
IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017 1787

SD-NFV as an Energy Efficient Approach for M2M
Networks Using Cloud-Based 6LoWPAN Testbed

Bilal R. Al-Kaseem, Member, IEEE, and Hamed S. Al-Raweshidy, Senior Member, IEEE

Abstract—Machine-to-Machine (M2M) communication is the
leading technology for realising the Internet-of-Things (IoT).
The M2M sensor nodes are characterized by low-power and
low-data rates devices which have increased exponentially
over the years. IPv6 over low power wireless personal area
network (6LoWPAN) is the first protocol that provides IPv6
connectivity to the wireless M2M sensor nodes. Having a
tremendous number of M2M sensor nodes execute independent
control decision leads to difficulty in network control and
management. In addition, these evergrowing devices generate
massive traffic and cause energy scarcity, which affects the M2M
sensor node lifetime. Recently, software defined-networking
(SDN) and network functioning virtualization (NFV) are being
used in M2M sensor networks to add programmability and
flexibility features in order to adopt the exponential increment
in wireless M2M traffic and enable network configuration
even after deployment. This paper presents a proof-of-concept
implementation which aims to analyze how SDN, NFV, and
cloud computing can interact together in the 6LoWPAN gateway
to provide simplicity and flexibility in network management. The
proposed approach is called customized software defined-NFV
(SD-NFV), and has been tested and verified by implementing
a real-time 6LoWPAN testbed. The experimental results
indicated that the SD-NFV approach reduced the network
discovery time by 60% and extended the node’s lifetime by
65% in comparison to the traditional 6LoWPAN network.
The implemented testbed has one sink which is the M2M
6LoWPAN gateway where the network coordinator and the
SDN controller are executed. There are many possible ways to
implement 6LoWPAN testbed but limited are based on open
standards development boards (e.g., Arduino, Raspberry Pi,
and Beagle Bones). In the current testbed, the Arduino board
is chosen and the SDN controller is customized and written
using C++ language to fit the 6LoWPAN network requirements.
Finally, SDN and NFV have been envisioned as the most
promising techniques to improve network programmability,
simplicity, and management in cloud-based 6LoWPAN
gateway.

Index Terms—Cloud computing, customized SD-NFV, energy
efficiency, IoT, M2M, NFV, SDN, 6LoWPAN testbed.

I. INTRODUCTION

ONLY a few years from now, by 2020, the num-
ber of devices connected to the Internet will increase

Manuscript received January 12, 2017; accepted May 3, 2017. Date of
publication May 16, 2017; date of current version October 9, 2017. This
work was supported by the Iraqi Ministry of Higher Education and Scientific
Research. (Corresponding author: Bilal R. Al-Kaseem.)

The authors are with the Department of Electronic and Computer
Engineering, College of Engineering, Design and Physical Sciences, Brunel
University, London UB8 3PH, U.K. (e-mail: bilal.al-kaseem@brunel.ac.uk;
hamed.al-raweshidy@brunel.ac.uk).

Digital Object Identifier 10.1109/JIOT.2017.2704921

exponentially [1]. The connected devices will be quite diverse
in functionality and processing capability, having the ability
to sense, actuate, process, and store data. These devices can
communicate with each other and exchange information in
a Machine-to-Machine (M2M) paradigm [2]. M2M commu-
nication refers to the communication between two connected
devices in homogeneous or heterogeneous networks without or
with limited human intervention. M2M communication con-
stitutes the principle communication paradigm in realizing the
Internet-of-Things (IoT) revolution [3]. The IoT enables phys-
ical objects to have virtual identity and will be integrated into
a wide range of applications to enhance daily life activities,
such as home and industrial automation, healthcare moni-
toring, energy management, etc. Moreover, cloud computing
architectures are the most promising technology in leverag-
ing some of the applications, services, and networks of the
IoT [4].

M2M sensor networks are composed mainly of a large
number of small devices that run on batteries. The limited
battery power of the M2M node is consumed during the
node’s lifetime performing the sensing, collecting, and trans-
mitting of data. According to the limited energy source, there
is a need to balance the energy consumption and the qual-
ity of information, because the lifetime of any M2M node
depends on the availability of the residual energy. Energy
efficiency is an important characteristic for battery pow-
ered wireless networks. Therefore, the energy efficiency of
the M2M sensor network has emerged as a major research
issue and drawn considerable interest from both industry and
academia [5].

The IoT components are characterized by four layers, as
depicted in Fig. 1. The first layer includes all sensor nodes,
radio frequency identification (RFID) tags, and is called the
sensing layer. The data being generated by the sensing layer
is collected by the available data aggregators in the second
layer. Accordingly, the second layer is called the aggregator
layer, and the data aggregators could be sink nodes for sensor
networks or RFID readers or intermediate local storage. The
third layer is the processing layer, and it is to here that the
aggregators forward their data for further processing. After
the data processing is completed, the data can be uploaded to
the cloud in cloud layer (fourth layer) to provide ubiquitous
connectivity for data exchange with anything, anywhere, at
any time.

