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Abstract 
 

Context: Existing empirical studies on test-driven development (TDD) report different 
conclusions about its effects on quality and productivity. Very few of those studies are 
experiments conducted with software professionals in industry. Objective: We aim to analyse 
the effects of TDD on the external quality of the work done and the productivity of developers 
in an industrial setting. Method: We conducted an experiment with 24 professionals from 
three different sites of a software organization. We chose a repeated-measures design, and 
asked subjects to implement TDD and incremental test last development (ITLD) in two 
simple tasks and a realistic application close to real-life complexity. To analyse our findings, 
we applied a repeated-measures general linear model procedure and a linear mixed effects 
procedure. Results: We did not observe a statistical difference between the quality of the 
work done by subjects in both treatments. We observed that the subjects are more productive 
when they implement TDD on a simple task compared to ITLD, but the productivity drops 
significantly when applying TDD to a complex brownfield task. So, the task complexity 
significantly obscured the effect of TDD. Conclusion: Further evidence is necessary to 
conclude whether TDD is better or worse than ITLD in terms of external quality and 
productivity in an industrial setting. We found that experimental factors such as selection of 
tasks could dominate the findings in TDD studies. 
 
Keywords -- Industry experiment, test-driven development, external quality, productivity 
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Abstract

Context: Existing empirical studies on test-driven development (TDD) report
di↵erent conclusions about its e↵ects on quality and productivity. Very few of
those studies are experiments conducted with software professionals in indus-
try. Objective: We aim to analyse the e↵ects of TDD on the external quality
of the work done and the productivity of developers in an industrial setting.
Method: We conducted an experiment with 24 professionals from three dif-
ferent sites of a software organization. We chose a repeated-measures design,
and asked subjects to implement TDD and incremental test last development
(ITLD) in two simple tasks and a realistic application close to real-life com-
plexity. To analyse our findings, we applied a repeated-measures general linear
model procedure and a linear mixed e↵ects procedure. Results: We did not
observe a statistical di↵erence between the quality of the work done by subjects
in both treatments. We observed that the subjects are more productive when
they implement TDD on a simple task compared to ITLD, but the productivity
drops significantly when applying TDD to a complex brownfield task. So, the
task complexity significantly obscured the e↵ect of TDD. Conclusion: Further
evidence is necessary to conclude whether TDD is better or worse than ITLD
in terms of external quality and productivity in an industrial setting. We found
that experimental factors such as selection of tasks could dominate the findings
in TDD studies.
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Keywords— Industry experiment, test-driven development, external qual-
ity, productivity

1 Introduction

Test-driven development (TDD) is the process of writing unit tests before source
code so that developers can better understand what the code needs to do, test
the preconceptions of how the code will work, and improve the overall design
of the code iteratively (Beck, 2003). TDD forces developers think in smaller
bits, i.e., in terms of the subtasks of the functionality, which are testable, and
redesign the code after implementing each subtask.

The key practices of TDD can be summarized as follows (Beck, 2003; Er-
dogmus et al., 2005):

1. Decompose the specifications into small, manageable programming tasks.

2. Write low-level functional tests associated with each task before the pro-
duction code.

3. Get instant feedback from tests to decide whether the task has been fully
implemented as intended and whether it interferes with the existing code.

4. Write minimal pieces of code, necessary to make the tests pass, for the
associated task.

5. Have an up-to-date and complete list of tests in place that are frequently
run.

6. Focus on low-level design and incrementally refactor the production code.

TDD’s industrial relevance is evidenced by its consistently high ranking from
software development managers (Emam, 2003). TDD also gained a reputation
as a challenging process to apply (VersionOne, 2013). Therefore, TDD has
not been adopted much in the industry, despite the fact that companies fre-
quently use other agile practices. A recent survey of agile methods usage at
the organizational level reports that TDD is not a very popular development
methodology (reported as being used by only 1.7% of respondents) among more
than 400 professionals from 200 software companies (Rodriguez et al., 2012).
Often, professionals select and employ a subset of agile practices (e.g. sprint
planning, daily standup, and continuous integration) based on their interests
and the e↵ort required to implement a practice. Of those professionals who use
agile practices, more than 80% reported that they employed Scrum practices
(daily standup, iteration planning, unit testing, self-organizing teams), whereas
eXtreme Programming practices were used by 18% of professionals (Rodriguez
et al., 2012).

Yet, there is industry interest in the study of TDD and its e↵ects on cost
reduction, productivity, process, and product quality. A longitudinal case study
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at IBM between the years 2001 and 2006 over 10 releases of a software appli-
cation revealed that TDD took considerable amount of time at the beginning,
but it paid back in terms of more robust code with better quality (Sanchez
et al., 2007). Latorre (2014b) reported a successful application of TDD for a
period of five and a half months in the industrial environment. The adoption
of the developers to this new development approach in (Latorre, 2014b) led
to timely product delivery, reductions in the number of residual errors, and
easier-to-maintain source code. In terms of productivity, the time spent at the
beginning for coordination and requirements analysis were higher in TDD, but
the functional testing took much less time due to increased unit testing (Latorre,
2014b).

Causevic et al. (2010) also conducted an industrial survey to examine the
expected and actual level of usage for a number of test-related activities and
found that “respondents would like to use TDD to a significantly higher extent
than they actually do” due to TDD’s claimed benefits in the literature. Our face-
to-face meetings with professionals from six software companies in Finland, as
part of our on-going project (Juristo, 2016), also revealed that TDD is a highly
popular topic, as professionals are interested in learning its key practices and
its impact on their development process through experimentation (Tosun-Misirli
et al., 2014).

Empirical studies of TDD look for evidence about the e↵ects of this devel-
opment technique on software product and development processes. Researchers
have studied TDD through case studies (e.g. Nagappan et al. (2008)), surveys
(e.g. Aniche and Gerosa (2010)) and experiments (e.g. Erdogmus et al. (2005)).
Existing systematic reviews on TDD grouped the studies with respect to the
context (e.g. academia, semi-industrial, industrial (Siniaalto, 2006; Rafique and
Misic, 2013)) and the empirical research strategy (e.g. controlled experiment,
case study, pilot study (Kollanus, 2010; Turhan et al., 2010)).

Even though there are several empirical research studies on the e↵ects of
TDD on quality and productivity, the results di↵er due to contextual factors
(Turhan et al., 2010; Rafique and Misic, 2013). External quality measured
during TDD and non-TDD is not significantly di↵erent in student-based ex-
periments, whereas it improves for TDD in industry experiments (Rafique and
Misic, 2013). Productivity, on the other hand, improves for TDD in academic
experiments, whereas it degrades in industrial experiments (Rafique and Misic,
2013). In controlled experiments, di↵erent studies also report di↵erent results
(Kollanus, 2010; Turhan et al., 2010). Thus, the benefits that can be achieved
using TDD vary; leading to inconsistent conclusions for both researchers and
software professionals. This state of the evidence motivated us to further inves-
tigate TDD in the context of software professionals in industry.

In this research, we report an experiment conducted at three di↵erent sites
of a software company in order to analyse the e↵ects of TDD on the external
quality of the work done and the productivity of the developers who performed
the work. 24 professionals from the company attended a three-day training and
experimentation session on TDD. We found that TDD did not improve external
quality compared to incremental test-last development. Regarding productivity,
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the results were confounded by the tasks selected to implement the specified
development approach.

2 Related Work

In this section we summarize the results of three literature reviews ((Rafique and
Misic, 2013), (Turhan et al., 2010), (Munir et al., 2014)) on TDD, and in par-
ticular discuss the discrepancies among them with respect to how they classify
the studies covered. We highlight inconsistent findings with respect to quality
and productivity, and lack of industrial experiments in the literature. We then
report in detail the only three TDD experiments conducted with professionals
in industrial settings.

2.1 Literature reviews on TDD

Through a systematic literature review, Turhan et al. (2010) summarize empir-
ical studies of TDD (called TDD trials) regarding four aspects. These aspects
are the variants of TDD, e↵ort spent on TDD, type of study (pilot, indus-
trial use or controlled experiment) and the control technique (test-last or pair
programming). They observed the e↵ects of TDD in terms of developer pro-
ductivity, test quality, internal code quality, and external (post-release) quality.
Based on this review, eight out of 32 empirical studies are classified as con-
trolled experiments, four of which were conducted with graduate students or
professionals. Due to the di↵erences in study settings and contexts, Turhan
et al. (2010) do not formally aggregate the results, but overall findings indicate
moderate improvements in terms of external quality using TDD, whereas the
e↵ects on productivity are inconclusive.

Munir et al. (2014) report on the results of a systematic review that identi-
fies 41 empirical studies of TDD and analyse them with respect to rigour and
relevance scores using an assessment rubric. Based on a prior definition by
Ivarsson and Gorschek (2011), rigour concerns adhering to practices of applying
and reporting a research methodology, whereas relevance relates to the practi-
cal impact and realism of the research setup. Munir et al. (2014) classify 41
empirical studies with respect to the research methodology reported in these
studies. The majority of the empirical studies covered by the authors (among
which 19 are classified as experiments and one is classified as a case study) with
high rigour and low relevance scores indicate that there is no di↵erence between
TDD and test-last development for a number of variables: productivity, exter-
nal quality, internal code quality, number of tests, e↵ort expended for TDD,
size of the project and developer opinion. Among the 29 high-rigour studies,
only four are identifiable as studies with professionals, three of which are exper-
iments with professionals ((Canfora et al., 2006), (George and Williams, 2004),
(Geras et al., 2004)), with the remaining one being an empirical study of TDD
with a single developer (Madeyski and Szala, 2007). The analysis of the studies
classified as case studies and surveys was more conclusive. Based on seven case
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studies and two surveys with high rigour and high relevance scores, the authors
conclude that the developers perceived an improvement in quality. This finding
is consistent with that of Turhan et al. (2010) regarding external quality.

Rafique and Misic (2013) conducted a systematic meta-analysis of 27 empir-
ical studies that investigate the impact of TDD on external quality and produc-
tivity. Eight out of 27 empirical studies were classified as industry experiments.
Three out of these eight studies classified themselves as controlled experiments
((Canfora et al., 2006), (George and Williams, 2004), (Geras et al., 2004)), while
the rest of the studies classified themselves as “industrial case studies” that re-
port on quantitative e↵ects of TDD. Incidentally, Munir et al. (2014) classified
the same three controlled experiments ((Canfora et al., 2006), (George and
Williams, 2004), (Geras et al., 2004)) as high-rigour experiments with profes-
sionals. In this meta-analysis, Rafique and Misic (2013) report that both the
quality improvement and productivity drop are much larger in industrial studies
than in academic studies. They also observed that improvements in quality are
significantly larger when the di↵erences in test e↵ort using TDD and task size
were substantial.

Empirical studies and literature reviews of TDD often use inconsistent ter-
minology and a relatively loose definition of experiment. Therefore, the number
of controlled experiments in academia and industry varies among di↵erent re-
views. Upon careful checking, in the lists of empirical studies included in the
reviews ((Rafique and Misic, 2013), (Turhan et al., 2010), (Munir et al., 2014)),
we identified only three TDD experiments conducted with professionals in an
industrial setting: (Canfora et al., 2006),(George and Williams, 2004), (Geras
et al., 2004). In the next subsection, we discuss these three TDD experiments
in detail since they share the scope with our research.

