

APPROXIMATED TRANSFORM AND

QUANTISATION FOR COMPLEXITY-REDUCED

HIGH EFFICIENCY VIDEO CODING

A thesis submitted for the degree of Doctor of Philosophy

by

Mohd Mohd Sazali

College of Engineering, Design, and Physical Sciences

Brunel University

March 2017

i

Acknowledgement

My sincere acknowledgement goes to my principal supervisor, Prof. Dr

Abdul H. Sadka, for his productive guidance, constructive criticisms, invaluable

knowledge sharing, brilliant thoughts, and continuous support throughout my

research at Brunel University London. My gratitude is extended to my second

supervisor Dr Nikolaos V. Boulgouris for his valuable inputs and wonderful help. I

am also thankful to my current and past colleagues, Salim Al Amri, Dr Sagir Lawan,

Taha Alfaqheri, Dr Mohamed Rafiq Swash, Dr Hamdullah Mohib, Dr Obaid Fatah,

Dr Abdulkadir Audu, Dr Abdulkareem Ibrahim, and many others for their technical

advice and friendly company during the course of my research. Special thanks also

to Tony Morris, John Morse, and their respective teams for their technical assistance.

My genuine appreciation is dedicated to my great parents, Dr Mohd Sazali

Khalid and Shamsinar Jaafar, along with my helpful siblings for their continuous

encouragement, financial support, and endless prayers. Most of all, I am deeply

indebted to my wonderful wife, Siti Nazmin, for her long sacrifice and kind

understandings to allow me completing my study far away from the family. I owe

our beloved sons so much, Iman Shahdan and Irshad Shahidin, for having to spend a

big part of their childhood time without me being around. To our newly born son,

Imdad Sharfan, hopefully one day you can appreciate the hardships that we had gone

through and be as strong as your brothers.

Last but not least, I wish to express my appreciation to my generous

sponsors, Universiti Sains Malaysia (USM) and Malaysian Ministry of Higher

Education (MoHE) for funding my study. Even though far from being perfect, it is

hoped that this thesis will be beneficial in one way or another to the reader and the

body of knowledge.

ii

Abstract

The transform-quantisation stage is one of the most complex operations in the state-

of-the-art High Efficiency Video Coding (HEVC) standard, accounting for 11–41%

share of the encoding complexity. This study aims to reduce its complexity, making

it suitable for dedicated hardware accelerated architectures. Adopted methods

include multiplier-free approach, Multiple-Constant Multiplication architectural

designs, and exploiting useful properties of the well-known Discrete Cosine

Transform. Besides, an approximation scheme was introduced to represent the

original HEVC transform and quantisation matrix elements with more hardware-

friendly integers. Out of several derived approximation alternatives, an approximated

transform matrix (T16) and its downscaled version (ST16) were further evaluated.

An approximated quantisation multipliers matrix (Q) and its combination with one

transform matrix (ST16 + Q) were also assessed in HEVC reference software, HM-

13.0, using test video sequences of High Definition (HD) quality or higher. Their

hardware architectures were designed in IEEE-VHDL language targeting a Xilinx

Virtex-6 Field Programmable Gate Array technology to estimate resource savings

over original HEVC transform and quantisation. T16, ST16, Q, and ST16 + Q

approximated transform or/and quantisation matrices provided average Bjøntegaard-

Delta bitrate differences of 1.7%, 1.7%, 0.0%, and 1.7%, respectively, in

entertainment scenario and 0.7%, 0.7%, -0.1%, and 0.7%, respectively, in interactive

scenario against HEVC. Conversely, around 16.9%, 20.8%, 21.2%, and 25.9%

hardware savings, respectively, were attained in the number of Virtex-6 slices

compared with HEVC transform or/and quantisation. The developed architecture

designs achieved a 200 MHz operating frequency, enabling them to support the

encoding of Quad Full HD (3840 × 2160) videos at 60 frames per second.

Comparing T16 and ST16 with similar designs in the literature yields better

hardware efficiency measures (0.0687 and 0.0721, respectively, in mega

sample/second/slice). The presented approximated transform and quantisation

matrices may be applicable in a complexity-reduced HEVC encoding on hardware

platforms with non-detrimental coding performance degradations.

Keywords: Hardware complexity, HEVC, FPGA, quantisation, transform

iii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ACKNOWLEDGEMENT i

 ABSTRACT ii

 TABLE OF CONTENTS iii

 LIST OF TABLES viii

 LIST OF FIGURES xiii

 LIST OF ABBREVIATIONS xix

 LIST OF APPENDICES xxiv

1 INTRODUCTION 1

 1.1 Video Coding 1

 1.2 Motivation and Problem Description 4

 1.3 Aim and Objectives 7

 1.4 Scope of Work 7

 1.5 Thesis Contributions 8

 1.6 Thesis Outline 9

2 BACKGROUND 11

 2.1 Digital Video Capture and Representation 11

 2.1.1 Digital Video Capture 11

 2.1.2 Digital Video Representation 12

 2.2 Video Quality 15

 2.3 Bjøntegaard Delta PSNR (BD-PSNR) and bitrate

(BD-rate)

20

 2.4 Brief History of Video Coding 21

 2.5 Prediction Structure/Configuration 23

 2.5.1 All Intra (AI) 23

 2.5.2 Random Access (RA) 24

 2.5.3 Low Delay with P pictures (LP) 25

iv

 2.5.4 Low Delay with B pictures (LB) 25

 2.6 Overview of the High Efficiency Video Coding

(HEVC) standard

26

 2.6.1 Video coding layer of HEVC 27

 2.6.2 Profiles, Levels, and Tiers in HEVC 29

 2.7 Summary 31

3 HEVC FORWARD TRANSFORM, INTERMEDIATE

SCALING, AND QUANTISATION

32

 3.1 Introduction 32

 3.2 HEVC Transforms 34

 3.3 Basis Vectors of HEVC Core and Alternative

Transforms

36

 3.4 Complexity Analysis 41

 3.4.1 Even–Odd Decomposition 41

 3.4.2 Multiplier-free Implementation 46

 3.4.3 Multiple-Constant Multiplication

 (MCM)

49

 3.5 Intermediate Scaling 57

 3.6 Quantisation 62

 3.7 Related work on Transform and Quantisation 64

 3.7.1 Related work on Transform 64

 3.7.2 Related work on Quantisation 68

 3.8 Summary 69

4 APPROXIMATED FORWARD CORE TRANSFORM,

INTERMEDIATE SCALING, AND QUANTISATION

FOR HEVC

70

 4.1 Introduction 70

 4.2 Approximated Forward Core Transform 72

 4.2.1 Algorithmic Modelling 72

 4.2.2 Degrees of Approximation 77

 4.2.3 Arithmetic Complexity Analysis 78

v

 4.2.4 Transform and Intermediate Scaling 82

 4.3 Approximated Forward Quantisation 87

 4.4 Summary 90

5 SOFTWARE-BASED PERFORMANCE EVALUATION

OF APPROXIMATED FORWARD TRANSFORM AND

QUANTISATION

91

 5.1 Pilot Study 91

 5.1.1 Peak Signal to Noise Ratio (PSNR) 94

 5.1.2 Structural Similarity (SSIM) Index 98

 5.1.3 Bjøntegaard-Delta Bitrate (BD-rate) 101

 5.1.4 Visual Observations 101

 5.1.5 Encoder-Decoder Compatibility 108

 5.1.6 Conclusions 109

 5.2 Approximated Transforms 110

 5.2.1 Experimental Settings 110

 5.2.2 Peak Signal to Noise Ratio (PSNR) 111

 5.2.3 Bjøntegaard-Delta Bitrate (BD-rate) 113

 5.2.4 Visual Observations 114

 5.2.5 Conclusions 124

 5.3 Approximated Quantisation 125

 5.3.1 Experimental Settings 125

 5.3.2 Peak Signal to Noise Ratio (PSNR) 125

 5.3.3 Bjøntegaard-Delta Bitrate (BD-rate) 128

 5.3.4 Visual Observations 129

 5.3.5 Conclusions 137

 5.4 Approximated Transform and Quantisation 138

 5.4.1 Experimental Settings 138

 5.4.2 Peak Signal to Noise Ratio (PSNR) 138

 5.4.3 Bjøntegaard-Delta Bitrate (BD-rate) 141

 5.4.4 Visual Observations 142

 5.4.5 Conclusions 150

 5.5 Summary 151

vi

6 DEDICATED HARDWARE ARCHITECTURE

DESIGNS FOR APPROXIMATED TRANSFORM,

INTERMEDIATE SCALING, AND APPROXIMATED

QUANTISATION

153

 6.1 Hardware-Software Co-design Methodology 153

 6.2 Hardware Architecture Designs for Approximated

Transform and Intermediate Scaling

157

 6.2.1 Top-level Transform Module (TM) 157

 6.2.2 Data path Module (DM) 159

 6.2.3 Control Module (CM) 164

 6.2.4 Functional Verification 166

 6.2.5 Results and Discussions 166

 6.2.6 Conclusions 171

 6.3 Hardware Architecture Designs for Approximated

Quantisation

172

 6.3.1 Top-level Quantisation Module (QM) 172

 6.3.2 Functional Verification 174

 6.3.3 Results and Discussions 174

 6.3.4 Conclusions 175

 6.4 Hardware Architecture Designs for Approximated

and Scaled Transform and Quantisation

176

 6.4.1 Top-level Transform and Quantisation

 Module (TQM)

176

 6.4.2 Results and Discussions 177

 6.4.3 Conclusions 178

 6.5 Summary 179

7 CONCLUSIONS AND FUTURE WORK 181

 7.1 Conclusions 181

 7.2 Future Work 183

 REFERENCES 185

vii

 APPENDICES 193

 Appendix A 193

 Appendix B 202

 Appendix C 211

viii

LIST OF TABLES

TABLE NO. TITLE PAGE

1.1 Size of a 10-minute raw video in several resolution

formats

2

1.2 Average shares of the most complex HEVC encoding

stages

6

1.3 Average shares of the most complex HEVC decoding

stages

6

2.1 A 10-second 1080p video in different YUV sampling

patterns

14

2.2 Five quality levels of video quality 16

2.3 Supported levels in Main profile of HEVC 31

3.1 Several properties of DCT 35

3.2 Computational complexity in 1-D N-point HEVC core

transforms

45

3.3 Computational complexity in 1-D N × N HEVC core

transforms

45

3.4 Computational complexity in 2-D N × N HEVC core

transforms

45

3.5 Equivalent shift-add operations for HEVC core transform

elements

47

3.6 Complexity in multiplier-free N-point/N × N 1-D HEVC

core transform using even–odd decomposition

48

3.7 Complexity in multiplier-free N-point/N × N 1-D HEVC

core transform using even–odd decomposition and

Multiple-Constant Multiplication (MCM)

55

3.8 Computational savings in multiplier-free N-point/N × N

1-D HEVC core transform using even–odd

decomposition and Multiple-Constant Multiplication

(MCM)

56

3.9 Intermediate scaling factors in 2-D HEVC forward 61

ix

transform

3.10 Intermediate scaling factors in 2-D HEVC inverse

transform

62

4.1 Constants in 32 × 32 HEVC core transform matrix 70

4.2 Equivalent shift-add operations of LUT4 integers 73

4.3 Decision criteria of approximation alternatives 75

4.4 Matrix elements in the first column of different 32 × 32

core transform alternatives

76

4.5 Complexity in multiplier-free N-point/N × N 1-D

approximated core transform using even–odd

decomposition and Multiple-Constant Multiplication

(MCM)

80

4.6 Computational savings in multiplier-free N-point/N × N

1-D approximated core transform using even–odd

decomposition and Multiple-Constant Multiplication

(MCM)

82

4.7 Complexity in multiplier-free N-point/N × N 1-D

approximated and scaled core transform using even–odd

decomposition and Multiple-Constant Multiplication

(MCM)

84

4.8 Computational savings in multiplier-free N-point/N × N

1-D approximated and scaled core transform using even–

odd decomposition and Multiple-Constant Multiplication

(MCM)

86

4.9 Intermediate scaling factors in 2-D forward

approximated and scaled transform

87

4.10 Several alternative quantiser multipliers 89

5.1 Comparison of approximated transform matrix in pilot

study, V with T16, HEVC, Dsf and Dsr

92

5.2 Test video sequences used in pilot study on

approximated transform, V

93

5.3 Experimental settings in pilot study on approximated

transform, V

94

x

5.4 Average BD-rate values (%) for equal PSNRYUV and

SSIMYUV between the original (HEVC) and

approximated (V) transform matrices in Main profile

101

5.5 Average PSNR differences (dB) for proposed bitstreams

in Main Profile and QP 22 decoded with original HEVC

decoder (HM-13.0)

109

5.6 Experimental settings on approximated transform 110

5.7 Average BD-rate values (%) for equal PSNRYUV between

HEVC and approximated, T16 and ST16, transform

matrices in Main profile

113

5.8 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under RA configuration using

HEVC and approximated transform matrices

116

5.9 Percentage (%) of pixel differences of the last frame of

B4 – BasketballDrive sequence using T16 and ST16

transform matrices over HEVC under RA configuration

in Main profile

119

5.10 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under LB configuration using

HEVC and approximated transform matrices

121

5.11 Percentage (%) of pixel differences of the last frame of

B4 – BasketballDrive sequence using T16 and ST16

transform matrices over HEVC under LB configuration

in Main profile

124

5.12 Experimental settings on approximated quantisation 125

5.13 Average BD-rate values (%) for equal PSNRYUV between

HEVC and approximated quantisation multipliers in

Main profile

128

5.14 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under RA configuration using

HEVC and approximated, Q, quantisation multipliers

132

5.15 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under LB configuration using

135

xi

HEVC and approximated, Q, quantisation multipliers

5.16 Percentage (%) of pixel differences of the last frame of

B4 – BasketballDrive sequence using approximated

quantisation multipliers, Q, in Main profile under RA

and LB configurations

137

5.17 Experimental settings on approximated transform and

quantisation

138

5.18 Average BD-rate values (%) for equal PSNRYUV between

HEVC and combination of approximated transform and

quantisation multipliers, ST16 + Q, in Main profile

141

5.19 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under RA configuration using

HEVC and approximated transform and quantisation

multipliers, ST16 + Q in Main profile

145

5.20 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under LB configuration using

HEVC and approximated transform and quantisation

multipliers, ST16 + Q in Main profile

148

5.21 Percentage (%) of pixel differences of the last frame of

B4 – BasketballDrive sequence using approximated

transform and quantisation multipliers, ST16 + Q in

Main Profile under LB configuration

150

6.1 Typical digital design abstraction levels 156

6.2 Offset and shift values in RS stage (for 8-bit input bit

width)

162

6.3 Latency and execution times (clock cycles) of 2-D

transform architecture designs

167

6.4 Resource utilisation of 2-D HEVC and approximated

transform architecture designs

167

6.5 Resource utilisation of 2-D transform architecture

designs

170

6.6 Quantiser value for HEVC and approximated

quantisation (Q) modules

173

xii

6.7 Resource utilisation of HEVC and approximated

quantisation designs

175

6.8 Resource utilisation of HEVC and approximated

transform and quantisation designs

178

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Video encoder-decoder (CODEC) system 3

1.2 HEVC encoder-decoder model 5

2.1 A digital video sequence 12

2.2 YUV sampling patterns 14

2.3 DSCQS testing system 15

2.4 Video coding standards by ITU-T VCEG and ISO/IEC

MPEG

22

2.5 All intra (AI) prediction structure 24

2.6 Random access (RA) prediction structure 25

2.7 Low delay with P pictures and B pictures prediction

structure

26

3.1 Hybrid block-based video coding comprising (a) an

encoder and (b) a decoder

33

3.2 Left half of the 32-point forward core transform matrix

with embedded 4-point (green blocks), 8-point (pink

blocks), and 16-point (yellow blocks) forward transform

matrices

39

3.3 Functional block diagram of the (a) odd part, (b) less-

efficient MCM multiplier-free and (c) MCM multiplier-

free of 4-point HEVC core transform

51

3.4 Functional block diagram of the (a) odd part and (b)

MCM multiplier-free of 8-point HEVC core transform

52

3.5 Additional scale factors (ST1, ST2, SIT1, SIT2, SQ, and SIQ)

to perform (a) forward transform and quantisation, and

(b) inverse transform and quantisation of HEVC

58

3.6 Intermediate scaling factor determination for (a) first

and (b) second stages of forward transform to fit

intermediate and output values within 16 bits

59

3.7 Intermediate scaling factors in the inverse transform 61

xiv

scale factors, assuming the input to be the final output of

Fig. 3.6

4.1 A hardware implementation on multiplication of x by 87 72

4.2 Flow chart of the search algorithm, where (a) is the main

flow and (b) is the ceiling (upwards) approximation flow

of f(x)

74

5.1 R-DPSNR curves of B4 – BasketballDrive sequence using

original (HEVC) and approximated (V) transform

matrices under RA configuration and in (a) Main and (b)

Main 10 profiles

96

5.2 R-DPSNR curves of B4 – BasketballDrive sequence using

original (HEVC) and approximated (V) transform

matrices under LB configuration and in (a) Main and (b)

Main 10 profiles

97

5.3 R-DSSIM curves of B4 – BasketballDrive sequence using

original (HEVC) and approximated (V) transform

matrices under RA configuration and in (a) Main and (b)

Main 10 profiles

99

5.4 R-DSSIM curves of B4 – BasketballDrive sequence using

original (HEVC) and approximated (V) transform

matrices under LB configuration and in (a) Main and (b)

Main 10 profiles

100

5.5 Snapshot of B4 – BasketballDrive sequence (frame 499,

RA, Main, QP = 36) using (a) original (HEVC) and (b)

approximated (V) transform matrices

103

5.6 (a) Image difference and (b) histogram of pixel

differences of the last frame (frame 499, RA, Main, QP

= 36) of B4 – BasketballDrive sequence using

approximated (V) transform matrices over HEVC

104

5.7 Snapshot of B4 – BasketballDrive sequence (frame 499,

LB, Main, QP = 35) using (a) original (HEVC) and (b)

approximated (V) transform matrices

106

5.8 (a) Image difference and (b) histogram of pixel 107

xv

differences of the last frame (frame 499, LB, Main, QP

= 35) of B4 – BasketballDrive sequence using

approximated (V) transform matrices over HEVC

5.9 R-DPSNR curves of B4 – BasketballDrive sequence using

original HEVC and approximated transform matrices,

T16 and ST16, under (a) RA and (b) LB configurations

in Main profile

112

5.10 Snapshot of the last frame of B4 – BasketballDrive

sequence (frame 499, RA, Main) using HEVC (left

column), T16 (middle column), and ST16 (right column)

transform matrices and base QP values of (a) 22, (b) 27,

(c) 32, and (d) 37

115

5.11 Image differences of the last frame of B4 –

BasketballDrive sequence (frame 499, RA, Main) using

T16 (left column) and ST16 (right column) transform

matrices over HEVC with base QP values of (a) 22, (b)

27, (c) 32, and (d) 37

117

5.12 Histograms of pixel differences of the last frame of B4 –

BasketballDrive sequence (frame 499, RA, Main) using

T16 (left column) and ST16 (right column) transform

matrices over HEVC with base QP values of (a) 22, (b)

27, (c) 32, and (d) 37

118

5.13 Snapshot of B4 – BasketballDrive sequence (frame 499,

LB, Main) using HEVC (left column), T16 (middle

column), and ST16 (right column) transform matrices

and base QP values of (a) 22, (b) 27, (c) 32, and (d) 37

120

5.14 Image differences of the last frame of B4 –

BasketballDrive sequence (frame 499, LB, Main) using

T16 (left column), and ST16 (right column) transform

matrices over HEVC with base QP values of (a) 22, (b)

27, (c) 32, and (d) 37

122

5.15 Histograms of pixel differences of the last frame of B4 –

BasketballDrive sequence (frame 499, LB, Main) using

123

xvi

T16 (left column) and ST16 (right column) transform

matrices over HEVC with base QP values of (a) 22, (b)

27, (c) 32, and (d) 37

5.16 R-DPSNR curves of B4 – BasketballDrive sequence using

original HEVC and approximated quantisation

multiplier set, Q, under (a) RA and (b) LB

configurations and in Main profile

127

5.17 Snapshot of the last frame of B4 – BasketballDrive

sequence (frame 499, RA, Main) using HEVC (left

column) and approximated quantisation multipliers, Q

(right column) and QP values of (a) 17, (b) 22, (c) 27,

(d) 32, (e) 37, and (f) 42

131

5.18 Image differences and histograms of pixel differences of

the last frame of B4 – BasketballDrive sequence (frame

499, RA, Main) using approximated quantisation

multipliers, Q over HEVC at QP values of (a) 17, (b) 22,

(c) 27, (d) 32, (e) 37, and (f) 42

133

5.19 Snapshot of the last frame of B4 – BasketballDrive

sequence (frame 499, LB, Main) using HEVC (left

column) and approximated quantisation multipliers, Q

(right column) and QP values of (a) 17, (b) 22, (c) 27,

(d) 32, (e) 37, and (f) 42

134

5.20 Image differences and histograms of pixel differences of

the last frame of B4 – BasketballDrive sequence (frame

499, LB, Main) using approximated quantisation

multipliers, Q over HEVC at QP values of (a) 17, (b) 22,

(c) 27, (d) 32, (e) 37, and (f) 42

136

5.21 R-DPSNR curves of B4 – BasketballDrive sequence using

original HEVC and combination of approximated

transform matrix and quantisation multiplier sets, ST16

+ Q, under (a) RA and (b) LB configurations and in

Main profile

140

5.22 Snapshot of the last frame of B4 – BasketballDrive 144

xvii

sequence (frame 499, RA, Main) using HEVC (left

column) and a combination of approximated transform

and quantisation multipliers, ST16 + Q (right column),

and QP values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37,

and (f) 42

5.23 Image differences and histograms of pixel differences of

the last frame of B4 – BasketballDrive sequence (frame

499, RA, Main) using approximated transform and

quantisation multipliers, ST16 + Q over HEVC at QP

values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37, and (f) 42

146

5.24 Snapshot of the last frame of B4 – BasketballDrive

sequence (frame 499, LB, Main) using HEVC (left

column) and a combination of approximated transform

and quantisation multipliers, ST16 + Q (right column),

and QP values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37,

and (f) 42

147

5.25 Image differences and histograms of pixel differences of

the last frame of B4 – BasketballDrive sequence (frame

499, LB, Main) using approximated transform and

quantisation multipliers, ST16 + Q over HEVC at QP

values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37, and (f) 42

149

6.1 Hardware acceleration concept with (a) fully software-

based implementation and (b) hardware-software co-

design

154

6.2 Hierarchical modular design approach 157

6.3 Top-level functional block diagram of 2-D transform

architecture

158

6.4 Functional block diagram of serial-to-parallel block 159

6.5 Functional block diagram of (a) 1-D forward transform

block using even-odd decomposition, (b) 4-point

approximated transform (T16), and (c) multiplier-free

multiplication by 80

161

6.6 Functional block diagram of (a) transpose buffer and (b) 163

xviii

basic 4-by-4 register array

6.7 Functional block diagram of Control Module (CM) 164

6.8 Finite State Machine of 2-D transform architecture

designed in this work

166

6.9 Functional block diagram of quantisation module (QM) 173

6.10 Functional block diagram of transform and quantisation

module (TQM)

177

xix

LIST OF ABBREVIATIONS

1-D One-Dimensional

2-D Two-Dimensional

3-D Three-Dimensional

3D-HEVC 3-D HEVC

3G Third generation of mobile telephony technology

AI All Intra

AMVP Advanced Motion Vector Prediction

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

AVS Audio Video Coding Standard of China

B Bi-predicted

BD-Rate Bjøntegaard-Delta Bitrate

BD-PSNR Bjøntegaard-Delta PSNR

BRAM Block RAM

CABAC Context Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

Cb Chrominance Blue

CB Coding Block

cc Clock Cycle

CCD Charge-Coupled Device

CCIR International Radio Consultative Committee

Cg Chrominance Green

CIF Common Intermediate Format

CM Control Module

CMOS Complementary MOSFET

CODEC Encoder/Decoder

CPB Coded Picture Buffer

CPD Critical Path Delay

Cr Chrominance Red

CSD Canonical Signed Digit

xx

CSE Common Sub-expression Elimination

CTB Coding Tree Block

CTU Coding Tree Unit

CU Coding Unit

dB Decibel

DCT Discrete Cosine Transform

DM Data path Module

DPB Decoded Picture Buffer

DRAM Distributed RAM

DSCQS Double Stimulus Continuous Quality Scale

Dsf DCT scaled and floating

DSP Digital Signal Processor

Dsr DCT scaled and rounded

DST Discrete Sine Transform

DVD Digital Versatile Disc

FCVC Fully Configurable Video Coding

FPGA Field Programmable Gate Array

fps Frames Per Second

FR Full Reference

FSM Finite State Machine

GOP Group of Pictures

HD High Definition

HDL Hardware Description Language

HEVC High Efficiency Video Coding

HLL High Level Language

HVS Human Visual System

I Intra

IAU Input Adder Unit

IC Integrated Circuit

ICT Integer Discrete Cosine Transform

IDCT Inverse DCT

ID Identification

IEC International Electrical Committee

xxi

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-R Radiocommunication Sector of ITU

ITU-T Telecommunication Sector of ITU

JCT-3V Joint Collaborative Team on 3D Video Coding Extension

Development

JCT-VC Joint Collaborative Team on Video Coding

JND Just-Noticeable Difference

JVT Joint Video Team

KLCC Kendall Rank-Order Correlation Coefficient

LB Low Delay with B-pictures

LP Low Delay with P-pictures

LSB Least Significant Bit

LUT Look-Up Table

MAE Mean Absolute Error

MC Motion Compensation

MB Macro Blocks

MCM Multiple-Constant Multiplication

MICT Modified ICT

MOS Mean Opinion Score

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MOVIE Motion-tuned Video Integrity Evaluation

MPEG Motion Picture Experts Group

MSB Most Significant Bit

MSE Mean Squared Error

MS-SSIM Multiple-Scale SSIM

MST Multi-Standard Transform

MV Motion Vector

MVC Multiview Video Coding

MV-HEVC Multiview HEVC

NICT Non-orthogonal ICT

NR No Reference

NS Next State

xxii

OAU Output Adder Unit

OS Operating System

P Predicted

PB Prediction Block

PLCC Pearson Linear Correlation Coefficient

POC Picture Order Count

PS Present State

PSNR Peak Signal to Noise Ratio

PU Prediction Unit

QCIF Quarter CIF

QP Quantisation Parameter

QPI QP Intra

QM Quantisation Module

RA Random Access

RAM Random Access Memory

R-D Rate-Distortion

RDOQ Rate-Distortion Optimised Quantisation

RExt Format Range Extensions

RGB Red, Green, Blue

RMS Root Mean Square

RR Reduced Reference

RS Rounding and Scaling

RVC Reconfigurable Video Coding

S2P Serial-to-Parallel

SAO Sample Adaptive Offset

SAU Shift-Add Unit

SCC Screen Content Coding

SD Standard Definition

SHVC Scalable HEVC

SMIC Semiconductor Manufacturing International Corporation

SRAM Synchronous RAM

SRCC Spearman Rank-Order Correlation Coefficient

SSIM Structural Similarity Index

xxiii

SVC Scalable Video Coding

TB Transform Block

TM Transform Module

TQM Transform and Quantisation Module

TSMC Taiwan Semiconductor Manufacturing Company

TU Transform Unit

UHD Ultra HD

VCEG Video Coding Experts Group

VGA Video Graphics Array

VHDL VHSIC HDL

VHSIC Very High Speed Integrated Circuit

VQEG Video Quality Experts Group

VQM Video Quality Metric

WQXGA Wide Quad Extended Graphics Array

WVGA Wide VGA

Y Luminance

YUV YCbCr colour space sub-sampling

YUY2 4:2:2 YUV

xxiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A R-D Curves of HEVC and Approximated Transforms 193

B R-D Curves of HEVC and Approximated Quantisation 202

C R-D Curves of HEVC and Approximated Transform

and Quantisation

211

1

Chapter 1

Introduction

Abstract This chapter introduces the field and topics of research, the aim,

objectives, and scope of work carried out in this thesis. The study contributions to

the body of knowledge and an outline of this document are included towards the end

of the chapter.

1.1 Video Coding

It is no exaggeration to state that an average individual today watches video

contents on a daily basis. Videos are being watched almost anytime and everywhere

– at homes, work places, restaurants, parks, on travels, and many other examples.

The growing number of video-enabled devices such as laptops, smartphones, tablets,

always-on wearable cameras, etc. besides the common television (TV) sets is just

one of many factors contributing to this trend. The increasing variety of video

services created around the clock like broadcast programmes (e.g., news, sports,

documentaries, entertainment shows, etc.), streaming applications, home cinemas,

video chats, surveillances, and so on, is another factor influencing one‟s regular

activities. Various other factors include improving spatial and temporal video

resolutions, quality of experience, availability of internet connections, economies of

scale, etc.

In 2015, more than half a billion (563 million) new mobile devices and

connections were produced worldwide, with 36% of the share being smart devices

(Cisco, 2016). In their study, smart devices were defined as “mobile connections that

have advanced multimedia/computing capabilities with a minimum of 3G

connectivity”. The mobile data traffic around the globe reached 3.7 exabytes (EB)

every month by the end of 2015, and more than half (55%) of this traffic was mobile

video. By 2020, the monthly mobile data traffic is projected to increase by eight

times to 30.6 EB globally, and three-fourths (75%) of these will be video (Cisco,

2016). Recently, the most popular sources for online TV and/or movies are

YouTube, Netflix, Hulu, Amazon Prime Instant Video, and HBOGO, according to a

survey (Solsman, 2014). For instance on YouTube, as of July 2015, more than 400

2

hours of video were uploaded per minute, increasing from 300 hours every minute in

November 2014 (Jarboe, 2015; Robertson, 2015; Statista, 2016). Statistical data such

as these lay emphasis on the significance of video in our daily lives.

A raw video sequence incurs a certain amount of byte size. Table 1.1

illustrates that a short video with a length of 10 minutes in different formats may

require between 5 gigabytes (GB) in a low-resolution Common Intermediate Format

(CIF) and 445 GB in an Ultra High Definition (UHD) 4K format. This massive size

is not ideal for storing or transmitting a raw video. As a video is a form of signal or

data, compression and decompression, which respectively reduces and returns the

original data size, have therefore been long applied to support the handling of video

contents. The art of compressing and decompressing a video along with associated

processes is what referred to as video coding.

Table 1.1 Size of a 10-minute raw video in several resolution formats

Format
Resolution

(Width × Height)
Bits per pixel

a

Frames per

second
b
 (fps)

Size
c
 (GB)

Common

Intermediate

Format

(CIF)

352 × 288 24 30 5.1

Standard

Definition

(SD)

720 × 576 24 30 20.9

High

Definition

(HD)

1280 × 720

(720p)
24 30 46.3

1920 × 1080

(1080p)
24 30 104.3

Ultra High

Definition

(UHD)

3840 × 2160

(Quad Full HD,

QFHD)

24 30 417.1

4096 × 2160

(4K)
24 30 444.9

a
 Three colour components each with 8-bit depth

b
 Other common frame rates include 25, 50, and 60 fps

c
 Size = Width × Height × Bits per pixel × FPS × Length / (2

30
 × 8)

 Video coding is based on a pair of complementary systems: an encoder and a

decoder. The encoder converts (encodes) an original video sequence into a

compressed form or bitstream, reducing the number of bits required and making it

suitable for transmission or storage. On the other hand, the decoder converts

3

(decodes) the compressed bitstream back into a representation (exact copy or

approximation) of the source video. The encoder-decoder pair is frequently referred

to as a CODEC (enCOder/DECoder) (Fig. 1.1). Compression is possible by

removing redundant information or elements that are unnecessary for reconstructing

the data. If the decoded data are exactly identical to the original, then the coding

process is classified as lossless. Otherwise, the process is lossy (Richardson, 2012).

Fig. 1.1 Video encoder-decoder (CODEC) system (Richardson, 2012)

In a lossless video coding, compression is achieved by removing statistical

redundancy such as bit patterns. However, lossless coding only provides a moderate

amount of data reduction and may still be unsuitable for storage or transmission. On

the other hand, a lossy coding delivers a higher video compression ratio by removing

subjective redundancy, and thus is normally in place but at the expense of a visual

quality loss. Fortunately, subjective redundant elements of a video sequence are

removable without severely influencing the viewer‟s visual quality perception

(Richardson, 2012).

In order to have a common language or understanding between a party

encoding a video sequence and another one wishing to decode the compressed video

contents, standards for video coding have been developed since the last three

decades. Most video coding standards apply lossy compression to obtain higher

compression efficiencies. Increasing significance of video driven primarily by the

growing number of video sources, applications, resolutions, quality, etc. has led to

improved coding tools or even newer standards to be established. When a new video

coding standard is being developed, usually one of its goals is to achieve a higher

compression ratio than the best available standard at that time, without sacrificing

video quality. A higher compression ratio means that more video sequences can be

stored or transmitted at the same number of bits. Alternatively, the savings in the

4

number of bits can also be utilised to deliver a better video quality such as larger

resolutions or richer viewing experiences (e.g., three-dimensional (3-D), multiview,

holoscopic, etc.).

A better performing video coding standard usually comes at the price of

increased complexity. To achieve a higher compression ratio requires more

sophisticated coding algorithms or tools attributing to more complex designs. It is

almost obligatory for new video-enabled electronic devices to include a capability to

use the newest available video coding standard as one of its selling points. Having

this as the context, the next section presents the motivation and problem definition

which this thesis is based on.

1.2 Motivation and Problem Description

The latest and most efficient video coding standard at present is the High

Efficiency Video Coding (HEVC). HEVC was developed by the Joint Collaborative

Team on Video Coding (JCT-VC), formed by Video Coding Experts Group (VCEG)

of the Telecommunication Sector of the International Telecommunication Union

(ITU-T) and Moving Picture Experts Group (MPEG) of the International

Organization for Standardization (ISO)/International Electrical Committee (IEC).

The first version of HEVC was published in April 2013 as ITU-T Recommendation

(Rec.) H.265 (ITU, 2013). In ISO/IEC, the standard was first published in November

2013 as 23008-2 MPEG-H Part 2 (ISO, 2013b). The newly emerged UHD format

was one of the driving factors leading to the development of HEVC.

 When HEVC was approved, it provided almost twice compression efficiency

at similar video qualities in comparison to the state-of-the-art standard, the Advanced

Video Coding (AVC) (Ohm et al., 2012; ITU, 2014). Like AVC, HEVC employs the

classical hybrid video coding structure combining intra-/inter-prediction, transform

coding, and entropy coding (Sullivan et al., 2012; Vanne et al., 2012). A general

model of the HEVC encoder and decoder can be depicted as in Fig. 1.2(a) and

1.2(b), respectively.

5

Fig. 1.2 HEVC encoder-decoder model: (a) Encoder (b) Decoder (Vanne et

al., 2012)

(a)

(b)

6

“There is no single coding element in the HEVC design that provides

the majority of its significant improvement in compression efficiency in

relation to prior video coding standards. It is, rather, a plurality of

smaller improvements that add up to the significant gain” (Sullivan et

al., 2012, p. 1654).

The average software complexity of an HEVC encoder, based on the

execution time, varies between 1.2× and 3.2× when compared with an AVC encoder,

while on the decoder side, the corresponding value ranges from 1.4× to 2.0× (Vanne

et al., 2012). Tables 1.2 and 1.3 respectively show the average encoder and decoder

software complexity in different coding configurations (All Intra (AI), Random

Access (RA), Low Delay with B-pictures (LB), and Low Delay with P-pictures

(LP)).