IoT applications are built-up of a large number of M2M
nodes. The main objective of the IoT is to have energy effi-
cient and scalable routing protocol to prolong the lifetime

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

1788 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 1. Four layers of the IoT architecture.

of the connected hardware with the physical environment by
converting the consumed energy into useful information. The
scalability can be achieved by using hierarchical or clustering
approach in M2M nodes. In addition, cluster-based network
enhances the network lifetime by performing data aggregation
in selective nodes in the M2M sensor networks [6].

M2M sensor networks may adopt unexpected topology
changes and node mobility, where M2M nodes are being
deployed randomly in the target area. In order to improve
the availability of shared resources, M2M sensor nodes
should have the ability of node reconfiguration even after
deployment. software-defined networking (SDN) has been
proposed to separate the control plane from the data plane.
SDN can enable sensor node retasking in M2M networks
and it also provides seamless resource management for
implementing different algorithms through the centralized
controller [7].

The purpose of network function virtualization (NFV) is to
reduce the operational and capital expenses of the network.
NFV can be applied to any packet processing plane (data
plane) and route decision plane (control plane) of the M2M
network infrastructure. SDN and NFV represent the most
promising advances in terms of a programmable network
and dynamic resource allocation for M2M networks in IoT
architecture [8].

IPv6 over low power wireless personal area network
(6LoWPAN) has been introduced by the Internet engi-
neering task force working group. 6LoWPAN defines the
implementation of Internet protocols over low-power, low-
data rate devices using the IEEE 802.15.4 as medium
access control (MAC) and physical (PHY) layers standard.
The 6LoWPAN protocol stack has an extra layer between
the network layer and MAC layer which is called the
adaptation layer. This adaptation layer is responsible for
header compression, fragmentation, and reassembly of IPv6
packet when it is sent or received over the IEEE 802.15.4
standard [9].

The rest of this paper is organized as follows. Section II
briefly reviews related studies. The overview of SDN, NFV,
and cloud computing are introduced in Sections III–V,
respectively. The methodology of the proposed SD-NFV
approach to obtain the experimental results are detailed in
Section VI. In Section VII, the obtained experimental results
are discussed and validated. Finally, Section VIII concludes
this paper outcomes.

II. RELATED WORK

This section introduces the concerning studies that are
closely related to the integration and implementation of SDN
and NFV in low-power and low-data rate wireless networks
(i.e., ZigBee and 6LoWPAN) with cloud computing, as well as
the current possibilities to enable these technologies to work
together in the same network infrastructure.

Mahmud et al. [10] presented the deployment of OpenFlow
technology in wireless sensor network (WSN), the proposed
approach being called the Flow-Sensor, which led to con-
siderable achievements in IoT and cloud computing through
network virtualization. In an ideal scenario, the Flow-Sensor
had reachability points more than the typical sensor. The
authors concluded that better results might be achieved in large
scale network.

Luo et al. [11] identified two problems in WSN, includ-
ing the difficulty of policy changes and network management.
They developed a new architecture called software defined-
WSN with Sensor OpenFlow to address the key technical
challenges in WSN.

Costanzo et al. [12] introduced software-defined wireless
network (SDWN) that benefited from the wireless infrastruc-
tureless networking environments with special emphasis on
wireless personal area networks (WPAN). They analyzed SDN
in IEEE 802.15.4-based WPAN and discussed the SDWN
requirements to adopt flexibility in flow table rules and node’s
duty cycle.

Kim et al. [13] suggested a cost-effective implementation
of SDN testbed using Raspberry Pi and Open vSwitch. The
testbed was validated using OpenFlow specification 1.0 and
proven to maximize the network throughput compared to
NetFPGA-1G.

Galluccio et al. [14] introduced SDN - WIreless SEnsor
networks (SDN-WISE) to reduce packets exchange between
the nodes and SDN controller, as well as to make the
nodes programmable for running different applications. The
application programming interface (API) of the SDN-WISE
allowed the developers to build SDN controllers using the
preferred programming language. The SDN-WISE prototype
was implemented using real SDN controller and OMNet++
simulator.

An OpenFlow testbed was implemented in [15] using a
low-priced computer board and an open source base vir-
tual switch, the testbed being called the Pi Stack Switch.
The programmable network implemented using ONOS SDN
controller and OpenVirteX as network hypervisor, the imple-
mented network infrastructure consisted of the SDN control
layer and the virtualization layer.

AL-KASEEM AND AL-RAWESHIDY: SD-NFV AS ENERGY EFFICIENT APPROACH FOR M2M NETWORKS 1789

A structured and hierarchical management mechanism
was proposed in [16] based on SDN for WSN. The
proposed approach was called software-defined clustered sen-
sor networks (SDCSN), which the authors argued that the
SDCSN approach solved the inherent problems in WSN,
and they highlighted some suggestions for future research in
ad-hoc networks.