2.2 TDD experiments with professionals

Table 1 summarizes the three TDD experiments in terms of the response vari-
ables, subjects, tasks, total e↵ort spent on experimental tasks, training details,
metrics, development paradigm used as the control treatment, experimental
design, and limitations of these three TDD experiments. The details are as
reported by the authors in the respective papers ((Canfora et al., 2006),(George
and Williams, 2004), (Geras et al., 2004)).

Canfora et al. (2006) investigated TDD versus test-after-coding with respect
to unit test quality and productivity in a Spanish software house. They did not
consider external quality or code quality. Productivity was measured in terms
of time (e↵ort) spent per unit test assertion. 28 professionals were involved
in the experiment, and they recorded the e↵ort they spent on their own. The
participants had on average one year professional experience in the company.
The study findings show improvements in unit test quality for TDD but it slows
down the development process.

George andWilliams (2004) investigated TDD versus a waterfall-like method-
ology with respect to code quality, external quality and productivity. Three ex-
periments were conducted in three di↵erent companies. 24 participants with dif-
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Canfora et al. (2006) George and Williams
(2004)

Geras et al. (2004) Our experiment

Response vari-
ables

Unit test quality and Pro-
ductivity

Productivity, External and
Internal code quality

Effort, Testing, Failure rate
from both developer and
customer level

External quality and Pro-
ductivity

TDD is com-
pared with

Test-after-coding (TAC) Waterfall-like methodology Test-last Incremental test-last

Subjects 28 professionals 12 programming pairs 14 corporate IT developers 22 professionals

Demographics BS in CS, and 5 years expe-
rience in Java programming
and modelling

Varying experience in TDD
and pair programming, em-
ployed in three companies

Experience between six
months to over six years

BS in CS, MS in CS and EE,
more than 6 years of expe-
rience in programming (see
Section 4.1)

Tasks TextAnalyzer System Bowling Alley Scoring Game
(adapted from Bowling
Scorekeeper)

Project time entry business
scenarios

Bowling Scorekeeper, Mars
Rover API, MusicPhone

E↵ort spent on
TDD

Both assignments were done
in total 5 hours per person
(in two consecutive days).

On average 4.3 hours were
spent in non-TDD, while 5.2
hours in TDD.

Not mentioned 2.25 hours were spent in
non-TDD, TDD tasks and 3
hours were spent in the sec-
ond TDD task.

Training Three out of 13 hours (first
day)

Only in the third com-
pany: Informal training ses-
sion during whole day with
TDD practice in daily work
(three weeks prior to experi-
ment)

Training in which half of the
participants attended, but
quitted without completing
the tasks.

Training with all partici-
pants including unit testing
and basic principles of test-
driven development, hands-
on exercises using TDD (in-
dividual and group-based)

Metrics for the
response vari-
ables

Productivity: Mean time
per assertion, Mean time for
writing and executing tests,
Total time spent for the as-
signment

External code quality:
Number of test cases passed

Productivity: Time re-
quired to develop the task
compared to the estimation

External quality: Per-
centage of acceptance tests
passed over tackled subtasks

Unit test quality: Mean
number of assertions per
method, Total number of as-
sertions

Productivity:Total time
spent for implementing the
tasks

Testing quality: Test case
density(test cases/KLOC),
test cases per hour, Test
case evaluations per hour

Productivity: Percentage
of passed assert statements

Internal code quality: OO
metrics, code coverage

Failure: Unplanned failure
rate per test case

Design All subjects implement TDD
and non-TDD with randomly
assigned tasks in a random
sequence (first TDD then
non-TDD or vice versa)

Random assignment of each
subject in pairs to TDD or
non-TDD task

Simple factorial design using
two groups

Repeated-treatment design
(see Section 3.4)

Limitations Lack of external quality
measures

Small sample size, lack of
time constraints, confound-
ing by pair programming

Lack of external quality
measures, lack of time con-
straints during implementa-
tion of tasks, confounding by
PSP process for process con-
formance

Task and treatment match-
ing as a confounding factor
(see Section 9)

Table 1: TDD experiments in the industry (the information are listed as re-
ported by the study authors.)

ferent levels of experience in programming and TDD participated in these three
experiments. There seems to have been no time constraints while completing
the tasks. In his thesis George (2002), also reported that the requirements of the
tasks were modified after the first experiment in one of the participating com-
panies. The participants worked in pairs, and hence, the study findings might
have been a↵ected by the pair programming approach and later modifications in
the requirements of the tasks. George and Williams (2004) reported significant
improvements in quality for TDD, although it took more time to complete the
development tasks.

Geras et al. (2004) investigated TDD versus a test-last approach with respect
to productivity, quality of testing process, and failure rate from the customer’s
and developer’s perspectives. Fourteen subjects (referred to as corporate IT
developers by the authors) with varying programming experience participated
in training in the Personal Software Process (PSP). Geras et al. (2004) divided
these subjects into two groups (seven subjects in the TDD group and seven
subjects in the non-TDD group). The authors do not report any measures re-
lating to product quality, nor do they mention the time spent on completing
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tasks. The study findings show that there is little or no di↵erence in productiv-
ity, although there are di↵erences in the frequency of unplanned failures. The
process that the subjects were supposed to follow in (Geras et al., 2004) was
dictated by “scripts” or simple instructions based on PSP. However the authors
state that the subjects were not su�ciently familiar with PSP or how to follow
these scripts, raising a validity threat related to process conformance and study
findings.

In this research, we conduct an industrial experiment with software profes-

sionals. We summarize our motivation behind running a TDD experiment with
professionals as follows:

• Inconsistent findings: As briefly summarized above, the findings on
the e↵ects of TDD on developers’ productivity and external code quality
di↵er in academia and industry depending on the subjects, tasks, and
treatments used in the experiments (Siniaalto, 2006; Rafique and Misic,
2013). The findings in TDD studies with di↵erent rigour and relevance
scores also come to di↵erent conclusions (Munir et al., 2014). The findings
of the three TDD industry experiments are also inconclusive, because they
all su↵er from several validity threats, such as small sample size, lack of
detailed information about the sample population, subjective measures of
productivity (based on what the participants recorded), and mixed factors
confounded with TDD (PSP or pair programming). They did not report
the e↵ects of TDD on the external quality of the work, nor did they use
the same measures regarding productivity.

• Few industry studies: In a recent meta-analysis of the e↵ects of TDD
on external quality and productivity Rafique and Misic (2013) classified
only eight out of 27 studies as industrial studies. Many case studies and
studies with students claim external quality improvements with TDD, but
more evidence is needed in industrial contexts (Munir et al., 2014).

• Very few industry experiments: We investigated the eight industrial
studies listed in (Rafique and Misic, 2013) and found that only three of
them were truly controlled experiments, while the rest would be more ap-
propriately considered as case studies or surveys with quantitative analy-
ses.

Based on these observations, we believe that further evidence is necessary
through experimentation on the e↵ects of TDD on quality and productivity.
Our study complements and extends previous TDD experiments in industry in
several ways. We aimed to increase participation and were successful in recruit-
ing more professionals compared to (George and Williams, 2004) and (Geras
et al., 2004). We collected detailed demographics data on the participants’ ex-
perience in programming, unit testing, and other relevant knowledge prior to
experimentation so that we could better characterize the population. We orga-
nized a three-day workshop in the company in which two days were dedicated
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to training in unit testing and TDD with hands-on individual and group exer-
cises to make sure the participants’ level of knowledge is appropriate for TDD
experimentation. We made sure that all the participants attended the training
and completed the control and experimental tasks individually. Compared to
the studies by Canfora et al. (2006) and Geras et al. (2004), we set out to in-
vestigate more variables, namely the external quality of the work done. These
aspects reduced certain internal validity threats related to process conformance
(Fucci et al., 2014), mortality, and learning. Our experimental design also di↵ers
from the prior studies to fit the context and purpose of the study: We explain
our reasoning behind the selection of a repeated-measures design in Section 3.4.
Finally, our metrics and their calculations di↵er from (Canfora et al., 2006)
and (George and Williams, 2004) regarding productivity, and from (George and
Williams, 2004) regarding external quality. We select more granular measures
to increase their reliability. The metric choices are explained in Section 3.2. In
the next subsection, we give contextual information about the software company
in which the experiment was conducted.

2.3 Context

The software company in which we conducted our experiment is FSecure. It
has been operating at a multinational level for over 25 years and has over 1000
employees in 20 sites around the world. It provides online security services and
products for protecting digital devices and the digital data of consumers and
businesses. The company strives to understand and adopt new trends and tech-
nologies in software development as well as in security and digital privacy. FSe-
cure has both technical and business-related challenges, such as coping with fre-
quently changing requirements, pressure to decrease time-to-market, and pres-
sure for increasing quality (Still, 2007). It is one of the leading companies in
applying agile development methods (Still, 2007).

In FSecure, software development teams are highly encouraged to receive
training in new development techniques, technologies, and practices that they
wish to learn and practice. This openness to innovation and improvement
through continuous learning was instrumental in the positive reception by the
company of our proposal to conduct an experiment (including training and prac-
tice sessions). We conducted our experiment in three di↵erent sessions, i.e., at
three di↵erent FSecure sites: Oulu (Finland), Helsinki (Finland) and Kuala
Lumpur (Malaysia).

3 Experimental Design

3.1 Research Objectives

Using the Goal-Question-Metric-based template suggested by Basili (1992), we
define the goal of this research as follows:
Analyse TDD and incremental test-last approach
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for the purpose of comparing them

with respect to the external quality of the resulting work and productivity of
developers
from the point of view of the researchers

in the context of a software company.
Our research questions are listed below:

• Does TDD a↵ect external code quality compared to an incremental test-
last approach?

• Does TDD a↵ect developers’ productivity compared to an incremental
test-last approach?

With these research questions in mind, in the remainder of this section, we
discuss the study design and the process followed based on the proposed report-
ing structure for experiments by Jedlitschka and Pfahl (2005). We expand the
structure in Sections 3.8, 4.2 and 3.10 (Instrumentation, Preparation and Inter-
pretation) to clarify our approach regarding the metrics, training, discussion on
the results and limitations.

3.2 Variables

The independent variable in this study is the development approach which
we tested with two treatments: test-driven development (TDD) and a control.
We compare TDD with a closely related process, which we call incremental

test-last development (ITLD). This is the control level. Both TDD and ITLD
follow the same, iterative steps except the order of the activities involved in
each increment. Both TDD and ITLD follow small steps, such as decomposing
the specification into small programming tasks, coding, testing and refactoring.
The di↵erence is mainly in the sequencing of coding and testing activities in
each increment. TDD prescribes writing tests before writing production code
for any piece of new functionality. ITLD prescribes writing production code
first, immediately followed by writing tests before moving on to a new, small
piece of functionality. We have chosen ITLD as the control since when subjects
perform testing at the end (non-incrementally), they tend not to perform it at
all (Maximilien and Williams, 2003; George and Williams, 2003). Consequently,
we may end up comparing TDD with a process with no testing, and no quality
control (Erdogmus et al., 2005). ITLD forces a control that involves testing,
making the comparison less biased and fairer.