Table 1.2 Average shares of the most complex HEVC encoding stages

(Vanne et al., 2012)

Encoding stage AI RA LB LP

IME 0% 16% 18% 17%

FME/MD 9% 55% 59% 49%

IP 24% 1% 1% 1%

T/Q/IQ/IT 41% 14% 11% 18%

EC 11% 4% 3% 5%

Misc. 15% 10% 8% 10%

Table 1.3 Average shares of the most complex HEVC decoding stages

(Vanne et al., 2012)

Decoding stage AI RA LB LP

IME 13% 13% 12% 14%

FME/MD 0% 47% 44% 34%

IP 25% 4% 2% 3%

T/Q/IQ/IT 23% 9% 11% 12%

EC 13% 5% 5% 6%

Misc. 26% 22% 26% 31%

 The most complex stages presented in Tables 1.2 and 1.3 are therefore high

priority candidates for acceleration on dedicated hardware architectures.

“Accelerating the most complex functions such as motion compensation

(MC) is recommended in decoding, but an adequate decoding

performance is typically obtainable through processor-based

acceleration. However, HEVC codec is strongly asymmetrical in terms

of complexity, so sufficient encoding performance tends to be out of

7

reach unless the most complex encoding functions are off-loaded to

special hardware accelerators” (Vanne et al., 2012, p. 1894).

With the newly approved HEVC as the motivation and its complexity as one

of the main challenges to be addressed, the next section states the aim and objectives

set in this thesis.

1.3 Aim and Objectives

The aim of this work is to evaluate the coding performance of novel

complexity-reduced algorithms of selected HEVC algorithms. As previously

mentioned, the HEVC encoder has a higher priority to be simplified than the

decoder. One of the most complex encoding stages is the

transform/quantisation/inverse quantisation/inverse transform (T/Q/IQ/IT) as shown

previously in Table 1.2 and Fig. 1.2(a). For these reasons, the T/Q/IQ/IT stage of

HEVC has been selected as the focus of this thesis.

In order to achieve the specified aim, the following objectives were underlined to

be carried out:

 To assess the coding performance of simplified transform and quantisation

algorithms in terms of objective video quality metrics, bitrate, and visual

observations;

 To assess the hardware implementation costs of simplified transform and

quantisation algorithms;

 To compare between simplified transform and quantisation algorithms and

HEVC and other works in the literature.

1.4 Scope of Work

The work carried out was based on the first version of HEVC standard and do

not cover extensions introduced in later versions. Although the HEVC codec

comprises an encoder and a decoder, this work mainly focuses on the encoder.

Furthermore in the HEVC encoder, the work concentrates on the transform and

quantisation stages. All the other stages were retained as specified in the standard.

8

The encoding results were obtained by using HEVC model software version

13.0 (HM-13.0) (JCT-VC, 2014) as the reference. This version was the latest release

when this research work started. The software was considered mature when an older

version 10.0 was made available.

 The hardware architecture designs of the transform and quantisation stages in

this work were described in reconfigurable IEEE-VHDL hardware description

language (HDL) using Xilinx™ Integrated Synthesis Environment (ISE®) design

suite version 14.7, synthesised with Xilinx™ Synthesis Technology (XST) and

routed to Xilinx™ Virtex®-6 xc6vl550t-2ff1760 Field Programmable Gate Array

(FPGA) target device. In addition, these hardware designs were implemented up to

the Placed and Routed state in ISE® software, verified using test benches and

simulated in the ISE® Simulator (ISim) environment along with Mathworks®

MATLAB® software.

1.5 Thesis Contributions

This thesis introduces the following contributions:

 Two approximated transform algorithms for HEVC, labelled as T16 and

ST16, with similar coding performances of 1.7% and 0.7% Bjøntegaard-

Delta bitrate (BD-rate) differences on average in entertainment and

interactive application scenarios, respectively, over the original HEVC

transform, considering video qualities of HD and above.

 An approximated quantisation algorithm for HEVC, labelled as Q, with 0.0%

and -0.1% average BD-rate differences in entertainment and interactive

application scenarios, respectively, against the original HEVC quantisation,

considering HD video quality and beyond.

 A combination of approximated transform and quantisation stage for HEVC,

labelled as ST16 + Q, with average BD-rate differences of 1.7% and 0.7% in

entertainment and interactive application scenarios, respectively, with respect

to the original HEVC transform and quantisation, considering HD and better

video qualities.

 Two high-throughput and multiplier-free dedicated hardware architecture

designs of the approximated transforms for HEVC (T16 and ST16), utilising

9

16.9% and 20.8% fewer resources in terms of Xilinx Virtex-6 slices

compared with HEVC transform. These designs are at least 1.3× more

hardware efficient than a few similar architectural designs, operating at a

higher frequency (200 MHz) and capable of supporting QFHD @ 60 fps

videos.

 A dedicated hardware architecture design of the approximated quantisation

for HEVC (Q), using more than 20% fewer slices than HEVC quantisation

hardware, achieving a higher operating frequency (200 MHz) and a better

QFHD processing frame rate (60 fps).

 A dedicated hardware architecture design of the combined and approximated

transform and quantisation stage for HEVC (ST16 + Q), offering more than

25% slice savings than HEVC transform and quantisation hardware on top of

a higher operating frequency (200 MHz) and a better QFHD processing

frame rate (60 fps).

Based on a few of the aforementioned contributions, the following

manuscript has been reviewed by the corresponding journal and a revision is being

prepared:

 Mohd Sazali, M., Sadka, A. H., Boulgouris, N. V. (2017) „Two-dimensional

approximated core transforms for High Efficiency Video Coding‟, Elsevier

Signal Processing: Image Communication

1.6 Thesis Outline

This thesis is divided into seven chapters. After the introductory information

given in Chapter 1, Chapter 2 provides a background description on digital video

coding covering the acquisition of a digital video, colour spaces and sub-sampling,

and a few quality metrics commonly used to assess a digital video. A brief history of

video coding standardisation is also included. Towards the end of this chapter, a

brief overview of the HEVC standard (version 1) is provided, describing its video

coding layer, the supported profiles, tiers, and levels.

10

 Chapter 3 is dedicated to explaining the HEVC transform and quantisation

algorithms, as these processes form the basis of this thesis as stated earlier (Section

1.3). Some related work in the literature is discussed at the end of the chapter.

 Chapter 4 describes the approximated transform (including intermediate

scaling) and quantisation algorithms for HEVC. These approximated algorithms are

compared with the original ones in terms of degree of approximations and/or

arithmetic complexity.

 Chapter 5 presents the software-based experimental coding performance

results of the approximated transform and quantisation algorithms, in terms of

objective quality rate-distortion and subjective visual observation. Some descriptions

of the test conditions, data set, and encoder-decoder compatibility issues are

discussed in this chapter.

 Chapter 6 presents dedicated hardware architecture designs developed in this

work for HEVC and simplified transform and quantisation algorithms. Some

explanation on hardware-software co-design methodology is provided at the

beginning. The performances of these designs are compared with the original HEVC

algorithms as well as with some work in the literature, in terms of resource

utilisation, supported spatial video resolutions, and hardware efficiency.

 Finally, Chapter 7 concludes this document, discusses some of its strengths

and weaknesses, and offers some suggestions as part of a future work.

11

Chapter 2

Background

Abstract This chapter provides a background on the concepts required to understand

the novel contributions of this work. It revises the concepts of digital video capture,

representation, quality, and coding, and provides an overview of the new HEVC

standard.

2.1 Digital Video Capture and Representation

2.1.1 Digital Video Capture

A digital video is a sequence of images, frames or pictures, where each of

these pictures represents a sample of two-dimensional (2-D) projection (discrete

space and time) of a real scene (continuous space and time) (Fig. 2.1). Every picture

is a rectangular matrix of pixels where the number of pixels in the horizontal (width)

and vertical (height) directions determines the spatial resolution of the picture and

video. Common video resolutions include SD with 720 × 480 pixels, Full HD (or

1080p) with 1920 × 1080 pixels, 4K with 4096 × 2160 pixels, etc. The number of

pictures captured per second determines the temporal resolution or frame rate of the

video in frames per second (fps). Common frame rates include 24 fps, 30 fps, 50 fps,

60 fps, etc. A sufficiently high capture rate gives an observer the impression of

motion of the scene. The higher the picture rate is, the smoother the feeling of

motion is to the viewer.

12

Fig. 2.1 A digital video sequence

Each image is captured by an analogue semiconductor sensor formed by an

array of Charge-Coupled Devices (CCDs), where every CCD captures one pixel.

Colour images normally require three matrices of CCDs, each matrix representing

one colour component following a colour space. A common colour space is the Red,

Green, and Blue (RGB) as most other colours can be created using certain

combinations of these three base colours. In the RGB space, every pixel therefore

has three colour components or samples. The intensity level of each colour samples

is determined by a number of bits or bit-depth. For instance, 8-bit and 10-bit depths

could allow the colour intensity of a sample to vary between zero and 255 and 1023,

respectively.

2.1.2 Digital Video Representation

The human visual system (HVS) has two types of photoreceptor cells,

namely rods and cones. Rods sense the brightness or intensity of light (luminance or

luma), while cones sense colours (chrominance or chroma). The HVS is less

sensitive to colours than brightness. Thus, a tricolour space such as RGB is normally

represented in YCbCr (or YUV) space prior to storage or transmission, where Y

represents the luma samples while Cb (U) and Cr (V) respectively represent the

chroma blue and chroma red samples. Cg or chroma green samples are unnecessary

as they can be obtained using (2.1)–(2.2) (Richardson, 2012).

Time or

Picture Order

Count (POC)

Frame rate

(frames per second, fps)

Height

13

 The YCbCr or YUV space allows the representation of a digital video to be

sub-sampled taking the advantage of the HVS property. Common YUV sampling

patterns include 4:4:4, 4:2:2, and 4:2:0 (Fig. 2.2). In the 4:4:4 sampling pattern, for

every square consisting of four Y samples (two-by-two), there are also four U and V

samples, i.e., the number of Y, U, and V samples are exactly the same in both

vertical and horizontal directions. 4:4:4 fully retains the fidelity of the chrominance

component, having the same effect as the RGB. On the other hand, 4:2:2 or YUY2

has the same chrominance samples as the luminance component in the vertical

directions but only half U and V samples in the horizontal directions. The 4:2:2

pattern is used for high-quality colour reproduction. The most popular among them

is the 4:2:0 pattern, where each U and V components only have half the vertical and

horizontal resolutions of the Y component. In other words, for every four Y samples,

there are only one U and V samples. The term 4:2:0 is confusing and should instead

have been 4:1:1, but was retained for historical reasons and to differentiate it from

4:4:4 and 4:2:2. Consumer applications like digital versatile disk (DVD) storage and

video conferencing broadly adopt the 4:2:0 pattern (Richardson, 2012).

Table 2.1 demonstrates the number of bits involved when a 10-second 1080p

HD @ 30 fps 8-bit video is captured in different YUV sampling patterns. Applying a

different YUV sampling pattern could reduce the size of a video and it is, therefore,

a form of image or video compression.

Y = 0.299R + 0.587G + 0.114B

Cb = 0.564(B – Y)

Cr = 0.713(R – Y)

R = Y + 1.402Cr

G = Y – 0.344Cb – 0.714Cr

B = Y + 1.772Cb

(2.1)

(2.2)

14

Table 2.1 A 10-second 1080p video in different YUV sampling patterns

Sampling pattern Size (number of bits)

4:4:4 (or RGB) 1920 × 1080 × 3 × 30 fps × 10s × 8-bit

= 14.9 × 10
9
 bits

4:2:2 1920 × 1080 × 2 × 30 fps × 10s × 8-bit

= 9.95 × 10
9
 bits

4:2:0 1920 × 1080 × 1.5 × 30 fps × 10s × 8-bit

= 7.46 × 10
9
 bits

Fig. 2.2 YUV sampling patterns (Richardson, 2012)

15

2.2 Video Quality

The quality of a video can be evaluated using objective or subjective

measurements. As viewing a video sequence is a visual experience, a subjective test

is probably the best in measuring the quality of experience of a viewer. A subjective

test involves human beings assessing the quality of videos. A few guidelines on

subjective video evaluation are provided by ITU. In Double Stimulus Continuous

Quality Scale (DSCQS) testing system, a pair of unimpaired and distorted video is

displayed one after the other (Fig. 2.3). The order of either the original or the

impaired video is to be displayed first is randomised to reduce biased judgements of

the assessor. At the end of each test, the human assessor will mark his or her view on

the relative video quality on a continuous scale, and this scale can be classified or

divided into different quality levels such as five or nine quality levels (Video Clarity,

2016). Table 2.2 shows five quality levels of video quality. This type of grading is

usually called Mean Opinion Score (MOS), as at the end of the whole evaluation, the

mean or average score of all human assessors involved will be taken as the quality

score in a particular test condition or parameter.

Fig. 2.3 DSCQS testing system (adapted from (Richardson, 2012))

Although a subjective test such as DSCQS is the closest in measuring a video

quality from the human point of view, it has several practical drawbacks. First, it is

very time-consuming and costly to gather a large pool of human assessors or

evaluators. An expert evaluator, who is acquainted with the artefacts or distortions

caused by video compression, tends to be biased in giving a quality score. Therefore,

it is more advisable to use naive or non-expert evaluators who are inexperienced in

evaluating video qualities. Even a non-expert assessor can also quickly become an

16

expert as he/she learns to recognise artefacts during the evaluation process. It is also

expensive to have the test facility set-up involving the display equipment, controlled

environment (e.g., lighting and shades or reflectiveness of the wall or curtains), etc.

Table 2.2 Five quality levels of video quality (Video Clarity, 2016)

Score Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Unacceptable

The eye and the brain form the components of the HVS. The interaction

between the eye and the brain, components of the HVS, influences a human's visual

quality perception or opinion. This perception is determined firstly by the spatial

fidelity, i.e., how clearly or distorted regions of a scene, and secondly by the

temporal fidelity, i.e., how smoothly motions appear in the scene. Other influencing

factors include the viewing environment, the amount of the viewer's interaction with

video contents (active or passive), the observer's state of mind, visual attention, i.e.,

the concentration of an observer on a series of points in the images instead of

simultaneously taking all information into the brain ((Findlay and Gilchrist, 2003)

cited in (Richardson, 2012)), and the 'recency effect', i.e., our perceived quality is

affected more heavily by a recently viewed video rather than an older content

((Wade and Swanston, 2001) and (Aldridge et al., 1995) cited in (Richardson,

2012)). All these factors complicate the quantitative and accurate measurement of

visual quality (Richardson, 2012), as well as to have repeatable results even if using

the same group of human assessors.

17

The cost and complexity to subjectively measure video quality make

objective quality measurements using mathematical functions more desirable. Video

processing system developers heavily depend on objective or algorithmic quality

measurements in approximating the response of human observers. Among

advantages of objective measures are quick and far less costly, repeatable, etc.

Objective measures can be grouped into Full Reference (FR), Reduced Reference

(RR), and No Reference (NR). Examples of FR objective measures proposed include

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Multi-Scale

SSIM (MS-SSIM), Video Quality Metric (VQM), Just-Noticeable Difference (JND),

MOtion-based Video Integrity Evaluation (MOVIE), etc., which have different

degrees of success in approximating subjective measures, ranging between 70 per

cent and 90 per cent. In ITU-T, Video Quality Experts Group (VQEG) is dedicated

to developing industry standards on video and multimedia quality assessment.

VQEG has developed Rec. J.247 covering FR quality measurement. FR quality

metrics have access to an original, unimpaired copy of a video source ((ITU-T,

2008) cited in (Richardson, 2012)). Rec. J.247 lists four objective quality metrics,

which are NTT FR, OPTICOM Perceptual VQM, Psytechnics FR, and Yonsei FR.

Objective methods in general proceed as follows. First, the original

(reference) and test (impaired or coded) video sequences are compared in the spatial

and temporal domains. Then, a set of degradation parameters is calculated such as

blurring, blockiness, etc. Lastly, these parameters are combined providing a number

as an estimate of subjective quality (Richardson, 2012).

However in many practical applications, a full reference or an original copy

of the source video is unavailable making the task of estimating quality more

challenging. For instance, the original video may be unavailable at the decoder side

as well as for a user-generated video content. In such situations, an NR or RR

technique can be applied. NR metrics attempt to estimate the subjective quality

based only on characteristics of the decoded video such as artefacts ((Wang et al.,

2002) and (Dosselmann and Yang, 2007) cited in (Richardson, 2012)). RR metrics,

on the other hand, calculate a quality signature, which is usually a low bitrate side

information transmitted to the decoder along with the coded video, and a quality

estimate is then derived ((Wang and Simoncelli, 2005) cited in (Richardson, 2012)).

18

PSNR is a widely-used objective video quality metric in the literature. Its

definition is given in (2.3) for an n-bit signal, where the Mean Squared Error (MSE)

is calculated as in (2.4), and variables r and c are the vertical and horizontal

dimensions of the picture, respectively. O and R are the original and reconstructed

pictures, respectively, where an R picture is an image after coding losses.

 PSNR is originally an image quality assessment (IQA) metric, but it has been

widely used in the industry and the research community as a quality metric for

assessing the performance of video processing systems (Huynh-Thu and Ghanbari,

2012; Hanhart and Ebrahimi, 2014). It is largely being relied upon in the

standardisation of video codecs as a performance indicator, i.e., as a measure of gain

in quality of a video codec optimisation tool for a specified target bitrate (Huynh-

Thu and Ghanbari, 2012). PSNR has also been used as a comparison tool between

video codecs and has been widely used as reference benchmark for comparing

objective and subjective video quality assessment (VQA) models against well-

established and state-of-the-art compression algorithms (Huynh-Thu and Ghanbari,

2012; Hanhart and Ebrahimi, 2014). The well-known Bjøntegaard model (Section

2.3) uses average PSNR values and bitrate differences between two RD curves when

evaluating a video content at different bitrates.

 However, PSNR has been in the centre of debate due to it being widely

acknowledged to have poor correlation with subjective quality (Hanhart and

Ebrahimi, 2014), such as reported for low-resolution (Quarter CIF (QCIF), CIF, and

Video Graphics Array (VGA)) up to SD-quality videos (Huynh-Thu and Ghanbari,

2012). Nevertheless, although other objective VQA metrics such as VQM, SSIM,

MS-SSIM, and MOVIE have been proposed, these newer models are not being used

as frequently as PSNR (Tan et al., 2016) for various reasons. Like PSNR, SSIM and

MS-SSIM are also IQA models which do not include temporal distortions (Zeng et

al., 2013). On the other hand, VQM and MOVIE are not often being used mainly

𝑃𝑆𝑁𝑅 = 10 log10

 2𝑛 − 1 2

𝑀𝑆𝐸

𝑀𝑆𝐸 =
1

𝑟𝑐
 𝑅𝑖𝑗 − 𝑂𝑖𝑗

2
𝑐−1

𝑗=0

𝑟−1

𝑖=0

(2.3)

(2.4)

19

due to their computational complexities in calculating temporal variations (Tan et

al., 2016) and are still not fully successful in capturing and penalising the temporal

artefacts (Zeng et al., 2013). The interpretation of VQM and SSIM values has not

become a common practice in video coding community (Tan et al., 2016).

Although VQM, SSIM, and MS-SSIM are statistically better than PSNR

(Zeng et al., 2013), the rate-distortion (RD) gains obtained from these models may

not necessarily be significantly better than PSNR. In (Zeng et al., 2013), it was

shown that despite scoring better scores in terms of Pearson Linear Correlation

Coefficient (PLCC), Spearman Rank-Order Correlation Coefficient (SRCC), Kendall

Rank-Order Correlation Coefficient (KLCC), Mean Absolute Error (MAE), and

Root Mean Square (RMS) scores, the average rate-distortion (RD)-gains on videos

of HD and Wide VGA (WVGA) (854×480) resolutions obtained by SSIM, MS-

SSIM, VQM, and MOVIE are not necessarily much higher than calculated by PSNR.

In fact, VQM and MOVIE may provide lower RD-gains than PSNR in spite of

requiring substantially larger computational costs (1083× and 7229×, respectively,

based on crude execution times) than PSNR. On the other hand, the RD-gains

provided by SSIM and MS-SSIM are only slightly better than PSNR in spite of a

several-fold increase in computational times (by around 6× and 11×, respectively).

Moreover, all the above mentioned objective IQA/VQA models systematically

underestimate the RD-gains achievable by subjective scores (Zeng et al., 2013).

Tan et al. (2016) chooses PSNR over other objective IQA/VQA metrics to be

compared with subjective quality evaluation results. In fact, the poor correlation

possessed by PSNR against subjective quality leads to PSNR underestimating the

BD-rate gains instead of riskily overestimating, by around 15% on average (Tan et

al., 2016), varying between 11% and 18% depending on the video content class, i.e.,

higher BD-rate gains could actually be achieved if a MOS-based RD curve were

used instead. Their results corroborate with their earlier findings that for equal

PSNR, the bitrate savings will be 16% lower than for equal MOS when comparing

HEVC to Advanced Video Coding (AVC), based on five UHD sequences

(Weerakkody et al., 2014). In (Hanhart et al., 2012), PSNR-based BD-rate

underestimates the actual bit rate reductions by around 22% based on three UHD

sequences, partly due to the saturation effect in perceived quality not captured by

20

PSNR. Thus, although may not be precise, it is safe to rely on PSNR measurements

as the actual video coding performance gain could be much higher.

As previously mentioned, a subjective metric is widely acknowledged as the

best form of video quality evaluation as it reflects human perceived quality whereas

objective VQA models only provide an estimated quality measure (Li, Ma and Ngan,

2011). Besides being too expensive, extremely time-consuming, infeasible for online

manipulations, and impractical for system designs, quality monitoring, etc. (Li, Ma

and Ngan, 2011; Hanhart and Ebrahimi, 2014), it can be argued that a subjective

model based on MOS is also an estimated quality score as the number of assessors

participated in any test conducted is usually fewer than 50 people, and this count is

far too low to be representing billions of human viewers across the globe. In fact,

frame-level MOS results also do not correlate well with sequence-level MOS results

(Zeng et al., 2013). Compared with frame-level quality, temporal artefacts contribute

strongly to the overall sequence-level quality (Zeng et al., 2013).

In summary, PSNR can typically be reliably used as an indication of the

variation of video quality as long as its limitations are considered, such as full frame

rate encoding instead of decimated frame rate, i.e., without the presence of frame

skipping or freezing, the saturation effect of the HVS is taken into account (Hanhart

et al., 2012), etc. Even though PSNR is acknowledged and widely criticised for its

poor correlation with perceived quality, it has clear physical meanings (Wang et al.,

2004), can be reliably interpreted (Weerakkody et al., 2014; Tan et al., 2016), and

the primary objective quality reference in a video codec development mostly by

convention (Zeng et al., 2013). Therefore, in this thesis, PSNR has been used as the

primary VQA metric.

2.3 Bjøntegaard Delta PSNR (BD-PSNR) and bitrate (BD-rate)

It is often useful to compare video quality between two different coded

videos (e.g., using different codecs) of the same input raw video. These two different

coded videos may produce different PSNR values and different bitrates (the rate of a

coded video in bits per second). In this case, a simple PSNR comparison is not so

useful, because the coded videos also have different bitrates. In this situation, the

Bjøntegaard Delta PSNR (BD-PSNR) metric can be applied. This metric is based on

21

a curve fitting of two different Rate-Distortion (R-D) curves (one for each coded

video) formed for instance by four PSNR-bitrate points. BD-PSNR represents the

difference in PSNR values (in decibel (dB)) usually over the range of four bitrates

while BD-rate metric represents the average bitrate difference (in %) normally over

the range of four PSNR values. BD-PSNR and BD-rate calculations are described in

more detail in references (Bjøntegaard, 2001, 2008).

2.4 Brief History of Video Coding

Video coding has been in existence for the last three decades. Two major

organisations that have been instrumental in video technology are the International

Telecommunication Union (ITU) and International Organization for Standardization

(ISO) / International Electrical Committee (IEC). The history of digital video

standardisation can be summarised by revising the digital video standards developed

by ITU and ISO/IEC as shown in Fig. 2.4. First, Recommendation (Rec.) 601 (ITU,

2011) for uncompressed digital video representation standard was created in 1982 by

the International Radio Consultative Committee (CCIR, today is known as the

Radiocommunication sector of ITU (ITU-R)). Rec. 601 has been the bridge

connecting the analogue era and digital video world as we know today. Two years

later in 1984, the Telecommunication sector of ITU (ITU-T) published the first

standard digital video compression technology, Rec. H.120 (ITU, 1993a). However,

it was only in 1990 that an adequate compression design could be considered

available with the release of ITU-T’s Rec. H.261 (ITU, 1993b; Sullivan, 2014).

On the other hand, ISO/IEC produced its first video coding standard, MPEG-

1 (ISO, 1993), in 1993. A year later in 1994, ITU-T and ISO/IEC released their first

jointly developed video coding standard, Rec. H.262/MPEG-2 Video (ITU, 2012;

ISO, 2013a). In 1995, ITU-T produced Rec. H.263 standard (ITU, 2005), and in

1999, ISO/IEC published MPEG-4 Visual standard (ISO, 2004).

ITU-T and ISO/IEC under a partnership known as Joint Video Coding (JVT)

completed their second jointly developed video coding standard in May 2003 with

the introduction of Rec. H.264/MPEG-4 Part 10 Advanced Video Coding (AVC)

(ISO, 2014; ITU, 2014). The following few years witnessed extensions to AVC were

subsequently developed, namely Scalable Video Coding (SVC), Multiview Video

22

Coding (MVC), MPEG’s Reconfigurable Video Coding (RVC), and Fully

Configurable Video Coding (FCVC) (Richardson, 2012).

Finally in January 2013, the newest standard Rec. H.265/MPEG-H Part 2 High

Efficiency Video Coding (HEVC) (ISO, 2013b; ITU, 2013) was approved as a result

of the latest partnership between ITU-T and ISO/IEC codenamed Joint Collaborative

Team on Video Coding (JCT-VC). The first version of the HEVC standard was

finalised in April 2013. The JCT-VC committee then proceeded to develop

extensions of HEVC, namely Format Range Extensions (RExt), Scalable HEVC

(SHVC) and Screen Content Coding (SCC) (HHI, 2016). Meanwhile, the multiview

(MV-HEVC) and 3-D (3D-HEVC) video coding extensions of HEVC were

developed by another committee, namely the Joint Collaborative Team on 3D Video

Coding Extension Development (JCT-3V). The second version of HEVC which

includes the RExt, SHVC and MV-HEVC extensions was concluded in October

2014, and the third version of HEVC comprising the 3D-HEVC extension was

completed in February 2015 (HHI, 2016).

Fig. 2.4 Video coding standards by ITU-T VCEG and ISO/IEC MPEG

23

2.5 Prediction Structure/Configuration

The encoding and decoding processing order of the pictures in a video

sequence is usually different from their arrival order. Thus, it is necessary to

differentiate them by means of the bitstream order (or decoding order) and the

display order (or the output order). In video coding, there are three types of pictures:

I (intra), P (predicted), and B (bi-predicted) pictures. An I picture is a picture that

involves only spatial intra-picture prediction and therefore can be independently

decoded without needing any prediction information from other decoded pictures. A

P picture requires prediction information from another I, P, or B picture to construct

every block in the picture. A B picture requires prediction information from two I, P,

or B pictures to build its blocks (Tabatabai et al., 2014). Additionally, I and P

pictures are also classified as anchor pictures. In general, the pictures from an anchor

picture to the last picture just before another anchor picture is termed as a Group of

Pictures (GOP), where the size of a GOP is usually fixed in a video sequence such as

four, eight, twelve, etc.

To assess the coding performance of a video coding standard, different

prediction configurations are defined to simulate different application scenarios. In

the case of HEVC and AVC, the following configurations were established:

i. All Intra (AI)

ii. Random Access (RA)

iii. Low Delay with P pictures (LP)

iv. Low Delay with B pictures (LB)

A Quantisation Parameter (QP) in these configurations is altered by means of

a ‘QP offset’. A base QP is normally configured for the first picture of the sequence

(an I picture), QPI. For the remaining pictures, their QP values can be derived as QP

= QPI + QP offset, where QP offset is dependent on the position or temporal ID of

the pictures.

2.5.1 All Intra (AI)

As the name suggests, in AI configuration, all pictures are encoded as I

pictures. AI is suitable for low delay and high bitrate applications such as storage of

high-quality video contents as it does not involve inter-prediction. QP offset is

always zero as the QP is retained over the whole sequence (Fig. 2.5) (Tabatabai et

24

al., 2014).

Fig. 2.5 All intra (AI) prediction structure (adapted from (Tabatabai et al.,

2014))

2.5.2 Random Access (RA)

RA applies a structure of hierarchical bi-predictive coding (Fig. 2.6). The

coding efficiency achieved in this configuration is generally better than the other

configurations. However, a larger delay is involved to reorder the pictures. The RA

configuration is useful for frame skipping such as fast forward or rewind operations

in the entertainment application scenario. To control ease of random access and

possible error propagation, I pictures are periodically inserted based on the frame

rate of the video sequence. Having I pictures inserted in this manner helps to decode

a GOP independently from the previous GOPs (Tabatabai et al., 2014).

25

Fig. 2.6 Random access (RA) prediction structure (adapted from (Tabatabai et

al., 2014))

2.5.3 Low Delay with P pictures (LP)

In LP, the first picture is encoded as an I picture while all the remaining

pictures are encoded as P pictures (Fig. 2.7). Picture reordering is disallowed and

predictions only involve past pictures. Due to these conditions, the coding delay may

be made small (Tabatabai et al., 2014).

2.5.4 Low Delay with B pictures (LB)

Similar to LP, the first picture in LB configuration is encoded as an I picture

while the remaining pictures are encoded as B pictures (Fig. 2.7). Picture reordering

is disallowed and predictions only involve B pictures. The coding delay may also be

small similar to in LP, but its coding efficiency could be better (Tabatabai et al.,

2014).

26

Fig. 2.7 Low delay with P pictures and B pictures prediction structure

(adapted from (Tabatabai et al., 2014))

2.6 Overview of the High Efficiency Video Coding (HEVC) standard

HEVC follows the typical hybrid video coding scheme comprising block-

based intra-/inter-picture prediction, 2-D transform, and entropy coding as applied in

previous video coding standards since H.261 (Sullivan et al., 2012; Vanne et al.,

2012). The general encoder and decoder models in encoding and decoding an

HEVC-compliant bitstream are as illustrated earlier in Fig. 1.2. Each picture from a

video sequence is first divided into block regions. The first pictures of every random

access point in the video sequence including the very first picture of the whole

sequence are encoded with intra-picture prediction, i.e., block-wise spatial

predictions within the same picture and independent from other pictures. For the

other remaining pictures, inter-picture prediction is normally in place, i.e., temporal

predictions from nearby blocks in neighbouring pictures. The inter-picture prediction

is performed based on motion data formed by the reference picture and the motion

vector (MV) to predict the samples in a block of the current picture. Identical inter-

picture prediction signals are generated by both the encoder and the decoder by

executing motion compensation (MC) based on the MV and inter-prediction mode

decision data, which are transmitted to the decoder as side information (Sullivan et

al., 2012).

27

 The differences between the original block samples and predicted block

samples of the intra-/inter-picture prediction are known as prediction residuals.

These residual data are then integer transformed to produce transform coefficients.

These transform coefficients are then scaled, quantised and entropy encoded to form

the bitstream to be delivered to the decoder.

 The encoder has an in-loop decoding process so that it will continue working

on predictions of subsequent blocks and pictures using identical reconstructed blocks

and pictures as would be generated by the decoder. In this decoding loop, the

quantised transform coefficients are inverse scaled and inverse transformed to

produce the approximation of the original residual samples. These residuals are then

added to the prediction, and the result of this addition may then be fed into one or

two loop filters (deblocking and sample adaptive offset filters) to smooth out

artefacts due to block-wise processing and quantisation. The operations continue

until the reconstruction of the whole picture completes. This reconstructed picture is

then stored in the decoded picture buffer (DPB) to be used for predicting subsequent

pictures. The next subsection describes the video coding layer of HEVC in more

detail.

2.6.1 Video coding layer of HEVC

 The various features in the video coding layer of HEVC can be described as

follows (Sullivan et al., 2012):

1) Coding tree unit (CTU) and coding tree block (CTB) structure:

In the coding layer of previous standards like AVC, the basic units were the macro

blocks (MB) of 16 × 16 luma samples and two corresponding 8 × 8 blocks of chroma

samples in the case of 4:2:0 YUV colour sampling. The analogous structure in

HEVC is the coding tree unit (CTU) consisting of one luma coding tree block (CTB)

and two chroma CTBs along with their associated syntax elements. The size L × L of

a luma CTB can be L {64, 32, 16}, with the larger sizes normally allowing higher

compression for large homogeneous regions such as commonly found in high-

resolution videos.

2) Coding units (CUs) and coding blocks (CBs):

The CTBs could then be partitioned into smaller blocks using a quadtree-like

structure, namely the coding units (CUs) and coding blocks (CBs). A CU is formed

28

by one luma CB and ordinarily two chroma CBs along with their associated syntax.

The root of the quadtree at the CTU determines the largest size of the luma CU

(LCU) and with the maximum depth for the partitioning of four could yield luma

CUs of sizes 32 × 32, 16 × 16, 8 × 8, and 4 × 4. Thus, a CTU may consist of one or

more CUs, and every CU can then be further split into prediction units (PUs) and a

tree of transform units (TUs).

3) Prediction units (PUs) and prediction blocks (PBs):

Either intra-picture or inter-picture prediction to be performed on a CU is decided at

the CU level. A PU partitioning structure also has its root at the CU level, and the

luma and chroma CBs can be further partitioned into various PB sizes ranging from

64 × 64 down to 4 × 4.

4) Transform units (TUs) and transform blocks (TBs):

As previously mentioned, the prediction residuals are coded using 2-D transforms.

Independently from the PU partitioning, a transform unit (TU) quadtree structure

also has its root at the CU level. So, the luma and chroma TBs can either be identical

to their corresponding CBs or further partitioned into smaller square sizes among 4 ×

4, 8 × 8, 16 × 16, and 32 × 32. These TBs are integer transformed using a scaled

approximation of the discrete cosine transform (DCT) commonly found in image and

video compressions. Additionally, for the 4 × 4 intra-picture predicted luma TB, an

alternative transform based on a scaled approximation of the discrete sine transform

(DST) was also defined.

5) Intra-picture prediction:

AVC provides eight directional modes whereas HEVC supports up to 33 directional

modes plus DC (flat) and planar (surface fitting) modes. Spatial prediction is

performed using decoded boundary samples of adjacent blocks (upper, upper left, or

left) as reference data. The most probable intra-picture prediction modes are selected

based on previously decoded neighbouring PBs.

6) Motion vector signalling:

HEVC uses advanced motion vector prediction (AMVP), where a number of most

probable candidates are included based on adjacent PBs and the selected reference

pictures. MVs from spatially or temporally nearby PBs can also be inherited in the

merge mode. Additionally, skipped and direct motion inferences have also been

29

improved compared to AVC.

7) Motion compensation:

In AVC, a 6-tap filter was used for half-sample precision followed by a linear

interpolation for quarter-sample precision. HEVC uses 7-tap or 8-tap filters for

fractional-sample interpolation. Features inherited from AVC include multiple

pictures referencing, uni-predictive (one MV) or bi-predictive (two MVs) coding,

and weighted prediction where a scaling and an offset are applied to the prediction

signals.

8) Quantisation:

Like AVC, HEVC performs uniform reconstruction quantisation (URQ) with

quantisation scaling matrices for the four supported TB sizes.

