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Abstract 

Chromosomal rearrangements in humans are largely related to pathological conditions, and phenotypic 

effects are also linked to alterations in the expression profile following nuclear relocation of genes 

between functionally different compartments, generally occupying the periphery or the inner part of the 

cell nuclei. On the other hand, during evolution chromosomal rearrangements may occur apparently 

without damaging phenotypic effects, and are visible in currently phylogenetically-related species. To 

increase our insight into chromosomal reorganisation in the cell nucleus, we analysed eighteen 

chromosomal regions endowed with different genomic properties in cell lines derived from eight 

primate species covering the entire evolutionary tree. We show that homologous loci, in spite of their 

evolutionary relocation along the chromosomes, generally remain localised to the same functional 

compartment of the cell nuclei. We conclude that evolutionarily succesfull chromosomal 

rearrangements are those that leave the nuclear position of the regions involved unchanged. On the 

contrary, in pathological situations, the effect typically observed is on gene structure alteration or gene 

nuclear reposition. Moreover, our data indicate that new centromere formation could potentially occur 

everywhere in the chromosomes, but only those emerging in very GC-poor/gene-poor regions, generally 

located in the nuclear periphery, have a high probability of being retained through evolution. This 

suggests that, in the cell nucleus of related species, evolutionary chromosomal reshufflings or new 

centromere formation does not alter the functionality of the regions involved or the interactions between 

different loci, thus preserving the expression pattern of orthologous genes. 
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Introduction 

The karyotypes of the extant primate species are the result of a series of chromosomal rearrangements 

that have occurred during evolution. The current hypotheses regarding the ancestral primate karyotype 

and the identification of evolutionary chromosomal rearrangements, which have led to the karyotypes of 

the current species, derive from a large number of studies beginning with the analysis of chromosomal 

banding (see Seuánez 1979 for a review). These were followed by more detailed studies using molecular 

cytogenetic techniques, such as fluorescence in situ hybridisation (FISH) with cross-species 

chromosome painting (Muller et al. 1999) and with bacterial artificial chromosomes (BACs) containing 

human or other primate DNA sequences (Stanyon et al. 2008; Eder et al. 2003; Tsend-Ayush et al. 

2004; Muller et al. 2004). This highlighted the presence of evolutionary chromosomal rearrangements, 

such as inversions, translocations, fissions/fusions, leading to a repositioning of genes along the 

chromosomes, and permitting the formation of new syntenic groups. 

A number of studies with interphase FISH have shown that chromosome territories are organised in the 

nucleus on the basis of gene density and GC level (Croft et al. 1999). More precisely, they present a 

zigzag organisation to position the gene-richest and the gene-poorest regions (corresponding to the GC-

richest and the GC-poorest isochores, respectively) in the more internal and peripheral part of the 

nucleus, respectively (Saccone et al. 2002; Gilbert et al. 2004; Zink 2006; Hepperger et al. 2007; 

Federico et al. 2008). This also allows for specific compositional properties of the different functional 

classes of genes (information storage and processing, cellular processes and signalling, and metabolism) 

observed as a footprint in all mammalian genomes (Bernà et al. 2012). Indeed, it is generally assumed 

that this particular chromatin organisation corresponds to different transcriptional properties, with the 

transcriptionally active genes located in the inner part of the nucleus (Croft et al. 1999; Kupper et al. 

2007; Bickmore and van Steensel 2013; Cremer et al. 2015). Similarly, some subnuclear compartments 

are generally associated with gene repression, such as the heterochromatic regions located at the nuclear 

periphery, or around the nucleoli (Sadoni et al. 1999; Foster and Bridger 2005; Finlan et al. 2008). 

Chromosomal rearrangements could determine an alteration in the chromatin organisation in the cell 

nuclei, possibly affecting proper gene functioning. Indeed, gene expression may be influenced by the 

position of loci and chromosome bands in the interphase nucleus, as a result of a change in the 

chromatin architecture (Bridger et al. 2000; Bickmore and van Steensel 2013; Cremer et al. 2015). Gene 

repositioning in the cell nuclei appears to be correlated, on the one hand to a normal reorganisation of 

chromatin during cell differentiation (Volpi et al. 2000; Kosak et al. 2002; Szczerbal et al. 2009; Leotta 

et al. 2014), and on the other hand to the ectopic expression of genes favouring the onset of genetic 

diseases, as described in patients with childhood leukaemia carrying a translocation between human 

chromosomes 7 and 12 (Ballabio et al. 2009; Tosi et al. 2015). 

In addition to FISH, recently developed molecular procedures such as variations of the chromosome 

conformation capture method: 3C (chromosome conformation capture), 4C (chromosome conformation 
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capture-on-chip), 5C (chromosome conformation capture carbon copy), and Hi-C (high-throughput 

chromosome conformation capture), have also been used to look at long-range chromatin interaction 

and three dimensional organisation of the genome (Dekker et al. 2002; Simonis et al. 2006; Dostie et al. 

2006; Lieberman-Aiden et al. 2009), providing higher-resolution than FISH (Rao et al. 2014). The Hi-C 

method demonstrated the presence in the nucleus of two genomic compartments, called A and B 

(Lieberman-Aiden et al., 2009), organised into Topologically Associated Domains (TADs) of various 

sizes, located more internally and more peripherally, respectively, in the nucleus (Wang et al. 2016). 

