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Abstract 

The transform-quantisation stage is one of the most complex operations in the state-

of-the-art High Efficiency Video Coding (HEVC) standard, accounting for 11–41% 

share of the encoding complexity. This study aims to reduce its complexity, making 

it suitable for dedicated hardware accelerated architectures. Adopted methods 

include multiplier-free approach, Multiple-Constant Multiplication architectural 

designs, and exploiting useful properties of the well-known Discrete Cosine 

Transform. Besides, an approximation scheme was introduced to represent the 

original HEVC transform and quantisation matrix elements with more hardware-

friendly integers. Out of several derived approximation alternatives, an approximated 

transform matrix (T16) and its downscaled version (ST16) were further evaluated. 

An approximated quantisation multipliers matrix (Q) and its combination with one 

transform matrix (ST16 + Q) were also assessed in HEVC reference software, HM-

13.0, using test video sequences of High Definition (HD) quality or higher. Their 

hardware architectures were designed in IEEE-VHDL language targeting a Xilinx 

Virtex-6 Field Programmable Gate Array technology to estimate resource savings 

over original HEVC transform and quantisation. T16, ST16, Q, and ST16 + Q 

approximated transform or/and quantisation matrices provided average Bjøntegaard-

Delta bitrate differences of 1.7%, 1.7%, 0.0%, and 1.7%, respectively, in 

entertainment scenario and 0.7%, 0.7%, -0.1%, and 0.7%, respectively, in interactive 

scenario against HEVC. Conversely, around 16.9%, 20.8%, 21.2%, and 25.9% 

hardware savings, respectively, were attained in the number of Virtex-6 slices 

compared with HEVC transform or/and quantisation. The developed architecture 

designs achieved a 200 MHz operating frequency, enabling them to support the 

encoding of Quad Full HD (3840 × 2160) videos at 60 frames per second. 

Comparing T16 and ST16 with similar designs in the literature yields better 

hardware efficiency measures (0.0687 and 0.0721, respectively, in mega 

sample/second/slice). The presented approximated transform and quantisation 

matrices may be applicable in a complexity-reduced HEVC encoding on hardware 

platforms with non-detrimental coding performance degradations.  

Keywords: Hardware complexity, HEVC, FPGA, quantisation, transform 
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Chapter 1  

Introduction 

Abstract This chapter introduces the field and topics of research, the aim, 

objectives, and scope of work carried out in this thesis. The study contributions to 

the body of knowledge and an outline of this document are included towards the end 

of the chapter. 

1.1  Video Coding 

It is no exaggeration to state that an average individual today watches video 

contents on a daily basis. Videos are being watched almost anytime and everywhere 

– at homes, work places, restaurants, parks, on travels, and many other examples. 

The growing number of video-enabled devices such as laptops, smartphones, tablets, 

always-on wearable cameras, etc. besides the common television (TV) sets is just 

one of many factors contributing to this trend. The increasing variety of video 

services created around the clock like broadcast programmes (e.g., news, sports, 

documentaries, entertainment shows, etc.), streaming applications, home cinemas, 

video chats, surveillances, and so on, is another factor influencing one‟s regular 

activities. Various other factors include improving spatial and temporal video 

resolutions, quality of experience, availability of internet connections, economies of 

scale, etc. 

In 2015, more than half a billion (563 million) new mobile devices and 

connections were produced worldwide, with 36% of the share being smart devices 

(Cisco, 2016). In their study, smart devices were defined as “mobile connections that 

have advanced multimedia/computing capabilities with a minimum of 3G 

connectivity”. The mobile data traffic around the globe reached 3.7 exabytes (EB) 

every month by the end of 2015, and more than half (55%) of this traffic was mobile 

video.  By 2020, the monthly mobile data traffic is projected to increase by eight 

times to 30.6 EB globally, and three-fourths (75%) of these will be video (Cisco, 

2016). Recently, the most popular sources for online TV and/or movies are 

YouTube, Netflix, Hulu, Amazon Prime Instant Video, and HBOGO, according to a 

survey (Solsman, 2014). For instance on YouTube, as of July 2015, more than 400 
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hours of video were uploaded per minute, increasing from 300 hours every minute in 

November 2014 (Jarboe, 2015; Robertson, 2015; Statista, 2016). Statistical data such 

as these lay emphasis on the significance of video in our daily lives. 

A raw video sequence incurs a certain amount of byte size. Table 1.1 

illustrates that a short video with a length of 10 minutes in different formats may 

require between 5 gigabytes (GB) in a low-resolution Common Intermediate Format 

(CIF) and 445 GB in an Ultra High Definition (UHD) 4K format. This massive size 

is not ideal for storing or transmitting a raw video. As a video is a form of signal or 

data, compression and decompression, which respectively reduces and returns the 

original data size, have therefore been long applied to support the handling of video 

contents. The art of compressing and decompressing a video along with associated 

processes is what referred to as video coding.    

Table 1.1 Size of a 10-minute raw video in several resolution formats 

Format 
Resolution      

(Width × Height) 
Bits per pixel

a
 

Frames per 

second
b
 (fps) 

Size
c
 (GB) 

Common 

Intermediate 

Format 

(CIF) 

352 × 288 24 30 5.1 

Standard 

Definition 

(SD) 

720 × 576 24 30 20.9 

High 

Definition 

(HD) 

1280 × 720  

(720p) 
24 30 46.3 

1920 × 1080 

(1080p) 
24 30 104.3 

Ultra High 

Definition 

(UHD) 

3840 × 2160 

(Quad Full HD, 

QFHD) 

24 30 417.1 

4096 × 2160   

(4K) 
24 30 444.9 

a
 Three colour components each with 8-bit depth 

b
 Other common frame rates include 25, 50, and 60 fps 

c
 Size = Width × Height × Bits per pixel × FPS × Length / (2

30
 × 8) 

 Video coding is based on a pair of complementary systems: an encoder and a 

decoder. The encoder converts (encodes) an original video sequence into a 

compressed form or bitstream, reducing the number of bits required and making it 

suitable for transmission or storage. On the other hand, the decoder converts 
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(decodes) the compressed bitstream back into a representation (exact copy or 

approximation) of the source video. The encoder-decoder pair is frequently referred 

to as a CODEC (enCOder/DECoder) (Fig. 1.1). Compression is possible by 

removing redundant information or elements that are unnecessary for reconstructing 

the data. If the decoded data are exactly identical to the original, then the coding 

process is classified as lossless. Otherwise, the process is lossy (Richardson, 2012).  

Fig. 1.1 Video encoder-decoder (CODEC) system (Richardson, 2012) 

In a lossless video coding, compression is achieved by removing statistical 

redundancy such as bit patterns. However, lossless coding only provides a moderate 

amount of data reduction and may still be unsuitable for storage or transmission. On 

the other hand, a lossy coding delivers a higher video compression ratio by removing 

subjective redundancy, and thus is normally in place but at the expense of a visual 

quality loss. Fortunately, subjective redundant elements of a video sequence are 

removable without  severely influencing the viewer‟s visual quality perception 

(Richardson, 2012). 

In order to have a common language or understanding between a party 

encoding a video sequence and another one wishing to decode the compressed video 

contents, standards for video coding have been developed since the last three 

decades. Most video coding standards apply lossy compression to obtain higher 

compression efficiencies. Increasing significance of video driven primarily by the 

growing number of video sources, applications, resolutions, quality, etc. has led to 

improved coding tools or even newer standards to be established.  When a new video 

coding standard is being developed, usually one of its goals is to achieve a higher 

compression ratio than the best available standard at that time, without sacrificing 

video quality. A higher compression ratio means that more video sequences can be 

stored or transmitted at the same number of bits. Alternatively, the savings in the 
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number of bits can also be utilised to deliver a better video quality such as larger 

resolutions or richer viewing experiences (e.g., three-dimensional (3-D), multiview, 

holoscopic, etc.). 

A better performing video coding standard usually comes at the price of 

increased complexity. To achieve a higher compression ratio requires more 

sophisticated coding algorithms or tools attributing to more complex designs. It is 

almost obligatory for new video-enabled electronic devices to include a capability to 

use the newest available video coding standard as one of its selling points. Having 

this as the context, the next section presents the motivation and problem definition 

which this thesis is based on. 

1.2  Motivation and Problem Description 

The latest and most efficient video coding standard at present is the High 

Efficiency Video Coding (HEVC). HEVC was developed by the Joint Collaborative 

Team on Video Coding (JCT-VC), formed by Video Coding Experts Group (VCEG) 

of the Telecommunication Sector of the International Telecommunication Union 

(ITU-T) and Moving Picture Experts Group (MPEG) of the International 

Organization for Standardization (ISO)/International Electrical Committee (IEC). 

The first version of HEVC was published in April 2013 as ITU-T Recommendation 

(Rec.) H.265 (ITU, 2013). In ISO/IEC, the standard was first published in November 

2013 as 23008-2 MPEG-H Part 2 (ISO, 2013b). The newly emerged UHD format 

was one of the driving factors leading to the development of HEVC. 

 When HEVC was approved, it provided almost twice compression efficiency 

at similar video qualities in comparison to the state-of-the-art standard, the Advanced 

Video Coding (AVC) (Ohm et al., 2012; ITU, 2014). Like AVC, HEVC employs the 

classical hybrid video coding structure combining intra-/inter-prediction, transform 

coding, and entropy coding (Sullivan et al., 2012; Vanne et al., 2012). A general 

model of the HEVC encoder and decoder can be depicted as in Fig. 1.2(a) and 

1.2(b), respectively.  
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Fig. 1.2 HEVC encoder-decoder model: (a) Encoder (b) Decoder (Vanne et 

al., 2012)  

(a) 

(b) 
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“There is no single coding element in the HEVC design that provides 

the majority of its significant improvement in compression efficiency in 

relation to prior video coding standards. It is, rather, a plurality of 

smaller improvements that add up to the significant gain” (Sullivan et 

al., 2012, p. 1654).  

The average software complexity of an HEVC encoder, based on the 

execution time, varies between 1.2× and 3.2× when compared with an AVC encoder, 

while on the decoder side, the corresponding value ranges from 1.4× to 2.0× (Vanne 

et al., 2012). Tables 1.2 and 1.3 respectively show the average encoder and decoder 

software complexity in different coding configurations (All Intra (AI), Random 

Access (RA), Low Delay with B-pictures (LB), and Low Delay with P-pictures 

(LP)).  

Table 1.2 Average shares of the most complex HEVC encoding stages     

(Vanne et al., 2012) 

Encoding stage AI RA LB LP 

IME 0% 16% 18% 17% 

FME/MD 9% 55% 59% 49% 

IP 24% 1% 1% 1% 

T/Q/IQ/IT 41% 14% 11% 18% 

EC 11% 4% 3% 5% 

Misc. 15% 10% 8% 10% 

Table 1.3 Average shares of the most complex HEVC decoding stages     

(Vanne et al., 2012) 

Decoding stage AI RA LB LP 

IME 13% 13% 12% 14% 

FME/MD 0% 47% 44% 34% 

IP 25% 4% 2% 3% 

T/Q/IQ/IT 23% 9% 11% 12% 

EC 13% 5% 5% 6% 

Misc. 26% 22% 26% 31% 

 

 The most complex stages presented in Tables 1.2 and 1.3 are therefore high 

priority candidates for acceleration on dedicated hardware architectures.  

“Accelerating the most complex functions such as motion compensation 

(MC) is recommended in decoding, but an adequate decoding 

performance is typically obtainable through processor-based 

acceleration. However, HEVC codec is strongly asymmetrical in terms 

of complexity, so sufficient encoding performance tends to be out of 
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reach unless the most complex encoding functions are off-loaded to 

special hardware accelerators” (Vanne et al., 2012, p. 1894).  

With the newly approved HEVC as the motivation and its complexity as one 

of the main challenges to be addressed, the next section states the aim and objectives 

set in this thesis. 

1.3  Aim and Objectives 

The aim of this work is to evaluate the coding performance of novel 

complexity-reduced algorithms of selected HEVC algorithms. As previously 

mentioned, the HEVC encoder has a higher priority to be simplified than the 

decoder. One of the most complex encoding stages is the 

transform/quantisation/inverse quantisation/inverse transform (T/Q/IQ/IT) as shown 

previously in Table 1.2 and Fig. 1.2(a). For these reasons, the T/Q/IQ/IT stage of 

HEVC has been selected as the focus of this thesis. 

In order to achieve the specified aim, the following objectives were underlined to 

be carried out: 

 To assess the coding performance of simplified transform and quantisation 

algorithms in terms of objective video quality metrics, bitrate, and visual 

observations; 

 To assess the hardware implementation costs of simplified transform and 

quantisation algorithms; 

 To compare between simplified transform and quantisation algorithms and 

HEVC and other works in the literature. 

 

1.4  Scope of Work 

The work carried out was based on the first version of HEVC standard and do 

not cover extensions introduced in later versions. Although the HEVC codec 

comprises an encoder and a decoder, this work mainly focuses on the encoder. 

Furthermore in the HEVC encoder, the work concentrates on the transform and 

quantisation stages. All the other stages were retained as specified in the standard.  
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The encoding results were obtained by using HEVC model software version 

13.0 (HM-13.0) (JCT-VC, 2014) as the reference. This version was the latest release 

when this research work started. The software was considered mature when an older 

version 10.0 was made available. 

 The hardware architecture designs of the transform and quantisation stages in 

this work were described in reconfigurable IEEE-VHDL hardware description 

language (HDL) using Xilinx™ Integrated Synthesis Environment (ISE®) design 

suite version 14.7, synthesised with Xilinx™ Synthesis Technology (XST) and 

routed to Xilinx™ Virtex®-6 xc6vl550t-2ff1760 Field Programmable Gate Array 

(FPGA) target device. In addition, these hardware designs were implemented up to 

the Placed and Routed state in ISE® software, verified using test benches and 

simulated in the ISE® Simulator (ISim) environment along with Mathworks® 

MATLAB® software. 

1.5  Thesis Contributions 

This thesis introduces the following contributions: 

 Two approximated transform algorithms for HEVC, labelled as T16 and 

ST16, with similar coding performances of 1.7% and 0.7% Bjøntegaard-

Delta bitrate (BD-rate) differences on average in entertainment and 

interactive application scenarios, respectively, over the original HEVC 

transform, considering video qualities of HD and above. 

 An approximated quantisation algorithm for HEVC, labelled as Q, with 0.0% 

and -0.1% average BD-rate differences in entertainment and interactive 

application scenarios, respectively, against the original HEVC quantisation, 

considering HD video quality and beyond. 

 A combination of approximated transform and quantisation stage for HEVC, 

labelled as ST16 + Q, with average BD-rate differences of 1.7% and 0.7% in 

entertainment and interactive application scenarios, respectively, with respect 

to the original HEVC transform and quantisation, considering HD and better 

video qualities. 

 Two high-throughput and multiplier-free dedicated hardware architecture 

designs of the approximated transforms for HEVC (T16 and ST16), utilising 
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16.9% and 20.8% fewer resources in terms of Xilinx Virtex-6 slices 

compared with HEVC transform. These designs are at least 1.3× more 

hardware efficient than a few similar architectural designs, operating at a 

higher frequency (200 MHz) and capable of supporting QFHD @ 60 fps 

videos.  

 A dedicated hardware architecture design of the approximated quantisation 

for HEVC (Q), using more than 20% fewer slices than HEVC quantisation 

hardware, achieving a higher operating frequency (200 MHz) and a better 

QFHD processing frame rate (60 fps). 

 A dedicated hardware architecture design of the combined and approximated 

transform and quantisation stage for HEVC (ST16 + Q), offering more than 

25% slice savings than HEVC transform and quantisation hardware on top of 

a higher operating frequency (200 MHz) and a better QFHD processing 

frame rate (60 fps). 

 

Based on a few of the aforementioned contributions, the following 

manuscript has been reviewed by the corresponding journal and a revision is being 

prepared: 

 Mohd Sazali, M., Sadka, A. H., Boulgouris, N. V. (2017) „Two-dimensional 

approximated core transforms for High Efficiency Video Coding‟, Elsevier 

Signal Processing: Image Communication 

 

1.6  Thesis Outline 

This thesis is divided into seven chapters. After the introductory information 

given in Chapter 1, Chapter 2 provides a background description on digital video 

coding covering the acquisition of a digital video, colour spaces and sub-sampling, 

and a few quality metrics commonly used to assess a digital video. A brief history of 

video coding standardisation is also included. Towards the end of this chapter, a 

brief overview of the HEVC standard (version 1) is provided, describing its video 

coding layer, the supported profiles, tiers, and levels. 
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 Chapter 3 is dedicated to explaining the HEVC transform and quantisation 

algorithms, as these processes form the basis of this thesis as stated earlier (Section 

1.3). Some related work in the literature is discussed at the end of the chapter. 

 Chapter 4 describes the approximated transform (including intermediate 

scaling) and quantisation algorithms for HEVC. These approximated algorithms are 

compared with the original ones in terms of degree of approximations and/or 

arithmetic complexity. 

 Chapter 5 presents the software-based experimental coding performance 

results of the approximated transform and quantisation algorithms, in terms of 

objective quality rate-distortion and subjective visual observation. Some descriptions 

of the test conditions, data set, and encoder-decoder compatibility issues are 

discussed in this chapter. 

 Chapter 6 presents dedicated hardware architecture designs developed in this 

work for HEVC and simplified transform and quantisation algorithms. Some 

explanation on hardware-software co-design methodology is provided at the 

beginning. The performances of these designs are compared with the original HEVC 

algorithms as well as with some work in the literature, in terms of resource 

utilisation, supported spatial video resolutions, and hardware efficiency. 

 Finally, Chapter 7 concludes this document, discusses some of its strengths 

and weaknesses, and offers some suggestions as part of a future work.  
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Chapter 2  

Background 

Abstract This chapter provides a background on the concepts required to understand 

the novel contributions of this work. It revises the concepts of digital video capture, 

representation, quality, and coding, and provides an overview of the new HEVC 

standard.  

2.1 Digital Video Capture and Representation 

2.1.1 Digital Video Capture 

A digital video is a sequence of images, frames or pictures, where each of 

these pictures represents a sample of two-dimensional (2-D) projection (discrete 

space and time) of a real scene (continuous space and time) (Fig. 2.1). Every picture 

is a rectangular matrix of pixels where the number of pixels in the horizontal (width) 

and vertical (height) directions determines the spatial resolution of the picture and 

video. Common video resolutions include SD with 720 × 480 pixels, Full HD (or 

1080p) with 1920 × 1080 pixels, 4K with 4096 × 2160 pixels, etc. The number of 

pictures captured per second determines the temporal resolution or frame rate of the 

video in frames per second (fps). Common frame rates include 24 fps, 30 fps, 50 fps, 

60 fps, etc. A sufficiently high capture rate gives an observer the impression of 

motion of the scene. The higher the picture rate is, the smoother the feeling of 

motion is to the viewer. 
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Fig. 2.1 A digital video sequence 

Each image is captured by an analogue semiconductor sensor formed by an 

array of Charge-Coupled Devices (CCDs), where every CCD captures one pixel. 

Colour images normally require three matrices of CCDs, each matrix representing 

one colour component following a colour space. A common colour space is the Red, 

Green, and Blue (RGB) as most other colours can be created using certain 

combinations of these three base colours. In the RGB space, every pixel therefore 

has three colour components or samples. The intensity level of each colour samples 

is determined by a number of bits or bit-depth. For instance, 8-bit and 10-bit depths 

could allow the colour intensity of a sample to vary between zero and 255 and 1023, 

respectively.   

2.1.2 Digital Video Representation 

The human visual system (HVS) has two types of photoreceptor cells, 

namely rods and cones. Rods sense the brightness or intensity of light (luminance or 

luma), while cones sense colours (chrominance or chroma). The HVS is less 

sensitive to colours than brightness. Thus, a tricolour space such as RGB is normally 

represented in YCbCr (or YUV) space prior to storage or transmission, where Y 

represents the luma samples while Cb (U) and Cr (V) respectively represent the 

chroma blue and chroma red samples. Cg or chroma green samples are unnecessary 

as they can be obtained using (2.1)–(2.2) (Richardson, 2012). 

Time or      

Picture Order 

Count (POC) 

Frame rate                

(frames per second, fps) 

Height 
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 The YCbCr or YUV space allows the representation of a digital video to be 

sub-sampled taking the advantage of the HVS property. Common YUV sampling 

patterns include 4:4:4, 4:2:2, and 4:2:0 (Fig. 2.2). In the 4:4:4 sampling pattern, for 

every square consisting of four Y samples (two-by-two), there are also four U and V 

samples, i.e., the number of Y, U, and V samples are exactly the same in both 

vertical and horizontal directions. 4:4:4 fully retains the fidelity of the chrominance 

component, having the same effect as the RGB. On the other hand, 4:2:2 or YUY2 

has the same chrominance samples as the luminance component in the vertical 

directions but only half  U and V samples in the horizontal directions. The 4:2:2 

pattern is used for high-quality colour reproduction. The most popular among them 

is the 4:2:0 pattern, where each U and V components only have half the vertical and 

horizontal resolutions of the Y component. In other words, for every four Y samples, 

there are only one U and V samples. The term 4:2:0 is confusing and should instead 

have been 4:1:1, but was retained for historical reasons and to differentiate it from 

4:4:4 and 4:2:2. Consumer applications like digital versatile disk (DVD) storage and 

video conferencing broadly adopt the 4:2:0 pattern (Richardson, 2012). 

Table 2.1 demonstrates the number of bits involved when a 10-second 1080p 

HD @ 30 fps 8-bit video is captured in different YUV sampling patterns. Applying a 

different YUV sampling pattern could reduce the size of a video and it is, therefore, 

a form of image or video compression. 

 

 

Y = 0.299R + 0.587G + 0.114B 

Cb = 0.564(B – Y) 

Cr = 0.713(R – Y) 

R = Y + 1.402Cr 

G = Y – 0.344Cb – 0.714Cr 

B = Y + 1.772Cb 

(2.1) 

(2.2) 
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Table 2.1 A 10-second 1080p video in different YUV sampling patterns 

Sampling pattern Size (number of bits) 

4:4:4 (or RGB) 1920 × 1080 × 3 × 30 fps × 10s × 8-bit 

= 14.9 × 10
9
 bits 

4:2:2 1920 × 1080 × 2 × 30 fps × 10s × 8-bit 

= 9.95 × 10
9
 bits 

4:2:0 1920 × 1080 × 1.5 × 30 fps × 10s × 8-bit  

= 7.46 × 10
9
 bits 

 

Fig. 2.2 YUV sampling patterns (Richardson, 2012) 
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2.2 Video Quality  

The quality of a video can be evaluated using objective or subjective 

measurements. As viewing a video sequence is a visual experience, a subjective test 

is probably the best in measuring the quality of experience of a viewer. A subjective 

test involves human beings assessing the quality of videos. A few guidelines on 

subjective video evaluation are provided by ITU. In Double Stimulus Continuous 

Quality Scale (DSCQS) testing system, a pair of unimpaired and distorted video is 

displayed one after the other (Fig. 2.3). The order of either the original or the 

impaired video is to be displayed first is randomised to reduce biased judgements of 

the assessor. At the end of each test, the human assessor will mark his or her view on 

the relative video quality on a continuous scale, and this scale can be classified or 

divided into different quality levels such as five or nine quality levels (Video Clarity, 

2016). Table 2.2 shows five quality levels of video quality. This type of grading is 

usually called Mean Opinion Score (MOS), as at the end of the whole evaluation, the 

mean or average score of all human assessors involved will be taken as the quality 

score in a particular test condition or parameter. 

 

Fig. 2.3 DSCQS testing system (adapted from (Richardson, 2012)) 

Although a subjective test such as DSCQS is the closest in measuring a video 

quality from the human point of view, it has several practical drawbacks. First, it is 

very time-consuming and costly to gather a large pool of human assessors or 

evaluators. An expert evaluator, who is acquainted with the artefacts or distortions 

caused by video compression, tends to be biased in giving a quality score. Therefore, 

it is more advisable to use naive or non-expert evaluators who are inexperienced in 

evaluating video qualities. Even a non-expert assessor can also quickly become an 
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expert as he/she learns to recognise artefacts during the evaluation process. It is also 

expensive to have the test facility set-up involving the display equipment, controlled 

environment (e.g., lighting and shades or reflectiveness of the wall or curtains), etc. 

Table 2.2 Five quality levels of video quality (Video Clarity, 2016) 

Score Quality 

5 Excellent 

4 Good 

3 Fair 

2 Poor 

1 Unacceptable 

 

The eye and the brain form the components of the HVS. The interaction 

between the eye and the brain, components of the HVS, influences a human's visual 

quality perception or opinion. This perception is determined firstly by the spatial 

fidelity, i.e., how clearly or distorted regions of a scene, and secondly by the 

temporal fidelity, i.e., how smoothly motions appear in the scene. Other influencing 

factors include the viewing environment, the amount of the viewer's interaction with 

video contents (active or passive), the observer's state of mind, visual attention, i.e., 

the concentration of an observer on a series of points in the images instead of 

simultaneously taking all information into the brain ((Findlay and Gilchrist, 2003) 

cited in (Richardson, 2012)), and the 'recency effect', i.e., our perceived quality is 

affected more heavily by a recently viewed video rather than an older content 

((Wade and Swanston, 2001) and (Aldridge et al., 1995) cited in (Richardson, 

2012)). All these factors complicate the quantitative and accurate measurement of 

visual quality (Richardson, 2012), as well as to have repeatable results even if using 

the same group of human assessors. 
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The cost and complexity to subjectively measure video quality make 

objective quality measurements using mathematical functions more desirable. Video 

processing system developers heavily depend on objective or algorithmic quality 

measurements in approximating the response of human observers. Among 

advantages of objective measures are quick and far less costly, repeatable, etc. 

Objective measures can be grouped into Full Reference (FR), Reduced Reference 

(RR), and No Reference (NR). Examples of FR objective measures proposed include 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Multi-Scale 

SSIM (MS-SSIM), Video Quality Metric (VQM), Just-Noticeable Difference (JND), 

MOtion-based Video Integrity Evaluation (MOVIE), etc., which have different 

degrees of success in approximating subjective measures, ranging between 70 per 

cent and 90 per cent. In ITU-T, Video Quality Experts Group (VQEG) is dedicated 

to developing industry standards on video and multimedia quality assessment. 

VQEG has developed Rec. J.247 covering FR quality measurement. FR quality 

metrics have access to an original, unimpaired copy of a video source ((ITU-T, 

2008) cited in (Richardson, 2012)). Rec. J.247 lists four objective quality metrics, 

which are NTT FR, OPTICOM Perceptual VQM, Psytechnics FR, and Yonsei FR. 

Objective methods in general proceed as follows. First, the original 

(reference) and test (impaired or coded) video sequences are compared in the spatial 

and temporal domains. Then, a set of degradation parameters is calculated such as 

blurring, blockiness, etc. Lastly, these parameters are combined providing a number 

as an estimate of subjective quality (Richardson, 2012).  

However in many practical applications, a full reference or an original copy 

of the source video is unavailable making the task of estimating quality more 

challenging. For instance, the original video may be unavailable at the decoder side 

as well as for a user-generated video content. In such situations, an NR or RR 

technique can be applied. NR metrics attempt to estimate the subjective quality 

based only on characteristics of the decoded video such as artefacts ((Wang et al., 

2002) and (Dosselmann and Yang, 2007) cited in (Richardson, 2012)). RR metrics, 

on the other hand, calculate a quality signature, which is usually a low bitrate side 

information transmitted to the decoder along with the coded video, and a quality 

estimate is then derived ((Wang and Simoncelli, 2005) cited in (Richardson, 2012)). 
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PSNR is a widely-used objective video quality metric in the literature. Its 

definition is given in (2.3) for an n-bit signal, where the Mean Squared Error (MSE) 

is calculated as in (2.4), and variables r and c are the vertical and horizontal 

dimensions of the picture, respectively. O and R are the original and reconstructed 

pictures, respectively, where an R picture is an image after coding losses. 

 

 PSNR is originally an image quality assessment (IQA) metric, but it has been 

widely used in the industry and the research community as a quality metric for 

assessing the performance of video processing systems (Huynh-Thu and Ghanbari, 

2012; Hanhart and Ebrahimi, 2014). It is largely being relied upon in the 

standardisation of video codecs as a performance indicator, i.e., as a measure of gain 

in quality of a video codec optimisation tool for a specified target bitrate (Huynh-

Thu and Ghanbari, 2012). PSNR has also been used as a comparison tool between 

video codecs and has been widely used as reference benchmark for comparing 

objective and subjective video quality assessment (VQA) models against well-

established and state-of-the-art compression algorithms (Huynh-Thu and Ghanbari, 

2012; Hanhart and Ebrahimi, 2014). The well-known Bjøntegaard model (Section 

2.3) uses average PSNR values and bitrate differences between two RD curves when 

evaluating a video content at different bitrates. 

 However, PSNR has been in the centre of debate due to it being widely 

acknowledged to have poor correlation with subjective quality (Hanhart and 

Ebrahimi, 2014), such as reported for low-resolution (Quarter CIF (QCIF), CIF, and 

Video Graphics Array (VGA)) up to SD-quality videos (Huynh-Thu and Ghanbari, 

2012). Nevertheless, although other objective VQA metrics such as VQM, SSIM, 

MS-SSIM, and MOVIE have been proposed, these newer models are not being used 

as frequently as PSNR (Tan et al., 2016) for various reasons. Like PSNR, SSIM and 

MS-SSIM are also IQA models which do not include temporal distortions (Zeng et 

al., 2013). On the other hand, VQM and MOVIE are not often being used mainly 

𝑃𝑆𝑁𝑅 = 10 log10
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due to their computational complexities in calculating temporal variations (Tan et 

al., 2016) and are still not fully successful in capturing and penalising the temporal 

artefacts (Zeng et al., 2013). The interpretation of VQM and SSIM values has not 

become a common practice in video coding community (Tan et al., 2016).  

Although VQM, SSIM, and MS-SSIM are statistically better than PSNR 

(Zeng et al., 2013), the rate-distortion (RD) gains obtained from these models may 

not necessarily be significantly better than PSNR. In (Zeng et al., 2013), it was 

shown that despite scoring better scores in terms of Pearson Linear Correlation 

Coefficient (PLCC), Spearman Rank-Order Correlation Coefficient (SRCC), Kendall 

Rank-Order Correlation Coefficient (KLCC), Mean Absolute Error (MAE), and 

Root Mean Square (RMS) scores, the average rate-distortion (RD)-gains on videos 

of HD and Wide VGA (WVGA) (854×480) resolutions obtained by SSIM, MS-

SSIM, VQM, and MOVIE are not necessarily much higher than calculated by PSNR. 

In fact, VQM and MOVIE may provide lower RD-gains than PSNR in spite of 

requiring substantially larger computational costs (1083× and 7229×, respectively, 

based on crude execution times) than PSNR.  On the other hand, the RD-gains 

provided by SSIM and MS-SSIM are only slightly better than PSNR in spite of a 

several-fold increase in computational times (by around 6× and 11×, respectively). 