9) Entropy coding:

AVC supports context adaptive variable length coding (CAVLC) in its Main profile

and context adaptive binary arithmetic coding (CABAC) in the High profile. In

HEVC, a much improved CABAC is defined to enhance its throughput speed,

compression performance, and its context memory requirements.

10) In-loop deblocking filtering:

HEVC operates a simplified deblocking filter relative to AVC within the inter-

picture prediction loop. The simplification made was in terms of its decision-making,

filtering processes, and designed to be friendlier to parallel processing.

11) Sample adaptive offset (SAO):

An SAO filter follows the deblocking filter in the inter-picture prediction loop of

HEVC to better reconstruct the original prediction residuals prior to storing in the

DPB. The operation is performed on a region basis based on look-up tables. The

SAO filtering either adds no offset, a band offset, or an edge offset.

2.6.2 Profiles, Levels, and Tiers in HEVC

 Like previous standards, HEVC was developed to support a wide range of

video applications by defining a large pool of video coding algorithms. Most of these

applications, however, do not require using all the coding capabilities established in

HEVC. Having a limitation of the coding tools or algorithms supported by an HEVC

codec specifically designed for certain applications provides the benefits of reduced

30

computing and memory requirements. Therefore, profiles were defined in HEVC to

support different sets of coding tools of the standard. In the first version of HEVC,

three coding profiles were defined (Sullivan, 2014):

1) Main profile: for typical applications used by most consumers, supporting videos

of 8-bit per sample and 4:2:0 YUV colour sampling.

2) Main Still Picture profile: a subset of the Main profile. This profile is for

snapshots from video sequences or still photography from cameras.

3) Main 10 profile: a superset of the Main profile. This profile supports up to 10-bit

per sample videos, providing higher brightness dynamic range, larger colour-gamut

content, and increased fidelity colour representations to reduce rounding errors and

contouring artefacts.

 A profile conforming decoder must be able to support all features in that

profile. Within a profile, there are also different maximum or minimum requirements

expected by different devices, video resolutions, etc. Thus, levels were defined to

restrict the maximum number of luma samples, maximum sample rate, maximum

bitrate, minimum compression ratio, and minimum DPB and coded picture buffer

(CPB) sizes, which stores compressed data prior to decoding for data flow

management purposes (Sullivan et al., 2012). The first version of HEVC defined 13

levels, supporting small picture resolutions like Quarter CIF (QCIF, 176 × 144) and

very large resolutions of up to 8K UHD (7680 × 4320). Table 2.3 summarises the 13

levels defined in the Main profile.

 Among the parameters distinguishing a level from the others, some

applications had requirements differing only in the maximum bitrate and CPB

capabilities. Therefore, two tiers were defined each for the top eight levels: a Main

Tier adequate for most applications and a High Tier particularly for most demanding

applications. An HEVC decoder conforming to a certain tier and level is expected to

be able to decode all bitstreams that conform to that tier and the lower tier of the

same level, as well as all levels below it (Sullivan et al., 2012).

31

Table 2.3 Supported levels in Main profile of HEVC (Sullivan et al., 2012)

Level Max luma

samples

Max luma

sample rate

(samples/s)

Max bitrate (1000 bits/s) Min

comp.

ratio
Main Tier High Tier

1 36 864 552 960 128 - 2

2 122 880 3 686 400 1500 - 2

2.1 245 760 7 372 800 3000 - 2

3 552 960 16 588 800 6000 - 2

3.1 983 040 33 177 600 10 000 - 2

4 2 228 224 66 846 720 12 000 30 000 4

4.1 2 228 224 133 693 440 20 000 50 000 4

5 8 912 896 267 386 880 25 000 100 000 6

5.1 8 912 896 534 773 760 40 000 160 000 8

5.2 8 912 896 1 069 547 520 60 000 240 000 8

6 35 651 584 1 069 547 520 60 000 240 000 8

6.1 35 651 584 2 139 095 040 120 000 480 000 8

6.2 35 651 584 4 278 190 080 240 000 800 000 6

2.7 Summary

 A few fundamental concepts on video coding were briefly introduced in this

chapter to facilitate a better understanding of the research work done in this thesis.

These concepts include an overview of the HEVC standard and a walkthrough of

HEVC encoder. The next chapter is dedicated to describing the forward transform,

intermediate scaling, and quantisation defined in the HEVC standard, as these

operations are the main subjects of this research.

32

Chapter 3

HEVC Forward Transform, Intermediate

Scaling, and Quantisation

Abstract This chapter describes the forward transform, intermediate scaling, and

quantisation operations specified in the HEVC standard. The content of this chapter

was heavily extracted from (Budagavi et al., 2013; Budagavi, Fuldseth and

Bjøntegaard, 2014) to serve as the foundation of the research work carried out in this

thesis.

3.1 Introduction

 A typical block-based hybrid video coding system is made of two

components: an encoder and a decoder, as illustrated in Fig. 3.1. At the encoder, a

picture is first partitioned into square or rectangular blocks of pixels/samples

depending on the spatial characteristics of the picture. Each block then subtracts a

neighbouring block in the same picture (intra-prediction mode exploiting spatial

redundancies) or another block from a neighbouring picture (inter-prediction mode

exploiting temporal redundancies), resulting in a prediction residual signal. This

residual signal can be further divided into square blocks of size N × N, where N = 2
M

and M is an integer. A separable two-dimensional (2-D) N × N forward transform is

then performed on every residual block (U), which can equally be realised by

consecutively applying a one-dimensional (1-D) N-point transform to every row and

column. Up to here, the process is lossless or near-lossless depending on the adopted

transform precision. Then, the resulting transform coefficients (coeff) are input to a

quantisation (dividing by a quantisation step (Qstep) and necessary rounding)

producing quantised transform coefficients (level). The quantisation is a lossy

operation. These quantised transformed coefficients are then scanned and entropy

encoded by exploiting statistical redundancies of the scanned level to be included in

the final bitstream (Budagavi, Fuldseth and Bjøntegaard, 2014).

33

 At the decoder, the encoding process is reversed. First, the received bitstream

is entropy decoded to extract the quantised transform coefficients (level). Then,

these coefficients are de-quantised (multiplying by Qstep) to obtain the de-quantised

transform coefficients (coeffQ). After that, a separable 2-D N × N inverse transform is

performed on coeffQ to obtain the quantised residual samples. Finally, these

quantised samples are added to the intra-/inter-prediction samples to reconstruct the

original block (Budagavi, Fuldseth and Bjøntegaard, 2014).

Fig. 3.1 Hybrid block-based video coding comprising (a) an encoder and (b) a

decoder (C is the transform matrix and Qstep is the quantisation step) (Budagavi et

al., 2013; Budagavi, Fuldseth and Bjøntegaard, 2014)

34

3.2 HEVC Transforms

 The HEVC standard defines two transform operations: a core transform and

an alternative transform. The core transform is based on Discrete Cosine Transform

(DCT) type II introduced by Ahmed, Natarajan, and Rao (Ahmed, Natarajan and

Rao, 1974) and applicable to all luminance and chrominance TU sizes defined in the

standard, as well as intra and inter PUs. On the other hand, the alternative transform

is based on Discrete Sine Transform (DST) type VII and applicable to only 4 × 4

luminance intra-predicted residual blocks (Budagavi, Fuldseth and Bjøntegaard,

2014).

 For input residual samples xc, the N-point 1-D transform coefficients yrc can

be expressed as

 ∑

where r = 0, 1, …, N – 1. For DCT type II, elements trc = crc and defined as

√
 *

()

 +

where r, c = 0, 1, …, N – 1, and P is equal to 1 for r = 0 and √ for r > 0. Moreover,

the basis vectors cr of the DCT are defined as cr = [cr0, cr1, …, cr(N – 1)] where r = 0,

1, …, N – 1 (Budagavi, Fuldseth and Bjøntegaard, 2014). The DCT is advantageous

in image and video compression due to its favourable properties as listed in Table

3.1 (Rao and Yip (1990) cited in (Budagavi, Fuldseth and Bjøntegaard, 2014)).

 On the other hand, for DST type VII, elements trc = src where r, c = 0, 1, …,

N – 1 and defined as

√
 (

()()

)

35

Table 3.1 Several properties of DCT (Rao and Yip (1990) cited in (Budagavi,

Fuldseth and Bjøntegaard, 2014))

No. Property Description Benefit

i. Orthogonality Its basis vectors are

orthogonal, i.e.,

crcc = 0 for r ≠ c and

cc = cr
T

(superscript
T
 denotes

the transpose

operation).

De-correlate the transform

coefficients.

ii. Normal Its basis vectors have

equal norm, i.e.,

crcc = 1 for r = c and

r = 0, 1, …, N – 1.

Simplify the quantisation/de-

quantisation process.

iii. Energy

compaction

Its basis vectors have

good energy

compaction.

Concentrate the energy towards

the low-frequency region near

the top left corner of a 2-D

block.

iv. Embedded

elements

A DCT matrix of size

2
M

 × 2
M

 is a subset of

a DCT matrix of size

2
M + 1

 × 2
M + 1

, which

are equal to the left

half of the even basis

vectors of the larger

matrix.

Reduce hardware costs as the

involved multipliers can be

shared by different matrix sizes.

v. Small quantity

of elements

For a DCT matrix of

size 2
M

 × 2
M

, the

number of unique

elements is equal to

2
M

 – 1.

Low implementation costs.

36

vi. Symmetry/Anti-

symmetry

The even basis

vectors are

symmetric, while the

odd basis vectors are

anti-symmetric.

Lower the number of arithmetic

operations.

vii. Trigonometric

relationships

DCT matrix

coefficients have

some trigonometric

relationships.

The number of arithmetic

operations can be further

reduced by employing

algorithms such as Chen’s fast

factorisation.

viii. Separable 2-D N × N DCT are

executable as two

separate 1-D N-point

DCTs on the rows

and columns.

The same DCT matrix is

reusable for the second

transform operation.

3.3 Basis Vectors of HEVC Core and Alternative Transforms

Both the core and alternative transform matrices of HEVC are scaled integer

approximations of the DCT or DST matrix. An obvious advantage of using a fixed

precision instead of floating values is reduced computational complexity. Another

benefit is that the transform elements can be specified explicitly in the standard

instead of implementation-dependent. This eliminates encoder-decoder mismatch

due to different developers implementing the inverse DCT/DST transform operations

using slightly different floating-point precisions.

However, one disadvantage associated with approximated transform elements

is that some of the useful properties previously mentioned in Table 3.1 are

compromised. Therefore, a trade-off was made between reducing the computational

complexity and preserving some of the transform properties (Budagavi, Fuldseth and

Bjøntegaard, 2014).

 HEVC defines four N × N core transform matrices, where N = 4, 8, 16, and

32. The elements of the largest core transform matrix,
 , was derived by

37

approximating the scaled and rounded DCT elements after applying a scaling factor,

 ⁄ √ to crc where r, c = 0, 1, …, 31, i.e.,

 ()

It is worth noting that
 () as a hand-tuning was performed to some

of the scaled and rounded DCT elements to achieve an acceptable balance between a

few DCT properties (Budagavi, Fuldseth and Bjøntegaard, 2014) (shown later in

Table 4.4).

 Fig. 3.2 provides the left half of the 32 × 32 core forward transform matrix.

The right half can easily be derived by applying the symmetry/anti-symmetry

property of the basis vectors. The inverse core transform matrix of HEVC is the

transpose of Fig. 3.2 (and the associated right half). The elements of the smaller

transform matrices,
 , where N = 4, 8, 16 and r, c = 0, 1, …, N – 1, can be obtained

from
 as (Budagavi, Fuldseth and Bjøntegaard, 2014)

 () ⁄

 (3.1)

 As can be seen from Fig. 3.2, the N × N core transform matrix is embedded in

the 2N × 2N matrix (property iv in Table 3.1). For instance, by using (3.1) and Fig.

3.2, the 4 × 4 core transform matrix, can be obtained as (Budagavi, Fuldseth and

Bjøntegaard, 2014)

[

]

[

]

 In addition, due to the unique numbers property and symmetry property

inherited from DCT (properties v and vi in Table 3.1), can as well be written as

[

]

 (3.2)

38

It is worth noting that (3.2) only involves elements from the first column (c = 0) of

Fig. 3.2, and applying this realisation greatly simplifies the implementation.

Furthermore for notational simplicity, the elements
 of (3.2) will be denoted

by . Using this new notation, (3.2) becomes

 [

] (3.3)

The corresponding inverse transform matrix is .

39

Fig. 3.2 Left half of the 32-point forward core transform matrix with

embedded 4-point (green blocks), 8-point (pink blocks), and 16-point (yellow

blocks) forward transform matrices (Budagavi, Fuldseth and Bjøntegaard, 2014)

40

On the other hand, the elements of the alternative matrix of HEVC,
 , was

derived by scaling the DST elements, src, by and rounding to the

nearest integer, i.e.,

 ()

The alternative forward transform matrix, , is therefore given by (Budagavi,

Fuldseth and Bjøntegaard, 2014)

 *

+

The corresponding inverse transform matrix is .

 The most important transform coefficient is the DC coefficient, which is at

coordinate (0, 0) of a 2-D plane. In terms of a 2-D image/picture plane, the DC

transform coefficient is at the top left corner of a block, indicating the sample energy

at a frequency of zero Hertz (0 Hz). The Human Visual System (HVS) is known to

be more sensitive to low frequencies than high frequencies (Richardson, 2012), and

the HVS is most sensitive to the DC value. This DC value is the result of multiplying

the samples with the first basis vector of a transform. Therefore, the first basis vector

of a transform is crucial in determining the DC coefficient.

 The DST matrix is more suitable for an intra-prediction block as the residuals

are smaller near the top and left boundaries and larger towards the bottom and right

boundaries. In contrast to the DCT matrix which has a flat first row, the elements of

the first row of a DST matrix increase from left to right making it better in modelling

the spatial behaviour of the intra-prediction residuals and providing around 1% bit-

rate reduction (Saxena and Fernandes, 2013). However, the DST matrix was only

adopted for the 4 × 4 intra PUs as the additional coding gain using larger DST

transforms was insignificant and the computational complexity of an N × N DST is

higher than a DCT of the same size.

41

3.4 Complexity Analysis

 This section describes the even–odd decomposition technique, multiplier-free

approach, and Multiple-Constant Multiplication (MCM) technique, which are useful

in reducing the computational complexity.

3.4.1 Even–Odd Decomposition

For an N-point input vector, the number of arithmetic operations for a 1-D

forward/inverse transform via direct matrix multiplication is N
2
 multiplications and

N(N – 1) additions (including subtractions). For an N × N input block, the

complexity of a 1-D transform becomes N
3
 multiplications and N

2
(N – 1) additions.

The separable property of transforms such as DCT enables a 2-D transform to be

implemented via two 1-D transforms with a transpose operation between them. Thus

for a 2-D transform of an N × N input block, the complexity is 2N
3
 multiplications

and 2N
2
(N – 1) additions.

However, the inheritance of the symmetry property of DCT basis vectors

(property vi in Table 3.1) facilitates the transform complexity to be significantly

reduced. The technique that utilises this symmetry property was referred to as the

even–odd decomposition (known as partial butterfly during HEVC development). A

1-D forward transform using the even–odd decomposition technique comprises the

following three steps (adapted from (Budagavi, Fuldseth and Bjøntegaard, 2014)):

1. Add/subtract input data to generate an N-point intermediate vector.

2. Calculate the even part using the N/2 × N/2 subset matrix formed by the

even rows of the N × N transform matrix.

3. Calculate the odd part using the N/2 × N/2 subset matrix formed by the

odd rows of the N × N transform matrix.

For the inverse transform, the add/subtract operation is performed after the even and

odd parts calculation. This technique is best demonstrated using the 4-point and 8-

point transforms. Higher order transforms such as the 16-point, 32-point or higher

apply the same routine.

The forward 4-point transform can be obtained as

 , where

 []

 is a 4-point input vector,
 []

 is the 4-point

42

output of the transform, and is as given in (3.3). Thus, the 4-point forward

transform using the even–odd decomposition is as provided by (3.4)–(3.6):

Add/sub part:

[]
 []

 (3.4)

Even part:

[

] [

] [

] [

]
(3.5)

Odd part:

[

] [

] [

] [

] (3.6)

Then, the output is
 []

 .

 The direct 1-D 4-point transform

 would incur 4
2
 = 16

multiplications and 4(4 – 1) = 12 additions. The 2-D transform will cost 2(4)
3
 = 128

multiplications and 2(4
2
)(4 – 1) = 96 additions. On the other hand, a 1-D transform

using the even–odd decomposition involves four additions for the add/sub part (3.4),

two multiplications and two additions for the even part (3.5), and four

multiplications and two additions for the odd part (3.6), i.e., six multiplications and

eight additions in total. The corresponding separable 2-D transform will cost 2 × 4 ×

6 = 48 multiplications and 2 × 4 × 8 = 64 additions, resulting in 62.5% reductions in

the number of multiplications and 33.3% for the additions in comparison with the

direct matrix multiplication in the 4 × 4 case (Budagavi, Fuldseth and Bjøntegaard,

2014).

Similarly, let
 []

 be an 8-point input vector and

[]
 be the 8-point output of the transform. The forward 8-point transform

can then be attained as

 , where is given by (Budagavi, Fuldseth and

Bjøntegaard, 2014)

43

[

]

 (3.7)

The 8-point forward transform using the even–odd decomposition is as provided by

(3.8)–(3.10):

Add/sub part:

[]

 []
 (3.8)

Even part:

[

] [

] [

] [

] (3.9)

Odd part:

[

] [

] [

] (3.10)

The output is
 []

 .

The direct 1-D 8-point transform

 would incur 8
2
 = 64

multiplications and 8(8 – 1) = 56 additions. The 2-D transform will cost 2(8)
3
 = 1024

multiplications and 2(8
2
)(8 – 1) = 896 additions. Using the even–odd decomposition,

it is worth noting that the even part (3.9) can be implemented using the 4-point (N/2-

point) even–odd decomposition (3.4)–(3.6). So, for 1-D 8-point transform using this

technique, the add/sub part involves eight additions (3.8), the even part costs the

same as the 4-point transform, i.e., six multiplications and eight additions, while the

odd part requires 16 multiplications and 12 additions (3.10). Thus, the total

arithmetic complexity of 1-D 8-point transform using the even–odd decomposition is

44

6 + 16 = 22 multiplications and 8 + 8 + 12 = 28 additions. The corresponding 2-D

transform will require 2 × 8 × 22 = 352 multiplications and 2 × 8 × 28 = 448

additions (Budagavi, Fuldseth and Bjøntegaard, 2014), i.e., giving 65.6% savings in

the number of multiplications and 50% in additions, relative to the direct matrix

multiplication.

 The calculation of the 4-point and 8-point forward transform computational

complexity can be applied in the same manner to the forward/inverse transform of

larger sizes. The total complexity of multiplications and additions for the 1-D N-

point, 1-D N × N, and 2-D N × N transforms using the even–odd decomposition, in

general, can be shown to be (3.11)–(3.16) (Budagavi, Fuldseth and Bjøntegaard,

2014) and summarised in Tables 3.2–3.4.

 ∑

 ⁄
 () (3.11)

 ∑ ()

 ⁄
() (()) (3.12)

 (∑

) ()
(3.13)

 (∑ ()

) ()
(3.14)

 (∑

) ()
(3.15)

 (∑ ()

) ()
(3.16)

45

Table 3.2 Computational complexity in 1-D N-point HEVC core transforms

Size

Technique

Matrix Multiplication Even–Odd Decomposition

Multiplies Adds Multiplies (Savings) Adds (Savings)

4-point 16 12 6 (62.5%) 8 (33.3%)

8-point 64 56 22 (65.6%) 28 (50.0%)

16-point 256 240 86 (66.4%) 100 (58.3%)

32-point 1024 992 342 (66.6%) 372 (62.5%)

Table 3.3 Computational complexity in 1-D N × N HEVC core transforms

Size

Technique

Matrix Multiplication Even–Odd Decomposition

Multiplies Adds Multiplies (Savings) Adds (Savings)

4 × 4 64 48 24 (62.5%) 32 (33.3%)

8 × 8 512 448 176 (65.6%) 224 (50.0%)

16 × 16 4096 3840 1376 (66.4%) 1600 (58.3%)

32 × 32 32768 31744 10944 (66.6%) 11904 (62.5%)

Table 3.4 Computational complexity in 2-D N × N HEVC core transforms

Size

Technique

Matrix Multiplication Even–Odd Decomposition

Multiplies Adds Multiplies (Savings) Adds (Savings)

4 × 4 128 96 48 (62.5%) 64 (33.3%)

8 × 8 1024 896 352 (65.6%) 448 (50.0%)

16 × 16 8192 7680 2752 (66.4%) 3200 (58.3%)

32 × 32 65536 63488 21888 (66.6%) 23808 (62.5%)

46

3.4.2 Multiplier-free Implementation

 Table 3.4 has shown that the even–odd decomposition technique in

implementing a 2-D N × N HEVC core transform could yield significant savings in

the number of multiplications and additions with respect to the direct matrix

multiplication. While those numbers are true for a software-based implementation,

they do not represent the actual number of multipliers involved in a hardware-based

implementation. For instance, in 4 × 4 1-D HEVC core transform, as the operation is

executed in a column-wise manner, only six multipliers and eight adders/subtractors

are required to execute 24 multiplications and 32 additions/subtractions,

respectively, i.e., the same numbers involved in a 1-D 4-point transform. Similarly

for 4 × 4 2-D HEVC core transform with two separate 1-D transform engines and a

transpose buffer in between, only 12 multipliers and 16 adders/subtractors are

necessary to implement the 48 multiplications and 64 additions/subtractions as

shown in Table 3.4.

On hardware, a multiplication is regarded as an expensive operation as it

utilises quite an amount of physical resources such as in the forms of Look-Up

Tables (LUTs), Distributed/Block Random Access Memories (DRAMs/BRAMs), or

Digital Signal Processor (DSP) slices, requiring a large area on a silicon chip

especially when implementing large algorithms such as the 2-D 32 × 32 HEVC core

transform. In arithmetic, a left bit-shift operation by n-bit on an input sample x (i.e., x

<< n) simply denotes a multiplication of x by 2
n
. A bit-shift operation can be

implemented using a shift register, or via a concatenation operation where a number

of n zero bits are added as the suffix to x, or simply rewiring the least significant bits

accordingly. The cost of bit-shifts in a well-designed digital system is generally not

as significant as employing multipliers. It is, therefore, a common practice for an

efficient and fast hardware implementation to adopt a multiplier-free approach using

appropriate combinations of left bit-shifts and additions (including subtractions).

 Table 3.5 shows how a multiplication on a sample with a matrix element of N

× N HEVC core transform can be equivalently implemented with a combination of

left bit-shifts and additions/subtractions. Table 3.6 shows the total number of shifters

and adders/subtractors required in an N-point/N × N 1-D HEVC core transform

implemented using the even–odd decomposition. From this table, instead of 342

47

multipliers and 372 adders/subtractors, a multiplier-free implementation of 32-

point/32 × 32 1-D HEVC core transform would incur a total number of 922 shifters

and 1088 adders/subtractors.

Table 3.5 Equivalent shift-add operations for HEVC core transform elements

Element Equivalent Shifts Adds/Subs

90 2
6
 + 2

4
 + 2

3
 + 2

1
4 3

89 2
6
 + 2

4
 + 2

3
 + 2

0
3 3

88 2
6
 + 2

4
 + 2

3
3 2

87 2
6
 + 2

4
 + 2

3
 – 2

0
3 3

85 2
6
 + 2

4
 + 2

2
 + 2

0
3 3

83 2
6
 + 2

4
 + 2

1
 + 2

0
3 3

82 2
6
 + 2

4
 + 2

1
3 2

80 2
6
 + 2

4
2 1

78 2
6
 + 2

4
 – 2

1
3 2

75 2
6
 + 2

3
 + 2

2
 – 2

0
3 3

73 2
6
 + 2

3
 + 2

0
2 2

70 2
6
 + 2

3
 – 2

1
3 2

67 2
6
 + 2

1
 + 2

0
2 2

64 2
6

1 0

61 2
6
 – 2

1
 – 2

0
2 2

57 2
5
 + 2

4
 + 2

3
 + 2

0
3 3

54 2
5
 + 2

4 + 2
2
 + 2

1
4 3

50 2
5
 + 2

4
 + 2

1
3 2

46 2
5
 + 2

4
 – 2

1
3 2

43 2
5
 + 2

3
 + 2

1
 + 2

0
3 3

38 2
5
 + 2

2
 + 2

1
3 2

36 2
5
 + 2

2
2 1

31 2
5
 – 2

0
1 1

25 2
4
 + 2

3
 + 2

0
2 2

22 2
4
 + 2

2
 + 2

1
3 2

18 2
4
 + 2

1
2 1

13 2
3
 + 2

2
 + 2

0
2 2

9 2
3
 + 2

0
1 1

4 2
2

1 0

48

Table 3.6 Complexity in multiplier-free N-point/N × N 1-D HEVC core

transform using even–odd decomposition

Size

Multipliers

Shifts

Adders/Subtractors

Element Quantity
Multiplier

Replacement
Adder

Tree
a

Add/Sub

part
Total

4-

point

64 2 2 0 - - -

83 2 6 6 - - -

36 2 4 2 - - -

Total 6 12 8 4 4 16

8-

point

(odd

rows)

89 4 12 12 - - -

75 4 12 12 - - -

50 4 12 8 - - -

18 4 8 4 - - -

Total 16 54 36 12 8 56

16-

point

(odd

rows)

90 8 32 24 - - -

87 8 24 24 - - -

80 8 16 8 - - -

70 8 24 16 - - -

57 8 24 24 - - -

43 8 24 24 - - -

25 8 16 16 - - -

9 8 8 8 - - -

Total 64 168 144 56 16 216

32-

point

(odd

rows)

90 32 128 96 - - -

88 16 48 32 - - -

85 16 48 48 - - -

82 16 48 32 - - -

78 16 48 32 - - -

73 16 32 32 - - -

67 16 32 32 - - -

61 16 32 32 - - -

54 16 64 48 - - -

46 16 48 32 - - -

38 16 48 32 - - -

31 16 16 16 - - -

49

22 16 48 32 - - -

13 16 32 32 - - -

4 16 16 0 - - -

Total 256 688 528 240 32 800

Total 342 922 716 312 60 1088

a
Oadd (Adder tree) =

(

) per even or odd part

3.4.3 Multiple-Constant Multiplication (MCM)

 The previous section has demonstrated potential hardware savings attainable

by replacing multiplications with combinations of bit shifts and

additions/subtractions. On top of the multiplier-free approach, another useful

technique in reducing the complexity of a software-based implementation and

hardware-sharing architecture is Multiple-Constant Multiplication (MCM). MCM is

a technique of common sub-expressions elimination or sharing in an algorithm such

as a mathematical formula, involving factorisation, rearrangements, etc. For instance

in the case of the odd part of 4-point HEVC core transform (3.6), both the

intermediate data W1 and W3 need to be multiplied by h8 and h24, which are 83 and

36, respectively (Fig. 3.3 (a)). The two multipliers can be represented as shown in

(3.17a)–(3.17b) involving five shifts and four additions, where d is either W1 or W3,

the odd intermediate data after the add/sub part. Using the MCM technique, (3.17a)

can be replaced by (3.17c) saving one bit shifting, assuming that the implementation

cost of a subtraction is normally the same as an addition.

83d = ((64 +
1
 16) +

4
 (2 +

2
 1))d (3.17a)

36d = (32 +
3
 4) (3.17b)

83d = ((64 +
1
 16) +

4
 (4 –

2
 1))d (3.17c)

 In the odd part of 8-point HEVC core transform (3.10), all W1, W3, W5, and

W7 need to be multiplied by h4, h12, h20, and h28, which are 87, 70, 43 and 9,

respectively (Fig. 3.4 (a)). With multiplier-free implementation (3.18a)–(3.18d), at a

first glance, the complexity involved may appear to be five shifts and nine additions.

By utilising MCM, the complexity becomes five shifts and seven additions only.

50

89d = ((64 +
3
 16) +

6
 (8 +

1
 1))d (3.18a)

75d = (64 + 8 + 2 + 1)d = ((64 +
4
 2) +

7
 (8 +

1
 1))d (3.18b)

50d = (32 +
5
 (16 +

2
 2))d (3.18c)

18d = (16 +
2
 2)d (3.18d)

Similarly in the odd part of 16- or 32-point HEVC transforms, at a first

glance, the independent multiplier-free implementation may incur six shifts and 19

or 33 additions, respectively. By applying MCM, the complexities are reduced to six

shifts and 12 additions for the 16-point transform ((3.19a)–(3.19h) and (3.20a)–

(3.20h)), and six shifts and 20 additions for the 32-point case (3.21a)–(3.21p). More

than one configuration can yield similar savings, like in the two scenarios presented

for the odd part of the 16-point HEVC core transform. Table 3.7 shows the number

of bit shifts and additions/subtractions by utilising the MCM technique in the even–

odd decomposition of HEVC forward transforms, and Table 3.8 provides the savings

obtainable in comparison to without adopting MCM. From Table 3.8, employing

MCM uses 81.1% and 24.3% fewer bit shifts and additions/subtractions,

respectively, as opposed to without MCM.

51

(a)

(b)

(c)

Fig 3.3 Functional block diagram of the (a) odd part, (b) less-efficient MCM

multiplier-free and (c) MCM multiplier-free of 4-point HEVC core transform

× 83d
d

83

×
36d

36

64d
<< 6

<< 4

+

16d

<< 1

+

-

2d

d

80d

3d

+ 83d

d

<< 2

<< 5

+

4d

32d

36d
36d

+

64d

16d

–

-

4d

d

80d

3d

+ 83d

d

+

32d

36d
36d

<< 6

<< 4

<< 2

<< 5

52

(a)

(b)

Fig 3.4 Functional block diagram of the (a) odd part and (b) MCM multiplier-

free of 8-point HEVC core transform

× 89d
d

89

×
75d

75

×
50d

50

×
18d

18

64d
<< 6

<< 4

+

16d

<< 1
2d

+ 89d d

<< 3

80d

8d
+

+ 75d +
66d

9d

<< 5
32d

50d

18d +

+

d

53

16-point MCM (Scenario A: 6 shifts, 12 additions)

90d = ((64 +
1
 16) +

7
 (8 +

5
 2))d (3.19a)

87d = ((64 +
1
 16) +

9
 (4 +

3
 2) +

8
 1)d (3.19b)

80d = (64 +
1
 16)d (3.19c)

70d = ((64 +
10

 (4 +
3
 2))d (3.19d)

57d = (32 +
11

 (16 +
4
 (8 +

2
 1)))d (3.19e)

43d = ((32 +
6
 2) +

12
 (8 +

2
 1))d (3.19f)

25d = (16 +
4
 (8 +

2
 1))d (3.19g)

9d = (8 +
2
 1)d (3.19h)

16-point MCM (Scenario B: 6 shifts, 12 additions)

90d = ((64 +
1
 16) +

7
 (8 +

5
 2))d (3.20a)

87d = ((64 +
12

 32) –
9
 (8 +

2
 1))d (3.20b)

80d = (64 +
1
 16)d (3.20c)

70d = ((64 +
10

 (4 +
3
 2))d (3.20d)

57d = (32 +
11

 (16 +
4
 (8 +

2
 1)))d (3.20e)

43d = ((32 +
6
 2) +

12
 (8 +

2
 1))d (3.20f)

25d = (16 +
4
 (8 +

2
 1))d (3.20g)

9d = (8 +
2
 1)d (3.20h)

54

32-point MCM (6 shifts, 20 additions)

901d = (((64 +
1
 16) +

7
 8) +

8
 2)d (3.21a)

902d = 901d (3.21b)

88d = ((64 +
1
 16) +

7
 8)d (3.21c)

85d = ((64 +
1
 16) +

9
 (4 +

6
 1))d (3.21d)

82d = ((64 +
1
 16) +

10
 2)d (3.21e)

78d = ((64 +
1
 16) –

11
 2)d (3.21f)

73d = (64 +
12

 (8 +
3
 1))d (3.21g)

67d = (64 +
13

 (2 +
4
 1))d (3.21h)

61d = (64 –
14

 (2 +
4
 1))d (3.21i)

54d = ((32 +
2
 16) +

15
 (4 +

5
 2))d (3.21j)

46d = ((32 +
2
 16) –

16
 2)d (3.21k)

38d = (32 +
17

 (4 +
5
 2))d (3.21l)

31d = (32 –
18

 1)d (3.21m)

22d = (16 +
19

 (4 +
5
 2))d (3.21n)

13d = ((8 +
3
 1) +

20
 4)d (3.21o)

4d = d << 2 (3.21p)

55

Table 3.7 Complexity in multiplier-free N-point/N × N 1-D HEVC core

transform using even–odd decomposition and Multiple-Constant Multiplication

(MCM)

Size

Multipliers

Shifts

Adders/Subtractors

Element Quantity
Multiplier

Replacement

Adder

Tree
a

Add/Sub

part
Total

4-

point

64 2 2 * 1 0 - - -

83 2
2 * 4 2 * 4

- - -

36 2 - - -

Total 6 10 8 4 4 16

8-
point

(odd

rows)

89 4

4 * 5 4 * 7

- - -

75 4 - - -

50 4 - - -

18 4 - - -

Total 16 20 28 12 8 48

16-

point
(odd

rows)

90 8

8 * 6 8 * 12

- - -

87 8 - - -

80 8 - - -

70 8 - - -

57 8 - - -

43 8 - - -

25 8 - - -

9 8 - - -

Total 64 48 96 56 16 168

32-
point

(odd

rows)

90 32

16 * 6 16 * 20

- - -

88 16 - - -

85 16 - - -

82 16 - - -

78 16 - - -

73 16 - - -

67 16 - - -

61 16 - - -

54 16 - - -

46 16 - - -

38 16 - - -

56

31 16 - - -

22 16 - - -

13 16 - - -

4 16 - - -

Total 256 96 320 240 32 592

Total 342 174 452 312 60 824

a
Oadd (Adder tree) =

(

) per even or odd part

Table 3.8 Computational savings in multiplier-free N-point/N × N 1-D HEVC

core transform using even–odd decomposition and Multiple-Constant Multiplication

(MCM)

Size

Technique

Without MCM With MCM

Shifts Adds Shifts (Savings) Adds (Savings)

4-point 12 16 10 (16.7%) 16 (0.00%)

8-point

(odd

rows)

54 56 20 (63.0%) 48 (14.3%)

16-point

(odd

rows)

168 216 48 (71.4%) 168 (22.2%)

32-point

(odd

rows)

688 800 96 (86.0%) 592 (26.0%)

Total 922 1088 174 (81.1%) 824 (24.3%)

57

3.5 Intermediate Scaling

 In order to maintain a reasonable trade-off between accuracy and

computational complexities in the transform stage of HEVC, it was decided to limit

the bit depth of the coefficients after each transform stage as 16-bit signed integers,

i.e., in the range of [–2
15

, 2
15

 – 1] or [–32768, 32767] for any input bit depth, B. To

achieve this requirement, additional intermediate scaling factors, ST1, ST2, SIT1, and

SIT2, need to be applied as shown in Fig. 3.5. Note that Fig. 3.5 is a drilled-down

diagram of the transform and quantisation blocks in Fig. 3.1.

 Using the 4 × 4 forward transform as an example, the process of specifying

the intermediate scaling factors can be illustrated as in Fig. 3.6. The assumption

made in the worst-case bit-depth analysis was that for a video bit-depth of B, all

samples of a residual block will have maximum amplitude of –2
B
 as the input to the

first stage of the forward transform. A video with a bit depth of B bits will contain

prediction residuals in the range of [–2
B
 + 1, 2

B
 – 1] requiring a (B + 1)-bit

representation. For instance, an 8-bit video will result in prediction residuals within

[–255, 255] range requiring a 9-bit signed precision. For simplicity, it is assumed

that the minimum residual value is –256, i.e., –2
8
 or –2

B
 in general, which is still

within the (B + 1)-bit signed precision.