The e↵ectiveness of the programming approach can be examined from dif-
ferent perspectives. Previous related research has used several dependent vari-
ables and metrics, such as productivity, external quality, internal code quality,
e↵ort/time and conformance (Munir et al., 2014).

In this experiment, we adopt the same variables and metrics used in (Er-
dogmus et al., 2005) and (Fucci and Turhan, 2013). We study external quality

(QLTY) and productivity (PROD) as dependent variables. Using the same
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variables reduces the risks of experiment operationalization (the previous stud-
ies have successfully vetted and studied the adopted variables) and eases the
comparison with relevant previous studies.

We calculate the metric for external quality based on the number of tackled
subtasks (#tst) for a given task. We consider a subtask as tackled if at least one
assert statement in the acceptance test suite associated with that subtask passes.
This criterion is used to objectively distinguish subtasks in which a subject put
reasonable e↵ort into completing them from other subtasks in which a subject
put in little or no e↵ort. We calculate #tst using Equation 1. In the equation,
n is the total number of subtasks compromising the measured task.

#tst =
nX

i=0

(
1 #ASSERT

i

(PASS) > 0

0 otherwise
(1)

We use #tst to calculate QLTY in Equation 2 .

QLTY =

P#tst

i=1 QLTY
i

#tst
(2)

where QLTY
i

is the quality of the ith tackled subtask, and is defined as:

QLTY
i

=
#Assert

i

(Pass)

#Assert
i

(All)
(3)

#Assert
i

(Pass) represents the number of JUnit assertions passing in the
acceptance test suite associated with the ith subtask.

The metric for productivity PROD captures the amount of work successfully
performed by the subjects. The metric is calculated as follows:

PROD =
#Assert(Pass)

#Assert(All)
(4)

We consider a passing JUnit assertion to be the smallest quantifiable evi-
dence of work performed. It is therefore the adopted unit of work for measuring
productivity.

There are several metrics representing productivity in the literature, such
as total time spent implementing a task, number of lines of code (LOC) pro-
duced by a developer, number/percentage of user stories implemented, or num-
ber/percentage of passing test cases. Bergersen et al. (2014) emphasize the
challenge of dealing with the quality of the solution and the time spent on de-
livering that solution when measuring programmer performance. They mention
two main strategies to address the underlying trade-o↵s: 1) time is fixed, and
quality is measured based on successfully implemented steps, 2) time is relaxed,
but a high-quality solution is expected and the work is not deemed complete
unless that quality expectation is met. In our design, the amount of time al-
lowed to implement the tasks was fixed, and hence, the productivity measure
could not be based on the amount of time. If we measure only LOC as the out-
put of the process tested, subjects who produce more LOC but of less quality
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could be considered more productive (Madeyski and Szala, 2007); this is not
desirable. Similarly, if we choose number/percentage of user stories or subtasks
implemented, subjects who claim to have implemented more subtasks could be
considered more productive without supporting objective evidence, for example
even when most of the acceptance test cases associated with the subtasks do
not pass.

Therefore, following the recommendations of Bergersen et al. (2014), we
chose to base the productivity metric on the number/percentage of passing test
cases. Furthermore, to have a more granular and di↵erentiating approach, we
modified this metric and measured productivity based on the number of JUnit
assert statements (assertions) passing over all assert statements in all test cases
associated with the acceptance test suite of a task (see Equation 4).

3.3 Hypotheses

We have two hypotheses, H
Q

, H
P

, that concern external quality (QLTY) and
productivity (PROD), respectively. To use one-tailed hypotheses, knowledge
(preferably in the form of theories) of the direction of the e↵ect under study is
necessary. Since we do not anticipate the direction of the potential e↵ects, we
use two-tailed hypotheses.
H

Q0: µ(QLTY )
ITLD

= µ(QLTY )
TDD

(Null Hypothesis)
H

Q1: µ(QLTY )
ITLD

6= µ(QLTY )
TDD

(Alternative Hypothesis)

H
P0: µ(PROD)

ITLD

= µ(PROD)
TDD

(Null Hypothesis)
H

P1: µ(PROD)
ITLD

6= µ(PROD)
TDD

(Alternative Hypothesis)

3.4 Design

Our experiment used repeated-treatment design (Shadish et al., 2001). In this
section, we report on the process of deciding the design of our experiment,
explain alternative designs that we ruled out based on validity threats and
context characteristics, and justify the selection of the design.

The most straightforward alternative is the basic randomized between-subjects
design (shown in Table 2). Randomized design is conceptually simple and allows
for the control of nuisance factors and threats to validity such as maturation
and fatigue. The configuration in Table 2 is appropriate if either of the following
circumstances hold:

1. All of the subjects are familiar with ITLD, and some of the subjects are
already experienced with TDD. We assign a sample of these subjects to
the treatment group, G2, and a sample of the remainder (the ones without
any experience with TDD) to the control group, G1.

2. All of the subjects are familiar with ITLD, and none of the subjects are
experienced with TDD. In this case, we train a sample of the subjects in
TDD and assign them to G2, with the remaining subjects assigned to G1.
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Group Experimental Session
G1 ITLD (control treatment)
G2 TDD (experimental treatment)

Table 2: Two-level, basic between-subjects design

In our case, neither circumstance applied: Not all subjects were experienced
in TDD, and were su�ciently familiar with ITLD. Incentivizing the experiment
as free training (Tosun-Misirli et al., 2014) was necessary to secure our partner’s
cooperation and reduce variation, but this measure attracted only participants
without any knowledge of TDD. Moreover, the employer of the subjects did
not want only a subset of the participants to receive training to prevent com-
pensatory rivalry (a social threat to validity). So we had to provide at least
TDD training to all participants, and this prevented us from using a simple
randomized between-subjects design: Carry-over may happen when all partici-
pants (G1 and G2) are trained in the treatment (TDD) and assigned randomly
to two groups (experiment and control), since the control group is also exposed
to the treatment even if they are not supposed to use it. Therefore, a non-
synchronous execution, for example, running ITLD first (pre-treatment) and
TDD after (post-treatment) appeared to be the best design alternative that
matched both the researchers’ and industrial partner’s goals.

We had two alternatives for pre-/post-treatment design. The simpler one,
still a between-subjects design, is shown in Table 3. A disadvantage of between-
subjects designs in general is that, to achieve comparable power, they require
larger numbers of participants than alternative designs in which all subjects
perform all treatments. However, we had no assurance that a large number of
subjects would volunteer in the organization.

The sample size can be reduced by controlling the sources of variation in the
sample. One of the most important sources of variation is the skill level. This
variation can be controlled using a repeated-treatment design. Table 4 shows
the experimental configuration for this type of design in our case.

Group

Temporal sequence

Training Exp. Session Training Exp. Session

G1
ITLD

ITLD
TDD

G2 TDD

Table 3: (Pre-Post) Between subjects design with the training course

Group

Temporal sequence

Training Exp. Session Training Exp. Session

G1
ITLD

ITLD
TDD

TDD
G2 ITLD TDD

Table 4: Repeated-treatment design with the training course

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



In a repeated-treatment design, subjects are all matched with themselves,
cancelling out any inherent variability and increasing power greatly (Shadish
et al., 2001). A power analysis using a generalized linear model for the design
in Table 3 shows that 128 subjects (64 per group) are necessary to generate
a medium-sized e↵ect (Cohen’s d=0.5) with a resulting chance of Type-I and
Type-II errors of ↵ = 0.05 and � = 0.2, respectively (Cohen, 1992). If the
assumptions of normality and homoscedasticity are not met, the required sample
size would be even larger. Using the same parameters in a repeated-treatment
design, on the other hand, the sample size drops to 34 subjects. We decided
that this sample size was more reasonable in the context of our industry partner,
and in turn, we adopted the design provided in Table 4. We present our final
design, with training-treatment sequences and the assigned tasks for treatments,
in Section 3.6 (Table 5).

3.5 Experimental objects/tasks

The subjects implemented three programming tasks in total. The first task was
called MarsRover API and used with ITLD, and the second and third tasks,
Bowling Scorekeeper and MusicPhone, were used with TDD. We discuss each
task below.

MarsRover API (MR) was the only control task. It is a greenfield program-
ming exercise that requires the development of a public interface for controlling
the movement of a fictitious vehicle on a grid with obstacles. MR is a popular
exercise used by the agile community to teach and practice unit testing. This
task was described in terms of six requirements. We split these requirements fur-
ther into 11 fine-grained subtasks, each associated with a set of acceptance tests
unknown to the subjects. The description of these requirements also included
an example of a simple acceptance test. The complete description of the task
provided to the subjects can be found in this link: 10.6084/m9.figshare.3502808.

MR is an algorithm-oriented task. The implementer needs to handle several
edge cases in order to produce the expected results. The implementation of MR
leverages an NxN matrix data structure representing the planet on which an
imaginary rover moves. Each matrix cell may store an obstacle on the surface
of the planet. Obstacles do not have any behaviour and can be modelled with
simple data types (e.g. a Boolean for representing presence/absence). There are
six main operations to implement, necessary to move the rover on the surface
of the planet. The task can easily be solved using just one class. The possible
operations are:

• Matrix initialization and assignment of obstacles to cells

• Command parsing

• Forward and backward moves

• Left and right turns
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The forward and backward moves are the most complex operations. Com-
mand parsing and left/right turns are straightforward operations. The assign-
ment of obstacles to cells upon initialization requires some parsing and type
casting. MR is not a particularly di�cult task, although it may require a few
cycles of debugging.

We provided the MR specification document and a Java project template to
the subjects in order to get them started easily and to have a common package
structure that would make data collection easier to automate. The project
template consisted of 17 lines of non-commented code (LOC), a Java class that
exposes the signature of the public API required by the task (8 LOC), and a
test class containing the stub of a JUnit test case (9 LOC).

The first experimental task tackled by the subjects using TDD approach
was a modified version of Robert Martin’s Bowling Scorekeeper (BSK, 2015).
This task has also been popular in the agile community, and was used in previous
TDD experiments (e.g. (Erdogmus et al., 2005), (Fucci and Turhan, 2013),
(Williams et al., 2003)). The goal of the task is to calculate the score of a
single bowling game. The task is algorithm-oriented and greenfield. It does not
involve the creation of a UI. The specification was broken down into 13 fine-
grained subtasks. The task does not require prior knowledge of bowling scoring
rules: this knowledge is embedded in the specification.

Each subtask of BSK contained a short, general description, a requirement
specifying what that subtask is supposed to do, and an example consisting of an
input and the expected output. We instructed the subjects to follow the given
order of the subtasks while implementing them. BSK has also four principal
operations:

• Add a frame or bonus throws

• Detect when a frame is a spare or strike

• Calculate a frame score

• Calculate the game score

The most complex operation is the calculation of the frame score. It depends
on the type of frame (regular, spare or strike), the position of the frame in the
game, and whether or not the next frame is a strike.

We provided the BSK specification document and a code template to the
subjects. The code template contains two Java classes, one with 23 LOC and
the other with 28 LOC, each with the method signatures necessary to exercise
our acceptance tests. We also provided the stub of a JUnit test class (9 LOC).