Moreover, all the above mentioned objective IQA/VQA models systematically 

underestimate the RD-gains achievable by subjective scores (Zeng et al., 2013). 

Tan et al. (2016) chooses PSNR over other objective IQA/VQA metrics to be 

compared with subjective quality evaluation results. In fact, the poor correlation 

possessed by PSNR against subjective quality leads to PSNR underestimating the 

BD-rate gains instead of riskily overestimating, by around 15% on average (Tan et 

al., 2016), varying between 11% and 18% depending on the video content class, i.e., 

higher BD-rate gains could actually be achieved if a MOS-based RD curve were 

used instead. Their results corroborate with their earlier findings that for equal 

PSNR, the bitrate savings will be 16% lower than for equal MOS when comparing 

HEVC to Advanced Video Coding (AVC), based on five UHD sequences 

(Weerakkody et al., 2014). In (Hanhart et al., 2012), PSNR-based BD-rate 

underestimates the actual bit rate reductions by around 22% based on three UHD 

sequences, partly due to the saturation effect in perceived quality not captured by 
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PSNR. Thus, although may not be precise, it is safe to rely on PSNR measurements 

as the actual video coding performance gain could be much higher. 

As previously mentioned, a subjective metric is widely acknowledged as the 

best form of video quality evaluation as it reflects human perceived quality whereas 

objective VQA models only provide an estimated quality measure (Li, Ma and Ngan, 

2011). Besides being too expensive, extremely time-consuming, infeasible for online 

manipulations, and impractical for system designs, quality monitoring, etc. (Li, Ma 

and Ngan, 2011; Hanhart and Ebrahimi, 2014), it can be argued that a subjective 

model based on MOS is also an estimated quality score as the number of assessors 

participated in any test conducted is usually fewer than 50 people, and this count is 

far too low to be representing billions of human viewers across the globe. In fact, 

frame-level MOS results also do not correlate well with sequence-level MOS results 

(Zeng et al., 2013). Compared with frame-level quality, temporal artefacts contribute 

strongly to the overall sequence-level quality (Zeng et al., 2013). 

In summary, PSNR can typically be reliably used as an indication of the 

variation of video quality as long as its limitations are considered, such as full frame 

rate encoding instead of decimated frame rate, i.e., without the presence of frame 

skipping or freezing, the saturation effect of the HVS is taken into account (Hanhart 

et al., 2012), etc. Even though PSNR is acknowledged and widely criticised for its 

poor correlation with perceived quality, it has clear physical meanings (Wang et al., 

2004), can be reliably interpreted (Weerakkody et al., 2014; Tan et al., 2016), and 

the primary objective quality reference in a video codec development mostly by 

convention (Zeng et al., 2013). Therefore, in this thesis, PSNR has been used as the 

primary VQA metric. 

2.3 Bjøntegaard Delta PSNR (BD-PSNR) and bitrate (BD-rate) 

It is often useful to compare video quality between two different coded 

videos (e.g., using different codecs) of the same input raw video. These two different 

coded videos may produce different PSNR values and different bitrates (the rate of a 

coded video in bits per second). In this case, a simple PSNR comparison is not so 

useful, because the coded videos also have different bitrates. In this situation, the 

Bjøntegaard Delta PSNR (BD-PSNR) metric can be applied. This metric is based on 
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a curve fitting of two different Rate-Distortion (R-D) curves (one for each coded 

video) formed for instance by four PSNR-bitrate points. BD-PSNR represents the 

difference in PSNR values (in decibel (dB)) usually over the range of four bitrates 

while BD-rate metric represents the average bitrate difference (in %) normally over 

the range of four PSNR values. BD-PSNR and BD-rate calculations are described in 

more detail in references (Bjøntegaard, 2001, 2008). 

2.4 Brief History of Video Coding 

Video coding has been in existence for the last three decades. Two major 

organisations that have been instrumental in video technology are the International 

Telecommunication Union (ITU) and International Organization for Standardization 

(ISO) / International Electrical Committee (IEC). The history of digital video 

standardisation can be summarised by revising the digital video standards developed 

by ITU and ISO/IEC as shown in Fig. 2.4. First, Recommendation (Rec.) 601 (ITU, 

2011) for uncompressed digital video representation standard was created in 1982 by 

the International Radio Consultative Committee (CCIR, today is known as the 

Radiocommunication sector of ITU (ITU-R)). Rec. 601 has been the bridge 

connecting the analogue era and digital video world as we know today. Two years 

later in 1984, the Telecommunication sector of ITU (ITU-T) published the first 

standard digital video compression technology, Rec. H.120 (ITU, 1993a). However, 

it was only in 1990 that an adequate compression design could be considered 

available with the release of ITU-T’s Rec. H.261 (ITU, 1993b; Sullivan, 2014).  

On the other hand, ISO/IEC produced its first video coding standard, MPEG-

1 (ISO, 1993), in 1993. A year later in 1994, ITU-T and ISO/IEC released their first 

jointly developed video coding standard, Rec. H.262/MPEG-2 Video (ITU, 2012; 

ISO, 2013a). In 1995, ITU-T produced Rec. H.263 standard (ITU, 2005), and in 

1999, ISO/IEC published MPEG-4 Visual standard (ISO, 2004).  

ITU-T and ISO/IEC under a partnership known as Joint Video Coding (JVT) 

completed their second jointly developed video coding standard in May 2003 with 

the introduction of Rec. H.264/MPEG-4 Part 10 Advanced Video Coding (AVC) 

(ISO, 2014; ITU, 2014). The following few years witnessed extensions to AVC were 

subsequently developed, namely Scalable Video Coding (SVC), Multiview Video 
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Coding (MVC), MPEG’s Reconfigurable Video Coding (RVC), and Fully 

Configurable Video Coding (FCVC) (Richardson, 2012).  

Finally in January 2013, the newest standard Rec. H.265/MPEG-H Part 2 High 

Efficiency Video Coding (HEVC) (ISO, 2013b; ITU, 2013) was approved as a result 

of the latest partnership between ITU-T and ISO/IEC codenamed Joint Collaborative 

Team on Video Coding (JCT-VC). The first version of the HEVC standard was 

finalised in April 2013. The JCT-VC committee then proceeded to develop 

extensions of HEVC, namely Format Range Extensions (RExt), Scalable HEVC 

(SHVC) and Screen Content Coding (SCC) (HHI, 2016). Meanwhile, the multiview 

(MV-HEVC) and 3-D (3D-HEVC) video coding extensions of HEVC were 

developed by another committee, namely the Joint Collaborative Team on 3D Video 

Coding Extension Development (JCT-3V). The second version of HEVC which 

includes the RExt, SHVC and MV-HEVC extensions was concluded in October 

2014, and the third version of HEVC comprising the 3D-HEVC extension was 

completed in February 2015 (HHI, 2016). 

 

Fig. 2.4 Video coding standards by ITU-T VCEG and ISO/IEC MPEG 
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2.5 Prediction Structure/Configuration 

The encoding and decoding processing order of the pictures in a video 

sequence is usually different from their arrival order. Thus, it is necessary to 

differentiate them by means of the bitstream order (or decoding order) and the 

display order (or the output order). In video coding, there are three types of pictures: 

I (intra), P (predicted), and B (bi-predicted) pictures. An I picture is a picture that 

involves only spatial intra-picture prediction and therefore can be independently 

decoded without needing any prediction information from other decoded pictures. A 

P picture requires prediction information from another I, P, or B picture to construct 

every block in the picture. A B picture requires prediction information from two I, P, 

or B pictures to build its blocks (Tabatabai et al., 2014). Additionally, I and P 

pictures are also classified as anchor pictures. In general, the pictures from an anchor 

picture to the last picture just before another anchor picture is termed as a Group of 

Pictures (GOP), where the size of a GOP is usually fixed in a video sequence such as 

four, eight, twelve, etc. 

To assess the coding performance of a video coding standard, different 

prediction configurations are defined to simulate different application scenarios. In 

the case of HEVC and AVC, the following configurations were established: 

i. All Intra (AI) 

ii. Random Access (RA) 

iii. Low Delay with P pictures (LP) 

iv. Low Delay with B pictures (LB) 

A Quantisation Parameter (QP) in these configurations is altered by means of 

a ‘QP offset’. A base QP is normally configured for the first picture of the sequence 

(an I picture), QPI. For the remaining pictures, their QP values can be derived as QP 

= QPI + QP offset, where QP offset is dependent on the position or temporal ID of 

the pictures. 

2.5.1 All Intra (AI) 

As the name suggests, in AI configuration, all pictures are encoded as I 

pictures.  AI is suitable for low delay and high bitrate applications such as storage of 

high-quality video contents as it does not involve inter-prediction. QP offset is 

always zero as the QP is retained over the whole sequence (Fig. 2.5) (Tabatabai et 
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al., 2014). 

 

Fig. 2.5 All intra (AI) prediction structure (adapted from (Tabatabai et al., 

2014)) 

 

2.5.2 Random Access (RA) 

RA applies a structure of hierarchical bi-predictive coding (Fig. 2.6). The 

coding efficiency achieved in this configuration is generally better than the other 

configurations. However, a larger delay is involved to reorder the pictures. The RA 

configuration is useful for frame skipping such as fast forward or rewind operations 

in the entertainment application scenario. To control ease of random access and 

possible error propagation, I pictures are periodically inserted based on the frame 

rate of the video sequence. Having I pictures inserted in this manner helps to decode 

a GOP independently from the previous GOPs (Tabatabai et al., 2014).  
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Fig. 2.6 Random access (RA) prediction structure (adapted from (Tabatabai et 

al., 2014)) 

 

2.5.3 Low Delay with P pictures (LP) 

In LP, the first picture is encoded as an I picture while all the remaining 

pictures are encoded as P pictures (Fig. 2.7). Picture reordering is disallowed and 

predictions only involve past pictures. Due to these conditions, the coding delay may 

be made small (Tabatabai et al., 2014).  

2.5.4 Low Delay with B pictures (LB) 

Similar to LP, the first picture in LB configuration is encoded as an I picture 

while the remaining pictures are encoded as B pictures (Fig. 2.7). Picture reordering 

is disallowed and predictions only involve B pictures. The coding delay may also be 

small similar to in LP, but its coding efficiency could be better (Tabatabai et al., 

2014). 
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Fig. 2.7 Low delay with P pictures and B pictures prediction structure 

(adapted from (Tabatabai et al., 2014)) 

 

2.6 Overview of the High Efficiency Video Coding (HEVC) standard 

HEVC follows the typical hybrid video coding scheme comprising block-

based intra-/inter-picture prediction, 2-D transform, and entropy coding as applied in 

previous video coding standards since H.261 (Sullivan et al., 2012; Vanne et al., 

2012). The general encoder and decoder models in encoding and decoding an 

HEVC-compliant bitstream are as illustrated earlier in Fig. 1.2. Each picture from a 

video sequence is first divided into block regions. The first pictures of every random 

access point in the video sequence including the very first picture of the whole 

sequence are encoded with intra-picture prediction, i.e., block-wise spatial 

predictions within the same picture and independent from other pictures. For the 

other remaining pictures, inter-picture prediction is normally in place, i.e., temporal 

predictions from nearby blocks in neighbouring pictures. The inter-picture prediction 

is performed based on motion data formed by the reference picture and the motion 

vector (MV) to predict the samples in a block of the current picture. Identical inter-

picture prediction signals are generated by both the encoder and the decoder by 

executing motion compensation (MC) based on the MV and inter-prediction mode 

decision data, which are transmitted to the decoder as side information (Sullivan et 

al., 2012). 
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 The differences between the original block samples and predicted block 

samples of the intra-/inter-picture prediction are known as prediction residuals. 

These residual data are then integer transformed to produce transform coefficients. 

These transform coefficients are then scaled, quantised and entropy encoded to form 

the bitstream to be delivered to the decoder.  

 The encoder has an in-loop decoding process so that it will continue working 

on predictions of subsequent blocks and pictures using identical reconstructed blocks 

and pictures as would be generated by the decoder. In this decoding loop, the 

quantised transform coefficients are inverse scaled and inverse transformed to 

produce the approximation of the original residual samples. These residuals are then 

added to the prediction, and the result of this addition may then be fed into one or 

two loop filters (deblocking and sample adaptive offset filters) to smooth out 

artefacts due to block-wise processing and quantisation. The operations continue 

until the reconstruction of the whole picture completes. This reconstructed picture is 

then stored in the decoded picture buffer (DPB) to be used for predicting subsequent 

pictures. The next subsection describes the video coding layer of HEVC in more 

detail. 

2.6.1 Video coding layer of HEVC 

 The various features in the video coding layer of HEVC can be described as 

follows (Sullivan et al., 2012): 

1) Coding tree unit (CTU) and coding tree block (CTB) structure: 

In the coding layer of previous standards like AVC, the basic units were the macro 

blocks (MB) of 16 × 16 luma samples and two corresponding 8 × 8 blocks of chroma 

samples in the case of 4:2:0 YUV colour sampling. The analogous structure in 

HEVC is the coding tree unit (CTU) consisting of one luma coding tree block (CTB) 

and two chroma CTBs along with their associated syntax elements. The size L × L of 

a luma CTB can be L   {64, 32, 16}, with the larger sizes normally allowing higher 

compression for large homogeneous regions such as commonly found in high-

resolution videos. 

2) Coding units (CUs) and coding blocks (CBs): 

The CTBs could then be partitioned into smaller blocks using a quadtree-like 

structure, namely the coding units (CUs) and coding blocks (CBs). A CU is formed 
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by one luma CB and ordinarily two chroma CBs along with their associated syntax. 

The root of the quadtree at the CTU determines the largest size of the luma CU 

(LCU) and with the maximum depth for the partitioning of four could yield luma 

CUs of sizes 32 × 32, 16 × 16, 8 × 8, and 4 × 4. Thus, a CTU may consist of one or 

more CUs, and every CU can then be further split into prediction units (PUs) and a 

tree of transform units (TUs). 

3) Prediction units (PUs) and prediction blocks (PBs): 

Either intra-picture or inter-picture prediction to be performed on a CU is decided at 

the CU level. A PU partitioning structure also has its root at the CU level, and the 

luma and chroma CBs can be further partitioned into various PB sizes ranging from 

64 × 64 down to 4 × 4. 

4) Transform units (TUs) and transform blocks (TBs): 

As previously mentioned, the prediction residuals are coded using 2-D transforms. 

Independently from the PU partitioning, a transform unit (TU) quadtree structure 

also has its root at the CU level. So, the luma and chroma TBs can either be identical 

to their corresponding CBs or further partitioned into smaller square sizes among 4 × 

4, 8 × 8, 16 × 16, and 32 × 32. These TBs are integer transformed using a scaled 

approximation of the discrete cosine transform (DCT) commonly found in image and 

video compressions. Additionally, for the 4 × 4 intra-picture predicted luma TB, an 

alternative transform based on a scaled approximation of the discrete sine transform 

(DST) was also defined. 

5) Intra-picture prediction: 

AVC provides eight directional modes whereas HEVC supports up to 33 directional 

modes plus DC (flat) and planar (surface fitting) modes. Spatial prediction is 

performed using decoded boundary samples of adjacent blocks (upper, upper left, or 

left) as reference data. The most probable intra-picture prediction modes are selected 

based on previously decoded neighbouring PBs. 

6) Motion vector signalling: 

HEVC uses advanced motion vector prediction (AMVP), where a number of most 

probable candidates are included based on adjacent PBs and the selected reference 

pictures. MVs from spatially or temporally nearby PBs can also be inherited in the 

merge mode. Additionally, skipped and direct motion inferences have also been 
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improved compared to AVC. 

7) Motion compensation: 

In AVC, a 6-tap filter was used for half-sample precision followed by a linear 

interpolation for quarter-sample precision. HEVC uses 7-tap or 8-tap filters for 

fractional-sample interpolation. Features inherited from AVC include multiple 

pictures referencing, uni-predictive (one MV) or bi-predictive (two MVs) coding, 

and weighted prediction where a scaling and an offset are applied to the prediction 

signals. 

8) Quantisation:  

Like AVC, HEVC performs uniform reconstruction quantisation (URQ) with 

quantisation scaling matrices for the four supported TB sizes. 

9) Entropy coding: 

AVC supports context adaptive variable length coding (CAVLC) in its Main profile 

and context adaptive binary arithmetic coding (CABAC) in the High profile. In 

HEVC, a much improved CABAC is defined to enhance its throughput speed, 

compression performance, and its context memory requirements.  

10) In-loop deblocking filtering: 

HEVC operates a simplified deblocking filter relative to AVC within the inter-

picture prediction loop. The simplification made was in terms of its decision-making, 

filtering processes, and designed to be friendlier to parallel processing. 

11) Sample adaptive offset (SAO): 

An SAO filter follows the deblocking filter in the inter-picture prediction loop of 

HEVC to better reconstruct the original prediction residuals prior to storing in the 

DPB. The operation is performed on a region basis based on look-up tables. The 

SAO filtering either adds no offset, a band offset, or an edge offset. 

2.6.2 Profiles, Levels, and Tiers in HEVC 

 Like previous standards, HEVC was developed to support a wide range of 

video applications by defining a large pool of video coding algorithms. Most of these 

applications, however, do not require using all the coding capabilities established in 

HEVC. Having a limitation of the coding tools or algorithms supported by an HEVC 

codec specifically designed for certain applications provides the benefits of reduced 
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computing and memory requirements. Therefore, profiles were defined in HEVC to 

support different sets of coding tools of the standard. In the first version of HEVC, 

three coding profiles were defined (Sullivan, 2014):  

1) Main profile: for typical applications used by most consumers, supporting videos 

of 8-bit per sample and 4:2:0 YUV colour sampling.  

2) Main Still Picture profile: a subset of the Main profile. This profile is for 

snapshots from video sequences or still photography from cameras. 

3) Main 10 profile: a superset of the Main profile. This profile supports up to 10-bit 

per sample videos, providing higher brightness dynamic range, larger colour-gamut 

content, and increased fidelity colour representations to reduce rounding errors and 

contouring artefacts. 

 A profile conforming decoder must be able to support all features in that 

profile. Within a profile, there are also different maximum or minimum requirements 

expected by different devices, video resolutions, etc. Thus, levels were defined to 

restrict the maximum number of luma samples, maximum sample rate, maximum 

bitrate, minimum compression ratio, and minimum DPB and coded picture buffer 

(CPB) sizes, which stores compressed data prior to decoding for data flow 

management purposes (Sullivan et al., 2012). The first version of HEVC defined 13 

levels, supporting small picture resolutions like Quarter CIF (QCIF, 176 × 144) and 

very large resolutions of up to 8K UHD (7680 × 4320). Table 2.3 summarises the 13 

levels defined in the Main profile. 

 Among the parameters distinguishing a level from the others, some 

applications had requirements differing only in the maximum bitrate and CPB 

capabilities. Therefore, two tiers were defined each for the top eight levels: a Main 

Tier adequate for most applications and a High Tier particularly for most demanding 

applications. An HEVC decoder conforming to a certain tier and level is expected to 

be able to decode all bitstreams that conform to that tier and the lower tier of the 

same level, as well as all levels below it (Sullivan et al., 2012).  
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Table 2.3 Supported levels in Main profile of HEVC (Sullivan et al., 2012) 

Level Max luma 

samples 

Max luma 

sample rate 

(samples/s) 

Max bitrate (1000 bits/s) Min 

comp. 

ratio 
Main Tier High Tier 

1 36 864 552 960 128 - 2 

2 122 880 3 686 400 1500 - 2 

2.1 245 760 7 372 800 3000 - 2 

3 552 960 16 588 800 6000 - 2 

3.1 983 040 33 177 600 10 000 - 2 

4 2 228 224 66 846 720 12 000 30 000 4 

4.1 2 228 224 133 693 440 20 000 50 000 4 

5 8 912 896 267 386 880 25 000 100 000 6 

5.1 8 912 896 534 773 760 40 000 160 000 8 

5.2 8 912 896 1 069 547 520 60 000 240 000 8 

6 35 651 584 1 069 547 520 60 000 240 000 8 

6.1 35 651 584 2 139 095 040 120 000 480 000 8 

6.2 35 651 584 4 278 190 080 240 000 800 000 6 

 

2.7 Summary 

 A few fundamental concepts on video coding were briefly introduced in this 

chapter to facilitate a better understanding of the research work done in this thesis. 

These concepts include an overview of the HEVC standard and a walkthrough of 

HEVC encoder. The next chapter is dedicated to describing the forward transform, 

intermediate scaling, and quantisation defined in the HEVC standard, as these 

operations are the main subjects of this research. 
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Chapter 3  

HEVC Forward Transform, Intermediate 

Scaling, and Quantisation 

Abstract This chapter describes the forward transform, intermediate scaling, and 

quantisation operations specified in the HEVC standard. The content of this chapter 

was heavily extracted from (Budagavi et al., 2013; Budagavi, Fuldseth and 

Bjøntegaard, 2014) to serve as the foundation of the research work carried out in this 

thesis.  

3.1 Introduction 

 A typical block-based hybrid video coding system is made of two 

components: an encoder and a decoder, as illustrated in Fig. 3.1. At the encoder, a 

picture is first partitioned into square or rectangular blocks of pixels/samples 

depending on the spatial characteristics of the picture. Each block then subtracts a 

neighbouring block in the same picture (intra-prediction mode exploiting spatial 

redundancies) or another block from a neighbouring picture (inter-prediction mode 

exploiting temporal redundancies), resulting in a prediction residual signal. This 

residual signal can be further divided into square blocks of size N × N, where N = 2
M

 

and M is an integer. A separable two-dimensional (2-D) N × N forward transform is 

then performed on every residual block (U), which can equally be realised by 

consecutively applying a one-dimensional (1-D) N-point transform to every row and 

column. Up to here, the process is lossless or near-lossless depending on the adopted 

transform precision. Then, the resulting transform coefficients (coeff) are input to a 

quantisation (dividing by a quantisation step (Qstep) and necessary rounding) 

producing quantised transform coefficients (level). The quantisation is a lossy 

operation. These quantised transformed coefficients are then scanned and entropy 

encoded by exploiting statistical redundancies of the scanned level to be included in 

the final bitstream (Budagavi, Fuldseth and Bjøntegaard, 2014). 
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 At the decoder, the encoding process is reversed. First, the received bitstream 

is entropy decoded to extract the quantised transform coefficients (level).  Then, 

these coefficients are de-quantised (multiplying by Qstep) to obtain the de-quantised 

transform coefficients (coeffQ). After that, a separable 2-D N × N inverse transform is 

performed on coeffQ to obtain the quantised residual samples. Finally, these 

quantised samples are added to the intra-/inter-prediction samples to reconstruct the 

original block (Budagavi, Fuldseth and Bjøntegaard, 2014). 

 

Fig. 3.1  Hybrid block-based video coding comprising (a) an encoder and (b) a 

decoder (C is the transform matrix and Qstep is the quantisation step) (Budagavi et 

al., 2013; Budagavi, Fuldseth and Bjøntegaard, 2014) 
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3.2  HEVC Transforms 

 The HEVC standard defines two transform operations: a core transform and 

an alternative transform. The core transform is based on Discrete Cosine Transform 

(DCT) type II introduced by Ahmed, Natarajan, and Rao (Ahmed, Natarajan and 

Rao, 1974) and applicable to all luminance and chrominance TU sizes defined in the 

standard, as well as intra and inter PUs. On the other hand, the alternative transform 

is based on Discrete Sine Transform (DST) type VII and applicable to only 4 × 4 

luminance intra-predicted residual blocks (Budagavi, Fuldseth and Bjøntegaard, 

2014).  

 For input residual samples xc, the N-point 1-D transform coefficients yrc can 

be expressed as  

     ∑      

    

     

 

where r = 0, 1, …, N – 1. For DCT type II, elements trc = crc and defined as 
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where r, c = 0, 1, …, N – 1, and P is equal to 1 for r = 0 and √  for r > 0. Moreover, 

the basis vectors cr of the DCT are defined as cr = [cr0, cr1, …, cr(N – 1)] where r = 0, 

1, …, N – 1 (Budagavi, Fuldseth and Bjøntegaard, 2014). The DCT is advantageous 

in image and video compression due to its favourable properties as listed in Table 

3.1 (Rao and Yip (1990) cited in (Budagavi, Fuldseth and Bjøntegaard, 2014)). 

 On the other hand, for DST type VII, elements trc = src where r, c = 0, 1, …, 

N – 1 and defined as  
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Table 3.1  Several properties of DCT (Rao and Yip (1990) cited in (Budagavi, 

Fuldseth and Bjøntegaard, 2014)) 

No. Property Description Benefit 

i. Orthogonality Its basis vectors are 

orthogonal, i.e.,  

crcc = 0 for r ≠ c and 

cc = cr
T
  

(superscript 
T
 denotes 

the transpose 

operation). 

De-correlate the transform 

coefficients. 

ii. Normal Its basis vectors have 

equal norm, i.e.,  

crcc = 1 for r = c and 

r = 0, 1, …, N – 1. 

Simplify the quantisation/de-

quantisation process. 

iii. Energy 

compaction 

Its basis vectors have 

good energy 

compaction. 

Concentrate the energy towards 

the low-frequency region near 

the top left corner of a 2-D 

block. 

iv. Embedded 

elements 

A DCT matrix of size 

2
M

 × 2
M

 is a subset of 

a DCT matrix of size 

2
M + 1

 × 2
M + 1

, which 

are equal to the left 

half of the even basis 

vectors of the larger 

matrix. 

Reduce hardware costs as the 

involved multipliers can be 

shared by different matrix sizes. 

v. Small quantity 

of elements 

For a DCT matrix of 

size 2
M

 × 2
M

, the 

number of unique 

elements is equal to 

2
M

 – 1. 

 

Low implementation costs. 
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vi. Symmetry/Anti-

symmetry 

The even basis 

vectors are 

symmetric, while the 

odd basis vectors are 

anti-symmetric. 

Lower the number of arithmetic 

operations. 

vii. Trigonometric 

relationships 

DCT matrix 

coefficients have 

some trigonometric 

relationships. 

The number of arithmetic 

operations can be further 

reduced by employing 

algorithms such as Chen’s fast 

factorisation. 

viii. Separable 2-D N × N DCT are 

executable as two 

separate 1-D N-point 

DCTs on the rows 

and columns. 

The same DCT matrix is 

reusable for the second 

transform operation. 

 

3.3 Basis Vectors of HEVC Core and Alternative Transforms 

Both the core and alternative transform matrices of HEVC are scaled integer 

approximations of the DCT or DST matrix. An obvious advantage of using a fixed 

precision instead of floating values is reduced computational complexity. Another 

benefit is that the transform elements can be specified explicitly in the standard 

instead of implementation-dependent. This eliminates encoder-decoder mismatch 

due to different developers implementing the inverse DCT/DST transform operations 

using slightly different floating-point precisions.  

However, one disadvantage associated with approximated transform elements 

is that some of the useful properties previously mentioned in Table 3.1 are 

compromised. Therefore, a trade-off was made between reducing the computational 

complexity and preserving some of the transform properties (Budagavi, Fuldseth and 

Bjøntegaard, 2014). 

 HEVC defines four N × N core transform matrices, where N = 4, 8, 16, and 

32. The elements of the largest core transform matrix,    
  , was derived by 
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approximating the scaled and rounded DCT elements after applying a scaling factor, 

          ⁄    √           to crc where r, c = 0, 1, …, 31, i.e., 

   
          (    ) 

It is worth noting that    
          (    ) as a hand-tuning was performed to some 

of the scaled and rounded DCT elements to achieve an acceptable balance between a 

few DCT properties (Budagavi, Fuldseth and Bjøntegaard, 2014) (shown later in 

Table 4.4). 

 Fig. 3.2 provides the left half of the 32 × 32 core forward transform matrix. 

The right half can easily be derived by applying the symmetry/anti-symmetry 

property of the basis vectors. The inverse core transform matrix of HEVC is the 

transpose of Fig. 3.2 (and the associated right half). The elements of the smaller 

transform matrices,    
 , where N = 4, 8, 16 and r, c = 0, 1, …, N – 1, can be obtained 

from    
   as (Budagavi, Fuldseth and Bjøntegaard, 2014) 

   
     (   ) ⁄  

   (3.1) 

 As can be seen from Fig. 3.2, the N × N core transform matrix is embedded in 

the 2N × 2N matrix (property iv in Table 3.1). For instance, by using (3.1) and Fig. 

3.2, the 4 × 4 core transform matrix,    can be obtained as (Budagavi, Fuldseth and 

Bjøntegaard, 2014) 

   

[
 
 
 
 
      
        

  

      
        

  

      
        

  

      
        

  

     
       

  

     
       

  

     
       

  

     
       

  ]
 
 
 
 

   

[
 
 
 
         

        

          

      

      

      

        

        ]
 
 
 
 

 

 In addition, due to the unique numbers property and symmetry property 

inherited from DCT (properties v and vi in Table 3.1),    can as well be written as 

   

[
 
 
 
 
       
          

  

        
          

  

         
             

  

       
         

  

       
        

  

       
       

  

       
             

  

       
           

  ]
 
 
 
 

 (3.2) 
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It is worth noting that (3.2) only involves elements from the first column (c = 0) of 

Fig. 3.2, and applying this realisation greatly simplifies the implementation. 

Furthermore for notational simplicity, the elements      
   of (3.2) will be denoted 

by   . Using this new notation, (3.2) becomes 

   [

         
          

             
         

       
        

           
            

] (3.3) 

The corresponding inverse transform matrix is    .  
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Fig. 3.2  Left half of the 32-point forward core transform matrix with 

embedded 4-point (green blocks), 8-point (pink blocks), and 16-point (yellow 

blocks) forward transform matrices (Budagavi, Fuldseth and Bjøntegaard, 2014) 
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On the other hand, the elements of the alternative matrix of HEVC,    
 , was 

derived by scaling the DST elements, src, by           and rounding to the 

nearest integer, i.e., 

   
         (    ) 

The alternative forward transform matrix,   , is therefore given by (Budagavi, 

Fuldseth and Bjøntegaard, 2014) 

   *

        
        

          
         

      
      

        
        

+ 

The corresponding inverse transform matrix is    .  

 The most important transform coefficient is the DC coefficient, which is at 

coordinate (0, 0) of a 2-D plane. In terms of a 2-D image/picture plane, the DC 

transform coefficient is at the top left corner of a block, indicating the sample energy 

at a frequency of zero Hertz (0 Hz). The Human Visual System (HVS) is known to 

be more sensitive to low frequencies than high frequencies (Richardson, 2012), and 

the HVS is most sensitive to the DC value. This DC value is the result of multiplying 

the samples with the first basis vector of a transform. Therefore, the first basis vector 

of a transform is crucial in determining the DC coefficient. 

