual measured mechanical features of cells can oscillate, the overall stiffness –determined

from the proposed elemental non-linear elastic single-cell model– has been introduced into the frac-

tional derivative–based SLK scheme. In this way, the cell visco-elastic behavior explicitly depends,

among other geometrical and physical parameters, upon the stiffness resulting from the number of

active cytoskeletal filaments, their prestretch level due to possible adherent configurations, as well as

from the round shape–associated cell Young modulus, directly related to the cell line and to the cell

(i.e. healthy or cancer) state.

To highlight the possibility of following the above described strategy for representing the whole range

of the experimentally measured single-cell mechanical properties, in both suspended and adherent

conditions, also demonstrating that viscoelaatic response peaks still fall within frequencies intervals

of ultrasound which would still preserve the possibility of of selectively inducing resonance-like phe-

nomena in cells (Fraldi et al. (2015)), sensitivity analyses have been thus ad hoc performed by making
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variable the overall intrinsic round-shaped cell Young modulus, the prestretch and the number of ac-

tive micro-filaments, the cytosol viscosity and the nucleus size being prescribed and set equal to

average values, in this manner covering the entire range of the mechanical data given in the literature

for many cell lines investigated.

By essentially following data and methods already introduced in Fraldi et al. (2015) and with respect

to the notations proposed for the generalized SLK visco-elastic systems, the analyses reported below

have been conducted by assuming medium vibration velocity magnitude vm0 = 0.12 ms-1, determined

in case of plain progressive waves characterized by acoustic intensity of 1 W cm-2 and associated in-

tensity I = 0.5ρmcv
2
m0, c = 1500 ms-1 being the speed of sound at room temperature (Lide et al.

(2008)) at which mass density of the medium has been also assumed to be coincident with that of the

water, the nucleus –as reported in (Michelet-Habchi et al. (2005))– being considered about 30% more

dense than the environment.

More specifically, the performed analyses have been referred to six selected viscoelastic schemes, that

is the enhanced Voigt, Maxwell and SLK ones and further three generalized fractional derivative–

based SLK models constructed by positioning in the sections 1, 2 and 3 spring-pots with α = 0.5

(see Figure 5), in all the cases also taking into account added mass and virtual friction effects. Ad-

ditionally, the elastic modulus G appearing in the fractional derivative–based models implicitly takes

into account the cell configuration (suspended and adherent) through prestretch and number of active

filaments determined by eqs. (13) and (16). The theoretical outcomes have been carried out by mak-

ing the calculations using the symbolic commercial code Wolfram Mathematica R©(Wolfram (2003))

and the results have been represented in the domain of the frequencies within the interval most inter-

esting for biomedical applications, i.e. 1 kHz ≤ f ≤ 100MHz. In particular, the main attention is

paid to the in-frequency system responses plotted in terms of maximum relative displacement |∆U |,

in the time domain representing the magnitude of relative oscillations between environment and cell

nucleus, induced by ultrasound.

Figures 6, 7 and 8 collect the most relevant results from the analytical models: therein, cell stiffness,

prestrech intensity and number of filaments have been assumed to vary within intervals compatible

with experimental findings, keeping fixed the other complementary parameters and choosing for them

the most common literature values, i.e. Young modulus E = 2100 Pa (Cross et al. (2007)), cell nu-

cleus radius R = 1µm (Cowin and Doty (2007)) and viscosity of the water µ = 10−3 Pa×s (Or and
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Kimmel (2009)).

Figure 6 in particular illustrates the cell in-frequency response in terms of relative displacement, by

parametrically making variable the cell stiffness from E = 100Pa to E = 10 kPa, coherently with

data ranges reported in the experimental literature. Similarly, Figures 7 and 8 show the results for

the six viscoelastic models chosen, by plotting again displacement amplitude against frequency and

respectively setting the tangent Young modulus (E = 2.6 × 109Pa) and Poisson ratio (ν = 0.4) of

the microfilamts, the viscosity µ = 10−3 Pa×s and making variable the prestretch λp and the number

n of cytoskeleton filaments.