Both MR and BSK are relatively straightforward greenfield tasks, with some
intricate logic that requires attention. In BSK, the complexity was represented
by the tricky logic of bonus throws, the handling of frames, and interactions
between the scores of subsequent frames. Comparing structural complexities
between MR and BSK is, in fact, open to discussion; we believe they are com-
parable in many aspects. The process of managing, maintaining and acting
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upon several possible system states is similar in MR and BSK. Rover move-
ments in MR and score calculation in BSK both depend on previous states of
the system.

The second experimental task tackled by the subjects using TDD was
a brown-field project called MusicPhone (MP). MP is an application that is
intended to run on a GPS-enabled, MP3-capable mobile phone. It resembles a
real-world system with a three-tier architecture (graphical user interface, busi-
ness logic, and data access). The system consists of three main components that
are created and accessed using the Singleton pattern. Event handling is imple-
mented using the Observer pattern. We provided a description of the legacy
code, including existing classes, their APIs, and a diagram of the system’s ar-
chitecture to the subjects (see the link: 10.6084/m9.figshare.3502808).

MusicPhone (MP) has very di↵erent characteristics than the other two tasks.
It was designed to address the concern of realism, as a counterbalance against
a potential bias in favour of TDD when it is applied to greenfield tasks. Our
intention was to move the task away from TDD’s commonly believed sweet
spot of greenfield tasks by embedding it in a more realistic context that involves
externalized components and interactions with these components.

Due to its architecture, MP’s complexity is much higher than that of BSK or
MR. The subjects had to implement four operations in the following sequence:

• Compute the distance between two geographical coordinates (given the
formula)

• Recommend artists

• Find concerts for artist (given the recommendations)

• Compute an itinerary for the concerts

All operations of MP are moderately complex. The simplest one, computing
the distance between coordinates, is essentially about correctly implementing a
mathematical formula, but involves several edge cases that should be addressed.
The remaining operations are not self-contained and require the collaboration
of existing subclasses.

The system provided to the subjects had a working UI. The data access
layer was also implemented. In the partial implementation provided, attempting
to access a missing function via the UI (e.g. by clicking a button) throws an
exception and displays an error message. Subjects had to implement the missing
operations in the business logic layer.

MP’s partial implementation consists of 13 classes and four interfaces (1033
LOC) written in Java. The package in which the subjects need to implement
the requirements contains three classes (92 LOC): a Singleton class (27 LOC),
an exception handling class (7 LOC), and the class where the missing operations
should be implemented (58 LOC). Along with the sca↵olding of the system, a
single smoke test (6 JUnit assertions, 38 LOC) is also provided. The test cases
in the smoke test show how di↵erent components communicate with each other
and how the API of the existing classes should be used.
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3.6 Assignment of tasks to treatments

The design in Table 4 shows that all subjects sequentially apply ITLD and TDD.
This experimental configuration su↵ers from a learning threat (maturation) on
the experimental object. The learning e↵ect can be avoided by requiring the im-
plementation of two di↵erent tasks (say A and B) during the experiment. Tasks
A and B can be assigned to two groups/sessions (G1 and G2) in a counter-
balanced manner, e.g., A is assigned to G1-ITLD and G2-TDD, and B is as-
signed to G2-ITLD and G1-TDD. Counter-balance is the preferred approach
because it separates the potential e↵ect of the task from the development ap-
proach, or independent variable. But such an experimental configuration would
su↵er from another threat: maturation. This is because the task definition and
other information may be transferred among the groups before TDD, favouring
subsequent TDD usage in the experiment. This is a threat to internal valid-
ity, and the fact that the experiment would be part of a training course and
both groups would be present in the same room during the whole training and
experiment would compound the threat.

We can rule out such a threat by assigning A to both groups in ITLD (G1-
ITLD, G2-ITLD) and B to both groups in TDD. Information transfer in such a
case is impossible, because the subjects implement tasks A and B sequentially.
However, this implies an additional cost: tasks and development approaches get
confounded and the e↵ects can no longer be separated. In case of an interaction
between the task and the treatment, the experiment results could be severely
biased. For instance, imagine that task B is more complex than A; then poor
results during TDD may be explained either as TDD’s poor performance or B’s
complexity, but we would not be able to decide which is true. This is essentially
an instrumentation threat to (internal) validity. We need to make a decision:
which threat to validity (learning e↵ect or instrumentation) is more severe in
our experimental context?

We considered learning e↵ect to be a critical issue. Although we discouraged
the participants from discussing the exercises and tasks during the breaks, they
would meet before or after the sessions and work together, and therefore could
leak information about the teaching materials, exercises, and tasks. We had no
control over this behaviour. However, we could control instrumentation threats
to a certain extent.

There were other, more practical reasons for choosing to accept an instru-
mentation threat over a learning threat in this experiment. The company did
not set any restrictions on experimental tasks, but expressed a strong desire to
get maximum benefits from their participation. This implied that we should
expose the volunteers to as many tasks and with as much variety as possible.
The managers also did not want certain volunteers to be excluded from certain
sessions, because this could make them feel that they were getting fewer benefits
and become less motivated. The organization did not want to risk these kinds
of resentment-based perceptions, which also pose an internal threat, known as
compensatory rivalry. We wanted to avoid compensatory rivalry as well. These
practical considerations combined with the risk of uncontrollable learning e↵ects
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made us choose two tasks of comparable complexity for alternative treatments.
TDD has often been criticized as being suitable mostly for self-contained,

greenfield tasks that can be broken down into smaller subtasks easily (Erdogmus
et al., 2005; Rafique and Misic, 2013). These kinds of tasks are also ideal for
experimental settings, since subjects do not need to familiarize themselves with
the design of the system and can proceed immediately. Detractors of TDD claim
that it is unclear how TDD could perform in brownfield tasks, under conditions
of increased realism (Causevic et al., 2011).

The uncertainty around the task e↵ects on TDD called for a more conserva-
tive approach to the assignment of tasks to the treatments. Instead of assigning
only one type of task during TDD, we decided to use both a greenfield and a
brownfield task. TDD would be applied first to the greenfield task, and later
on to the brownfield task.

In our design, the natural choice was to introduce the tasks that help subjects
master incremental testing since this aspect is common to both treatments.
These tasks would then serve as baselines. MR and BSK are, by design, suitable
for this purpose. Therefore, we selected them as the control (ITLD) and first
experimental task (TDD), respectively.

For the second experimental task, on the other hand, we chose MusicPhone
as it is not a task in the sweet spot of TDD. We took this position to avoid a
potential bias in favour of the investigated phenomenon. The caveat is the risk
of introducing a reverse bias, that is, the risk of being too conservative. Our
decision was to err on the side of caution.

Hence we ended up with three tasks in total: a greenfield task for ITLD,
a comparable greenfield task for TDD, and a third task of a di↵erent nature,
a brownfield task, for TDD again. The resulting configuration is illustrated in
Table 5.

Training 1st Exp. Session Training 2nd Exp. Session 3rd Exp. Session

ITLD ITLD greenfield task TDD TDD greenfield task TDD brownfield task

MarsRover Bowling Scorekeeper MusicPhone

Table 5: Repeated-treatment design with the training course and the assigned
tasks

3.7 Selection of subjects

We used convenience sampling to select the subjects of our experiment, since
our industry partner preferred that the developers could register for the train-
ing/experiment voluntarily. All the volunteered subjects implemented all the
tasks, so there was no randomization involved in our experiment.

3.8 Instrumentation

We provided a technological infrastructure to the subjects that includes the
tools that were used during the training and experimentation sessions. This
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infrastructure was embedded into a virtual machine (VM) image through Ora-
cle VM Virtual Box (Vir, 2014). The image included the Windows 7 operating
system, a web browser, Eclipse Helios (Ecl, 2014) as the development environ-
ment, JUnit 4.3 as the unit testing framework installed inside Eclipse (Gamma
and Beck, 2014), and a plug-in called Besouro that allowed us to collect process
conformance data in order to assess whether the subjects followed the TDD
process to a reasonable extent (Becker et al., 2014). Each subject was asked to
install Oracle VM VirtualBox and download the virtual machine we prepared
before the experimentation/ training week. They used a VM for three reasons:
(1) To isolate the development environment used for the experiment from the
real environment that the subjects used for their daily work; (2) to control
the technology that the subjects used; and (3) to collect data more easily and
uniformly.

We also provided the subjects three Java project templates (one for ITLD
and two for TDD tasks) inside the Eclipse environment. These project templates
helped the subjects to ramp up more easily and reduce the time required. They
included project setup configurations, some class and method signatures, debug
and test configurations). Furthermore, we distributed hard copy versions of the
project specification documents to all subjects before each task.

The pre-test instrument for collecting the demographic information about
the subjects was provided in the form of a Google survey whose link was shared
with the subjects on the first day of the training.

The main instrument used for extracting the QLTY and PROD metrics was
acceptance tests. A set of acceptance tests was written for all tasks. For the
MarsRover API, the acceptance tests were written by the researchers, whereas
we adapted the tests for MusicPhone and Bowling Scorekeeper from a previous
experiment (Erdogmus et al., 2005). MusicPhone’s original test suite was writ-
ten in the C# language and hence, we translated it to Java. The acceptance
test suites of two tasks (MarsRover API and MusicPhone) had 11 JUnit tests
cases each; the suite for the third task (Bowling ScoreKeeper) had 13 JUnit
test cases. Each test case contained a varying number of JUnit tests, and each
test contained a varying number of assert statements. Table 6 summarizes the
composition of the test suites.

3.9 Data Collection & Measurement Procedures

We designed the experiment as a three-day training course with a planned
schedule shown in Figure 1. The schedule and the content of the training
were shared with the participants prior to the training/experimentation days.
We informed them about the possibility of changing the break times for co↵ee
and lunch depending on their preferences. However we clearly stated that there
would be no break during the implementation of control and experimental tasks,
and asked them follow this rule.

As shown in Figure 1, the training sessions included several exercises. These
exercises are called “katas” (Draper, 2006) and were implemented in a solo or
“randori” (a sequence of pair programming sessions rotated every 5-10 minutes
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MarsRover API MusicPhone Bowling Scorekeeper
Subtask Tests Assert Tests Assert Tests Assert
ST1 1 1 4 4 3 3
ST2 7 11 3 12 3 3
ST3 4 8 3 12 2 2
ST4 4 7 4 4 3 10
ST5 4 8 10 26 5 5
ST6 8 8 8 12 6 6
ST7 6 15 7 17 8 8
ST8 4 8 1 1 5 5
ST9 3 8 2 11 5 5
ST10 3 7 2 13 4 4
ST11 8 8 4 20 2 2
ST12 NA NA NA NA 3 3
ST13 NA NA NA NA 2 2
Total 52 89 48 132 51 58

Table 6: Summary of acceptance tests used to calculate the metrics for each
task used.

(Draper, 2006)) fashion by the participants during the training. We carefully
selected each of these katas to present how ITLD and TDD could be applied
to di↵erent kinds of problems (e.g. when there is legacy code that needs to be
modified for a new subtask, when the subtasks are not clearly defined, etc.).
The time allocated to implement the second experimental task, MusicPhone,
was higher (180 minutes) than the time allocated to implement the control
task, MarsRover API (135 minutes). The main reason behind this was the
complexity of the experimental task.