These highlight the correspondence with the GC-richest and GC-poorest chromosomal band DNA, 

respectively (Saccone et al. 2002; Jabbari and Bernardi 2017; Stevens et al. 2017). Thus, a high degree 

of convergence in the organisation of chromosomal DNA in the interphase nucleus, using different 

methodologies (Hi-C or 3C/4C/5C on the one hand, and interphase FISH on the other), was obtained. 

The two methods, endowed different levels of resolution and different obtainable data-sets, should be 

considered complementary. Indeed, some results on chromatin topography obtained with 5C or FISH 

are not compatible, possibly due to the fact that products captured by 3C are not always closely 

positioned (Williamson et al. 2014; Fraser et al. 2015). 

Currently, 3C-derived technologies were not again applied in non-human primate species, and data on 

the chromatin organisation in cell nuclei of these species were largely obtained using FISH with a 

variety of probes on 3D-preserved nuclei. Studies on species belonging to Anthropoidea showed that the 

radial nuclear location (RNL) of the chromosomes homologous to Hsa (Homo sapiens) 18 and Hsa19 is 

largely conserved in the species considered (Tanabe et al. 2002). Moreover, a large degree of RNL 

conservation has been shown for the chromosomes homologous to Hsa6, Hsa12 and Hsa17 in two New 

World monkey species, other than H. sapiens (Mora et al. 2006). Furthermore, investigations analysing 

entire chromosomes, as well as smaller regions, highlighted a conserved radial organisation of 

chromosomes in the nuclei of primate lymphoblastoid cell lines. This was in agreement with the GC-

level/gene density, despite the presence of a variety of evolutionary chromosomal rearrangements, 

which reshuffled the homologous chromosomes (Neusser et al. 2007). Similar work performed with a 

set of 60 clones containing very-early and very-late replicating DNA, in cells of human and non-human 

primate species, demonstrated that gene density and GC-level, but not replication timing, are the key 

players influencing radial nuclear positioning of a locus (Grasser et al. 2008). 

During karyotype reshuffling along different primate lineages, a central role has been represented by 

centromere repositioning where centromere inactivation and concomitant formation of new centromeres 

in different sites occurs (Montefalcone et al. 1999; Amor and Choo 2002; Ventura et al. 2004; and 2007; 

Marshall et al. 2008; Purgato et al. 2015; Tolomeo et al. 2017). One well-documented example is 

represented by the evolution of the X chromosome in lemurs. Although the synteny along this 

chromosome is normally very conserved, its structure was found to be different in two lemur species 
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due to new centromere formation in different bands along the chromosome (Ventura et al. 2001). 

Similar observations have been made in other chromosomes (Stanyon et al. 2008). 

In the present study, we extend previous investigations on the interphase chromosomal organisation in 

primate cell nuclei by means of FISH with BAC probes containing human DNA sequences. We 

analysed the nuclear location of eighteen loci in eight primate species covering the entire evolutionary 

tree, namely three Hominoidea species, Homo sapiens, Gorilla gorilla, and Pan troglodytes, two 

Cercopithecoidea, Macaca mulatta and Cercopithecus aethiops, two Platyrrhini, Callicebus moloch and 

Callithrix jacchus, and one Prosimii, Lemur catta. The eighteen chromosomal loci belong to five human 

chromosomes (Hsa2, Hsa3, Hsa6, Hsa7, Hsa12) that correspond to homologous chromosomes, in other 

primate species, with and without repositioning along the chromosome, by evolutionary reshuffling, of 

the loci considered (depending on the species investigated). The main purpose of our work was to 

increase knowledge on the impact of chromosomal rearrangements (translocations, inversions, new 

centromere formations) on the 3D genome organisation, via the analysis of the spatial positioning of 

relevant genes and chromosomal bands occurring during karyotype evolution. Our data indicate that 

compositional properties and nuclear location of the chromosomal bands involved in the rearrangements 

play an important role in the resulting phenotype and in the consequent karyotype evolution. 
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Materials and methods 

Genomic features of the human chromosomal bands  

Information on the size, GC-level and replication timing of the human chromosomal bands investigated 

in this study were obtained from previous reports (Costantini et al. 2007, Woodfine et al. 2004). The 

relative gene content was accessed through the UCSC Human Genome Browser (HGB) Gateway 

(http://genome.ucsc.edu/).  

 

Preparation of chromosomes and nuclei 

Human (Hsa) metaphase chromosomes and nuclei were prepared from phytohaemagglutinin (PHA)-

stimulated peripheral blood lymphocytes of healthy donors. For the gorilla (Gorilla gorilla, Ggo), 

chimpanzee (Pan troglodytes, Ptr), macaque (Macaca mulatta, Mmu), and common marmoset 

(Callithrix jacchus, Cja) we used lymphoblastoid cell lines, and for red-bellied titi (Callicebus moloch, 

Cmo), blue monkey (Cercopithecus aethiops, Cae), and ring-tailed lemur (Lemur catta, Lca) we used 

fibroblastoid cell lines (all cell lines were kindly provided by Dr. M. Rocchi, University of Bari, Italy). 

Chromosomes and nuclei were prepared according to standard cytogenetic procedures described 

previously (Federico et al. 2008). In addition, freshly prepared 4% buffered paraformaldehyde was used 

to fix the cells and to allow better spatial preservation of the nuclei as described by others (Solovei et al. 

2002; Hepperger et al. 2007). 