The outcomes obtained from the sensitivity analyses confirm both qualitative trends and quantitative

results already found in Fraldi et al. (2015), with growing peak frequencies and associated decreasing

displacement amplitudes as the overall cell stiffness grows up as a consequence of the increase of

the intrinsic Young moduli of the (round) cells (see Figure 6), as well as when the cell stiffening is

induced by its adherent configuration, a situation here modeled by increasing the tensile pre-stresses

in the cytoskeletal elements and the number of prestretched filaments (see Figures 7 and 8). Also,

in all the analyzed single-cell systems, the results highlight that the maximum vibrations |∆U | and

associated peak frequencies always fall within the interval 104 ∼ 106 Hz, a range coherent with that

experimentally established by several works (see, for instance, Lejbkowicz and Salzberg (1997) and

Johns (2002)) that still authorizes –at least in principle– to think of obtaining resonance-like responses

by stimulating single cells by means of ultrasounds. Importantly, for all the viscoelastic schemes, the

obtained results confirm that US-induced mechanical vibrations, |∆U |, are mostly comparable (or

greater than) spontaneous thermal fluctuations if both calculated in limit situations of pure elastic me-

dia –where MSD (the Mean Square Displacement) is 〈u2T,e〉 =
kBT

πRG
(Ohshima and Nishio (2001))–

and pure viscous systems, where MRD (the Mean Relaxation Distance) is 〈uT,η〉 =
2R2ρobv0

9µ
(Kittel

and Krocmer (1980)), kB being the Botzmann constant, T the absolute temperature and v0 the initial

velocity. It can be in fact numerically verified that the MSD maximum square root is of the order

of 10−9m while MRD can oscillate between 10−15m and 10−8m, in both the cases leading to values

smaller than (or at most comparable with) the vibration amplitude peaks obtained theoretically from

the above mentioned parametric analyses (see Figures 6, 7 and 8).
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Conclusions and future challenges

By following a very recent work by some of the authors aimed to analyze the in-frequency response of

single-cell systems to mechanical stimuli (Fraldi et al. (2015)), a new enhanced fractional derivative–

based viscoelastic scheme incorporating the non-linear elastic behavior of the cell cytoskeleton has

been here proposed by first introducing an elemental sub-cellular structural model, then following

–after a bottom-up procedure to meet the microscale– a small-on-large approach to study the dy-

namics (nucleus vibration) of the cell as a whole. In this way, together the geometrical and physical

parameters usually involved in the mechanical study of suspended (round) cells, some further key

factors influencing the overall stiffness of adherent cells have been taken into account, that is the

prestress/prestretch and the average number of attending protein filaments. Actually, the cell stiffness

can significantly change if, by interacting with the ECM, the focal adhesion points invite cell cy-

toskeleton to assume deformed configurations. Stretching and collective reconfigurations of protein

filaments guided by polymerization/depolymerization processes generally accompany the transition

of a cell from a suspended to an adherent state. Forces and srains in the prestretched stress fibers thus

play a crucial role in the dynamic updating of the mechanical properties of single cells, as well as

in determing their viscoelastic response to mechanical stimuli. In this framework, it has been indeed

experimentally shown that at low-frequency cyclic loads and strain regimes from (10−2 to 10−1), can

actually generate structural alterations or physical rupture of cytoskeletal elements in living cells (Or

and Kimmel (2009)). Similar effects have been also observed at relatively high frequencies, in partic-

ular for the case of cells stimulated by ultrasound, as found in Mizrahi et al. (2012) and Lejbkowicz

and Salzberg (1997) which have shown that configurational and mechanical changes were caused at

ultrasonic frequencies (106 Hz) by very small strains (10−5) as well as at physiological frequencies

(100 Hz) by relatively large strains (10−1).

With reference to the obtained theoretical findings, a rough value of the axial elongation equivalent

to a simple uniaxial strain can be roughly estimated as ε ∝ |∆U |
(10×R)

: as a consequence, by recalling

that a typical size of a cell nucleus can be found in the interval (2 × 10−7, 10−5) m while vibration

magnitude are obtained from about 10−9 m to 10−7 m, strains from 10−5 up to 10−1 can be determined

and higher values can be hence reached due to the prestretch imprisoned in the cytoskeleton filaments

of adherent cells.

Also, the peak frequencies, derived from the theory by using the parametric fractional calculus–based
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viscoelastic schemes, span from tens kHz to about one MHz, these limit values being both experimen-

tally recognized as critical frequencies at which cells exhibit significant biological configurational

alterations due to mechanical effects which prevail on thermal ones (Johns (2002); Schuster et al.

(2013)).