A real-time SDWN testbed was implemented in [17] using
Raspberry Pi as OpenFlow Switches. An OpenDayLight con-
troller was used to analyze the network events. In addition,
traffic-aware routing algorithm was implemented to man-
age and monitor the network flow and quality-of-service
requirements.

The hybrid approach proposed in [18] enabled the tradi-
tional IP network to work together with SDN-based network
within the same service provider. This approach was called
OSHI. OSHI system was implemented using pseudo wire and
virtual switches with Mininet emulator.

A detailed overview of SDN/NFV service on top of cloud
computing platform of ADRENALINE testbed was described
in [19]. The authors proposed a generic architecture for
SDN/NFV over multidomain transport network. The virtual
path computation element and the deployment of virtual SDN
controller were used as two cases on top virtualized transport
networks.

To the best of our knowledge, there is limited research in
the literature which implements SDN and NFV using the exist-
ing 6LoWPAN hardware. To this end, this paper focuses on
implementing a customized SDN controller for cloud-based
6LoWPAN network with integrated NFV technology. This
paper also attempts to validate the implementation proof-of-
concept, which aims to analyze how SDN, NFV, and cloud
computing can interact together in the 6LoWPAN gateway.
The main contributions are as follows.

1) Designing a cost-effective M2M sensor node based
on the 6LoWPAN protocol stack using open source
hardware and software platforms.

2) Building up a customized SDN controller to meet the
6LoWPAN network requirements in terms of packet size
and node discovery (ND) function. The customized SDN
controller integrated with the PAN coordinator.

3) Virtualizing two layers of the 6LoWPAN protocol stack
by migrating network and adaptation layers form node
protocol stack to the centralized SDN controller, which
is worked as an edge router (gateway) for the cloud-
based 6LoWPAN network.

4) The M2M gateway based on the 6LoWPAN is con-
nected to the cloud computing platform for data storage
and provide global connectivity to the M2M sensor
network.

The proposed approach is called customized SD-NFV.
The SD-NFV infrastructure provides a dynamic and scal-
able deployment for both M2M sensor nodes and appli-
cations in heterogeneous M2M network. The aim of the
SD-NFV approach is to simplify network management
through a programmability feature and to provide global
connectivity for IoT architecture. The implemented testbed
shows a remarkable enhancement in reducing the energy

Fig. 2. SDN versus traditional networking architectures.

consumption of M2M sensor nodes compared to traditional
network.

III. SOFTWARE-DEFINED NETWORKING

Open network foundation (ONF) [20] is a user-driven
nonprofit organization which focuses on open standards devel-
opment of SDN. SDN is an umbrella term covering different
types of network architectures, where the aim has been to
make the network as agile and manageable through program-
ming. SDN can be characterized by two main features, mainly
the decoupling of the data and control planes as well as
adding centralized programmability in the network control
plane. Fig. 2 describes the SDN versus traditional networking
architecture im which the control planes are separated from
the network forwarding devices and located in a centralized
SDN controller [21].

The decoupling feature of the SDN provides greater control
and management of network resources by programming the
control plane. The centralized programmability brings a new
innovation to optimize network configurations and improves
its performance through instantaneous monitoring and apply-
ing user-defined policies [22]. A comparison between
SDN and traditional networking architecture is summarized
in Table I.

The decoupling of control and data planes makes the SDN
architecture consists of three main components.

1) SDN Applications can be viewed as programmes that
exchange information with the SDN controller via API.
The applications construct an abstracted network infras-
tructure based on the information collected by the SDN
controller. The APIs can be classified into the following.

a) Northbound API defines the communication way
between SDN controller and SDN applications.

b) Southbound API defines the way that SDN con-
troller communicates with the physically SDN
networking devices and they can be open standard
or user proprietary API.

1790 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

TABLE I
COMPARISON BETWEEN SDN AND TRADITIONAL NETWORKING

z

z

2) SDN Controller is the brain of the SDN networking
infrastructure. It is responsible for managing the flow
control in SDN networking devices via southbound API
and the SDN applications via northbound API to bring
intelligent to the network architecture.

3) SDN Networking Devices are the physical network for-
warding devices that is used to route the data in the
network based on the flow tables supported by the SDN
controller through the southbound APIs.

The OpenFlow defines the southbound communication pro-
tocol that enables the SDN controller to communicate directly
with the SDN networking devices [23]. In an OpenFlow envi-
ronment, the routers and switches should support OpenFlow
protocol to exchange information with the SDN controller, and
it is considered as one of the first SDN communication pro-
tocol standards. The proprietary southbound APIs can be also
defined by the users to customize the SDN controllers for a
particular application [24], [25].

IV. NETWORK FUNCTIONING VIRTUALIZATION

The NFV technology endeavors to virtualize the network
applications or services in order to be executed on a sin-
gle programmable component. NFV has drawn consider-
able interest from both industry and academia as important
technology toward virtualization of network applications. It
reduces operating and capital expenses, while also enabling
the deployment of different services across the network by
decoupling the network functions (NFs) from the physi-
cal network devices on which the functions run and new
services can be deployed faster over the same physical
platform [26].