 

DNA probes, in situ hybridisation, and detection 

Probes used for FISH were BAC clones containing human DNA fragments (Tab. 1). All probes were 

kindly provided by Dr. M. Rocchi, University of Bari, Italy. DNA probes were extracted using a 

commercial kit (Qiagen, Milan, Italy), and were biotin- or digoxigenin-labelled by nick translation 

(Roche, Mannheim, Germany). 

Hybridisation conditions for human chromosomes and nuclei were the same as previously described 

(Federico et al. 2008). In the case of heterologous FISH on primate chromosomes, with respect to the 

human, the differences concerned the amount of probe (50-250 ng), incubation time to hybridise, and 

post-hybridisation washings. Briefly, hybridisation was performed (after a 30 min preannealing step 

with an excess of unlabelled human Cot-1 DNA) at 37°C, in a moist chamber, for 16-36 hours. Post-

hybridisation washes were carried out (i) for homologous in situ hybridisations (human probes on 

human chromosomes and nuclei) at 60°C with 0.1xSSC (1xSSC is 0.15 M NaCl, 0.015 M sodium 

citrate), and (ii) for the heterologous hybridisations (human probes on non-human chromosomes and 

nuclei) at 37-45°C with 0.5xSSC. Hybridisation detection of biotin- and digoxigenin-labelled probes 

was performed using TexasRed-conjugated avidin and Fluorescein-conjugated antibody, respectively. 

Finally, chromosomes were stained with DAPI. Images were captured using epifluorescence 
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microscopy (Olympus AX70) and a Photometrics cooled CCD camera with MacProbe v4.2 software 

(Applied Imaging, Newcastle, U.K.). 

All human DNA probes were tested first on metaphase chromosomes of all the species investigated to 

verify (i) the location on the homologous chromosomal region in the other primates, as expected on the 

basis of published data concerning syntenic regions among chromosomes, and (ii) the absence of 

additional signals on other sites, essential for a reliable analysis in the interphase nuclei. 

 

Localisation of FISH signals in the cell nuclei, and statistical analysis 

The radial nuclear location (RNL) of the hybridised probes was obtained using 2-dimensional (2-D) 

analysis, as previously described (Federico et al. 2008). Briefly, a high number of hybridised nuclei was 

randomly captured using MacProbe v4.2 software, and hybridisation signals were then localised in each 

cell nucleus using a specific computer program (developed in our lab, and freely available upon 

request). Each hybridisation signal was located in the nucleus using a value corresponding to the ratio of 

the nuclear radius (0 and 1 indicate the centre and the peripheral rim of the nucleus, respectively). The 

median values +/- Confidence Interval (C.I.) of at least 300 hybridisation signals were then evaluated. 

Median values lower and higher than 0.65 indicate loci located more internally or peripherally, 

respectively, in the nuclei. The statistical analyses were carried out using Microsoft Excel and StatView 

software. 
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Results 

 

Radial nuclear location of BAC probes on human cell nuclei 

For FISH experiments, we selected eighteen loci, from euchromatic regions of the human chromosomes, 

endowed by different GC-levels, gene-densities, and replication timing. The genomic properties were 

evaluated in the 2 Mb DNA segment around each probe, and in the chromosomal band containing the 

probe (Tab. 1). The loci analysed span a wide range of GC-level values, and are located on 

compositionally different human chromosomal bands (Fig. 1). Eight loci are located in GC-poor bands 

(<38% GC), six in GC-rich bands (>45% GC), and the other four in compositionally intermediate 

bands. 

RNL was obtained by in situ hybridisation of the BAC probes on interphase cell nuclei, and by 

statistical evaluation of data from hundreds of hybridised nuclei. The obtained median values (Fig. 2) 

showed a range from 0.552 (corresponding to the very GC-rich probe RP11-213E22, located in the 

7q22.1 band) to 0.819 (corresponding to the very GC-poor probe RP11-886P7, located in the 2q22.1 

band). Results obtained with the four probes located in chromosome 7 largely corresponded to those 

previously described (Federico et al. 2008). Generally, BAC probes located in GC-poor or GC-rich 

bands are located more peripherally or more internally, respectively, in the cell nuclei. Comparisons 

among peripheral (RNL >0.65) and inner (RNL <0.65) loci were always highly statistically significant, 

except for the RNLs of RP11-102I23 and RP11-148K1 with respect to RP11-825M8, namely between 

loci very close to the 0.65 value. 

The RNLs were correlated to the GC-level, gene-density, and replication timing indicating, as expected, 

a high level of correlation (Fig. 3). More specifically, the highest correlation level between RNL and 

GC-level/gene-density/replication timing were obtained with the entire chromosomal band containing 

the probe (i.e., a chromosomal DNA segment around the probe characterised by a relatively 

homogeneous composition), regardless of the band’s size.  

 

Chromosomal and nuclear location of BAC probes on primates 

We evaluated the RNL, in non-human primate species, of the eighteen probes described above (see Tab. 

1). Some of these were located in a chromosomal region involved in evolutionary rearrangements. In 

some species, the heterologous hybridisation efficiency did not allow for the evaluation of the RNL. In 

some cases, the background precluded the clear identification of the specific signals, and in other cases 

the signals were not observed at all or the number of nuclei was not statistically adequate. Figure 4 

shows the hybridisation signals in the mitotic chromosomes of the loci in which RNL evaluation was 

carried out. In general, the human probes were more difficult to analyse when they were located in GC 

rich regions and hybridised in phylogenetically more distant species that gave multiple signals in 
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different chromosomes or no signals at all. Lemur catta had the lowest number of loci with an evaluated 

RNL. 