 The elements of both core and alternative HEVC transform matrices are 8-bit

signed integers, but only the first basis vector row of these matrices are in the same

sign region (positive) while all the other basis vectors oscillate between positive and

negative regions. As the transform operation is a matrix multiplication process, the

minimum (or absolute maximum) value of the transform coefficients after an N-point

1-D transform will be the result of multiplying the prediction residuals with the first

basis vector of the transform matrix. More specifically, this will be the case when all

the residual samples in the first column are equal to –2
B
, i.e. –256 for B = 8. The

elements of the first basis vector of the core transform matrix (64) are 6-bit

precision. Therefore, the minimum value of the transform coefficients shall be –2
B
 ×

2
6
 × 2

M
 where N = 2

M
, resulting in a bit depth of B + 6 + M. For example, after a 4-

point 1-D transform, the minimum transform coefficients will be –256 × 64 × 4 =

–2
8
 × 2

6
 × 2

2
 = –65536, i.e., requiring a bit depth of 8 + 6 + 2 = 16.

58

 In the alternative transform matrix, although the first basis vector contains 7-

bit elements (74 and 84), the first two elements are 5- and 6-bit elements,

respectively (29 and 55). Thus for B = 8, the minimum transform coefficients in the

4-point 1-D DST will be –256 × (29 + 55 + 74 + 84) = –61952, i.e., also within B + 6

+ M bit-depth as in the core transform case.

Fig. 3.5 Additional scale factors (ST1, ST2, SIT1, SIT2, SQ, and SIQ) to perform (a)

forward transform and quantisation, and (b) inverse transform and quantisation of

HEVC (C is the orthonormal DCT matrix, D is the scaled approximation of C, and

 , where is the transform size) (Budagavi, Fuldseth and Bjøntegaard,

2014)

To maintain the bit-depth of the transform coefficients after the first N-point

1-D forward transform within 16-bit signed precision, a scaling factor of 1 / (–2
B
 ×

2
6
 × 2

M
 × 2

–15
) is, therefore, necessary. As a result, the scaling factor after the first

transform stage is specified as ST1 = 2
–(B + M – 9)

.

59

 The second stage of the forward transform involves a multiplication of the

result of the first transform stage with
 . The input into the second stage is the

output from the first stage, which is a matrix having first row elements equal to –2
15

and all other elements equal to zero as shown in Fig. 3.6 (b). Then, the output of

multiplication with
 will be a matrix with only a DC value having a value of –2

15

× 2
6
 × 2

M
 = –2

(21 + M)
, while all remaining elements are equal to zero. Therefore, after

the second stage of the forward transform the necessary scaling is ST2 = 2
–(M + 6)

regardless of B.

Fig. 3.6 Intermediate scaling factor determination for (a) first and (b) second

stages of forward transform to fit intermediate and output values within 16 bits (B is

video bit-depth and , where is the transform size) (Budagavi, Fuldseth

and Bjøntegaard, 2014)

 Similarly in the inverse transform, the first stage comprises a multiplication

of the result of the forward transform with
 as shown in Fig. 3.7, assuming there

are no or lossless quantisation/de-quantisation operations in between the forward and

60

inverse transforms. Following the 4 × 4 1-D transform example set earlier in Fig.

3.6, the output matrix from the forward transform is input into this first stage of the

inverse transform, which is a matrix with only the DC coefficient equalling to –2
15

.

The output of multiplication with
 will be a matrix with first column elements

equal to –2
15

 × 2
6
 = –2

21
. Therefore, in order for the intermediate output to fit within

16 bits, the necessary scaling after this first stage of the inverse transform is simply

SIT1 = 2
–6

 regardless of B.

 Finally, the second stage of the inverse transform involves a multiplication of

the result of the first stage with . The output matrix from the first stage, which is a

matrix with first column coefficients equal to –2
15

, is input to the second stage. The

output of the multiplication with shall be a matrix with all elements equal to –2
15

× 2
6
 = –2

21
. Therefore, the scaling required after the second stage of inverse

transform in order to obtain the reconstructed output samples in the original range of

[–2
B
, 2

B
 – 1] is SIT2 = 2

–(21 – B)
.

 To summarise, for an input or output signal of bit-depth B, the scaling factors

after the four transform stages are as follows, where M = log2 N (Budagavi, Fuldseth

and Bjøntegaard, 2014):

 After first forward transform stage, ST1 = 2
–(B + M – 9)

 After second forward transform stage, ST2 = 2
–(M + 6)

 After first inverse transform stage, SIT1 = 2
–6

 After second inverse transform stage, SIT2 = 2
–(21 – B)

 During the development of HEVC, it was decided to modify the scaling

factors after each inverse transform stage; SIT1 and SIT2 to 2
–7

 and 2
–(20 – B)

,

respectively, in order to compensate for quantisation/de-quantisation errors which

could possibly cause the dynamic range before each inverse transform stage to

exceed 16 bits. A clipping operation was later introduced to ensure the dynamic

range between the two inverse transform stages remains within 16 bits, therefore, the

modification to SIT1 and SIT2 was no longer necessary, However, this modification

was retained “for maturity reasons” (Budagavi, Fuldseth and Bjøntegaard, 2014).

Tables 3.9 and 3.10 summarise the final choice of scaling factors of HEVC forward

and inverse transform, respectively, in comparison to the orthonormal DCT

(properties i and ii of Table 3.1).

61

Fig. 3.7 Intermediate scaling factors in the inverse transform scale factors,

assuming the input to be the final output of Fig. 3.6 (B = 8 is the video bit depth)

(Budagavi, Fuldseth and Bjøntegaard, 2014)

 Before each intermediate scaling, an offset value is also specified in HEVC

to be added to perform rounding, which is equivalent to the scaling factor divided by

two (2). For clarity, these offset values are not explicitly shown in Figs. 3.5, 3.6, and

3.7.

Table 3.9 Intermediate scaling factors in 2-D HEVC forward transform

(Budagavi, Fuldseth and Bjøntegaard, 2014)

Stage Scaling Factor

First forward transform 2
(6 + M / 2)

After the first forward transform, ST1 2
– (B + M – 9)

Second forward transform 2
(6 + M / 2)

After the second forward transform, ST2 2
– (M + 6)

Total scaling for forward transform 2
(15 – B – M)

62

Table 3.10 Intermediate scaling factors in 2-D HEVC inverse transform

(Budagavi, Fuldseth and Bjøntegaard, 2014)

Stage Scaling Factor

First inverse transform 2
(6 + M / 2)

After the first inverse transform, SIT1 2
–7

Second inverse transform 2
(6 + M / 2)

After the second inverse transform, SIT2 2
– (20 – B)

Total scaling for inverse transform 2
– (15 – B – M)

3.6 Quantisation

 Quantisation involves division by a quantisation step (Qstep) and a rounding,

making it a lossy operation. Conversely, inverse quantisation requires multiplication

by Qstep. Qstep refers to the equivalent step size to have an orthonormal transform,

i.e., without the scaling factors of Tables 3.9 and 3.10. Like H.264/AVC, HEVC also

uses a quantisation parameter (QP) to obtain Qstep. For an 8-bit video sequence,

there are 52 available QP values between 0 and 51 (Budagavi, Fuldseth and

Bjøntegaard, 2014). A larger QP results in a larger Qstep, i.e., a heavier quantisation

resulting in a more lossy output. Notably, QP = 4 was chosen to provide Qstep = 1,

i.e., no effective quantisation, and an increase of six QP values leads to an increase

of Qstep by a factor of two. These criteria result in the following relationship:

 () (⁄)

 (3.22)

Equation (3.22) can equivalently be expressed as:

 ()

 (3.23)

where []
 [⁄ ⁄ ⁄ ⁄ ⁄]

.

Additionally, frequency-dependent quantisation is also supported by HEVC

by using scaling matrices. Frequency-dependent quantisation or scaling is useful in

applying HVS-based quantisation where low-frequency transform coefficients are

quantised with a finer quantisation step size in comparison to high-frequency

63

coefficients. Let W[r][c] represent the quantisation weight matrix for a transform

coefficient at coordinate (r, c), W[r][c] = 1 means that there is no weighting.

In the inverse quantisation stage, for a quantised transform coefficient from

the encoder, namely level[r][c], the standard specifies the de-quantised transform

coefficient as

 [][] (([][] [][] (

))

)

(3.24)

where w[r][c] = round(16 × W[r][c]), offsetIQ = 1 << (M – 6 + B), shift1 = (M – 5 +

B), and gi is the de-quantiser multiplier specified as (Budagavi, Fuldseth and

Bjøntegaard, 2014)

 []
 () [] (3.25)

As previously mentioned, the HEVC standard mainly describes the decoding

operations and syntax of a compliant bitstream. Thus, only the inverse quantisation

is specified in the text specification (ITU, 2013) and encoder manufacturers have the

flexibility to implement a quantisation scheme producing HEVC-compliant

quantised transform coefficients, level. Reference (Budagavi, Fuldseth and

Bjøntegaard, 2014) suggests that level[r][c] at position (r, c) can be obtained as

 [][] ((([][]

 [][]
)

)

)

(3.26)

where shift2 = 29 – M – B, and fi is the quantiser multiplier specified as

 []
 []

When there is no frequency-dependent scaling (W[r][c] = 1, i.e., w[r][c] = 16) and

Qstep = 1 (QP = 4), the choice of fi and gi provides almost unity gain through

quantisation and inverse quantisation (i.e., fi × gi × 16 ≈ 1 << (shift1 + shift2) = 2
(M – 5

+ B + 29 – M – B)
 = 2

14
 × 2

6
 × 16, i = 0, …, 5).

64

3.7 Related work on Transform and Quantisation

 This sub-section discusses some related work on transform and quantisation

archived in the literature.

3.7.1 Related work on Transform

 As a video sequence is a series of images, many image-processing techniques

are applicable to video processing. There is a large amount of work done on the

transform stage in image and video compression, aiming to reduce the computational

complexity. A few examples in image compression include (Bouguezel, Ahmad and

Swamy, 2010; Bayer et al., 2012; Cintra, Bayer and Tablada, 2014; Coutinho et al.,

2016). Bouguezel, Ahmad, and Swamy (2010) proposed an orthogonal and

multiplication-free transform of a dyadic order of up to 32-point for image

compression, extended from the Integer Discrete Cosine Transform (ICT) and

containing values of only ±1 and ±2. Cintra, Bayer, and Tablada (2014) presented a

set of approximation matrices for 8-point ICT in image compression, based on

common integer functions such as floor, ceiling, truncation, round-away-from-zero,

round-half-up/-down, and nearest integer functions, involving values of 0, ±1, ±2,

and ±3. Bayer et al. (2012) proposed a fast orthogonal algorithm and FPGA-based

hardware prototype for 16-point ICT suitable for JPEG image compression,

consisting of 1-bit transform matrix and a diagonal scaling matrix, which could be

absorbed in the quantisation stage. Coutinho et al. (2016) presented a very low

complexity 8 × 8 DCT approximation obtained via pruning, achieving 76.2% fewer

arithmetic operations relative to the original DCT algorithm. Although these

algorithms are beneficial for a hardware implementation, such low values of

transform elements may not be too efficient for video coding. Approximation

techniques such as described in (Cintra, Bayer and Tablada, 2014) however could be

worth considering for future video coding standards.

 References (Dong et al., 2009; Haggag et al., 2010; Haggag, El-Sharkawy

and Fahmy, 2010; Sun et al., 2012; Belghith, Loukil and Masmoudi, 2013a, 2013b;

Wang et al., 2013) are examples of algorithmic work on complexity-reduced

transform applied in video coding. Dong et al. (2009) presented a non-orthogonal

ICT (NICT) and a modified ICT (MICT) of 16 × 16 and applied these in H.264/AVC

and Audio Video Coding Standard of China (AVS) Enhanced Profile. Their NICT

65

and MICT matrices contain 6-bit and 4-bit elements, respectively. Similarly, Haggag

et al. (Haggag et al., 2010; Haggag, El-Sharkawy and Fahmy, 2010) decomposed the

preliminary 16 × 16 HEVC transform kernel into the product of two sparse matrices

involving 6-bit integers and provided two MICT algorithms for the odd frequency

component. The first one is a quality-oriented algorithm, while the second one is

computation-/speed-oriented. Belghith, Loukil, and Masmoudi (Belghith, Loukil and

Masmoudi, 2013a, 2013b) showed how the 4 × 4 and 8 × 8 matrices are embedded in

the 16 × 16 7-bit HEVC transform, and provided a slight modification on the odd

part of 16-point. All these works exploit the dyadic symmetry property of the

transform as applied by Cham and Chan (1991), and stand a good chance for an area-

efficient transform implementation. However, most of the multiplications still

require at least a 2-stage adder tree each. Sun et al. (2012) proposed an adaptive

truncation re-configurable approximation (aTra) algorithm to automatically obtain

approximated integers of adjustable precision. This algorithm still could not yield a

satisfactory approximation for a one-stage adder pipeline as desired in this thesis.

 There are many efficient hardware architecture designs proposed in recent

years supporting the transform operation of HEVC, realised using CMOS (Ahmed,

Shahid and Rehman, 2012; Budagavi and Sze, 2012; Park et al., 2012; Shen et al.,

2012; Meher et al., 2014 ola os-Jojoa and Velasco-Medina, 2015; Chang et al.,

2016) or/and FPGA (Zhao and Onoye, 2012; Conceição et al., 2013; Kalali et al.,

2014; Arayacheeppreecha, Pumrin and Supmonchai, 2015; Darji and Makwana,

2015) technologies. Budagavi and Sze (2012) presented a unified and hardware-

sharing architecture for both forward and inverse transforms of HEVC supporting all

four sizes. They demonstrated how these operations can be executed using the even–

odd decomposition technique involving three simple steps: 1) Addition/Subtraction;

2) Even part; 3) Odd part. When synthesised on a 45 nm CMOS technology, a 44%

area reduction was achieved when compared with separate forward and inverse

architectures. This work however only covered a 1-D transform.

During the development stage of HEVC, Park et al. (2012) proposed an

efficient and multiplier-free architecture for 2-D 16 × 16 and 32 × 32 inverse

transforms, based on Chen’s fast DCT algorithm (1977) and capable of decoding a

Quad Full HD (QFHD) (3840 × 2160) video at 30 frames per second (fps). Besides

using the old transform elements, the only other downside possibly is that this design

66

did not cover the other two small sizes (4 × 4 and 8 × 8). The design by Ahmed,

Shahid, and Rehman (2012) is another work published prior to the release of HEVC,

but it supports all four sizes of 2-D forward transform of HEVC. They applied the

folded scheme, i.e., a single 1-D transform core is reused for the second transform

operation after the transpose stage. Their architecture relies on matrix decomposition

into permutation matrices and Givens rotation matrices. Additionally, they applied

the lifting scheme to eliminate any use of multipliers. The design was synthesised

using a 90 nm CMOS library and capable of encoding a 1080p HD video at 48 fps.

The work by Chang et al. (2016) was also based on sparse matrix

decomposition and 67% more hardware efficient than (Ahmed, Shahid and Rehman,

2012). ola os-Jojoa and Velasco-Medina (2015) presented three hardware designs

for N-point HEVC transform based on Multiple-Constant Multiplication (MCM)

technique. But both (Chang et al., 2016) and (ola os-Jojoa and Velasco-Medina,

2015) only covered 1-D inverse DCT (IDCT).

The work by Shen et al. (2012) is an example of Multi-Standard Transform

(MST) designs. Their design supports the inverse transform of MPEG-2/-4, AVC,

AVS, VC-1, and HEVC standards. They applied multiplier-free architecture for 4-

point and 8-point transforms and regular multipliers for 16-point and 32-point

operations. The transpose buffer was designed using four single-port Synchronous

Random Access Memory (SRAM) blocks instead of a regular register array.

Synthesised with Semiconductor Manufacturing International Corporation (SMIC)

130 nm CMOS library, their 5-stage pipelined design can potentially support QFHD

@ 30 fps videos. These results were however limited to a 1-D IDCT operation with a

transpose buffer. Other MST designs include (Martuza and Wahid, 2012a, 2012b,

2015, Dias, Roma and Sousa, 2013, 2014).

Meher et al. (2014) presented area- and power-efficient architectures for 2-D

HEVC forward transform using MCM technique to replace physical multipliers.

Their hardware-oriented algorithms involve three stages for all four sizes: 1) Input

Adder Unit (IAU); 2) Shift-Add Unit (SAU); 3) Output Adder Unit (OAU). They

have also integrated the intermediate scaling stage after each transform operation as

defined in the HEVC standard into their SAU stage, by pruning some of the least

significant bits (LSBs) to maintain a maximum of 16-bit width after each 1-D

67

transform. They synthesised their designs using Taiwan Semiconductor

Manufacturing Company (TSMC) 90 nm CMOS library and proficient to encode a

7680 × 4320 UHD video at 60 fps.

The design by Darji and Makwana (2015) utilises the Canonical Signed Digit

(CSD) representation, as well as Common Sub-expression Elimination (CSE), which

is essentially an MCM technique. On the other hand, the design by

Arayacheeppreecha, Pumrin, and Supmonchai (2015) has efficiently addressed the

challenge of parallel execution of flexible transform size combinations. Both (Darji

and Makwana, 2015) and (Arayacheeppreecha, Pumrin and Supmonchai, 2015) are

however 1-D forward transform designs.

Recently, Raguraman and Saravanan (2016) extended several existing 8-

point 1-D approximated transforms in the literature into 2-D architectures and

implemented them on a Xilinx Virtex-E FPGA. More recently, da Silveira et al.

(2017) proposed a low-complexity orthogonal 16-point approximated transform

combining two instantiations of a low-complexity 8-point DCT approximation

introduced in (Bayer and Cintra, 2012). The entries of the resulting transformation

matrix are defined over {0, ±1} making the multiplicative complexity null and the

arithmetic complexity of their 1-D algorithm to be only 44 additions. The proposed

1-D approximation was realised on a Xilinx Virtex-6 XC6VLX240T FPGA

requiring only 303 Configurable Logic Blocks (CLBs) and 936 Flip-Flops (FF),

achieving a maximum operating frequency of 344.83 MHz.

The multiplier-free 2-D designs by Conceição et al. (2013) and Zhao and

Onoye (2012) were realised using the even–odd decomposition approach and

synthesised on Altera Stratix IV and Cyclone IV FPGA, respectively. While

(Conceição et al., 2013) was focused only on 32 × 32 inverse transform, (Zhao and

Onoye, 2012) supports the forward transform of all four sizes defined in HEVC.

Potential applications of (Conceição et al., 2013) and (Zhao and Onoye, 2012)

include QFHD @ 30 fps and Wide Quad Extended Graphics Array (WQXGA) (2560

× 1600) @ 30 fps videos, respectively.

To further reduce the power consumption, Kalali et al. (2014) also proposed

a novel energy reduction technique in addition to using the MCM technique in their

HEVC 2-D IDCT design, supporting all four sizes. Their design was mapped to a

68

Xilinx Virtex-6 FPGA and capable of decoding QFHD @ 48 fps videos. Recently,

they have improved their design and produced a low utilisation (LU) hardware

scheme maintaining the same decoding capability but costing fewer resources, as

well as a high utilisation (HU) hardware design capable of processing UHD (7680 ×

4320) @ 53 fps videos, also at a lower hardware cost than their initial design (Kalali,

Mert and Hamzaoglu, 2016).

Very recently, Chen, Zhang, and Lu (2017) presented a FPGA-friendly

architecture supporting all four sizes in 2-D HEVC transform and implemented their

design on several FPGA platforms manufactured by Altera such as Startix III,

Cyclone II, and Arria II GX, as well as Xilinx Virtex-7 and Zynq. Apart from using

16 64 × 16-bit Block RAMs (BRAMs) as the transpose buffer, their architecture

exploits other internal components and characteristics of individual FPGA platforms

such as DSP blocks on top of Arithmetic Logic Modules (ALM) or Look-up Tables

(LUT) to realise the logic computations. Their design, particularly on a Xilinx Zynq

FPGA, can sustain up to 4K @ 30 fps 4:2:0 UHD TV.

3.7.2 Related work on Quantisation

 There are not as many previous works on the quantisation stage of HEVC as

the transform stage. Stankowski et al. (2015) analysed the maximum achievable

performance in terms of bitrate savings when exact rate-distortion optimised

quantisation (RDOQ) calculations were used instead of estimated RDOQ

calculations currently employed by HEVC. Their analysis has shown that by using

exact RDOQ calculations, differences of -1.1% and -1.0% in luminance bitrate could

be achieved in AI and RA configurations, respectively, but at the expense of three to

four times higher computational complexity (execution times). Gweon and Lee

(2012) have proposed N-level quantisation for HEVC instead of an equal

quantisation to be applied to a TU. With a TU divided into 4 × 4 blocks, blocks

towards the bottom right corner of the TU are quantised with a higher quantiser step.

Having the maximum number of N equals three, luminance BD-rate performance

could be improved by -0.3% to -0.5% in AI, LB, and LP configurations, with almost

the same encoding and decoding times with the reference HEVC software. Nam,

Sim, and ajić (2012) proposed an adaptive quantisation method either in spatial or

transform domain for screen content videos. Generated by computer graphics

69

techniques, screen content videos have different texture properties than natural

videos, such as having very sharp edges at text or object boundaries as well as

containing significantly less noise. Common video coding tools, on the other hand,

tend to smooth out sharp edges exploiting the nature of HVS. Their proposed method

could yield an average of 4.1% bitrate reduction for the AI, RA, and low delay

configurations. The increase in complexity was however not reported.

 Dias, Roma, and Sousa (2015) presented a unified quantisation and de-

quantisation architecture for HEVC, offering a reduced hardware cost compared to

separate implementations of the two operations. Their synthesis results on an ASIC

technology show that savings between 19.2% and 27.3% in area squared as well as

20.9% to 27.6% in gate count reduction could be achieved by their unified

architecture. Their architecture designs could as well operate at operating

frequencies higher than 374 MHz, and fast enough to support a real-time encoding of

4K UHD @ 30 fps videos. Pastuszak (2014) presented three FPGA architecture

designs each for the quantisation and de-quantisation of HEVC. The first design was

a straightforward implementation, the second design was with shifter modifications,

and the third design mapped rounding adders into digital signal processor (DSP)

units. The designs were synthesised for Altera Arria II GX devices and capable of

working at 200 MHz. The second and third designs offer general-purpose logic

reduction between 34% and 88% relative to the straightforward implementation.

3.8 Summary

 HEVC core transform, intermediate scaling, and quantisation were described

in this chapter as these operations serve the basis of this thesis. A literature survey on

transform and quantisation in the context of HEVC was also discussed. Particularly

for the transform stage, complexity-reduced techniques in the forms of multiplier-

free implementation, even–odd decomposition, and Multiple-Constant Multiplication

(MCM) approach were covered in this chapter and applied in many previous works.

The next chapter will reveal the algorithmic contributions of this thesis, which are

approximated transforms and quantisation aimed at a complexity-reduced HEVC

execution without severe degradation in the reconstructed and decoded video quality.

70

Chapter 4

Approximated Forward Core Transform,

Intermediate Scaling, and Quantisation for

HEVC

Abstract This chapter explains the derivation of the approximated forward core

transform matrices, the modification on the intermediate scaling, and approximated

quantisation multipliers adopted in this thesis. These alterations were made with the

intention to reduce the implementation complexity of an HEVC encoder bearing

only a minimal tolerance on the coding performance.

4.1 Introduction

The 32 × 32 HEVC forward transform matrix
 can be constructed using

29 unique integers. These integer constants originated from 31 unique elements

(excluding the first row, C0) derivable from (3.1) and listed in Table 4.1 for the first

column of the matrix, before the round-to-nearest-integer operation and a hand-

tuning on a few elements (C8, C21, C23, C24, C25, and C26). Notably after the rounding

and hand tuning operations, C0 = C16 = 64 and C1 = C2 = C3 = 90.

Table 4.1 Constants in 32 × 32 HEVC core transform matrix

Constant Value

Before

rounding

and hand

tuning

Constant Value

Before

rounding

and hand

tuning

C0 64 64.00 C16 64 64.00

C 1 90 90.40 C17 61 60.78

C 2 90 90.07 C18 57 57.42

C 3 90 89.53 C19 54 53.92

C 4 89 88.77 C20 50 50.28

C 5 88 87.80 C21 46 46.53

71

C6 87 86.61 C22 43 42.67

C7 85 85.22 C23 38 38.70

C8 83 83.62 C24 36 34.64

C9 82 81.82 C25 31 30.49

C10 80 79.82 C26 25 26.27

C11 78 77.63 C27 22 21.99

C12 75 75.26 C28 18 17.66

C13 73 72.70 C29 13 13.28

C14 70 69.96 C30 9 8.87

C15 67 67.06 C31 4 4.44

As noted earlier in sub-section 3.4.2, a fast and cost-efficient hardware

implementation typically applies a multiplier-free approach using appropriate

combinations of left bit-shifts and additions (including subtractions). For instance,

Fig. 4.1 illustrates a data multiplication on x by 87 (C6 as in Table 4.1), involving

three adders in a two-stage adder tree structure, assuming that this operation is fast

enough to be executable in a single clock cycle (cc) and the cost of an adder is the

same as a subtractor. IR_1 and OR_1 in Fig. 4.1 are the input register and the output

register, respectively. Similarly, most other multipliers like 90, 89, 88, etc. from

Table 4.1 may incur a two-stage adder tree. Some integers such as 80, 36, 31, 18, and

9 involve only two bit-shifts and an addition, while for the two dyadic elements, i.e.,

64 and 4, only a single bit-shift is required (<< 6 and << 2, respectively). Although a

complexity reduction technique such as MCM (sub-section 3.4.4) can be utilised, it

is necessary to see the effect of an approximation scheme on the coding

performance, such as in terms of quality (e.g. PSNR, SSIM, MOS, etc.) with respect

to the bitrate, and the potential savings offered by such a scheme. The following

section, Section 4.2, therefore, details out the approximated core transform algorithm

applied in this work, followed by a sub-section describing the scaled version of this

algorithm involving a modification in the subsequent intermediate scaling stage.

Section 4.3 provides the approximated quantisation multipliers derived using the

same principle.

 Only the core transform draws the attention, and the alternative transform is

not included in this work.

72

Fig. 4.1 A hardware implementation on multiplication of x by 87

4.2 Approximated Forward Core Transform

 This section describes the process taken in deriving the approximated

forward core transform used in this thesis.

4.2.1 Algorithmic Modelling

 In order to further reduce the hardware requirements for the transform stage

of HEVC, three criteria were predefined to approximate the original core matrix

elements with more hardware-friendly integers as follows:

i. All the new integers must be multiples of four as this is the smallest

multiplier in Table 4.1. Furthermore, it is a favourable dyadic number. By

having a common denominator, all the new elements can be factorised and

this scaling factor can subsequently be absorbed in a proceeding stage in the

encoding pipeline, such as the intermediate scaling or quantisation stage;

ii. Only a single adder/subtractor can be allocated in a multiplier replacement;

iii. All combinations of bit-shifts and additions/subtractions are executable in

only one clock cycle of 5 ns (200 MHz) or shorter.

 This technique can thus be regarded as an elimination of sub-operations.

Based on the above criteria, the following look-up table (LUT) was derived, i.e., a

set of 18 hardware-friendly integers and named as LUT4:

 { }

73

A multiplication with the integers in LUT4 can be performed by either a single left

shift (4, 8, 16, 32, and 64) or two left shifts and one addition as illustrated in Table

4.2.

Table 4.2 Equivalent shift-add operations of LUT4 integers

No. LUT4 integers Equivalent shift-add operations

1 4 << 2

2 8 << 3

3 12 << 3 + << 2

4 16 << 4

5 20 << 4 + << 2

6 24 << 4 + << 3

7 28 << 5 – << 2

8 32 << 5

9 36 << 5 + << 2

10 40 << 5 + << 3

11 48 << 5 + << 4

12 56 << 6 – << 3

13 60 << 6 – << 2

14 64 << 6

15 68 << 6 + << 2

16 72 << 6 + << 3

17 80 << 6 + << 4

18 96 << 6 + << 5

Next, several approximation alternatives can be systematically obtained by a

search algorithm to represent each original element with an integer from LUT4 giving

the least absolute difference. If an element can be replaced by more than one integer,

a mathematical function similar to ceiling (upwards), floor (downwards), or a

combination of both functions was applied. Table 4.3 provides the decision criteria

of 22 approximation alternatives analysed in this work, T1–T22. For instance, T1

and T2 were obtained respectively by applying the ceiling (upwards) and floor

(downwards) function on the original HEVC core transform, while T3 and T4 were

74

acquired by using the scaled and floating DCT as the reference instead of HEVC.

Table 4.4 lists the first column of these 22 alternatives and Fig. 4.2 illustrates the

flow chart of the search algorithm, where f(x) is the function to either perform the

ceiling (upwards) or floor (downwards) approximation.

Fig. 4.2 Flow chart of the search algorithm, where (a) is the main flow and (b)

is the ceiling (upwards) approximation flow of f(x)

(a) (b)

75

Table 4.3 Decision criteria of approximation alternatives

Transform Reference Upper half Lower half Even rows Odd rows

Dsf
a

- - - - -

Dsr
b

- - - - -

HEVC - - - - -

T1 HEVC ceiling ceiling - -

T2 HEVC floor floor - -

T3 Dsf ceiling ceiling - -

T4 Dsf floor floor - -

T5 HEVC ceiling floor - -

T6 HEVC floor ceiling - -

T7 Dsf ceiling floor - -

T8 Dsf floor ceiling - -

T9 HEVC - - ceiling floor

T10 HEVC - - floor ceiling

T11 Dsf - - ceiling floor

T12 Dsf - - floor ceiling

T13 Dsr ceiling ceiling - -

T14 Dsr floor floor - -

T15 Dsr ceiling floor - -

T16 Dsr floor ceiling - -

T17 Dsr - - ceiling floor

T18 Dsr - - floor ceiling

T19 Scale= 362.0 ceiling ceiling - -

T20 Scale = 362.0 floor floor - -

T21 Scale = 360.0 ceiling ceiling - -

T22 Scale = 360.0 floor floor - -

a
 DCT Scaled and Floating (Scaling factor = 64*32

1/2
 =

362.03867196751233249323231339768)

b
 DCT Scaled and Rounded (Scaling factor = 64*32

1/2
 =

362.03867196751233249323231339768)

76

Table 4.4 Matrix elements in the first column of different 32 × 32 core transform alternatives

First

column
Transform Alternatives

Dsf Dsr HEVC T1 T2 T3
a
 T5 T6 T9 T10 T13 T15 T16 T17 T18

0 64.00 64 64 64 64 64 64 64 64 64 64 64 64 64 64

1 90.40 90 90 96 96 96 96 96 96 96 96 96 96 96 96

2 90.07 90 90 96 96 96 96 96 96 96 96 96 96 96 96

3 89.53 90 90 96 96 96 96 96 96 96 96 96 96 96 96

4 88.77 89 89 96 96 96 96 96 96 96 96 96 96 96 96

5 87.80 88 88 96 80 80 96 80 80 96 96 96 80 80 96

6 86.61 87 87 80 80 80 80 80 80 80 80 80 80 80 80

7 85.22 85 85 80 80 80 80 80 80 80 80 80 80 80 80

8 83.62 84 83 80 80 80 80 80 80 80 80 80 80 80 80

9 81.82 82 82 80 80 80 80 80 80 80 80 80 80 80 80

10 79.82 80 80 80 80 80 80 80 80 80 80 80 80 80 80

11 77.63 78 78 80 80 80 80 80 80 80 80 80 80 80 80

12 75.26 75 75 72 72 72 72 72 72 72 72 72 72 72 72

13 72.70 73 73 72 72 72 72 72 72 72 72 72 72 72 72

14 69.96 70 70 72 68 68 72 68 72 68 72 72 68 72 68

15 67.06 67 67 68 68 68 68 68 68 68 68 68 68 68 68

16 64.00 64 64 64 64 64 64 64 64 64 64 64 64 64 64

17 60.78 61 61 60 60 60 60 60 60 60 60 60 60 60 60

18 57.42 57 57 56 56 56 56 56 56 56 56 56 56 56 56

19 53.92 54 54 56 56 56 56 56 56 56 56 56 56 56 56

20 50.28 50 50 48 48 48 48 48 48 48 48 48 48 48 48

21 46.53 47 46 48 48 48 48 48 48 48 48 48 48 48 48

22 42.67 43 43 40 40 40 40 40 40 40 40 40 40 40 40

23 38.70 39 38 40 36 40 36 40 36 40 40 40 40 40 40

24 34.64 35 36 36 36 36 36 36 36 36 36 36 36 36 36

25 30.49 30 31 32 32 32 32 32 32 32 32 28 32 28 32

26 26.27 26 25 24 24 28 24 24 24 24 28 24 28 28 24

27 21.99 22 22 24 20 20 20 24 20 24 24 20 24 20 24

28 17.66 18 18 20 16 16 16 20 20 16 20 16 20 20 16

29 13.28 13 13 12 12 12 12 12 12 12 12 12 12 12 12

30 8.87 9 9 8 8 8 8 8 8 8 8 8 8 8 8

31 4.44 4 4 4 4 4 4 4 4 4 4 4 4 4 4

orc 0.0000 0.0037 0.0029 0.0566 0.0439 0.0442 0.0566 0.0439 0.0566 0.0439 0.0518 0.0566 0.0391 0.0518 0.0439

mrc 0.0000 0.0077 0.0213 0.1282 0.1218 0.1218 0.1282 0.1218 0.1218 0.1282 0.1282 0.1282 0.1218 0.1218 0.1282

nrc 0.0000 0.0109 0.0013 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605 0.0605

a
 T4, T7, T8, T11, T12, T14, T19, T20, T21, and T22 resulted in the same values as T3

77

4.2.2 Degrees of Approximation

 By performing integer approximations to the floating DCT or HEVC core

transform, some of the DCT properties (Table 3.1) may have been compromised. In

order to measure the degrees of approximation for a few of these properties, the

same measurements as applied in (Budagavi, Fuldseth and Bjøntegaard, 2014) were

adopted. These are namely the orthogonality measure, orc, closeness to the original

DCT, mrc, and norm measure, nr, as given in (4.1)–(4.3) for an N-point integer DCT

approximation. In these equations, trc represents the matrix elements with r and c =

0, 1 … N – 1, basis vector rows are equal to tr, tc is the transpose of tr, and drc are

again the real DCT matrix elements (Section 3.2).

 ⁄ (4.1)

 | | ⁄ (4.2)

 |
 ⁄ | (4.3)

 The worst-case values of orc, mrc, and nr for different transform alternatives

are given at the bottom of Table 4.4, with the value of zero implying a perfect

achievement. For comparison purposes, the respective measures of scaled and

floating DCT, Dsf, scaled and rounded DCT, Dsr, and HEVC matrix elements are also

included in the second, third, and fourth columns of Table 4.4, respectively.

HEVC core transform matrix elements are further from Dsf than Dsr

(mrc(HEVC) = 0.0213) due to the rounding and hand tuning operations.

Nevertheless, they hold better orthogonality (orc(HEVC) = 0.0029) and norm

(nrc(HEVC) = 0.0013) properties than Dsr (Budagavi, Fuldseth and Bjøntegaard,

2014). On the contrary, all the approximation alternatives analysed in this work

possess far worse orc, mrc, and nrc values indicating coarser approximations than

HEVC. All 22 alternatives have the same value of nrc (0.0605). The worst alternative

transforms are T1, T5, and T15 having the largest orc (0.0566) and mrc (0.1282)

values as highlighted in red in Table 4.4. The best alternative approximated is

identified to be T16 with orc and mrc values of 0.0391 and 0.1218, respectively. For

this reason, T16 was chosen to be the approximated transform matrix to be further

78

analysed as the replacement of 32 × 32 HEVC core matrix (including the three

embedded smaller matrices).