At least in principle, after a few seconds of exposure to ultrasound (e.g. LITUS), cell structural mod-

ifications or failure due to cyclic loading and associated fatigue phenomena could be thus actually

expected and this, on the basis of the ascertained fact that cancer cells are found to be always softer

than their normal (healthy) counterparts –independently from the cell line– might pave the way for

designing new mechanically-based tumor markers and strategies to selectively attack cancer cells.
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detection in tissue sections using AFM. Archives of Biochemistry and Biophysics, 518(2):151–156.

Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A. Z. (1999). Elasticity

of normal and cancerous human bladder cells studied by scanning force microscopy. European

Biophysics Journal, 28(4):312–316.

Lekka, M., Pogoda, K., Gostek, J., Klymenko, O., Prauzner-Bechcicki, S., Wiltowska-Zuber, J.,

Jaczewska, J., Lekki, J., and Stachura, Z. (2012b). Cancer cell recognition - Mechanical phenotype.

Micron, 43(12):1259–1266.

Li, Q. S., Lee, G. Y. H., Ong, C. N., and Lim, C. T. (2008). AFM indentation study of breast cancer

cells. Biochemical and Biophysical Research Communications, 374(4):609–613.

Lide, D. R., Data, S. R., Board, E. A., Baysinger, G., Chemistry, S., Library, C. E., Berger, L. I.,

Goldberg, R. N., Division, B., Kehiaian, H. V., Kuchitsu, K., Rosenblatt, G., Roth, D. L., and

Zwillinger, D. (2008). CRC Handbook of Chemistry and Physics. CRC handbook of chemistry and

physics, Boca Raton, FL, 88th (inte edition.

Mainardi, F. (2012). An historical perspective on fractional calculus in linear viscoelasticity. Frac-

tional Calculus and Applied Analysis, 15(4):712–717.

Maxey, M. R. and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform

flow. Physics of Fluids, 26(4):883.

Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional

dynamics approach. Physics Reports, 339(1):1–77.

Michelet-Habchi, C., Incerti, S., Aguer, P., Barberet, P., Gontier, E., Guinefolleau, T., Moretto, P.,

Pouthier, A., Pouthier, T., and Smith, R. W. (2005). 3D imaging of microscopic structures using a

proton beam. IEEE Transactions on Nuclear Science, 52(3):612–617.

Mizrahi, N., Zhou, E. H., Lenormand, G., Krishnan, R., Weihs, D., Butler, J. P., Weitz, D. a., Fredberg,

J. J., and Kimmel, E. (2012). Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter,

8:2438.

27



Nikkhah, M., Strobl, J. S., De Vita, R., and Agah, M. (2010). The cytoskeletal organization of breast

carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.

Biomaterials, 31(16):4552–4561.

Nutting, P. (1921). A new general law of deformation. Journal of the Franklin Institute, 191(5):679–

685.

Ohshima, Y. N. and Nishio, I. (2001). Colloidal crystal: Bead-spring lattice immersed in viscous

media. Journal of Chemical Physics, 114(19):8649–8658.

Or, M. and Kimmel, E. (2009). Modeling Linear Vibration of Cell Nucleus in Low Intensity Ultra-

sound Field. Ultrasound in Medicine and Biology, 35(6):1015–1025.

Paszek, M. J., DuFort, C. C., Rossier, O., Bainer, R., Mouw, J. K., Godula, K., Hudak, J. E., Lakins,

J. N., Wijekoon, A. C., Cassereau, L., Rubashkin, M. G., Magbanua, M. J., Thorn, K. S., Davidson,

M. W., Rugo, H. S., Park, J. W., Hammer, D. a., Giannone, G., Bertozzi, C. R., and Weaver, V. M.

(2014). The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature,

511(7509):319–25.

Prabhune, M., Belge, G., Dotzauer, A., Bullerdiek, J., and Radmacher, M. (2012). Comparison of

mechanical properties of normal and malignant thyroid cells. Micron, 43(12):1267–1272.

Pugno, N. M., Bosia, F., and Abdalrahman, T. (2012). Hierarchical fiber bundle model to investigate

the complex architectures of biological materials. Physical Review E - Statistical, Nonlinear, and

Soft Matter Physics, 85.

Rebelo, L. M., de Sousa, J. S., Mendes Filho, J., and Radmacher, M. (2013). Comparison of the

viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force

microscopy. Nanotechnology, 24(5):055102.

Rodriguez, M. L., McGarry, P. J., and Sniadecki, N. J. (2013). Review on Cell Mechanics: Experi-

mental and Modeling Approaches. Applied Mechanics Reviews, 65(6):060801.