As described in the technological infrastructure in Section 3.8, we planned
to collect data from the subjects. The data included project folders consisting
of production and test code written by the subjects, activity logs from Besouro
(Becker et al., 2014), and daily snapshots of the VM image. The raw data
collected from each subject’s computer were stored on hard drives located on-
site. The pre-test questionnaire for collecting the demographics information was
online, and the responses were automatically collected and stored in the cloud.

After we collected the raw data from the VM images, we processed the data
to calculate the QLTY and PROD metrics for each subject and task. This
process worked as follows: We executed the acceptance test suite associated
with each task on the production code of the subjects. We stored the number
of assert statements passing and failing during this execution as base measures.
There was a one-to-one mapping between the JUnit test cases and subtasks.
This mapping allowed us to compute the number of tackled subtasks for each
subject and each task, and finally the QLTY metric according to Equation 1
and the PROD metric according to Equation 4.
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Figure 1: The experimental schedule (planned)

3.10 Analysis Approach

We perform a two-stage analysis to answer our hypotheses. Stage 1 aims to
check the e↵ect of the development approach on QLTY and PROD. We use
IBM SPSS Statistics Version 22 to apply a repeated-measures General Linear
Model (GLM) procedure. This procedure allows us to perform a repeated-
measures ANOVA on three levels of the independent variable corresponding to
two treatments: ITLD and TDD. The repeated measures GLM assumes that the
form of the covariance matrix of the dependent variables is circular/spherical,
i.e., thath the covariance between any two elements is equal to the average of
their variances minus a constant (Winer, 1971). To check this assumption, we
use Mauchlys test of sphericity. If the sphericity assumption is met, we use the
univariate test, as it is statistically more powerful than the multivariate test. If
the sphericity assumption is not met, we use two tests: (1) a multivariate test,
and (2) a univariate with Huynh-Feldt correction (Field, 2007) to check whether
both of them yield the same results.

If the repeated-measures GLM indicates a significant di↵erence between the
treatments, we examine pairwise comparisons between ITLD and TDD while
keeping the task complexity constant. Thus, we compare the two treatments
with the simple tasks (MR versus BSK). We hypothesize that the two treatments
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di↵er when applied to comparable tasks and the simpler of the tasks.
We also suspect that the change in task complexity may a↵ect the results as

increasing the task complexity in the experimental treatment (TDD) may cause
its performance to decline and partially or wholly cancel its benefits. Therefore
we examine pairwise comparisons between TDD with the simple (BSK) and
complex (MP) tasks. If there is a significant di↵erence in the performance of
TDD with two tasks, it is more likely that the task complexity is confounded
by the development approach. If there is no significant performance di↵erence
between the two TDD tasks, we could say that the di↵erence is due to TDD or
ITLD. If we observe a di↵erence between the two tasks (BSK versus MP) at the
same treatment level (TDD), we move to the second stage analysis.

Stage 2 is performed only if the first stage analysis warrants it, i.e., if
the task complexity impacts TDD’s performance. In this second stage, we
use task type as an additional factor in our treatment (development approach)
and build a marginal model. We use SPSS to apply a Linear Mixed E↵ects
(MIXED) procedure. This procedure allows us to include the task type as a
factor nested in the experimental treatment and to build a population-averaged
model. The di↵erence between the MIXED procedure and GLM is that there
is no constant variance, and the form of covariance matrix of the dependent
variables is assumed to be independent of their variances (C.E. McCulloch and
Searle, 2000). If the MIXED model confirms that task is a significant factor over
the development approach, it is not possible to conclude that the di↵erence is
solely due to the treatments, i.e., contextual factors matter.

After running the statistical tests, we report the statistical significance and
the observed power (of an apparent relationship) (Ellis, 2010). We also report
the e↵ect size in terms of a partial eta-squared statistic and Cohen’s d statistic
to gauge the magnitude of the apparent relationship (Coe, 2002).

3.11 Evaluation of design validity

Jedlitschka and Pfahl (2005) recommend that potential threats to the experi-
ment validity due to the choice of the design are discussed and reported sepa-
rately. We cover them in this section.

A repeated-treatment design may be exposed to the following threats to
validity (Shadish et al., 2001): fatigue, carry-over/order, period e↵ects, and
practice e↵ects. We believe that these threats were negligible, beneficial, or
likely cancelled out each other:

• Fatigue: We conducted experiments on each site over three days during
regular working hours. During this period, the developers could not per-
form normal work activities; their only responsibility was participation in
the experiment and the related training. Therefore, the experiment did
not induce any extra e↵ort on the subjects. In fact, their schedule during
the experiment was more relaxed than a regular workday. The participants
may have felt more energetic closer to the beginning of the training, and
as the training progressed, could get more fatigued and less motivated af-
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fecting their performance. We could not avoid this natural reaction to the
working week, and we do not believe it could have had a significant e↵ect.
If any, it would have only biased the findings slightly against TDD, but
this e↵ect is likely to have been cancelled out by learning and carry-over.

• Carry-over/Order: A carry-over between the control, ITLD, and the treat-
ment, TDD, is a possibility, and may normally raise a threat. In this case,
the carry-over and order threats coincide, but they were required and ben-
eficial in our case. ITLD is normally the baseline case for learning TDD,
since it more closely reflects the traditional way of thinking. After mas-
tering ITLD, developers can learn TDD more easily. After learning TDD,
unlearning it to revert to a more traditional way of thinking could be dif-
ficult. Progressing to TDD through ITLD is thus the natural order. The
design in Table 4 reproduces this order: The subjects can build upon the
ITLD expertise when they apply TDD. Carry-over from ITLD to TDD is
therefore required and desirable in the design used.

• Period e↵ects: Beyond fatigue and carry-over, we could not identify any
plausible interaction between the treatments and the periods of adminis-
tration of the treatments, i.e., the fact that ITLD was applied on the first
day and TDD on the second and third days does not seem to make any
di↵erence, since there were no notable di↵erences between the days of the
training.

• Practice e↵ects: As a consequence of a repeated-treatment design, carry-
over and practice threats may normally be confounded. Practice threat
is plausible when subjects are inexperienced and the repeated execution
of treatments implies learning. In our experiment, the participants stated
that they were familiar with traditional test-last development, but they
still improved their abilities in incremental development and unit testing
with hands-on exercises (one randori exercise, one task) during the first
day of the experiment. Hence any practice e↵ect of ITLD on TDD, as
in the case of carry-over, was beneficial, and likely contributed to the
experiment success. This is also a natural consequence of accepting in-
strumentation threat over learning threat, as we discussed in Section 3.6.

4 Experiment Execution

The experiments took place between September and December 2013 at three
di↵erent sites. As planned earlier, three days were allocated for each site (Oulu,
Helsinki and Kuala Lumpur). One trainer, one observer, and one data collector
were present in all three experiments.

4.1 Sample

We had 24 subjects: Seven in Oulu, 11 in Kuala Lumpur, and six in Helsinki,
who attended the whole training and experimentation. We conducted a demo-
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graphics survey to get more detailed information about the subjects’ academic
background, professional career, experience in programming, programming lan-
guage used in the experiments (Java), JUnit, and TDD. Table 7 presents a
summary of the survey responses. More than 80% of the participants had six
or more years of programming experience, whereas around half of the partic-
ipants had two to ten years of experience in the programming language used
in the experiment. All of them were familiar with JUnit, and half had no
knowledge on TDD. The other half of the subjects indicated that they attended
training/workshops on TDD, but never applied this practice in the professional
development.

Table 8 also provides more information about the education and level of
degree, and the most frequently used programming languages, unit testing tools,
development environments, and development methodologies. We observed that
the majority of the participants had a bachelor’s degree in computer science,
computer engineering or electrical engineering. Around 40% (ten out of 24) also
had a master’s degree. The most commonly used programming language and
unit testing tool were Java and JUnit, respectively. We see that the subjects
also used other testing frameworks (e.g., Jasmine (15%) and Nose (13%)) and
IDEs (e.g., IntelliJ, 22%, and PyCharm, 18%), which reflects their preferences
for languages other than Java. Regarding the development methodology, 17 out
of 24 subjects (71%) indicated they used agile practices in their daily work.

# Years Prof.

ca-

reer

Prog.

exp.

Prog.

lang.

exp.

JUnit

exp.

TDD

exp.

0 0 0 0 0 50.0

 2 9.1 0 18.2 45.5 31.8

3-  5 18.2 18.2 27.3 36.4 18.2

6-  10 45.5 40.9 36.4 13.6 0

> 10 27.3 40.9 18.2 4.5 0

Table 7: Summary of demographics for the subjects (in percentage)

4.2 Preparation

Schedule. At the beginning of the training, we presented the planned schedule
(Figure 1) to the participants. Start and end times for each day as well as the
breaks were discussed and agreed upon by all.

Training. In order to make sure that all participants shared a common
baseline understanding of the testing and TDD-related concepts, we provided
crash courses at all sites. These training sessions included: lectures (two hours),
hands-on group exercises (four hours) and hands-on individual exercises (12
hours). As shown in Figure 1, the training sessions alternated with the treat-
ments.

• Lectures: We delivered two lectures, each one hour long. The first lec-
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Education Degree Prog.

lang.

Unit testing

tool

IDE Methodology

Computer
Science &
Eng. (11)

BS
(11)

Java
(10)

JUnit (16) Eclipse
(6)

Agile (17)

Electrical
Eng. (5)

MS
(10)

C++
(5)

Jasmine (6) IntelliJ
(5)

Waterfall
(4)

Other (6) MA
(1)

Python
(4)

Nose (5) PyCharm
(4)

Iterative
(1)

Other
(3)

Other (13) Text ed-
itors (4)

Other
(3)

Values in parentheses indicate the number of subjects selected the corresponding category.

Table 8: Detailed demographics for the subjects

ture took place at the very beginning of the study (morning of Day-1)
and covered the basic principles of unit testing. We compiled the training
content from a combination of our own software testing course materi-
als and practitioner-focused books. We emphasised and discussed the
following principles of unit testing: simplicity, readability, maintainabil-
ity, self-documentation, avoidance of non-determinism and redundant as-
sumptions, execution independence, focus on a single function, focus on
external behaviour, ability to provide quick feedback, coverage of posi-
tive and negative behaviours, the four-phase test design (Setup-Execute-
Verify-Teardown), and importance of test refactoring. The second lecture
took place at the beginning of the second day where TDD was conceptu-
ally introduced (morning of Day-2). We slightly modified our own lecture
material used in our software testing courses. In particular, we introduced
the TDD way of working (e.g. the red-green-refactor cycle), pointed out
the di↵erences from incremental test-last development, and discussed the
pros and cons of TDD in terms of the expected e↵ects on programmer
productivity and software quality. However, we took care to introduce
TDD in an impartial manner, explaining that there are proponents and
opponents of TDD. We did not present the existing empirical evidence in
this lecture in order to avoid introducing biases.