4.2.3 Arithmetic Complexity Analysis

 In order to compare the number of bit shifts and additions/subtractions

required by the chosen approximated transform matrix, T16, the same approaches of

multiplier-free implementation, even–odd decomposition, and MCM are applied.

The even part of the 4-point transform is the same as the original HEVC transform,

thus it can be realised in the same way as (3.5) costing two shifts and two additions.

The odd part of 4-point transform can be executed by (4.4a)–(4.4b) involving four

shifts and two additions, where d is again the odd intermediate data after the add/sub

part.

80d = (64 +
1
 16)d (4.4a)

36d = (32 +
2
 4)d (4.4b)

 Similarly, the odd part of the 8-point transform is performed using (4.5a)–

(4.5d) incurring five shifts and four additions.

96d = (64 +
1
 32)d (4.5a)

72d = (64 +
2
 8)d (4.5b)

48d = (64 – 16)d = (32 +
3
 16)d (4.5c)

20d = (16 +
4
 4)d (4.5d)

 The odd-part of the 16-point transform is implemented as shown by (4.6a)–

(4.6g) costing five shifts and six additions. Note that in (4.6d), although 56d can

equally be implemented by 40d + 16d utilising the already calculated 40d (4.6e), it

would incur a two-stage adder (as 40d + 16d would be calculated sequentially after

(4.6e)), and could introduce a larger path delay in the data flow between the input, d,

and the required output, 56d.

79

96d = (64 +
1
 32)d (4.6a)

80d = (64 +
2
 16)d (4.6b)

68d = (64 +
3
 4)d (4.6c)

56d = (64 –
4
 8)d (4.6d)

40d = (32 +
5
 8)d (4.6e)

28d = (32 –
6
 4)d (4.6f)

8d = d << 3 (4.6g)

 The odd-part of the 32-point transform implemented using (4.7a)–(4.7l)

requires five shifts and ten additions/subtractions. Implementing the transform with

(4.7a)–(4.7f) using the most right-hand side of these equations would involve only

four shifts and ten additions. However, this would incur a seven-stage adder as the

additions in (4.7a)–(4.7f) have to be performed serially after calculating (4.7g), thus

increasing the critical path delay (cpd) and reducing the applicable maximum clock

frequency. Although this seven-stage of adders can be implemented in a two- or

three-pipeline fashion to reduce the cpd, this would complicate the overall control

operation as the other transforms (4-/8-/16-point) are executable in only a single cc.

Furthermore, the savings attainable by the latter configuration in this 32-point case is

too small (only one shift) as opposed to the first configuration.

96d = (64 +
1
 32)d = 80d + 16d (4.7a)

80d = (64 +
2
 16)d = 72d + 8d (4.7b)

72d = (64 +
3
 8)d = 68d + 4d (4.7c)

68d = (64 +
4
 4)d = 60d + 8d (4.7d)

60d = (64 –
5
 4)d = 56d + 4d (4.7e)

56d = (64 –
6
 8)d = 48d + 8d (4.7f)

48d = (32 +
7
 16)d (4.7g)

80

40d = (32 +
8
 8)d (4.7h)

32d = d << 5 (4.7i)

24d = (16 +
9
 8)d (4.7j)

12d = (8 +
10

 4)d (4.7k)

4d = d << 2 (4.7l)

 Table 4.5 shows the arithmetic complexity in a multiplier-free

implementation of N-point/N × N 1-D approximated core transform using even–odd

decomposition and MCM. When compared with Table 3.7, the numbers of

adders/subtractors in the adder tree and add/sub part are the same. The only

differences are in the numbers of shifts and adders/subtractors in the multiplier

replacement, thus affecting the total number of adders/subtractors. Table 4.6 shows

that about 13.8% savings in the total number of shifts and around 27.2% in the total

number of adders/subtractors could be achieved by the chosen approximated core

transform in comparison to the original HEVC transform matrices.

Table 4.5 Complexity in multiplier-free N-point/N × N 1-D approximated core

transform using even–odd decomposition and Multiple-Constant Multiplication

(MCM)

Size

Multipliers

Shifts

Adders/Subtractors

Element Quantity
Multiplier

Replacement

Adder

Tree
1

Add/Sub

part
Total

4-point

64 2 2 * 1 0 - - -

80 2
2 * 4 2 * 2

- - -

36 2 - - -

Total 6 10 4 4 4 12

8-point

(odd

rows)

96 4

4 * 5 4 * 4

- - -

72 4 - - -

48 4 - - -

20 4 - - -

Total 16 20 16 12 8 36

81

16-

point
(odd

rows)

90 8

8 * 5 8 * 6

- - -

87 8 - - -

80 8 - - -

70 8 - - -

57 8 - - -

43 8 - - -

25 8 - - -

9 8 - - -

Total 64 40 48 56 16 120

32-

point

(odd

rows)

90 32

16 * 5 16 * 10

- - -

88 16 - - -

85 16 - - -

82 16 - - -

78 16 - - -

73 16 - - -

67 16 - - -

61 16 - - -

54 16 - - -

46 16 - - -

38 16 - - -

31 16 - - -

22 16 - - -

13 16 - - -

4 16 - - -

Total 256 80 160 240 32 432

Total 342 150 232 312 60 600

82

Table 4.6 Computational savings in multiplier-free N-point/N × N 1-D

approximated core transform using even–odd decomposition and Multiple-Constant

Multiplication (MCM)

Size

Forward Transform

HEVC Approximated, T16

Shifts Adds Shifts (Savings) Adds (Savings)

4-point 10 16 10 (0.00%) 12 (25.0%)

8-point

(odd

rows)

20 48 20 (0.00%) 36 (25.0%)

16-point

(odd

rows)

48 168 40 (16.7%) 120 (28.6%)

32-point

(odd

rows)

96 592 80 (16.7%) 432 (27.0%)

Total 174 824 150 (13.8%) 600 (27.2%)

4.2.4 Transform and Intermediate Scaling

 As one of the criteria of the chosen integers in the approximated transform

matrices is multiples of four, these integers are scaled down by four and this

common factor is absorbed in the subsequent intermediate scaling. Therefore, the

odd part of the 4-point approximated and scaled transform is implemented as (4.8a)–

(4.8b) involving three shifts and two additions.

20d = (16 +
1
 4)d (4.8a)

9d = (8 +
2
 1)d (4.8b)

 Similarly, the odd-part of the 8-point transform is calculated using (4.9a)–

(4.9d) incurring four shifts and four additions.

83

24d = (16 +
1
 8)d (4.9a)

18d = (16 +
2
 2)d (4.9b)

12d = (8 +
3
 4)d (4.9c)

5d = (4 +
4
 1)d (4.9d)

 The odd part of the 16-point transform is executed as shown by (4.10a)–

(4.10g) costing four shifts and six additions.

24d = (16 +
1
 8)d (4.10a)

20d = (16 +
2
 4)d (4.10b)

17d = (16 +
3
 1)d (4.10c)

14d = (16 –
4
 2)d (4.10d)

10d = (8 +
5
 2)d (4.10e)

7d = (8 –
6
 1)d (4.10f)

2d = d << 1 (4.10g)

 The odd part of the 32-point transform is implemented using (4.11a)–(4.11l)

requiring four shifts and ten additions/subtractions.

24d = (16 +
1
 8)d (4.11a)

20d = (16 +
2
 4)d (4.11b)

18d = (16 +
3
 2)d (4.11c)

17d = (16 +
4
 1)d (4.11d)

15d = (16 –
5
 1)d (4.11e)

14d = (16 –
6
 2)d (4.11f)

12d = (8 +
7
 4)d (4.11g)

84

10d = (8 +
8
 2)d (4.11h)

8d = d << 3 (4.11i)

6d = (4 +
9
 2)d (4.11j)

3d = (2 +
10

 1)d (4.11k)

1d = d (4.11l)

Table 4.7 shows the arithmetic complexity in a multiplier-free

implementation of N-point/N × N 1-D approximated and scaled core transform using

even–odd decomposition and MCM. When compared with Table 4.5, the numbers of

adders/subtractors are the same. The only difference is in the number of shifts. Table

4.8 shows that a further 20.0% savings could be attained in the total number of shifts

by the approximated and scaled core transform, namely in this thesis as ST16, in

comparison to the approximated transform matrices, namely T16. ST16 requires

31.0% fewer shifts and 27.2% fewer additions/subtractions when compared with the

original HEVC core transform.

Table 4.7 Complexity in multiplier-free N-point/N × N 1-D approximated and

scaled core transform using even–odd decomposition and Multiple-Constant

Multiplication (MCM)

Size

Multipliers

Shifts

Adders/Subtractors

Element Quantity
Multiplier

Replacement

Adder

Tree
1

Add/Sub

part
Total

4-
point

16 2 2 * 1 0 - - -

20 2
2 * 3 2 * 2

- - -

9 2 - - -

Total 6 8 4 4 4 12

8-

point

(odd
rows)

24 4

4 * 4 4 * 4

- - -

18 4 - - -

12 4 - - -

5 4 - - -

Total 16 16 16 12 8 36

85

16-

point
(odd

rows)

24 8

8 * 4 8 * 6

- - -

20 8 - - -

20 8 - - -

17 8 - - -

14 8 - - -

10 8 - - -

7 8 - - -

2 8 - - -

Total 64 32 48 56 16 120

32-

point

(odd

rows)

24 32

16 * 4 16 * 10

- - -

20 16 - - -

20 16 - - -

20 16 - - -

20 16 - - -

18 16 - - -

17 16 - - -

15 16 - - -

14 16 - - -

12 16 - - -

10 16 - - -

8 16 - - -

6 16 - - -

3 16 - - -

1 16 - - -

Total 256 64 160 240 32 432

Total 342 120 232 312 60 600

86

Table 4.8 Computational savings in multiplier-free N-point/N × N 1-D

approximated and scaled core transform using even–odd decomposition and

Multiple-Constant Multiplication (MCM)

Size

Forward Transform

HEVC Approximated, T16
Approximated and

Scaled, ST16

Shifts Adds
Shifts

(Savings1
a
)

Adds

(Savings1
a
)

Shifts

(Savings1
a
)

(Savings2
b
)

Adds

(Savings1
a
)

4-point

10

16

10

(0.0%)

12

(25.0%)

8

(20.0%)

(20.0%)

12

(25.0%)

8-point

(odd

rows)

20

48

20

(0.0%)

36

(25.0%)

16

(20.0%)

(20.0%)

36

(25.0%)

16-point

(odd

rows)

48

168

40

(16.7%)

120

(28.6%)

32

(33.3%)

(20.0%)

120

(28.6%)

32-point

(odd

rows)

96

592

80

(16.7%)

432

(27.0%)

64

(33.3%)

(20.0%)

432

(27.0%)

Total

174

824

150

(13.8%)

600

(27.2%)

120

(31.0%)

(20.0%)

600

(27.2%)

a
 Savings against HEVC transform

b
 Savings against approximated transform, T16

87

As the approximated transform matrices are scaled down by four (2
2
), the

intermediate scaling factors after each 1-D transform operation can be reduced by

two bits, as shown in Table 4.9. The corresponding scaling factors in the inverse

transform are not affected.

Table 4.9 Intermediate scaling factors in 2-D forward approximated and scaled

transform

Stage Scaling Factor

First forward transform 2
(4 + M / 2)

After the first forward transform, ST1 2
– (B + M – 7)

Second forward transform 2
(4 + M / 2)

After the second forward transform, ST2 2
– (M + 4)

Total scaling for forward transform 2
(11 – B – M)

4.3 Approximated Forward Quantisation

 From Eq. (3.26), HEVC forward quantisation proposed by Budagavi et al.

(Budagavi, Fuldseth and Bjøntegaard, 2014) comprises:

i. Multiplications by quantiser multipliers, fi, and a ratio of frequency-

dependent scaling, 16/w[r][c], at the specific transform coefficient location

(r, c);

ii. Addition of an offset;

iii. Divisions by QP/6 and quantisation scale factor, SQ.

The addition requires an n-bit adder, depending on the required precision,

while the two divisions are performed by means of right bit shifts (opposite of left bit

shifts for a multiplication), and therefore are not too resource demanding. On the

other hand, multiplications using n-bit multipliers would be area consuming in

particular when implemented on hardware. For this reason, the multiplication

operation in the forward quantisation was selected to be simplified to reduce its

complexity. In addition, only the quantiser multipliers, fi, are considered in this

thesis, as these multipliers are 15-bit numbers. The multiplication with the ratio of

88

quantisation weight involves a calculation with the value of one or less, as w[r][c] is

equal to 16 or more, and therefore not considered in this work.

 Following the same approach of multiplier-free implementation as in the

transform stage, the multiplication of a transform coefficient, coeff, by fi can be

performed as shown in (4.12a)–(4.12f), costing 14 bit shifts and 22 adds/subs.

26214coeff = (((2
14

 + 2
13

) + (2
10

 + 2
9
)) + (((2

6
 + 2

5
) + (2

2
 + 2

1
))coeff

= (((2
14

 +
1
 2

13
) +

15
 (2

10
 +

5
 2

9
)) +

20
 (((2

6
 +

10
 2

5
) +

12
 2

2
) +

14
 2

1
))coeff (4.12a)

23302coeff = (((2
14

 +
2
 2

12
) +

16
 (2

11
 +

6
 2

9
)) +

21
 ((2

8
 +

11
 2

2
) +

13
 2

1
))coeff (4.12b)

20560coeff = ((2
14

 +
2
 2

12
) +

17
 (2

6
 +

7
 2

4
))coeff (4.12c)

18396coeff = ((((2
14

 + 2
10

) + (2
9
 + 2

8
)) + ((2

7
 + 2

6
) + (2

4
 + 2

3
))) + 2

2
)coeff

= ((2
14

 +
3
 2

11
) –

18
 (2

5
 +

8
 2

2
))coeff (4.12d)

16384coeff = (2
14

)coeff (4.12e)

14564coeff = (((2
13

 +
4
 2

12
) +

19
 (2

11
 +

9
 2

7
)) +

22
 ((2

6
 +

10
 2

5
) +

12
 2

2
))coeff (4.12f)

 Although the MCM technique could as well be applied sharing the resources

and costing 13 bit shifts and 22 adders per transform coefficient, the longest cpd

would be a three-stage adder tree to execute (4.12a), (4.12b), and (4.12f). A two-

stage adder tree is required each for (4.12c) and (4.12d), while 16384coeff (4.12e)

would simply need a single 14-bit left shift. One way to reduce the cpd is by

implementing these multiplications in a two-stage pipeline consisting of a maximum

of two adders per pipeline stage.

 As a minor contribution, this thesis aims to search for alternative quantiser

multipliers requiring fewer resources. These multipliers were approximated based on

the following criteria:

i. A maximum of two-stage adder tree

ii. Yielding the minimum difference with respect to the original

multiplication

89

 Consequently, only (4.12a), (4.12b), and (4.12f) were selected to be replaced

by alternative multiplier values, and (4.12c)–(4.12e) were retained as each of these

multipliers requires a two-stage adder tree or less. Table 4.10 shows several of the

considered alternatives. Although the search set may not be exhaustive, based on

these alternatives, this thesis proposes a set of approximated quantiser multipliers,

namely Q (4.13).

Table 4.10 Several alternative quantiser multipliers

Original

Multiplier

Equivalent bit shift – add operation Difference

(× coeff)

26214

(4.12a)

(2
14

 + 2
13

) + (2
10

 + 2
9
) = 26112 –102

(2
14

 + 2
13

) + (2
11

 + 2
10

) = 27648 1434

(2
14

 + 2
13

) + 2
11

 = 26624 410

(2
14

 + 2
13

) = 24576 –1638

(2
15

) = 32768 6554

23302

(4.12b)

(2
14

 + 2
12

) + (2
11

 + 2
9
) = 23040 –262

(2
14

 + 2
12

) + (2
11

 + 2
10

) = 23552 250

(2
14

 + 2
12

) = 20480 –2822

(2
14

 + 2
13

) = 24576 1274

(2
14

 + 2
13

) – (2
10

 + 2
8
) = 23296 –6

14564

(4.12f)

(2
13

 + 2
12

) + (2
11

 + 2
7
) = 14464 –100

(2
13

 + 2
12

) + (2
11

 + 2
8
) = 14592 28

(2
13

 + 2
12

) = 12288 –2276

(2
14

 – 2
9
) – (2

8
 + 2

4
) = 15600 1036

90

 [] (4.13)

Multiplications with Q using combinations of bit shifts and additions, as well

as adopting the MCM technique as shown by (4.14a)–(4.14f) would cost 11 bit shifts

and 14 adders/subtractors per transform coefficient, i.e., savings of 21.4% and 36.4%

in the number of bit shifts and additions/subtractions, respectively. Although these

savings are obtained only in the quantiser multipliers and may not indicate the

overall resource reductions in the whole quantisation process, little contributions

collectively could yield a bigger impact.

26112coeff = (((2
14

 +
1
 2

13
) +

10
 (2

10
 +

5
 2

9
))coeff (4.14a)

23296coeff = (((2
14

 +
2
 2

13
) –

11
 (2

10
 +

6
 2

8
))coeff (4.14b)

20560coeff = ((2
14

 +
2
 2

12
) +

12
 (2

6
 +

7
 2

4
))coeff (4.14c)

18396coeff = ((2
14

 +
3
 2

11
) –

13
 (2

5
 +

8
 2

2
))coeff (4.14d)

16384coeff = (2
14

)coeff (4.14e)

14592coeff = (((2
13

 +
4
 2

12
) +

14
 (2

11
 +

9
 2

8
))coeff (4.14f)

4.4 Summary

 An approximated and complexity-reduced 32 × 32 forward core transform

matrix, namely T16, for an HEVC encoder was first described in this chapter. In a

multiplier-free, even–odd decomposition, and MCM implementation, 13.8% and

27.2% savings could be achieved in the number of bit shifts and

additions/subtractions, respectively, by this approximated transform matrix in

comparison to the original HEVC transform matrix. This matrix can as well be

scaled down by two-bit, namely ST16, providing a further 20.0% saving in the

number of bit shifts. Finally, a set of approximated quantiser multipliers were also

introduced, namely Q, offering savings of 21.4% and 36.4% in the number of bit

shifts and additions/subtractions, respectively, when compared with the quantiser

multipliers suggested in (Budagavi, Fuldseth and Bjøntegaard, 2014). The next

chapter presents the experimental results using these approximated values in HEVC

reference software.

91

Chapter 5

Software-based Performance Evaluation of

Approximated Forward Transform and

Quantisation

Abstract This chapter evaluates the experimental results obtained by applying the

approximated forward transform and approximated quantisation previously

described, in HEVC reference software. The results are compared with the original

HEVC algorithms in terms of objective quality metrics (Peak Signal to Noise Ratio

(PSNR) and Bjøntegaard-Delta Bitrate (BD-rate)), and subjective observations.

5.1 Pilot Study

 Prior to assessing the coding performance of the chosen approximated

transform matrix, T16, a pilot study was conducted using HEVC reference software

version 13.0 (HM–13.0) (JCT-VC, 2014). This was the latest version released by

JCT-VC when the work presented in this thesis kick-started. For consistency, HM–

13.0 was used throughout this thesis. The software was considered mature when an

older version 10.0 (HM–10.0) was made available.

 The approximated 32 × 32 transform matrix (and consequently including the

internal smaller matrices) used in the pilot study was not T16 as described in Section

4.3, but with a slight difference in three of the entries (27
th
, 28

th
, and 29

th
 entries).

Table 5.1 compares this matrix, labelled as V, with T16 as well as HEVC, scaled and

floating DCT (Dsf), and scaled and rounded DCT (Dsr) as references. V has a poorer

worst-case orthogonality measure, orc, (0.0442) as opposed to T16 (0.0391), but has

the same worst-case mrc (0.1218) and nrc (0.0605) measures as T16. It is assumed

that the arithmetic savings of V and T16 over HEVC are similar (Table 4.6).

 In this pilot study, 24 test video sequences were encoded. These sequences

were progressively-scanned videos, formatted as YUV 4:2:0 colour space, and

categorised into six classes, A–F, mainly based on their spatial resolutions.

Sequences in classes A–D are natural videos of resolutions 2560 × 1600, 1920 ×

92

1080, 832 × 480, and 416 × 240, respectively. Class E samples are 1280 × 720 video

conferencing sequences, while class F comprises a video of resolution 832 × 480,

one with 1024 × 768, and two with 1280 × 720 containing graphical screen contents

(Table 5.2).

Table 5.1 Comparison of approximated transform matrix in pilot study, V with

T16, HEVC, Dsf and Dsr

First

column

Transform Alternatives

Dsf Dsr HEVC V T16

0 64.00 64 64 64 64

1 90.40 90 90 96 96

2 90.07 90 90 96 96

3 89.53 90 90 96 96

4 88.77 89 89 96 96

5 87.80 88 88 80 80

6 86.61 87 87 80 80

7 85.22 85 85 80 80

8 83.62 84 83 80 80

9 81.82 82 82 80 80

10 79.82 80 80 80 80

11 77.63 78 78 80 80

12 75.26 75 75 72 72

13 72.70 73 73 72 72

14 69.96 70 70 68 68

15 67.06 67 67 68 68

16 64.00 64 64 64 64

17 60.78 61 61 60 60

18 57.42 57 57 56 56

19 53.92 54 54 56 56

20 50.28 50 50 48 48

21 46.53 47 46 48 48

22 42.67 43 43 40 40

23 38.70 39 38 40 40

24 34.64 35 36 36 36

25 30.49 30 31 32 32

26 26.27 26 25 24 28

27 21.99 22 22 20 24

28 17.66 18 18 16 20

29 13.28 13 13 12 12

30 8.87 9 9 8 8

31 4.44 4 4 4 4

orc 0.0000 0.0037 0.0029 0.0442 0.0391

mrc 0.0000 0.0077 0.0213 0.1218 0.1218

nrc 0.0000 0.0109 0.0013 0.0605 0.0605

93

Two coding profiles supported by HEVC version 1 – Main and Main 10

profiles – were applied in this pilot study. The encoding structures Random Access

(RA) and Low delay with bidirectional inter-predicted (B)-frames (LB) were

employed in order to simulate the entertainment and interactive applications,

respectively (Ohm et al., 2012). In RA, intra-predicted (I)-frames are inserted every

24, 32, 48, or 64 frames for sequences with rates of 24, 30, 50, and 60 fps,

respectively. On the other hand, in LB, only the first frame is an I-frame while the

rest are B-frames.

A Group of Pictures (GOP) of eight was applied, and four base quantisation

parameter (QP) values were considered: 22, 27, 32, and 37, for the I-frames

encoding. The chosen QP values represent normal quantisation within the whole

range of supported QPs (Bossen, 2013). Hierarchical bidirectional-coding was also

enabled, with a QP offset value of one between each temporal level. These settings

are according to the common test conditions (CTC) set by JCT-VC (Bossen, 2013)

and similar to the ones applied in (Grois et al., 2013). Table 5.3 summarises the

experimental settings applied in this pilot study.

Table 5.2 Test video sequences used in pilot study on approximated transform,

V

Class Sequence Resolution Frame rate (fps)

A

A1 – Traffic

2560 × 1600

30

A2 – PeopleOnStreet 30

A3 – Nebuta 60

A4 – SteamLocomotive 60

B

B1 – Kimono

1920 × 1080

24

B2 – Parkscene 24

B3 – Cactus 50

B4 – BasketballDrive 50

B5 – BQTerrace 60

C

C1 – BasketballDrill

832 × 480

50

C2 – BQMall 60

C3 – PartyScene 50

C4 – RaceHorses 30

D

D1 – BasketballPass

416 × 240

50

D2 – BQSquare 60

D3 – BlowingBubbles 50

D4 – RaceHorses 30

94

Class Sequence Resolution Frame rate (fps)

E

E1 – FourPeople

1280 × 720

60

E2 – Johnny 60

E3 – KristenAndSara 60

F

F1 – BasketballDrillText 832 × 480 50

F2 – ChinaSpeed 1024 × 768 30

F3 – SlideEditing 1280 × 720 30

F4 – SlideShow 1280 × 720 20

Table 5.3 Experimental settings in pilot study on approximated transform, V

HEVC Reference Software Version 13.0 (HM–13.0)

Profiles Main and Main 10

Encoding Structures Random Access (RA) and

Low Delay with B-frames (LB)

Test Video Sequences 24 (Table 5.2)

Intra-period for Random Access 24, 32, 48, or 64

Group of Pictures (GOP) 8

Hierarchical Bidirectional Coding Enabled

Base Quantisation Parameters (QP) 22, 27, 32, 37

QP offset between temporal level +1

5.1.1 Peak Signal to Noise Ratio (PSNR)

 For every test video sequence and QP value, the average Peak Signal to

Noise ratio, PSNRYUV was calculated as a weighted sum of the individual component

average PSNRY, PSNRU, and PSNRV according to (5.1) (Ohm et al., 2012).

PSNRYUV = (6 ∙ PSNRY + PSNRU + PSNRV) / 8 (5.1)

Figs. 5.1 and 5.2 present the PSNR-based rate-distortion (R-D) curves under

the RA and LB configurations, respectively, for a Class B sequence, B4 –

BasketballDrive. A difference between two corresponding R-DPSNR curves using the

original HEVC transform and approximated pilot transform, V, is hardly noticeable

as the two R-D curves almost overlap each other for this sequence in both Main and

95

Main 10 profiles. This is a typical observation of the tested video sequences in this

pilot study, suggesting that in the presence of a normal quantisation, the four

simplified transform matrices, V, could provide an equivalent quality-coding

performance to the original HEVC set in the entertainment and interactive scenarios.

96

Fig. 5.1 R-DPSNR curves of B4 – BasketballDrive sequence using original

(HEVC) and approximated (V) transform matrices under RA configuration and in (a)

Main and (b) Main 10 profiles

(a)

(b)

97

Fig. 5.2 R-DPSNR curves of B4 – BasketballDrive sequence using original

(HEVC) and approximated (V) transform matrices under LB configuration and in (a)

Main and (b) Main 10 profiles

(a)

(b)

98

5.1.2 Structural Similarity (SSIM) Index

To complement PSNR, structural similarity (SSIM) index measurement was

also included in this study. SSIM is a combination of luminance, contrast, and

structure comparison functions (Wang et al., 2004). It has a scale between zero and

one, where readings that are closer to one indicate high-quality samples. It has been

shown that SSIM has better correlations with subjective Mean Opinion Score (MOS)

than PSNR (Wang et al., 2004).

Similar to PSNRYUV, the mean SSIMYUV was calculated as a weighted sum of

individual SSIMY, SSIMU, and SSIMV means for each test video sequence and QP

value (5.2). Figs. 5.3 and 5.4 display the corresponding R-D curves for B4 –

BasketballDrive sequence in terms of SSIMYUV. Again, a difference between two R-

DSSIM curves using HEVC and V is not obvious for this sequence as both R-DSSIM

curves almost overlap each other in both Main and Main 10 profiles.

SSIMYUV = (6 ∙ SSIMY + SSIMU + SSIMV) / 8 (5.2)

99

Fig. 5.3 R-DSSIM curves of B4 – BasketballDrive sequence using original

(HEVC) and approximated (V) transform matrices under RA configuration and in (a)

Main and (b) Main 10 profiles

(a)

(b)

100

Fig. 5.4 R-DSSIM curves of B4 – BasketballDrive sequence using original

(HEVC) and approximated (V) transform matrices under LB configuration and in (a)

Main and (b) Main 10 profiles

(a)

(b)

101

5.1.3 Bjøntegaard-Delta Bitrate (BD-rate)

Bjøntegaard-delta bitrate (BD-rate) measurement (Bjøntegaard, 2008) was

subsequently used to calculate the average bitrate difference between two R-D

curves at the same objective PSNRYUV and SSIMYUV of the reference R-D curve. A

positive BD-rate value indicates an increase in the bitrate to achieve the same

PSNRYUV or SSIMYUV quality, while a negative BD-rate value means a saving in the

bitrate and therefore favourable.

A summary of average BD-rate levels for each class is presented in Table 5.4

for RA and LB encoding structures in Main profile. There are positive BD-rate

values in all classes, with the overall average BD-rate values of 1.1% and 0.6% for

the RA and LB case, respectively. Similar observations could be seen in Main 10

profile. Although these increases may not be regarded as small penalties from the

video coding perspective, they are far lower than the complexity savings anticipated

by the approximated matrices as presented earlier in Table 4.6.

Table 5.4 Average BD-rate values (%) for equal PSNRYUV and SSIMYUV

between the original (HEVC) and approximated (V) transform matrices in Main

profile

Class
Random Access (RA) Low Delay (LB)

PSNRYUV SSIMYUV PSNRYUV SSIMYUV

A 1.8 1.6 - -

B 1.5 1.7 0.7 0.8

C 0.7 0.7 0.5 0.5

D 0.7 0.6 0.4 0.4

E - - 0.6 0.8

F 0.5 0.6 0.6 0.5

Overall 1.1 1.1 0.6 0.6

5.1.4 Visual Observations

Fig. 5.5 provides the snapshots of the last frame of B4 – BasketballDrive

sequence encoded and reconstructed using (a) the original (HEVC) and (b) the

102

approximated (V) transform matrices under RA configuration in Main profile. The

base QP for intra-frame coding in this example was 32, and due to the applied QP

offsets in the hierarchical bidirectional-coding settings, the QP value of the last

frame of this sequence was increased by +4, i.e., QP(frame 499) = 36. The visual

qualities of both snapshots appear to be identical, and this observation is supported

by the corresponding objective values of PSNRYUV and SSIMYUV as provided in the

caption of Fig. 5.5. A slight bitrate increment was obtained using V transform

matrices, as indirectly reflected by Table 5.4 earlier.

In order to better evaluate the quality difference between the two sample

frames in Fig. 5.5, Fig. 5.6 displays (a) the image difference and (b) the histogram of

pixel differences of the last frame encoded and reconstructed using V transform

matrices over HEVC. Most differences appear to be around object edges with the

vast majority (96.93%) of them having values of 25 or less, i.e., not exceeding 10%

of the dynamic range (256 for 8-bit image or video). The pixel differences near these

edges are primarily attributed to transform matrices of lower sizes (4 × 4 and 8 × 8)

whereas transforms of higher sizes (16 × 16 and 32 × 32) are more applicable in

large homogeneous areas of a picture.

103

Fig. 5.5 Snapshots of B4 – BasketballDrive sequence (frame 499, RA, Main,

QP = 36) using (a) original (HEVC) (17552 bits, PSNRYUV = 35.839 dB, SSIMYUV =

0.9041) and (b) approximated (V) (17560 bits, PSNRYUV = 35.822 dB, SSIMYUV =

0.9041) transform matrices

(a)

(b)

104

Fig. 5.6 (a) Image difference and (b) histogram of pixel differences of the last

frame (frame 499, RA, Main, QP = 36) of B4 – BasketballDrive sequence using

approximated (V) transform matrices over HEVC

(a)

(b)

105

Figs. 5.7 and 5.8 provide the corresponding diagrams for the LB

configuration, with the QP value of the last frame in this configuration increasing by

+3 due to the hierarchical bidirectional-coding settings, i.e., QP(frame 499) = 35.

The qualities of the frames also appear to be visually identical, with the objective

PSNRYUV and SSIMYUV values supporting this remark (as provided in the caption of

Fig. 5.7). As the LB configuration involves only a single I-frame at the beginning of

the coding sequence, the bitrates are higher than in the RA case. Using approximated

V transform matrices under the LB configuration also yields a higher bitrate

increment than in the RA scenario due to the carried over noise. From Fig. 5.8, most

pixel differences also concentrate near object edges with the vast majority (97.21%)

of them having values of 25 or lower. Similar observations could be observed in

Main 10 profile for both LB and RA configurations.

106

Fig. 5.7 Snapshots of B4 – BasketballDrive sequence (frame 499, LB, Main,

QP = 35) using (a) original (HEVC) (31504 bits, PSNRYUV = 36.186 dB, SSIMYUV =

0.9038) and (b) approximated (V) (31824 bits, PSNRYUV = 36.159 dB, SSIMYUV =

0.9036) transform matrices

(a)

(b)

107

Fig. 5.8 (a) Image difference and (b) histogram of pixel differences of the last

frame (frame 499, LB, Main, QP = 35) of B4 – BasketballDrive sequence using

approximated (V) transform matrices over HEVC

(a)

(b)

108

5.1.5 Encoder-Decoder Compatibility

A major change in the forward transform matrices in the encoder requires the

corresponding inverse transform matrices to be integrated into the decoder to avoid

any mismatch issue. To see the negative impacts of having an incompatible forward-

inverse transform operation, all bitstreams encoded with the approximated matrices,

V, in Main profile for QPs of 22 and 37 were decoded using the original HM-13.0

decoder.

Table 5.5 presents the average PSNR differences (dB) of individual Y-, U-,

and V-components for all classes in both RA and LB configurations for QP 22. In all

cases, the decoded videos suffer PSNR drops in all three components. The most

severe PSNR drops were observed in classes A, B, and E, i.e., high-resolution

videos. The average drops decrease with decreasing spatial resolution with the least

difference in the smallest resolution group, class D. The chrominance U- and V-

components appear to be affected more, but as the HVS is more sensitive to

luminance, a lower PSNR drop in the Y-component would still render an annoying

viewing experience. On average, the PSNR difference of Y-component is about -5dB

in both RA and LB configurations, while the drops of U- and V-components are

higher in the RA configuration, about -10dB, than in the LB configuration, more

than -7dB. These drops are more severe in QP 22 than QP 37. It is, therefore,

inevitable to have compatible transform processing blocks in both encoder and

decoder.

109

Table 5.5 Average PSNR differences (dB) for proposed bitstreams in Main

Profile and QP 22 decoded with original HEVC decoder (HM-13.0)

Class
Random Access (RA) Low Delay (LB)

Y U V Y U V

A -7.87 -19.44 -18.69 - - -

B -6.21 -14.40 -14.56 -6.76 -11.36 -11.08

C -3.12 -7.57 -7.84 -3.83 -7.67 -7.52

D -1.66 -4.73 -4.12 -2.88 -3.02 -5.89

E - - - -7.46 -11.93 -8.76

F -5.51 -6.46 -5.39 -4.26 -4.89 -5.11

Mean -4.87 -10.52 -10.12 -5.03 -7.77 -7.67

5.1.6 Conclusions

From the conducted pilot study on the approximated transform for HEVC

using V matrices, the following conclusions could be drawn. Positive BD-rate

increments were seen on average in all six classes of test sequences, with an average

of +1.1% in RA and 0.6% in LB. These positive BD-rate increments are larger in

high-resolution videos (Classes A, B, and E) in comparison to low-resolution videos

(Classes C, D, and F). These BD-rate differences also appear to be larger in the RA

configuration as opposed to LB for natural videos (Classes B, C, and D) but about

the same for class F with computer graphical contents. Similar results were obtained

using PSNR and SSIM objective quality metrics. Considering natural videos, the

approximated transform matrices appear to carry more bits for I-frames than B-

frames with respect to the original HEVC matrices. No significant differences were

seen in Main and Main 10 profiles in terms of objective metrics (PSNR and BD-rate)

and visual observations of the reconstructed videos. From sample video frames, most

pixel differences obtained using V transform matrices against HEVC lie near object

edges with the vast majority (over 96% in both configurations) of them having

values of 25 or lower. Finally, employing a different set of transform matrices in the

encoder would require the corresponding inverse transform matrices in the decoder

to avoid highly distorted decoded videos.