Schiessel, H. and Blumen, A. (1993). Hierarchical analogues to fractional relaxation equations. Jour-

nal of Physics A: Mathematical and General, 26(19):5057–5069.

28



Schuster, A., Schwab, T., Bischof, M., Klotz, M., Lemor, R., Degel, C., and Schäfer, K. H. (2013).

Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy, 195(1):57–

67.

Tschoegl, N. (1989). The phenomenological theory of linear viscoelastic behavior: an introduction.

Springer New York.

Wolfram, S. (2003). The Mathematica Book. Wolfram Media, Inc.

List of Tables with enclosed captions

Table 1: Synoptic table with models and adopted parameters

Parameters
Models α1 Cα1 α2 Cα2 α3 Cα3

Elastic 0 →∞ - - 0 c0G
Viscous 0 →∞ - - 1 c1µ

V 0 c0G 1 c1µ 0 →∞
M 0 → 0 1 c1µ 0 c0G

SLK 0 c0G 1 c1µ 0 c0G
SLK_1 0.5 C0.5 1 c1µ 0 c0G
SLK_2 0 c0G 0.5 C0.5 0 c0G
SLK_3 0 c0G 1 c1µ 0.5 C0.5
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Figure 1: Cartoon –with plan and lateral views– of the elemental cell cytoskeleton structure: a) initial
(stress-free) unknown configuration; b) adherent cell with non-linearly prestretched/prestressed fila-
ments (reference configuration); c) small-on-large cell deformation induced by nucleus displacement
(current configuration)
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Figure 2: Illustration of how the axial forces kindled in each string contribute to the equilibrium of
the nucleus: the angles φj are referred to the actual (displaced) nucleus position.
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Figure 3: Plot of the dimensionless contribution of a filament to the cell stiffness as function of the
prestretch: note that –for different Poisson’s ratio values– a minimum is always highlighted.
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Figure 4: Parametric analyses for the equivalent Young modulus of a single-cell system for different
Poisson’s ratios: a) elastic stiffness versus prestretch with fixed number of active filaments (75); b)
elastic stiffness versus number of (active) filaments, with prescribed prestretch value (λp = 1.3).
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Figure 5: Cartoon of the idealized single-cell system: (a) healthy and tumor cells agglomerate; (b)
typical cell unit, with nucleus and cytoskeleton structure embedded in the cytosol and confined by
the lipid bilayer cell membrane; (c) idealized single-cell system with cell nucleus oscillating in a
viscoelastic environment under the action of radiating ultrasound source; (d) adopted viscoelastic
schemes (Voigt, Maxwell and generalized Spring-Pot based Standard Linear Kelvin models).
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Figure 6: Sensitivity analysis for the frequency response of the cyclic displacement amplitude of
a spherical object (R = 1 µm) with respect to its surroundings with prescribed viscosity (µ =
10−3 Pa × s) and varying Young modulus (E = 100, 500, 1000, 5000, 10000Pa): (V) Voigt; (M)
Maxwell; (SLK) Standard Linear Kelvin; (SLK_1) generalized Standard Linear Kelvin with spring-
pot in position 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5.
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Figure 7: Sensitivity analysis for the frequency response of the cyclic displacement amplitude of
a spherical object (R = 1 µm) with respect to its surroundings with prescribed viscosity (µ =
10−3 Pa × s), tangent Young modulus (E = 2.6 × 109Pa) and Poisson ratio (ν = 0.4) of the
microfilaments, for a fixed number of active filaments (n = 50), varying the level of prestretch
(λp = 1, 1.5, 2, 3, 4): (V) Voigt; (M) Maxwell; (SLK) Standard Linear Kelvin; (SLK_1) generalized
Standard Linear Kelvin with spring-pot in position 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5.
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Figure 8: Sensitivity analysis for the frequency response of the cyclic displacement amplitude of
a spherical object (R = 1 µm) with respect to its surroundings with prescribed viscosity (µ =
10−3 Pa × s), tangent Young modulus (E = 2.6 × 109Pa) and Poisson ratio (ν = 0.4) of the
microfilaments, for a fixed level of prestretch (λp = 1.3), varying number of active microfilaments
(n = 50, 100, 150, 200, 250): (V) Voigt; (M) Maxwell; (SLK) Standard Linear Kelvin; (SLK_1)
generalized Standard Linear Kelvin with spring-pot in position 1, (SLK_2) 2 and (SLK_3) 3, with
α = 0.5.
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