 

Human chromosome 2 (Hsa2) 

In human chromosomes, BAC probes RP11-102I23 and RP11-886P7 are located in the 2p11.2 and 2q22 

band, respectively. Chromosome Hsa2, in the other primates, corresponds to two chromosomes, one 

homologous to the p arm (and a small part of the q arm) and the other to the remaining q arm (Fig. 4A). 

This involved a reorganisation of the centromeres, with the emergence of evolutionary new centromeres 

(ENCs) in Mmu12 and Mmu13. The position of these ENCs corresponds to the loci identified by the 

BAC probes used here, with the splitting of the hybridisation signal visible in the Mmu12 and Mmu13 

chromosomes, and single spots in the homologous chromosomes of the other analysed species (Hsa, 

Ggo, Cja). RNLs of the RP11-102I23 and RP11-886P7 probes in the four analysed species indicated a 

peripheral location, with the more internal value observed for the RP11-102I23 locus in Hsa2 (Fig. 5). 

 

Human chromosome 3 (Hsa3) 

In chromosome Hsa3 we analysed five loci: two of them (detected by RP11-655A17 and RP11-227H4 

probes) are located close to the centromere in Hsa3, Ptr2, and Ggo2. In Mmu2, Cae22, and Lca1 they 

are in the same relative position but the centromere between them is not present. In Cmo and Cja they 

are in different chromosomes with the RP11-655A17 conserving the position in a band close to the 

centromere, and the RP11-227H4 relocated, in one case, to a telomeric position, very distant from the 

centromere (Cja15). RNLs of these two loci showed a peripheral location in all of the analysed cases 

(Fig. 5). A similar situation was observed for the BACs RP11-505J9 and RP11-526M23, which showed 

a peripheral location in all of the analysed cases (Fig. 5). These two loci were always in the same 

relative position, not closely associated with the centromere, except in Mmu2 and Cae15 where a 

centromere was present between them (Fig. 4C). The fifth locus (detected by the RP11-313F11 probe) 

conserved a telomeric position in the analysed species except in Lca1 (but in this latter case the number 

of informative nuclei were low and RNL not determined) (Fig. 4C), and the RNLs always corresponded 

to the internal part of the nucleus (Fig. 5). 

 

Human chromosome 6 (Hsa6) 

The selected loci from chromosome Hsa6 maintained the same location along the homologous 

chromosomes Hsa6, Ptr5, Ggo5, Mmu4, and Cja4, even if centromere repositioning occurred in the 

lineages resulting in Cja and Mmu. Indeed, the locus identified by the RP11-474A9 probe corresponds 

to the centromeric region in Mmu4, as visible by the split signals in this chromosome (Fig. 4B). RNLs 

evaluated for these four probes showed a peripheral position for the RP11-55K11, RP11-959I6 and 

RP11-474A9 probes, and an internal location for the RP11-79O21 probe (Fig. 5). It should be noted, in 
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this case, that the RNL of each probe in the different species showed very comparable values, especially 

with the RP11-959I6 probe with RNLs very close to the median value 0.750 for all the species analysed. 

 

Human chromosome 7 (Hsa7) 

Loci from chromosome Hsa7 present a number of positional features (Fig. 4D). RP11-6A1 is telomeric 

in Hsa7, Ggo6, and Cae28 and pericentromeric in Cja2. RP11-79O21 is positioned along the 

chromosomes Hsa7, Ggo6, Mmu2, Cae21, and Cja8, always far from the centromere. RP11-213E22 is 

positioned in a chromosomal band close to the centromere in Ggo14, Mmu2, and Cae28. 148K1 is 

always telomeric except in Cja8, where it is near the centromere (Fig. 4D). RNLs of these four loci in 

all the species analysed are related to the RNLs evaluated in the human cell nuclei and to the GC-level 

of the human chromosomal band where each locus is located. Namely, RP11-6A1 and RP11-213E22 

loci are in the inner part of the nuclei, whereas RP11-79O21 and 148K1 are located peripherally (Fig. 

5). 

 

Human chromosome 12 (Hsa12) 

In chromosome Hsa12, we used three loci from the short arm (Fig. 4E). Two of them, RP11-79K20 and 

RP11-712A21, show the same relative position along the homologous chromosomes Hsa12, Ptr10, 

Ggo10, Mmu12, Cja9 and Cmo10, but in this latter case a centromere emerged between them. RP11-

485K18 is close to the centromere in Hsa12, Ptr10, Ggo10, and Mmu12, and more distant in Cja9 and 

Cmo10. RNLs were found to be peripheral for RP11-712A21 and RP11-485K18 loci, and in the inner 

part of the nuclei for RP11-79K20 (Fig. 5), highly correlated to the RNLs evaluated in the human cell 

nuclei. 