The NFV increases the network infrastructure flexibility
and reduces the hardware cost because it sets out to accom-
plish NFs in software installed on the shared server instead
of running on dedicated hardware devices. Accordingly, NFV
will simplify, organize, and expand the network services more
quickly with less installation cost.

Fig. 3 shows the basic concept of NFV where NF has been
implemented apart from the network devices hardware. The
virtual NF (VNF) in NFV technique is similar to physical
NFs (PNFs) in traditional networking. Multiple PNFs can be
assembled into a single VNF or a single PNF can be divided
into multiple VNF. The relationship between VNF and PNF
could be one to one mapping, or one to many. These mapping

Fig. 3. Basic NFV architecture.

relationships can be optimized to enhance network resource
management [8] and consequently, NFV may be an adequate
technology for future network infrastructure in terms of the
following [27].

1) Network Performance: NFV architecture might be able
to obtain the same network performance compared to
that achieved from NFs running on dedicated hardware
by evaluating network deadlocks and mitigating them.

2) Heterogeneity Support: Big challenge to the NFV
is to support network heterogeneity from proprietary
hardware-based service perspectives and fragmentize the
barriers to synchronize different standards.

3) Dynamic Resource Allocation: NFV should perform
different NFs at various times on the same physical hard-
ware by reallocating the shared infrastructure resources
among the hardware and software components of the
network.

V. CLOUD COMPUTING PLATFORM

In recent years, cloud computing and IoT are emerg-
ing technologies that led the evolution of programmable
networks. Cloud computing means accessing stored data and
programmes over the Internet, while the IoT simplifies the way
in which large amounts of data are being collected over the
interconnected M2M nodes. The cloud computing has no bor-
ders and has global communication paths. It is characterized
by having on-demand service, global network, and shared pool
of resources. On-demand service refers to the user requesting
to manage his own computing resources. A global network
provides ubiquitous connectivity over the Internet to deliver

AL-KASEEM AND AL-RAWESHIDY: SD-NFV AS ENERGY EFFICIENT APPROACH FOR M2M NETWORKS 1791

different services. The shared pool of resources allows the
user to fetch data from the shared resources located in the
remote data centres [28].

The main advantages of cloud computing are represented in
providing scalability to the network shared resources in terms
of processing and storage, delivering reliability by allowing
access to the cloud resources via the Internet, and it is con-
sidered to be efficient, because it enables the deployment of
new algorithms and applications for delivering new services
for remote M2M sensor networks.

There are three service models for cloud computing, com-
monly known as: software as a service (SaaS), platform as a
service (PaaS), and infrastructure as a service (IaaS), which
differ in terms of the control privilege that the users have over
the stored information [29].

1) SaaS is a software distribution model where the software
is owned by the cloud provider and enables the remote
users to access and use applications that are hosted in
the cloud.

2) PaaS is shared hardware and software platforms which
enables the users to deploy their own applications with
certain constrains.

3) IaaS is virtualized computing resources over the Internet
where the users can manage and control the cloud appli-
cations, storage, and network connectivity without the
ability to control the cloud infrastructure.

VI. PROPOSED SD-NFV APPROACH

USING 6LOWPAN

This section details the implementation steps of the
proposed SD-NFV architecture in the cloud computing plat-
form based on 6LoWPAN testbed. The SD-NFV approach
has been proposed as an energy-efficient way to prolong the
6LoWPAN network lifetime through network programmabil-
ity feature. The description of the testbed will be discussed
in detail, including hardware and software components. The
developed 6LoWPAN testbed has been integrated with a cloud
computing platform to provide global access to the M2M
sensor network.

A. 6LoWPAN Hardware Platform

The M2M sensor node consists of various subsystems,
such as sensing, computation, communication, and power
subsystems. 6LoWPAN is a pioneer protocol aimed at provid-
ing small devices that have constrained processing and limited
energy with the ability to have IPv6 global connectivity. Over
the last few years, there have been several free and commer-
cial solutions developed for 6LoWPAN. Most of the developed
approaches were implemented based on an operating system,
where the 6LoWPAN protocol stack was used along with the
node’s operating system. However, as the M2M sensor nodes
are characterized by a small memory and moderate processing
unit with limited energy source, so it is not practical to include
an operating system with dedicated software applications onto
those devices at the same time.

In order to develop a 6LoWPAN protocol stack with a low
memory M2M sensor node and make it workable with existing

IP networks, it is necessary to use the available open source
resources to the maximum possible extent. Consequently, the
open source hardware platform has been chosen and integrated
to fit into the designed M2M sensor node scheme as well as
the 6LoWPAN gateway.