• Hands-on Group Exercises: We conducted four hands-on group exer-
cises following the randori session format. Two of the sessions took place
during the first day with a unit testing and incremental test-last focus and
the other two took place during the second day with a focus on TDD. We
browsed through code-kata exercises available on the Web1 and selected
four tasks, after trying them out ourselves, for use in these sessions. In
a randori session, a group of developers work on a single task with the

1e.g. http://craftsmanship.sv.cmu.edu

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://craftsmanship.sv.cmu.edu


goal of learning from each other, both from good and bad practices. The
session is run by a “sensei” who leads the activity by asking questions,
but not providing solutions. We, the researchers, acted as the sensei. The
randori setting uses a single computer whose display is projected onto a
big screen. A pair of developers leads the development activity, one pair
at a time. One developer acts as the driver and the other as the co-pilot
in a pair programming session, and they are asked to think and act aloud.
The rest of the audience are seated facing the projected screen and are
encouraged to make suggestions to the driver and co-pilot. However, it is
up to the driver whether to follow the suggestions or not. The whole group
is considered as one collective mind and silence is not allowed; the sensei
starts asking questions when there is silence. The pairs rotate every five to
ten minutes, i.e., the driver goes back to the group, the co-pilot becomes
the driver and a new subject becomes the co-pilot. All participants ideally
experience the driver role at least once during a session. We conformed
to this format while encouraging the participants to follow incremental
development. After each session, we conducted a short retrospective on
the lessons learned, again led by us, to summarise the good practices and
common mistakes that took place in the session.

• Hands-on Individual Exercises: Between the second and third days
of the training, we gave participants two days break to take care of their
work responsibilities. During these days, we suggested that they practise
TDD on their work-related software development tasks. We think that this
kind of personal practice may give subjects more hands-on experience with
TDD than artificial exercises do. We also reserved these days for potential
schedule slips, since we could use them as bu↵er zones as needed. We did
not collect data from these practice days due to the company’s privacy
policy.

Data collection. Data was collected on-site by the researchers. We collected
the responses to the demographics questionnaire using an online form. After
the questionnaire session, the answers were instantly available in a spreadsheet.

As planned, we extracted the software artefacts produced by each subject for
each of the tasks at the end of the sessions. First, we helped the subjects copy
the folders that contained the production code and test code to an external
storage drive. Second, as a fall-back plan, the VM images the subjects used
were exported to an external storage drive. The data collection took 30 to 60
minutes. At one site, we had to deviate from our data collection plan due to the
time required to copy some subjects’ output. Instead, we first exported all the
data to an internal server, and we then moved the data to the external drives.

5 Results

We analysed the data collected from all 24 subjects. The data analysis is per-
formed as follows. First, descriptive statistics for all metrics are presented. This
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is followed by the boxplots for all the metrics to visualize variations in the data.
Then we apply the two-stage analysis described in Section 3.10 to test the hy-
potheses related to the research questions. We report statistical significance,
observed power, and e↵ect size for all tests. We also check for normality test
assumptions.

5.1 Quality (QLTY)

We present the descriptive statistics, box plots, and statistical test results for
QLTY in the next subsections.

5.1.1 Descriptive statistics for QLTY

Table 9 presents central values (mean along with its 95% confidence interval,
trimmed mean, and median), dispersion (variance, standard deviation, mini-
mum, maximum, range and interquartile range) and symmetry (skewness and
kurtosis) for the QLTY metric for both ITLD and TDD on the greenfield and
brownfield tasks respectively.

TDD with the greenfield task has the highest mean in QLTY (76%)
with a confidence interval between 66.4% and 85.6%. The mean for TDD
with the brownfield task has the lowest mean (39.1%) with a confidence interval
between 28.4% and 49.%. The mean for ITL is higher than TDD with the
brownfield task (53.9%) with a confidence interval between 35.4% and 72.5%.
The trimmed means are almost the same as the means in the three tasks (54.4%
for MR, 39.4% for MP and 78.5% for BSK). In terms of dispersion, ITL has the
greatest variance, followed by TDD with the brownfield task. TDD with the
greenfield task has the smallest variance.

In an interval of [0, 100], the range of variation for ITL and TDD with the
greenfield task is 100% (0% - 100%), and 72.9% for TDD with the brownfield
task (0% - 72.9%). It is important to note that a 100% QLTY value means all
the subtasks that the subject tackled have been correctly implemented. The
percentage varies among tasks depending on how correct each delivered subtask
is.

Normality tests for QLTY residuals (p=0.002) and z -scores for skewness
and kurtosis values (z

skewness

= �1.677 and z
kurtosis

=-1.021) show that the
residuals do not depart much from normality (Kim, 2013).

The box plot in Figure 2 shows an outlier in the TDD treatment with the
greenfield task. If this outlier is removed, the range of variation reduces to 52%
- 100%.

5.1.2 Hypothesis testing for QLTY

We performed the repeated-measures GLM on the QLTY metric. Mauchly’s
sphericity test showed that we cannot reject the null hypothesis for sphericity
assumption (p = 0.23); therefore we could use the univariate test. The test
confirms that there is a significant di↵erence between the mean QLTY obtained

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ITLD TDD-greenfield TDD-brownfield

Mean 53.9 (9.0) 76.0 (4.6) 39.1 (5.2)

Lower Bound* 35.4 66.4 28.4

Upper Bound* 72.5 85.6 49.8

5% Trimmed Mean 54.4 78.5 39.4

Median 66.4 80.6 42.9

Variance 1843.9 496.3 610.3

Std. Deviation 42.9 22.3 24.7

Minimum 0.0 0.0 0.0

Maximum 100.0 100.0 72.9

Range 100.0 100.0 72.9

Interquartile Range 100.0 34.7 40.9

Skewness -0.3 -1.9 -0.5

Kurtosis -1.7 5.1 -0.9

*Bounds are given for 95% confidence interval of the mean.

Table 9: Descriptive statistics for QLTY

from the two treatments with the tasks of di↵erent complexity, i.e., among BSK,
MR, MP (F (2; 44) = 7.887, p = 0.001). The observed power of the univariate
test (0.94) shows that the analysis has su�cient power. Figure 3 depicts the
profile plot for QLTY.

The GLM test indicates a significant di↵erence among the three tasks of
di↵erent complexity, but this does not necessarily indicate that the di↵erence is
between ITLD and TDD treatments. So we need to perform pairwise compar-
isons between ITLD and TDD. Pairwise comparison between ITLD and TDD
with the greenfield task using Bonferroni adjustment suggests that the observed
di↵erences in the marginal means of the two treatments (see Table 10) are not
significant (p = 0.36). Thus we conclude that the development approach
does not have a significant impact on the quality of the work pro-
duced. Pairwise comparison between the two TDD tasks reveals that TDD
with the greenfield task is significantly di↵erent from TDD with the brownfield
task in terms of QLTY.

Mean Std. Error
ITLD 53.9 8.95

TDD-greenfield 76.0 4.64
TDD-brownfield 39.1 5.15

Table 10: The estimated marginal means for QLTY

5.1.3 E↵ect size

The partial eta-squared measure of GLM shows that the development approach
explains around 26.4% of the total variability in the model for QLTY. The
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Figure 2: Box plot representing the QLTY metric for ITLD and TDD with the
greenfield and brownfield tasks

remaining 74% could be attributable to other causes. This ratio is acceptable
in studies dealing with human behaviour.

Kampenes et al. (2007) studied standardized e↵ect sizes in software engi-
neering experiments and suggested that an absolute e↵ect size of 0.17 indicates
a small e↵ect, 0.6 indicates a medium e↵ect, and 1.4 indicates a large e↵ect.
These values are slightly higher than those suggested in psychological and be-
havioural sciences (Kampenes et al., 2007). Cohen’s d for QLTY between the
observations of ITLD and TDD with the greenfield task is -0.65. So, the e↵ect
of the di↵erence between the means of those is medium. Cohen’s d for QLTY
between the observations of TDD with the greenfield and brownfield tasks is
1.57. So, the e↵ect of the di↵erence between the two tasks is large. Cohen’s d

for QLTY between the observations of ITLD and TDD with the brownfield task
is 0.42, which indicates a small to medium e↵ect.

5.2 Productivity (PROD)

5.2.1 Descriptive statistics for PROD

Table 11 presents the central values, dispersion and symmetry for ITLD and
TDD treatments respectively. The mean productivity is highest in the
TDD approach with the greenfield task, (47.6%) with a confidence
interval between 32% and 63.1%. The lowest mean productivity is found
in TDD with the brownfield task, (15.9%) with a confidence interval between
11.1% and 20.7%. The trimmed mean shows almost the same values as the
means in all three tasks.
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Figure 3: Profile plot for QLTY

The median productivity is in accordance with the mean productivity for
the TDD treatments (50% in BSK and 16.7% in MP), but not for the ITLD
treatment, where there is a di↵erence of around 10%. This might be due to the
fact that a few subjects produced very low productivity values in ITLD.

In an interval of [0,100], the range of variation in ITLD is 87.6% (0% - 87.6%),
and 96.6% in TDD with the greenfield task (0% - 96.6%), but it is around the
half of this latter range in TDD with the brownfield task (0% - 40.9%). A
level of 100% productivity indicates that all subtasks have been successfully
delivered, i.e., all assertions associated with all subtasks are passing. Thus,
perfect productivity implies perfect quality in our case, but not vice versa.

Normality tests for PROD residuals (p=0.166) and z -scores for skewness and
kurtosis values (z

skewness

=0.831 and z
kurtosis

=-1.03) show that the residuals
may follow a normal distribution.

The box plot in Figure 4 shows no outliers.

5.2.2 Hypothesis testing for PROD

We reject the null hypothesis for Mauchly’s sphericity test (p = 0.03) for the
PROD metric. Hence, we performed both the multivariate test and univariate
test with Huynh-Feldt correction. Both tests confirm that there is a significant
di↵erence between the mean PROD obtained from the two treatments with tasks
of di↵erent complexity. Univariate test statistics are (F (1.66; 36.61) = 12.584,
p < 0.001). The observed power (0.99) shows that the analysis has su�cient
power. Figure 5 depicts the profile plot for PROD.

Further pairwise comparisons between the marginal means reported in Table
12 indicate that TDD with the greenfield task is significantly di↵erent
from both ITLD (p = 0.012) and TDD with the brownfield task (p = 0.001).
Since there is a significant decrease in the performance of TDD with the brown-
field task (from 47.6 to 15.9), it is more likely that the task complexity is con-
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ITLD TDD-greenfield TDD-brownfield

Mean 23.5 (5.2) 47.6 (7.5) 15.9 (2.3)

Lower Bound* 12.7 32.1 11.1

Upper Bound* 34.3 63.1 20.7

5% Trimmed Mean 21.5 47.5 15.5

Median 13.5 50.0 16.7

Variance 619.6 1291.5 122.8

Std. Deviation 24.9 35.9 11.1

Minimum 0.0 0.0 0.0

Maximum 87.6 96.6 40.9

Range 87.6 96.6 40.9

Interquartile Range 48.3 77.6 15.9

Skewness 0.8 -0.1 0.1

Kurtosis 0.0 -1.8 -0.4

*Bounds are given for 95% confidence interval of the mean.