 

On the basis of the RNLs, we can classify the 18 loci into two main categories, one including those 

located at the nuclear periphery and the other located in the inner part of the nucleus. The first group 

contains the larger number of loci; the second group contains five loci identified by the probes RP11-

313F11, RP11-825M8, RP11-6A1, RP11-213E22, and 79K20. Among the loci studied, the latter are 

endowed, in the human genome, with the highest GC level and gene-density and early replicating during 

the S-phase of the cell cycle (see Table 1). The RNLs of a probe in the different species were generally 

very similar, with differences not statistically significant, as evaluated by a two-tailed t-test. Some 

exceptions concerned probes RP11-102I23, RP11-886P7, RP11-655A7, RP11-227H4, and RP11-

526M23, which showed a more spread out range in the RNL values, even though the location in the 

various species was always in the peripheral part of the nucleus. 
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Human chromosomal bands and new centromeres 

We analysed the GC-level of the chromosomal bands that are involved in different types of 

centromerisation events. More precisely, we considered three different types of human chromosomal 

bands, in reference to the different centromere features: (i) bands that in the ancestral chromosomes 

were occupied by a centromere, the ancestral centromere (AC), subsequently lost and now absent in the 

present chromosome (Stanyon et al. 2008), (ii) bands that in other homologous primate chromosomes 

correspond to an evolutionary new-centromere (ENC), which appeared concomitantly to the AC 

inactivation or to a centromere occurrence in an acentric chromosome fragment (Stanyon et al. 2008), 

and (iii) bands frequently related to the formation of human constitutional new-centromeres (HCN), as a 

consequence of chromosomal rearrangements (Marshall et al. 2008). 

The GC-level of ENC, HCN and AC were evaluated on 21, 201, and 7 human chromosomal bands (see 

Fig. 1) and showed a mean value of 37.6%, 41.1% and 40.3% respectively (Fig. 6). In the case of HCN 

the above 201 bands correspond to all bands (at a resolution of 850 bands per haploid genome) included 

in the 30 HCN regions (Marshall et al. 2008 and Fig. 1). The average GC-level of the chromosomal 

bands with ENC is statistically different with respect to the GC-level of HCN (P<0.0001, as evaluated 

by a two-tailed t-test). The AC-related bands did not show differences with HCN or with ENC, but in 

this case it should be stressed that the number of AC bands was too low (seven in total) for a reliable 

statistical evaluation. In addition to the GC level of the bands related to ENC, HCN and AC, we 

analysed the GC% of the bands belonging to the human chromosome 19 and 22, because in these 

chromosomes no HCNs or ENCs were described. The average GC-level of the chromosomal bands of 

Hsa19 is 47.8% and of Hsa22 is 47.2%. These values are not statistically different from each other, but 

are very statistically different with respect to the three types of bands considered here (ENC, HCN, AC) 

(see table in Fig. 6). 
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Discussion 

In the present work, we evaluated the radial nuclear location of eighteen chromosomal regions in 

humans and in seven other primate species. A number of these regions show a reshuffling in the 

homologous chromosomes of the present primate karyotypes. Additionally, we analysed the genomic 

properties related to the GC-level. We also focused our attention on the chromosomal bands frequently 

involved in new-centromere formation, either in the case of pathological human conditions (human 

constitutional centromeres, HCN) or during chromosomal evolution (evolutionary new centromeres, 

ENC, and ancestral centromeres, AC). The aim was to understand the mechanisms underlying 

chromosomal rearrangements leading to changes associated with their evolutionary success, and 

whether these mechanisms could be considered different with respect to those related to chromosomal 

abnormalities, described in the scientific literature and involved in human pathological conditions. 

The results we present here show that the nuclear location of the eighteen loci analysed is generally 

unchanged in the cells of the primate species, regardless of whether or not the corresponding 

chromosomal band was involved in evolutionary chromosomal reshuffling. This indicates that 

evolutionary rearrangements of the chromosomes do not affect the functional properties of the involved 

regions. 

 

Evolutionary chromosomal rearrangements 

The organisation of chromosomes and genes within the nucleus is associated with different structural 

and functional properties of the genome, such as GC level, replication timing, and transcriptional 

activity. These characteristics define two main types of genomic regions that are distributed unequally, 

not only along the metaphase chromosomes (see Fig. 1) but also in the interphase nuclei as first 

demonstrated by molecular cytogenetic methods (Croft et al. 1999; Saccone et al. 2002; Gilbert et al. 

2004) and later on confirmed by Hi-C (Lieberman-Aiden et al. 2009). Thus, two nuclear compartments 

with opposite features were demonstrated: one corresponding to the GC-richest isochore families 

(according to the nucleotide composition) or to the A compartment (according to the Hi-C method) is 

localised in the nuclear interior and have the highest gene density, a more open chromatin structure, 

replication at the onset of the S phase, and higher transcriptional activity; the other corresponds to the 

GC-poorest isochore families (according to the nucleotide composition) or to the B compartment 

(according to the Hi-C method) and is endowed with opposite features. This latter compartment, further 

to a preferential location at the nuclear periphery and around the nucleoli, is enriched in lamina 

associated domains (LADs) (Kind et al. 2013; Cremer et al. 2015; Bernardi 2015; Stevens et al. 2017). 

Chromosomal rearrangements may happen between bands with the same or different compositional 

features, determining different outcomes. When a chromosomal rearrangement involves chromosomal 

bands with the same compositional features and endowed by a similar RNL, the genes located in the 

rearranged regions should maintain, presumably, their nuclear position and their transcriptional 
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properties. This type of rearrangement, which is potentially neutral to the phenotype, could be preserved 

in the population and thus become important in chromosomal evolutionary modifications. In this regard, 

orthologous genes in different species should be located in the same nuclear compartment, in order to 

preserve the optimal conditions for gene regulation and transcription. 