110

5.2 Approximated Transforms

 This section evaluates the coding performance of the approximated core

transform matrix, T16, and its scaled version, ST16, with HEVC core transform.

5.2.1 Experimental Settings

Based on the results of the pilot study, it was decided to conduct the

experiments on T16 and ST16 only in Main profile. It is assumed that similar results

would be obtained in Main 10 profile. In addition, this thesis puts more emphasis on

high-resolution videos because the coding performance impact seen from the pilot

study was higher in the high-resolution classes. Furthermore, there is a growing

tendency to embed high-resolution capability in video-enabled devices due to

technological advances and increasing demands, and low-resolution videos are

slowly phasing out. Therefore, only Classes A (cropped UHD) and B (Full-HD

1080p) test video sequences were evaluated under RA coding structure, and Classes

B and E (HD-ready 720p) videos under LB. Low-resolution videos should exhibit

better coding performance results. In addition, only PSNR-based BD-rate coding

performance metric was used from this experiment onwards. Similar results were

expected to be obtained using SSIM. Table 5.6 shows the updated experimental

settings used in this experiment.

Table 5.6 Experimental settings on approximated transform

HEVC Reference Software Version 13.0 (HM–13.0)

Profiles Main

Encoding Structures Random Access (RA) and

Low Delay with B-frames (LB)

Test Video Sequences Classes A and B for RA

Classes B and E for LB

Intra-period for RA 24, 32, 48, or 64

Group of Pictures (GOP) 8

Hierarchical Bidirectional Coding Enabled

Base Quantisation Parameters (QP) 22, 27, 32, 37

QP offset between temporal level +1

111

5.2.2 Peak Signal to Noise Ratio (PSNR)

Fig. 5.9 presents the PSNR-based rate-distortion (R-D) curves under the RA

and LB configurations for a Class B sequence, B4 – BasketballDrive. Similar to the

pilot study, the three R-D curves using the original (HEVC) and approximated (T16

and ST16) transform matrices appear to almost overlap each other in both RA and

LB configurations. Similar observations could as well be seen with most other

videos. The corresponding R-D curves for the other tested video sequences are

provided in Appendix A. These R-D curves suggest that using a normal quantisation

value (QP = 22–32), the four approximated transform matrices of T16 and ST16 may

not introduce significant quality-coding performance degradations in the

entertainment and interactive scenarios when compared with using the original

HEVC transform set.

112

Fig. 5.9 R-DPSNR curves of B4 – BasketballDrive sequence using original

HEVC and approximated transform matrices, T16 and ST16, under (a) RA and (b)

LB configurations in Main profile

(a)

(b)

113

5.2.3 Bjøntegaard-Delta Bitrate (BD-rate)

A summary of average BD-rate levels for each class is presented in Table 5.7

for RA and LB encoding structures in Main profile. Again, there are unfavourable

positive BD-rate values in all involved classes, with the overall average BD-rate

values of 1.7% and 0.7% in the RA and LB case, respectively. The highest BD-rate

differences in RA from Class A were obtained from A3 – NebutaFestival and A4 –

SteamLocomotive, possibly due to these sequences being in 10-bit depth prior to

conversion to 8-bit depth to be encoded in Main profile. From Class B, the largest

BD-rate increases were obtained from B1 – Kimono1 in both RA and LB

configurations, possibly because there is a scene change in this sequence. Although

these increases may not be regarded as small penalties from the video coding

perspective, they are considerably lower than the complexity savings anticipated by

the approximated transform matrices as presented earlier in Table 4.8.

Table 5.7 Average BD-rate values (%) for equal PSNRYUV between HEVC and

approximated, T16 and ST16, transform matrices in Main profile

Class Sequence
Random Access (RA) Low Delay (LB)

T16 ST16 T16 ST16

A

(2560 × 1600)

Cropped UHD

A1 1.5 1.5 - -

A2 1.3 1.3 - -

A3 2.3 2.3 - -

A4 2.3 2.4 - -

Average 1.8 1.9 - -

B

(1920 × 1080)

Full HD

B1 2.7 2.7 1.1 1.1

B2 1.3 1.2 0.5 0.5

B3 1.5 1.5 0.8 0.7

B4 1.1 1.1 0.6 0.7

B5 1.1 1.1 0.6 0.7

Average 1.5 1.5 0.7 0.7

114

E

(1280 × 720)

HD-ready

E1 - - 0.8 0.8

E2 - - 0.6 0.3

E3 - - 0.8 0.9

Average - - 0.8 0.7

Overall
a
 1.7 1.7 0.7 0.7

a
 Overall average of Classes A and B for RA and Classes B and E for LB

5.2.4 Visual Observations

Fig. 5.10 provides the snapshots of the last frame of B4 – BasketballDrive

sequence under the RA configuration in Main profile, encoded and reconstructed

with HEVC and approximated, T16 and ST16 transform matrices, using the four

base QP values (22–37). Table 5.8 equips Fig. 5.10 with the corresponding bitrate

and PSNR values of the frames. The visual qualities of these snapshots look identical

as supported by the objective PSNR values of all three YUV channels. Again, bitrate

increments could be seen in most of the cases using T16 and ST16 approximated

transform matrices.

Fig. 5.11 displays the image differences of the respective frames shown in

Fig. 5.10 using T16 and ST16 matrices over HEVC. In general, the pixel differences

are mainly near object edges, and these differences seem to be less visible as the QP

value increases. Fig. 5.12 plots the histograms of pixel differences and Table 5.9

groups the percentages of these differences into three categories: ≤ 25; 26 – 50; > 50.

For both T16 and ST16, the percentages of pixel differences having a value of 25 or

lower increase with increasing QP. Consequently, pixel differences in the other two

categories decrease in percentage as the QP increases. For the ≤ 25 category, while

the differences between T16 and ST16 are not too obvious for QPs 27, 32, and 37,

ST16 is better than T16 at QP 22. Against HEVC, both transform matrices give pixel

differences not exceeding 25 in at least 88% of cases under the normal QP range

being studied (22–37) and the RA configuration.

115

Fig. 5.10 Snapshots of the last frame of B4 – BasketballDrive sequence (frame

499, RA, Main) using HEVC (left column), T16 (middle column), and ST16 (right

column) transform matrices and base QP values of (a) 22, (b) 27, (c) 32, and (d) 37

(a)

(b)

(c)

(d)

116

Table 5.8 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under RA configuration using HEVC and approximated

transform matrices

Base QP HEVC T16 ST16

22 Bits 126624 128336 128096

PSNR Y: 38.27 dB

U: 42.64 dB

V: 44.00 dB

Y: 38.25 dB

U: 42.65 dB

V: 44.02 dB

Y: 38.26 dB

U: 42.67 dB

V: 44.01 dB

27 Bits 43544 43888 44552

PSNR Y: 36.48 dB

U: 41.54 dB

V: 42.19 dB

Y: 36.41 dB

U: 41.50 dB

V: 42.21 dB

Y: 36.48 dB

U: 41.53 dB

V: 42.18 dB

32 Bits 17552 17776 17416

PSNR Y: 34.32 dB

U: 40.37 dB

V: 40.43 dB

Y: 34.34 dB

U: 40.36 dB

V: 40.42 dB

Y: 34.32 dB

U: 40.37 dB

V: 40.39 dB

37 Bits 8280 8120 8344

PSNR Y: 32.16 dB

U: 39.56 dB

V: 39.17 dB

Y: 32.24 dB

U: 39.45 dB

V: 39.17 dB

Y: 32.24 dB

U: 39.43 dB

V: 39.19 dB

117

Fig. 5.11 Image differences of the last frame of B4 – BasketballDrive sequence

(frame 499, RA, Main) using T16 (left column) and ST16 (right column) transform

matrices over HEVC with base QP values of (a) 22, (b) 27, (c) 32, and (d) 37

(a)

(b)

(c)

(d)

118

Fig. 5.12 Histograms of pixel differences of the last frame of B4 –

BasketballDrive sequence (frame 499, RA, Main) using T16 (left column) and ST16

(right column) transform matrices over HEVC with base QP values of (a) 22, (b) 27,

(c) 32, and (d) 37

(a)

(b)

(c)

(d)

119

Table 5.9 Percentage (%) of pixel differences of the last frame of B4 –

BasketballDrive sequence using T16 and ST16 transform matrices over HEVC under

RA configuration in Main profile

Base

QP

Transform

Pixel Difference

T16 ST16

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50

22 88.63 9.40 1.97 93.98 5.57 0.45

27 94.97 4.24 0.80 95.02 4.21 0.77

32 97.37 2.31 0.32 97.35 2.23 0.42

37 97.74 1.94 0.33 97.58 2.03 0.39

 Fig. 5.13 displays the snapshots of the last frame of B4 – BasketballDrive

sequence under the LB configuration in Main profile with Table 5.10 showing the

corresponding bitrate and PSNR values of the frames. The closeness in the obtained

objective PSNR levels offer some support to the visual quality of these frames. Fig.

5.14 provides the image differences of the respective frames using T16 and ST16

matrices against HEVC shown in Fig. 5.13. As previously remarked for the RA

configuration, most differences appear around object edges and these differences

look less visible with increasing QPs. Fig. 5.15 plots the histograms of pixel

differences and Table 5.11 shows the corresponding percentages of pixel differences

grouped under the same three categories: ≤ 25; 26 – 50; > 50. The majority of these

differences are also in the ≤ 25 category; with increasing percentages as the QP is

increased for both T16 and ST16 transform matrices. There is a slight ambiguity

with ST16 at QP27, where its percentage in the ≤ 25 category (89.57%) is lower than

T16 (94.72%) while the percentages are higher at the other three QP values. More

importantly against HEVC, both approximated transform matrices yield pixel

differences of 25 or lower in at least 82% of cases under the studied QP values (22–

37) and the LB configuration.

120

Fig. 5.13 Snapshots of B4 – BasketballDrive sequence (frame 499, LB, Main)

using HEVC (left column), T16 (middle column), and ST16 (right column)

transform matrices and base QP values of (a) 22, (b) 27, (c) 32, and (d) 37

(a)

(b)

(c)

(d)

121

Table 5.10 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under LB configuration using HEVC and approximated

transform matrices

Base QP HEVC T16 ST16

22 Bits 232448 231424 234440

PSNR Y: 38.92 dB

U: 42.70 dB

V: 44.24 dB

Y: 38.92 dB

U: 42.67 dB

V: 44.19 dB

Y: 38.92 dB

U: 42.66 dB

V: 44.21 dB

27 Bits 80568 80064 80632

PSNR Y: 37.08 dB

U: 41.38 dB

V: 42.19 dB

Y: 37.06 dB

U: 41.37 dB

V: 42.20 dB

Y: 37.06 dB

U: 41.36 dB

V: 42.19 dB

32 Bits 31504 31032 30640

PSNR Y: 34.85 dB

U: 40.10 dB

V: 40.27 dB

Y: 34.78 dB

U: 40.08 dB

V: 40.19 dB

Y: 34.80 dB

U: 40.11 dB

V: 40.25 dB

37 Bits 14592 14248 14608

PSNR Y: 32.54 dB

U: 39.23 dB

V: 38.94 dB

Y: 32.51 dB

U: 39.24 dB

V: 39.02 dB

Y: 32.55 dB

U: 39.21 dB

V: 39.00 dB

122

Fig. 5.14 Image differences of the last frame of B4 – BasketballDrive sequence

(frame 499, LB, Main) using T16 (left column), and ST16 (right column) transform

matrices over HEVC with base QP values of (a) 22, (b) 27, (c) 32, and (d) 37

(a)

(b)

(c)

(d)

123

Fig. 5.15 Histograms of pixel differences of the last frame of B4 –

BasketballDrive sequence (frame 499, LB, Main) using T16 (left column) and ST16

(right column) transform matrices over HEVC with base QP values of (a) 22, (b) 27,

(c) 32, and (d) 37

(a)

(b)

(c)

(d)

124

Table 5.11 Percentage (%) of pixel differences of the last frame of B4 –

BasketballDrive sequence using T16 and ST16 transform matrices over HEVC under

LB configuration in Main profile

Base

QP

Transform

Pixel Difference

T16 ST16

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50

22 82.23 14.72 3.05 82.86 14.62 2.53

27 94.72 4.51 0.76 89.57 8.93 1.51

32 95.94 3.41 0.65 96.01 3.41 0.58

37 97.89 1.81 0.30 96.67 2.82 0.51

5.2.5 Conclusions

Both approximated transforms, T16 and ST16, provide a similar average BD-

rate coding performance of +1.7% in RA and +0.7% in LB configurations,

respectively, for videos of HD-quality or beyond. From reconstructed video frame

samples, identical visual and objective quality levels were obtained against HEVC,

with at least 88% and 82% of pixel differences not exceeding 25 under RA and LB

configurations, respectively. The increments in bitrate in order to achieve a similar

objective quality may not be regarded as small, but the potential hardware

complexity savings as shown earlier in Table 4.8 could outweigh these penalties in

bitrate.

125

5.3 Approximated Quantisation

 This sub-section evaluates the coding performance of the approximated

quantisation multiplier set, Q, against the original HEVC quantisation.

5.3.1 Experimental Settings

The following experiment on the approximated quantisation multiplier set, Q,

follows the experimental settings applied for the approximated transform matrices,

T16 and ST16. Therefore, only Classes A (cropped UHD) and B (Full-HD 1080p)

test video sequences were evaluated under RA coding structure, and Classes B and E

(HD-ready 720p) videos under LB. It is assumed that low-resolution videos would

exhibit better coding performance results. On top of that, as there are six multipliers

in quantisation set, the number of base QP values was extended from four to six to

include 17 and 42. Table 5.12 summarises the experimental settings used in this

section.

Table 5.12 Experimental settings on approximated quantisation

HEVC Reference Software Version 13.0 (HM–13.0)

Profiles Main

Encoding Structures Random Access (RA) and

Low Delay with B-frames (LB)

Test Video Sequences Classes A and B for RA

Classes B and E for LB

Intra-period for RA 24, 32, 48, or 64

Group of Pictures (GOP) 8

Hierarchical Bidirectional Coding Enabled

Base Quantisation Parameters (QP) 17, 22, 27, 32, 37, 42

QP offset between temporal level +1

5.3.2 Peak Signal to Noise Ratio (PSNR)

Fig. 5.16 presents the PSNRYUV-based R-D curves under RA and LB

configurations for B4 – BasketballDrive sequence. Again, a difference between two

126

corresponding R-D curves using the original HEVC and approximated quantisation

is hardly noticeable for this sequence in both entertainment and interactive scenarios.

The corresponding R-D curves for the other tested video sequences are provided in

Appendix B. In most of these sequences, both R-D curves are almost aligned with

each other, indicating the closeness of the quality-bitrate performance achieved by

the approximated quantisation multiplier set, Q, in videos of HD-quality or beyond.

127

Fig. 5.16 R-DPSNR curves of B4 – BasketballDrive sequence using original

HEVC and approximated quantisation multiplier set, Q, under (a) RA and (b) LB

configurations and in Main profile

(a)

(b)

128

5.3.3 Bjøntegaard-Delta Bitrate (BD-rate)

A summary of average BD-rate levels (YUV-based) for each class under

study is presented in Table 5.13 for RA and LB encoding structures in Main profile.

In RA, The average BD-rate value for classes A and B is both 0.0%, suggesting there

is a negligible effect of the approximated quantisation multiplier set, Q, over HEVC.

In LB, the same average value of 0.0% was obtained for class B videos, and slight

bitrate savings were achievable for class E videos with an average of -0.1%. The

most savings was seen from E2 – Johnny, where the background is most stagnant

among the test conference video sequences, with a -0.3% average BD-rate value.

Table 5.13 Average BD-rate values (%) for equal PSNRYUV between HEVC and

approximated quantisation multipliers in Main profile

Class Sequence Random Access (RA) Low Delay (LB)

A

(2560 × 1600)

Cropped UHD

A1 0.0 -

A2 0.0 -

A3 0.0 -

A4 0.1 -

Average 0.0 -

B

(1920 × 1080)

Full HD

B1 0.0 0.0

B2 0.0 0.0

B3 0.0 0.0

B4 0.0 0.0

B5 0.0 0.0

Average 0.0 0.0

E

(1280 × 720)

HD-ready

E1 - -0.1

E2 - -0.3

E3 - 0.0

Average - -0.1

Overall
a
 0.0 -0.1

a
 Overall average of Classes A and B for RA and Classes B and E for LB

129

5.3.4 Visual Observations

Fig. 5.17 shows the last frame of B4 – BasketballDrive sequence under the

RA configuration. In each base QP value, obvious video degradations or

improvements are not apparent using the approximated quantisation multipliers, Q,

over HEVC. This observation is reflected in the closeness of the PSNR levels of

individual Y-, U-, and V-components of the frame as shown in Table 5.14. Fig. 5.18

displays the image differences and the histograms of pixel differences between the

two sets of quantisation multipliers. Pixel differences appear to be less noticeable as

QP increases from 17 to 42.

Fig. 5.19 shows the corresponding snapshots of the last frame of B4 –

BasketballDrive sequence under the LB configuration. Table 5.15 equips these

snapshots with the respective PSNR values. As seen in the RA configuration, the

visual and objective qualities of the reconstructed frames using Q and HEVC at most

QP settings seem indistinguishable. Fig. 5.20 provides the image differences and

histograms of pixel differences, where pixel differences are the most apparent at QP

equals 17 and become less visible as QP increases.

Table 5.16 groups the percentages of pixel differences in both RA and LB

configurations into three categories: ≤ 25; 26 – 50; > 50. It can be seen that

periodical insertions of I-frames as applied in RA achieves more pixel differences

having values of 25 or lower as opposed to LB, especially at QPs 17 and 22. At these

two base QPs, due to the hierarchical bidirectional settings, the QP values for the last

frame of B4 – BasketballDrive sequence are respectively increased to 21 and 26 in

RA and 20 and 25 in LB. Recalling the approximated quantisation multiplier set

from (4.13), Q = [26112, 23296, 20560, 18396, 16384, 14592]
T
 where Q(2), Q(3),

and Q(4) are maintained as in the original HEVC quantisation multipliers. At QPs 20

and 21 (i.e., base QP = 17), the involved quantisation multipliers are Q(20%6) =

20560 and Q(21%6) = 18396, respectively, i.e., as in the original HEVC set.

Similarly, Q(26%6) = 20560. Only QP 25 involves one of the three approximated

quantisation multipliers, i.e., Q(25%6) = 23296. At this QP under LB configuration,

the total percentage of pixel differences of 50 or lower is 97.65% (Table 5.16),

130

which is a great improvement relative to QP 20, where the total percentage of the

first two categories is 80.95%.

As previously described in Chapter 4, the first base QP of 17, as well as the

last QP of 42, were added to the normal QP range recommended by the CTC

(Bossen, 2013) to ensure that all six quantisation multipliers were covered in this

experiment. Low range of QP values is useful in producing videos of cinema quality.

Thus, although Q may appear to be less suitable to be coupled with QPs below 22

especially in low delay applications, such a high quality encoded video signal is

typically unnecessary in video communications, for instance in live broadcasts and

videoconferencing meetings which require a transmission with small delays.

131

Fig. 5.17 Snapshots of the last frame of B4 – BasketballDrive sequence (frame

499, RA, Main) using HEVC (left column) and approximated quantisation

multipliers, Q (right column) and QP values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37,

and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

132

Table 5.14 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under RA configuration using HEVC and approximated,

Q, quantisation multipliers

Base QP HEVC Q

17 Bits 510176 506048

PSNR Y: 39.51 dB

U: 43.47 dB

V: 45.63 dB

Y: 39.52 dB

U: 43.48 dB

V: 45.64 dB

22 Bits 126624 126760

PSNR Y: 38.27 dB

U: 42.64 dB

V: 44.00 dB

Y: 38.28 dB

U: 42.68 dB

V: 44.07 dB

27 Bits 43544 44832

PSNR Y: 36.48 dB

U: 41.54 dB

V: 42.19 dB

Y: 36.51 dB

U: 41.56 dB

V: 42.20 dB

32 Bits 17552 17784

PSNR Y: 34.32 dB

U: 40.37 dB

V: 40.43 dB

Y: 34.35 dB

U: 40.41 dB

V: 40.47 dB

37 Bits 8280 8264

PSNR Y: 32.16 dB

U: 39.56 dB

V: 39.17 dB

Y: 32.22 dB

U: 39.53 dB

V: 39.08 dB

42 Bits 3680 3896

PSNR Y: 30.11 dB

U: 38.67 dB

V: 37.77 dB

Y: 30.15 dB

U: 38.61 dB

V: 37.78 dB

133

Fig. 5.18 Image differences and histograms of pixel differences of the last

frame of B4 – BasketballDrive sequence (frame 499, RA, Main) using approximated

quantisation multipliers, Q over HEVC at QP values of (a) 17, (b) 22, (c) 27, (d) 32,

(e) 37, and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

134

Fig. 5.19 Snapshots of the last frame of B4 – BasketballDrive sequence (frame

499, LB, Main) using HEVC (left column) and approximated quantisation

multipliers, Q (right column) and QP values of (a) 17, (b) 22, (c) 27, (d) 32, (e) 37,

and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

135

Table 5.15 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under LB configuration using HEVC and approximated,

Q, quantisation multipliers

Base QP HEVC Q

17 Bits 1289808 1288472

PSNR Y: 41.77 dB

U: 43.75 dB

V: 45.94 dB

Y: 41.78 dB

U: 43.74 dB

V: 45.93 dB

22 Bits 232448 231848

PSNR Y: 38.92 dB

U: 42.70 dB

V: 44.24 dB

Y: 38.91 dB

U: 42.67 dB

V: 44.18 dB

27 Bits 80568 80416

PSNR Y: 37.08 dB

U: 41.38 dB

V: 42.19 dB

Y: 37.09 dB

U: 41.38 dB

V: 42.19 dB

32 Bits 31504 31536

PSNR Y: 34.85 dB

U: 40.10 dB

V: 40.27 dB

Y: 34.82 dB

U: 40.06 dB

V: 40.27 dB

37 Bits 14592 13792

PSNR Y: 32.54 dB

U: 39.23 dB

V: 38.94 dB

Y: 32.55 dB

U: 39.22 dB

V: 38.94 dB

42 Bits 6688 7000

PSNR Y: 30.28 dB

U: 38.55 dB

V: 37.81 dB

Y: 30.27 dB

U: 38.49 dB

V: 37.84 dB

136

Fig. 5.20 Image differences and histograms of pixel differences of the last

frame of B4 – BasketballDrive sequence (frame 499, LB, Main) using approximated

quantisation multipliers, Q over HEVC at QP values of (a) 17, (b) 22, (c) 27, (d) 32,

(e) 37, and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

137

Table 5.16 Percentage (%) of pixel differences of the last frame of B4 –

BasketballDrive sequence using approximated quantisation multipliers, Q, in Main

profile under RA and LB configurations

Base

QP

Configuration

Pixel Differences

RA LB

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50

17 78.46 19.48 2.06 43.73 37.22 19.05

22 93.47 5.73 0.80 82.80 14.85 2.35

27 93.07 5.86 1.07 94.41 4.81 0.78

32 96.85 2.72 0.43 95.87 3.47 0.66

37 96.40 2.99 0.61 96.67 2.88 0.44

42 96.40 3.03 0.57 96.93 2.67 0.40

5.3.5 Conclusions

The approximated quantisation multiplier set, Q, does not provide a

significant difference in terms of coding performance on encoded HD-quality videos

or larger, over the original quantisation multipliers in HEVC. Average BD-rate

values of 0.0% and -0.1% obtained in RA and LB configurations, respectively,

suggest that Q could be employed in encoders producing HEVC-compliant

bitstreams, providing some complexity reductions in this processing block without

requiring any changes in the decoders. From reconstructed video frame samples, at

least 93% and 82% of pixel differences do not exceed the value of 25 in RA and LB,

respectively, in base QP values of 22 and above, further suggesting that the

approximated quantisation multipliers are practically applicable in entertainment and

interactive applications at mid to high range of QP settings. Although lower

performances obtained at the base QP of 17 in both configurations; with only around

78% and 43% of pixel differences having the values of 25 or lower in RA and LB,

respectively, make Q to be less favourable for low values of QP, i.e., very fine

quantisation levels, such a high-quality encoded video signal is unnecessary in

typical use cases especially involving video transmissions.

138

5.4 Approximated Transform and Quantisation

 After evaluating the coding performances of approximated transform matrix

sets, T16 and ST16, as well as approximated quantisation multiplier set, Q, over the

original HEVC encoding, this section assesses the combined performance of an

approximated transform matrix with the approximated quantisation multipliers. As

ST16 offers more arithmetic savings than T16 over HEVC transform matrices, as

well as it is the eventual transform matrix intended to be applied in the HEVC

encoder (and the corresponding modified inverse transform in the decoder), ST16

has therefore been selected to be combined with Q.

5.4.1 Experimental Settings

This experiment follows exactly the same settings as applied in the previous

section on the approximated quantisation multiplier set, Q. Table 5.17 summarises

the experimental settings used in this section (same as Table 5.12).

Table 5.17 Experimental settings on approximated transform and quantisation

HEVC Reference Software Version 13.0 (HM–13.0)

Profiles Main

Encoding Structures Random Access (RA) and

Low Delay with B-frames (LB)

Test Video Sequences Classes A and B for RA

Classes B and E for LB

Intra-period for RA 24, 32, 48, or 64

Group of Pictures (GOP) 8

Hierarchical Bidirectional Coding Enabled

Base Quantisation Parameters (QP) 17, 22, 27, 32, 37, 42

QP offset between temporal level +1

5.4.2 Peak Signal to Noise Ratio (PSNR)

Fig. 5.21 presents the PSNRYUV-based R-D curves under RA and LB

configurations for B4 – BasketballDrive sequence. Again, a difference between two

corresponding R-D curves using the original HEVC and the combination of

approximated transform and quantisation, ST16 + Q, is hardly noticeable for this

sequence in both entertainment and interactive scenarios, as both R-D curves almost

overlap each other. The corresponding R-D curves for the other tested video

139

sequences are provided in Appendix C. In most of these sequences, both R-D curves

almost overlap each other, indicating the closeness of the quality-bitrate performance

achieved by the combination of the approximated transform matrices, ST16, and

approximated quantisation multipliers, Q.

140

Fig. 5.21 R-DPSNR curves of B4 – BasketballDrive sequence using original

HEVC and combination of approximated transform matrix and quantisation

multiplier sets, ST16 + Q, under (a) RA and (b) LB configurations and in Main

profile

(a)

(b)

141

5.4.3 Bjøntegaard-Delta Bitrate (BD-rate)

A summary of average BD-rate levels for each class is presented in Table

5.18 for RA and LB encoding structures in Main profile. Comparing with Table 5.7

earlier, there are no or little improvements of around 0.1% or 0.2% in most

sequences such as A1 – Traffic, B3 – Cactus, and B5 – BQTerrace as opposed to

using ST16 approximated transform matrices only. The biggest improvements could

be seen from A4 – SteamLocomotive and B1 – Kimono1 sequences, with a 0.5% BD-

rate drop each using ST16 + Q combination. However, A3 – NebutaFestival

sequence remains a problematic one with a 4.0% BD-rate in comparison to 2.3%

when using either ST16 or T16 alone, thus raising the average of Class A to 2.1%

rather than 1.9% seen earlier in Table 5.7. Besides these remarks, the other BD-rate

values of ST16 + Q and ST16 appear to be similar in both RA and LB

configurations.

Table 5.18 Average BD-rate values (%) for equal PSNRYUV between

HEVC and combination of approximated transform and quantisation multipliers,

ST16 + Q, in Main profile

Class Sequence Random Access (RA) Low Delay (LB)

A

(2560 × 1600)

Cropped UHD

A1 1.3 -

A2 1.3 -

A3 4.0 -

A4 1.9 -

Average 2.1 -

B

(1920 × 1080)

Full HD

B1 2.2 1.2

B2 1.3 0.6

B3 1.3 0.7

B4 1.1 0.7

B5 1.0 0.7

Average 1.4 0.8

E

(1280 × 720)

HD-ready

E1 - 0.6

E2 - 0.6

E3 - 0.6

Average - 0.6

142

Overall
a
 1.7 0.7

a
 Overall average of Classes A and B for RA and Classes B and E for LB

5.4.4 Visual Observations

Fig. 5.22 displays the last reconstructed frame of B4 – BasketballDrive

sequence under the RA configuration using the combination of ST16 and Q. The

same remarks can be made on the perceptual quality of these frames as in the

approximated transforms, T16 and ST16, as well as the approximated quantisation

multipliers, Q, i.e., the corresponding frames at each base QP settings appear

visually identical. A difference in objective quality levels, as shown in Table 5.19, is

also hardly noticeable in all six QP values under investigation. Fig. 5.23 provides the

image differences and histograms of pixel differences between ST16 + Q

combination and HEVC in the last reconstructed frames. As seen in the Q

experiment, the worst differences were obtained at QP 17, where pixel differences

were also present in large homogeneous areas in addition to object edges. As QP

increases to 42, pixel differences generally improves.

Fig. 5.24 shows the corresponding snapshots of the last frame of B4 –

BasketballDrive sequence under the LB configuration, with the respective objective

PSNR values provided in Table 5.20. Again, the visual and objective quality levels

between the two sets of transform and quantisation multipliers, HEVC and ST16 +

Q, appear identical in most QP settings. Fig. 5.25 provides the image differences and

histograms of pixel differences in the last frame of B4 – BasketballDrive sequence

using ST16 + Q against HEVC. As seen in the Q case, the pixel differences are the

most apparent at the base QP of 17 and generally improve as QP grows.

Finally, Table 5.21 groups the percentages of pixel differences in RA and LB

configurations into three categories: ≤ 25; 26 – 50; > 50. Similar to the observation

in the Q case, RA generally achieves better percentages of pixel differences having

values of 25 or smaller compared to LB, in particular at QP values of 17 and 22. At

QP 17, the introduction of ST16 to Q seems to further decrease the achieved

percentages of the first category of pixel differences, with only around 53% in RA

and 37% in LB as opposed to 78% and 43% respectively obtained earlier using only

Q. Nevertheless, low range of QP values such as below 22 produce cinematic

143

production-quality videos, and is a surplus to most general applications such as home

cinema even at UHD-quality. Low values of QP are also unlikely to be used in

transmissions of video signals, where the speed and bandwidth are of paramount

importance. QP 17 was included in this experiment for additional coverage, as well

as to have six QP settings to ensure the inclusiveness of all six quantisation

multipliers. Still, at this QP, the total percentages of pixel differences of 50 or lower

from the video frame samples are 89.96% in RA and 73.34% in LB, which are not

too low. In summary, the combination of ST16 + Q is promising for QP values of 22

or greater in both RA and LB configurations, i.e., for general entertainment and

interactive applications, but may be less favourable for lower QPs, i.e., for high-

quality, cinema-like video productions and transmissions.

144

Fig. 5.22 Snapshot of the last frame of B4 – BasketballDrive sequence (frame

499, RA, Main) using HEVC (left column) and a combination of approximated

transform and quantisation multipliers, ST16 + Q (right column), and QP values of

(a) 17, (b) 22, (c) 27, (d) 32, (e) 37, and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

145

Table 5.19 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under RA configuration using HEVC and approximated

transform and quantisation multipliers, ST16 + Q in Main profile

Base QP HEVC ST16 + Q

17 Bits 510176 508960

PSNR Y: 39.51 dB

U: 43.47 dB

V: 45.63 dB

Y: 39.50 dB

U: 43.48 dB

V: 45.62 dB

22 Bits 126624 126048

PSNR Y: 38.27 dB

U: 42.64 dB

V: 44.00 dB

Y: 38.24 dB

U: 42.64 dB

V: 44.00 dB

27 Bits 43544 43816

PSNR Y: 36.48 dB

U: 41.54 dB

V: 42.19 dB

Y: 36.46 dB

U: 41.55 dB

V: 42.18 dB

32 Bits 17552 17544

PSNR Y: 34.32 dB

U: 40.37 dB

V: 40.43 dB

Y: 34.32 dB

U: 40.36 dB

V: 40.49 dB

37 Bits 8280 8400

PSNR Y: 32.16 dB

U: 39.56 dB

V: 39.17 dB

Y: 32.20 dB

U: 39.47 dB

V: 39.16 dB

42 Bits 3680 4016

PSNR Y: 30.11 dB

U: 38.67 dB

V: 37.77 dB

Y: 30.11 dB

U: 38.60 dB

V: 37.70 dB

146

Fig. 5.23 Image differences and histograms of pixel differences of the last

frame of B4 – BasketballDrive sequence (frame 499, RA, Main) using approximated

transform and quantisation multipliers, ST16 + Q over HEVC at QP values of (a) 17,

(b) 22, (c) 27, (d) 32, (e) 37, and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

147

Fig. 5.24 Snapshot of the last frame of B4 – BasketballDrive sequence (frame

499, LB, Main) using HEVC (left column) and a combination of approximated

transform and quantisation multipliers, ST16 + Q (right column), and QP values of

(a) 17, (b) 22, (c) 27, (d) 32, (e) 37, and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

148

Table 5.20 Number of bits and PSNR values of last frame of B4 –

BasketballDrive sequence under LB configuration using HEVC and approximated

transform and quantisation multipliers, ST16 + Q in Main profile

Base QP HEVC ST16 + Q

17 Bits 1289808 1290096

PSNR Y: 41.77 dB

U: 43.75 dB

V: 45.94 dB

Y: 41.75 dB

U: 43.73 dB

V: 45.90 dB

22 Bits 232448 232392

PSNR Y: 38.92 dB

U: 42.70 dB

V: 44.24 dB

Y: 38.92 dB

U: 42.69 dB

V: 44.22 dB

27 Bits 80568 80392

PSNR Y: 37.08 dB

U: 41.38 dB

V: 42.19 dB

Y: 37.07 dB

U: 41.36 dB

V: 42.18 dB

32 Bits 31504 31072

PSNR Y: 34.85 dB

U: 40.10 dB

V: 40.27 dB

Y: 34.79 dB

U: 40.05 dB

V: 40.19 dB

37 Bits 14592 13960

PSNR Y: 32.54 dB

U: 39.23 dB

V: 38.94 dB

Y: 32.51 dB

U: 39.20 dB

V: 39.02 dB

42 Bits 6688 7048

PSNR Y: 30.28 dB

U: 38.55 dB

V: 37.81 dB

Y: 30.26 dB

U: 38.52 dB

V: 37.89 dB

149

Fig. 5.25 Image differences and histograms of pixel differences of the last

frame of B4 – BasketballDrive sequence (frame 499, LB, Main) using approximated

transform and quantisation multipliers, ST16 + Q over HEVC at QP values of (a) 17,

(b) 22, (c) 27, (d) 32, (e) 37, and (f) 42

(a)

(b)

(c)

(d)

(e)

(f)

150

Table 5.21 Percentage (%) of pixel differences of the last frame of B4 –

BasketballDrive sequence using approximated transform and quantisation

multipliers, ST16 + Q in Main Profile under LB configuration

Base

QP

Configuration

Pixel Differences

RA LB

≤ 25 26 – 50 > 50 ≤ 25 26 – 50 > 50

17 53.49 36.47 10.04 37.70 35.64 26.65

22 95.34 4.05 0.61 82.59 14.28 3.13

27 94.38 4.66 0.96 93.65 5.54 0.80

32 96.67 2.86 0.47 95.26 4.01 0.72

37 96.32 3.09 0.59 97.87 1.85 0.28

42 97.67 2.03 0.30 96.57 2.91 0.52

5.4.5 Conclusions

Coding performances obtained by the combination of ST16 + Q in the HEVC

encoder are in general similar to those obtained using only ST16 or T16 in both RA

and LB configurations, with a BD-rate average value of 2.1% and 1.4% in each case,

respectively. In some sequences, some BD-rate improvements could as well be seen.