Table 11: Descriptive statistics for PROD

founded by the development approach. To check this, we ran the second stage
analysis for PROD.

The MIXED model shows that the development approach (TDD versus
ITLD) does not significantly a↵ect PROD (F (1; 23.07) = 3.116, p = 0.09),
whereas the task complexity (greenfield versus brownfield) has a significant ef-
fect on PROD (F (1; 23.06) = 18.771,p < 0.001). A detailed summary of the
marginal model results is presented in Table 13.

Table 14 also shows the mean PROD of development approaches based on
the modified population marginal mean. Note that there is a slight improvement
(8%) in PROD when subjects apply TDD instead of ITLD due to the aggregated
means of the two TDD tasks.

We conclude that contextual factors -task complexity in particular-
significantly matter for PROD.

Mean Std. Error
ITLD 23.5 5.19

TDD-greenfield 47.6 7.49
TDD-brownfield 15.9 2.31

Table 12: The estimated marginal means for PROD

5.2.3 E↵ect size

The partial-eta squared measure suggests that the development approach ex-
plains 36.4% of the total variability in the model for PROD. The remaining
63.6% could be attributable to other causes.

Cohen’s d for PROD between the observations of ITLD and TDD with the
greenfield task is -0.78. This indicates that the di↵erence between the two
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Figure 4: Box plot representing the PROD metric for ITLD and TDD tasks

Source Numerator
df

Denominator
df

F Significance

Intercept 1 22.99 50.92 < 0.001
Development Approach 1 23.07 3.11 0.91
Task 1 23.06 18.77 < 0.001

Table 13: The marginal model results for PROD

treatments is large. Cohen’s d for PROD between the samples of TDD with
the greenfield and brownfield tasks is 1.19, which indicates a substantially large
e↵ect.

6 Interpretations

On the di↵erences between treatments. In summary, we found that TDD
is not statistically di↵erent than ITLD in terms of the quality of the work done
when both development approaches are applied to a simple task. The quality
observed in the second TDD task, the brownfield task, is significantly the lowest
value (43% on average) of all treatments.

In terms of productivity, task complexity significantly a↵ects the findings.
Applying TDD to a greenfield task yielded the best performance (50%), whereas
applying TDD on a brownfield task yielded the worst (16%). One possible
explanation for such a di↵erence between the two TDD practices could be the
extra steps involved in applying TDD to legacy code. When subjects apply
TDD to a greenfield task, the steps of TDD (red-green-refactor) can easily

30

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 5: Profile plot for PROD

Development approach Mean Std. Error df Lower
bound*

Upper
bound*

ITLD 22.52 5.06 23 12.04 32.99
TDD 31.03b 4.06 23.02 22.63 39.43
*Bounds are given for 95% confidence interval of the mean.
b.Based on the modified population marginal mean.

Table 14: Modified marginal means of the development approaches for PROD

be applied. Applying TDD to a brownfield task requires understanding the
legacy code, identifying which parts of the code would be a↵ected by a new
piece of functionality, and testing both the new and old functionality at the
end of each cycle to confirm everything works properly. The result is a more
complex, involved process that requires a lot more attention than is required
when implementing a system from scratch.

Notice that there is a link between our productivity and the quality of the
work done per task. We consider some subjects to be more productive than
others if they deliver a task of higher quality, i.e., a higher number of passed
assertions over all assertions per task. Therefore, our productivity measure
favours TDD only for a delivery of tasks of higher quality. Based on this fact, we
could say that subjects tackle a similar amount of subtasks in both treatments
(quality), but they deliver higher-quality work when they apply TDD to a simple
task than ITLD (productivity).
On the task complexity. We chose for the second experimental task a brown-
field task with legacy code that has more operations to be understood. The
reason for this decision was to move TDD outside its normal sweet spot. Based
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on the demographics survey, test-last development was well known and used by
the subjects, even if they did not master it in the same incremental way that
the ITLD approach dictated. So during the control treatment, there was less
risk of task complexity a↵ecting the performance of the subjects.

When we compare the results of a simple task developed with TDD (e.g.
BSK) with those of a simple task developed with ITLD (e.g. MR), a task selec-
tion bias is possible. In fact, the decrease in terms of quality and productivity
in the second, brownfield TDD task suggests that this bias was present. The
MIXED model confirmed this: The goal of the second stage analysis was to see
whether TDD with a complex task would still be significantly di↵erent than
ITLD. But the results did not confirm this hypothesis. Increased task complex-
ity obscured the e↵ect of the development approach.

We knew that there were di↵erences in the specifications of the greenfield
tasks, BSK and MR. The BSK specification appeared more concrete on the
surface, and included more examples than the specification of MR did. We
wondered if the quality and productivity improvements in the first TDD prac-
tice could be due to the perceived di�culty or comprehensiveness of the task
specifications themselves and whether the subjects also observed these di↵er-
ences. So we asked the subjects in a post-test survey whether they perceived
BSK as easier or more comprehensive than MR. The responses suggest that
they perceived the two greenfield tasks to be of similar di�culty and compre-
hensiveness. So, when task complexity is constant, TDD may indeed perform
better. However, when they were asked about the second TDD task, the brown-
field task, the subjects invariably indicated that they found it be much more
complex than the other tasks. Therefore, the fact that their performance was
lower with this task should not be too surprising.

7 More insights into the experiment artefacts

We looked more deeply into the artefacts produced by the subjects during the
experimentation in order to get a better understanding on the subjects’ perfor-
mance, and the extent to which the tasks were implemented. We extracted the
number of unit tests written per task, the percentage of tackled subtasks, and
its relation with QLTY metric. We analysed the subtasks that were mostly im-
plemented correctly, the number of subtasks that were implemented incorrectly
and that could not be implemented at all by the subjects. We also checked if
there is a di↵erence among the subjects’ performance in terms of QLTY and
PROD among the three experiment sites.
On the subjects’ performance. The subjects wrote several unit test cases
to implement the subtasks of the three tasks, namely MR, BSK and MP. Some
subtasks may be tested with a single test case in which there exists a single as-
sert statement (e.g. testing whether the MarsRover stays in the initial position
(0,0,N) after executing an empty (“ ”) command), whereas other subtasks may
be tested with more than one test case with several assertions. The subjects
designed their source code, i.e., classes and methods, and its associated test
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cases di↵erently from each other: Some subjects preferred to implement multi-
ple assertions inside a test method, whilst the others followed the approach of
implementing a single assert statement in a test method. Furthermore, many
subjects wrote additional test cases that check methods that are not related to
a single functionality (e.g. testing whether a setter function worked properly).
Therefore, it was not possible to define a one-to-one relation between the unit
test cases written by the subjects and the tackled subtasks.

The subjects wrote a median of 8, 12 and 7 unit tests during the imple-
mentation of MR, BSK and MP tasks, respectively. It seems that TDD led
the subjects practice more on unit testing. However, the number of unit tests
written by the subjects does not directly relate to the number of tackled sub-
tasks. For example, one subject wrote 22 unit tests corresponding to a total of 6
tackled subtasks of MR, while another subject wrote 5 unit tests corresponding
to a total of 5 tackled subtasks of MR.

The subjects tackled a median of 4, 8 and 5 subtasks of MR, BSK and
MP tasks, respectively. Over the total number of subtasks (11, 13 and 11
subtasks in MR, BSK and MP, respectively), 32%, 62% and 45% of subtasks
were tackled during the implementation of MR, BSK and MP tasks. It seems
that the subjects were able to tackle more subtasks during the implementation
of TDD tasks. Note that a subtask is considered as tackled if at least one assert
statement in the acceptance test suite associated with that subtask passes. The
percentage of tackled subtasks is di↵erent than our measure, QLTY, which is the
ratio of passed assert statements over all assert statements in the acceptance test
suite for a particular subtask. Based on the experiment findings, although the
subjects tackled more subtasks during TDD on a simple task, they performed
similarly in terms of QLTY.
On the tackled subtasks. Unfortunately, some subtasks could not be tackled
by most of the subjects during the experimentation, e.g. only one subject tackled
the last five subtasks on obstacle detection in MR. This could be due to the
sequential order in which the subjects tackled subtasks, not the complexity of
the later subtasks. In general, MR task might have taken more time than it
was allocated, or the subjects might have spent more time on the unit testing
and incremental development approach than completing the subtasks. The rest
of the subtasks in MR were tackled by 10 to 15 subjects. During TDD on
a simple task (BSK), subjects seem to perform better: 22 out of 24 subjects
tackled the first and third subtasks, whilst the other subtasks were tackled
by at least 10 subjects. The only subtask that could not be tackled by the
subjects is the last one in BSK, in which the final score of the game should be
calculated. The statistics from MP task reside in the middle of MR and BSK:
At least 15 subjects tackled the first three subtasks (calculating the distance
in miles) and the sixth and seventh subtasks (getting the user destination in
erroneous conditions, and recommending the artist). The subjects seemed to
have di�culties with the subtasks that are related to error handling for invalid
coordinates and artists with no concerts (forth, tenth and eleventh subtasks) and
that have more detailed post-conditions such as retrieving the top 20 artists in
the order of the number of fans (eighth and ninth subtasks). Those subtasks
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were tackled by only five subjects.
Regarding the quality, overall findings show no di↵erence between the quality

of tackled subtasks during ITLD and TDD on a simple task. However, when
we focus on the number of subtasks successfully implemented by the subjects,
we observed that the subjects successfully implemented more subtasks during
ITLD compared to TDD on a simple task. During ITLD, the subjects achieved
100% quality for the most commonly tackled subtasks, more specifically the first
six subtasks of MR task. The quality of the last five subtasks in MR is between
40% and 100%. Note that these last five subtasks were tackled by a single
subject. During TDD on a simple task, a median of 100% quality was achieved
for the first four subtasks of BSK. As the number of subjects who tackled the
later subtasks in BSK are quite few, the quality achieved in those subtasks also
decreases (a median of 20% for the fifth, sixth and seventh subtasks). Still, we
observed that some subjects managed to correctly implement all the subtasks
that they tackled during TDD on a simple task (100% quality). The worst
quality values in BSK belong to the last two subtasks. Finally, during TDD on
a complex task (MP), the subjects achieved a quality between 20% to 100% for
the first three, sixth and seventh subtasks. For the last three subtasks in MP,
unfortunately, none of the subjects managed to achieve a quality higher than
20%. These statistics at subtask level indicate that the e↵ect of TDD on quality
and productivity could be understood much better at a finer granularity in the
future experiments.
On the experiment sites. We conducted our experiment at three di↵erent
FSecure sites: Oulu (Finland), Helsinki (Finland) and Kuala Lumpur (Malaysia).
While executing the experiments at these sites, we did not perform anything dif-
ferently regarding the order of treatments, the content of training, the team who
attended the training from the researchers’ side, the tasks, the time allocated to
each task and the amount of information provided to the subjects regarding the
tasks. We also did not intervene with the sample selection process in all three
sites; all volunteered subjects were welcome. Nevertheless we suspected that the
site in which the experiment was conducted might have a↵ected the findings.
We additional built two repeated-measures GLMs (one for QLTY and the other
for PROD) in which the experiment site was included as a between-subjects
factor.