In the present study, we analysed, in addition to some genomic properties, the nuclear location of 

eighteen human chromosomal bands and the corresponding homologous regions in other primate 

species to understand if the above assumption could be verified. We obtained the nuclear location, in the 

human PHA-stimulated lymphocytes (Fig. 2), of 18 BAC probes located in human chromosomal bands 

with various compositional properties (Tab. 1 and Fig. 1). The GC-rich and GC-poor loci were 

generally localised in the more internal and more peripheral parts of the cell nucleus, corresponding to 

the Hi-C A and B compartments, respectively, with the RNL of the probes on chromosome Hsa7 in 

accordance with previous data (Federico et al. 2008). Our present results also confirmed the highest 

level of correlation between RNL with gene density and replication timing of the entire band in which 

each probe is localised (see Fig. 3). 

During the evolutionary history of primate chromosomes, some of the bands we studied here modified 

their position along the metaphase chromosome, while others maintained the same position, even if 

some current homologous chromosomes show different sizes (e.g., the band 3q29 identified by BAC 

RP11-313F11 is generally located in a telomeric position except in Lca). Our results showed a generally 

conserved RNL for the probes analysed; namely each probe is located in the same nuclear compartment 

(inner/peripheral nuclear position or Hi-C A/B compartment) across different species, independent of 

the evolutionary chromosomal reshuffling occurring in the homologous chromosomes. This indicates 

that each chromosomal region maintains similar RNL and possibly similar gene activity in different 

primate lineages, in both Old and New World monkeys. Indeed, as mentioned above, the conserved 

RNL of a specific chromosomal region should be a good indication of the preservation of the region's 

function, and this is independent of the position along the metaphase chromosome. Moreover, some 

chromosomal regions, such as those of chromosome Hsa6 and Hsa7, showed a very high level of 

conservation of the nuclear location in the investigated species (see Fig. 5). 

The data presented here, obtained on chromosomes showing different types of evolutionary 

rearrangements, indicate that the impact of inversions or translocations on the gene nuclear location is 

very similar; namely none of the chromosomal loci analysed here changed their nuclear location in the 

different species. It should be stressed that the large amount of data was obtained with lymphoblastoid 

cells, endowed with a different type of DNA distribution in the nucleus with respect to the fibroblast 

cells (Neusser et al. 2007; Grasser et al. 2008). However, even if little data were obtained here with 

fibroblastoid cells (6, 5, 2 probes for Cae, Cmo, Lca respectively), the variability in the nuclear location 

for a defined locus in the different species was very low. The higher variability in the RNL was 

observed for the two regions of chromosome Hsa2 (2p11.2 and 2q22.1 bands) and three regions of 
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chromosome Hsa3 (3p12.1, 3q12.1, 3q26 bands), but the nuclear position in the species analysed was 

always higher than 0.65 (see Fig. 5), namely values indicating the location in the peripheral 

compartment of the cell nucleus. This is slightly different with respect to previous work that used 

fibroblast cell nuclei and showed that inversions seem to influence nuclear topology to a greater extent 

than translocations, even if this was generally seen with some GC-poor/late replicating regions that were 

observed more internally in the human fibroblast nuclei, but with a more peripheral location in the 

orangutan fibroblasts (Grasser et al. 2008). 

 

Pathological chromosomal rearrangements 

Evolutionary chromosomal rearrangements not affecting the RNL of genes should be clearly 

distinguished from chromosomal abnormalities observed in nuclei of diseased human cells. Correct 

reorganisation of chromatin during cell differentiation leads to a functional gene repositioning according 

to the cell type considered (Kosak et al. 2002; Szczerbal et al. 2009; Leotta et al. 2014). This process 

may be altered if chromosomal rearrangements determine the alteration of the nuclear position of 

specific genes, leading to genetic diseases (Bickmore and van der Maarel 2003; Foster and Bridger 

2005; Ono et al. 2007; Ballabio et al. 2009; Tosi et al. 2015). 

We suggest that evolutionary chromosomal rearrangements differ from those found in human genetic 

diseases because the latter determines a gene structure disruption or a modification of the nuclear 

compartment where a gene is located (peripheral/inner, or Hi-C B/A), namely the repositioning from the 

peripheral to the inner part of the nucleus (or Hi-C B vs A compartment) or vice versa. In fact, the 

results reported here indicate that evolutionary chromosomal rearrangements typically do not affect the 

nuclear location of the involved regions and that we can consider them neutral mutations that escape 

natural selection. This is clearly in contrast, from an evolutionary point of view, to the clinical 

chromosomal rearrangements that lead to a radial nuclear repositioning of the loci in different 

compartments and on which natural selection acts negatively, for example by elimination of the cell 

from the organism, eliminating the organism itself from the population, or by reducing fitness. This 

could be due to a rearrangement between two chromosomal bands with very different genomic 

properties, and with a nuclear position in different functional compartments, which determines the 

joining of two regions allowing a nuclear repositioning of the involved bands (Tosi et al. 2015). This is 

in line with the genomic instability described in those rearranged chromosomal regions endowed with a 

switch in replication timing and GC% (Watanabe and Maekawa 2013). 

 

New centromere formation 

Similar reasoning can be used to explain the phenomenon of neocentromerisation. To date, no sequence 

specifically involved in the formation of new centromeres has been identified and the origin of a 

neocentromere appears to be associated with epigenetic phenomena that are not yet well understood. An 
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evolutionary neocentromere recently studied in the macaque showed the absence of a nucleotide 

sequence modification with respect to the original sequence, with the only difference being a higher 

degree of compaction of the neocentromerised region (Tolomeo et al. 2017). 

