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Complement C1 is the defining component of the classical pathway. Within the 
C1qC1r2C1s2 complex, C1q functions as a molecular scaffold for C1r2C1s2 and C1q 
binding to its ligands activates these two serine proteases. The classic C1q ligands are 
antigen-bound antibodies and activated C1s cleaves C4 and C2 to initiate the comple-
ment cascade. Recent studies suggest broad C1 functions beyond the complement 
system. C1q binds to the Frizzled receptors to activate C1s, which cleaves lipoprotein 
receptor-related protein 6 to trigger aging-associated Wnt receptor signaling. C1q binds 
to apoptotic cells and the activated C1 proteases cleave nuclear antigens. C1s also 
cleaves MHC class I molecule and potentially numerous other proteins. The diversity of 
C1q ligands and C1 protease substrates renders C1 complex versatile and modular so 
that it can adapt to multiple molecular and cellular processes besides the complement 
system.
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iNTRODUCTiON

In invertebrates, complement takes primitive forms represented only by a few ancestral proteins  
and lacks the specificity and sophisticated regulatory mechanisms of the modern vertebrate comple-
ment system (1–4). In mammals and other higher vertebrates, the complement system is a complex 
protein network consisting of nearly 30 plasma proteins. Depending on the target ligands, the 
complement system can be activated via the classical, alternative, or lectin pathway (5, 6). In the 
case of microbial pathogens, each complement pathway is triggered through a specific mechanism 
of ligand recognition, and collectively, the three pathways empower this humoral system to defend 
against a broad range of microorganisms. Like the blood coagulation system, the complement 
system is orchestrated around serine proteases, which are sequentially activated and then cleave 
specific downstream complement proteins so as to amplify a cascade of reactions (2, 7, 8). These 
reactions generate proteolytic or lytic complexes, opsonins, and peptide anaphylatoxins leading to 
lysis, inflammation, and clearance of opsonized microorganisms (Figure 1) (5, 6). The complement 
serine proteases exhibit conserved active sites (2). However, these proteases are highly specific for 
substrate within the complement network, and this appears vital for the directional amplification of 
each pathway.

Abbreviations: IGFBP5, insulin-like growth factor-binding protein 5; MBL, mannose-binding lectin; MASP, MBL-associated 
serine protease; SLE, systemic lupus erythematosus; LRP6, low-density lipoprotein receptor-related protein 6; CRP, C-reactive 
protein; DC, dendritic cell; NPM1, nucleophosmin-1; CTRP, C1q/TNF-related protein.
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FigURe 1 | The complement protein and protease network. The complement system operates via three target recognition pathways: the classical, alternative, 
and lectin pathways. All pathways recognize microorganisms and apoptotic cells and the recognition subcomponents are in green. Upon its triggering via any of the 
three pathways, the complement acts through three effector reactions: the C8-C9 lytic or membrane attack complex, the soluble C3a and C5a anaphylatoxins (blue 
color), and surface-bound C3b, C4b, and further proteolytic fragment opsonins (orange color with green asterisk). All three pathways converge at the C3 component 
and complement reactions are essentially amplified through cascades of serine proteases (red color). MBL, mannose-binding lectin; MASPs, MBL-associated serine 
proteases; fB, factor B; fD, factor D; fI, factor I; fH, factor H. Homozygous deficiency of C1q, C1r/C1s, or C4 is causally associated with systemic lupus 
erythematosus (SLE) pathogenesis. Genetic C2 deficiency also increases risk for SLE and some other autoimmune diseases.
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The complement system is commonly intended for host defense 
against microbial infections. Recent data suggest that various non-
microbial exogenous and endogenous structures, such as apop-
totic cells, may also trigger the complement pathways (Figure 1) 
(9–15). The effects of complement activation may also be delivered 
through a segment of the system rather than in its entirety. For 
example, the C1s protease apparently cleaves non-complement 
proteins including MHC class I molecule, insulin-like growth 
factor binding protein 5 (IGFBP5), Wnt receptor, and nuclear 
autoantigens (16–21). This suggests that, besides its well-defined 
roles in host defense, the C1 complex functions broadly, e.g., in 
tissue homeostasis and immune tolerance. In fact, invertebrates 
also utilize their limited repertoire of complement components to 
clear damaged cells as well as invading microorganisms (22, 23).