 The DST matrix is more suitable for an intra-prediction block as the residuals 

are smaller near the top and left boundaries and larger towards the bottom and right 

boundaries. In contrast to the DCT matrix which has a flat first row, the elements of 

the first row of a DST matrix increase from left to right making it better in modelling 

the spatial behaviour of the intra-prediction residuals and providing around 1% bit-

rate reduction (Saxena and Fernandes, 2013). However, the DST matrix was only 

adopted for the 4 × 4 intra PUs as the additional coding gain using larger DST 

transforms was insignificant and the computational complexity of an N × N DST is 

higher than a DCT of the same size. 
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3.4 Complexity Analysis 

 This section describes the even–odd decomposition technique, multiplier-free 

approach, and Multiple-Constant Multiplication (MCM) technique, which are useful 

in reducing the computational complexity. 

3.4.1 Even–Odd Decomposition 

For an N-point input vector, the number of arithmetic operations for a 1-D 

forward/inverse transform via direct matrix multiplication is N
2
 multiplications and 

N(N – 1) additions (including subtractions). For an N × N input block, the 

complexity of a 1-D transform becomes N
3
 multiplications and N

2
(N – 1) additions. 

The separable property of transforms such as DCT enables a 2-D transform to be 

implemented via two 1-D transforms with a transpose operation between them. Thus 

for a 2-D transform of an N × N input block, the complexity is 2N
3
 multiplications 

and 2N
2
(N – 1) additions.  

However, the inheritance of the symmetry property of DCT basis vectors 

(property vi in Table 3.1) facilitates the transform complexity to be significantly 

reduced. The technique that utilises this symmetry property was referred to as the 

even–odd decomposition (known as partial butterfly during HEVC development). A 

1-D forward transform using the even–odd decomposition technique comprises the 

following three steps (adapted from (Budagavi, Fuldseth and Bjøntegaard, 2014)): 

1. Add/subtract input data to generate an N-point intermediate vector. 

2. Calculate the even part using the N/2 × N/2 subset matrix formed by the 

even rows of the N × N transform matrix. 

3. Calculate the odd part using the N/2 × N/2 subset matrix formed by the 

odd rows of the N × N transform matrix. 

For the inverse transform, the add/subtract operation is performed after the even and 

odd parts calculation. This technique is best demonstrated using the 4-point and 8-

point transforms. Higher order transforms such as the 16-point, 32-point or higher 

apply the same routine. 

The forward 4-point transform can be obtained as   
      

 , where 

  
  [           ]

  is a 4-point input vector,   
  [           ]

  is the 4-point 
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output of the transform, and    is as given in (3.3). Thus, the 4-point forward 

transform using the even–odd decomposition is as provided by (3.4)–(3.6): 

Add/sub part: 

[           ]
  [                          ]

  (3.4) 

Even part: 

[
  
  
]  [

         
       

] [
  
  
]   [

            
            

] 
(3.5) 

Odd part: 

[
  
  
]  [

        
      

] [
  
  
]   [

             
             

] (3.6) 

Then, the output is   
  [           ]

 . 

 The direct 1-D 4-point transform   
      

  would incur 4
2
 = 16 

multiplications and 4(4 – 1) = 12 additions. The 2-D transform will cost 2(4)
3
 = 128 

multiplications and 2(4
2
)(4 – 1) = 96 additions. On the other hand, a 1-D transform 

using the even–odd decomposition involves four additions for the add/sub part (3.4), 

two multiplications and two additions for the even part (3.5), and four 

multiplications and two additions for the odd part (3.6), i.e., six multiplications and 

eight additions in total. The corresponding separable 2-D transform will cost 2 × 4 × 

6 = 48 multiplications and 2 × 4 × 8 = 64 additions, resulting in 62.5% reductions in 

the number of multiplications and 33.3% for the additions in comparison with the 

direct matrix multiplication in the 4 × 4 case (Budagavi, Fuldseth and Bjøntegaard, 

2014). 

Similarly, let   
  [          ]

  be an 8-point input vector and   
  

[          ]
  be the 8-point output of the transform. The forward 8-point transform 

can then be attained as   
      

 , where    is given by (Budagavi, Fuldseth and 

Bjøntegaard, 2014) 
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[
 
 
 
 
 
 
 
 
          
          

          
          

            
          

        
          

          
          

           
        

        
          

            
             

         
          

         
          

           
          

         
          

         
          

         
          

         
          

          
          ]

 
 
 
 
 
 
 
 

 (3.7) 

The 8-point forward transform using the even–odd decomposition is as provided by 

(3.8)–(3.10): 

Add/sub part: 

[                       ]
  

 [                                               ]
   (3.8) 

Even part: 

[

  
  
  
  

]  [

          
            

            
        

         
        

         
          

 ] [

  
  
  
  

]    [

  
  
  
  

] (3.9) 

Odd part: 

[

  
  
  
  

]  [

           
             

            
        

        
         

            
          

 ] [

  
  
  
  

] (3.10) 

The output is   
  [                       ]

 . 

The direct 1-D 8-point transform   
      

  would incur 8
2
 = 64 

multiplications and 8(8 – 1) = 56 additions. The 2-D transform will cost 2(8)
3
 = 1024 

multiplications and 2(8
2
)(8 – 1) = 896 additions. Using the even–odd decomposition, 

it is worth noting that the even part (3.9) can be implemented using the 4-point (N/2-

point) even–odd decomposition (3.4)–(3.6). So, for 1-D 8-point transform using this 

technique, the add/sub part involves eight additions (3.8), the even part costs the 

same as the 4-point transform, i.e., six multiplications and eight additions, while the 

odd part requires 16 multiplications and 12 additions (3.10). Thus, the total 

arithmetic complexity of 1-D 8-point transform using the even–odd decomposition is 
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6 + 16 = 22 multiplications and 8 + 8 + 12 = 28 additions. The corresponding 2-D 

transform will require 2 × 8 × 22 = 352 multiplications and 2 × 8 × 28 = 448 

additions (Budagavi, Fuldseth and Bjøntegaard, 2014), i.e., giving 65.6% savings in 

the number of multiplications and 50% in additions, relative to the direct matrix 

multiplication. 

 The calculation of the 4-point and 8-point forward transform computational 

complexity can be applied in the same manner to the forward/inverse transform of 

larger sizes. The total complexity of multiplications and additions for the 1-D N-

point, 1-D N × N, and 2-D N × N transforms using the even–odd decomposition, in 

general, can be shown to be (3.11)–(3.16) (Budagavi, Fuldseth and Bjøntegaard, 

2014) and summarised in Tables 3.2–3.4. 

              ∑      

     

   

             ⁄    
 (     )   (3.11) 

          ∑     (      )

     

   

    

                 ⁄     
(     )  ( (     )    ) (3.12) 

              (  ∑      

     

   

)   (          ) 
(3.13) 

              ( ∑     (      )

     

   

)   (         ) 
(3.14) 

           (  ∑      

     

   

)    (          ) 
(3.15) 

          ( ∑     (      )

     

   

)    (         ) 
(3.16) 

        

      



45 

 

Table 3.2 Computational complexity in 1-D N-point HEVC core transforms 

Size 

Technique 

Matrix Multiplication Even–Odd Decomposition 

Multiplies Adds Multiplies (Savings) Adds (Savings) 

4-point 16 12 6 (62.5%) 8 (33.3%) 

8-point 64 56 22 (65.6%) 28 (50.0%) 

16-point 256 240 86 (66.4%) 100 (58.3%) 

32-point 1024 992 342 (66.6%) 372 (62.5%) 

 

Table 3.3 Computational complexity in 1-D N × N HEVC core transforms 

Size 

Technique 

Matrix Multiplication Even–Odd Decomposition 

Multiplies Adds Multiplies (Savings) Adds (Savings) 

4 × 4 64 48 24 (62.5%) 32 (33.3%) 

8 × 8 512 448 176 (65.6%) 224 (50.0%) 

16 × 16 4096 3840 1376 (66.4%) 1600 (58.3%) 

32 × 32 32768 31744 10944 (66.6%) 11904 (62.5%) 

 

Table 3.4 Computational complexity in 2-D N × N HEVC core transforms 

Size 

Technique 

Matrix Multiplication Even–Odd Decomposition 

Multiplies Adds Multiplies (Savings) Adds (Savings) 

4 × 4 128 96 48 (62.5%) 64 (33.3%) 

8 × 8 1024 896 352 (65.6%) 448 (50.0%) 

16 × 16 8192 7680 2752 (66.4%) 3200 (58.3%) 

32 × 32 65536 63488 21888 (66.6%) 23808 (62.5%) 
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3.4.2 Multiplier-free Implementation 

 Table 3.4 has shown that the even–odd decomposition technique in 

implementing a 2-D N × N HEVC core transform could yield significant savings in 

the number of multiplications and additions with respect to the direct matrix 

multiplication. While those numbers are true for a software-based implementation, 

they do not represent the actual number of multipliers involved in a hardware-based 

implementation. For instance, in 4 × 4 1-D HEVC core transform, as the operation is 

executed in a column-wise manner, only six multipliers and eight adders/subtractors 

are required to execute 24 multiplications and 32 additions/subtractions, 

respectively, i.e., the same numbers involved in a 1-D 4-point transform. Similarly 

for 4 × 4 2-D HEVC core transform with two separate 1-D transform engines and a 

transpose buffer in between, only 12 multipliers and 16 adders/subtractors are 

necessary to implement the 48 multiplications and 64 additions/subtractions as 

shown in Table 3.4. 

On hardware, a multiplication is regarded as an expensive operation as it 

utilises quite an amount of physical resources such as in the forms of Look-Up 

Tables (LUTs), Distributed/Block Random Access Memories (DRAMs/BRAMs), or 

Digital Signal Processor (DSP) slices, requiring a large area on a silicon chip 

especially when implementing large algorithms such as the 2-D 32 × 32 HEVC core 

transform. In arithmetic, a left bit-shift operation by n-bit on an input sample x (i.e., x 

<< n) simply denotes a multiplication of x by 2
n
. A bit-shift operation can be 

implemented using a shift register, or via a concatenation operation where a number 

of n zero bits are added as the suffix to x, or simply rewiring the least significant bits 

accordingly. The cost of bit-shifts in a well-designed digital system is generally not 

as significant as employing multipliers. It is, therefore, a common practice for an 

efficient and fast hardware implementation to adopt a multiplier-free approach using 

appropriate combinations of left bit-shifts and additions (including subtractions). 

 Table 3.5 shows how a multiplication on a sample with a matrix element of N 

× N HEVC core transform can be equivalently implemented with a combination of 

left bit-shifts and additions/subtractions. Table 3.6 shows the total number of shifters 

and adders/subtractors required in an N-point/N × N 1-D HEVC core transform 

implemented using the even–odd decomposition. From this table, instead of 342 
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multipliers and 372 adders/subtractors, a multiplier-free implementation of 32-

point/32 × 32 1-D HEVC core transform would incur a total number of 922 shifters 

and 1088 adders/subtractors. 

Table 3.5 Equivalent shift-add operations for HEVC core transform elements 

Element Equivalent Shifts Adds/Subs 

90 2
6
 + 2

4
 + 2

3
 + 2

1 
4 3 

89 2
6
 + 2

4
 + 2

3
 + 2

0 
3 3 

88 2
6
 + 2

4
 + 2

3 
3 2 

87 2
6
 + 2

4
 + 2

3
 – 2

0 
3 3 

85 2
6
 + 2

4
 + 2

2
 + 2

0 
3 3 

83 2
6
 + 2

4
 + 2

1
 + 2

0 
3 3 

82 2
6
 + 2

4
 + 2

1 
3 2 

80 2
6
 + 2

4 
2 1 

78 2
6
 + 2

4
 – 2

1 
3 2 

75 2
6
 + 2

3
 + 2

2
 – 2

0 
3 3 

73 2
6
 + 2

3
 + 2

0 
2 2 

70 2
6
 + 2

3
 – 2

1 
3 2 

67 2
6
 + 2

1
 + 2

0 
2 2 

64 2
6 

1 0 

61 2
6
 – 2

1
 – 2

0 
2 2 

57 2
5
 + 2

4
 + 2

3
 + 2

0 
3 3 

54 2
5
 + 2

4 + 2
2
 + 2

1 
4 3 

50 2
5
 + 2

4
 + 2

1 
3 2 

46 2
5
 + 2

4
 – 2

1 
3 2 

43 2
5
 + 2

3
 + 2

1
 + 2

0 
3 3 

38 2
5
 + 2

2
 + 2

1 
3 2 

36 2
5
 + 2

2 
2 1 

31 2
5
 – 2

0 
1 1 

25 2
4
 + 2

3
 + 2

0 
2 2 

22 2
4
 + 2

2
 + 2

1 
3 2 

18 2
4
 + 2

1 
2 1 

13 2
3
 + 2

2
 + 2

0 
2 2 

9 2
3
 + 2

0 
1 1 

4 2
2 

1 0 
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Table 3.6 Complexity in multiplier-free N-point/N × N 1-D HEVC core 

transform using even–odd decomposition 

Size 

Multipliers 

Shifts 

Adders/Subtractors 

Element Quantity 
Multiplier 

Replacement 
Adder 

Tree
a
 

Add/Sub 

part 
Total 

4-

point 

64 2 2 0 - - - 

83 2 6 6 - - - 

36 2 4 2 - - - 

Total 6 12 8 4 4 16 

8-

point 

(odd 

rows) 

89 4 12 12 - - - 

75 4 12 12 - - - 

50 4 12 8 - - - 

18 4 8 4 - - - 

Total 16 54 36 12 8 56 

16-

point 

(odd 

rows) 

90 8 32 24 - - - 

87 8 24 24 - - - 

80 8 16 8 - - - 

70 8 24 16 - - - 

57 8 24 24 - - - 

43 8 24 24 - - - 

25 8 16 16 - - - 

9 8 8 8 - - - 

Total 64 168 144 56 16 216 

32-

point 

(odd 

rows) 

90 32 128 96 - - - 

88 16 48 32 - - - 

85 16 48 48 - - - 

82 16 48 32 - - - 

78 16 48 32 - - - 

73 16 32 32 - - - 

67 16 32 32 - - - 

61 16 32 32 - - - 

54 16 64 48 - - - 

46 16 48 32 - - - 

38 16 48 32 - - - 

31 16 16 16 - - - 
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22 16 48 32 - - - 

13 16 32 32 - - - 

4 16 16 0 - - - 

Total 256 688 528 240 32 800 

Total 342 922 716 312 60 1088 

a 
Oadd (Adder tree) = 

 

 
(
 

 
  ) per even or odd part 

3.4.3 Multiple-Constant Multiplication (MCM) 

 The previous section has demonstrated potential hardware savings attainable 

by replacing multiplications with combinations of bit shifts and 

additions/subtractions. On top of the multiplier-free approach, another useful 

technique in reducing the complexity of a software-based implementation and 

hardware-sharing architecture is Multiple-Constant Multiplication (MCM). MCM is 

a technique of common sub-expressions elimination or sharing in an algorithm such 

as a mathematical formula, involving factorisation, rearrangements, etc. For instance 

in the case of the odd part of 4-point HEVC core transform (3.6), both the 

intermediate data W1 and W3 need to be multiplied by h8 and h24, which are 83 and 

36, respectively (Fig. 3.3 (a)). The two multipliers can be represented as shown in 

(3.17a)–(3.17b) involving five shifts and four additions, where d is either W1 or W3, 

the odd intermediate data after the add/sub part. Using the MCM technique, (3.17a) 

can be replaced by (3.17c) saving one bit shifting, assuming that the implementation 

cost of a subtraction is normally the same as an addition. 

83d = ((64 +
1
 16) +

4
 (2 +

2
 1))d (3.17a) 

36d = (32 +
3
 4) (3.17b) 

83d = ((64 +
1
 16) +

4
 (4 –

2
 1))d (3.17c) 

 In the odd part of 8-point HEVC core transform (3.10), all W1, W3, W5, and 

W7 need to be multiplied by h4, h12, h20, and h28, which are 87, 70, 43 and 9, 

respectively (Fig. 3.4 (a)). With multiplier-free implementation (3.18a)–(3.18d), at a 

first glance, the complexity involved may appear to be five shifts and nine additions. 

By utilising MCM, the complexity becomes five shifts and seven additions only.  
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89d = ((64 +
3
 16) +

6
 (8 +

1
 1))d (3.18a) 

75d = (64 + 8 + 2 + 1)d = ((64 +
4
 2) +

7
 (8 +

1
 1))d (3.18b) 

50d = (32 +
5
 (16 +

2
 2))d (3.18c) 

18d = (16 +
2
 2)d (3.18d) 

Similarly in the odd part of 16- or 32-point HEVC transforms, at a first 

glance, the independent multiplier-free implementation may incur six shifts and 19 

or 33 additions, respectively. By applying MCM, the complexities are reduced to six 

shifts and 12 additions for the 16-point transform ((3.19a)–(3.19h) and (3.20a)–

(3.20h)), and six shifts and 20 additions for the 32-point case (3.21a)–(3.21p). More 

than one configuration can yield similar savings, like in the two scenarios presented 

for the odd part of the 16-point HEVC core transform. Table 3.7 shows the number 

of bit shifts and additions/subtractions by utilising the MCM technique in the even–

odd decomposition of HEVC forward transforms, and Table 3.8 provides the savings 

obtainable in comparison to without adopting MCM. From Table 3.8, employing 

MCM uses 81.1% and 24.3% fewer bit shifts and additions/subtractions, 

respectively, as opposed to without MCM.  
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(a) 

 
(b) 

 
(c) 

Fig 3.3  Functional block diagram of the (a) odd part, (b) less-efficient MCM 

multiplier-free and (c) MCM multiplier-free of 4-point HEVC core transform 
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(a) 

 
(b) 

Fig 3.4  Functional block diagram of the (a) odd part and (b) MCM multiplier-

free of 8-point HEVC core transform 
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16-point MCM (Scenario A: 6 shifts, 12 additions) 

90d = ((64 +
1
 16) +

7
 (8 +

5
 2))d (3.19a) 

87d = ((64 +
1
 16) +

9
 (4 +

3
 2) +

8
 1)d (3.19b) 

80d = (64 +
1
 16)d (3.19c) 

70d = ((64 +
10

 (4 +
3
 2))d (3.19d) 

57d = (32 +
11

 (16 +
4
 (8 +

2
 1)))d (3.19e) 

43d = ((32 +
6
 2) +

12
 (8 +

2
 1))d (3.19f) 

25d = (16 +
4
 (8 +

2
 1))d (3.19g) 

9d = (8 +
2
 1)d (3.19h) 

16-point MCM (Scenario B: 6 shifts, 12 additions) 

90d = ((64 +
1
 16) +

7
 (8 +

5
 2))d (3.20a) 

87d = ((64 +
12

 32) –
9
 (8 +

2
 1))d (3.20b) 

80d = (64 +
1
 16)d (3.20c) 

70d = ((64 +
10

 (4 +
3
 2))d (3.20d) 

57d = (32 +
11

 (16 +
4
 (8 +

2
 1)))d (3.20e) 

43d = ((32 +
6
 2) +

12
 (8 +

2
 1))d (3.20f) 

25d = (16 +
4
 (8 +

2
 1))d (3.20g) 

9d = (8 +
2
 1)d (3.20h) 
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32-point MCM (6 shifts, 20 additions) 

901d = (((64 +
1
 16) +

7
 8) +

8
 2)d (3.21a) 

902d = 901d (3.21b) 

88d = ((64 +
1
 16) +

7
 8)d (3.21c) 

85d = ((64 +
1
 16) +

9
 (4 +

6
 1))d (3.21d) 

82d = ((64 +
1
 16) +

10
 2)d (3.21e) 

78d = ((64 +
1
 16) –

11
 2)d (3.21f) 

73d = (64 +
12

 (8 +
3
 1))d (3.21g) 

67d = (64 +
13

 (2 +
4
 1))d (3.21h) 

61d = (64 –
14

 (2 +
4
 1))d (3.21i) 

54d = ((32 +
2
 16) +

15
 (4 +

5
 2))d (3.21j) 

46d = ((32 +
2
 16) –

16
 2)d (3.21k) 

38d = (32 +
17

 (4 +
5
 2))d (3.21l) 

31d = (32 –
18

 1)d (3.21m) 

22d = (16 +
19

 (4 +
5
 2))d (3.21n) 

13d = ((8 +
3
 1) +

20
 4)d (3.21o) 

4d = d << 2 (3.21p) 
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Table 3.7 Complexity in multiplier-free N-point/N × N 1-D HEVC core 

transform using even–odd decomposition and Multiple-Constant Multiplication 

(MCM) 

Size 

Multipliers 

Shifts 

Adders/Subtractors 

Element Quantity 
Multiplier 

Replacement 

Adder 

Tree
a
 

Add/Sub 

part 
Total 

4-

point 

64 2 2 * 1 0 - - - 

83 2 
2 * 4 2 * 4 

- - - 

36 2 - - - 

Total 6 10 8 4 4 16 

8-
point 

(odd 

rows) 

89 4 

4 * 5 4 * 7 

- - - 

75 4 - - - 

50 4 - - - 

18 4 - - - 

Total 16 20 28 12 8 48 

16-

point 
(odd 

rows) 

90 8 

8 * 6 8 * 12 

- - - 

87 8 - - - 

80 8 - - - 

70 8 - - - 

57 8 - - - 

43 8 - - - 

25 8 - - - 

9 8 - - - 

Total 64 48 96 56 16 168 

32-
point 

(odd 

rows) 

90 32 

16 * 6 16 * 20 

- - - 

88 16 - - - 

85 16 - - - 

82 16 - - - 

78 16 - - - 

73 16 - - - 

67 16 - - - 

61 16 - - - 

54 16 - - - 

46 16 - - - 

38 16 - - - 



56 

 

31 16 - - - 

22 16 - - - 

13 16 - - - 

4 16 - - - 

Total 256 96 320 240 32 592 

Total 342 174 452 312 60 824 

a 
Oadd (Adder tree) = 

 

 
(
 

 
  ) per even or odd part 

 

Table 3.8 Computational savings in multiplier-free N-point/N × N 1-D HEVC 

core transform using even–odd decomposition and Multiple-Constant Multiplication 

(MCM) 

Size 

Technique 

Without MCM With MCM 

Shifts Adds Shifts (Savings) Adds (Savings) 

4-point 12 16 10 (16.7%) 16 (0.00%) 

8-point 

(odd 

rows) 

54 56 20 (63.0%) 48 (14.3%) 

16-point 

(odd 

rows) 

168 216 48 (71.4%) 168 (22.2%) 

32-point 

(odd 

rows) 

688 800 96 (86.0%) 592 (26.0%) 

Total 922 1088 174 (81.1%) 824 (24.3%) 
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3.5 Intermediate Scaling 

 In order to maintain a reasonable trade-off between accuracy and 

computational complexities in the transform stage of HEVC, it was decided to limit 

the bit depth of the coefficients after each transform stage as 16-bit signed integers, 

i.e., in the range of [–2
15

, 2
15

 – 1] or [–32768, 32767] for any input bit depth, B. To 

achieve this requirement, additional intermediate scaling factors, ST1, ST2, SIT1, and 

SIT2, need to be applied as shown in Fig. 3.5. Note that Fig. 3.5 is a drilled-down 

diagram of the transform and quantisation blocks in Fig. 3.1.  

 Using the 4 × 4 forward transform as an example, the process of specifying 

the intermediate scaling factors can be illustrated as in Fig. 3.6. The assumption 

made in the worst-case bit-depth analysis was that for a video bit-depth of B, all 

samples of a residual block will have maximum amplitude of –2
B
 as the input to the 

first stage of the forward transform. A video with a bit depth of B bits will contain 

prediction residuals in the range of [–2
B
 + 1, 2

B
 – 1] requiring a (B + 1)-bit 

representation. For instance, an 8-bit video will result in prediction residuals within 

[–255, 255] range requiring a 9-bit signed precision. For simplicity, it is assumed 

that the minimum residual value is –256, i.e., –2
8
 or –2

B
 in general, which is still 

within the (B + 1)-bit signed precision.   

 The elements of both core and alternative HEVC transform matrices are 8-bit 

signed integers, but only the first basis vector row of these matrices are in the same 

sign region (positive) while all the other basis vectors oscillate between positive and 

negative regions. As the transform operation is a matrix multiplication process, the 

minimum (or absolute maximum) value of the transform coefficients after an N-point 

1-D transform will be the result of multiplying the prediction residuals with the first 

basis vector of the transform matrix. More specifically, this will be the case when all 

the residual samples in the first column are equal to –2
B
, i.e. –256 for B = 8. The 

elements of the first basis vector of the core transform matrix (64) are 6-bit 

precision. Therefore, the minimum value of the transform coefficients shall be –2
B
 × 

2
6
 × 2

M
 where N = 2

M
, resulting in a bit depth of B + 6 + M. For example, after a 4-

point 1-D transform, the minimum transform coefficients will be –256 × 64 × 4 =     

–2
8
 × 2

6
 × 2

2
 = –65536, i.e., requiring a bit depth of 8 + 6 + 2 = 16.   
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 In the alternative transform matrix, although the first basis vector contains 7-

bit elements (74 and 84), the first two elements are 5- and 6-bit elements, 

respectively (29 and 55). Thus for B = 8, the minimum transform coefficients in the 

4-point 1-D DST will be –256 × (29 + 55 + 74 + 84) = –61952, i.e., also within B + 6 

+ M bit-depth as in the core transform case. 

 

Fig. 3.5  Additional scale factors (ST1, ST2, SIT1, SIT2, SQ, and SIQ) to perform (a) 

forward transform and quantisation, and (b) inverse transform and quantisation of 

HEVC (C is the orthonormal DCT matrix, D is the scaled approximation of C, and 

       , where   is the transform size) (Budagavi, Fuldseth and Bjøntegaard, 

2014)  

  

To maintain the bit-depth of the transform coefficients after the first N-point 

1-D forward transform within 16-bit signed precision, a scaling factor of 1 / (–2
B
 × 

2
6
 × 2

M
 × 2

–15
) is, therefore, necessary. As a result, the scaling factor after the first 

transform stage is specified as ST1 = 2
–(B + M – 9)

. 
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 The second stage of the forward transform involves a multiplication of the 

result of the first transform stage with   
 . The input into the second stage is the 

output from the first stage, which is a matrix having first row elements equal to –2
15

 

and all other elements equal to zero as shown in Fig. 3.6 (b). Then, the output of 

multiplication with   
  will be a matrix with only a DC value having a value of –2

15
 

× 2
6
 × 2

M
 = –2

(21 + M)
, while all remaining elements are equal to zero. Therefore, after 

the second stage of the forward transform the necessary scaling is ST2 = 2
–(M + 6)

 

regardless of B. 

 

Fig. 3.6  Intermediate scaling factor determination for (a) first and (b) second 

stages of forward transform to fit intermediate and output values within 16 bits (B is 

video bit-depth and        , where   is the transform size) (Budagavi, Fuldseth 

and Bjøntegaard, 2014) 

 

 Similarly in the inverse transform, the first stage comprises a multiplication 

of the result of the forward transform with   
  as shown in Fig. 3.7, assuming there 

are no or lossless quantisation/de-quantisation operations in between the forward and 
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inverse transforms. Following the 4 × 4 1-D transform example set earlier in Fig. 

3.6, the output matrix from the forward transform is input into this first stage of the 

inverse transform, which is a matrix with only the DC coefficient equalling to –2
15

. 

The output of multiplication with   
  will be a matrix with first column elements 

equal to –2
15

 × 2
6
 = –2

21
. Therefore, in order for the intermediate output to fit within 

16 bits, the necessary scaling after this first stage of the inverse transform is simply 

SIT1 = 2
–6

 regardless of B. 

 Finally, the second stage of the inverse transform involves a multiplication of 

the result of the first stage with   . The output matrix from the first stage, which is a 

matrix with first column coefficients equal to –2
15

, is input to the second stage. The 

output of the multiplication with    shall be a matrix with all elements equal to –2
15

 

× 2
6
 = –2

21
. Therefore, the scaling required after the second stage of inverse 

transform in order to obtain the reconstructed output samples in the original range of 

[–2
B
, 2

B
 – 1] is SIT2 = 2

–(21 – B)
. 

 To summarise, for an input or output signal of bit-depth B, the scaling factors 

after the four transform stages are as follows, where M = log2 N (Budagavi, Fuldseth 

and Bjøntegaard, 2014): 

 After first forward transform stage, ST1 = 2
–(B + M – 9)

 

 After second forward transform stage, ST2 = 2
–(M + 6)

 

 After first inverse transform stage, SIT1 = 2
–6

 

 After second inverse transform stage, SIT2 = 2
–(21 – B)

 

 During the development of HEVC, it was decided to modify the scaling 

factors after each inverse transform stage; SIT1 and SIT2 to 2
–7

 and 2
–(20 – B)

, 

respectively, in order to compensate for quantisation/de-quantisation errors which 

could possibly cause the dynamic range before each inverse transform stage to 

exceed 16 bits. A clipping operation was later introduced to ensure the dynamic 

range between the two inverse transform stages remains within 16 bits, therefore, the 

modification to SIT1 and SIT2 was no longer necessary, However, this modification 

was retained “for maturity reasons” (Budagavi, Fuldseth and Bjøntegaard, 2014). 

Tables 3.9 and 3.10 summarise the final choice of scaling factors of HEVC forward 

and inverse transform, respectively, in comparison to the orthonormal DCT 

(properties i and ii of Table 3.1). 
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Fig. 3.7  Intermediate scaling factors in the inverse transform scale factors, 

assuming the input to be the final output of Fig. 3.6 (B = 8 is the video bit depth) 

(Budagavi, Fuldseth and Bjøntegaard, 2014) 

 Before each intermediate scaling, an offset value is also specified in HEVC 

to be added to perform rounding, which is equivalent to the scaling factor divided by 

two (2). For clarity, these offset values are not explicitly shown in Figs. 3.5, 3.6, and 

3.7.  

Table 3.9 Intermediate scaling factors in 2-D HEVC forward transform 

(Budagavi, Fuldseth and Bjøntegaard, 2014) 

Stage Scaling Factor 

First forward transform 2
(6 + M / 2) 

After the first forward transform, ST1 2
– (B + M – 9) 

Second forward transform 2
(6 + M / 2) 

After the second forward transform, ST2 2
– (M + 6) 

Total scaling for forward transform 2
(15 – B – M) 
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Table 3.10 Intermediate scaling factors in 2-D HEVC inverse transform 

(Budagavi, Fuldseth and Bjøntegaard, 2014) 

Stage Scaling Factor 

First inverse transform 2
(6 + M / 2) 

After the first inverse transform, SIT1 2
–7 

Second inverse transform 2
(6 + M / 2) 

After the second inverse transform, SIT2 2
– (20 – B) 

Total scaling for inverse transform 2
– (15 – B – M) 

 

3.6 Quantisation 

 Quantisation involves division by a quantisation step (Qstep) and a rounding, 

making it a lossy operation. Conversely, inverse quantisation requires multiplication 

by Qstep. Qstep refers to the equivalent step size to have an orthonormal transform, 

i.e., without the scaling factors of Tables 3.9 and 3.10. Like H.264/AVC, HEVC also 

uses a quantisation parameter (QP) to obtain Qstep. For an 8-bit video sequence, 

there are 52 available QP values between 0 and 51 (Budagavi, Fuldseth and 

Bjøntegaard, 2014). A larger QP results in a larger Qstep, i.e., a heavier quantisation 

resulting in a more lossy output. Notably, QP = 4 was chosen to provide Qstep = 1, 

i.e., no effective quantisation, and an increase of six QP values leads to an increase 

of Qstep by a factor of two. These criteria result in the following relationship: 

     (  )  (   ⁄ )
    

 (3.22) 

Equation (3.22) can equivalently be expressed as: 

     (  )         
  

 
 (3.23) 

where   [                 ]
  [    ⁄      ⁄      ⁄      ⁄        ⁄ ]

 
.  