Considering current data on the genomic properties of the HCN, ENC, and AC regions (see Fig. 6), it 

can be hypothesised that a neocentromere can form in every chromosomal region. However, depending 

on the genomic features of the involved region, the new centromeres will have a different fate over time: 

a new centromere emerging in a very GC-poor region, depleted in genes, normally located in the most 

peripheral part of the cell nucleus and in a very compact form, has a high likelihood of staying in the 

population as an "asymptomatic" polymorphism. In other words, it will not lead to any significant 

phenotypic effect in the cell or the organism in which it formed, as described for example in the 

neocentromeres observed in phenotypically normal human individuals (Ventura et al. 2004). If the new 

centromeres originate in regions with very high GC levels, with very high gene density and a location in 

the internal, transcriptionally-active nuclear compartment, the chance of being retained is very low, 

because of its possible negative effect on fitness. In support of this hypothesis, there is no report, to our 

knowledge, of neocentromerisation events in regions with the above features, such as in chromosomes 

Hsa19 and Hsa22 (Marshall et al. 2008; Stanyon et al. 2008). Thus, without any way to verify this, we 

can only speculate that neocentromere formation in these chromosomes would have a very short life, 

and would be lethal for the cell in which they appear. The formation of neocentromeres in chromosomal 

regions with intermediate compositional features, compared to those described above, may be associated 

with a variety of damaging consequences. Thus, these will be observed in subjects with various types of 

pathologies associated with the presence of the so-called human constitutional neocentromeres (Amor 

and Choo 2002; Marshall et al. 2008). 

 

Conclusion 

Metaphase chromosomes can modify their size and structure by a variety of modes, such as 

translocations, fissions, fusions and inversions, determining a wide range of phenotypic consequences, 

from no evident effect to very relevant clinical symptoms. Considering previous literature and our 

present data, this could be related to the compositional features of the chromosomal regions involved in 

the rearrangements. When these rearrangements do not affect gene structure and leave unaltered the pre-

existing nuclear location, we can assume that they do not lead to alterations of gene expression patterns 

and have a high probability of being evolutionarily conserved. Indeed, such “asymptomatic” or 

“neutral” rearrangements could be preserved by a neutral mode of selection. In this case, chromosomes 

can modify their size and form, and chromosomal bands can be repositioned along a chromosome if 

their organisation in the cell nucleus remains unchanged. This type of event is obviously very different 

from those resulting in genetic diseases, that instead lead to alterations in the higher order organisation 

of the chromatin and changes in nuclear gene positioning. 



 

 16 

Along this line of evidence, new centromere formation and, more specifically, its evolutionary success, 

depends on the type of chromosomal region in which it occurs. If the region has the same genomic 

properties of the canonical centromeric region (low GC-level, absence or few genes, late replication 

during the S-phase of the cell cycle, nuclear location in the peripheral compartment), the new 

centromere will have a high probability of being evolutionarily conserved. On the contrary, the new 

centromeres formed in those regions where the functional impact is very detrimental to cell viability are 

rapidly eliminated from the population, as in the case of rearrangements between chromosomal bands 

with very different genomic properties. 
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Tab. 1. Description of the probes. 

Ref. BAC probe 

Probe 

location 

(band) 

Probe 

position 

(Mb)(1) 