THe CLASSiCAL PATHwAY iS A  
MODeRN PATHwAY

During evolution from invertebrates leading up to higher verte-
brates, animals experienced major genomic expansion through 
gene duplication and recombination, with higher vertebrates 

acquiring increased complexity in genomic composition, body 
plans, and physiological processes (24). The expansion of the 
complement system in higher vertebrates includes at least two 
aspects: the generation of paralogous complement elements and 
the formation of a new classical pathway. In invertebrates, ancestral 
complement elements were only found that were equivalent to the 
alternative and lectin pathways, including ancestral C3, factor B,  
mannose-binding lectin (MBL), ficolins, and MBL-associated 
serine proteases (MASPs) (3, 22). The modern C1 complex, 
i.e., the C1qC1r2C1s2 pentamer that defines the recognition 
component of the classical pathway, only appeared from jawed 
vertebrates when adaptive immunity also emerged.

Complement gene duplication and recombination are evident 
in higher vertebrates, e.g., factor B/C2, C3/C4/C5, and C6/C7/
C8/C9 (3). Evidence that the C1r and C1s genes are relatively 
modern duplications is also suggested by their close genomic 
proximity and structural similarity (8, 25). This is even more 
striking with the three C1q subunit genes, i.e., C1qA, C1qB, 
and C1qC, which are clustered within a 30-kb genomic region 
separated by short intergenic sequences (26, 27) (Figure 2). The 
closest C1q-related protein in invertebrates is encoded by a single 
gene and the C1q-like protein recognizes carbohydrates rather 
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FigURe 2 | Schematic illustration of the cellular origin of C1q, its assembly, and three distinct modular functions of C1 complex. C1q is an abundant 
plasma protein. It can be produced broadly in tissues by macrophages and DCs, which also produce C1r/C1s. C1q is formed from three similar but distinct 
subunits, i.e., A, B, and C, and the order of assembly is illustrated. Inter-subunit disulfide bonds (purple bars) and the collagen-like helices defines the sorting of the 
three subunits within the C1q polypeptide. In the serum, C1q is associated with the serine protease proenzyme tetramer C1r2C1s2 to form the C1 complex. In this 
complex, C1q binds to diverse targets that activate the serine proteases and the proteases trigger effector reactions by cleaving specific substrate. Three 
physiological contexts are highlighted in which the C1 complex is known to play a role. When C1q binds to antibodies on microbial pathogens, the activated C1s 
cleaves complement C4 and C2 to initiate the proteolytic cascade. When C1q binds to Frizzled, activated C1s cleaves lipoprotein receptor-related protein 6 to 
cause canonical Wnt signaling and accelerated aging. When C1q binds to apoptotic cells, the activated C1s cleaves apoptotic cellular antigens to reduce 
autoimmunogenicity. The red arrows indicate C1s cleavage of the specific substrate.
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than immunoglobulins (4). The emergence of the C1 complex 
or the classical pathway in higher vertebrates, which coincided 
with the appearance of the adaptive immune system, makes it a  
“modern” arm of the complement system that responds to anti-
bodies and other self, non-self, and altered self targets.