Additionally, frequency-dependent quantisation is also supported by HEVC 

by using scaling matrices. Frequency-dependent quantisation or scaling is useful in 

applying HVS-based quantisation where low-frequency transform coefficients are 

quantised with a finer quantisation step size in comparison to high-frequency 
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coefficients. Let W[r][c] represent the quantisation weight matrix for a transform 

coefficient at coordinate (r, c), W[r][c] = 1 means that there is no weighting.  

In the inverse quantisation stage, for a quantised transform coefficient from 

the encoder, namely level[r][c], the standard specifies the de-quantised transform 

coefficient as 

      [ ][ ]  ((     [ ][ ]   [ ][ ]  (       
  

 
))

         )          

(3.24) 

where w[r][c] = round(16 × W[r][c]), offsetIQ = 1 << (M – 6 + B), shift1 = (M – 5 + 

B), and gi is the de-quantiser multiplier specified as (Budagavi, Fuldseth and 

Bjøntegaard, 2014) 

  [                 ]
       (    )  [                 ]  (3.25) 

As previously mentioned, the HEVC standard mainly describes the decoding 

operations and syntax of a compliant bitstream. Thus, only the inverse quantisation 

is specified in the text specification (ITU, 2013) and encoder manufacturers have the 

flexibility to implement a quantisation scheme producing HEVC-compliant 

quantised transform coefficients, level. Reference (Budagavi, Fuldseth and 

Bjøntegaard, 2014) suggests that level[r][c] at position (r, c) can be obtained as  

     [ ][ ]   (((     [ ][ ]        
  

 [ ][ ]
        )   

  

 
)

        ) 

(3.26) 

where shift2 = 29 – M – B, and fi is the quantiser multiplier specified as  

  [                 ]
  [                                   ]  

When there is no frequency-dependent scaling (W[r][c] = 1, i.e., w[r][c] = 16) and 

Qstep = 1 (QP = 4),  the choice of fi and gi provides almost unity gain through 

quantisation and inverse quantisation (i.e., fi × gi × 16 ≈ 1 << (shift1 + shift2) = 2
(M – 5 

+ B + 29 – M – B)
 = 2

14
 × 2

6
 × 16, i = 0, …, 5). 
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3.7 Related work on Transform and Quantisation 

 This sub-section discusses some related work on transform and quantisation 

archived in the literature. 

3.7.1 Related work on Transform 

 As a video sequence is a series of images, many image-processing techniques 

are applicable to video processing. There is a large amount of work done on the 

transform stage in image and video compression, aiming to reduce the computational 

complexity. A few examples in image compression include (Bouguezel, Ahmad and 

Swamy, 2010; Bayer et al., 2012; Cintra, Bayer and Tablada, 2014; Coutinho et al., 

2016). Bouguezel, Ahmad, and Swamy (2010) proposed an orthogonal and 

multiplication-free transform of a dyadic order of up to 32-point for image 

compression, extended from the Integer Discrete Cosine Transform (ICT) and 

containing values of only ±1 and ±2. Cintra, Bayer, and Tablada (2014) presented a 

set of approximation matrices for 8-point ICT in image compression, based on 

common integer functions such as floor, ceiling, truncation, round-away-from-zero, 

round-half-up/-down, and nearest integer functions, involving values of 0, ±1, ±2, 

and ±3. Bayer et al. (2012) proposed a fast orthogonal algorithm and FPGA-based 

hardware prototype for 16-point ICT suitable for JPEG image compression, 

consisting of 1-bit transform matrix and a diagonal scaling matrix, which could be 

absorbed in the quantisation stage. Coutinho et al. (2016) presented a very low 

complexity 8 × 8 DCT approximation obtained via pruning, achieving 76.2% fewer 

arithmetic operations relative to the original DCT algorithm. Although these 

algorithms are beneficial for a hardware implementation, such low values of 

transform elements may not be too efficient for video coding. Approximation 

techniques such as described in (Cintra, Bayer and Tablada, 2014) however could be 

worth considering for future video coding standards.  

 References (Dong et al., 2009; Haggag et al., 2010; Haggag, El-Sharkawy 

and Fahmy, 2010; Sun et al., 2012; Belghith, Loukil and Masmoudi, 2013a, 2013b; 

Wang et al., 2013) are examples of algorithmic work on complexity-reduced 

transform applied in video coding. Dong et al. (2009) presented a non-orthogonal 

ICT (NICT) and a modified ICT (MICT) of 16 × 16 and applied these in H.264/AVC 

and Audio Video Coding Standard of China (AVS) Enhanced Profile. Their NICT 
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and MICT matrices contain 6-bit and 4-bit elements, respectively. Similarly, Haggag 

et al. (Haggag et al., 2010; Haggag, El-Sharkawy and Fahmy, 2010) decomposed the 

preliminary 16 × 16 HEVC transform kernel into the product of two sparse matrices 

involving 6-bit integers and provided two MICT algorithms for the odd frequency 

component. The first one is a quality-oriented algorithm, while the second one is 

computation-/speed-oriented. Belghith, Loukil, and Masmoudi (Belghith, Loukil and 

Masmoudi, 2013a, 2013b) showed how the 4 × 4 and 8 × 8 matrices are embedded in 

the 16 × 16 7-bit HEVC transform, and provided a slight modification on the odd 

part of 16-point. All these works exploit the dyadic symmetry property of the 

transform as applied by Cham and Chan (1991), and stand a good chance for an area-

efficient transform implementation. However, most of the multiplications still 

require at least a 2-stage adder tree each. Sun et al. (2012) proposed an adaptive 

truncation re-configurable approximation (aTra) algorithm to automatically obtain 

approximated integers of adjustable precision. This algorithm still could not yield a 

satisfactory approximation for a one-stage adder pipeline as desired in this thesis.  

 There are many efficient hardware architecture designs proposed in recent 

years supporting the transform operation of HEVC, realised using CMOS (Ahmed, 

Shahid and Rehman, 2012; Budagavi and Sze, 2012; Park et al., 2012; Shen et al., 

2012; Meher et al., 2014   ola os-Jojoa and Velasco-Medina, 2015; Chang et al., 

2016) or/and FPGA (Zhao and Onoye, 2012; Conceição et al., 2013; Kalali et al., 

2014; Arayacheeppreecha, Pumrin and Supmonchai, 2015; Darji and Makwana, 

2015) technologies. Budagavi and Sze  (2012) presented a unified and hardware-

sharing architecture for both forward and inverse transforms of HEVC supporting all 

four sizes. They demonstrated how these operations can be executed using the even–

odd decomposition technique involving three simple steps: 1) Addition/Subtraction; 

2) Even part; 3) Odd part. When synthesised on a 45 nm CMOS technology, a 44% 

area reduction was achieved when compared with separate forward and inverse 

architectures. This work however only covered a 1-D transform.  

During the development stage of HEVC, Park et al. (2012) proposed an 

efficient and multiplier-free architecture for 2-D 16 × 16 and 32 × 32 inverse 

transforms, based on Chen’s fast DCT algorithm (1977) and capable of decoding a 

Quad Full HD (QFHD) (3840 × 2160) video at 30 frames per second (fps). Besides 

using the old transform elements, the only other downside possibly is that this design 
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did not cover the other two small sizes (4 × 4 and 8 × 8). The design by Ahmed, 

Shahid, and Rehman (2012) is another work published prior to the release of HEVC, 

but it supports all four sizes of 2-D forward transform of HEVC. They applied the 

folded scheme, i.e., a single 1-D transform core is reused for the second transform 

operation after the transpose stage. Their architecture relies on matrix decomposition 

into permutation matrices and Givens rotation matrices. Additionally, they applied 

the lifting scheme to eliminate any use of multipliers. The design was synthesised 

using a 90 nm CMOS library and capable of encoding a 1080p HD video at 48 fps.  

The work by Chang et al. (2016) was also based on sparse matrix 

decomposition and 67% more hardware efficient than (Ahmed, Shahid and Rehman, 

2012).  ola os-Jojoa and Velasco-Medina (2015) presented three hardware designs 

for N-point HEVC transform based on Multiple-Constant Multiplication (MCM) 

technique. But both (Chang et al., 2016) and ( ola os-Jojoa and Velasco-Medina, 

2015) only covered 1-D inverse DCT (IDCT). 

The work by Shen et al. (2012) is an example of Multi-Standard Transform 

(MST) designs. Their design supports the inverse transform of MPEG-2/-4, AVC, 

AVS, VC-1, and HEVC standards. They applied multiplier-free architecture for 4-

point and 8-point transforms and regular multipliers for 16-point and 32-point 

operations. The transpose buffer was designed using four single-port Synchronous 

Random Access Memory (SRAM) blocks instead of a regular register array. 

Synthesised with Semiconductor Manufacturing International Corporation (SMIC) 

130 nm CMOS library, their 5-stage pipelined design can potentially support QFHD 

@ 30 fps videos. These results were however limited to a 1-D IDCT operation with a 

transpose buffer. Other MST designs include (Martuza and Wahid, 2012a, 2012b, 

2015, Dias, Roma and Sousa, 2013, 2014). 

Meher et al. (2014) presented area- and power-efficient architectures for 2-D 

HEVC forward transform using MCM technique to replace physical multipliers. 

Their hardware-oriented algorithms involve three stages for all four sizes: 1) Input 

Adder Unit (IAU); 2) Shift-Add Unit (SAU); 3) Output Adder Unit (OAU). They 

have also integrated the intermediate scaling stage after each transform operation as 

defined in the HEVC standard into their SAU stage, by pruning some of the least 

significant bits (LSBs) to maintain a maximum of 16-bit width after each 1-D 
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transform. They synthesised their designs using Taiwan Semiconductor 

Manufacturing Company (TSMC) 90 nm CMOS library and proficient to encode a 

7680 × 4320 UHD video at 60 fps. 

The design by Darji and Makwana (2015) utilises the Canonical Signed Digit 

(CSD) representation, as well as Common Sub-expression Elimination (CSE), which 

is essentially an MCM technique. On the other hand, the design by 

Arayacheeppreecha, Pumrin, and Supmonchai (2015) has efficiently addressed the 

challenge of parallel execution of flexible transform size combinations. Both (Darji 

and Makwana, 2015) and (Arayacheeppreecha, Pumrin and Supmonchai, 2015) are 

however 1-D forward transform designs. 

Recently, Raguraman and Saravanan (2016) extended several existing 8-

point 1-D approximated transforms in the literature into 2-D architectures and 

implemented them on a Xilinx Virtex-E FPGA. More recently, da Silveira et al. 

(2017) proposed a low-complexity orthogonal 16-point approximated transform 

combining two instantiations of a low-complexity 8-point DCT approximation 

introduced in (Bayer and Cintra, 2012). The entries of the resulting transformation 

matrix are defined over {0, ±1} making the multiplicative complexity null and the 

arithmetic complexity of their 1-D algorithm to be only 44 additions. The proposed 

1-D approximation was realised on a Xilinx Virtex-6 XC6VLX240T FPGA 

requiring only 303 Configurable Logic Blocks (CLBs) and 936 Flip-Flops (FF), 

achieving a maximum operating frequency of 344.83 MHz. 

The multiplier-free 2-D designs by Conceição et al. (2013) and Zhao and 

Onoye (2012) were realised using the even–odd decomposition approach and 

synthesised on Altera Stratix IV and Cyclone IV FPGA, respectively. While 

(Conceição et al., 2013) was focused only on 32 × 32 inverse transform, (Zhao and 

Onoye, 2012) supports the forward transform of all four sizes defined in HEVC. 

Potential applications of (Conceição et al., 2013) and (Zhao and Onoye, 2012) 

include QFHD @ 30 fps and Wide Quad Extended Graphics Array (WQXGA) (2560 

× 1600) @ 30 fps videos, respectively.  

To further reduce the power consumption, Kalali et al. (2014) also proposed 

a novel energy reduction technique in addition to using the MCM technique in their 

HEVC 2-D IDCT design, supporting all four sizes. Their design was mapped to a 
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Xilinx Virtex-6 FPGA and capable of decoding QFHD @ 48 fps videos. Recently, 

they have improved their design and produced a low utilisation (LU) hardware 

scheme maintaining the same decoding capability but costing fewer resources, as 

well as a high utilisation (HU) hardware design capable of processing UHD (7680 × 

4320) @ 53 fps videos, also at a lower hardware cost than their initial design (Kalali, 

Mert and Hamzaoglu, 2016). 

Very recently, Chen, Zhang, and Lu (2017) presented a FPGA-friendly 

architecture supporting all four sizes in 2-D HEVC transform and implemented their 

design on several FPGA platforms manufactured by Altera such as Startix III, 

Cyclone II, and Arria II GX, as well as Xilinx Virtex-7 and Zynq. Apart from using 

16 64 × 16-bit Block RAMs (BRAMs) as the transpose buffer, their architecture 

exploits other internal components and characteristics of individual FPGA platforms 

such as DSP blocks on top of Arithmetic Logic Modules (ALM) or Look-up Tables 

(LUT) to realise the logic computations. Their design, particularly on a Xilinx Zynq 

FPGA, can sustain up to 4K @ 30 fps 4:2:0 UHD TV.  

3.7.2 Related work on Quantisation 

 There are not as many previous works on the quantisation stage of HEVC as 

the transform stage. Stankowski et al. (2015) analysed the maximum achievable 

performance in terms of bitrate savings when exact rate-distortion optimised 

quantisation (RDOQ) calculations were used instead of estimated RDOQ 

calculations currently employed by HEVC. Their analysis has shown that by using 

exact RDOQ calculations, differences of -1.1% and -1.0% in luminance bitrate could 

be achieved in AI and RA configurations, respectively, but at the expense of three to 

four times higher computational complexity (execution times). Gweon and Lee 

(2012) have proposed N-level quantisation for HEVC instead of an equal 

quantisation to be applied to a TU. With a TU divided into 4 × 4 blocks, blocks 

towards the bottom right corner of the TU are quantised with a higher quantiser step. 

Having the maximum number of N equals three, luminance BD-rate performance 

could be improved by -0.3% to -0.5% in AI, LB, and LP configurations, with almost 

the same encoding and decoding times with the reference HEVC software. Nam, 

Sim, and  ajić (2012) proposed an adaptive quantisation method either in spatial or 

transform domain for screen content videos. Generated by computer graphics 
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techniques, screen content videos have different texture properties than natural 

videos, such as having very sharp edges at text or object boundaries as well as 

containing significantly less noise. Common video coding tools, on the other hand, 

tend to smooth out sharp edges exploiting the nature of HVS. Their proposed method 

could yield an average of 4.1% bitrate reduction for the AI, RA, and low delay 

configurations. The increase in complexity was however not reported. 

 Dias, Roma, and Sousa (2015) presented a unified quantisation and de-

quantisation architecture for HEVC, offering a reduced hardware cost compared to 

separate implementations of the two operations. Their synthesis results on an ASIC 

technology show that savings between 19.2% and 27.3% in area squared as well as 

20.9% to 27.6% in gate count reduction could be achieved by their unified 

architecture. Their architecture designs could as well operate at operating 

frequencies higher than 374 MHz, and fast enough to support a real-time encoding of 

4K UHD @ 30 fps videos. Pastuszak (2014) presented three FPGA architecture 

designs each for the quantisation and de-quantisation of HEVC. The first design was 

a straightforward implementation, the second design was with shifter modifications, 

and the third design mapped rounding adders into digital signal processor (DSP) 

units. The designs were synthesised for Altera Arria II GX devices and capable of 

working at 200 MHz. The second and third designs offer general-purpose logic 

reduction between 34% and 88% relative to the straightforward implementation.  

3.8 Summary 

 HEVC core transform, intermediate scaling, and quantisation were described 

in this chapter as these operations serve the basis of this thesis. A literature survey on 

transform and quantisation in the context of HEVC was also discussed. Particularly 

for the transform stage, complexity-reduced techniques in the forms of multiplier-

free implementation, even–odd decomposition, and Multiple-Constant Multiplication 

(MCM) approach were covered in this chapter and applied in many previous works. 

The next chapter will reveal the algorithmic contributions of this thesis, which are 

approximated transforms and quantisation aimed at a complexity-reduced HEVC 

execution without severe degradation in the reconstructed and decoded video quality. 
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Chapter 4  

Approximated Forward Core Transform, 

Intermediate Scaling, and Quantisation for 

HEVC 

Abstract This chapter explains the derivation of the approximated forward core 

transform matrices, the modification on the intermediate scaling, and approximated 

quantisation multipliers adopted in this thesis. These alterations were made with the 

intention to reduce the implementation complexity of an HEVC encoder bearing 

only a minimal tolerance on the coding performance.  

4.1  Introduction 

The 32 × 32 HEVC forward transform matrix    
    can be constructed using 

29 unique integers. These integer constants originated from 31 unique elements 

(excluding the first row, C0) derivable from (3.1) and listed in Table 4.1 for the first 

column of the matrix, before the round-to-nearest-integer operation and a hand-

tuning on a few elements (C8, C21, C23, C24, C25, and C26). Notably after the rounding 

and hand tuning operations, C0 = C16 = 64 and C1 = C2 = C3 = 90. 

Table 4.1 Constants in 32 × 32 HEVC core transform matrix 

Constant Value 

Before 

rounding 

and hand 

tuning 

Constant Value 

Before 

rounding 

and hand 

tuning 

C0 64 64.00 C16 64 64.00 

C 1 90 90.40 C17 61 60.78 

C 2 90 90.07 C18 57 57.42 

C 3 90 89.53 C19 54 53.92 

C 4 89 88.77 C20 50 50.28 

C 5 88 87.80 C21 46 46.53 
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C6 87 86.61 C22 43 42.67 

C7 85 85.22 C23 38 38.70 

C8 83 83.62 C24 36 34.64 

C9 82 81.82 C25 31 30.49 

C10 80 79.82 C26 25 26.27 

C11 78 77.63 C27 22 21.99 

C12 75 75.26 C28 18 17.66 

C13 73 72.70 C29 13 13.28 

C14 70 69.96 C30 9 8.87 

C15 67 67.06 C31 4 4.44 

  

As noted earlier in sub-section 3.4.2, a fast and cost-efficient hardware 

implementation typically applies a multiplier-free approach using appropriate 

combinations of left bit-shifts and additions (including subtractions). For instance, 

Fig. 4.1 illustrates a data multiplication on x by 87 (C6 as in Table 4.1), involving 

three adders in a two-stage adder tree structure, assuming that this operation is fast 

enough to be executable in a single clock cycle (cc) and the cost of an adder is the 

same as a subtractor. IR_1 and OR_1 in Fig. 4.1 are the input register and the output 

register, respectively. Similarly, most other multipliers like 90, 89, 88, etc. from 

Table 4.1 may incur a two-stage adder tree. Some integers such as 80, 36, 31, 18, and 

9 involve only two bit-shifts and an addition, while for the two dyadic elements, i.e., 

64 and 4, only a single bit-shift is required (<< 6 and << 2, respectively). Although a 

complexity reduction technique such as MCM (sub-section 3.4.4) can be utilised, it 

is necessary to see the effect of an approximation scheme on the coding 

performance, such as in terms of quality (e.g. PSNR, SSIM, MOS, etc.) with respect 

to the bitrate, and the potential savings offered by such a scheme. The following 

section, Section 4.2, therefore, details out the approximated core transform algorithm 

applied in this work, followed by a sub-section describing the scaled version of this 

algorithm involving a modification in the subsequent intermediate scaling stage. 

Section 4.3 provides the approximated quantisation multipliers derived using the 

same principle. 

 Only the core transform draws the attention, and the alternative transform is 

not included in this work. 
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Fig. 4.1   A hardware implementation on multiplication of x by 87  

4.2  Approximated Forward Core Transform 

 This section describes the process taken in deriving the approximated 

forward core transform used in this thesis. 

4.2.1  Algorithmic Modelling  

 In order to further reduce the hardware requirements for the transform stage 

of HEVC, three criteria were predefined to approximate the original core matrix 

elements with more hardware-friendly integers as follows:  

i. All the new integers must be multiples of four as this is the smallest 

multiplier in Table 4.1. Furthermore, it is a favourable dyadic number. By 

having a common denominator, all the new elements can be factorised and 

this scaling factor can subsequently be absorbed in a proceeding stage in the 

encoding pipeline, such as the intermediate scaling or quantisation stage;  

ii. Only a single adder/subtractor can be allocated in a multiplier replacement;  

iii. All combinations of bit-shifts and additions/subtractions are executable in 

only one clock cycle of 5 ns (200 MHz) or shorter.  

 This technique can thus be regarded as an elimination of sub-operations. 

Based on the above criteria, the following look-up table (LUT) was derived, i.e., a 

set of 18 hardware-friendly integers and named as LUT4: 

     {                                                   } 
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A multiplication with the integers in LUT4 can be performed by either a single left 

shift (4, 8, 16, 32, and 64) or two left shifts and one addition as illustrated in Table 

4.2. 

Table 4.2 Equivalent shift-add operations of LUT4 integers 

No. LUT4 integers Equivalent shift-add operations 

1 4 << 2 

2 8 << 3 

3 12 << 3 + << 2 

4 16 << 4 

5 20 << 4 + << 2 

6 24 << 4 + << 3 

7 28 << 5 – << 2 

8 32 << 5 

9 36 << 5 + << 2 

10 40 << 5 + << 3 

11 48 << 5 + << 4 

12 56 << 6 – << 3 

13 60 << 6 – << 2 

14 64 << 6 

15 68 << 6 + << 2 

16 72 << 6 + << 3 

17 80 << 6 + << 4 

18 96 << 6 + << 5 

  

Next, several approximation alternatives can be systematically obtained by a 

search algorithm to represent each original element with an integer from LUT4 giving 

the least absolute difference. If an element can be replaced by more than one integer, 

a mathematical function similar to ceiling (upwards), floor (downwards), or a 

combination of both functions was applied. Table 4.3 provides the decision criteria 

of 22 approximation alternatives analysed in this work, T1–T22. For instance, T1 

and T2 were obtained respectively by applying the ceiling (upwards) and floor 

(downwards) function on the original HEVC core transform, while T3 and T4 were 
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acquired by using the scaled and floating DCT as the reference instead of HEVC. 

Table 4.4 lists the first column of these 22 alternatives and Fig. 4.2 illustrates the 

flow chart of the search algorithm, where f(x) is the function to either perform the 

ceiling (upwards) or floor (downwards) approximation. 

 

Fig. 4.2  Flow chart of the search algorithm, where (a) is the main flow and (b) 

is the ceiling (upwards) approximation flow of f(x) 

(a)             (b) 
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Table 4.3  Decision criteria of approximation alternatives 

Transform Reference Upper half Lower half Even rows Odd rows 

Dsf
a 

- - - - - 

Dsr
b 

- - - - - 

HEVC - - - - - 

T1 HEVC ceiling ceiling - - 

T2 HEVC floor floor - - 

T3 Dsf ceiling ceiling - - 

T4 Dsf floor floor - - 

T5 HEVC ceiling floor - - 

T6 HEVC floor ceiling - - 

T7 Dsf ceiling floor - - 

T8 Dsf floor ceiling - - 

T9 HEVC - - ceiling floor 

T10 HEVC - - floor ceiling 

T11 Dsf - - ceiling floor 

T12 Dsf - - floor ceiling 

T13 Dsr ceiling ceiling - - 

T14 Dsr floor floor - - 

T15 Dsr ceiling floor - - 

T16 Dsr floor ceiling - - 

T17 Dsr - - ceiling floor 

T18 Dsr - - floor ceiling 

T19 Scale= 362.0 ceiling ceiling - - 

T20 Scale = 362.0 floor floor - - 

T21 Scale = 360.0 ceiling ceiling - - 

T22 Scale = 360.0 floor floor - - 

a
 DCT Scaled and Floating (Scaling factor = 64*32

1/2
 = 

362.03867196751233249323231339768) 

b
 DCT Scaled and Rounded (Scaling factor = 64*32

1/2
 = 

362.03867196751233249323231339768) 
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Table 4.4  Matrix elements in the first column of different 32 × 32 core transform alternatives 

First 

column 
Transform Alternatives 

Dsf Dsr HEVC T1 T2 T3
a
 T5 T6 T9 T10 T13 T15 T16 T17 T18 

0 64.00 64 64 64 64 64 64 64 64 64 64 64 64 64 64 

1 90.40 90 90 96 96 96 96 96 96 96 96 96 96 96 96 

2 90.07 90 90 96 96 96 96 96 96 96 96 96 96 96 96 

3 89.53 90 90 96 96 96 96 96 96 96 96 96 96 96 96 

4 88.77 89 89 96 96 96 96 96 96 96 96 96 96 96 96 

5 87.80 88 88 96 80 80 96 80 80 96 96 96 80 80 96 

6 86.61 87 87 80 80 80 80 80 80 80 80 80 80 80 80 

7 85.22 85 85 80 80 80 80 80 80 80 80 80 80 80 80 

8 83.62 84 83 80 80 80 80 80 80 80 80 80 80 80 80 

9 81.82 82 82 80 80 80 80 80 80 80 80 80 80 80 80 

10 79.82 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

11 77.63 78 78 80 80 80 80 80 80 80 80 80 80 80 80 

12 75.26 75 75 72 72 72 72 72 72 72 72 72 72 72 72 

13 72.70 73 73 72 72 72 72 72 72 72 72 72 72 72 72 

14 69.96 70 70 72 68 68 72 68 72 68 72 72 68 72 68 

15 67.06 67 67 68 68 68 68 68 68 68 68 68 68 68 68 

16 64.00 64 64 64 64 64 64 64 64 64 64 64 64 64 64 

17 60.78 61 61 60 60 60 60 60 60 60 60 60 60 60 60 

18 57.42 57 57 56 56 56 56 56 56 56 56 56 56 56 56 

19 53.92 54 54 56 56 56 56 56 56 56 56 56 56 56 56 

20 50.28 50 50 48 48 48 48 48 48 48 48 48 48 48 48 

21 46.53 47 46 48 48 48 48 48 48 48 48 48 48 48 48 

22 42.67 43 43 40 40 40 40 40 40 40 40 40 40 40 40 

23 38.70 39 38 40 36 40 36 40 36 40 40 40 40 40 40 

24 34.64 35 36 36 36 36 36 36 36 36 36 36 36 36 36 

25 30.49 30 31 32 32 32 32 32 32 32 32 28 32 28 32 

26 26.27 26 25 24 24 28 24 24 24 24 28 24 28 28 24 

27 21.99 22 22 24 20 20 20 24 20 24 24 20 24 20 24 

28 17.66 18 18 20 16 16 16 20 20 16 20 16 20 20 16 

29 13.28 13 13 12 12 12 12 12 12 12 12 12 12 12 12 

30 8.87 9 9 8 8 8 8 8 8 8 8 8 8 8 8 

31 4.44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

orc 0.0000 0.0037 0.0029 0.0566 0.0439 0.0442 0.0566 0.0439 0.0566 0.0439 0.0518 0.0566 0.0391 0.0518 0.0439 

mrc 0.0000 0.0077 0.0213 0.1282 0.1218 0.1218 0.1282 0.1218 0.1218 0.1282 0.1282 0.1282 0.1218 0.1218 0.1282 

nrc 0.0000 0.0109 0.0013 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 

     
a
 T4, T7, T8, T11, T12, T14, T19, T20, T21, and T22 resulted in the same values as T3  
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4.2.2  Degrees of Approximation 

 By performing integer approximations to the floating DCT or HEVC core 

transform, some of the DCT properties (Table 3.1) may have been compromised. In 

order to measure the degrees of approximation for a few of these properties, the 

same measurements as applied in (Budagavi, Fuldseth and Bjøntegaard, 2014) were 

adopted. These are namely the orthogonality measure, orc, closeness to the original 

DCT, mrc, and norm measure, nr, as given in (4.1)–(4.3) for an N-point integer DCT 

approximation. In these equations, trc represents the matrix elements with r and c = 

0, 1 … N – 1, basis vector rows are equal to tr, tc is the transpose of tr, and drc are 

again the real DCT matrix elements (Section 3.2). 

                     
 ⁄         (4.1) 

       |         |     ⁄  (4.2) 

    |                
 ⁄ | (4.3) 

 The worst-case values of orc, mrc, and nr for different transform alternatives 

are given at the bottom of Table 4.4, with the value of zero implying a perfect 

achievement. For comparison purposes, the respective measures of scaled and 

floating DCT, Dsf, scaled and rounded DCT, Dsr, and HEVC matrix elements are also 

included in the second, third, and fourth columns of Table 4.4, respectively. 

HEVC core transform matrix elements are further from Dsf than Dsr 

(mrc(HEVC)  = 0.0213) due to the rounding and hand tuning operations. 

Nevertheless, they hold better orthogonality (orc(HEVC)  = 0.0029) and norm 

(nrc(HEVC)  = 0.0013) properties than Dsr (Budagavi, Fuldseth and Bjøntegaard, 

2014). On the contrary, all the approximation alternatives analysed in this work 

possess far worse orc, mrc, and nrc values indicating coarser approximations than 

HEVC. All 22 alternatives have the same value of nrc (0.0605). The worst alternative 

transforms are T1, T5, and T15 having the largest orc (0.0566) and mrc (0.1282) 

values as highlighted in red in Table 4.4. The best alternative approximated is 

identified to be T16 with orc and mrc values of 0.0391 and 0.1218, respectively. For 

this reason, T16 was chosen to be the approximated transform matrix to be further 
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analysed as the replacement of 32 × 32 HEVC core matrix (including the three 

embedded smaller matrices).  

4.2.3  Arithmetic Complexity Analysis 

 In order to compare the number of bit shifts and additions/subtractions 

required by the chosen approximated transform matrix, T16, the same approaches of 

multiplier-free implementation, even–odd decomposition, and MCM are applied. 

The even part of the 4-point transform is the same as the original HEVC transform, 

thus it can be realised in the same way as (3.5) costing two shifts and two additions. 

The odd part of 4-point transform can be executed by (4.4a)–(4.4b) involving four 

shifts and two additions, where d is again the odd intermediate data after the add/sub 

part. 

80d = (64 +
1
 16)d (4.4a) 

36d = (32 +
2
 4)d (4.4b) 

 Similarly, the odd part of the 8-point transform is performed using (4.5a)–

(4.5d) incurring five shifts and four additions. 