One of the most important features of the M2M sensor node
is the selection of the processing platform. The M2M nodes
need to be cost-effective and energy-efficient to meet the IoT
network promises. There are several types of nodes available
in both commercial and open-source domains. The proposed
approach is based on an open source hardware platform repre-
sented by the Arduino [30], which is a microcontroller board
based on the ATmega328 chip, as a processing platform. The
XBee module is deployed as a radio communication for MAC
and PHY layers of the IEEE 802.15.4 standard, while a tem-
perature and humidity sensor is used as a sensing unit for the
M2M node. The Arduino board has been chosen due to its
low energy consumption, small size, cost-effectiveness, and
programmability feature. Choosing the Arduino board will
open new horizons to increase network programmability and
management through open source hardware platforms.

To realize the concept of the IoT paradigm, it is essential
to make the things (connected objects) addressable, control-
lable, and accessible via the Internet. The proposed approach
has been tested using a simple temperature and humidity sens-
ing application in which the sensor nodes transmit the sensed
data to the M2M gateway. Fig. 4 shows 6LoWPAN-based
M2M sensor node prototypes, which are classified into the
following.

1) Simple Node: Simple node performs sensing and com-
munication only, without any processing capabilities and
it cannot be selected as a cluster head. The simple node
is composed of a temperature sensor (TMP36) attached
directly to the XBee module, and an LED used as an
indicator for receiving the control signal from the cluster
head in hierarchical topology or from the sink node in
star topology. The simple node is battery powered using
3.7 V/1000 mAh battery and is shown in Fig. 4(a).

2) Advanced Node: Advanced node performs sensing, com-
munication, and processing of the sensed data. It can
be selected as cluster head among cluster members. It
comprises a temperature and humidity sensor (DHT11),
XBee module, and an LED. All these components are
attached to the Arduino Uno board. The advanced node
is battery powered using 9 V/1600 mAh battery and is
shown in Fig. 4(b).

3) Sink Node: Sink node is the final destination for all
the data being sensed by the M2M sensor nodes. It
could be static or mobile depending on the applica-
tion. It is built-up of Arduino Uno board equipped with
two communication modules (XBee and ESP8266). The
XBee module is used for the M2M sensor network
communication, while the ESP8266 is used for Internet
communication. The ESP8266 connects the 6LoWPAN
network with the IP networks as well as the cloud plat-
form where the data is being stored. The sink node is
permanently powered with extra storage capability and
is shown in Fig. 4(c).

1792 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 4. M2M sensor node prototypes used in the cloud-based 6LoWPAN testbed. (a) Simple node. (b) Advanvced node. (c) Sink node.

B. Customized SDN Controller Design Considerations

SDN and NFV are complementary technologies which
have a lot in common, because they are both aimed at
developing open software for standardized network hardware.
The NFV technology is geared toward creating on-demand
programmable NFs and locate them on most suitable loca-
tion in the network infrastructure using adequate network
resources [31]. The SDN technology can decouple the con-
trol plane and data plane in order to increase the network
programmability and reconfiguration. Whilst SDN and NFV
have value when implemented separately, combining them in
one network will achieve greater value.

Current approaches to integrating M2M sensor nodes in the
Internet have several drawbacks, and hence, alternative archi-
tectures need to be proposed and evaluated. The proposed
integration of SDN and NFV is aimed at deploying different
routing algorithms for the 6LoWPAN network by deploying
the VNF on top of the integrated cloud-based 6LoWPAN
gateway for homogeneous and heterogeneous M2M sensor
networks. Fig. 5 shows the typical architecture of the M2M
sensor node with a 6LoWPAN protocol stack alongside the
TCP/IP stack. The SDN controller is a software-based network
entity that is used to manage and control the network devices
using programmable elements via different APIs. In order to
adopt the SDN concept in the M2M sensor network, a novel
customized SDN controller is proposed to fill the research gap
outlined earlier. The customized SDN controller should take
into account the limited memory and processing unit of the
M2M sensor nodes to achieve a low software footprint.

The SDN controller is a software artifact being customized
to fit a 6LoWPAN protocol stack, which enables end-to-end
services on resource constrained devices. The controller is
responsible for the following: 1) discovery of network topol-
ogy; 2) service management; 3) virtualization service; and
4) data routing and load balancing. Additionally, the SD-NFV
introduces a new flow table entry to cope with the high
memory usage of the programmable interface.

Fig. 6 illustrates the architecture of the customized SDN
controller used in the proposed SD-NFV approach. The con-
troller is part of the 6LoWPAN coordinator, which is the
6LoWPAN gateway that starts up and initiates the network

Fig. 5. M2M sensor node architecture.

using unique PAN ID. The network discovery manager uses
a discovery function to check the available alive nodes or
newly joined nodes; this function is performed periodically
to keep the global topology of the network up-to-date and to
modify the alive node table entries. The service manager is
important for allocating each node with a different level of
services depending on the node’s priority in the customized
flow table entities. Also, the service manager is responsible
for providing cloud service connectivity to the 6LoWPAN
network. While the virtualization manager allows different
6LoWPAN nodes to share the same NFs in the gateway as
well as provide virtual individual connectivity between the
6LoWPAN nodes and cloud computing platform. Finally, the
routing and load balancing manager is capable of executing
different routing algorithm and performs load balancing opti-
mization techniques to achieve high throughput and reduce the
end-to-end delay in M2M sensor network based on 6LoWPAN
protocol stack.