C1q DeFiCieNCY iS A STRONg CAUSe 
OF SYSTeMiC LUPUS eRYTHeMATOSUS 
(SLe) PATHOgeNeSiS

Genetic deficiency has been identified for many complement 
proteins and, in most cases, this increases susceptibility to 

infections (28, 29). Deficiency in some complement proteins is 
also associated with other pathological conditions and particu-
larly strong associations were found between deficiencies in the 
early components of the complement classical pathway and the 
autoimmune disease SLE (29–34). The association is especially 
strong with homozygous C1 and C4 deficiencies. Functionally, 
C1q binding to ligands causes C1r and then C1s activation and 
the activated C1s cleaves C4 and then C2 to initiate the further 
downstream complement cascade (5, 6). C2 deficiency is more 
prevalent than C1 and C4 deficiencies, but it has substantially 
less effect and is also associated with other autoimmune diseases  
(31, 32). However, C1q, C1r/C1s, and C4 deficiencies cause 
predominantly SLE-like conditions.
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FigURe 3 | Schematic illustration of C1q gene organization, gene transcription, and multimeric C1q assembly. (A) The three human C1q genes span 
approximately 25 kb on human chromosome 1. The intergenic regions are 4.0 and 5.1 kb, respectively, which are not distinguishable in size from regular introns in 
the C1q genes. Each of the three C1q genes contains three exons and the transcribed peptides form disulfide-linked A-B hererodimers and C-C homodimers. Each 
C chain in the homodimer forms a collagen triple-helix with an A-B heterodimer, and hence, two triple-helices linked by the disulfide bond in the C-C dimer. Three 
such ABC-CBA twin helices associate non-covalently over the N-terminal ends to form the 18-polypeptide C1q molecule. The gC1q domains are often the 
ligand-binding sites for C1q and the collagen triple-helices associate with the C1r2C1s2 serine protease tetramer. (B) Conservation of the C1q gene organization in 
eight different animal species. The three C1q genes in chimpanzee occupied the largest genomic space which is approx. 27 kb. In chickens, the three C1q genes 
occupied merely 7.7 kb with intergenic sequences of 0.7 and 1.3 kb, respectively.
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In C1 and C4 deficiencies, the disease manifestations also 
deviate from that found in the larger SLE patient population. 
Typically, this specific group of SLE patients exhibit early disease 
onset and equal disease risks from both genders (30, 31, 35). 
SLE is otherwise a chronic disease that affects predominantly 
females at childbearing ages (36). How deficiency in each of 
these intimately related complement proteins, which define the 
classical pathway (Figure 1), causes SLE remains incompletely 
understood.

SYSTeMiC LUPUS eRYTHeMATOSUS

Clinical documentation of SLE disease has existed for more than 
a century. In 1948, Hargraves pioneered the mechanistic investi-
gation of this disease by reporting the L.E. cell phenomenon, i.e., 
SLE patient serum caused polymorphnuclear leukocytes to bind 
or clump around autologous amorphous nuclear materials (37). 
The serum activity was later attributed to the γ-globulin fraction 
of the patient serum, presently known as autoantibodies reactive 
with chromatin or DNA (38–40). A pathogenic role for these 
autoantibodies became apparent when Tan et  al. reported the 
asymptomatic appearance of anti-DNA autoantibodies, which 
disappeared during the ensuing disease flare when serum DNA 
antigen surged to complex with these autoantibodies (41). These 
autoantibodies are hallmarks in SLE pathogenesis and deposit in 
tissues leading to inflammatory tissue injury (42–44).

For a large majority of SLE patients, there is no definitive 
genetic explanation for the disease despite more than 50 SLE risk 
genes that have been identified (45). Most of these susceptibility 
genes are not specific for SLE and individually each risk gene has 
low-to-moderate effect on the disease (32). Known exceptions 

are genetic deficiencies of the intracellular exonuclease Trex1, 
and complement C1 and C4 (30–32). How deficiency in each of 
these complement proteins overrides the complex mechanisms 
governing host immunity and tolerance to cause this complex 
autoimmune disease is not fully understood. As anti-nuclear 
autoantibodies are pathogenic in SLE, understanding how these 
deficiencies cause anti-nuclear autoimmunity can provide greater 
insights into the underlying pathogenic mechanisms.