96d = (64 +
1
 32)d (4.5a) 

72d = (64 +
2
 8)d (4.5b) 

48d = (64 – 16)d = (32 +
3
 16)d (4.5c) 

20d = (16 +
4
 4)d (4.5d) 

 The odd-part of the 16-point transform is implemented as shown by (4.6a)–

(4.6g) costing five shifts and six additions. Note that in (4.6d), although 56d can 

equally be implemented by 40d + 16d utilising the already calculated 40d (4.6e), it 

would incur a two-stage adder (as 40d + 16d would be calculated sequentially after 

(4.6e)), and could introduce a larger path delay in the data flow between the input, d, 

and the required output, 56d.  

 



79 

 

96d = (64 +
1
 32)d (4.6a) 

80d = (64 +
2
 16)d (4.6b) 

68d = (64 +
3
 4)d (4.6c) 

56d = (64 –
4
 8)d (4.6d) 

40d = (32 +
5
 8)d (4.6e) 

28d = (32 –
6
 4)d (4.6f) 

8d = d << 3 (4.6g) 

 The odd-part of the 32-point transform implemented using (4.7a)–(4.7l) 

requires five shifts and ten additions/subtractions. Implementing the transform with 

(4.7a)–(4.7f) using the most right-hand side of these equations would involve only 

four shifts and ten additions. However, this would incur a seven-stage adder as the 

additions in (4.7a)–(4.7f) have to be performed serially after calculating (4.7g), thus 

increasing the critical path delay (cpd) and reducing the applicable maximum clock 

frequency. Although this seven-stage of adders can be implemented in a two- or 

three-pipeline fashion to reduce the cpd, this would complicate the overall control 

operation as the other transforms (4-/8-/16-point) are executable in only a single cc. 

Furthermore, the savings attainable by the latter configuration in this 32-point case is 

too small (only one shift) as opposed to the first configuration. 

96d = (64 +
1
 32)d = 80d + 16d (4.7a) 

80d = (64 +
2
 16)d = 72d + 8d (4.7b) 

72d = (64 +
3
 8)d = 68d + 4d (4.7c) 

68d = (64 +
4
 4)d = 60d + 8d (4.7d) 

60d = (64 –
5
 4)d = 56d + 4d (4.7e) 

56d = (64 –
6
 8)d = 48d + 8d (4.7f) 

48d = (32 +
7
 16)d (4.7g) 
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40d = (32 +
8
 8)d (4.7h) 

32d = d << 5 (4.7i) 

24d = (16 +
9
 8)d (4.7j) 

12d = (8 +
10

 4)d (4.7k) 

4d = d << 2 (4.7l) 

 Table 4.5 shows the arithmetic complexity in a multiplier-free 

implementation of N-point/N × N 1-D approximated core transform using even–odd 

decomposition and MCM. When compared with Table 3.7, the numbers of 

adders/subtractors in the adder tree and add/sub part are the same. The only 

differences are in the numbers of shifts and adders/subtractors in the multiplier 

replacement, thus affecting the total number of adders/subtractors. Table 4.6 shows 

that about 13.8% savings in the total number of shifts and around 27.2% in the total 

number of adders/subtractors could be achieved by the chosen approximated core 

transform in comparison to the original HEVC transform matrices.   

Table 4.5 Complexity in multiplier-free N-point/N × N 1-D approximated core 

transform using even–odd decomposition and Multiple-Constant Multiplication 

(MCM) 

Size 

Multipliers 

Shifts 

Adders/Subtractors 

Element Quantity 
Multiplier 

Replacement 

Adder 

Tree
1
 

Add/Sub 

part 
Total 

4-point 

64 2 2 * 1 0 - - - 

80 2 
2 * 4 2 * 2 

- - - 

36 2 - - - 

Total 6 10 4 4 4 12 

8-point 

(odd 

rows) 

96 4 

4 * 5 4 * 4 

- - - 

72 4 - - - 

48 4 - - - 

20 4 - - - 

Total 16 20 16 12 8 36 
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16-

point 
(odd 

rows) 

90 8 

8 * 5 8 * 6 

- - - 

87 8 - - - 

80 8 - - - 

70 8 - - - 

57 8 - - - 

43 8 - - - 

25 8 - - - 

9 8 - - - 

Total 64 40 48 56 16 120 

32-

point 

(odd 

rows) 

90 32 

16 * 5 16 * 10 

- - - 

88 16 - - - 

85 16 - - - 

82 16 - - - 

78 16 - - - 

73 16 - - - 

67 16 - - - 

61 16 - - - 

54 16 - - - 

46 16 - - - 

38 16 - - - 

31 16 - - - 

22 16 - - - 

13 16 - - - 

4 16 - - - 

Total 256 80 160 240 32 432 

Total 342 150 232 312 60 600 
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Table 4.6 Computational savings in multiplier-free N-point/N × N 1-D 

approximated core transform using even–odd decomposition and Multiple-Constant 

Multiplication (MCM) 

Size 

Forward Transform 

HEVC Approximated, T16 

Shifts Adds Shifts (Savings) Adds (Savings) 

4-point 10 16 10 (0.00%) 12 (25.0%) 

8-point 

(odd 

rows) 

20 48 20 (0.00%) 36 (25.0%) 

16-point 

(odd 

rows) 

48 168 40 (16.7%) 120 (28.6%) 

32-point 

(odd 

rows) 

96 592 80 (16.7%) 432 (27.0%) 

Total 174 824 150 (13.8%) 600 (27.2%) 

 

4.2.4  Transform and Intermediate Scaling 

 As one of the criteria of the chosen integers in the approximated transform 

matrices is multiples of four, these integers are scaled down by four and this 

common factor is absorbed in the subsequent intermediate scaling. Therefore, the 

odd part of the 4-point approximated and scaled transform is implemented as (4.8a)–

(4.8b) involving three shifts and two additions. 

20d = (16 +
1
 4)d (4.8a) 

9d = (8 +
2
 1)d (4.8b) 

 Similarly, the odd-part of the 8-point transform is calculated using (4.9a)–

(4.9d) incurring four shifts and four additions. 
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24d = (16 +
1
 8)d (4.9a) 

18d = (16 +
2
 2)d (4.9b) 

12d = (8 +
3
 4)d (4.9c) 

5d = (4 +
4
 1)d (4.9d) 

 The odd part of the 16-point transform is executed as shown by (4.10a)–

(4.10g) costing four shifts and six additions.  

24d = (16 +
1
 8)d (4.10a) 

20d = (16 +
2
 4)d (4.10b) 

17d = (16 +
3
 1)d (4.10c) 

14d = (16 –
4
 2)d (4.10d) 

10d = (8 +
5
 2)d (4.10e) 

7d = (8 –
6
 1)d (4.10f) 

2d = d << 1 (4.10g) 

 The odd part of the 32-point transform is implemented using (4.11a)–(4.11l) 

requiring four shifts and ten additions/subtractions.  

24d = (16 +
1
 8)d (4.11a) 

20d = (16 +
2
 4)d (4.11b) 

18d = (16 +
3
 2)d (4.11c) 

17d = (16 +
4
 1)d (4.11d) 

15d = (16 –
5
 1)d (4.11e) 

14d = (16 –
6
 2)d (4.11f) 

12d = (8 +
7
 4)d (4.11g) 
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10d = (8 +
8
 2)d (4.11h) 

8d = d << 3 (4.11i) 

6d = (4 +
9
 2)d (4.11j) 

3d = (2 +
10

 1)d (4.11k) 

1d = d (4.11l) 

Table 4.7 shows the arithmetic complexity in a multiplier-free 

implementation of N-point/N × N 1-D approximated and scaled core transform using 

even–odd decomposition and MCM. When compared with Table 4.5, the numbers of 

adders/subtractors are the same. The only difference is in the number of shifts. Table 

4.8 shows that a further 20.0% savings could be attained in the total number of shifts 

by the approximated and scaled core transform, namely in this thesis as ST16, in 

comparison to the approximated transform matrices, namely T16. ST16 requires 

31.0% fewer shifts and 27.2% fewer additions/subtractions when compared with the 

original HEVC core transform. 

Table 4.7 Complexity in multiplier-free N-point/N × N 1-D approximated and 

scaled core transform using even–odd decomposition and Multiple-Constant 

Multiplication (MCM) 

Size 

Multipliers 

Shifts 

Adders/Subtractors 

Element Quantity 
Multiplier 

Replacement 

Adder 

Tree
1
 

Add/Sub 

part 
Total 

4-
point 

16 2 2 * 1 0 - - - 

20 2 
2 * 3 2 * 2 

- - - 

9 2 - - - 

Total 6 8 4 4 4 12 

8-

point 

(odd 
rows) 

24 4 

4 * 4 4 * 4 

- - - 

18 4 - - - 

12 4 - - - 

5 4 - - - 

Total 16 16 16 12 8 36 
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16-

point 
(odd 

rows) 

24 8 

8 * 4 8 * 6 

- - - 

20 8 - - - 

20 8 - - - 

17 8 - - - 

14 8 - - - 

10 8 - - - 

7 8 - - - 

2 8 - - - 

Total 64 32 48 56 16 120 

32-

point 

(odd 

rows) 

24 32 

16 * 4 16 * 10 

- - - 

20 16 - - - 

20 16 - - - 

20 16 - - - 

20 16 - - - 

18 16 - - - 

17 16 - - - 

15 16 - - - 

14 16 - - - 

12 16 - - - 

10 16 - - - 

8 16 - - - 

6 16 - - - 

3 16 - - - 

1 16 - - - 

Total 256 64 160 240 32 432 

Total 342 120 232 312 60 600 
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Table 4.8 Computational savings in multiplier-free N-point/N × N 1-D 

approximated and scaled core transform using even–odd decomposition and 

Multiple-Constant Multiplication (MCM) 

Size 

Forward Transform 

HEVC Approximated, T16 
Approximated and 

Scaled, ST16 

Shifts Adds 
Shifts 

(Savings1
a
) 

Adds 

(Savings1
a
) 

Shifts 

(Savings1
a
) 

(Savings2
b
) 

Adds 

(Savings1
a
) 

4-point 

10 

      

16 

 

10 

(0.0%) 

12     

(25.0%) 

8 

(20.0%) 

(20.0%) 

12   

(25.0%) 

8-point 

(odd 

rows) 

20 

 

48 

 

20 

(0.0%) 

36   

(25.0%) 

16 

(20.0%) 

(20.0%) 

36   

(25.0%) 

16-point 

(odd 

rows) 

48 

 

168 

 

40 

(16.7%) 

120 

(28.6%) 

32 

(33.3%) 

(20.0%) 

120 

(28.6%) 

32-point 

(odd 

rows) 

96 

 

592 

 

80 

(16.7%) 

432 

(27.0%) 

64 

(33.3%) 

(20.0%) 

432 

(27.0%) 

Total 

174 

 

824 

 

150 

(13.8%) 

600 

(27.2%) 

120 

(31.0%) 

(20.0%) 

600 

(27.2%) 

 

a
 Savings against HEVC transform 

b
 Savings against approximated transform, T16 
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As the approximated transform matrices are scaled down by four (2
2
), the 

intermediate scaling factors after each 1-D transform operation can be reduced by 

two bits, as shown in Table 4.9. The corresponding scaling factors in the inverse 

transform are not affected. 

Table 4.9 Intermediate scaling factors in 2-D forward approximated and scaled 

transform 

Stage Scaling Factor 

First forward transform 2
(4 + M / 2) 

After the first forward transform, ST1 2
– (B + M – 7) 

Second forward transform 2
(4 + M / 2) 

After the second forward transform, ST2 2
– (M + 4) 

Total scaling for forward transform 2
(11 – B – M) 

 

4.3  Approximated Forward Quantisation 

 From Eq. (3.26), HEVC forward quantisation proposed by Budagavi et al. 

(Budagavi, Fuldseth and Bjøntegaard, 2014) comprises:  

i. Multiplications by quantiser multipliers, fi, and a ratio of frequency-

dependent scaling, 16/w[r][c], at the specific transform coefficient location 

(r, c);  

ii. Addition of an offset;  

iii. Divisions by QP/6 and quantisation scale factor, SQ.  

The addition requires an n-bit adder, depending on the required precision, 

while the two divisions are performed by means of right bit shifts (opposite of left bit 

shifts for a multiplication), and therefore are not too resource demanding. On the 

other hand, multiplications using n-bit multipliers would be area consuming in 

particular when implemented on hardware. For this reason, the multiplication 

operation in the forward quantisation was selected to be simplified to reduce its 

complexity. In addition, only the quantiser multipliers, fi, are considered in this 

thesis, as these multipliers are 15-bit numbers. The multiplication with the ratio of 
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quantisation weight involves a calculation with the value of one or less, as w[r][c] is 

equal to 16 or more, and therefore not considered in this work.  

 Following the same approach of multiplier-free implementation as in the 

transform stage, the multiplication of a transform coefficient, coeff, by fi can be 

performed as shown in (4.12a)–(4.12f), costing 14 bit shifts and 22 adds/subs. 

26214coeff = (((2
14

 + 2
13

) + (2
10

 + 2
9
)) + (((2

6
 + 2

5
) + (2

2
 + 2

1
))coeff 

= (((2
14

 +
1
 2

13
) +

15
 (2

10
 +

5
 2

9
)) +

20
 (((2

6
 +

10
 2

5
) +

12
 2

2
) +

14
 2

1
))coeff (4.12a) 

23302coeff = (((2
14

 +
2
 2

12
) +

16
 (2

11
 +

6
 2

9
)) +

21
 ((2

8
 +

11
 2

2
) +

13
 2

1
))coeff (4.12b) 

20560coeff = ((2
14

 +
2
 2

12
) +

17
 (2

6
 +

7
 2

4
))coeff (4.12c) 

18396coeff = ((((2
14

 + 2
10

) + (2
9
 + 2

8
)) + ((2

7
 + 2

6
) + (2

4
 + 2

3
))) + 2

2
)coeff 

= ((2
14

 +
3
 2

11
) –

18
 (2

5
 +

8
 2

2
))coeff (4.12d) 

16384coeff = (2
14

)coeff (4.12e) 

14564coeff = (((2
13

 +
4
 2

12
) +

19
 (2

11
 +

9
 2

7
)) +

22
 ((2

6
 +

10
 2

5
) +

12
 2

2
))coeff (4.12f) 

 Although the MCM technique could as well be applied sharing the resources 

and costing 13 bit shifts and 22 adders per transform coefficient, the longest cpd 

would be a three-stage adder tree to execute (4.12a), (4.12b), and (4.12f). A two-

stage adder tree is required each for (4.12c) and (4.12d), while 16384coeff (4.12e) 

would simply need a single 14-bit left shift. One way to reduce the cpd is by 

implementing these multiplications in a two-stage pipeline consisting of a maximum 

of two adders per pipeline stage. 

 As a minor contribution, this thesis aims to search for alternative quantiser 

multipliers requiring fewer resources. These multipliers were approximated based on 

the following criteria: 

i. A maximum of two-stage adder tree 

ii. Yielding the minimum difference with respect to the original 

multiplication 
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 Consequently, only (4.12a), (4.12b), and (4.12f) were selected to be replaced 

by alternative multiplier values, and (4.12c)–(4.12e) were retained as each of these 

multipliers requires a two-stage adder tree or less. Table 4.10 shows several of the 

considered alternatives. Although the search set may not be exhaustive, based on 

these alternatives, this thesis proposes a set of approximated quantiser multipliers, 

namely Q (4.13). 

Table 4.10 Several alternative quantiser multipliers 

Original 

Multiplier 

Equivalent bit shift – add operation Difference 

(× coeff) 

26214 

(4.12a) 

(2
14

 + 2
13

) + (2
10

 + 2
9
) = 26112 –102 

(2
14

 + 2
13

) + (2
11

 + 2
10

) = 27648 1434 

(2
14

 + 2
13

) + 2
11

 = 26624 410 

(2
14

 + 2
13

) = 24576 –1638 

(2
15

) = 32768 6554 

23302 

(4.12b) 

(2
14

 + 2
12

) + (2
11

 + 2
9
) = 23040 –262 

(2
14

 + 2
12

) + (2
11

 + 2
10

) = 23552 250 

(2
14

 + 2
12

) = 20480 –2822 

(2
14

 + 2
13

) = 24576 1274 

(2
14

 + 2
13

) – (2
10

 + 2
8
) = 23296 –6 

14564 

(4.12f) 

(2
13

 + 2
12

) + (2
11

 + 2
7
) = 14464 –100 

(2
13

 + 2
12

) + (2
11

 + 2
8
) = 14592 28 

(2
13

 + 2
12

) = 12288 –2276 

(2
14

 – 2
9
) – (2

8
 + 2

4
) = 15600 1036 
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   [                                   ]  (4.13) 

Multiplications with Q using combinations of bit shifts and additions, as well 

as adopting the MCM technique as shown by (4.14a)–(4.14f) would cost 11 bit shifts 

and 14 adders/subtractors per transform coefficient, i.e., savings of 21.4% and 36.4% 

in the number of bit shifts and additions/subtractions, respectively. Although these 

savings are obtained only in the quantiser multipliers and may not indicate the 

overall resource reductions in the whole quantisation process, little contributions 

collectively could yield a bigger impact.  

26112coeff  = (((2
14

 +
1
 2

13
) +

10
 (2
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 +

5
 2

9
))coeff (4.14a) 
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 2
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 (2

5
 +

8
 2
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))coeff (4.14d) 

16384coeff  = (2
14

)coeff (4.14e) 

14592coeff  = (((2
13

 +
4
 2

12
) +

14
 (2

11
 +

9
 2

8
))coeff (4.14f) 

 

4.4  Summary 

 An approximated and complexity-reduced 32 × 32 forward core transform 

matrix, namely T16, for an HEVC encoder was first described in this chapter. In a 

multiplier-free, even–odd decomposition, and MCM implementation, 13.8% and 

27.2% savings could be achieved in the number of bit shifts and 

additions/subtractions, respectively, by this approximated transform matrix in 

comparison to the original HEVC transform matrix. This matrix can as well be 

scaled down by two-bit, namely ST16, providing a further 20.0% saving in the 

number of bit shifts. Finally, a set of approximated quantiser multipliers were also 

introduced, namely Q, offering savings of 21.4% and 36.4% in the number of bit 

shifts and additions/subtractions, respectively, when compared with the quantiser 

multipliers suggested in (Budagavi, Fuldseth and Bjøntegaard, 2014). The next 

chapter presents the experimental results using these approximated values in HEVC 

reference software.  
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Chapter 5  

Software-based Performance Evaluation of 

Approximated Forward Transform and 

Quantisation 

Abstract This chapter evaluates the experimental results obtained by applying the 

approximated forward transform and approximated quantisation previously 

described, in HEVC reference software. The results are compared with the original 

HEVC algorithms in terms of objective quality metrics (Peak Signal to Noise Ratio 

(PSNR) and Bjøntegaard-Delta Bitrate (BD-rate)), and subjective observations. 

5.1 Pilot Study 

 Prior to assessing the coding performance of the chosen approximated 

transform matrix, T16, a pilot study was conducted using HEVC reference software 

version 13.0 (HM–13.0) (JCT-VC, 2014). This was the latest version released by 

JCT-VC when the work presented in this thesis kick-started. For consistency, HM–

13.0 was used throughout this thesis. The software was considered mature when an 

older version 10.0 (HM–10.0) was made available.  

 The approximated 32 × 32 transform matrix (and consequently including the 

internal smaller matrices) used in the pilot study was not T16 as described in Section 

4.3, but with a slight difference in three of the entries (27
th
, 28

th
, and 29

th
 entries). 

Table 5.1 compares this matrix, labelled as V, with T16 as well as HEVC, scaled and 

floating DCT (Dsf), and scaled and rounded DCT (Dsr) as references. V has a poorer 

worst-case orthogonality measure, orc, (0.0442) as opposed to T16 (0.0391), but has 

the same worst-case mrc (0.1218) and nrc (0.0605) measures as T16. It is assumed 

that the arithmetic savings of V and T16 over HEVC are similar (Table 4.6). 

 In this pilot study, 24 test video sequences were encoded. These sequences 

were progressively-scanned videos, formatted as YUV 4:2:0 colour space, and 

categorised into six classes, A–F, mainly based on their spatial resolutions. 

Sequences in classes A–D are natural videos of resolutions 2560 × 1600, 1920 × 
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1080, 832 × 480, and 416 × 240, respectively. Class E samples are 1280 × 720 video 

conferencing sequences, while class F comprises a video of resolution 832 × 480, 

one with 1024 × 768, and two with 1280 × 720 containing graphical screen contents 

(Table 5.2). 

Table 5.1 Comparison of approximated transform matrix in pilot study, V with 

T16, HEVC, Dsf and Dsr 

First 

column 

Transform Alternatives 

Dsf Dsr HEVC V T16 

0 64.00 64 64 64 64 

1 90.40 90 90 96 96 

2 90.07 90 90 96 96 

3 89.53 90 90 96 96 

4 88.77 89 89 96 96 

5 87.80 88 88 80 80 

6 86.61 87 87 80 80 

7 85.22 85 85 80 80 

8 83.62 84 83 80 80 

9 81.82 82 82 80 80 

10 79.82 80 80 80 80 

11 77.63 78 78 80 80 

12 75.26 75 75 72 72 

13 72.70 73 73 72 72 

14 69.96 70 70 68 68 

15 67.06 67 67 68 68 

16 64.00 64 64 64 64 

17 60.78 61 61 60 60 

18 57.42 57 57 56 56 

19 53.92 54 54 56 56 

20 50.28 50 50 48 48 

21 46.53 47 46 48 48 

22 42.67 43 43 40 40 

23 38.70 39 38 40 40 

24 34.64 35 36 36 36 

25 30.49 30 31 32 32 

26 26.27 26 25 24 28 

27 21.99 22 22 20 24 

28 17.66 18 18 16 20 

29 13.28 13 13 12 12 

30 8.87 9 9 8 8 

31 4.44 4 4 4 4 

orc 0.0000 0.0037 0.0029 0.0442 0.0391 

mrc 0.0000 0.0077 0.0213 0.1218 0.1218 

nrc 0.0000 0.0109 0.0013 0.0605 0.0605 
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Two coding profiles supported by HEVC version 1 – Main and Main 10 

profiles – were applied in this pilot study. The encoding structures Random Access 

(RA) and Low delay with bidirectional inter-predicted (B)-frames (LB) were 

employed in order to simulate the entertainment and interactive applications, 

respectively (Ohm et al., 2012). In RA, intra-predicted (I)-frames are inserted every 

24, 32, 48, or 64 frames for sequences with rates of 24, 30, 50, and 60 fps, 

respectively. On the other hand, in LB, only the first frame is an I-frame while the 

rest are B-frames. 

A Group of Pictures (GOP) of eight was applied, and four base quantisation 

parameter (QP) values were considered: 22, 27, 32, and 37, for the I-frames 

encoding. The chosen QP values represent normal quantisation within the whole 

range of supported QPs (Bossen, 2013). Hierarchical bidirectional-coding was also 

enabled, with a QP offset value of one between each temporal level. These settings 

are according to the common test conditions (CTC) set by JCT-VC (Bossen, 2013) 

and similar to the ones applied in (Grois et al., 2013). Table 5.3 summarises the 

experimental settings applied in this pilot study. 

Table 5.2 Test video sequences used in pilot study on approximated transform, 

V 

Class Sequence Resolution Frame rate (fps) 

A  

A1 – Traffic 

2560 × 1600 

30 

A2 – PeopleOnStreet 30 

A3 – Nebuta 60 

A4 – SteamLocomotive 60 

B 

B1 – Kimono 

1920 × 1080 

24 

B2 – Parkscene 24 

B3 – Cactus 50 

B4 – BasketballDrive 50 

B5 – BQTerrace 60 

C 

C1 – BasketballDrill 

832 × 480 

50 

C2 – BQMall 60 

C3 – PartyScene 50 

C4 – RaceHorses 30 

D 

D1 – BasketballPass 

416 × 240 

50 

D2 – BQSquare 60 

D3 – BlowingBubbles 50 

D4 – RaceHorses 30 
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Class Sequence Resolution Frame rate (fps) 

E 

E1 – FourPeople 

1280 × 720 

60 

E2 – Johnny 60 

E3 – KristenAndSara 60 

F 

F1 – BasketballDrillText 832 × 480 50 

F2 – ChinaSpeed 1024 × 768 30 

F3 – SlideEditing 1280 × 720 30 

F4 – SlideShow 1280 × 720 20 

 

Table 5.3 Experimental settings in pilot study on approximated transform, V 

HEVC Reference Software Version 13.0 (HM–13.0) 

Profiles Main and Main 10 

Encoding Structures Random Access (RA) and  

Low Delay with B-frames (LB) 

Test Video Sequences 24 (Table 5.2) 

Intra-period for Random Access 24, 32, 48, or 64 

Group of Pictures (GOP) 8 

Hierarchical Bidirectional Coding Enabled 

Base Quantisation Parameters (QP) 22, 27, 32, 37 

QP offset between temporal level +1 

 

5.1.1 Peak Signal to Noise Ratio (PSNR) 

 For every test video sequence and QP value, the average Peak Signal to 

Noise ratio, PSNRYUV was calculated as a weighted sum of the individual component 

average PSNRY, PSNRU, and PSNRV according to (5.1) (Ohm et al., 2012). 

PSNRYUV = (6 ∙ PSNRY + PSNRU + PSNRV) / 8 (5.1) 

Figs. 5.1 and 5.2 present the PSNR-based rate-distortion (R-D) curves under 

the RA and LB configurations, respectively, for a Class B sequence, B4 – 

BasketballDrive. A difference between two corresponding R-DPSNR curves using the 

original HEVC transform and approximated pilot transform, V, is hardly noticeable 

as the two R-D curves almost overlap each other for this sequence in both Main and 
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Main 10 profiles. This is a typical observation of the tested video sequences in this 

pilot study, suggesting that in the presence of a normal quantisation, the four 

simplified transform matrices, V, could provide an equivalent quality-coding 

performance to the original HEVC set in the entertainment and interactive scenarios. 



96 

 

 

Fig. 5.1 R-DPSNR curves of B4 – BasketballDrive sequence using original 

(HEVC) and approximated (V) transform matrices under RA configuration and in (a) 

Main and (b) Main 10 profiles 

(a) 

(b) 
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Fig. 5.2 R-DPSNR curves of B4 – BasketballDrive sequence using original 

(HEVC) and approximated (V) transform matrices under LB configuration and in (a) 

Main and (b) Main 10 profiles 

(a) 

(b) 



98 

 

5.1.2 Structural Similarity (SSIM) Index 

To complement PSNR, structural similarity (SSIM) index measurement was 

also included in this study. SSIM is a combination of luminance, contrast, and 

structure comparison functions (Wang et al., 2004). It has a scale between zero and 

one, where readings that are closer to one indicate high-quality samples. It has been 

shown that SSIM has better correlations with subjective Mean Opinion Score (MOS) 

than PSNR (Wang et al., 2004). 

Similar to PSNRYUV, the mean SSIMYUV was calculated as a weighted sum of 

individual SSIMY, SSIMU, and SSIMV means for each test video sequence and QP 

value (5.2). Figs. 5.3 and 5.4 display the corresponding R-D curves for B4 – 

BasketballDrive sequence in terms of SSIMYUV. Again, a difference between two R-

DSSIM curves using HEVC and V is not obvious for this sequence as both R-DSSIM 

curves almost overlap each other in both Main and Main 10 profiles. 

SSIMYUV = (6 ∙ SSIMY + SSIMU + SSIMV) / 8 (5.2) 
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Fig. 5.3 R-DSSIM curves of B4 – BasketballDrive sequence using original 

(HEVC) and approximated (V) transform matrices under RA configuration and in (a) 

Main and (b) Main 10 profiles 

(a) 

(b) 
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Fig. 5.4 R-DSSIM curves of B4 – BasketballDrive sequence using original 

(HEVC) and approximated (V) transform matrices under LB configuration and in (a) 

Main and (b) Main 10 profiles 

(a) 

(b) 
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5.1.3 Bjøntegaard-Delta Bitrate (BD-rate) 

Bjøntegaard-delta bitrate (BD-rate) measurement (Bjøntegaard, 2008) was 

subsequently used to calculate the average bitrate difference between two R-D 

curves at the same objective PSNRYUV and SSIMYUV of the reference R-D curve. A 

positive BD-rate value indicates an increase in the bitrate to achieve the same 

PSNRYUV or SSIMYUV quality, while a negative BD-rate value means a saving in the 

bitrate and therefore favourable. 

A summary of average BD-rate levels for each class is presented in Table 5.4 

for RA and LB encoding structures in Main profile. There are positive BD-rate 

values in all classes, with the overall average BD-rate values of 1.1% and 0.6% for 

the RA and LB case, respectively. Similar observations could be seen in Main 10 

profile. Although these increases may not be regarded as small penalties from the 

video coding perspective, they are far lower than the complexity savings anticipated 

by the approximated matrices as presented earlier in Table 4.6. 

Table 5.4 Average BD-rate values (%) for equal PSNRYUV and SSIMYUV 

between the original (HEVC) and approximated (V) transform matrices in Main 

profile 

Class 
Random Access (RA) Low Delay (LB) 

PSNRYUV SSIMYUV PSNRYUV SSIMYUV 

A 1.8 1.6 - - 

B 1.5 1.7 0.7 0.8 

C 0.7 0.7 0.5 0.5 

D 0.7 0.6 0.4 0.4 

E - - 0.6 0.8 

F 0.5 0.6 0.6 0.5 

Overall 1.1 1.1 0.6 0.6 

 

5.1.4 Visual Observations 

Fig. 5.5 provides the snapshots of the last frame of B4 – BasketballDrive 

sequence encoded and reconstructed using (a) the original (HEVC) and (b) the 
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approximated (V) transform matrices under RA configuration in Main profile. The 

base QP for intra-frame coding in this example was 32, and due to the applied QP 

offsets in the hierarchical bidirectional-coding settings, the QP value of the last 

frame of this sequence was increased by +4, i.e., QP(frame 499) = 36. The visual 

qualities of both snapshots appear to be identical, and this observation is supported 

by the corresponding objective values of PSNRYUV and SSIMYUV as provided in the 

caption of Fig. 5.5. A slight bitrate increment was obtained using V transform 

matrices, as indirectly reflected by Table 5.4 earlier.  