Mauchly’s sphericity test showed that we cannot reject the null hypothesis for
sphericity assumption (p = 0.26 for QLTY and p = 0.09 for PROD); therefore we
could use the univariate test. The univariate tests on QLTY and PROD metrics
confirm that there is no significant di↵erence between the metric values obtained
from the three sites (F (2; 20) = 0.014, p = 0.986 for QLTY, F (2; 20) = 0.796,
p = 0.465 for PROD). Hence we conclude that the experiment site did not
have a significant e↵ect on the quality of the work done and the productivity of
developers.

34

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Comparison with the earlier studies

Our findings on external quality complement prior observations summarized by
Turhan et al. (2010), by Rafique and Misic (2013) and aggregated by Munir
et al. (2014) regarding high-rigour and high-relevance experiments: TDD does
not appear to improve external quality, since the di↵erence between TDD on a
greenfield task and ITLD is not significant. Furthermore, we cannot generalize
this result to tasks of varying complexity. Note that the results of earlier studies
could also be dependent on the choice of tasks: Earlier controlled experiments
used the same task, which could also be considered a simple greenfield task, in
both treatments.

Regarding the industry experiments listed in Table 1, our results in terms of
external quality with TDD with the greenfield (BSK) task contrast the findings
by George andWilliams (2004), who used an adapted version of BSK in the TDD
group. George and Williams (2004) reports that TDD significantly improves
external quality, whereas we found the opposite on BSK in TDD and MR in
ITLD treatments. The other two industry experiments reported in Table 1 did
not study the e↵ects of TDD on external quality.

Our results regarding QLTY are in line with the findings of a controlled
experiment reported by Erdogmus et al. (2005) with subjects, and a replication
of Erdogmus et al. (2005) as a randomized trial with students reported in Fucci
and Turhan (2013). The authors in (Fucci and Turhan, 2013) used a between-
subject, non-crossover design and compared ITLD and TDD using exactly the
same BSK task used in this study with the same amount of allocated time.
Both studies ((Erdogmus et al., 2005), (Fucci and Turhan, 2013)) reported no
significant di↵erences between the two groups in terms of quality, measured
similarly to our experiment. It appears that professional developers might be
better and faster at internalizing the TDD process than students, which can
explain the more dramatic improvements in quality with simple tasks (89% in
both ITLD and TDD reported in Fucci and Turhan (2013), whereas in our
study, QLTY is 66% in ITLD versus 80% in TDD). This claim is supported by
the evidence collected by Latorre (2014a) when comparing the e↵ects of TDD on
professionals and students who have been freshly introduced to the technique.

The comparison of productivity results with previous studies are more in-
teresting. In the literature reviews ((Rafique and Misic, 2013), (Turhan et al.,
2010), (Munir et al., 2014)), findings on productivity were inconsistent. This
might be due to the di↵erences in productivity measures across di↵erent stud-
ies. In the three industry experiments, the time required to complete a task was
used to quantify productivity. George and Williams (2004) and Canfora et al.
(2006) conclude that TDD requires more time, i.e., subjects spend more time
applying TDD compared to a test-last approach. However, our metric for pro-
ductivity does not consider completion time; instead it is based on the amount
of work done in a fixed time in terms of percentage of passing assertions. Our
findings suggest that subjects are more productive when they implement TDD
on a simple task compared to ITLD, but the productivity drops significantly
when applying TDD to a complex brownfield task. So, task selection matters
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significantly in the interpretation of results.
The decrease of productivity from one TDD application to another is a

result of the increased complexity of the task. Pancur and Ciglaric (2011) also
conjecture that inconsistent findings in the literature could be due to the task-
related factors, such as their specifications and their granularity used in the
treatments. If we choose a coarser-grained task for the control group vs. the
TDD group, the observed benefits of TDD could have been caused by shorter
development cycles with finer-grained tasks (Pancur and Ciglaric, 2011).

Geras et al. (2004) observe that there is less variability between the estimated
and actual e↵ort in a test-first approach, and in turn, the development e↵ort is
more predictable in this approach compared to a test-last approach. According
to the box plots of PROD, we could argue the opposite, i.e., there is more
variability in productivity when TDD is applied. Therefore we could not confirm
the observations of Geras et al. (2004) in our context.

Fucci and Turhan (2013) report inconclusive results regarding productivity,
using a similar measure to ours. Therefore, the e↵ect of TDD on productivity,
at least in the short term and in the context of a greenfield development task,
is unfortunately still unclear, and deserves further investigation.

9 Threats to Validity

We follow the classification by Sjoeberg et al. (2005) and Wohlin et al. (2012)
while reporting the threats to the validity of our findings. As suggested in the
guidelines by Jedlitschka and Pfahl (2005), we discussed potential design threats
separately in Section 3.11.

9.1 Conclusion Validity

We checked the sphericity assumptions of GLM and applied the statistical tests
(univariate or multivariate) whose conditions were required to be met in hy-
pothesis testing. The significance levels in both tests were selected as 0.05, but
we observe that QLTY significance tests are rejected with p = 0.001 and PROD
tests are rejected with p = 0.03. The observed power of both significance tests
was high, indicating our analysis had su�cient power with the existing sample.
The e↵ect sizes in both metrics varied from medium to high.

9.2 Internal Validity

We have already discussed potential threats to internal validity such as fatigue,
carry-over, order, and practice e↵ects in Section 3.11. Additionally, our experi-
ment could be subject to attrition threat (loss of participation), selection threat
(subject selection) and instrumentation threat (task selection). Two subjects
dropped out after the first day (before any treatments were applied). The rest
of the subjects stayed for the remainder of the study and during the adminis-
tration of all treatments. We think the reason for the two subjects leaving the
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study might have been due to their workload or due to the training not meet-
ing their expectations. We conclude that our experiment did not su↵er from a
signification attrition threat.

The selection threat might occur due to the sampling approach used to select
the experiment subjects. Due to the environment in which the experiments were
conducted, we did not have the opportunity to randomly select the subjects from
a given population, nor internally randomize the treatment groups. We had to
rely on a convenience sample instead and a repeated-measures design in which
all subjects performed all treatments. Thus, our conclusions are subject to the
selection threat.

The instrumentation threat might occur due to the di↵erences in specificity
and format of BSK and MR specifications. BSK specification has more fine-
grained user stories provided to the subjects, whereas MR is written in terms
of the operations that the rover must perform. We asked the subjects in a post-
treatment survey whether they perceived BSK as easier or more comprehensive
than MR. The responses show that they perceived the two greenfield tasks to be
of similar di�culty and comprehensiveness. Nevertheless we acknowledge that
during BSK, the subjects did not need to spend time for deciding on the user
stories, compared to MR in which the subtasks are slightly hidden inside the
rover descriptions. We plan to investigate the e↵ect of the task on the findings
in detail in our future experiments.

Other internal validity issues such as history (applying treatments at dif-
ferent times), mortality (leaving the treatments before completion) were not
applicable in the context of this experiment.

9.3 External Validity

External validity deals with the generalizability of results in terms of objects
(tasks), subjects, and technologies used. The tasks we chose for all three treat-
ments were small in terms of LOC, and their complexities were also lower than
typical real-life industrial applications. Our results cannot be generalized to
large software systems with di↵erent domain characteristics. We addressed re-
alism to a certain extent by including a brownfield task as an object. As far as
we know, ours is the first experiment to use such a task.

Most of the experiments reported in the literature use Java as the program-
ming language, Eclipse as the development environment, and JUnit as the unit
testing tool (e.g., (Erdogmus et al., 2005; George and Williams, 2004; Fucci
and Turhan, 2013)). We chose the same technological setup, and most of the
subjects were comfortable with it. Technically, there is a risk that our find-
ings are dependent on the technologies used in this study, but this risk is fairly
small, since the development approaches applied are independent of the IDE,
programming language, and unit testing tool used. Most languages and IDEs
have functionality and tools analogous to those used in this experiment.

Regarding the subjects, our sample consisted entirely of professionals, who
were novice to senior developers. All had experience in some agile software de-
velopment practices. Around half of them indicated that they had prior knowl-
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edge of TDD. We talked with these subjects and learned that those subjects
individually attended training/workshops on TDD, but they never applied this
practice before participating to our study. We believe our results can be gener-
alized to professionals who do not have prior hands-on experience of TDD, but
have knowledge and experience with other agile practices.

9.4 Construct Validity

We used Java as the programming language during both training and treat-
ments, and used the same type of instrument (acceptance test suites) to measure
dependent variables for all three tasks. Hence, we addressed possible threats
regarding the use of di↵erent programming languages or tools to measure de-
pendent variables.

Our experiment did not su↵er from mono-operation bias for the experimental
group (TDD) since we used two objects with di↵erent complexity levels.

We defined a single metric to quantify each dependent variable (QLTY and
PROD) in this experiment. Hence, our experiment may be subject to mono-
method bias. We acknowledge that QLTY and PROD can be measured in
several di↵erent ways: We used the same external quality metrics used in pre-
vious studies (Erdogmus et al., 2005; George and Williams, 2004; Fucci and
Turhan, 2013)), and explained our rationale for choosing a di↵erent productiv-
ity metric in Section 3.2 (it was a variation of the metrics used in (Erdogmus
et al., 2005; Fucci and Turhan, 2013)). We measured both of these metrics
objectively and reliably using automated techniques. They were relative and
fine-grained to make comparison meaningful. These characteristics allowed us
to decouple the tasks from the metrics used. The metrics could not be gamed
by the subjects since the subjects were not aware of we would evaluate their
performance. We believe the metrics captured the underlying constructs fairly
accurately and reliably.

10 Conclusion and Future work

We conclude that the task selection significantly a↵ects the results of TDD
experiments and obscures the e↵ects of TDD compared to ITLD. We argue
that the current findings reported in the literature on TDD should also be
assessed based on similar experimental factors, like the similarity of tasks used in
previous experiments, task type (a toy example or a more complex application),
and granularity of task specifications (how well-sliced each user story is).

In the context of our ESEIL projects, we are performing new experiments
with industry partners to explain TDD phenomenon in detail. We are searching
for other factors that may a↵ect the TDD process, such as conformance to the
TDD process (Fucci et al., 2014, 2015), experience level of the subjects (Salman
et al., 2015), slicing of task specifications, and use of real applications specific
to industry.
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From an experimental point of view, we are working on changing our design
by random allocation of tasks to subjects, and by adding new dimensions such as
unit test quality and internal quality. We are also conducting post-experiment
surveys in which we measure subjects’ understanding of ’completed subtasks’,
and compare these with the actual tackled subtasks. Observing such di↵erences
between the subjects’ perceptions of completeness and the measured quality
and productivity would shed light to deeper insights on the TDD experiments.
Finally, more detailed analysis on the test cases, and the e↵ort spent on writing
unit tests and source codes could be performed in future studies. In this exper-
iment, we did not calculate the time spent during coding and testing in detail,
as we did not enforce the subjects use a version control system which would
keep timestamps for each action (e.g. commits of a source code, commits of test
cases). Thus, it would be more interesting to accurately observe such di↵erences
regarding coding, testing and refactoring e↵orts through an automated system
in a future study.
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