PLASMA C1q ACCUMULATiON iS 
ASSOCiATeD wiTH ACCeLeRATeD 
AgiNg

While C1q deficiency causes autoimmunity, its elevated plasma 
levels signify accelerated aging. Aging is marked by a decline in 
tissue regeneration and repair, and in the number and dynamics 
of tissue stem or progenitor cells (46). At the molecular level, one 
observation is that progenitor cells exhibit elevated Wnt signaling 
in the aging tissue environment (47, 48). In aged mice, muscle 
stem cells exhibit increased tendency to fibroblastic differentia-
tion (48). This was found to be conferred by a serum factor(s) in 
aged mice binding to the Frizzled family of cell surface receptors 
and causing Wnt receptor signaling (48). This Frizzled-binding 
protein was identified as C1q (48). Its serum level increased 
threefold (from 90 to 280  µg/ml) in old mice (20  months) as 
compared with young mice (2 months) (19).

Mechanistically, C1q binding to the Frizzled receptors causes 
C1s activation and activated C1s cleaves the Wnt receptor pro-
tein low-density lipoprotein receptor-related protein 6 (LRP6) 
to trigger canonical Wnt receptor signaling (19) (Figure  3). 
The involvement of C4 and further downstream complement  
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components are not defined. Nonetheless, this emphasizes the 
rather less-studied aspect of C1-mediated cleavage of proteins 
outside the complement network. C1s similarly cleaves MHC 
class I molecule, although the C1q ligands are not defined in this 
context (16, 17). It appears that activation of the complement 
classical pathway, which involves C1s cleavage of C4 and C2, is 
merely one of a number of effector mechanisms downstream of 
the C1 complex (Figure 3).

Besides a distinct decline in tissue regeneration and repair, 
aging is also characterized by systemic elevation of the inflam-
matory status (49, 50). In the elderly population, plasma pro-
inflammatory cytokines, IL-6 and TNF-α, and the acute phase 
C-reactive protein (CRP) are chronically elevated. When young 
(<40 years) and aged (60–81 years) populations were compared 
in a series of age-related parameters, including muscle mass, 
plasma C1q, as well as plasma IL-6, TNF-α, and CRP, the young 
population had clearly lower plasma C1q (80.5 µg/ml) than the 
aged population (161 µg/ml) (51). Interestingly, after 12 weeks 
of supervised resistance training intervention, plasma C1q in 
the elderly group decreased substantially (89.3  µg/ml) with 
muscle mass being significantly increased, revealing an inverse 
correlation between plasma C1q level and muscle mass (51). 
The cause for plasma C1q accumulation in the elderly group 
and its reduction after training is unclear in this study and a 
causal relationship between plasma C1q and muscle mass was 
also not established (51). The overall conclusion was, however, 
in line with C1q contribution to accelerated aging as reported 
in mice (19).

MeCHANiSM OF C1 FUNCTiONAL 
DiveRSiTY

The mechanisms for C1 complex function in the context of  
com plement activation and Wnt receptor signaling have been 
clearly documented. However, mechanistic understanding of  
its involvement in SLE pathogenesis remains fragmentary 
(Figure 3). Genetic deficiencies in complement proteins generally  
increase susceptibility to infections but mostly lack the type of 
strong association with SLE pathogenesis that is observed with 
deficiencies of C1 and its immediate substrate C4 (28). This raises 
the possibility that SLE pathogenesis may be related to a modular 
C1 activity. Depending on what C1q recognizes, C1 may have 
effects through the C1r/C1s proteases on various molecular/
cellular processes besides the complement system. C1 activation 
of Wnt receptor signaling is a good example of such a modular 
activity (19). The degradation of apoptotic cell debris is appar-
ently another process involving a modular C1 complex function 
(Figure 3) (9).