In order to better evaluate the quality difference between the two sample 

frames in Fig. 5.5, Fig. 5.6 displays (a) the image difference and (b) the histogram of 

pixel differences of the last frame encoded and reconstructed using V transform 

matrices over HEVC. Most differences appear to be around object edges with the 

vast majority (96.93%) of them having values of 25 or less, i.e., not exceeding 10% 

of the dynamic range (256 for 8-bit image or video). The pixel differences near these 

edges are primarily attributed to transform matrices of lower sizes (4 × 4 and 8 × 8) 

whereas transforms of higher sizes (16 × 16 and 32 × 32) are more applicable in 

large homogeneous areas of a picture. 
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Fig. 5.5 Snapshots of B4 – BasketballDrive sequence (frame 499, RA, Main, 

QP = 36) using (a) original (HEVC) (17552 bits, PSNRYUV = 35.839 dB, SSIMYUV = 

0.9041) and (b) approximated (V) (17560 bits, PSNRYUV = 35.822 dB, SSIMYUV = 

0.9041) transform matrices 

(a) 

(b) 
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Fig. 5.6 (a) Image difference and (b) histogram of pixel differences of the last 

frame (frame 499, RA, Main, QP = 36) of B4 – BasketballDrive sequence using 

approximated (V) transform matrices over HEVC 

(a) 

(b) 
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Figs. 5.7 and 5.8 provide the corresponding diagrams for the LB 

configuration, with the QP value of the last frame in this configuration increasing by 

+3 due to the hierarchical bidirectional-coding settings, i.e., QP(frame 499) = 35. 

The qualities of the frames also appear to be visually identical, with the objective 

PSNRYUV and SSIMYUV values supporting this remark (as provided in the caption of 

Fig. 5.7). As the LB configuration involves only a single I-frame at the beginning of 

the coding sequence, the bitrates are higher than in the RA case. Using approximated 

V transform matrices under the LB configuration also yields a higher bitrate 

increment than in the RA scenario due to the carried over noise. From Fig. 5.8, most 

pixel differences also concentrate near object edges with the vast majority (97.21%) 

of them having values of 25 or lower. Similar observations could be observed in 

Main 10 profile for both LB and RA configurations. 
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Fig. 5.7 Snapshots of B4 – BasketballDrive sequence (frame 499, LB, Main, 

QP = 35) using (a) original (HEVC) (31504 bits, PSNRYUV = 36.186 dB, SSIMYUV = 

0.9038) and (b) approximated (V) (31824 bits, PSNRYUV = 36.159 dB, SSIMYUV = 

0.9036) transform matrices 

 

(a) 

(b) 
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Fig. 5.8 (a) Image difference and (b) histogram of pixel differences of the last 

frame (frame 499, LB, Main, QP = 35) of B4 – BasketballDrive sequence using 

approximated (V) transform matrices over HEVC 

 

(a) 

(b) 
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5.1.5 Encoder-Decoder Compatibility 

A major change in the forward transform matrices in the encoder requires the 

corresponding inverse transform matrices to be integrated into the decoder to avoid 

any mismatch issue. To see the negative impacts of having an incompatible forward-

inverse transform operation, all bitstreams encoded with the approximated matrices, 

V, in Main profile for QPs of 22 and 37 were decoded using the original HM-13.0 

decoder.  

Table 5.5 presents the average PSNR differences (dB) of individual Y-, U-, 

and V-components for all classes in both RA and LB configurations for QP 22. In all 

cases, the decoded videos suffer PSNR drops in all three components. The most 

severe PSNR drops were observed in classes A, B, and E, i.e., high-resolution 

videos. The average drops decrease with decreasing spatial resolution with the least 

difference in the smallest resolution group, class D. The chrominance U- and V-

components appear to be affected more, but as the HVS is more sensitive to 

luminance, a lower PSNR drop in the Y-component would still render an annoying 

viewing experience. On average, the PSNR difference of Y-component is about -5dB 

in both RA and LB configurations, while the drops of U- and V-components are 

higher in the RA configuration, about -10dB, than in the LB configuration, more 

than -7dB. These drops are more severe in QP 22 than QP 37. It is, therefore, 

inevitable to have compatible transform processing blocks in both encoder and 

decoder. 
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Table 5.5 Average PSNR differences (dB) for proposed bitstreams in Main 

Profile and QP 22 decoded with original HEVC decoder (HM-13.0) 

Class 
Random Access (RA) Low Delay (LB) 

Y U V Y U V 

A -7.87 -19.44 -18.69 - - - 

B -6.21 -14.40 -14.56 -6.76 -11.36 -11.08 

C -3.12 -7.57 -7.84 -3.83 -7.67 -7.52 

D -1.66 -4.73 -4.12 -2.88 -3.02 -5.89 

E - - - -7.46 -11.93 -8.76 

F -5.51 -6.46 -5.39 -4.26 -4.89 -5.11 

Mean -4.87 -10.52 -10.12 -5.03 -7.77 -7.67 

 

5.1.6 Conclusions 

From the conducted pilot study on the approximated transform for HEVC 

using V matrices, the following conclusions could be drawn. Positive BD-rate 

increments were seen on average in all six classes of test sequences, with an average 

of +1.1% in RA and 0.6% in LB. These positive BD-rate increments are larger in 

high-resolution videos (Classes A, B, and E) in comparison to low-resolution videos 

(Classes C, D, and F). These BD-rate differences also appear to be larger in the RA 

configuration as opposed to LB for natural videos (Classes B, C, and D) but about 

the same for class F with computer graphical contents. Similar results were obtained 

using PSNR and SSIM objective quality metrics. Considering natural videos, the 

approximated transform matrices appear to carry more bits for I-frames than B-

frames with respect to the original HEVC matrices. No significant differences were 

seen in Main and Main 10 profiles in terms of objective metrics (PSNR and BD-rate) 

and visual observations of the reconstructed videos. From sample video frames, most 

pixel differences obtained using V transform matrices against HEVC lie near object 

edges with the vast majority (over 96% in both configurations) of them having 

values of 25 or lower. Finally, employing a different set of transform matrices in the 

encoder would require the corresponding inverse transform matrices in the decoder 

to avoid highly distorted decoded videos. 

 



110 

 

5.2 Approximated Transforms 

 This section evaluates the coding performance of the approximated core 

transform matrix, T16, and its scaled version, ST16, with HEVC core transform.  

5.2.1 Experimental Settings 

Based on the results of the pilot study, it was decided to conduct the 

experiments on T16 and ST16 only in Main profile. It is assumed that similar results 

would be obtained in Main 10 profile. In addition, this thesis puts more emphasis on 

high-resolution videos because the coding performance impact seen from the pilot 

study was higher in the high-resolution classes. Furthermore, there is a growing 

tendency to embed high-resolution capability in video-enabled devices due to 

technological advances and increasing demands, and low-resolution videos are 

slowly phasing out. Therefore, only Classes A (cropped UHD) and B (Full-HD 

1080p) test video sequences were evaluated under RA coding structure, and Classes 

B and E (HD-ready 720p) videos under LB. Low-resolution videos should exhibit 

better coding performance results. In addition, only PSNR-based BD-rate coding 

performance metric was used from this experiment onwards. Similar results were 

expected to be obtained using SSIM. Table 5.6 shows the updated experimental 

settings used in this experiment. 

Table 5.6 Experimental settings on approximated transform 

HEVC Reference Software Version 13.0 (HM–13.0) 

Profiles Main 

Encoding Structures Random Access (RA) and  

Low Delay with B-frames (LB) 

Test Video Sequences Classes A and B for RA 

Classes B and E for LB 

Intra-period for RA 24, 32, 48, or 64 

Group of Pictures (GOP) 8 

Hierarchical Bidirectional Coding Enabled 

Base Quantisation Parameters (QP) 22, 27, 32, 37 

QP offset between temporal level +1 
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5.2.2 Peak Signal to Noise Ratio (PSNR) 

Fig. 5.9 presents the PSNR-based rate-distortion (R-D) curves under the RA 

and LB configurations for a Class B sequence, B4 – BasketballDrive. Similar to the 

pilot study, the three R-D curves using the original (HEVC) and approximated (T16 

and ST16) transform matrices appear to almost overlap each other in both RA and 

LB configurations. Similar observations could as well be seen with most other 

videos. The corresponding R-D curves for the other tested video sequences are 

provided in Appendix A. These R-D curves suggest that using a normal quantisation 

value (QP = 22–32), the four approximated transform matrices of T16 and ST16 may 

not introduce significant quality-coding performance degradations in the 

entertainment and interactive scenarios when compared with using the original 

HEVC transform set. 
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Fig. 5.9 R-DPSNR curves of B4 – BasketballDrive sequence using original 

HEVC and approximated transform matrices, T16 and ST16, under (a) RA and (b) 

LB configurations in Main profile 

(a) 

(b) 
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5.2.3 Bjøntegaard-Delta Bitrate (BD-rate) 

A summary of average BD-rate levels for each class is presented in Table 5.7 

for RA and LB encoding structures in Main profile. Again, there are unfavourable 

positive BD-rate values in all involved classes, with the overall average BD-rate 

values of 1.7% and 0.7% in the RA and LB case, respectively. The highest BD-rate 

differences in RA from Class A were obtained from A3 – NebutaFestival and A4 – 

SteamLocomotive, possibly due to these sequences being in 10-bit depth prior to 

conversion to 8-bit depth to be encoded in Main profile. From Class B, the largest 

BD-rate increases were obtained from B1 – Kimono1 in both RA and LB 

configurations, possibly because there is a scene change in this sequence. Although 

these increases may not be regarded as small penalties from the video coding 

perspective, they are considerably lower than the complexity savings anticipated by 

the approximated transform matrices as presented earlier in Table 4.8. 

 

 

Table 5.7 Average BD-rate values (%) for equal PSNRYUV between HEVC and 

approximated, T16 and ST16, transform matrices in Main profile 

Class Sequence 
Random Access (RA) Low Delay (LB) 

T16 ST16 T16 ST16 

A 

(2560 × 1600) 

Cropped UHD 

A1 1.5 1.5 - - 

A2 1.3 1.3 - - 

A3 2.3 2.3 - - 

A4 2.3 2.4 - - 

Average 1.8 1.9 - - 

B 

(1920 × 1080) 

Full HD 

B1 2.7 2.7 1.1 1.1 

B2 1.3 1.2 0.5 0.5 

B3 1.5 1.5 0.8 0.7 

B4 1.1 1.1 0.6 0.7 

B5 1.1 1.1 0.6 0.7 

Average 1.5 1.5 0.7 0.7 
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E 

(1280 × 720) 

HD-ready 

E1 - - 0.8 0.8 

E2 - - 0.6 0.3 

E3 - - 0.8 0.9 

Average - - 0.8 0.7 

Overall
a
 1.7 1.7 0.7 0.7 

a
 Overall average of Classes A and B for RA and Classes B and E for LB 

 

5.2.4 Visual Observations 

Fig. 5.10 provides the snapshots of the last frame of B4 – BasketballDrive 

sequence under the RA configuration in Main profile, encoded and reconstructed 

with HEVC and approximated, T16 and ST16 transform matrices, using the four 

base QP values (22–37). Table 5.8 equips Fig. 5.10 with the corresponding bitrate 

and PSNR values of the frames. The visual qualities of these snapshots look identical 

as supported by the objective PSNR values of all three YUV channels. Again, bitrate 

increments could be seen in most of the cases using T16 and ST16 approximated 

transform matrices. 

Fig. 5.11 displays the image differences of the respective frames shown in 

Fig. 5.10 using T16 and ST16 matrices over HEVC. In general, the pixel differences 

are mainly near object edges, and these differences seem to be less visible as the QP 

value increases. Fig. 5.12 plots the histograms of pixel differences and Table 5.9 

groups the percentages of these differences into three categories: ≤ 25; 26 – 50; > 50. 

For both T16 and ST16, the percentages of pixel differences having a value of 25 or 

lower increase with increasing QP. Consequently, pixel differences in the other two 

categories decrease in percentage as the QP increases. For the ≤ 25 category, while 

the differences between T16 and ST16 are not too obvious for QPs 27, 32, and 37, 

ST16 is better than T16 at QP 22. Against HEVC, both transform matrices give pixel 

differences not exceeding 25 in at least 88% of cases under the normal QP range 

being studied (22–37)  and the RA configuration. 
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Fig. 5.10 Snapshots of the last frame of B4 – BasketballDrive sequence (frame 

499, RA, Main) using HEVC (left column), T16 (middle column), and ST16 (right 

column) transform matrices and base QP values of (a) 22, (b) 27, (c) 32, and (d) 37 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Table 5.8 Number of bits and PSNR values of last frame of B4 – 

BasketballDrive sequence under RA configuration using HEVC and approximated 

transform matrices 

Base QP  HEVC T16 ST16 

22 Bits 126624 128336 128096 

PSNR  Y: 38.27 dB    

U: 42.64 dB    

V: 44.00 dB 

Y: 38.25 dB    

U: 42.65 dB    

V: 44.02 dB 

Y: 38.26 dB    

U: 42.67 dB    

V: 44.01 dB 

27 Bits 43544 43888 44552 

PSNR  Y: 36.48 dB    

U: 41.54 dB    

V: 42.19 dB 

Y: 36.41 dB    

U: 41.50 dB    

V: 42.21 dB 

Y: 36.48 dB    

U: 41.53 dB    

V: 42.18 dB 

32 Bits 17552 17776 17416 

PSNR Y: 34.32 dB    

U: 40.37 dB    

V: 40.43 dB 

Y: 34.34 dB    

U: 40.36 dB    

V: 40.42 dB 

Y: 34.32 dB    

U: 40.37 dB    

V: 40.39 dB 

37 Bits 8280 8120 8344 

PSNR Y: 32.16 dB    

U: 39.56 dB    

V: 39.17 dB 

Y: 32.24 dB    

U: 39.45 dB    

V: 39.17 dB 

Y: 32.24 dB    

U: 39.43 dB    

V: 39.19 dB 

 

 

 

 

 

 

 



117 

 

 

Fig. 5.11 Image differences of the last frame of B4 – BasketballDrive sequence 

(frame 499, RA, Main) using T16 (left column) and ST16 (right column) transform 

matrices over HEVC with base QP values of (a) 22, (b) 27, (c) 32, and (d) 37 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Fig. 5.12 Histograms of pixel differences of the last frame of B4 – 

BasketballDrive sequence (frame 499, RA, Main) using T16 (left column) and ST16 

(right column) transform matrices over HEVC with base QP values of (a) 22, (b) 27, 

(c) 32, and (d) 37 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Table 5.9 Percentage (%) of pixel differences of the last frame of B4 – 

BasketballDrive sequence using T16 and ST16 transform matrices over HEVC under 

RA configuration in Main profile 

Base 

QP 

Transform 

Pixel Difference 

T16 ST16 

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50 

22 88.63 9.40 1.97 93.98 5.57 0.45 

27 94.97 4.24 0.80 95.02 4.21 0.77 

32 97.37 2.31 0.32 97.35 2.23 0.42 

37 97.74 1.94 0.33 97.58 2.03 0.39 

 

 Fig. 5.13 displays the snapshots of the last frame of B4 – BasketballDrive 

sequence under the LB configuration in Main profile with Table 5.10 showing the 

corresponding bitrate and PSNR values of the frames. The closeness in the obtained 

objective PSNR levels offer some support to the visual quality of these frames. Fig. 

5.14 provides the image differences of the respective frames using T16 and ST16 

matrices against HEVC shown in Fig. 5.13. As previously remarked for the RA 

configuration, most differences appear around object edges and these differences 

look less visible with increasing QPs. Fig. 5.15 plots the histograms of pixel 

differences and Table 5.11 shows the corresponding percentages of pixel differences 

grouped under the same three categories: ≤ 25; 26 – 50; > 50. The majority of these 

differences are also in the ≤ 25 category; with increasing percentages as the QP is 

increased for both T16 and ST16 transform matrices. There is a slight ambiguity 

with ST16 at QP27, where its percentage in the ≤ 25 category (89.57%) is lower than 

T16 (94.72%) while the percentages are higher at the other three QP values. More 

importantly against HEVC, both approximated transform matrices yield pixel 

differences of 25 or lower in at least 82% of cases under the studied QP values (22–

37) and the LB configuration. 
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Fig. 5.13 Snapshots of B4 – BasketballDrive sequence (frame 499, LB, Main) 

using HEVC (left column), T16 (middle column), and ST16 (right column) 

transform matrices and base QP values of (a) 22, (b) 27, (c) 32, and (d) 37 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Table 5.10 Number of bits and PSNR values of last frame of B4 – 

BasketballDrive sequence under LB configuration using HEVC and approximated 

transform matrices 

Base QP  HEVC T16 ST16 

22 Bits 232448 231424 234440 

PSNR  Y: 38.92 dB       

U: 42.70 dB      

V: 44.24 dB 

Y: 38.92 dB      

U: 42.67 dB      

V: 44.19 dB 

Y: 38.92 dB      

U: 42.66 dB      

V: 44.21 dB 

27 Bits 80568 80064 80632 

PSNR  Y: 37.08 dB      

U: 41.38 dB      

V: 42.19 dB 

Y: 37.06 dB      

U: 41.37 dB      

V: 42.20 dB 

Y: 37.06 dB      

U: 41.36 dB      

V: 42.19 dB 

32 Bits 31504 31032 30640 

PSNR Y: 34.85 dB      

U: 40.10 dB      

V: 40.27 dB 

Y: 34.78 dB      

U: 40.08 dB      

V: 40.19 dB 

Y: 34.80 dB      

U: 40.11 dB      

V: 40.25 dB 

37 Bits 14592 14248 14608 

PSNR Y: 32.54 dB      

U: 39.23 dB      

V: 38.94 dB 

Y: 32.51 dB      

U: 39.24 dB      

V: 39.02 dB 

Y: 32.55 dB      

U: 39.21 dB      

V: 39.00 dB 
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Fig. 5.14 Image differences of the last frame of B4 – BasketballDrive sequence 

(frame 499, LB, Main) using T16 (left column), and ST16 (right column) transform 

matrices over HEVC with base QP values of (a) 22, (b) 27, (c) 32, and (d) 37 

 

(a) 

(b) 

(c) 

(d) 
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Fig. 5.15 Histograms of pixel differences of the last frame of B4 – 

BasketballDrive sequence (frame 499, LB, Main) using T16 (left column) and ST16 

(right column) transform matrices over HEVC with base QP values of (a) 22, (b) 27, 

(c) 32, and (d) 37 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Table 5.11  Percentage (%) of pixel differences of the last frame of B4 – 

BasketballDrive sequence using T16 and ST16 transform matrices over HEVC under 

LB configuration in Main profile 

Base 

QP 

Transform 

Pixel Difference 

T16 ST16 

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50 

22 82.23 14.72 3.05 82.86 14.62 2.53 

27 94.72 4.51 0.76 89.57 8.93 1.51 

32 95.94 3.41 0.65 96.01 3.41 0.58 

37 97.89 1.81 0.30 96.67 2.82 0.51 

 

 

5.2.5 Conclusions 

Both approximated transforms, T16 and ST16, provide a similar average BD-

rate coding performance of +1.7% in RA and +0.7% in LB configurations, 

respectively, for videos of HD-quality or beyond. From reconstructed video frame 

samples, identical visual and objective quality levels were obtained against HEVC, 

with at least 88% and 82% of pixel differences not exceeding 25 under RA and LB 

configurations, respectively. The increments in bitrate in order to achieve a similar 

objective quality may not be regarded as small, but the potential hardware 

complexity savings as shown earlier in Table 4.8 could outweigh these penalties in 

bitrate. 
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5.3 Approximated Quantisation 

 This sub-section evaluates the coding performance of the approximated 

quantisation multiplier set, Q, against the original HEVC quantisation.  

5.3.1 Experimental Settings 

The following experiment on the approximated quantisation multiplier set, Q, 

follows the experimental settings applied for the approximated transform matrices, 

T16 and ST16. Therefore, only Classes A (cropped UHD) and B (Full-HD 1080p) 

test video sequences were evaluated under RA coding structure, and Classes B and E 

(HD-ready 720p) videos under LB. It is assumed that low-resolution videos would 

exhibit better coding performance results. On top of that, as there are six multipliers 

in quantisation set, the number of base QP values was extended from four to six to 

include 17 and 42. Table 5.12 summarises the experimental settings used in this 

section. 

Table 5.12 Experimental settings on approximated quantisation 

HEVC Reference Software Version 13.0 (HM–13.0) 

Profiles Main 

Encoding Structures Random Access (RA) and  

Low Delay with B-frames (LB) 

Test Video Sequences Classes A and B for RA 

Classes B and E for LB 

Intra-period for RA 24, 32, 48, or 64 

Group of Pictures (GOP) 8 

Hierarchical Bidirectional Coding Enabled 

Base Quantisation Parameters (QP) 17, 22, 27, 32, 37, 42 

QP offset between temporal level +1 

 

5.3.2 Peak Signal to Noise Ratio (PSNR) 

Fig. 5.16 presents the PSNRYUV-based R-D curves under RA and LB 

configurations for B4 – BasketballDrive sequence. Again, a difference between two 
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corresponding R-D curves using the original HEVC and approximated quantisation 

is hardly noticeable for this sequence in both entertainment and interactive scenarios. 

The corresponding R-D curves for the other tested video sequences are provided in 

Appendix B. In most of these sequences, both R-D curves are almost aligned with 

each other, indicating the closeness of the quality-bitrate performance achieved by 

the approximated quantisation multiplier set, Q, in videos of HD-quality or beyond. 
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Fig. 5.16 R-DPSNR curves of B4 – BasketballDrive sequence using original 

HEVC and approximated quantisation multiplier set, Q, under (a) RA and (b) LB 

configurations and in Main profile 

 

(a) 

(b) 
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5.3.3 Bjøntegaard-Delta Bitrate (BD-rate) 

A summary of average BD-rate levels (YUV-based) for each class under 

study is presented in Table 5.13 for RA and LB encoding structures in Main profile. 

In RA, The average BD-rate value for classes A and B is both 0.0%, suggesting there 

is a negligible effect of the approximated quantisation multiplier set, Q, over HEVC. 

In LB, the same average value of 0.0% was obtained for class B videos, and slight 

bitrate savings were achievable for class E videos with an average of -0.1%. The 

most savings was seen from E2 – Johnny, where the background is most stagnant 

among the test conference video sequences, with a -0.3% average BD-rate value. 

Table 5.13 Average BD-rate values (%) for equal PSNRYUV between HEVC and 

approximated quantisation multipliers in Main profile 

Class Sequence Random Access (RA) Low Delay (LB) 

A  

(2560 × 1600) 

Cropped UHD 

A1 0.0 - 

A2 0.0 - 

A3 0.0 - 

A4 0.1 - 

Average 0.0 - 

B  

(1920 × 1080) 

Full HD 

B1 0.0 0.0 

B2 0.0 0.0 

B3 0.0 0.0 

B4 0.0 0.0 

B5 0.0 0.0 

Average 0.0 0.0 

E 

(1280 × 720) 

HD-ready 

E1 - -0.1 

E2 - -0.3 

E3 - 0.0 

Average - -0.1 

Overall
a
 0.0 -0.1 

a
 Overall average of Classes A and B for RA and Classes B and E for LB 
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5.3.4 Visual Observations 

Fig. 5.17 shows the last frame of B4 – BasketballDrive sequence under the 

RA configuration. In each base QP value, obvious video degradations or 

improvements are not apparent using the approximated quantisation multipliers, Q, 

over HEVC. This observation is reflected in the closeness of the PSNR levels of 

individual Y-, U-, and V-components of the frame as shown in Table 5.14. Fig. 5.18 

displays the image differences and the histograms of pixel differences between the 

two sets of quantisation multipliers. Pixel differences appear to be less noticeable as 

QP increases from 17 to 42.  

Fig. 5.19 shows the corresponding snapshots of the last frame of B4 – 

BasketballDrive sequence under the LB configuration. Table 5.15 equips these 

snapshots with the respective PSNR values. As seen in the RA configuration, the 

visual and objective qualities of the reconstructed frames using Q and HEVC at most 

QP settings seem indistinguishable. Fig. 5.20 provides the image differences and 

histograms of pixel differences, where pixel differences are the most apparent at QP 

equals 17 and become less visible as QP increases. 

Table 5.16 groups the percentages of pixel differences in both RA and LB 

configurations into three categories: ≤ 25; 26 – 50; > 50. It can be seen that 

periodical insertions of I-frames as applied in RA achieves more pixel differences 

having values of 25 or lower as opposed to LB, especially at QPs 17 and 22. At these 

two base QPs, due to the hierarchical bidirectional settings, the QP values for the last 

frame of B4 – BasketballDrive sequence are respectively increased to 21 and 26 in 

RA and 20 and 25 in LB.  Recalling the approximated quantisation multiplier set 

from (4.13), Q = [26112, 23296, 20560, 18396, 16384, 14592]
T
 where Q(2), Q(3), 

and Q(4) are maintained as in the original HEVC quantisation multipliers. At QPs 20 

and 21 (i.e., base QP = 17), the involved quantisation multipliers are Q(20%6) = 

20560 and Q(21%6) = 18396, respectively, i.e., as in the original HEVC set. 

Similarly, Q(26%6) = 20560. Only QP 25 involves one of the three approximated 

quantisation multipliers, i.e., Q(25%6) = 23296. At this QP under LB configuration, 

the total percentage of pixel differences of 50 or lower is 97.65% (Table 5.16), 
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which is a great improvement relative to QP 20, where the total percentage of the 

first two categories is 80.95%.  

As previously described in Chapter 4, the first base QP of 17, as well as the 

last QP of 42, were added to the normal QP range recommended by the CTC 

(Bossen, 2013) to ensure that all six quantisation multipliers were covered in this 

experiment. Low range of QP values is useful in producing videos of cinema quality. 

Thus, although Q may appear to be less suitable to be coupled with QPs below 22 

especially in low delay applications, such a high quality encoded video signal is 

typically unnecessary in video communications, for instance in live broadcasts and 

videoconferencing meetings which require a transmission with small delays.  
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Fig. 5.17 Snapshots of the last frame of B4 – BasketballDrive sequence (frame 

499, RA, Main) using HEVC (left column) and approximated quantisation 

multipliers, Q (right column) and QP values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37, 

and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 



132 
 

Table 5.14 Number of bits and PSNR values of last frame of B4 – 

BasketballDrive sequence under RA configuration using HEVC and approximated, 

Q, quantisation multipliers 

Base QP  HEVC Q 

17 Bits 510176 506048 

PSNR  Y: 39.51 dB      

U: 43.47 dB      

V: 45.63 dB 

Y: 39.52 dB      

U: 43.48 dB      

V: 45.64 dB 

22 Bits 126624 126760 

PSNR  Y: 38.27 dB      

U: 42.64 dB      

V: 44.00 dB 

Y: 38.28 dB      

U: 42.68 dB      

V: 44.07 dB 

27 Bits 43544 44832 

PSNR  Y: 36.48 dB      

U: 41.54 dB      

V: 42.19 dB 

Y: 36.51 dB      

U: 41.56 dB      

V: 42.20 dB 

32 Bits 17552 17784 

PSNR Y: 34.32 dB      

U: 40.37 dB      

V: 40.43 dB 

Y: 34.35 dB      

U: 40.41 dB      

V: 40.47 dB 

37 Bits 8280 8264 

PSNR Y: 32.16 dB      

U: 39.56 dB      

V: 39.17 dB 

Y: 32.22 dB      

U: 39.53 dB      

V: 39.08 dB 

42 Bits 3680 3896 

PSNR Y: 30.11 dB      

U: 38.67 dB      

V: 37.77 dB 

Y: 30.15 dB      

U: 38.61 dB      

V: 37.78 dB 
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Fig. 5.18 Image differences and histograms of pixel differences of the last 

frame of B4 – BasketballDrive sequence (frame 499, RA, Main) using approximated 

quantisation multipliers, Q over HEVC at QP values of (a) 17, (b) 22, (c) 27, (d) 32, 

(e) 37, and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Fig. 5.19 Snapshots of the last frame of B4 – BasketballDrive sequence (frame 

499, LB, Main) using HEVC (left column) and approximated quantisation 

multipliers, Q (right column) and QP values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37, 

and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Table 5.15 Number of bits and PSNR values of last frame of B4 – 

BasketballDrive sequence under LB configuration using HEVC and approximated, 

Q, quantisation multipliers 

Base QP  HEVC Q 

17 Bits 1289808 1288472 

PSNR  Y: 41.77 dB      

U: 43.75 dB       

V: 45.94 dB 

Y: 41.78 dB      

U: 43.74 dB      

V: 45.93 dB 

22 Bits 232448 231848 

PSNR  Y: 38.92 dB       

U: 42.70 dB       

V: 44.24 dB 

Y: 38.91 dB      

U: 42.67 dB      

V: 44.18 dB 

27 Bits 80568 80416 

PSNR  Y: 37.08 dB      

U: 41.38 dB      

V: 42.19 dB 

Y: 37.09 dB      

U: 41.38 dB      

V: 42.19 dB 

32 Bits 31504 31536 

PSNR Y: 34.85 dB      

U: 40.10 dB      

V: 40.27 dB 

Y: 34.82 dB      

U: 40.06 dB      

V: 40.27 dB 

37 Bits 14592 13792 

PSNR Y: 32.54 dB      

U: 39.23 dB      

V: 38.94 dB 

Y: 32.55 dB      

U: 39.22 dB      

V: 38.94 dB 

42 Bits 6688 7000 

PSNR Y: 30.28 dB      

U: 38.55 dB      

V: 37.81 dB 

Y: 30.27 dB      

U: 38.49 dB      

V: 37.84 dB 
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Fig. 5.20 Image differences and histograms of pixel differences of the last 

frame of B4 – BasketballDrive sequence (frame 499, LB, Main) using approximated 

quantisation multipliers, Q over HEVC at QP values of (a) 17, (b) 22, (c) 27, (d) 32, 

(e) 37, and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Table 5.16 Percentage (%) of pixel differences of the last frame of B4 – 

BasketballDrive sequence using approximated quantisation multipliers, Q, in Main 

profile under RA and LB configurations 

Base 

QP 

Configuration 

Pixel Differences 

RA LB 

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50 

17 78.46 19.48 2.06 43.73 37.22 19.05 

22 93.47 5.73 0.80 82.80 14.85 2.35 

27 93.07 5.86 1.07 94.41 4.81 0.78 

32 96.85 2.72 0.43 95.87 3.47 0.66 

37 96.40 2.99 0.61 96.67 2.88 0.44 

42 96.40 3.03 0.57 96.93 2.67 0.40 

 

5.3.5 Conclusions 

The approximated quantisation multiplier set, Q, does not provide a 

significant difference in terms of coding performance on encoded HD-quality videos 

or larger, over the original quantisation multipliers in HEVC. Average BD-rate 

values of 0.0% and -0.1% obtained in RA and LB configurations, respectively, 

suggest that Q could be employed in encoders producing HEVC-compliant 

bitstreams, providing some complexity reductions in this processing block without 

requiring any changes in the decoders. From reconstructed video frame samples, at 

least 93% and 82% of pixel differences do not exceed the value of 25 in RA and LB, 

respectively, in base QP values of 22 and above, further suggesting that the 

approximated quantisation multipliers are practically applicable in entertainment and 

interactive applications at mid to high range of QP settings. Although lower 

performances obtained at the base QP of 17 in both configurations; with only around 

78% and 43% of pixel differences having the values of 25 or lower in RA and LB, 

respectively, make Q to be less favourable for low values of QP, i.e., very fine 

quantisation levels, such a high-quality encoded video signal is unnecessary in 

typical use cases especially involving video transmissions. 
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5.4 Approximated Transform and Quantisation 

 After evaluating the coding performances of approximated transform matrix 

sets, T16 and ST16, as well as approximated quantisation multiplier set, Q, over the 

original HEVC encoding, this section assesses the combined performance of an 

approximated transform matrix with the approximated quantisation multipliers. As 

ST16 offers more arithmetic savings than T16 over HEVC transform matrices, as 

well as it is the eventual transform matrix intended to be applied in the HEVC 

encoder (and the corresponding modified inverse transform in the decoder), ST16 

has therefore been selected to be combined with Q.   