To summarize the proposed approach, Fig. 7 illustrates the
relationship between SDN, NFV, and cloud computing with

AL-KASEEM AND AL-RAWESHIDY: SD-NFV AS ENERGY EFFICIENT APPROACH FOR M2M NETWORKS 1793

Fig. 6. Customized SDN controller architecture.

the 6LoWPAN M2M sensor network. It is clear that each
technology abstracts certain function from different network
resources; the benefits obtained from each of them are simi-
lar in terms of traffic agility, cost-effectiveness, reduction in
nodes’ energy consumption, and dynamic network scalabil-
ity. In addition, Fig. 7 depicts the layer’s abstraction and the
customized SDN flow table entries.

The 6LoWPAN protocol stack has been implemented using
the Arduino pico Internet Protocol version 6 stack, the library
being available at [32]. The customized SDN controller was
built using C++ language and deployed in the 6LoWPAN gate-
way, while the NFV used to migrate the network layer and
adaptation layer from node’s protocol stack to the gateway
protocol stack and merge them with the SDN controller. This
virtualization function is called sensor function virtualization
(SFV), which transforms multiple node tasks into software
packages inside the 6LoWPAN gateway. Accordingly, the
6LoWPAN gateway now handles the 6LoWPAN coordina-
tor for network initialization, the customized SDN controller,
and the two layers (network and adaptation layers) from
6LoWPAN protocol stack.

The requests for comments (RFC) 4861 [33] was the first
IPv6 ND specification, which was revised in 2012 by RFC
6775 [34] so as to be able to adopt 6LoWPAN ND require-
ments. The 6LoWPAN edge router or PAN coordinator is
responsible for connecting the 6LoWPAN network to the
external IP networks and propagate the IPv6 prefixes among
the 6LoWPAN nodes. In the traditional 6LoWPAN network,
each node keeps checking its reachability to the edge router
by performing a heavy control message exchange, such as
ND, router advertisement, neighbor advertisement, neighbor
unreachability detection (NUD), duplicate address request, and

duplicate address confirmation. The 6LoWPAN node peri-
odically sends NUDs until it receives a confirmation, even
if it does not have data to send. The major issues in tra-
ditional ND are heavy packet transmission over the IEEE
802.15.4 medium, significant energy consumption to maintain
the network connectivity, and reduction in link reliability. The
main challenge in 6LoWPAN ND is to develop a mechanism
that provides less packet exchange for network connectivity
with minimum discovery latency and power consumption to
form the global network topology.

On the other hand, the customized SDN controller has
topology discovery manager that is responsible for main-
taining the network connectivity for efficient data routing.
The proposed topology discovery mechanism takes advan-
tage of the virtualized layers and the 6LoWPAN network
does not need any IP connectivity at the node level. Hence,
this will reduce the generated packets for ND and minimize
the node’s energy consumption by preventing the periodic
NUDs and relevant message exchange. The proposed approach
is based on the SDN flow table entries, whereby after the
network initiation phase is completed, the 6LoWPAN coordi-
nator reports to the SDN controller the address of the alive
nodes. Subsequently, the customized SDN controller assigned
each node an IP and saves this entry in the alive node table. As
the SDN controller knows the global topology of the network,
it can build-up the flow table to each node including its IP
assignment, as shown in Fig. 7. The topology discovery man-
ager performs network discovery on a regular basis, but the
table will only be updated when a node joins or leaves the
6LoWPAN network. The proposed SD-NFV approach reduces
the network discovery latency as well as reducing energy con-
sumption in 6LoWPAN nodes during the network topology
discovery phase.

To our best knowledge, the leveraging of cloud, SDN, and
NFV technologies in the 6LoWPAN ND and data routing
have not been considered in previous literature. The proposed
SD-NFV approach compromises the energy consumption with
the end-to-end delay to prolong the network lifetime. Each
technology abstracts certain functions to provide a wireless
programmable network that supports heterogeneous M2M
networks. The customized SDN controller with the NFV and
cloud computing is aimed at providing multivendors compat-
ibility for smooth protocol evaluation and implementation. In
sum, the proposed approach will bridge the research gap with
the SD-NFV approach that offers hardware-independent and
on-demand function installation.

C. Integration of Cloud Computing Services

ThingSpeak [35] is the cloud computing platform used in
the implementation of SD-NFV approach based on 6LoWPAN
testbed, which provides a free storage with a data visual-
ization feature. The cloud platform connects the 6LoWPAN
network with the global Internet through the SD-NFV gate-
way. There are two types of channels, namely: data channels
and control channels. The data channels are used for storing
the sensed data, while the control channels are used for send-
ing control commands to a specific node over the IP network.

1794 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 7. Proposed architecture of the SD-NFV gateway using cloud-based 6LoWPAN testbed.