Since the discovery of C1q binding to apoptotic cells (9), a 
significant body of work has been published revolving mostly 
around C1q opsonization of apoptotic cells and its regulation 
of immune tolerance. First, C1q binding to apoptotic cells 
opsonizes the cell debris for effective phagocytosis (10). Second, 
C1q binding contributes to the immunosuppressive nature of 
apoptotic cells (52, 53). Third, C1q modulates dendritic cell (DC) 
development to induce more prominent tolerogenic features in 

these antigen-presenting cells (54, 55). Last, C1q inhibits IFN-α 
production by DCs induced by SLE autoantibodies in the form 
of immune complexes (56–58). IFN-α is a SLE-pathogenic 
cytokine, which causes autoimmunity in patients following its 
therapeutic administration (59, 60). IFN-α is elevated in those 
SLE patients who register a chronically elevated signature of 
IFNα-stimulated gene transcription (61–63). Inhibition of IFN-α 
induction by C1q potentially contributes to protection against 
SLE pathogenesis.

Studies that evaluate the role of C1 proteases in these pro-
cesses are lacking. In fact, how C1r/C1s deficiency also causes 
SLE has not been investigated. There are two hypotheses that are 
relevant to explaining how C1 and C4 deficiencies may cause 
autoimmunity (64, 65). A clearance hypothesis emphasizes on 
the induction of autoantibodies and autoimmunity by apoptotic 
cellular debris, which may accumulate due to impaired clearance 
or excessive cell death (64). A tolerance hypothesis emphasizes 
on the contribution of complement to promoting self-antigen 
delivery to primary lymphoid organs for an effective negative 
selection (65). Considering that C1s cleaves intracellular antigens, 
it can be highly significant that the C1 complex both opsonizes 
apoptotic cells through C1q for effective clearance and degrades 
apoptotic cellular antigens through C1 proteases. Without rely-
ing on the rest of the complement system, both processes can 
reduce the autoantigenicity of apoptotic cell debris.

C1q was initially found to bind to apoptotic blebs, but the 
spectrum of C1q ligands in apoptotic cells and their contribu-
tions to C1q recognition need further delineation (9, 66). C1q 
appears to bind multiple regions of apoptotic cells (20). In early 
apoptotic cells, C1q binds to peripheral structures; however, in 
late apoptotic cells, it binds predominantly to the core nuclear 
bodies, i.e., the nucleoli (20). With purified nucleoli, C1q not only 
binds to these nuclear bodies but also causes C1s activation and 
cleavage of nucleolar proteins, e.g., nucleophosmin-1 (NPM1) 
and nucleolin (20). Nucleoli are highly immunogenic and contain 
many autoantigens (67).

This reminds an important aspect in cell apoptosis, i.e., the 
intrinsic proteolytic/enzymatic dismantling of intracellular 
structures (68). During cell apoptosis, autoantigens are cleaved 
and partially inactivated by endogenous proteases (69). It is pos-
sible that during late stage apoptosis, exogenous proteases and 
other enzymes also contribute to the antigen dismantling process. 
C1q recognizes multiple intracellular regions during apoptosis, 
including the highly immunogenic nucleoli (20). In cooperation 
with endogenous proteases, C1 could contribute significantly to 
the effective protease trimming of dead cells required to prevent 
their immunogenicity (Figure 4) (70).