5.4.1 Experimental Settings 

This experiment follows exactly the same settings as applied in the previous 

section on the approximated quantisation multiplier set, Q. Table 5.17 summarises 

the experimental settings used in this section (same as Table 5.12). 

Table 5.17 Experimental settings on approximated transform and quantisation 

HEVC Reference Software Version 13.0 (HM–13.0) 

Profiles Main 

Encoding Structures Random Access (RA) and  

Low Delay with B-frames (LB) 

Test Video Sequences Classes A and B for RA 

Classes B and E for LB 

Intra-period for RA 24, 32, 48, or 64 

Group of Pictures (GOP) 8 

Hierarchical Bidirectional Coding Enabled 

Base Quantisation Parameters (QP) 17, 22, 27, 32, 37, 42 

QP offset between temporal level +1 

 

5.4.2 Peak Signal to Noise Ratio (PSNR) 

Fig. 5.21 presents the PSNRYUV-based R-D curves under RA and LB 

configurations for B4 – BasketballDrive sequence. Again, a difference between two 

corresponding R-D curves using the original HEVC and the combination of 

approximated transform and quantisation, ST16 + Q, is hardly noticeable for this 

sequence in both entertainment and interactive scenarios, as both R-D curves almost 

overlap each other. The corresponding R-D curves for the other tested video 
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sequences are provided in Appendix C. In most of these sequences, both R-D curves 

almost overlap each other, indicating the closeness of the quality-bitrate performance 

achieved by the combination of the approximated transform matrices, ST16, and 

approximated quantisation multipliers, Q.  
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Fig. 5.21 R-DPSNR curves of B4 – BasketballDrive sequence using original 

HEVC and combination of approximated transform matrix and quantisation 

multiplier sets, ST16 + Q, under (a) RA and (b) LB configurations and in Main 

profile 

(a) 

(b) 
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5.4.3 Bjøntegaard-Delta Bitrate (BD-rate) 

A summary of average BD-rate levels for each class is presented in Table 

5.18 for RA and LB encoding structures in Main profile. Comparing with Table 5.7 

earlier, there are no or little improvements of around 0.1% or 0.2% in most 

sequences such as A1 – Traffic, B3 – Cactus, and B5 – BQTerrace as opposed to 

using ST16 approximated transform matrices only. The biggest improvements could 

be seen from A4 – SteamLocomotive and B1 – Kimono1 sequences, with a 0.5% BD-

rate drop each using ST16 + Q combination. However, A3 – NebutaFestival 

sequence remains a problematic one with a 4.0% BD-rate in comparison to 2.3% 

when using either ST16 or T16 alone, thus raising the average of Class A to 2.1% 

rather than 1.9% seen earlier in Table 5.7. Besides these remarks, the other BD-rate 

values of ST16 + Q and ST16 appear to be similar in both RA and LB 

configurations. 

Table 5.18 Average BD-rate values (%) for equal PSNRYUV between 

HEVC and combination of approximated transform and quantisation multipliers, 

ST16 + Q, in Main profile 

Class Sequence Random Access (RA) Low Delay (LB) 

A 

(2560 × 1600) 

Cropped UHD 

A1 1.3 - 

A2 1.3 - 

A3 4.0 - 

A4 1.9 - 

Average 2.1 - 

B 

(1920 × 1080) 

Full HD 

B1 2.2 1.2 

B2 1.3 0.6 

B3 1.3 0.7 

B4 1.1 0.7 

B5 1.0 0.7 

Average 1.4 0.8 

E 

(1280 × 720) 

HD-ready 

E1 - 0.6 

E2 - 0.6 

E3 - 0.6 

Average - 0.6 
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Overall
a
 1.7 0.7 

a
 Overall average of Classes A and B for RA and Classes B and E for LB 

5.4.4 Visual Observations 

Fig. 5.22 displays the last reconstructed frame of B4 – BasketballDrive 

sequence under the RA configuration using the combination of ST16 and Q. The 

same remarks can be made on the perceptual quality of these frames as in the 

approximated transforms, T16 and ST16, as well as the approximated quantisation 

multipliers, Q, i.e., the corresponding frames at each base QP settings appear 

visually identical. A difference in objective quality levels, as shown in Table 5.19, is 

also hardly noticeable in all six QP values under investigation. Fig. 5.23 provides the 

image differences and histograms of pixel differences between ST16 + Q 

combination and HEVC in the last reconstructed frames. As seen in the Q 

experiment, the worst differences were obtained at QP 17, where pixel differences 

were also present in large homogeneous areas in addition to object edges. As QP 

increases to 42, pixel differences generally improves. 

Fig. 5.24 shows the corresponding snapshots of the last frame of B4 – 

BasketballDrive sequence under the LB configuration, with the respective objective 

PSNR values provided in Table 5.20. Again, the visual and objective quality levels 

between the two sets of transform and quantisation multipliers, HEVC and ST16 + 

Q, appear identical in most QP settings. Fig. 5.25 provides the image differences and 

histograms of pixel differences in the last frame of B4 – BasketballDrive sequence 

using ST16 + Q against HEVC. As seen in the Q case, the pixel differences are the 

most apparent at the base QP of 17 and generally improve as QP grows.  

Finally, Table 5.21 groups the percentages of pixel differences in RA and LB 

configurations into three categories: ≤ 25; 26 – 50; > 50. Similar to the observation 

in the Q case, RA generally achieves better percentages of pixel differences having 

values of 25 or smaller compared to LB, in particular at QP values of 17 and 22. At 

QP 17, the introduction of ST16 to Q seems to further decrease the achieved 

percentages of the first category of pixel differences, with only around 53% in RA 

and 37% in LB as opposed to 78% and 43% respectively obtained earlier using only 

Q. Nevertheless, low range of QP values such as below 22 produce cinematic 
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production-quality videos, and is a surplus to most general applications such as home 

cinema even at UHD-quality. Low values of QP are also unlikely to be used in 

transmissions of video signals, where the speed and bandwidth are of paramount 

importance. QP 17 was included in this experiment for additional coverage, as well 

as to have six QP settings to ensure the inclusiveness of all six quantisation 

multipliers. Still, at this QP, the total percentages of pixel differences of 50 or lower 

from the video frame samples are 89.96% in RA and 73.34% in LB, which are not 

too low. In summary, the combination of ST16 + Q is promising for QP values of 22 

or greater in both RA and LB configurations, i.e., for general entertainment and 

interactive applications, but may be less favourable for lower QPs, i.e., for high-

quality, cinema-like video productions and transmissions. 
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Fig. 5.22 Snapshot of the last frame of B4 – BasketballDrive sequence (frame 

499, RA, Main) using HEVC (left column) and a combination of approximated 

transform and quantisation multipliers, ST16 + Q (right column), and QP values of 

(a) 17, (b) 22, (c) 27, (d) 32, (e) 37, and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Table 5.19 Number of bits and PSNR values of last frame of B4 – 

BasketballDrive sequence under RA configuration using HEVC and approximated 

transform and quantisation multipliers, ST16 + Q in Main profile 

Base QP  HEVC ST16 + Q 

17 Bits 510176 508960 

PSNR  Y: 39.51 dB      

U: 43.47 dB      

V: 45.63 dB 

Y: 39.50 dB      

U: 43.48 dB      

V: 45.62 dB 

22 Bits 126624 126048 

PSNR  Y: 38.27 dB      

U: 42.64 dB      

V: 44.00 dB 

Y: 38.24 dB      

U: 42.64 dB      

V: 44.00 dB 

27 Bits 43544 43816 

PSNR  Y: 36.48 dB      

U: 41.54 dB      

V: 42.19 dB 

Y: 36.46 dB      

U: 41.55 dB      

V: 42.18 dB 

32 Bits 17552 17544 

PSNR Y: 34.32 dB      

U: 40.37 dB      

V: 40.43 dB 

Y: 34.32 dB      

U: 40.36 dB      

V: 40.49 dB 

37 Bits 8280 8400 

PSNR Y: 32.16 dB      

U: 39.56 dB      

V: 39.17 dB 

Y: 32.20 dB      

U: 39.47 dB      

V: 39.16 dB 

42 Bits 3680 4016 

PSNR Y: 30.11 dB      

U: 38.67 dB      

V: 37.77 dB 

Y: 30.11 dB      

U: 38.60 dB      

V: 37.70 dB 
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Fig. 5.23 Image differences and histograms of pixel differences of the last 

frame of B4 – BasketballDrive sequence (frame 499, RA, Main) using approximated 

transform and quantisation multipliers, ST16 + Q over HEVC at QP values of (a) 17, 

(b) 22, (c) 27, (d) 32, (e) 37, and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Fig. 5.24 Snapshot of the last frame of B4 – BasketballDrive sequence (frame 

499, LB, Main) using HEVC (left column) and a combination of approximated 

transform and quantisation multipliers, ST16 + Q (right column), and QP values of 

(a) 17, (b) 22, (c) 27, (d) 32, (e) 37, and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Table 5.20 Number of bits and PSNR values of last frame of B4 – 

BasketballDrive sequence under LB configuration using HEVC and approximated 

transform and quantisation multipliers, ST16 + Q in Main profile 

Base QP  HEVC ST16 + Q 

17 Bits 1289808 1290096 

PSNR  Y: 41.77 dB      

U: 43.75 dB      

V: 45.94 dB 

Y: 41.75 dB      

U: 43.73 dB      

V: 45.90 dB 

22 Bits 232448 232392 

PSNR  Y: 38.92 dB      

U: 42.70 dB      

V: 44.24 dB 

Y: 38.92 dB      

U: 42.69 dB      

V: 44.22 dB 

27 Bits 80568 80392 

PSNR  Y: 37.08 dB      

U: 41.38 dB      

V: 42.19 dB 

Y: 37.07 dB      

U: 41.36 dB      

V: 42.18 dB 

32 Bits 31504 31072 

PSNR Y: 34.85 dB      

U: 40.10 dB      

V: 40.27 dB 

Y: 34.79 dB      

U: 40.05 dB      

V: 40.19 dB 

37 Bits 14592 13960 

PSNR Y: 32.54 dB      

U: 39.23 dB      

V: 38.94 dB 

Y: 32.51 dB      

U: 39.20 dB      

V: 39.02 dB 

42 Bits 6688 7048 

PSNR Y: 30.28 dB      

U: 38.55 dB      

V: 37.81 dB 

Y: 30.26 dB      

U: 38.52 dB      

V: 37.89 dB 
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Fig. 5.25 Image differences and histograms of pixel differences of the last 

frame of B4 – BasketballDrive sequence (frame 499, LB, Main) using approximated 

transform and quantisation multipliers, ST16 + Q over HEVC at QP values of (a) 17, 

(b) 22, (c) 27, (d) 32, (e) 37, and (f) 42 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Table 5.21 Percentage (%) of pixel differences of the last frame of B4 – 

BasketballDrive sequence using approximated transform and quantisation 

multipliers, ST16 + Q in Main Profile under LB configuration 

Base 

QP 

Configuration 

Pixel Differences 

RA LB 

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50 

17 53.49 36.47 10.04 37.70 35.64 26.65 

22 95.34 4.05 0.61 82.59 14.28 3.13 

27 94.38 4.66 0.96 93.65 5.54 0.80 

32 96.67 2.86 0.47 95.26 4.01 0.72 

37 96.32 3.09 0.59 97.87 1.85 0.28 

42 97.67 2.03 0.30 96.57 2.91 0.52 

 

5.4.5 Conclusions 

Coding performances obtained by the combination of ST16 + Q in the HEVC 

encoder are in general similar to those obtained using only ST16 or T16 in both RA 

and LB configurations, with a BD-rate average value of 2.1% and 1.4% in each case, 

respectively. In some sequences, some BD-rate improvements could as well be seen. 

As noted earlier, these BD-rate increments may not be regarded as small penalties, 

but much higher resource savings could potentially be gained as a trade-off point. 

Reconstructed video frame samples achieved at least 94% and 82% of pixel 

differences not exceeding the value of 25 in RA and LB configuration, respectively, 

in base QP values of 22 and above, suggesting the suitability of ST16 + Q in general 

entertainment and interactive applications. However, with only around 53% and 37% 

of pixel differences of 25 or lower obtained in both RA and LB respectively at the 

base QP of 17, this combination of approximated transform and quantisation 

multipliers may less be desirable for encoding and transmitting superior, cinema-like 

videos. 
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5.5  Summary 

In this chapter, four experiments were presented regarding approximated 

transforms and quantisation for HEVC. The first experiment was a pilot study on a 

set of approximated transform matrices, V, to see its effects across all test video 

classes in Main and Main 10 profiles conducted under RA and LB configurations to 

simulate the entertainment and interactive application scenarios, respectively. From 

the similar or better results obtained in both profiles and low-resolution videos, it 

was decided to conduct the subsequent three experiments only in Main profile and 

using video sequences of HD-quality or higher.  

The second experiment was conducted on better-approximated transform 

matrices, T16 and ST16, yielding an average BD-rate difference of 1.7% and 0.7% 

each in RA and LB encoding structures, respectively, over four normal QP values 

following the CTC (Bossen, 2013). The third experiment conducted on an 

approximated quantisation multiplier set, Q, over six QP values provided 0.0% and -

0.1% BD-rate difference on average in RA and LB case, respectively, suggesting 

that there is no significant difference in the coding performance despite offering 

some complexity savings. Nevertheless, further analysis using pixel differences from 

reconstructed video frame samples revealed that the suitability of Q may less be 

preferable in transmitting cinema-quality, big screen video signals by incorporating 

low QP values, if the need ever arises. 

Finally, the last experiment was conducted by combining an approximated 

transform with the approximated quantisation, ST16 + Q, over the same six QP 

values yielding an average BD-rate difference of 1.7% in RA and 0.7% in LB, i.e., 

similar to those obtained in the second experiment using ST16 or T16 only. 

Additionally, pixel differences analysis supports the applicability of ST16 + Q in 

general entertainment and interactive use cases, i.e., when coupled with QP values of 

22 or greater, but less suitable with lower QP values such as for motion picture 

productions and transmissions.  

Even though the bitrate increments in order to reach the same objective 

quality levels as the original HEVC transform and quantisation cannot be regarded as 
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small penalties, the potential resource savings could be more favourable in a 

complexity-reduced encoder to produce HEVC-like bitstreams.  
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Chapter 6  

Dedicated Hardware Architecture Designs for 

Approximated Transform, Intermediate 

Scaling, and Approximated Quantisation 

Abstract In order to estimate the potential hardware savings offered by the 

approximated transform matrix sets, T16 and ST16, as well as the approximated 

quantisation, Q, described thus far in this thesis, over the original HEVC algorithms, 

this chapter presents architecture designs developed in this work for hardware 

comparison purposes targeted on FPGA technology. Some care was taken to 

maintain the necessary similarities between the designs for a fair comparison and 

differ only in the core transform (including intermediate scaling) and/or quantisation 

processing blocks.  

6.1 Hardware-Software Co-design Methodology 

 A computer program written in a High-Level Language (HLL) such as C++ 

can normally be run on a processor IC. This processor has an operating system (OS) 

residing in it such as Linux, Windows, iOS, Android, etc. An HLL program is 

executed in a sequential manner from the top to the bottom. Some programs such as 

a video encoder have many computationally intensive functions which are 

considerably more time consuming and resource demanding than the rest of the 

program. Executing a large program only on software basis would possibly be too 

impractical especially for applications requiring a real-time performance. A solution 

to this problem is hardware acceleration or also known as hardware-software co-

design, where the most complex functions are offloaded from the main or master 

core processor to slave hardware co-processor(s) or accelerator(s). These functions 

are implemented by designing dedicated hardware architectures written in a 

Hardware Description Language (HDL) such as VHDL, Verilog, SystemVerilog, 

etc. (Fig. 6.1). An HDL program can be executed in sequential, parallel or 

concurrent, and combinational (combination of sequential and parallel). Having 

dedicated hardware designs speed-up the operations of complex functions, thus 
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allowing higher data throughputs necessary for many applications such as video 

processing. Even running these hardware designs in a sequential manner would yield 

a much smaller execution time in comparison to a fully software-based 

implementation.  

 

Fig. 6.1 Hardware acceleration concept with (a) fully software-based 

implementation and (b) hardware-software co-design 

(a) 

(b) 
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Complexity and time-to-market are among crucial factors influencing the 

success of digital circuits. Two out of many developed techniques to handle these 

issues are design abstraction and hierarchical modular design. Typically in the design 

of digital circuits, design abstraction levels in the increasing order are the device, 

circuit, gate, functional module and architectural or system level (Table 6.1). At each 

abstraction level, the internal details of a complex digital system may be represented 

by a black box model, where this model contains all the necessary information 

required by the module(s) at the immediate lower level of the design hierarchy. 

These abstraction levels usually involve different design teams and could as well be 

located at multiple sites. Having such black box models may not only substantially 

reduce the design complexity, but also reduce design lead times especially in 

meeting performance goals of Very Large Scale Integrated Circuits (VLSI) (Hani, 

2011). 

Modularisation applies the concept of “divide and conquer”, which is 

attributed to King Philip II of Macedon (382–336 BC), to efficiently design any 

complex system. The complexity of a design is conquered in such a way that a high-

level module is broken down or divided into a hierarchy of simpler modules, i.e., 

from the general and conceptual at the top, to the details at the bottom. By 

employing a hierarchical modular design approach, the focus can be given to a single 

module at a time, without being hindered by the complexity of the entire circuit. On 

top of that, reuse of primitive or customised low-level modules can be made without 

the need to redesigning the same modules each time. A smaller amount of effort 

would also be necessary if these modules require minor future improvements (Hani, 

2011). 

 A hierarchical modular implementation involves two approaches which are 

normally used together: 1) top-down and 2) bottom-up (Fig. 6.2).  The top-down 

approach decomposes a system into subsystems, where these subsystems can also be 

further decomposed into simpler subsystems until a low enough level is reached such 

that modules at this level can easily be implemented. Conversely, the bottom-up 

approach connects the available or already developed modules to form subsystems, 

and these subsystems can be further connected to form larger and more complex 

subsystems until the complete operation is achieved. 
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Table 6.1 Typical digital design abstraction levels (Hani, 2011) 

Graphical view Level 
Primitive 

units 

Parameters of 

concern 

 

System / 

Architectural 

Level 

Behavioural 

modules 
Silicon area 

Register 

Transfer Level 

(RTL) 

Functional 

modules 
Timing 

Logic Level Gates, Bits 
Delays (transitions / 

propagations) 

Circuit Level Transistors Voltage, Currents 

Layout / 

Physical Level 
Layout layers 

Topology, 

Dimensions 

Device Level 
MOSFET 

models 

Current-Voltage 

characteristics 

Technology 

Level 

Process 

models 
Impurity profiles 
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Fig. 6.2 Hierarchical modular design approach (Hani, 2011) 

 

6.2 Hardware Architecture Designs for Approximated Transform and 

Intermediate Scaling 

 This section briefly describes the 2-D transform hardware architecture 

designed in this work. While some details have been left out, the walkthrough 

information provided here is expected to facilitate the understanding of the designs. 

These designs are intended as hardware slave co-processors. However, the master 

processor and necessary interface modules are not developed in this work. 

6.2.1 Top-level Transform Module (TM) 

 By utilising the retained separable property of the transform core of HEVC 

and the approximated sets, i.e., the 2-D transform can effectively be implemented as 

two 1-D transforms with an intermediate transpose operation between them, the 

hardware architecture designs herein presented adopt the column-row decomposition 

approach. Furthermore, it was assumed that the input samples (prediction residuals) 

to the transform stage arrive serially at a rate of one pixel/cycle. The output 2-D 

transform coefficients were designed to be transferred in parallel at N pixels/cycle, 

where N = 4, 8, 16, or 32. 
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Fig. 6.3 depicts the top-level functional block diagram of 2-D transform 

hardware architecture developed in this work. This base architecture design consists 

of a data path module (DM) and a control module (CM). The DM comprises a serial-

to-parallel (S2P) block, a 1-D transform block, a rounding and scaling (RS) block, a 

transpose buffer, a second 1-D transform block, and a second RS block. For each 

transform matrix (HEVC, T16, or ST16), the two 1-D transform blocks are exactly 

the same modules used twice. On the other hand, the two RS blocks slightly differ 

from each other depending on the necessary rounding and scaling for the first or 

second stage of the transform operation.  

The CM schedules the flow of operations by providing a control vector (a 5-

bit signal, CV) to the DM depending on the transform size to be executed. The CM 

was designed based on a Mealy Finite State Machine (FSM). Unlike DM, the CM 

operates on the falling edge of the master clock (clock). 

The input signals of the architecture are n-bit prediction residual (Xrc), 2-bit 

size, start, reset, and clock signals. The outputs are 32 16-bit 2-D transform 

coefficients (Trc), valid signal to indicate when the outputs are ready for the next 

process, and done signal to notify the last column of outputs. To maintain precision, 

the internal bit width after the first 1-D transform core, m, varies depending on the 

bit width of the input, Xrc. 

 

Fig. 6.3 Top-level functional block diagram of 2-D transform architecture  
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6.2.2 Data path Module (DM) 

Serial-to-parallel (S2P) block: The serial-to-parallel (S2P) block was 

designed to transfer in parallel the input samples to the following 1-D transform 

block for all four sizes supported by HEVC. It consists of 32 × 32 n-bit registers 

(Fig. 6.4). It was also designed to ensure a continuous operation of the transform 

block on all columns of the input block without stalling for the next complete 

column. For an input block of size N × N, the first column is transferred in the first N 

clock cycles. At the next cycle (N + 1), this whole column is transferred to the next 

register column of the S2P. This is repeated for the next (N – 1) columns. The 

latency of this block is, therefore, (N
2
 + 1) cycles. For the transform size of 4, 8, 16, 

and 32, the latencies are 17, 65, 257, and 1025 cycles, respectively. The horizontal 

and vertical flows of the input data are controlled by the ld0 and ld1 signals, 

respectively. 

 

Fig. 6.4 Functional block diagram of serial-to-parallel block (for clarity 

reason, the clock and reset signals are not explicitly shown) 
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1-D transform block: The two 1-D transform blocks were designed using the 

even-odd decomposition approach as depicted in Fig. 6.5 (a). Each transform size 

consists of three basic modules: 1) AddSubN; 2) EvenN; 3) OddN. For N larger than 

four (4), the EvenN part is made up of the three modules of N/2 transform. The 4-

point forward approximated transform, T16, is depicted in Fig. 6.5 (b), where 

multiplier-free multiplications of 64, 80, and 36 are implemented as illustrated in 

Fig. 6.5 (c), where IR_1 and OR_1 represent the internal input and output register, 

respectively. Similar designs were applied for ST16, where the multiplication blocks 

are down-scaled by four (16, 20, and 9). For HEVC transform blocks, the 

corresponding multiplications are implemented as previously shown in Fig. 4.1. The 

total clock cycle taken in the 4/8/16/32-point 1-D transform block is 3/4/5/6 cycles. 
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Fig. 6.5 Functional block diagram of (a) 1-D forward transform block using 

even-odd decomposition, (b) 4-point approximated transform (T16), and (c) 

multiplier-free multiplication by 80 

 

Rounding and Scaling (RS) block: The rounding and scaling (RS) blocks 

perform (6.1)–(6.2) to ensure that the intermediate transform coefficients stay within 

16-bit width, where the values of offset and shift are summarised in Table 6.2 for 8-

bit input bit width. 

(a) 

(b)      (c) 



162 
 

Rrc = Yrc + offset (6.1) 

Src = Rrc >> shift (6.2) 

 

Table 6.2 Offset and shift values in RS stage (for 8-bit input bit width) 

Size 

First                            

1-D Transform 

Second                        

1-D Transform 

Shift Offset Shift Offset 

4 × 4 1 2
0
 8 2

7
 

8 × 8 2 2
1
 9 2

8
 

16 × 16 3 2
2
 10 2

9
 

32 × 32 4 2
3
 11 2

10
 

 

Transpose buffer: The transpose buffer designed in this architecture has a 

basic structure of four levels of 4-by-4 register array as illustrated in Fig. 6.6 (a). The 

horizontal or vertical flow of data inside this block is controlled internally by the 2-

bit t signal (Fig. 6.6 (b)). 
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Fig. 6.6 Functional block diagram of (a) transpose buffer and (b) basic 4-by-4 

register array (for clarity reason the clock and reset signals are not explicitly shown) 

 

(a) 

(b) 
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6.2.3 Control Module (CM) 

 The Control Module (CM) in this architecture consists of a Next State (NS) 

logic module, a Present State (PS) register, an Output Logic module, and two 5-bit 

up-counters (Fig. 6.7). The output of the CM is a 9-bit control signal, namely 

Control Vectors (CV[8:0]). Five Most Significant Bits (MSBs) of CV, CV[8:4], are 

delivered to the DM to schedule its operations according to the transform size (size) 

to be performed. CV[8:7] respectively provide ld1 and ld0 signals to control the 

vertical and horizontal data flow in the S2P module, CV[6] provides t0 to the 

transpose buffer to transfer data horizontally or vertically for the transpose operation, 

and CV[5:4] provide the valid and done signals respectively, to notify the master 

device on the status of the whole transform operation. The four Least Significant Bits 

(LSBs), CV[3:0] provide internal clear (clr0 and clr1) and load (ld0 and ld1) signals 

to the two counters: Counter0 and Counter1. The design is based on a Mealy Finite 

State Machine (FSM) model as shown in Fig. 6.8. The two counters provide internal 

count signals, i and j, respectively, to execute nested loops and perform the FSM 

accordingly. The start and clear input signals instruct the CM to begin its operation 

and reset all the internal registers or counters, respectively.  

 

Fig. 6.7 Functional block diagram of Control Module (CM)  
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Fig. 6.8 Finite State Machine of 2-D transform architecture designed in this 

work (with some rough descriptions included) 
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is complete and 

ready for the next 

Transform Block 
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6.2.4 Functional Verification 

 The architecture designs of the 2-D HEVC and approximated core 

transforms, T16 and ST16, were described in parametric IEEE-VHDL and routed to 

a Xilinx Virtex-6 xc6vl550t-2ff1760 FPGA as the target device using Xilinx ISE 

14.7 tool chain. Functional simulations were performed for all three designs using 

test benches and test vectors in the Xilinx ISim environment and the results were 

verified with MATLAB software. Due to the complexity of the whole transform 

operation, the validation was performed only at transform block (TB) level using 

random n-bit signed residual values for all four transform sizes. The 2-D transform 

coefficients obtained were then compared to ensure behavioural correctness. 

 More thorough validations would certainly be more convincing, such as at 

slice, frame, or sequence level. Considering all three YUV components by evaluating 

at transform unit (TU) level would certainly be better. However, these 

recommendations would further complicate the design stage. Finally, a real physical 

implementation on hardware such as an FPGA board would clear many doubts about 

the usefulness of the designs. Unfortunately, all these tasks were not feasible to be 

realised in this work due to some practical constraints. 

6.2.5 Results and Discussions 

 Table 6.3 provides the latencies and execution times of these designs. For a 

fair comparison, the designs for HEVC and approximated T16 and ST16 transforms 

were made similar such that they would yield the same latencies and execution 

times. Table 6.4 summarises the resource utilisation of HEVC and approximated 

transforms. From this table, in the case of 9-bit input signals, T16 and ST16 matrices 

utilise 38,507 and 38,383 slice registers respectively as opposed to 46,172 slice 

registers consumed by HEVC transform matrices, i.e., a reduction of 16.6% and 

16.9% respectively. Likewise, savings of 19.6% and 21.7% were observed in the 

number of slice LUTs to implement the bit shifts and addition operations in the T16 

and ST16 transform matrices when compared with HEVC transform matrices. Eight 

registers and four LUTs are contained in a Xilinx Virtex-6 slice (Xilinx, 2015). T16 

and ST16 hardware designs consume 16.9% and 20.8% fewer slices than HEVC 

transform, respectively. 
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Table 6.3 Latency and execution times (clock cycles) of 2-D transform 

architecture designs 

Stage 

Size 

4 × 4 8 × 8 16 × 16 32 × 32 

S2P 17 65 257 1025 

1-D Transform 3 4 5 6 

RS 2 2 2 2 

Transpose 5 9 17 33 

1-D Transform 3 4 5 6 

RS 2 2 2 2 

Total Latency 32 86 288 1074 

Execution Time 36 94 304 1106 

 

Table 6.4 Resource utilisation of 2-D HEVC and approximated transform 

architecture designs 

Parameter 

Transform 

HEVC  T16  ST16  

Input bit width (n) 9 9 9 

Internal bit width (m) 20 20 20 
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Slice registers      

(Savings %) 

46,172 38,507 

(16.6%) 

38,383 

(16.9%) 

Slice LUTs          

(Savings %) 

51,448 41,342 

(19.6%) 

40,291 

(21.7%) 

Slices                    

(Savings %) 

14,023 11,649 

(16.9%) 

11,100 

(20.8%) 

Operating Freq. (MHz) 200 

Output rate (per cycle) 4 / 8 / 16 / 32 

Throughput              

(×10
9
 samples per 

second) 

0.8 / 1.6 / 3.2 / 6.4 

 

Table 6.5 compares the implementations of the approximated transforms with 

other FPGA implementations. The works by Conceição et al. (2013) and Zhao and 

Onoye (2012) described earlier in sub-section 3.7.1 were implemented in Altera 

FPGAs, thus a direct comparison with our work is not so feasible. This thesis used 

the same FPGA device as Kalali et al. (2014), Xilinx Virtex-6 xc6vl550t-2, thus the 

comparison is more appropriate although their work was on the inverse transform. 

Additionally, although the exact FPGA type is not specified in (Kalali, Mert and 

Hamzaoglu, 2016), their results are also included in Table 6.5 as the FPGA used is 

also fabricated in 40 nm CMOS technology, which is the case for Xilinx Virtex-6. 