As noted earlier, these BD-rate increments may not be regarded as small penalties,

but much higher resource savings could potentially be gained as a trade-off point.

Reconstructed video frame samples achieved at least 94% and 82% of pixel

differences not exceeding the value of 25 in RA and LB configuration, respectively,

in base QP values of 22 and above, suggesting the suitability of ST16 + Q in general

entertainment and interactive applications. However, with only around 53% and 37%

of pixel differences of 25 or lower obtained in both RA and LB respectively at the

base QP of 17, this combination of approximated transform and quantisation

multipliers may less be desirable for encoding and transmitting superior, cinema-like

videos.

151

5.5 Summary

In this chapter, four experiments were presented regarding approximated

transforms and quantisation for HEVC. The first experiment was a pilot study on a

set of approximated transform matrices, V, to see its effects across all test video

classes in Main and Main 10 profiles conducted under RA and LB configurations to

simulate the entertainment and interactive application scenarios, respectively. From

the similar or better results obtained in both profiles and low-resolution videos, it

was decided to conduct the subsequent three experiments only in Main profile and

using video sequences of HD-quality or higher.

The second experiment was conducted on better-approximated transform

matrices, T16 and ST16, yielding an average BD-rate difference of 1.7% and 0.7%

each in RA and LB encoding structures, respectively, over four normal QP values

following the CTC (Bossen, 2013). The third experiment conducted on an

approximated quantisation multiplier set, Q, over six QP values provided 0.0% and -

0.1% BD-rate difference on average in RA and LB case, respectively, suggesting

that there is no significant difference in the coding performance despite offering

some complexity savings. Nevertheless, further analysis using pixel differences from

reconstructed video frame samples revealed that the suitability of Q may less be

preferable in transmitting cinema-quality, big screen video signals by incorporating

low QP values, if the need ever arises.

Finally, the last experiment was conducted by combining an approximated

transform with the approximated quantisation, ST16 + Q, over the same six QP

values yielding an average BD-rate difference of 1.7% in RA and 0.7% in LB, i.e.,

similar to those obtained in the second experiment using ST16 or T16 only.

Additionally, pixel differences analysis supports the applicability of ST16 + Q in

general entertainment and interactive use cases, i.e., when coupled with QP values of

22 or greater, but less suitable with lower QP values such as for motion picture

productions and transmissions.

Even though the bitrate increments in order to reach the same objective

quality levels as the original HEVC transform and quantisation cannot be regarded as

152

small penalties, the potential resource savings could be more favourable in a

complexity-reduced encoder to produce HEVC-like bitstreams.

153

Chapter 6

Dedicated Hardware Architecture Designs for

Approximated Transform, Intermediate

Scaling, and Approximated Quantisation

Abstract In order to estimate the potential hardware savings offered by the

approximated transform matrix sets, T16 and ST16, as well as the approximated

quantisation, Q, described thus far in this thesis, over the original HEVC algorithms,

this chapter presents architecture designs developed in this work for hardware

comparison purposes targeted on FPGA technology. Some care was taken to

maintain the necessary similarities between the designs for a fair comparison and

differ only in the core transform (including intermediate scaling) and/or quantisation

processing blocks.

6.1 Hardware-Software Co-design Methodology

 A computer program written in a High-Level Language (HLL) such as C++

can normally be run on a processor IC. This processor has an operating system (OS)

residing in it such as Linux, Windows, iOS, Android, etc. An HLL program is

executed in a sequential manner from the top to the bottom. Some programs such as

a video encoder have many computationally intensive functions which are

considerably more time consuming and resource demanding than the rest of the

program. Executing a large program only on software basis would possibly be too

impractical especially for applications requiring a real-time performance. A solution

to this problem is hardware acceleration or also known as hardware-software co-

design, where the most complex functions are offloaded from the main or master

core processor to slave hardware co-processor(s) or accelerator(s). These functions

are implemented by designing dedicated hardware architectures written in a

Hardware Description Language (HDL) such as VHDL, Verilog, SystemVerilog,

etc. (Fig. 6.1). An HDL program can be executed in sequential, parallel or

concurrent, and combinational (combination of sequential and parallel). Having

dedicated hardware designs speed-up the operations of complex functions, thus

154

allowing higher data throughputs necessary for many applications such as video

processing. Even running these hardware designs in a sequential manner would yield

a much smaller execution time in comparison to a fully software-based

implementation.

Fig. 6.1 Hardware acceleration concept with (a) fully software-based

implementation and (b) hardware-software co-design

(a)

(b)

155

Complexity and time-to-market are among crucial factors influencing the

success of digital circuits. Two out of many developed techniques to handle these

issues are design abstraction and hierarchical modular design. Typically in the design

of digital circuits, design abstraction levels in the increasing order are the device,

circuit, gate, functional module and architectural or system level (Table 6.1). At each

abstraction level, the internal details of a complex digital system may be represented

by a black box model, where this model contains all the necessary information

required by the module(s) at the immediate lower level of the design hierarchy.

These abstraction levels usually involve different design teams and could as well be

located at multiple sites. Having such black box models may not only substantially

reduce the design complexity, but also reduce design lead times especially in

meeting performance goals of Very Large Scale Integrated Circuits (VLSI) (Hani,

2011).

Modularisation applies the concept of “divide and conquer”, which is

attributed to King Philip II of Macedon (382–336 BC), to efficiently design any

complex system. The complexity of a design is conquered in such a way that a high-

level module is broken down or divided into a hierarchy of simpler modules, i.e.,

from the general and conceptual at the top, to the details at the bottom. By

employing a hierarchical modular design approach, the focus can be given to a single

module at a time, without being hindered by the complexity of the entire circuit. On

top of that, reuse of primitive or customised low-level modules can be made without

the need to redesigning the same modules each time. A smaller amount of effort

would also be necessary if these modules require minor future improvements (Hani,

2011).

 A hierarchical modular implementation involves two approaches which are

normally used together: 1) top-down and 2) bottom-up (Fig. 6.2). The top-down

approach decomposes a system into subsystems, where these subsystems can also be

further decomposed into simpler subsystems until a low enough level is reached such

that modules at this level can easily be implemented. Conversely, the bottom-up

approach connects the available or already developed modules to form subsystems,

and these subsystems can be further connected to form larger and more complex

subsystems until the complete operation is achieved.

156

Table 6.1 Typical digital design abstraction levels (Hani, 2011)

Graphical view Level
Primitive

units

Parameters of

concern

System /

Architectural

Level

Behavioural

modules
Silicon area

Register

Transfer Level

(RTL)

Functional

modules
Timing

Logic Level Gates, Bits
Delays (transitions /

propagations)

Circuit Level Transistors Voltage, Currents

Layout /

Physical Level
Layout layers

Topology,

Dimensions

Device Level
MOSFET

models

Current-Voltage

characteristics

Technology

Level

Process

models
Impurity profiles

157

Fig. 6.2 Hierarchical modular design approach (Hani, 2011)

6.2 Hardware Architecture Designs for Approximated Transform and

Intermediate Scaling

 This section briefly describes the 2-D transform hardware architecture

designed in this work. While some details have been left out, the walkthrough

information provided here is expected to facilitate the understanding of the designs.

These designs are intended as hardware slave co-processors. However, the master

processor and necessary interface modules are not developed in this work.

6.2.1 Top-level Transform Module (TM)

 By utilising the retained separable property of the transform core of HEVC

and the approximated sets, i.e., the 2-D transform can effectively be implemented as

two 1-D transforms with an intermediate transpose operation between them, the

hardware architecture designs herein presented adopt the column-row decomposition

approach. Furthermore, it was assumed that the input samples (prediction residuals)

to the transform stage arrive serially at a rate of one pixel/cycle. The output 2-D

transform coefficients were designed to be transferred in parallel at N pixels/cycle,

where N = 4, 8, 16, or 32.

158

Fig. 6.3 depicts the top-level functional block diagram of 2-D transform

hardware architecture developed in this work. This base architecture design consists

of a data path module (DM) and a control module (CM). The DM comprises a serial-

to-parallel (S2P) block, a 1-D transform block, a rounding and scaling (RS) block, a

transpose buffer, a second 1-D transform block, and a second RS block. For each

transform matrix (HEVC, T16, or ST16), the two 1-D transform blocks are exactly

the same modules used twice. On the other hand, the two RS blocks slightly differ

from each other depending on the necessary rounding and scaling for the first or

second stage of the transform operation.

The CM schedules the flow of operations by providing a control vector (a 5-

bit signal, CV) to the DM depending on the transform size to be executed. The CM

was designed based on a Mealy Finite State Machine (FSM). Unlike DM, the CM

operates on the falling edge of the master clock (clock).

The input signals of the architecture are n-bit prediction residual (Xrc), 2-bit

size, start, reset, and clock signals. The outputs are 32 16-bit 2-D transform

coefficients (Trc), valid signal to indicate when the outputs are ready for the next

process, and done signal to notify the last column of outputs. To maintain precision,

the internal bit width after the first 1-D transform core, m, varies depending on the

bit width of the input, Xrc.

Fig. 6.3 Top-level functional block diagram of 2-D transform architecture

159

6.2.2 Data path Module (DM)

Serial-to-parallel (S2P) block: The serial-to-parallel (S2P) block was

designed to transfer in parallel the input samples to the following 1-D transform

block for all four sizes supported by HEVC. It consists of 32 × 32 n-bit registers

(Fig. 6.4). It was also designed to ensure a continuous operation of the transform

block on all columns of the input block without stalling for the next complete

column. For an input block of size N × N, the first column is transferred in the first N

clock cycles. At the next cycle (N + 1), this whole column is transferred to the next

register column of the S2P. This is repeated for the next (N – 1) columns. The

latency of this block is, therefore, (N
2
 + 1) cycles. For the transform size of 4, 8, 16,

and 32, the latencies are 17, 65, 257, and 1025 cycles, respectively. The horizontal

and vertical flows of the input data are controlled by the ld0 and ld1 signals,

respectively.

Fig. 6.4 Functional block diagram of serial-to-parallel block (for clarity

reason, the clock and reset signals are not explicitly shown)

160

1-D transform block: The two 1-D transform blocks were designed using the

even-odd decomposition approach as depicted in Fig. 6.5 (a). Each transform size

consists of three basic modules: 1) AddSubN; 2) EvenN; 3) OddN. For N larger than

four (4), the EvenN part is made up of the three modules of N/2 transform. The 4-

point forward approximated transform, T16, is depicted in Fig. 6.5 (b), where

multiplier-free multiplications of 64, 80, and 36 are implemented as illustrated in

Fig. 6.5 (c), where IR_1 and OR_1 represent the internal input and output register,

respectively. Similar designs were applied for ST16, where the multiplication blocks

are down-scaled by four (16, 20, and 9). For HEVC transform blocks, the

corresponding multiplications are implemented as previously shown in Fig. 4.1. The

total clock cycle taken in the 4/8/16/32-point 1-D transform block is 3/4/5/6 cycles.

161

Fig. 6.5 Functional block diagram of (a) 1-D forward transform block using

even-odd decomposition, (b) 4-point approximated transform (T16), and (c)

multiplier-free multiplication by 80

Rounding and Scaling (RS) block: The rounding and scaling (RS) blocks

perform (6.1)–(6.2) to ensure that the intermediate transform coefficients stay within

16-bit width, where the values of offset and shift are summarised in Table 6.2 for 8-

bit input bit width.

(a)

(b) (c)

162

Rrc = Yrc + offset (6.1)

Src = Rrc >> shift (6.2)

Table 6.2 Offset and shift values in RS stage (for 8-bit input bit width)

Size

First

1-D Transform

Second

1-D Transform

Shift Offset Shift Offset

4 × 4 1 2
0
 8 2

7

8 × 8 2 2
1
 9 2

8

16 × 16 3 2
2
 10 2

9

32 × 32 4 2
3
 11 2

10

Transpose buffer: The transpose buffer designed in this architecture has a

basic structure of four levels of 4-by-4 register array as illustrated in Fig. 6.6 (a). The

horizontal or vertical flow of data inside this block is controlled internally by the 2-

bit t signal (Fig. 6.6 (b)).

163

Fig. 6.6 Functional block diagram of (a) transpose buffer and (b) basic 4-by-4

register array (for clarity reason the clock and reset signals are not explicitly shown)

(a)

(b)

164

6.2.3 Control Module (CM)

 The Control Module (CM) in this architecture consists of a Next State (NS)

logic module, a Present State (PS) register, an Output Logic module, and two 5-bit

up-counters (Fig. 6.7). The output of the CM is a 9-bit control signal, namely

Control Vectors (CV[8:0]). Five Most Significant Bits (MSBs) of CV, CV[8:4], are

delivered to the DM to schedule its operations according to the transform size (size)

to be performed. CV[8:7] respectively provide ld1 and ld0 signals to control the

vertical and horizontal data flow in the S2P module, CV[6] provides t0 to the

transpose buffer to transfer data horizontally or vertically for the transpose operation,

and CV[5:4] provide the valid and done signals respectively, to notify the master

device on the status of the whole transform operation. The four Least Significant Bits

(LSBs), CV[3:0] provide internal clear (clr0 and clr1) and load (ld0 and ld1) signals

to the two counters: Counter0 and Counter1. The design is based on a Mealy Finite

State Machine (FSM) model as shown in Fig. 6.8. The two counters provide internal

count signals, i and j, respectively, to execute nested loops and perform the FSM

accordingly. The start and clear input signals instruct the CM to begin its operation

and reset all the internal registers or counters, respectively.

Fig. 6.7 Functional block diagram of Control Module (CM)

165

Fig. 6.8 Finite State Machine of 2-D transform architecture designed in this

work (with some rough descriptions included)

Load S2P

vertically

(cell-

wise)

Load S2P

horizontally

(column-

wise) and

repeat

(vertically

and

horizontally)

Begin 1-D

transform

operation

Move 1-D

transform

coefficients

into

Transpose

buffer

Begin

transpose

operation

Second 1-D

transpose

operation

takes place

First column of 2-D

transform

coefficient data are

now available

(valid)

Last column of 2-D

transform

coefficient data are

now available and

the whole operation

is complete and

ready for the next

Transform Block

166

6.2.4 Functional Verification

 The architecture designs of the 2-D HEVC and approximated core

transforms, T16 and ST16, were described in parametric IEEE-VHDL and routed to

a Xilinx Virtex-6 xc6vl550t-2ff1760 FPGA as the target device using Xilinx ISE

14.7 tool chain. Functional simulations were performed for all three designs using

test benches and test vectors in the Xilinx ISim environment and the results were

verified with MATLAB software. Due to the complexity of the whole transform

operation, the validation was performed only at transform block (TB) level using

random n-bit signed residual values for all four transform sizes. The 2-D transform

coefficients obtained were then compared to ensure behavioural correctness.

 More thorough validations would certainly be more convincing, such as at

slice, frame, or sequence level. Considering all three YUV components by evaluating

at transform unit (TU) level would certainly be better. However, these

recommendations would further complicate the design stage. Finally, a real physical

implementation on hardware such as an FPGA board would clear many doubts about

the usefulness of the designs. Unfortunately, all these tasks were not feasible to be

realised in this work due to some practical constraints.

6.2.5 Results and Discussions

 Table 6.3 provides the latencies and execution times of these designs. For a

fair comparison, the designs for HEVC and approximated T16 and ST16 transforms

were made similar such that they would yield the same latencies and execution

times. Table 6.4 summarises the resource utilisation of HEVC and approximated

transforms. From this table, in the case of 9-bit input signals, T16 and ST16 matrices

utilise 38,507 and 38,383 slice registers respectively as opposed to 46,172 slice

registers consumed by HEVC transform matrices, i.e., a reduction of 16.6% and

16.9% respectively. Likewise, savings of 19.6% and 21.7% were observed in the

number of slice LUTs to implement the bit shifts and addition operations in the T16

and ST16 transform matrices when compared with HEVC transform matrices. Eight

registers and four LUTs are contained in a Xilinx Virtex-6 slice (Xilinx, 2015). T16

and ST16 hardware designs consume 16.9% and 20.8% fewer slices than HEVC

transform, respectively.

167

Table 6.3 Latency and execution times (clock cycles) of 2-D transform

architecture designs

Stage

Size

4 × 4 8 × 8 16 × 16 32 × 32

S2P 17 65 257 1025

1-D Transform 3 4 5 6

RS 2 2 2 2

Transpose 5 9 17 33

1-D Transform 3 4 5 6

RS 2 2 2 2

Total Latency 32 86 288 1074

Execution Time 36 94 304 1106

Table 6.4 Resource utilisation of 2-D HEVC and approximated transform

architecture designs

Parameter

Transform

HEVC T16 ST16

Input bit width (n) 9 9 9

Internal bit width (m) 20 20 20

168

Slice registers

(Savings %)

46,172 38,507

(16.6%)

38,383

(16.9%)

Slice LUTs

(Savings %)

51,448 41,342

(19.6%)

40,291

(21.7%)

Slices

(Savings %)

14,023 11,649

(16.9%)

11,100

(20.8%)

Operating Freq. (MHz) 200

Output rate (per cycle) 4 / 8 / 16 / 32

Throughput

(×10
9
 samples per

second)

0.8 / 1.6 / 3.2 / 6.4

Table 6.5 compares the implementations of the approximated transforms with

other FPGA implementations. The works by Conceição et al. (2013) and Zhao and

Onoye (2012) described earlier in sub-section 3.7.1 were implemented in Altera

FPGAs, thus a direct comparison with our work is not so feasible. This thesis used

the same FPGA device as Kalali et al. (2014), Xilinx Virtex-6 xc6vl550t-2, thus the

comparison is more appropriate although their work was on the inverse transform.

Additionally, although the exact FPGA type is not specified in (Kalali, Mert and

Hamzaoglu, 2016), their results are also included in Table 6.5 as the FPGA used is

also fabricated in 40 nm CMOS technology, which is the case for Xilinx Virtex-6.

The recent work by da Silveira et al. (2017) also used a Xilinx Virtex-6 FPGA, but

their work only covered a 1-D 16-point transform architecture. The recent work by

Chen, Zhang and Lu (2017) used more advanced Xilinx Virtex-7 and Zynq FPGAs

as well as Altera FPGAs, while Jridi and Meher (2016) used an older Xilinx Spartan

6 LX45T FPGA.

169

Both T16 and ST16 designs use about triple slice registers more than

reported in (Kalali et al., 2014; Kalali, Mert and Hamzaoglu, 2016). One probable

reason is due to the transpose buffer implementation using the register array instead

of on-chip memory, utilising 16-bit × 32 × 32, i.e., 16,384 registers instead of 32

BRAMs or 2 KB of memory. Other reasons are possibly the implementation of the

RS block instead of only the clipping block in (Kalali et al., 2014; Kalali, Mert and

Hamzaoglu, 2016), in addition to the internal bit-width of 27-bit used on a few

stages. An obvious advantage of excluding any use of on-chip memory is the higher

operating frequency achieved by T16 and ST16 designs (200 MHz) than all designs

in (Kalali et al., 2014; Kalali, Mert and Hamzaoglu, 2016). Consequently, at a

minimum throughput of 800 mega samples per second, T16 and ST16 designs are

able to process more QFHD frames per second (60 fps) than (Kalali et al., 2014) (48

fps) and the LU hardware in (Kalali, Mert and Hamzaoglu, 2016) (48 or 56 fps). As

a result, the minimum hardware efficiencies of T16 (0.0687 mega samples/sec/slice)

and ST16 (0.0721 mega samples/sec/slice) are higher than those designs (0.0397 –

0.0529 mega samples/sec/slice). The HU hardware in (Kalali, Mert and Hamzaoglu,

2016) have been well developed to sustain the processing of UHD videos of more

than 50 fps or QFHD @ 120 fps despite operating at lower frequencies (111 or 117

MHz) than T16 and ST16. Their HU designs are roughly twice more hardware

efficient (0.1660 and 0.1397 mega samples/sec/slice) than T16 and ST16.

Nevertheless, the initial aim of this work was to demonstrate the potential

savings from the approximated core transforms, T16 and ST16, when compared with

HEVC core transforms on the same hardware platform and using the same design

principles as depicted earlier in Table 6.4. At a 200 MHz operating frequency and a

minimum throughput of four samples per cycle, the design is capable of encoding a

4:2:0 QFHD @ 60 fps video (3840 × 2160 × 60 × 1.5 = 0.746496 ×10
9
 samples per

second).

170

Table 6.5 Resource utilisation of 2-D transform architecture designs

Parameter

Design

Kalali 2014

(Kalali et al.,

2014)

Kalali 2016

(Kalali, Mert and

Hamzaoglu, 2016)

This work

(T16)

This work

(ST16)

FPGA

Technology

Xilinx

Virtex-6
40 nm CMOS

Xilinx

Virtex-6

Xilinx

Virtex-6

Transform 2-D Inv. 2-D Inv. 2-D Fwd. 2-D Fwd.

Size 4/8/16/32 4/8/16/32 4/8/16/32 4/8/16/32

Internal bit width n.a. n.a. ≤ 27 ≤ 27

Slice registers
11,762a

11,763b

11,110c

11,230d

12,025e

12,200f

38,507 38,383

Slice LUTs
38,790a

38,821b

33,376c

35,555d

38,006e

41,905f

41,342 40,291

Slices
11,343a

11,397b

9,797c

10,080d

11,279e

12,712f

11,649 11,100

Memory

(BRAMs)
32

4/8/16/32c & d

8/8/16/32e & f
- -

Multipliers No No No No

Others Clipping Clipping
Round and

Scale

Round and

Scale

Operating freq.

(MHz)
150

116c

100d

117e

111f

200 200

Throughput

(×109 samples

per second)

0.6/1.2/2.4/4.8

0.464/0.928/1.856/3.712c

0.4/0.8/1.6/3.2d

1.872/1.872/1.872/3.744e

1.776/1.776/1.776/3.552
f

0.8/1.6/3.2/6.4 0.8/1.6/3.2/6.4

171

Supported

resolution @ fps
QFHD @ 48

QFHD @ 56c

QFHD @ 48d

UHD @ 56e

UHD @ 53f

QFHD @ 60 QFHD @ 60

Hardware

efficiencyg (×106

samples/sec/slice)

0.0529a

0.0526b

0.0474c

0.0397d

0.1660e

0.1397f

0.0687 0.0721

a
 MCM hardware

b
 MCM + Energy hardware

c
 MCM LU hardware

d
 MCM + Energy LU hardware

e
 MCM HU Hardware

f
 MCM + Energy HU Hardware

g
 Hardware efficiency = Min Throughput (×10

6
 samples/second)/Slices

6.2.6 Conclusions

 The architecture designs of the 2-D HEVC and approximated core

transforms, T16 and ST16, were presented in this section. The designs were

implemented on a Xilinx Virtex-6 FPGA device adopting the even-odd

decomposition, multiplier-free, and MCM approaches. Savings of 16.9% and 20.8%

in the number of slices were obtained by T16 and ST16 designs respectively over

HEVC transform (Table 6.4). Comparing with similar works in the literature (Kalali

et al., 2014; Kalali, Mert and Hamzaoglu, 2016), the T16 design utilises slightly

more slices (11,649) and the ST16 design uses slightly fewer slices (11,100) than

(Kalali et al., 2014) (11,343 or 11,397) (Table 6.5), while the number of slices in

(Kalali, Mert and Hamzaoglu, 2016) vary between 9,797 and 12,712. Despite using

approximated transform matrices, not much difference could be seen in the number

of slices in both T16 and ST16 designs over (Kalali et al., 2014; Kalali, Mert and

Hamzaoglu, 2016), mainly due to the implementation of the transpose buffer using

register arrays instead of BRAMs as applied in (Kalali et al., 2014; Kalali, Mert and

Hamzaoglu, 2016). However, both T16 and ST16 designs could operate at a higher

frequency (200 MHz compared to 100 – 150 MHz) and are capable of processing

more QFHD frames per second than (Kalali et al., 2014) and the LU hardware

designs in (Kalali, Mert and Hamzaoglu, 2016). Higher hardware efficiencies could

also be achieved by T16 (0.0687 mega samples/sec/slice) and ST16 (0.0721 mega

samples/sec/slice) than (Kalali et al., 2014) (0.0529 or 0.0526 mega

172

samples/sec/slice) and the LU designs in (Kalali, Mert and Hamzaoglu, 2016)

(0.0397 or 0.0474 mega samples/sec/slice). However, the HU designs in (Kalali,

Mert and Hamzaoglu, 2016) are twice more hardware efficient (0.1660 and 0.1397

mega samples/sec/slice) than T16 and ST16, and capable of supporting UHD videos

of more than 50 fps. In summary, the approximated transform schemes as adopted by

T16 and ST16 hardware architecture designs may yield a slightly better performance

than HEVC-compliant hardware architecture and considerable for a complexity-

reduced HEVC-like encoder hardware implementation.

6.3 Hardware Architecture Designs for Approximated Quantisation

 This section briefly describes the quantisation hardware architecture design

developed in this work. Similar to the transform design described previously, the

quantisation module (QM) is intended as a hardware slave or co-processor. The

master core processor and necessary interface modules were not developed.

6.3.1 Top-level Quantisation Module (QM)

 Unlike the transform module (TM), the developed quantisation module (QM)

only consists of data path module (DM) and does not include a control module (CM)

due to its relatively simpler algorithm compared to the 2-D transform. Besides the

clock and reset signals, the inputs to the module are 16-bit transform coefficients

(T0c, …, T31c) coming from the TM, 3-bit sel, 5-bit total_scale, n-bit offset, and load

signals (Fig. 6.9). The sel signal selects which quantiser value to be performed

depending on the QP value as summarised in Table 6.6. The total_scale signal

performs the right bit shift operation according to total_scale = QP/6 + shift2 as

described in Section 4.3. Similarly, the offset can be added as desired. The sel,

total_scale, and offset signals are expected to be provided by the master core

processor and not included in the hardware design of QM. Finally, the load signal

enables the quantised transform coefficients or levels (Q0c, …, Q31c) to be loaded

into the corresponding internal registers as the output of QM and takes the valid

signal from the TM. This signal is also carried over as the validQ output signal to

indicate to the master processor or another processing module that the quantised

173

levels are available. The Quantisation unit inside QM performs the multiplier-free

quantisation operation as described in Section 4.3.

Fig. 6.9 Functional block diagram of quantisation module (QM)

Table 6.6 Quantiser value for HEVC and approximated quantisation (Q)

modules

sel[2:0] HEVC Q

QP%6 = 0 26214 26112

QP%6 = 1 23302 23296

QP%6 = 2 20560 20560

QP%6 = 3 18396 18396

QP%6 = 4 16384 16384

174

QP%6 = 5 14564 14592

Others 0 0

6.3.2 Functional Verification

Similar to the TM designs, the QM hardware architecture designs were also

described in IEEE-VHDL and routed to a Xilinx Virtex-6 xc6vl550t-2ff1760 FPGA

device using Xilinx ISE 14.7 tool chain. Functional simulations were performed for

both HEVC and Q designs using test benches and test vectors in the Xilinx ISim

environment.

6.3.3 Results and Discussions

 Table 6.7 summarises the resource utilisation of the developed QM designs.

Although only three out of six quantiser values were approximated (Section 4.3),

when implemented on the selected Xilinx Virtex-6 FPGA device, a saving of around

21% in the number of slices could be achieved. Additionally, as the critical path

delay (cpd) in the original HEVC quantisation multiplier is a three-stage adder tree

to perform the multiplications by 26,214, 23,302, and 14,564, this cpd is higher than

in the approximated quantisation module and cannot operate at 200 MHz frequency.

With an operating frequency of 166.67 MHz, QFHD videos could still potentially be

processed but at a lower 50 fps as opposed to 60 fps achievable by the approximated

quantisation module. The hardware efficiency of Q is also almost double (0.212

mega samples/sec/slice) from HEVC (0.122 mega samples/sec/slice).

175

Table 6.7 Resource utilisation of HEVC and approximated quantisation designs

Parameter

Quantisation

HEVC Q

Slice registers

(Savings %)

6,176 4,096

(33.67%)

Slice LUTs

(Savings %)

14,032 10,560

(24.79%)

Slices

(Savings %)

4,916 3,768

(21.17%)

Operating freq. (MHz) 166.67 200

Output rate (per cycle) 4/8/16/32 4/8/16/32

Throughput

(×10
9
 samples per second)

0.6/1.3/2.6/5.3 0.8/1.6/3.2/6.4

Supported resolution @ fps QFHD @ 50 QFHD @ 60

Hardware efficiency
a

(×10
6
 samples/sec/slice)

0.122 0.212

a
 Hardware efficiency = Min Throughput (×10

6
 samples/second)/Slices

6.3.4 Conclusions

 More than 20% hardware savings (in the number of Virtex-6 slices) could be

yielded by the approximated quantisation (Q) hardware design when compared to

using the original HEVC quantiser multipliers. Both designs were developed using

the multiplier-free technique and MCM approach as applied in the transform designs.

Having a cpd of a three-stage adder tree required in three of the HEVC quantisers

(26,214, 23,302, and 14,564) results in a lower operating frequency (166.67 MHz)

176

compared to Q (200 MHz). With a higher operating frequency, more QFHD frames

can be processed (60 fps compared to 50 fps) and a greater hardware efficiency value

could be obtained (0.212 mega samples/sec/slice compared to 0.122 mega

samples/sec/slice) by the approximated quantisation design.

6.4 Hardware Architecture Designs for Approximated and Scaled

Transform and Quantisation

 This section briefly describes the combined transform and quantisation

hardware architecture design developed in this work. For the approximated

transform, only ST16 transform was considered and T16 was not performed as ST16

was the eventual objective of the complexity-reduced transform. Similar to the

transform and quantisation designs described in the previous two sections, the

transform and quantisation module (TQM) is designed as a hardware co-processor

and the corresponding master processor and associated interface modules were not

developed in this work.

6.4.1 Top-level Transform and Quantisation Module (TQM)

 The transform and quantisation module (TQM) consists of the TM (Section

6.2) and QM (Section 6.3) (Fig. 6.10). The inputs to this module are the same as for

the TM (residual signal (Xrc), transform size (size), start, reset, and clock) plus three

parameter signals (sel, total_scale, offset) for the QM. The outputs of TQM module

are the quantised levels (Q0c, …, Q31c) and validQ signal to indicate the validity of

the outputs. Internally, the transform coefficients (T0c, …, T31c) from TM are input to

QM, as well as the valid signal acting as the load signal for the internal registers in

QM.

177

Fig. 6.10 Functional block diagram of transform and quantisation module

(TQM)

6.4.2 Results and Discussions

Similar to the TM and QM designs, the TQM hardware architecture designs

were also described in IEEE-VHDL and routed to a Xilinx Virtex-6 xc6vl550t-

2ff1760 FPGA device using Xilinx ISE 14.7 tool chain. Table 6.8 summarises the

resource utilisation of the developed TQM designs. When implemented on the

selected Xilinx Virtex-6 FPGA device, a saving of more than 25% in the number of

slices could be obtained by the combination of ST16 and Q designs relative to

original HEVC transform and quantisation designs. Additionally, as the original

HEVC quantisation can be operated at a frequency lower than 200 MHz, fewer

QFHD frames (50 compared to 60) could be processed by the HEVC TQM and at a

lower hardware efficiency (0.034 mega samples/sec/slice compared to 0.055 mega

samples/sec/slice).

178

Table 6.8 Resource utilisation of HEVC and approximated transform and

quantisation designs

Parameter

Transform and Quantisation

HEVC ST16 + Q

Slice registers
(Savings %)

52,348 42,478
(18.85%)

Slice LUTs
(Savings %)

67,261 50,834
(24.42%)

Slices

(Savings %)

19,783 14,667

(25.86%)

Operating freq. (MHz) 166.67 200

Output rate (per cycle) 4/8/16/32 4/8/16/32

Throughput

(×10
9
 samples per second)

0.6/1.3/2.6/5.3 0.8/1.6/3.2/6.4

Supported resolution @ fps QFHD @ 50 QFHD @ 60

Hardware efficiency
a

(×10
6
 samples/sec/slice)

0.034 0.055

a
 Hardware efficiency = Min Throughput (×10

6
 samples/second)/Slices

6.4.3 Conclusions

 More than 25% hardware savings (in the number of Virtex-6 slices) could

possibly be attained by the approximated and scaled transform and quantisation

ST16 + Q TQM over the original HEVC TQM. With a lower resource utilisation, the

approximated TQM can still operate at a higher 200 MHz frequency and capable of

processing QFHD @ 60 fps videos yielding a better hardware efficiency of 0.055

mega samples/sec/slice when compared with the HEVC TQM developed in this

work (166.67 MHz capable of QFHD @ 50 fps and a hardware efficiency of 0.034

mega samples/sec/slice).

179

6.5 Summary

 In this chapter, HEVC and approximated 2-D transform and quantisation

hardware architecture designs developed in this work were described. Two

approximated core transforms (T16 and ST16) were implemented on a Xilinx

Virtex-6 FPGA device adopting the even-odd decomposition, multiplier-free, and

MCM approaches, yielding savings of 16.9% and 20.8% in the number of slices over

HEVC transform design. Both T16 and ST16 designs could as well be operated at a

higher execution frequency (200 MHz) than (Kalali et al., 2014) (150 MHz) and

(Kalali, Mert and Hamzaoglu, 2016) (100 – 117 MHz), enabling these designs to

encode more QFHD frames per second (60 fps) than (Kalali et al., 2014) (48 fps)

and the LU hardware in (Kalali, Mert and Hamzaoglu, 2016) (48 or 56 fps), and

possessing slightly better hardware efficiencies (0.0687 and 0.0721 mega

samples/sec/slice, respectively) than (Kalali et al., 2014) (0.0529 or 0.0526 mega

samples/sec/slice) and LU hardware in (Kalali, Mert and Hamzaoglu, 2016) (0.0397

or 0.0474 mega samples/sec/slice). However, the HU designs in (Kalali, Mert and

Hamzaoglu, 2016) outperformed T16 and ST16 with twofold hardware efficiencies

(0.1660 and 0.1397 mega samples/sec/slice) and capable of supporting more than 50

UHD frames per second.

 One approximated quantisation (Q) design was also implemented and

targeted to the same Xilinx Virtex-6 FPGA yielding more than 20% savings in the

number of slices over a quantisation scheme suggested for HEVC in (Budagavi,

Fuldseth and Bjøntegaard, 2014). Having a larger cpd of a three-stage adder tree

required in three of the HEVC quantisers (26,214, 23,302, and 14,564) results in a

lower operating frequency (166.67 MHz) compared to Q (200 MHz). With a higher

operating frequency, more QFHD frames can be processed (60 fps compared to 50

fps) and a greater hardware efficiency value could be obtained (0.212 mega

samples/sec/slice compared to 0.122 mega samples/sec/slice) by the approximated

quantisation design over HEVC.

 Finally, more than 25% hardware savings (in the number of Virtex-6 slices)

could possibly be attained by combining the approximated and scaled transform and

quantisation ST16 + Q TQM over the original HEVC TQM. Utilising fewer

resources, the approximated TQM could also operate at a higher 200 MHz frequency

180

and capable of processing QFHD @ 60 fps videos and yielding a better hardware

efficiency of 0.055 mega samples/sec/slice when compared with the HEVC TQM

developed in this work (166.67 MHz capable of QFHD @ 50 fps and a hardware

efficiency of 0.034 mega samples/sec/slice).

 In summary, the hardware implementations of the approximated transforms

and quantisation presented in this chapter lay some support to the software-based

coding performance results presented in Chapter 5 such that these transform and

quantisation approximation schemes could be considered for a complexity-reduced

HEVC encoder. Although some coding performance degradations were previously

seen in terms of BD-rate (up to 2.1% on average), the hardware savings may

outweigh these bitrate increments.