C1r AND C1s SUBSTRATeOMe

In the complement network, proteases are highly specific and 
this is essential to the directional propagation of the comple-
ment activation (5, 6). Outside the complement network, what 
other proteins may be cleaved by these proteases are rarely 
studied. With regard to C1s, it has been known for some time 
that it cleaves cell surface MHC class I and the secreted IGFBP5 
(16–18). More recent addition to the list of non-complement 
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FigURe 4 | Schematic proposal how C1 deficiency may cause systemic lupus erythematosus pathogenesis. In live cells, the nucleus and other 
intracellular structures are compartmentalized and excluded from complement recognition. When cells undergo apoptosis, the nucleus and other cellular structures 
disintegrate and, in late apoptotic cells, these fragments are recognized by C1q, which opsonize apoptotic cells for phagocytosis. This can also cause C1r/C1s 
activation and the activated C1s could cleave its classic substrate C4 and C2 and produce complement opsonins for phagocytosis. C1s may also cleave numerous 
exposed nuclear and other cellular proteins that are otherwise autoimmunogenic (autoantigens) and cause B cell production of autoantibodies. C1s may also cleave 
cellular proteins that are otherwise pro-inflammatory danger-associated molecular patterns (DAMPs) and activate DCs to cause B cell production of pathogenic IgG 
autoantibodies. C1s may not inactivate all autoantigens but effective inactivation of DAMPs can abrogate class switch of autoantibodies from IgM to pathogenic IgG.
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C1s substrates includes LRP6, NPM1, and nucleolin (19, 20). In 
fact, the substrates of C1s can potentially be numerous based on 
bioinformatics predictions. Using a library of phage-displayed 
peptides that were designed based on the classic C1s cleavage sites 
on C4 and C2, Kerr et al. identified a list of C1s-cleavable peptide 
variants (21). Based on the conserved peptide framework, a 
formula was constructed that predicted numerous intracellular 
proteins as potential C1s substrate (21). NPM1 and nucleolin, 
which were found to be cleaved by C1 proteases, indeed contained 
multiple predicted C1s cleavage sites (20). The conjunction of a 
broad C1s substrateome with a diversity of C1q ligands makes 
the C1 complex a potentially multifaceted module that can 
function in a range of biological processes. C1s cleavage of intra-
cellular proteins may be irrelevant to live cells, but this capacity 
could be important in the context of dead cell debris, reducing 
autoimmunogenicity by the inactivation of autoantigens and  

the destruction of danger-associated molecular patterns (DAMPs) 
(Figure 4). A recent example of this C1 protease function is the 
demonstrated C1s cleavage and inactivation of HMGB1, which is 
otherwise a nuclear DAMP (71).

C1q

The functional versatility of C1q draws support from the modu-
larity of its structures. C1q is a large, symmetrical, and delicate 
posttranslational assembly resulting from complex evolutionary 
innovations. At one stage, the complement system was defined 
by merely four identifiable components, C1–C4. In 1963, C1 
was first separated into three distinct subcomponents, C1q and 
the two proteases C1r and C1s (72, 73). For C1q, biochemical 
analysis revealed three types of subunit polypeptides each con-
taining a collagenous (Gly-Xaa-Yaa)n repeating sequence over 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Lu and Kishore A Modular Complement C1 Complex

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 592

the N-terminal half (74, 75). Similar collagen-like domains were 
later found in the N-terminal halves of collectins, ficolins, and 
some C1q/TNF-related proteins (CTRPs) such as adiponectin 
and saccular collagen (76–79). The collagenous regions of all 
these proteins form triple-helices and the C-terminal halves form 
globular (gC1q) domains that are clustered in three. The triple 
helices further conjoin at the extreme N-terminal regions to align 
3–6 triple-helices in one final assembly (76, 77). In the overall 
“bundle of tulips” C1q assembly, the gC1q domains are periph-
erally extended as multivalent binding sites (74, 75). The six 
triple-helices in C1q form a scaffold for the tetrameric C1r2C1s2 
protease complex (80). Binding of C1q to various ligands via the 
gC1q domain activates the C1r/C1s proteases and C1s triggers 
effector reactions through cleavage of specific substrate, which, 
in the complement classical pathway, are C4 and C2.

THe STRUCTURe OF C1q AFFORDS  
A DeLiCATe SCAFFOLD AND  
LigAND-BiNDiNg DiveRSiTY

C1q is distinct from collectins, ficolins, and CTRPs in that it is 
assembled from more than one type of subunit polypeptide. The 
other proteins are considered largely homopolymers (76, 77). 
C1q is an 18-polypeptide macromolecule assembled equally 
from three similar but distinct subunit peptides, 6 × A, 6 × B, 
and 6 × C chains (74) (Figure 2). The C1q assembly is partially 
stabilized by disulfide bonds and, under denaturing conditions, 
the molecule crumbles into two basic structural identities, an 
A-B heterodimer and a C-C homodimer that are linked through 
N-terminal disulfide bonds (Figure 2). One C-C and two A-B 
dimers form two triple helices over the collagen-like regions 
(ABC-CBA) and C1q is assembled non-covalently from three 
such ABC-CBA structures (Figure  2). Therefore, despite the 
presence of three C1q genes, only one type of C1q is assembled. 
The collectins, ficolins, and CTRPs are, however, products of 
single genes (76, 77).