Fig. 8. 6LoWPAN cloud connectivity through SD-NFV gateway.

These ThingSpeak channels are chosen to demonstrate that
the SD-NFV gateway provides bidirectional communication
for the 6LoWPAN nodes. The cloud computing platform
provides ubiquitous connectivity between the M2M sensor
nodes and the external IP networks through the SD-NFV
6LoWPAN gateway. Fig. 8 illustrates service chaining oper-
ations and network connectivity for the developed approach.
The cloud front-end API is visible to the user in order to
deploy different algorithms and change the network pref-
erences, while the back-end of the network resides in the
6LoWPAN network to provide a global connection via the
M2M gateway.

D. Remote End-User Application

A simple end-user application is built using MATLAB soft-
ware to emulate external IP access to the 6LoWPAN network
through the SD-NFV gateway. The application is used to
retrieve the data from the cloud and to analyze it on a remote
PC. In addition, the remote application is used to send control
commands to the M2M sensor nodes by turning the attached
LED on/off to verify the IP connectivity and network hetero-
geneity. Fig. 9 shows the graphical user interface (GUI) of
the end-user or remote application. The remote application
reads the data from the data channels of the cloud plat-
form (ThingSpeak) and sends the network preferences to the
6LoWPAN gateway using the control channels of the same
cloud computing platform.

VII. PERFORMANCE EVALUATION RESULTS

This section provides detailed proof-of-concept testbed
results for the SDN and NFV integration in a cloud-based
6LoWPAN M2M network. The testbed experiments were car-
ried out in indoor environments. The 6LoWPAN network
initiates two successive steps. First, network discovery is per-
formed before carrying out any sensing tasks to make the
network topology visible to the customized SDN controller.
After the nodes are discovered, the second step is started
by executing the sensing application in each M2M node and
reporting the sensed data to the gateway prior to their storage
it in the cloud platform.

A. Node Discovery Phase

It is hard and resource intensive to discover each alive node
in a 6LoWPAN network manually. Consequently, automated

AL-KASEEM AND AL-RAWESHIDY: SD-NFV AS ENERGY EFFICIENT APPROACH FOR M2M NETWORKS 1795

Fig. 9. GUI of the end-user application.

Fig. 10. ND delay.

ND mechanism has been designed to monitor the states of the
nodes in the network, which is delegated to the 6LoWPAN
coordinator. The network coordinator is integrated with the
SDN controller to work in harmony for communication cost
reduction between M2M nodes. In addition, integrating PAN
coordinator with the SDN controller can achieve high band-
width utilization compared to the traditional 6LoWPAN ND,
where the cost associated with communication is usually more
than that of sensing and processing.

Fig. 10 illustrates the ND time versus the number of
6LoWPAN nodes. The main objective of the ND function is to
achieve the lowest number of transmitted packets for a node
to still be connected with the customized SDN controller. The
proposed topology discovery manager is aimed at making the
PAN coordinator with the customized SDN controller respon-
sible for maintaining the status information of all M2M nodes
down the hierarchy and reporting the status updates to the
SDN controller. According to this information, the SDN con-
troller builds-up two tables: one that contains the connected
or alive nodes, and a second that is the flow table where each
node is mapped to note IP, cloud APIs, and action.

From Fig. 10, it is clear that the SD-NFV enhances the
network ND process by reducing the topology discovery time

Fig. 11. 6LoWPAN node lifetime.

by 60% compared to the traditional 6LoWPAN network dis-
covery time. This reduction in network discovery time can
be justified due to the decoupling of the control and data
planes, whereby the SDN controller will not update the tables
frequently. The flow table update takes place when there is
no reply from the node, and the corresponding node will be
removed from the table or when a new node joins the network
and it will be added to both tables.

B. Execution of Sensing Application

When the execution of the sensing application starts,
the SD-NFV gateway becomes responsible for filtering the
ingress traffic from both the IEEE 802.15.4 and IEEE 802.11
transceivers. It will perform packet fragmentation and packet
assembly depending on the destination address of the packet.

The 6LoWPAN nodes are characterized by low-data rates,
low-energy consumption, low-cost, and generation of flexible
topologies. The traditional 6LoWPAN network will not be able
to run different applications but rather it is able to execute a
single application. Due to the limited energy source attached to
the 6LoWPAN node, the nodes need to use their energies effi-
ciently. The node lifetime is the time span from deployment to
the instant when the node is considered nonfunctional or failed.
The analysis focuses on the advanced nodes because these play
the role of being a cluster head in hierarchical topology. The
proposed SD-NFV approach enhanced the advanced node’s
lifetime by approximately 65% compared to the traditional
6LoWPAN networks without this approach, as illustrated in
Fig. 11. The 6LoWPAN node joining the SD-NFV gateway
will not deplete its energy more quickly, because the unneces-
sary IPv6 packets transmission is eliminated (i.e., IPv6 headers
and fragmentation).