2 Mb(2)  Band(3) 

GC% Genes/Mb RT  GC% Genes/Mb RT 

1 RP11-102I23   2p11.2 86.7 43.2 13.5 1.59  43.1 12.4 1.49 

2 RP11-886P7 2q22.1 138.3 37.4 2.5 1.26  36.4 1.0 1.27 

3 RP11-655A17 3p12.1 87.2 35.5 4.0 1.22  35.4 1.0 1.19 

4 RP11-227H4 3q12.1 99.8 35.9 4.0 1.55  38.1 7.6 1.24 

5 RP11-505J19 3q24 150.0 37.3 10.0 1.19  36.2 2.7 1.28 

6 RP11-526M23 3q26.1 166.9 34.2 2.0 1.19  35.4 2.4 1.23 

7 RP11-313 F11 3q29 197.0 45.8 17.5 1.92  45.3 17.6 1.65 

8 RP11-55K11 6p22.1 26.4 40.2 31.0 1.43  40.2 20.0 1.45 

9 RP11-825M8 6p21.1 44.0 47.3 25.5 1.84  46.3 25.8 1.70 

10 RP11-959I6 6q16.1 96.8 36.1 4.0 1.11  35.5 1.6 1.26 

11 RP11-474A9 6q24.3 145.7 37.2 2.5 1.47  37.7 4.1 1.39 

12 RP11-6A1 7p22.3 2.1 53.7 15.5 2.00  53.4 14.3 1.92 

13 RP11-79O21 7p21.3 12.1 35.9 3.0 1.19  36.2 2.8 1.30 

14 RP11-213E22 7q22.1 100.1 49.3 35.0 2.08  48.6 23.2 1.71 

15 RP11-148K1 7q36.1 150.4 46.6 22.5 1.14  45.4 15.2 1.59 

16 RP11-79K20 12p13.33 1.2 43.0 10.5 1.75  45.8 15.3 1.69 

17 RP11-712A21 12p12.3 18.9 37.3 3.0 1.20  36.8 6.4 1.40 

18 RP11-485K18 12p11.22 28.3 37.7 5.0 1.21  38.0 8.5 1.49 

(1) Distance of probe from telomeric end of p arm. (2) Features of the 2 Mb genomic DNA 
around the probe. (3) Features of the chromosomal band containing the probe. GC%: 
guanine+citosine percentage. RT: replication timing from Woodfine et al. 2004: higher values 
indicate earlier replication timing. 
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Figure 1. Compositional properties of the human chromosomes. Ideograms of the human 
chromosomes at a resolution of 850 bands per haploid genome with the GC-richest and GC-poorest 
bands highlighted (red and blue, respectively) as previously described (Saccone et al. 2002). The 
asterisks on the left of each chromosome indicate the position of the BAC probes used in the present 
work (see Tab. 1). HCN, human constitutional new-centromeres (orange vertical bars): chromosomal 
bands corresponding to sites of recurrent new-centromere formation observed in human cells from 
subjects with pathological conditions (from Marshall et al. 2008). ENC, evolutionary new-centromeres 
(green arrows): chromosomal bands corresponding to centromeres in the homologous chromosomes of 
other primate species (Stanyon et al. 2008). AC, ancestral centromeres, (blue arrows): chromosomal 
bands corresponding to the centromere site in the ancestral chromosome (Stanyon et al. 2008). 
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Figure 2. Radial nuclear location of BAC probes in human cell nuclei. The nuclear position of each 
human BAC probe listed in Table 1 was statistically defined by the median value of more than 300 
hybridisation signals localised in the nuclei, as previously described (Federico et al. 2008). On the Y-
axis the median values are indicated, along with the relative confidence interval (CI), of each probe. 
Median values higher and lower than 0.65 indicate probes located at the periphery and in the inner part 
of the cell nucleus, respectively. Indicated on the X-axis are the BAC probes and the human 
chromosomal band in which they are located. The GC% of each band containing the probe is 
graphically shown: 38 and 45 indicate the GC% delimitating GC-poor / intermediate / GC-rich bands. 
GC-rich, intermediate and GC-poor bands are indicated by red, light blue and blue bars, respectively. 
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Figure 3. Correlations between RNL of BAC probes on human lymphocytes and GC level, gene 
density, and replication timing. A, B, and C show the correlation between the RNL of each probe and 
GC level, gene density, and replication timing, respectively, of the 2 Mb DNA segment surrounding the 
probe. D, E, and F show the correlation between the RNL of each probe and GC level, gene density, and 
replication timing, respectively, of the chromosomal band containing the probe. R is the correlation 
coefficient. The RNL of each locus corresponds to the median value shown in Figure 2. Gene densities 
and GC level data were obtained from the human genome assembly available in the UCSC Genome 
Browser (http://genome.ucsc.edu/). The replication timings were those previously described by 
Woodfine and colleagues (Woodfine et al. 2004). 
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Figure 4. Location of human BAC probes on the primate metaphase chromosomes. The panels show the 
ideograms of the primate homologous chromosomes investigated and the relative FISH with the BAC probes 
(green and red signals); chromosomes were stained with DAPI (blue). Each panel shows human chromosomes 
Hsa2 (A), Hsa6 (B), Hsa3 (C), Hsa7 (D), Hsa12 (E) and their homologues from G. gorilla (Ggo), P. troglodytes 
(Ptr), M. mulatta (Mmu), C. jacchus (Cja), C. moloch (Cmo), C. aethiops (Cae), and L. catta (Lca). The 
chromosomal bands, in the ideograms, of the human short and long arms (and the corresponding homologous 
chromosomal segments in the other primates) are stained in red and green, respectively. The arrows on the right of 
the chromosomes indicate the position of the BAC probes, numbered following the list in Table 1. The coloured 
arrows and lines on the left of the chromosomal ideograms indicate the evolutionary rearrangements. Red and 
green lines connect the same loci in the homologous chromosomes. 
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Figure 5. RNL of human BAC probes on primate cell nuclei. The RNL of the probes described in 
Table 1 are indicated by the relative median value (for simplicity of the graph visualisation, the 
confidence interval bars are not shown). The median values relative to probes hybridised on the human 
chromosomes are those shown in Figure 2. A coloured line connects, for each species, the median 
values of probes located in the same human chromosome: Hsa2, Hsa3, Hsa6, Hsa7, and Hsa12, from 
left to right. Median values higher or lower than 0.65 are demarcated by the horizontal blue line. The 
symbols legend is shown in the upper left. The upper panel shows the BACs that worked for each 
species (with median value shown) and those that did not (NA: data not available). 
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Figure 6. Compositional features of the human chromosomal bands with ENC, HCN, and AC 
sites. Upper and bottom left: GC-level of the chromosomal regions at a resolution of 850 bands (data 
from Costantini et al. 2007) corresponding to ENC, HCN and AC sites shown in Figure 1. Moreover, 
the GC-level of each band from the human chromosomes 19 and 22 are shown (bottom left). Bottom 
right: statistical evaluation of the GC-level (mean ± I.C.) in the different types of chromosomal regions: 
HCN, ENC, AC, chromosome 19 and chromosome 22. Represented in the upper part of the graph is the 
statistical correlation (p-value obtained using the two-tailed t-test) between the indicated pair of data. 