What prevented the formation of three different homopoly-
meric C1q molecules is not understood. The combination of 
divergent subunits, i.e., A, B, and C, and their extensive polym-
erization in C1q offers, besides a scaffold to embrace the C1r2 
C1s2 tetramer, diversity and multiplicity of binding sites for a 
broad ligand repertoire. The heterotrimeric congregation of 
the three globular head modules (ghA, ghB, and ghC) yielding 
gC1q domain at the C-termini is independent of the N-terminal 
triple-helix (81). The three different globular head modules in 
the cluster exhibit differential binding preferences toward known 
C1q ligands (82, 83).

THe BROAD TiSSUe ORigiNS OF C1q 
AND iTS ULTiMATe PLASMA DeSTiNY

A dominant source for plasma complement proteins, including 
C1r and C1s, are hepatocytes in the liver, but C1q is one exception 
for its extrahepatic origins (84). C1q was initially found produced 
by macrophages (85). It was later found to be produced by tissue 
and cultured DCs as well (86, 87). Studies on C1q gene promoters 

revealed active cis-acting elements for transcription factors PU.1 
and IRF8 (26). PU.1 and IRF8, especially PU.1, is a key tran-
scription factor that defines the macrophage and DC lineage of 
hematopoietic development (88). Tenner and colleagues recently 
clarified that, in the brain, C1q is also produced by local tissue 
macrophages, the microglia (89). Therefore, C1q could have 
evolved first as an effector molecule in macrophages or ancestral 
phagocytes and its association with the C1r/C1s proteases in 
the form of C1 complex represents a secondary evolutionary 
innovation.

Macrophages and DCs populate many tissues and are poorly 
represented in the blood circulation (90, 91). Monocytes are 
blood precursors of some tissue macrophages, but these cells 
only start to produce C1q upon differentiation into macrophages 
(92). How the broad and heterogeneous tissue origin of C1q 
and its steady plasma levels are regulated is not fully under-
stood. Tissue macrophages, which orchestrate inflammation 
and antigen presentation as well as scavenge tissue debris and 
microorganisms, are responsive to diverse stimuli (93, 94). The 
complement system is concentrated in the blood and is actively 
recruited to sites of tissue infections or injuries. The macrophage/
DC origin of C1q appears to ensure its steady state tissue distri-
bution. Macrophages also produce C1r/C1s proteases (84). DCs 
also broadly populate tissues, albeit at a lower density, and also 
produce C1q, C1r, and C1s (86, 87, 95). This mode of C1q and 
C1r/C1s production stresses an important C1q or C1 function in 
sterile tissue homeostasis and other molecular/cellular processes.

PLASTiCiTY iN C1q PRODUCTiON

Macrophages express a broad repertoire of scavenging and 
signaling receptors and exhibit a high degree of plasticity in dif-
ferentiation and activation. This is reflected in the heterogeneity 
of tissue macrophages in their morphology and effector molecule 
production (91). As previously summarized, C1q production 
by macrophages also vary in response to microbial structures, 
cytokines, hormones, and drugs (66, 96). Overall, microbial 
structures tend to inhibit C1q production and corticosteroid 
hormones tend to enhance it (66). With respect to cytokines, 
IFN-α appears to inhibit C1q production (87), whereas IFN-γ 
increases C1q production by DCs/macrophages (26, 97). Local 
and temporal tissue fluctuation in C1q production may not 
prominently alter plasma C1q levels, but it can impact on local 
tissue homeostasis, immunity, and tolerance. This can also be of 
great importance in the microenvironment of tumor, where C1q 
seems to have a tumor-promoting function (98).