181

Chapter 7

Conclusions and Future Work

Abstract This is the final chapter of this thesis, summarising the work and results

presented thus far and suggesting possible directions as a continuation of this study.

7.1 Conclusions

 Two approximated transform matrices, T16 and ST16, and one approximated

quantisation, Q, were presented in this thesis as alternatives to the original 2-D

transform and quantisation of the most recent video coding standard, HEVC. These

approximated transforms and quantisation were developed aiming to reduce the

complexity of the respective operations in HEVC without too severely affecting the

coding performance.

 T16 was chosen among several approximated transform alternatives

developed in this work due to its lowest orthogonality measure. These alternatives

were aimed at a multiplier-free implementation using combinations of bit shifts and

additions or subtractions, and derived by imposing three approximation criteria. The

first criterion was that their matrix elements must be multiples of four, the second

criterion being the maximum number of two bit shifts and one addition or

subtraction for each element multiplication, and the final criterion was all

multiplications are executable in one clock cycle of 5 ns or faster (i.e., operating

frequency of 200 MHz or higher). ST16 is the down-scaled version of all elements of

T16 by four, with necessary changes in the subsequent intermediate scaling

operations in the 2-D transform operation. Q was developed using similar

approaches, i.e., by approximating the original HEVC quantisation multipliers with a

maximum of two additions or subtractions per one quantisation multiplier, also

aimed at a multiplier-free implementation.

 These approximated transforms and quantisation were evaluated using

reference model software for HEVC, HM-13.0. The main experiments were

conducted in Main profile of HEVC under RA and LB configurations, to simulate

the entertainment and interactive application scenarios, respectively. The

182

experiments were also conducted on test video sequences of HD quality or better.

The experimental settings were subsets of the CTC established by JCT-VC, the

experts committee responsible in developing the standard. Based on the conducted

experiments, both T16 and ST16 provided similar average BD-rate differences of

1.7% in RA and 0.7% in LB configurations over HEVC. On the other hand, Q

provided no significant difference against HEVC quantisation, with 0.0% and -0.1%

average BD-rate differences in RA and LB, respectively. Finally, a combination of

ST16 and Q in the encoder yielded on average BD-rate differences of 1.7% and 0.7%

in RA and LB, respectively. These bitrate increments may not be viewed as small

from video coding perspective, but are necessary penalties as the result of the

approximations made in the transform and quantisation of HEVC.

 Hardware architecture designs were then developed for T16, ST16, Q, and

ST16 + Q in order to estimate potential resource savings against HEVC transform

and quantisation algorithms. Methods used are MCM and multiplier-free

implementation as previously mentioned, as well as even–odd decomposition for the

transform algorithms, exploiting the embedded and symmetry properties inherited

from the well-known DCT. When implemented on a Xilinx Virtex-6 FPGA device,

savings of around 16.9%, 20.8%, 21.2%, and 25.9%, respectively, in the number of

slices could be achieved when compared with HEVC transform and quantisation

algorithms. The developed architecture designs could have a maximum operating

frequency of more than 200 MHz, allowing them to support the encoding of QFHD

@ 60 fps videos. When T16 and ST16 were compared with similar works in the

literature, these algorithms have better hardware efficiency (0.0687 and 0.0721,

respectively, in 10
6
 sample rate per slice) than (Kalali et al., 2014) (0.0529 or 0.0526

× 10
6
 sample rate per slice) and the LU designs in (Kalali, Mert and Hamzaoglu,

2016) (0.0397 or 0.0474 × 10
6
 sample rate per slice). Nevertheless, the HU designs

in (Kalali, Mert and Hamzaoglu, 2016) are superior than T16 and ST16 with double

hardware efficiencies (0.1660 and 0.1397 mega samples/sec/slice) and capable of

sustaining UHD videos of more than 50 frames per second.

183

7.2 Future Work

 The work presented in this thesis is anything but complete. The following

weaknesses identified need to be addressed or improved before any algorithm

presented in this work could actually be considered in practice. The quickest

improvement to the work is by conducting the software-based experiments using the

latest version of HEVC reference software. At the point of writing, the latest revision

is HM-16.12 (JCT-VC, 2016), where this revision supports all three versions of

HEVC, i.e., including 3D-HEVC, MV-HEVC, SHVC, and RExt extensions. It is

important to see the effects of the approximated transforms and quantisation in these

HEVC extensions. It would also be highly useful to conduct the experiments using

more test video sequences of HD quality and beyond, as well as test suites suitable

for the evaluation of range extension, scalable coding, multiview, and 3-D

applications. A high-performance computer such as a supercomputer would be very

useful in generating much faster encoding and decoding results, especially in these

extended applications.

 To provide more credentials to the work done, more quality metrics need as

well be included on top of PSNR. The full versions of commercial video quality

analysers such as sold by Elecard (Elecard, 2017) and Moscow State University

(MSU, 2017) could be considered. The free versions of these analysers usually have

limitations such as the maximum video resolution and number of frames that can be

analysed.

 Another important point is the validation of the architecture designs on a real

hardware platform. This platform such as an FPGA device must have a high number

of resources on its chip to be able to implement highly complex designs of video

coding algorithms. A more useful realisation approach would be to synthesise the

designs on CMOS fabrication technology software such as by Mentor Graphics

(Mentor Graphics, 2017) and Synopsys (Synopsys, 2017), as eventually any digital

circuits are intended to be implemented on a CMOS IC. The resource savings would

also be more meaningful if analysed on a complete encoder system rather than only

the involved processing blocks such as transformation and quantisation. The effects

on power dissipation would further add value to the work conducted. It would also

be useful to describe the relationship between hardware complexity (e.g., in a

184

number of slices) and coding performance (e.g., BD-rate). This would require other

alternative transform and quantisation algorithms be evaluated in HEVC reference

software and designed for hardware implementations.

Most of these recommendations require a good source of research funding, as

video and IC design technologies are highly-expensive know-hows.

185

References

Ahmed, A., Shahid, M. U. and Rehman, A. U. (2012) ‘N point DCT VLSI

architecture for emerging HEVC standard’, VLSI Design, 2012, pp. 1–13. doi:

10.1155/2012/752024.

Ahmed, N., Natarajan, T. and Rao, K. R. (1974) ‘Discrete Cosine Transform’, IEEE

Transactions on Computers, 1974(January), pp. 90–93.

Arayacheeppreecha, P., Pumrin, S. and Supmonchai, B. (2015) ‘Flexible Input

Transform Architecture for HEVC Encoder on FPGA’, in 12th International

Conference on Electrical Engineering/Electronics, Computer, Telecommunications

and Information Technology (ECTI-CON). Hua Hin, Thailand, 24-27 June 2015, pp.

1–6. doi: 10.1109/ECTICon.2015.7206947.

Bayer, F. M. and Cintra, R. J. (2012) ‘DCT-like transform for image compression

requires 14 additions only’, Electronics Letters, 48(15), pp. 919–920. doi:

10.1049/el.2012.1148.

Bayer, F. M., Cintra, R. J., Edirisuriya, A. and Madanayake, A. (2012) ‘A digital

hardware fast algorithm and FPGA-based prototype for a novel 16-point

approximate DCT for image compression applications’, Measurement Science and

Technology, 23(11), pp. 114–123. doi: 10.1088/0957-0233/23/11/114010.

Belghith, F., Loukil, H. and Masmoudi, N. (2013a) ‘Efficient Hardware Architecture

of the Direct 2-D Transform for the HEVC Standard’, World Academy of Science,

Engineering and Technology, 74, pp. 1290–1294.

Belghith, F., Loukil, H. and Masmoudi, N. (2013b) ‘Free Multiplication Integer

Transformation For The HEVC Standard’, in 10th International Multi-Conference

on Systems, Signals & Devices (SSD). Hammamet, Tunisia, 18-21 Mar. 2013, pp. 1–

5. doi: 10.1109/SSD.2013.6564002.

Bjøntegaard, G. (2001) Calculation of average PSNR differences between RD-

curves. VCEG-M33. ITU-T SG 16/Q 6. Austin, TX, USA, pp. 1-4.

Bjøntegaard, G. (2008) Improvements of the BD-PSNR model. VCEG-AI11. ITU-T

SG 16/Q 6. Berlin, Germany, pp 1-2.

Bola os-Jojoa, J. D. and Velasco-Medina, J. (2015) ‘Efficient Hardware Design of

N-point 1D-DCT for HEVC’, in 20th Symposium on Signal Processing, Images and

Computer Vision (STSIVA). Bogota, Colombia, 2-4 Sept. 2015, pp. 1–6. doi:

10.1109/STSIVA.2015.7330449.

Bossen, F. (2013) Common test conditions and software reference configurations.

JCTVC-L1100. JCT-VC. Geneva, Switzerland, pp. 1-4.

Bouguezel, S., Ahmad, M. O. and Swamy, M. N. S. (2010) ‘A Novel Transform for

Image Compression’, in 53rd IEEE International Midwest Symposium on Circuits

and Systems. Seattle, WA, USA, 1-4 Aug. 2010, pp. 509–512. doi:

10.1109/MWSCAS.2010.5548745.

Budagavi, M., Fuldseth, A. and Bjøntegaard, G. (2014) ‘Chapter 6 HEVC Transform

186

and Quantization’, in Sze, V., Budagavi, M., and Sullivan, G. J. (eds) High

Efficiency Video Coding (HEVC): Algorithms and Architectures. Cham: Springer

International Publishing, pp. 141–169. doi: 10.1007/978-3-319-06895-4_6.

Budagavi, M., Fuldseth, A., Bjøntegaard, G., Sze, V. and Sadafale, M. (2013) ‘Core

Transform Design in the High Efficiency Video Coding (HEVC) Standard’, IEEE

Journal on Selected Topics in Signal Processing, 7(6), pp. 1029–1041. doi:

10.1109/JSTSP.2013.2270429.

Budagavi, M. and Sze, V. (2012) ‘Unified Forward + Inverse Transform

Architecture for Hevc Inverse Transforms’, in 19th IEEE International Conference

on Image Processing (ICIP). Orlando, FL, USA, 30 Sept.-3 Oct. 2012, pp. 209–212.

doi: 10.1109/ICIP.2012.6466832.

Cham, W. K. and Chan, Y. T. (1991) ‘An Order-16 Integer Cosine Transform’, IEEE

Transactions on Signal Processing, 39(5), pp. 1205–1208. doi: 10.1109/78.80974.

Chang, C.-W., Hsu, H.-F., Fan, C.-P., Wu, C.-B. and Chang, R. C.-H. (2016) ‘A Fast

Algorithm-Based Cost-Effective and Hardware-Efficient Unified Architecture

Design of 4 × 4, 8 × 8, 16 × 16, and 32 × 32 Inverse Core Transforms for HEVC’,

Journal of Signal Processing Systems, 82(1), pp. 69–89. doi: 10.1007/s11265-015-

0982-8.

Chen, M., Zhang, Y. and Lu, C. (2017) ‘Efficient architecture of variable size HEVC

2D-DCT for FPGA platforms’, AEUE - International Journal of Electronics and

Communications. Elsevier GmbH, 73, pp. 1–8. doi: 10.1016/j.aeue.2016.12.024.

Chen, W.-H., Smith, C. and Fralick, S. (1977) ‘A Fast Computational Algorithm for

the Discrete Cosine Transform’, IEEE Transactions on Communications, 25(9), pp.

1004–1009. doi: 10.1109/TCOM.1977.1093941.

Cintra, R. J., Bayer, F. M. and Tablada, C. J. (2014) ‘Low-complexity 8-point DCT

approximations based on integer functions’, Signal Processing. Elsevier, 99, pp.

201–214. doi: 10.1016/j.sigpro.2013.12.027.

Cisco (2016) Cisco Visual Networking Index : Global Mobile Data Traffic Forecast

Update , 2015 – 2020. Available at:

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/mobile-white-paper-c11-520862.html (Accessed: 11 April

2016).

Conceição, R., Souza, J. C., Jeske, R., Porto, M., Mattos, J. and Agostini, L. (2013)

‘Hardware Design for the 32x32 IDCT of the HEVC Video Coding Standard’, in

26th Symposium on Integrated Circuits and Systems Design (SBCCI). Curitiba,

Brazil, 2-6 Sept. 2013, pp. 1–6. doi: 10.1109/SBCCI.2013.6644881.

Coutinho, A., Cintra, R. J., Bayer, F. M., Kulasekera, S. and Madanayake, A. (2016)

‘A multiplierless pruned DCT-like transformation for image and video compression

that requires ten additions only’, Journal of Real-Time Image Processing, 12, pp.

247–255. doi: 10.1007/s11554-015-0492-8.

Darji, A. D. and Makwana, R. P. (2015) ‘High-Performance Multiplierless DCT

architecture for HEVC’, in 19th International Symposium on VLSI Design and Test.

187

Ahmedabad, India, 26-29 June 2015, pp. 1–5. doi: 10.1109/ISVDAT.2015.7208051.

Dias, T., Roma, N. and Sousa, L. (2013) ‘High Performance Multi-Standard

Architecture for DCT Computation in H.264 / AVC High Profile and HEVC

Codecs’, in Conference on Design and Architectures for Signal and Image

Processing. Cagliari, Italy, 8-10 Oct. 2013, pp. 14–21.

Dias, T., Roma, N. and Sousa, L. (2014) ‘Unified transform architecture for AVC,

AVS, VC-1 and HEVC high-performance codecs’, EURASIP Journal on Advances

in Signal Processing, 2014(1), pp. 108–122. doi: 10.1186/1687-6180-2014-108.

Dias, T., Roma, N. and Sousa, L. (2015) ‘High performance IP core for HEVC

quantization’, in IEEE International Symposium on Circuits and Systems (ISCAS).

Lisbon, Portugal, 24-27 May 2015, pp. 2828–2831. doi:

10.1109/ISCAS.2015.7169275.

Dong, J., Ngan, K. N., Fong, C.-K. and Cham, W.-K. (2009) ‘2-D order-16 integer

transforms for HD video coding’, IEEE Transactions on Circuits and Systems for

Video Technology, 19(10), pp. 1462–1474. doi: 10.1109/TCSVT.2009.2026792.

 Elecard (2017) Elecard Video Compression Guru. Available at:

http://www.elecard.com/en/index.html (Accessed: 14 March 2017).

Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B. and Hadar, O. (2013) ‘Performance

comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders’, in

Picture Coding Symposium (PCS). San Jose, CA, USA, 8-11 Dec. 2013, pp. 394–

397. doi: 10.1109/PCS.2013.6737766.

Gweon, R. and Lee, Y. L. (2012) ‘N-level quantization in HEVC’, in IEEE

international Symposium on Broadband Multimedia Systems and Broadcasting

(BMSB). Seoul, South Korea, 27-29 June 2012, pp. 1–5. doi:

10.1109/BMSB.2012.6264318.

Haggag, M. N., El-Sharkawy, M. and Fahmy, G. (2010) ‘Efficient Fast

Multiplication-Free Integer Transformation for the 2-D DCT H.265 Standard’, in

IEEE 17th International Conference on Image Processing (ICIP). Hong Kong, 26-

29 Sept. 2010, pp. 3769–3772. doi: 10.1109/ICIP.2010.5653484.

Haggag, M. N., El-Sharkawy, M., Fahmy, G. and Rizkalla, M. (2010) ‘Efficient Fast

Multiplication Free Integer Transformation for the 1-D DCT of the H.265 Standard’,

Journal of Software Engineering & Applications, 3, pp. 784–795. doi:

10.4236/jsea.2010.38091.

Hanhart, P. and Ebrahimi, T. (2014) ‘Calculation of average coding efficiency based

on subjective quality scores’, Journal of Visual Communication and Image

Representation. Elsevier Inc., 25(3), pp. 555–564. doi: 10.1016/j.jvcir.2013.11.008.

Hanhart, P., Rerabek, M., De Simone, F. and Ebrahimi, T. (2012) ‘Subjective quality

evaluation of the upcoming HEVC video compression standard’, Proc. SPIE Appl.

Digital Image Process. XXXV, 8499, pp. 1–13. doi: 10.1117/12.946036.

Hani, M. K. (2011) Starter’s Guide to Digital Systems VHDL & Verilog Design. 2nd

edn. (rev. edn. 2.4). Malaysia: Pearson Prentice Hall.

188

HHI (2016) Video Coding & Analytics H.265/HEVC. Available at:

http://www.hhi.fraunhofer.de/en/departments/video-coding-analytics/products-

technologies/coding-communication/h265hevc.html (Accessed: 23 June 2016).

Huynh-Thu, Q. and Ghanbari, M. (2012) ‘The accuracy of PSNR in predicting video

quality for different video scenes and frame rates’, Telecommunication Systems,

(49), pp. 35–48. doi: 10.1007/s11235-010-9351-x.

ISO (1993) Information technology -- Coding of moving pictures and associated

audio for digital storage media at up to about 1,5 Mbit/s -- Part 2: Video. ISO/IEC

11172-2:1993. ISO/IEC JTC 1/SC 29.

ISO (2004) Information technology -- Coding of audio-visual objects -- Part 2:

Visual. ISO/IEC 14496-2:2004. ISO/IEC JTC 1/SC 29.

ISO (2013a) Information technology -- Generic coding of moving pictures and

associated audio information -- Part 2: Video. ISO/IEC 13818-2:2013. ISO/IEC JTC

1/SC 29.

ISO (2013b) Information technology -- High efficiency coding and media delivery in

heterogeneous environments -- Part 2: High efficiency video coding. ISO/IEC

23008-2:2013. ISO/IEC JTC 1/SC 29.

ISO (2014) Information technology -- Coding of audio-visual objects -- Part 10:

Advanced Video Coding. ISO/IEC 14496-10:2014. ISO/IEC JTC 1/SC 29.

ITU (1993a) Codecs for videoconferencing using primary digital group

transmission. Recommendation ITU-T H.120. ITU-T SG 16.

ITU (1993b) Video codec for audiovisual services at p x 64 kbit/s. Recommendation

ITU-T H.261. ITU-T SG 16.

ITU (2005) Video coding for low bit rate communication. Recommendation ITU-T

H.263. ITU-T SG 16.

ITU (2011) Studio encoding parameters of digital television for standard 4:3 and

wide screen 16:9 aspect ratios. Recommendation ITU-R BT.601. ITU-R.

ITU (2012) Information technology - Generic coding of moving pictures and

associated audio information: Video. Amd. 4. Recommendation ITU-T H.262. ITU-

T SG 16.

ITU (2013) High Efficiency Video Coding. Recommendation ITU-T H.265. ITU-T

SG 16.

ITU (2014) Advanced video coding for generic audiovisual services. 9th edn.

Recommendation ITU-T H.264. ITU-T SG 16.

Jarboe, G. (2015) Vidcon 2015 Haul: Trends, Strategic Insights, Critical Data, and

Tactical Advice. Available at: http://tubularinsights.com/vidcon-2015-strategic-

insights-tactical-advice/ (Accessed: 19 April 2016).

JCT-VC (2014) HEVC Test Model HM-13.0. Available at:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-13.0/.

189

JCT-VC (2016) HEVC Test Model HM-16.12. Available at:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/.

Jridi, M. and Meher, P. (2016) ‘A Scalable Approximate DCT Architectures for

Efficient HEVC Compliant Video Coding’, IEEE Transactions on Circuits and

Systems for Video Technology, 8215(c), pp. 1–10. doi:

10.1109/TCSVT.2016.2556578.

Kalali, E., Mert, A. C. and Hamzaoglu, I. (2016) ‘A Computation and Energy

Reduction Technique for HEVC Discrete Cosine Transform’, IEEE Transactions on

Consumer Electronics, 62(2), pp. 166–174. doi: 10.1109/TCE.2016.7514716.

Kalali, E., Ozcan, E., Yalcinkaya, O. M. and Hamzaoglu, I. (2014) ‘A low energy

HEVC Inverse Transform hardware’, IEEE Transactions on Consumer Electronics,

60(4), pp. 754–761. doi: 10.1109/ICCE-Berlin.2013.6698021.

Li, S., Ma, L. and Ngan, K. N. (2011) ‘Video quality assessment by decoupling

additive impairments and detail losses’, in 3rd International Workshop on Quality of

Multimedia Experience, QoMEX 2011. Mechelen, Belgium, 7-9 Sept. 2011, pp. 90–

95. doi: 10.1109/QoMEX.2011.6065719.

Martuza, M. and Wahid, K. A. (2012a) ‘A cost effective implementation of 8×8

transform of HEVC from H.264/AVC’, in 25th IEEE Canadian Conference on

Electrical & Computer Engineering (CCECE). Montreal, Canada, 29 April-2 May

2012, pp. 1–4. doi: 10.1109/CCECE.2012.6334911.

Martuza, M. and Wahid, K. A. (2012b) ‘Low cost design of a hybrid architecture of

integer inverse DCT for H.264, VC-1, AVS, and HEVC’, VLSI Design, 2012, pp. 1–

10. doi: 10.1155/2012/242989.

Martuza, M. and Wahid, K. A. (2015) ‘Implementation of a cost-shared transform

architecture for multiple video codecs’, Journal of Real-Time Image Processing,

10(1), pp. 151–162. doi: 10.1007/s11554-012-0266-5.

Meher, P. K., Park, S. Y., Mohanty, B. K., Lim, K. S. and Yeo, C. (2014) ‘Efficient

integer DCT architectures for HEVC’, IEEE Transactions on Circuits and Systems

for Video Technology, 24(1), pp. 168–178. doi: 10.1109/TCSVT.2013.2276862.

Mentor Graphics (2017) IC Design. Available at:

https://www.mentor.com/products/ic_nanometer_design/ (Accessed: 14 March

2017).

MSU (2017) MSU Video Quality Measurement tools. Available at:

http://www.compression.ru/video/quality_measure/index_en.html (Accessed: 14

March 2017).

Nam, J., Sim, D. and Bajić, I. V (2012) ‘HEVC-based Adaptive Quantization for

Screen Content Videos’, in IEEE international Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB). Seoul, South Korea, 27-29 June

2012, pp. 1–4. doi: 10.1109/BMSB.2012.6264265.

Ohm, J., Sullivan, G. J., Schwarz, H., Tan, T. K. and Wiegand, T. (2012)

‘Comparison of the Coding Efficiency of Video Coding Standards — Including High

190

Efficiency Video Coding (HEVC)’, IEEE Transactions on Circuits and Systems for

Video Technology, 22(12), pp. 1669–1684. doi: 10.1109/TCSVT.2012.2221192.

Park, J. S., Nam, W. J., Han, S. M. and Lee, S. (2012) ‘2-D large inverse transform

(16x16, 32x32) for HEVC (High Efficiency Video Coding)’, Journal of

Semiconductor Technology and Science, 12(2), pp. 203–211. doi:

10.5573/JSTS.2012.12.2.203.

Pastuszak, G. (2014) ‘FPGA Architectures of the Quantization and the

Dequantization for Video Encoders’, in 17th International Symposium on Design

and Diagnostics of Electronic Circuits & Systems. Warsaw, Poland, 23-25 April

2014, pp. 290–293. doi: 10.1109/DDECS.2014.6868812.

Raguraman, M. T. and Saravanan, D. S. (2016) ‘FPGA Implementation of

Approximate 2D Discrete Cosine Transforms’, Circuits and Systems, 7, pp. 434–

445. doi: 10.4236/cs.2016.74037.

Richardson, I. E. (2012) The H.264 Advanced Video Compression Standard. 2nd

edn. Croydon: John Wiley & Sons, Ltd.

Robertson, M. R. (2015) 500 Hours of Video Uploaded to YouTube Every Minute

[Forecast]. Available at: http://tubularinsights.com/hours-minute-uploaded-youtube/

(Accessed: 19 April 2016).

Saxena, A. and Fernandes, F. C. (2013) ‘DCT/DST-based transform coding for intra

prediction in image/video coding’, IEEE Transactions on Image Processing, 22(10),

pp. 3974–3981. doi: 10.1109/TIP.2013.2265882.

Shen, S., Shen, W., Fan, Y. and Zeng, X. (2012) ‘A unified 4/8/16/32-point integer

IDCT architecture for multiple video coding standards’, in IEEE International

Conference on Multimedia and Expo (ICME). Melbourne, Australia, 9-13 July 2012,

pp. 788–793. doi: 10.1109/ICME.2012.7.

da Silveira, T. L. T., Oliveira, R. S., Bayer, F. M., Cintra, R. J. and Madanayake, A.

(2017) ‘Multiplierless 16-point DCT approximation for low-complexity image and

video coding’, Signal, Image and Video Processing. Springer London, 11(2), pp.

227–233. doi: 10.1007/s11760-016-0923-4.

Solsman, J. E. (2014) Where do the most people go for TV online ? YouTube.

Available at: https://www.cnet.com/news/where-do-the-most-people-go-for-tv-

online-youtube/ (Accessed: 18 April 2016).

Stankowski, J., Korzeniewski, C., Domanski, M. and Grajek, T. (2015) ‘Rate-

distortion optimized quantization in HEVC: Performance limitations’, in Picture

Coding Symposium (PCS). Cairns, QLD, Australia, 31 May-3 June 2015, pp. 85–89.

doi: 10.1109/PCS.2015.7170052.

Statista (2016) Hours of video uploaded to YouTube every minute as of July 2015,

The Statistics Portal. Available at: http://www.statista.com/statistics/259477/hours-

of-video-uploaded-to-youtube-every-minute/ (Accessed: 19 April 2016).

Sullivan, G. J. (2014) ‘Chapter 1 Introduction’, in Sze, V., Budagavi, M., and

Sullivan, G. J. (eds) High Efficiency Video Coding (HEVC): Algorithms and

191

Architectures. Cham: Springer International Publishing, pp. 1–12. doi: 10.1007/978-

3-319-06895-4_1.

Sullivan, G. J., Ohm, J., Han, W. and Wiegand, T. (2012) ‘Overview of the High

Efficiency Video Coding’, IEEE Transactions on Circuits and Systems for Video

Technology, 22(12), pp. 1649–1668. doi: 10.1109/TCSVT.2012.2221191.

Sun, L., Au, O. C., Li, J., Zou, R. and Dai, W. (2012) ‘Hardware Oriented Re-design

and Matrix Approximation Analysis for Transform in High Efficiency Video Coding

(HEVC)’, in IEEE Signal Info. Process. Assoc. Annual Summit Conf. (APSIPA

ASC),. Hollywood, CA, USA, 3-6 Dec. 2012, pp. 1–5.

Synopsys (2017) Tools. Available at:

http://www.synopsys.com/Tools/Pages/default.aspx (Accessed: 14 March 2017).

Tabatabai, A., Suzuki, T., Hanhart, P., Korshunov, P., Ebrahimi, T., Horowitz, M.,

Kossentini, F. and Tmar, H. (2014) ‘Chapter 9 Compression Performance Analysis

in HEVC’, in Sze, V., Budagavi, M., and Sullivan, G. J. (eds) High Efficiency Video

Coding (HEVC): Algorithms and Architectures. Cham: Springer International

Publishing, pp. 275–302. doi: 10.1007/978-3-319-06895-4_9.

Tan, T. K., Weerakkody, R., Mrak, M., Ramzan, N., Baroncini, V., Ohm, J. and

Sullivan, G. J. (2016) ‘Video Quality Evaluation Methodology and Verification

Testing of HEVC Compression Performance’, IEEE Transactions on Circuits and

Systems for Video Technology, 26(1), pp. 76–90. doi:

10.1109/TCSVT.2015.2477916.

Vanne, J., Viitanen, M., Hamalainen, T. D. and Hallapuro, A. (2012) ‘Comparat ive

rate-distortion-complexity analysis of HEVC and AVC video codecs’, IEEE

Transactions on Circuits and Systems for Video Technology, 22(12), pp. 1885–1898.

doi: 10.1109/TCSVT.2012.2223013.

Video Clarity (2016) Understanding MOS, JND and PSNR. Available at:

http://videoclarity.com/wpunderstandingjnddmospsnr/ (Accessed: 23 June 2016).

Wang, Q., Ji, X., Sun, M. T., Sullivan, G. J., Li, J. and Dai, Q. (2013) ‘Complexity

reduction and performance improvement for geometry partitioning in video coding’,

IEEE Transactions on Circuits and Systems for Video Technology, 23(2), pp. 338–

352. doi: 10.1109/TCSVT.2012.2203743.

Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2004) ‘Image quality

assessment: From error visibility to structural similarity’, IEEE Transactions on

Image Processing, 13(4), pp. 600–612. doi: 10.1109/TIP.2003.819861.

Weerakkody, R., Mrak, M., Baroncini, V., Ohm, J.-R., Tan, T. K. and Sullivan, G. J.

(2014) ‘Verification Testing of HEVC Compression Performance for UHD Video’,

in GlobalSIP: Perception Inspired Multimedia Signal Processing Techniques.

Atlanta, GA, USA, 3-5 Dec. 2014, pp. 1083–1087. doi:

10.1109/GlobalSIP.2014.7032288.

Xilinx (2015) Virtex-6 Family Overview. DS150 (v2.5), August 20, 2015. Available

at: https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf.

192

Zeng, K., Rehman, A., Wang, J. and Wang, Z. (2013) ‘From H.264 to HEVC :

coding gain predicted by objective video quality assessment models’, in Seventh

International Workshop on Video Processing and Quality Metrics for Consumer

Electronics (VPQM2013). Scottsdale, AZ, USA, 30 Jan.-1 Feb. 2013, pp. 1–6.

Zhao, W. and Onoye, T. (2012) A High-Performance Multiplierless Hardware

Architecture of the Transform Applied to H.265/HEVC Emerging Video Coding

Standard, IEICE. Available at: http://ci.nii.ac.jp/naid/110009455690/en/.

193

Appendix A

R-D Curves of HEVC and Approximated

Transforms

Fig. A.1 R-DPSNR curves of A1 – Traffic sequence using original HEVC and

approximated transform matrices, T16 and ST16, under RA configuration in Main

profile

194

Fig. A.2 R-DPSNR curves of A2 – PeopleOnStreet sequence using original

HEVC and approximated transform matrices, T16 and ST16, under RA

configuration in Main profile

Fig. A.3 R-DPSNR curves of A3 – Nebuta sequence using original HEVC and

approximated transform matrices, T16 and ST16, under RA configuration in Main

profile

195

Fig. A.4 R-DPSNR curves of A4 – SteamLocomotive sequence using original

HEVC and approximated transform matrices, T16 and ST16, under RA

configuration in Main profile

196

Fig. A.5 R-DPSNR curves of B1 – Kimono sequence using original HEVC and

approximated transform matrices, T16 and ST16, under (a) RA and (b) LB

configurations in Main profile

(a)

(b)

197

Fig. A.6 R-DPSNR curves of B2 – ParkScene sequence using original HEVC

and approximated transform matrices, T16 and ST16, under (a) RA and (b) LB

configurations in Main profile

(a)

(b)

198

Fig. A.7 R-DPSNR curves of B3 – Cactus sequence using original HEVC and

approximated transform matrices, T16 and ST16, under (a) RA and (b) LB

configurations in Main profile

(a)

(b)

199

Fig. A.8 R-DPSNR curves of B5 – BQTerrace sequence using original HEVC

and approximated transform matrices, T16 and ST16, under (a) RA and (b) LB

configurations in Main profile

(a)

(b)

200

Fig. A.9 R-DPSNR curves of E1 – FourPeople sequence using original HEVC

and approximated transform matrices, T16 and ST16, under LB configuration in

Main profile

Fig. A.10 R-DPSNR curves of E2 – Johnny sequence using original HEVC and

approximated transform matrices, T16 and ST16, under LB configuration in Main

profile

201

Fig. A.11 R-DPSNR curves of E3 – KristenAndSara sequence using original

HEVC and approximated transform matrices, T16 and ST16, under LB configuration

in Main profile

202

Appendix B

R-D Curves of HEVC and Approximated

Quantisation

Fig. B.1 R-DPSNR curves of A1 – Traffic sequence using original HEVC and

approximated quantisation multiplier set, Q, under RA configuration in Main profile

203

Fig. B.2 R-DPSNR curves of A2 – PeopleOnStreet sequence using original

HEVC and approximated quantisation multiplier set, Q, under RA configuration in

Main profile

Fig. B.3 R-DPSNR curves of A3 – Nebuta sequence using original HEVC and

approximated quantisation multiplier set, Q, under RA configuration in Main profile

204

Fig. B.4 R-DPSNR curves of A4 – SteamLocomotive sequence using original

HEVC and approximated quantisation multiplier set, Q, under RA configuration in

Main profile

205

Fig. B.5 R-DPSNR curves of B1 – Kimono sequence using original HEVC and

approximated quantisation multiplier set, Q, under (a) RA and (b) LB configurations

in Main profile

(a)

(b)

206

Fig. B.6 R-DPSNR curves of B2 – ParkScene sequence using original HEVC

and approximated quantisation multiplier set, Q, under (a) RA and (b) LB

configurations in Main profile

(a)

(b)

207

Fig. B.7 R-DPSNR curves of B3 – Cactus sequence using original HEVC and

approximated quantisation multiplier set, Q, under (a) RA and (b) LB configurations

in Main profile

(a)

(b)

208

Fig. B.8 R-DPSNR curves of B5 – BQTerrace sequence using original HEVC

and approximated quantisation multiplier set, Q, under (a) RA and (b) LB

configurations in Main profile

(a)

(b)

209

Fig. B.9 R-DPSNR curves of E1 – FourPeople sequence using original HEVC

and approximated quantisation multiplier set, Q, under LB configuration in Main

profile

Fig. B.10 R-DPSNR curves of E2 – Johnny sequence using original HEVC and

approximated quantisation multiplier set, Q, under LB configuration in Main profile

210

Fig. B.11 R-DPSNR curves of E3 – KristenAndSara sequence using original

HEVC and approximated quantisation multiplier set, Q, under LB configuration in

Main profile

211

Appendix C

R-D Curves of HEVC and Approximated

Transform and Quantisation

Fig. C.1 R-DPSNR curves of A1 – Traffic sequence using original HEVC and

combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under RA configuration in Main profile

212

Fig. C.2 R-DPSNR curves of A2 – PeopleOnStreet sequence using original

HEVC and combination of approximated transform matrix and quantisation

multiplier sets, ST16 + Q, under RA configuration in Main profile

Fig. C.3 R-DPSNR curves of A3 – Nebuta sequence using original HEVC and

combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under RA configuration in Main profile

213

Fig. C.4 R-DPSNR curves of A4 – SteamLocomotive sequence using original

HEVC and combination of approximated transform matrix and quantisation

multiplier sets, ST16 + Q, under RA configuration in Main profile

214

Fig. C.5 R-DPSNR curves of B1 – Kimono sequence using original HEVC and

combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under (a) RA and (b) LB configurations in Main profile

(a)

(b)

215

Fig. C.6 R-DPSNR curves of B2 – ParkScene sequence using original HEVC

and combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under (a) RA and (b) LB configurations in Main profile

(a)

(b)

216

Fig. C.7 R-DPSNR curves of B3 – Cactus sequence using original HEVC and

combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under (a) RA and (b) LB configurations in Main profile

(a)

(b)

217

Fig. C.8 R-DPSNR curves of B5 – BQTerrace sequence using original HEVC

and combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under (a) RA and (b) LB configurations in Main profile

(a)

(b)

218

Fig. C.9 R-DPSNR curves of E1 – FourPeople sequence using original HEVC

and combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under LB configuration in Main profile

Fig. C.10 R-DPSNR curves of E2 – Johnny sequence using original HEVC and

combination of approximated transform matrix and quantisation multiplier sets,

ST16 + Q, under LB configuration in Main profile

219

Fig. C.11 R-DPSNR curves of E3 – KristenAndSara sequence using original

HEVC and combination of approximated transform matrix and quantisation

multiplier sets, ST16 + Q, under LB configuration in Main profile