The recent work by da Silveira et al. (2017) also used a Xilinx Virtex-6 FPGA, but 

their work only covered a 1-D 16-point transform architecture. The recent work by 

Chen, Zhang and Lu (2017) used more advanced Xilinx Virtex-7 and Zynq FPGAs 

as well as Altera FPGAs, while Jridi and Meher (2016) used an older Xilinx Spartan 

6 LX45T FPGA. 



169 
 

Both T16 and ST16 designs use about triple slice registers more than 

reported in (Kalali et al., 2014; Kalali, Mert and Hamzaoglu, 2016). One probable 

reason is due to the transpose buffer implementation using the register array instead 

of on-chip memory, utilising 16-bit × 32 × 32, i.e., 16,384 registers instead of 32 

BRAMs or 2 KB of memory. Other reasons are possibly the implementation of the 

RS block instead of only the clipping block in (Kalali et al., 2014; Kalali, Mert and 

Hamzaoglu, 2016), in addition to the internal bit-width of 27-bit used on a few 

stages. An obvious advantage of excluding any use of on-chip memory is the higher 

operating frequency achieved by T16 and ST16 designs (200 MHz) than all designs 

in (Kalali et al., 2014; Kalali, Mert and Hamzaoglu, 2016). Consequently, at a 

minimum throughput of 800 mega samples per second, T16 and ST16 designs are 

able to process more QFHD frames per second (60 fps) than (Kalali et al., 2014) (48 

fps) and the LU hardware in (Kalali, Mert and Hamzaoglu, 2016) (48 or 56 fps). As 

a result, the minimum hardware efficiencies of T16 (0.0687 mega samples/sec/slice) 

and ST16 (0.0721 mega samples/sec/slice) are higher than those designs (0.0397 – 

0.0529 mega samples/sec/slice). The HU hardware in (Kalali, Mert and Hamzaoglu, 

2016) have been well developed to sustain the processing of UHD videos of more 

than 50 fps or QFHD @ 120 fps despite operating at lower frequencies (111 or 117 

MHz) than T16 and ST16. Their HU designs are roughly twice more hardware 

efficient (0.1660 and 0.1397 mega samples/sec/slice) than T16 and ST16. 

Nevertheless, the initial aim of this work was to demonstrate the potential 

savings from the approximated core transforms, T16 and ST16, when compared with 

HEVC core transforms on the same hardware platform and using the same design 

principles as depicted earlier in Table 6.4. At a 200 MHz operating frequency and a 

minimum throughput of four samples per cycle, the design is capable of encoding a 

4:2:0 QFHD @ 60 fps video (3840 × 2160 × 60 × 1.5 = 0.746496 ×10
9
 samples per 

second). 
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Table 6.5 Resource utilisation of 2-D transform architecture designs 

Parameter 

Design 

Kalali 2014  

(Kalali et al., 

2014) 

Kalali 2016 

(Kalali, Mert and 

Hamzaoglu, 2016) 

This work  

(T16) 

This work  

(ST16) 

FPGA 

Technology 

Xilinx   

Virtex-6 
40 nm CMOS 

Xilinx   

Virtex-6 

Xilinx   

Virtex-6 

Transform 2-D Inv. 2-D Inv. 2-D Fwd. 2-D Fwd. 

Size 4/8/16/32 4/8/16/32 4/8/16/32 4/8/16/32 

Internal bit width n.a. n.a. ≤ 27  ≤ 27  

Slice registers 
11,762a 

11,763b 

11,110c 

11,230d 

12,025e 

12,200f 

38,507 38,383 

Slice LUTs 
38,790a 

38,821b 

33,376c 

35,555d 

38,006e 

41,905f 

41,342 40,291 

Slices 
11,343a 

11,397b 

9,797c 

10,080d 

11,279e 

12,712f 

11,649 11,100 

Memory 

(BRAMs) 
32 

4/8/16/32c & d 

8/8/16/32e & f 
- - 

Multipliers No No No No 

Others Clipping Clipping 
Round and 

Scale 

Round and 

Scale 

Operating freq. 

(MHz) 
150 

116c 

100d 

117e 

111f 

200 200 

Throughput        

(×109 samples 

per second) 

0.6/1.2/2.4/4.8 

0.464/0.928/1.856/3.712c 

0.4/0.8/1.6/3.2d 

1.872/1.872/1.872/3.744e 

1.776/1.776/1.776/3.552
f
 

0.8/1.6/3.2/6.4 0.8/1.6/3.2/6.4 
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Supported 

resolution @ fps 
QFHD @ 48 

QFHD @ 56c 

QFHD @ 48d 

UHD @ 56e 

UHD @ 53f 

QFHD @ 60 QFHD @ 60 

Hardware 

efficiencyg (×106 

samples/sec/slice) 

0.0529a 

0.0526b 

0.0474c 

0.0397d 

0.1660e 

0.1397f 

0.0687 0.0721 

a
 MCM hardware

 

b
 MCM + Energy hardware 

c
 MCM LU hardware 

d
 MCM + Energy LU hardware 

e
 MCM HU Hardware 

f
 MCM + Energy HU Hardware 

g
 Hardware efficiency = Min Throughput (×10

6
 samples/second)/Slices 

 

6.2.6 Conclusions 

 The architecture designs of the 2-D HEVC and approximated core 

transforms, T16 and ST16, were presented in this section. The designs were 

implemented on a Xilinx Virtex-6 FPGA device adopting the even-odd 

decomposition, multiplier-free, and MCM approaches. Savings of 16.9% and 20.8% 

in the number of slices were obtained by T16 and ST16 designs respectively over 

HEVC transform (Table 6.4). Comparing with similar works in the literature (Kalali 

et al., 2014; Kalali, Mert and Hamzaoglu, 2016), the T16 design utilises slightly 

more slices (11,649) and the ST16 design uses slightly fewer slices (11,100) than 

(Kalali et al., 2014) (11,343 or 11,397) (Table 6.5), while the number of slices in 

(Kalali, Mert and Hamzaoglu, 2016) vary between 9,797 and 12,712. Despite using 

approximated transform matrices, not much difference could be seen in the number 

of slices in both T16 and ST16 designs over (Kalali et al., 2014; Kalali, Mert and 

Hamzaoglu, 2016), mainly due to the implementation of the transpose buffer using 

register arrays instead of BRAMs as applied in (Kalali et al., 2014; Kalali, Mert and 

Hamzaoglu, 2016). However, both T16 and ST16 designs could operate at a higher 

frequency (200 MHz compared to 100 – 150 MHz) and are capable of processing 

more QFHD frames per second than (Kalali et al., 2014) and the LU hardware 

designs in (Kalali, Mert and Hamzaoglu, 2016). Higher hardware efficiencies could 

also be achieved by T16 (0.0687 mega samples/sec/slice) and ST16 (0.0721 mega 

samples/sec/slice) than (Kalali et al., 2014) (0.0529 or 0.0526 mega 
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samples/sec/slice) and the LU designs in (Kalali, Mert and Hamzaoglu, 2016) 

(0.0397 or 0.0474 mega samples/sec/slice). However, the HU designs in (Kalali, 

Mert and Hamzaoglu, 2016) are twice more hardware efficient (0.1660 and 0.1397 

mega samples/sec/slice) than T16 and ST16, and capable of supporting UHD videos 

of more than 50 fps. In summary, the approximated transform schemes as adopted by 

T16 and ST16 hardware architecture designs may yield a slightly better performance 

than HEVC-compliant hardware architecture and considerable for a complexity-

reduced HEVC-like encoder hardware implementation. 

 

6.3 Hardware Architecture Designs for Approximated Quantisation 

 This section briefly describes the quantisation hardware architecture design 

developed in this work. Similar to the transform design described previously, the 

quantisation module (QM) is intended as a hardware slave or co-processor. The 

master core processor and necessary interface modules were not developed. 

6.3.1 Top-level Quantisation Module (QM) 

 Unlike the transform module (TM), the developed quantisation module (QM) 

only consists of data path module (DM) and does not include a control module (CM) 

due to its relatively simpler algorithm compared to the 2-D transform. Besides the 

clock and reset signals, the inputs to the module are 16-bit transform coefficients 

(T0c, …, T31c) coming from the TM, 3-bit sel, 5-bit total_scale, n-bit offset, and load 

signals (Fig. 6.9). The sel signal selects which quantiser value to be performed 

depending on the QP value as summarised in Table 6.6. The total_scale signal 

performs the right bit shift operation according to total_scale = QP/6 + shift2 as 

described in Section 4.3. Similarly, the offset can be added as desired. The sel, 

total_scale, and offset signals are expected to be provided by the master core 

processor and not included in the hardware design of QM.  Finally, the load signal 

enables the quantised transform coefficients or levels (Q0c, …, Q31c) to be loaded 

into the corresponding internal registers as the output of QM and takes the valid 

signal from the TM. This signal is also carried over as the validQ output signal to 

indicate to the master processor or another processing module that the quantised 
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levels are available. The Quantisation unit inside QM performs the multiplier-free 

quantisation operation as described in Section 4.3. 

 

Fig. 6.9 Functional block diagram of quantisation module (QM) 

 

Table 6.6 Quantiser value for HEVC and approximated quantisation (Q) 

modules 

sel[2:0] HEVC Q 

QP%6 = 0 26214 26112 

QP%6 = 1 23302 23296 

QP%6 = 2 20560 20560 

QP%6 = 3 18396 18396 

QP%6 = 4 16384 16384 
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QP%6 = 5 14564 14592 

Others 0 0 

 

6.3.2 Functional Verification 

Similar to the TM designs, the QM hardware architecture designs were also 

described in IEEE-VHDL and routed to a Xilinx Virtex-6 xc6vl550t-2ff1760 FPGA 

device using Xilinx ISE 14.7 tool chain. Functional simulations were performed for 

both HEVC and Q designs using test benches and test vectors in the Xilinx ISim 

environment. 

6.3.3 Results and Discussions 

 Table 6.7 summarises the resource utilisation of the developed QM designs. 

Although only three out of six quantiser values were approximated (Section 4.3), 

when implemented on the selected Xilinx Virtex-6 FPGA device, a saving of around 

21% in the number of slices could be achieved. Additionally, as the critical path 

delay (cpd) in the original HEVC quantisation multiplier is a three-stage adder tree 

to perform the multiplications by 26,214, 23,302, and 14,564, this cpd is higher than 

in the approximated quantisation module and cannot operate at 200 MHz frequency. 

With an operating frequency of  166.67 MHz, QFHD videos could still potentially be 

processed but at a lower 50 fps as opposed to 60 fps achievable by the approximated 

quantisation module. The hardware efficiency of Q is also almost double (0.212 

mega samples/sec/slice) from HEVC (0.122 mega samples/sec/slice). 
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Table 6.7 Resource utilisation of HEVC and approximated quantisation designs 

Parameter 

Quantisation 

HEVC Q 

Slice registers          

(Savings %) 

6,176 4,096 

(33.67%) 

Slice LUTs              

(Savings %) 

14,032 10,560 

(24.79%) 

Slices                       

(Savings %) 

4,916 3,768 

(21.17%) 

Operating freq. (MHz) 166.67 200 

Output rate (per cycle) 4/8/16/32 4/8/16/32 

Throughput                   

(×10
9
 samples per second) 

0.6/1.3/2.6/5.3 0.8/1.6/3.2/6.4 

Supported resolution @ fps QFHD @ 50 QFHD @ 60 

Hardware efficiency
a
    

(×10
6
 samples/sec/slice) 

0.122 0.212 

a
 Hardware efficiency = Min Throughput (×10

6
 samples/second)/Slices 

 

6.3.4 Conclusions 

 More than 20% hardware savings (in the number of Virtex-6 slices) could be 

yielded by the approximated quantisation (Q) hardware design when compared to 

using the original HEVC quantiser multipliers. Both designs were developed using 

the multiplier-free technique and MCM approach as applied in the transform designs. 

Having a cpd of a three-stage adder tree required in three of the HEVC quantisers 

(26,214, 23,302, and 14,564) results in a lower operating frequency (166.67 MHz) 
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compared to Q (200 MHz). With a higher operating frequency, more QFHD frames 

can be processed (60 fps compared to 50 fps) and a greater hardware efficiency value 

could be obtained (0.212 mega samples/sec/slice compared to 0.122 mega 

samples/sec/slice) by the approximated quantisation design. 

 

6.4 Hardware Architecture Designs for Approximated and Scaled 

Transform and Quantisation 

 This section briefly describes the combined transform and quantisation 

hardware architecture design developed in this work. For the approximated 

transform, only ST16 transform was considered and T16 was not performed as ST16 

was the eventual objective of the complexity-reduced transform. Similar to the 

transform and quantisation designs described in the previous two sections, the 

transform and quantisation module (TQM) is designed as a hardware co-processor 

and the corresponding master processor and associated interface modules were not 

developed in this work. 

6.4.1 Top-level Transform and Quantisation Module (TQM) 

 The transform and quantisation module (TQM) consists of the TM (Section 

6.2) and QM (Section 6.3) (Fig. 6.10). The inputs to this module are the same as for 

the TM (residual signal (Xrc), transform size (size), start, reset, and clock) plus three 

parameter signals (sel, total_scale, offset) for the QM. The outputs of TQM module 

are the quantised levels (Q0c, …, Q31c) and validQ signal to indicate the validity of 

the outputs. Internally, the transform coefficients (T0c, …, T31c) from TM are input to 

QM, as well as the valid signal acting as the load signal for the internal registers in 

QM. 
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Fig. 6.10 Functional block diagram of transform and quantisation module 

(TQM) 

 

6.4.2 Results and Discussions 

Similar to the TM and QM designs, the TQM hardware architecture designs 

were also described in IEEE-VHDL and routed to a Xilinx Virtex-6 xc6vl550t-

2ff1760 FPGA device using Xilinx ISE 14.7 tool chain. Table 6.8 summarises the 

resource utilisation of the developed TQM designs. When implemented on the 

selected Xilinx Virtex-6 FPGA device, a saving of more than 25% in the number of 

slices could be obtained by the combination of ST16 and Q designs relative to 

original HEVC transform and quantisation designs. Additionally, as the original 

HEVC quantisation can be operated at a frequency lower than 200 MHz, fewer 

QFHD frames (50 compared to 60) could be processed by the HEVC TQM and at a 

lower hardware efficiency (0.034 mega samples/sec/slice compared to 0.055 mega 

samples/sec/slice). 
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Table 6.8 Resource utilisation of HEVC and approximated transform and 

quantisation designs 

Parameter 

Transform and Quantisation 

HEVC ST16 + Q 

Slice registers                    
(Savings %) 

52,348 42,478   
(18.85%) 

Slice LUTs                      
(Savings %) 

67,261 50,834    
(24.42%) 

Slices                                

(Savings %) 

19,783 14,667   

(25.86%) 

Operating freq. (MHz) 166.67 200 

Output rate (per cycle) 4/8/16/32 4/8/16/32 

Throughput                             

(×10
9
 samples per second) 

0.6/1.3/2.6/5.3 0.8/1.6/3.2/6.4 

Supported resolution @ fps QFHD @ 50 QFHD @ 60 

Hardware efficiency
a
        

(×10
6
 samples/sec/slice) 

0.034 0.055 

a
 Hardware efficiency = Min Throughput (×10

6
 samples/second)/Slices 

6.4.3 Conclusions 

 More than 25% hardware savings (in the number of Virtex-6 slices) could 

possibly be attained by the approximated and scaled transform and quantisation 

ST16 + Q TQM over the original HEVC TQM. With a lower resource utilisation, the 

approximated TQM can still operate at a higher 200 MHz frequency and capable of 

processing QFHD @ 60 fps videos yielding a better hardware efficiency of 0.055 

mega samples/sec/slice when compared with the HEVC TQM developed in this 

work (166.67 MHz capable of QFHD @ 50 fps and a hardware efficiency of 0.034 

mega samples/sec/slice). 
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6.5 Summary 

 In this chapter, HEVC and approximated 2-D transform and quantisation 

hardware architecture designs developed in this work were described. Two 

approximated core transforms (T16 and ST16) were implemented on a Xilinx 

Virtex-6 FPGA device adopting the even-odd decomposition, multiplier-free, and 

MCM approaches, yielding savings of 16.9% and 20.8% in the number of slices over 

HEVC transform design. Both T16 and ST16 designs could as well be operated at a 

higher execution frequency (200 MHz) than (Kalali et al., 2014) (150 MHz) and 

(Kalali, Mert and Hamzaoglu, 2016) (100 – 117 MHz), enabling these designs to 

encode more QFHD frames per second (60 fps) than (Kalali et al., 2014) (48 fps) 

and the LU hardware in (Kalali, Mert and Hamzaoglu, 2016) (48 or 56 fps), and 

possessing slightly better hardware efficiencies (0.0687 and 0.0721 mega 

samples/sec/slice, respectively) than (Kalali et al., 2014) (0.0529 or 0.0526 mega 

samples/sec/slice) and LU hardware in (Kalali, Mert and Hamzaoglu, 2016) (0.0397 

or 0.0474 mega samples/sec/slice). However, the HU designs in (Kalali, Mert and 

Hamzaoglu, 2016) outperformed T16 and ST16 with twofold hardware efficiencies 

(0.1660 and 0.1397 mega samples/sec/slice) and capable of supporting more than 50 

UHD frames per second. 

 One approximated quantisation (Q) design was also implemented and 

targeted to the same Xilinx Virtex-6 FPGA yielding more than 20% savings in the 

number of slices over a quantisation scheme suggested for HEVC in (Budagavi, 

Fuldseth and Bjøntegaard, 2014). Having a larger cpd of a three-stage adder tree 

required in three of the HEVC quantisers (26,214, 23,302, and 14,564) results in a 

lower operating frequency (166.67 MHz) compared to Q (200 MHz). With a higher 

operating frequency, more QFHD frames can be processed (60 fps compared to 50 

fps) and a greater hardware efficiency value could be obtained (0.212 mega 

samples/sec/slice compared to 0.122 mega samples/sec/slice) by the approximated 

quantisation design over HEVC. 

 Finally, more than 25% hardware savings (in the number of Virtex-6 slices) 

could possibly be attained by combining the approximated and scaled transform and 

quantisation ST16 + Q TQM over the original HEVC TQM. Utilising fewer 

resources, the approximated TQM could also operate at a higher 200 MHz frequency 
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and capable of processing QFHD @ 60 fps videos and yielding a better hardware 

efficiency of 0.055 mega samples/sec/slice when compared with the HEVC TQM 

developed in this work (166.67 MHz capable of QFHD @ 50 fps and a hardware 

efficiency of 0.034 mega samples/sec/slice). 

 In summary, the hardware implementations of the approximated transforms 

and quantisation presented in this chapter lay some support to the software-based 

coding performance results presented in Chapter 5 such that these transform and 

quantisation approximation schemes could be considered for a complexity-reduced 

HEVC encoder. Although some coding performance degradations were previously 

seen in terms of BD-rate (up to 2.1% on average), the hardware savings may 

outweigh these bitrate increments.  
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Chapter 7  

Conclusions and Future Work 

Abstract This is the final chapter of this thesis, summarising the work and results 

presented thus far and suggesting possible directions as a continuation of this study.  

7.1 Conclusions 

 Two approximated transform matrices, T16 and ST16, and one approximated 

quantisation, Q, were presented in this thesis as alternatives to the original 2-D 

transform and quantisation of the most recent video coding standard, HEVC. These 

approximated transforms and quantisation were developed aiming to reduce the 

complexity of the respective operations in HEVC without too severely affecting the 

coding performance.  

 T16 was chosen among several approximated transform alternatives 

developed in this work due to its lowest orthogonality measure. These alternatives 

were aimed at a multiplier-free implementation using combinations of bit shifts and 

additions or subtractions, and derived by imposing three approximation criteria.  The 

first criterion was that their matrix elements must be multiples of four, the second 

criterion being the maximum number of two bit shifts and one addition or 

subtraction for each element multiplication, and the final criterion was all 

multiplications are executable in one clock cycle of 5 ns or faster (i.e., operating 

frequency of 200 MHz or higher). ST16 is the down-scaled version of all elements of 

T16 by four, with necessary changes in the subsequent intermediate scaling 

operations in the 2-D transform operation. Q was developed using similar 

approaches, i.e., by approximating the original HEVC quantisation multipliers with a 

maximum of two additions or subtractions per one quantisation multiplier, also 

aimed at a multiplier-free implementation. 

 These approximated transforms and quantisation were evaluated using 

reference model software for HEVC, HM-13.0. The main experiments were 

conducted in Main profile of HEVC under RA and LB configurations, to simulate 

the entertainment and interactive application scenarios, respectively. The 
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experiments were also conducted on test video sequences of HD quality or better. 

The experimental settings were subsets of the CTC established by JCT-VC, the 

experts committee responsible in developing the standard. Based on the conducted 

experiments, both T16 and ST16 provided similar average BD-rate differences of 

1.7% in RA and 0.7% in LB configurations over HEVC. On the other hand, Q 

provided no significant difference against HEVC quantisation, with 0.0% and -0.1% 

average BD-rate differences in RA and LB, respectively. Finally, a combination of 

ST16 and Q in the encoder yielded on average BD-rate differences of 1.7% and 0.7% 

in RA and LB, respectively. These bitrate increments may not be viewed as small 

from video coding perspective, but are necessary penalties as the result of the 

approximations made in the transform and quantisation of HEVC. 

 Hardware architecture designs were then developed for T16, ST16, Q, and 

ST16 + Q in order to estimate potential resource savings against HEVC transform 

and quantisation algorithms. Methods used are MCM and multiplier-free 

implementation as previously mentioned, as well as even–odd decomposition for the 

transform algorithms, exploiting the embedded and symmetry properties inherited 

from the well-known DCT. When implemented on a Xilinx Virtex-6 FPGA device, 

savings of around 16.9%, 20.8%, 21.2%, and 25.9%, respectively, in the number of 

slices could be achieved when compared with HEVC transform and quantisation 

algorithms. The developed architecture designs could have a maximum operating 

frequency of more than 200 MHz, allowing them to support the encoding of QFHD 

@ 60 fps videos. When T16 and ST16 were compared with similar works in the 

literature, these algorithms have better hardware efficiency (0.0687 and 0.0721, 

respectively, in 10
6
 sample rate per slice) than (Kalali et al., 2014) (0.0529 or 0.0526 

× 10
6
 sample rate per slice) and the LU designs in (Kalali, Mert and Hamzaoglu, 

2016) (0.0397 or 0.0474 × 10
6
 sample rate per slice). Nevertheless, the HU designs 

in (Kalali, Mert and Hamzaoglu, 2016) are superior than T16 and ST16 with double 

hardware efficiencies (0.1660 and 0.1397 mega samples/sec/slice) and capable of 

sustaining UHD videos of more than 50 frames per second. 
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7.2 Future Work 

 The work presented in this thesis is anything but complete. The following 

weaknesses identified need to be addressed or improved before any algorithm 

presented in this work could actually be considered in practice. The quickest 

improvement to the work is by conducting the software-based experiments using the 

latest version of HEVC reference software. At the point of writing, the latest revision 

is HM-16.12 (JCT-VC, 2016), where this revision supports all three versions of 

HEVC, i.e., including 3D-HEVC, MV-HEVC, SHVC, and RExt extensions. It is 

important to see the effects of the approximated transforms and quantisation in these 

HEVC extensions. It would also be highly useful to conduct the experiments using 

more test video sequences of HD quality and beyond, as well as test suites suitable 

for the evaluation of range extension, scalable coding, multiview, and 3-D 

applications. A high-performance computer such as a supercomputer would be very 

useful in generating much faster encoding and decoding results, especially in these 

extended applications. 

 To provide more credentials to the work done, more quality metrics need as 

well be included on top of PSNR. The full versions of commercial video quality 

analysers such as sold by Elecard (Elecard, 2017) and Moscow State University  

(MSU, 2017) could be considered. The free versions of these analysers usually have 

limitations such as the maximum video resolution and number of frames that can be 

analysed.  

 Another important point is the validation of the architecture designs on a real 

hardware platform. This platform such as an FPGA device must have a high number 

of resources on its chip to be able to implement highly complex designs of video 

coding algorithms. A more useful realisation approach would be to synthesise the 

designs on CMOS fabrication technology software such as by Mentor Graphics 

(Mentor Graphics, 2017) and Synopsys (Synopsys, 2017), as eventually any digital 

circuits are intended to be implemented on a CMOS IC. The resource savings would 

also be more meaningful if analysed on a complete encoder system rather than only 

the involved processing blocks such as transformation and quantisation. The effects 

on power dissipation would further add value to the work conducted. It would also 

be useful to describe the relationship between hardware complexity (e.g., in a 
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number of slices) and coding performance (e.g., BD-rate). This would require other 

alternative transform and quantisation algorithms be evaluated in HEVC reference 

software and designed for hardware implementations.  

Most of these recommendations require a good source of research funding, as 

video and IC design technologies are highly-expensive know-hows. 
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Appendix A 

R-D Curves of HEVC and Approximated 

Transforms 

 

Fig. A.1 R-DPSNR curves of A1 – Traffic sequence using original HEVC and 

approximated transform matrices, T16 and ST16, under RA configuration in Main 

profile 
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Fig. A.2 R-DPSNR curves of A2 – PeopleOnStreet sequence using original 

HEVC and approximated transform matrices, T16 and ST16, under RA 

configuration in Main profile 

 

Fig. A.3 R-DPSNR curves of A3 – Nebuta sequence using original HEVC and 

approximated transform matrices, T16 and ST16, under RA configuration in Main 

profile 
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Fig. A.4 R-DPSNR curves of A4 – SteamLocomotive sequence using original 

HEVC and approximated transform matrices, T16 and ST16, under RA 

configuration in Main profile 
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Fig. A.5 R-DPSNR curves of B1 – Kimono sequence using original HEVC and 

approximated transform matrices, T16 and ST16, under (a) RA and (b) LB 

configurations in Main profile 

 

(a) 

(b) 
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Fig. A.6 R-DPSNR curves of B2 – ParkScene sequence using original HEVC 

and approximated transform matrices, T16 and ST16, under (a) RA and (b) LB 

configurations in Main profile 

 

(a) 

(b) 
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Fig. A.7 R-DPSNR curves of B3 – Cactus sequence using original HEVC and 

approximated transform matrices, T16 and ST16, under (a) RA and (b) LB 

configurations in Main profile 

 

(a) 

(b) 
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Fig. A.8 R-DPSNR curves of B5 – BQTerrace sequence using original HEVC 

and approximated transform matrices, T16 and ST16, under (a) RA and (b) LB 

configurations in Main profile 

 

(a) 

(b) 
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Fig. A.9 R-DPSNR curves of E1 – FourPeople sequence using original HEVC 

and approximated transform matrices, T16 and ST16, under LB configuration in 

Main profile 

 

Fig. A.10 R-DPSNR curves of E2 – Johnny sequence using original HEVC and 

approximated transform matrices, T16 and ST16, under LB configuration in Main 

profile 
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Fig. A.11 R-DPSNR curves of E3 – KristenAndSara sequence using original 

HEVC and approximated transform matrices, T16 and ST16, under LB configuration 

in Main profile 
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Appendix B 

R-D Curves of HEVC and Approximated 

Quantisation 

 

Fig. B.1 R-DPSNR curves of A1 – Traffic sequence using original HEVC and 

approximated quantisation multiplier set, Q, under RA configuration in Main profile 
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Fig. B.2 R-DPSNR curves of A2 – PeopleOnStreet sequence using original 

HEVC and approximated quantisation multiplier set, Q, under RA configuration in 

Main profile 

 

Fig. B.3 R-DPSNR curves of A3 – Nebuta sequence using original HEVC and 

approximated quantisation multiplier set, Q, under RA configuration in Main profile 
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Fig. B.4 R-DPSNR curves of A4 – SteamLocomotive sequence using original 

HEVC and approximated quantisation multiplier set, Q, under RA configuration in 

Main profile 
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Fig. B.5 R-DPSNR curves of B1 – Kimono sequence using original HEVC and 

approximated quantisation multiplier set, Q, under (a) RA and (b) LB configurations 

in Main profile 

 

(a) 

(b) 



206 
 

 

Fig. B.6 R-DPSNR curves of B2 – ParkScene sequence using original HEVC 

and approximated quantisation multiplier set, Q, under (a) RA and (b) LB 

configurations in Main profile 

 

(a) 

(b) 
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Fig. B.7 R-DPSNR curves of B3 – Cactus sequence using original HEVC and 

approximated quantisation multiplier set, Q, under (a) RA and (b) LB configurations 

in Main profile 

 

(a) 

(b) 
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Fig. B.8 R-DPSNR curves of B5 – BQTerrace sequence using original HEVC 

and approximated quantisation multiplier set, Q, under (a) RA and (b) LB 

configurations in Main profile 

 

(a) 

(b) 
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Fig. B.9 R-DPSNR curves of E1 – FourPeople sequence using original HEVC 

and approximated quantisation multiplier set, Q, under LB configuration in Main 

profile 

 

Fig. B.10 R-DPSNR curves of E2 – Johnny sequence using original HEVC and 

approximated quantisation multiplier set, Q, under LB configuration in Main profile 
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Fig. B.11 R-DPSNR curves of E3 – KristenAndSara sequence using original 

HEVC and approximated quantisation multiplier set, Q, under LB configuration in 

Main profile 
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Appendix C 

R-D Curves of HEVC and Approximated 

Transform and Quantisation 

 

Fig. C.1 R-DPSNR curves of A1 – Traffic sequence using original HEVC and 

combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under RA configuration in Main profile 
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Fig. C.2 R-DPSNR curves of A2 – PeopleOnStreet sequence using original 

HEVC and combination of approximated transform matrix and quantisation 

multiplier sets, ST16 + Q, under RA configuration in Main profile 

 

Fig. C.3 R-DPSNR curves of A3 – Nebuta sequence using original HEVC and 

combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under RA configuration in Main profile 
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Fig. C.4 R-DPSNR curves of A4 – SteamLocomotive sequence using original 

HEVC and combination of approximated transform matrix and quantisation 

multiplier sets, ST16 + Q, under RA configuration in Main profile 
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Fig. C.5 R-DPSNR curves of B1 – Kimono sequence using original HEVC and 

combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under (a) RA and (b) LB configurations in Main profile 

 

(a) 

(b) 
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Fig. C.6 R-DPSNR curves of B2 – ParkScene sequence using original HEVC 

and combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under (a) RA and (b) LB configurations in Main profile 

 

(a) 

(b) 
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Fig. C.7 R-DPSNR curves of B3 – Cactus sequence using original HEVC and 

combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under (a) RA and (b) LB configurations in Main profile 

 

(a) 

(b) 
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Fig. C.8 R-DPSNR curves of B5 – BQTerrace sequence using original HEVC 

and combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under (a) RA and (b) LB configurations in Main profile 

 

(a) 

(b) 
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Fig. C.9 R-DPSNR curves of E1 – FourPeople sequence using original HEVC 

and combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under LB configuration in Main profile 

 

Fig. C.10 R-DPSNR curves of E2 – Johnny sequence using original HEVC and 

combination of approximated transform matrix and quantisation multiplier sets, 

ST16 + Q, under LB configuration in Main profile 
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Fig. C.11 R-DPSNR curves of E3 – KristenAndSara sequence using original 

HEVC and combination of approximated transform matrix and quantisation 

multiplier sets, ST16 + Q, under LB configuration in Main profile 

 

 

 

 