DOeS C1r/C1s CLeAve OTHeR  
C1q-TARgeTeD PROTeiNS?

Besides IgG and IgM, many other protein ligands have been iden-
tified for C1q (66, 99). These C1q ligands, including soluble, cell 
surface, normal extracellular matrix, and pathogenic amyloid 
proteins, often activate C1r/C1s and the complement classical 
pathway. It has, however, not been addressed whether the acti-
vated C1r/C1s proteases also cleave these C1q ligands or proteins 
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near these ligands as they cleave LRP6, IGFBP5, MHC I, NPM1, 
and nucleolin (16–20). In some pathophysiological contexts, C1q 
functions were interpreted without specific consideration to its 
ligands. In the postnatal central nervous system, C1q is localized 
to synapses and contributes to synapse elimination resembling 
the disposal of dead cells, which is important for the maturation 
of neuronal connectivity and functions (100, 101). How C1q 
causes the selective dismantling of synapses is unclear, but it is 
tempting to suggest C1q binding to selective neuronal contexts 
and possible involvement of C1r/C1s-mediated molecular cleav-
age or cell signaling as observed with the Wnt receptor (19). 
In excess, the same C1q-mediated synapse elimination could 
accelerate neurodegeneration related to aging and neuropathol-
ogy (102, 103).

The scrapie pathogen, prion protein, is another C1q ligand 
(104, 105). C1q deficiency reduces scrapie pathogenesis (106, 107).  
To what extent the complement classical pathway may be involved 
in prion-mediated pathology is incompletely defined, but C4 is 
apparently activated on prion proteins and C3 depletion also 
reduced scrapie pathogenesis (104, 107). As C1q, C3, and C4 are 
all potent opsonins, a prevalent explanation is their involvement 
in prion transmission from the gut to the central nervous tissues. 
The role of activated C1r/C1s proteases in scrapie pathogenesis 
has not been considered.

C1q is also produced in the placenta (108, 109). At this 
feto–maternal interface, it was shown to mediate trophoblast 
invasion of the maternal decidua (108). Mechanistically, C1q was 
found to interact with decidual stroma, to activate trophoblast 
signaling, and to mediate trophoblast adhesion and migration 
(108). Whether C1r/C1s might play a role in this context is again 
unclear.

CONCLUDiNg ReMARKS

The complement system is an intimate proteolytic cascade 
responding to diverse triggering factors. In infections or injuries, 
the full impact of its activation is realized by three closely related 
effector reactions: inflammation, opsonization, and lysis (5, 6).  
The C3a and C5a anaphylatoxins recruit and activate phagocytes 

and other inflammatory leukocytes at sites of tissue infections 
or injuries. The membrane attack complexes cause cellular 
lysis. The C4b, C3b, and the further proteolytic fragments 
opsonize complement-reacted targets for effective phagocytic 
clearance (Figure  1). However, this article highlights that C1 
complex may function as a module, independent of the rest of 
the complement network, to participate in other molecular/
cellular processes.

Serine proteases are core components of the complement 
infrastructure and their sequential activation is at the heart of the 
formation of hierarchical proteolytic or lytic protein complexes. 
In the context of the complement network, these are highly 
specific proteases, e.g., C1r only cleaves C1s and C1s only cleaves 
C4, C2, and C1 inhibitor. The finding that the C1 proteases also 
cleave a growing list of non-complement proteins, including 
LRP6, MHC I, IGFBP5, NPM1, and nucleolin, supports a mul-
tifaceted, modular function for C1 complex. In this functional 
C1 module, C1q recognizes targets in various molecular/cellular 
processes and the C1r/C1s proteases bring about the effects by 
cleaving substrate in these molecular/cellular processes. Modular 
functions may also be found in other complement proteases such 
as factor B and MASPs.
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