Virtualizing the network and adaptation layers of the
6LoWPAN protocol stack in the SD-NFV gateway enables
the M2M node to perform low-energy sleep mode in order to
conserve energy for a long period. The explanation of how the
adaptation and network layers in the 6LoWPAN protocol stack
work is out of this paper scope; however, detailed explanation
can be found in [9] and [36]. Fig. 12 shows the current drawn
from the Arduino Uno board of the advanced node for the first
6 s of network initialization. The node joining the SD-NFV

1796 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Fig. 12. First 6 s of the network initialization phase.

Fig. 13. Current drawn from 6LoWPAN node under periodic traffic condition.

gateway will not need to have the communication antenna to
be on all the time; it will turn on its communication antenna
when sending and receiving the packet.

Fig. 13 shows the current drawn from the node’s battery
under a periodic traffic scenario. The spikes in the red curve
represent the time instances when the sensed data has been
transmitted to the SD-NFV gateway.

Fig. 14 illustrates the advanced 6LoWPAN sensor node
activities as a percentage of the sensor node’s residual energy.
The experimental testbed results indicate that in a traditional
6LoWPAN network, the node spends all its energy listening
to the channel and transmitting a fragmented large packet size
of IPv6 (1280 byte). As a result, it depletes its energy more
quickly, whilst transmitting fragmented IPv6 datagrams over
the LoWPAN links efficiently. While in the proposed SD-NFV
approach, IP connectivity at the node level is not necessary,
because the customized SDN controller has a virtualization
manager with SFV feature, which abstracts IP connectivity
from node’s protocol stack to the SD-NFV gateway protocol
stack. Accordingly, the advanced 6LoWPAN node only sends
IEEE 802.15.4 packets (127 byte) and performs sleep mode
by turning off its communication antenna. The SD-NFV gate-
way performs the fragmentation and assembly of IPv6 packets
on behalf of the 6LoWPAN nodes. Accordingly, the node can
conserve its residual energy, which is powered by batteries

(a) (b)

Fig. 14. 6LoWPAN node activity in relation to the node energy.
(a) Traditional 6LoWPAN node. (b) SD–NFV/6LoWPAN node.

only and hence, prolong its lifetime. Finally, the customized
SDN controller conserves nodes’ energies by an indirect load
balancing mechanism.

The Arduino board draws significantly high current com-
pared to other existing microcontroller boards, and hence it
works for a day not for months or even a year. However,
Arduino boards have been chosen in order to investi-
gate the effects of the SD-NFV approach in very short
running time.

VIII. CONCLUSION

This paper developed a proof-of-concept testbed for the
SDN and NFV approaches in cloud-based 6LoWPAN gate-
way. Also, the implemented testbed can be viewed as a first
attempt to analyze the challenges of integrating SDN and
NFV together in the IEEE 802.15.4-based network, which is
characterized by low-power and low-data rate sensor nodes.
Currently, the implemented 6LoWPAN testbed has been tested
for a specific solution which is called SD-NFV.

The implemented architecture achieves a good performance
in terms of ND function in the gateway for global topol-
ogy construction. The ND time has been reduced by 60%
compared to the traditional 6LoWPAN ND time. Also, the
proposed SD-NFV approach is aimed at abstracting the most
energy harvesting layers from the 6LoWPAN node and makes
them virtualized among all the other nodes in the network
through the SDN controller. The virtualization approach
enhances the network lifetime; the node joined by the SD-NFV
gateway is able to enhance its lifetime by 65% in compar-
ison to the existing 6LoWPAN node joined by traditional
6LoWPAN gateway or edge router.

The SDN offers a new way to design, deploy, and man-
age IoT devices by improving the interaction between the
customized SDN controller and the network infrastructure.
While the NFV reshapes the current network services and
makes the IoT service function chaining more agile. The
proposed SD-NFV approach is quite suitable for constrained
networks where energy and processing efficiency is the major
concern. Furthermore, the SD-NFV gateway can handle bidi-
rectional communication between 6LoWPAN nodes and a
remote user.

AL-KASEEM AND AL-RAWESHIDY: SD-NFV AS ENERGY EFFICIENT APPROACH FOR M2M NETWORKS 1797

REFERENCES

[1] R. van der Meulen. (2015). Analysts to Explore the Value and Impact
of IoT on Business at Gartner Symposium/ITxpo 2015, November 8-12
in Barcelona, Spain. Accessed on Jan. 2017. [Online]. Available:
http://www.gartner.com

[2] B. C. Villaverde et al., “Service discovery protocols for constrained
machine-to-machine communications,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 1, pp. 41–60, 1st Quart., 2014.

[3] P. K. Verma et al., “Machine-to-machine (M2M) communications:
A survey,” J. Netw. Comput. Appl., vol. 66, pp. 83–105, May 2016.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart., 2015.

[5] A. Aijaz and A. H. Aghvami, “Cognitive machine-to-machine commu-
nications for Internet-of-Things: A protocol stack perspective,” IEEE
Internet Things J., vol. 2, no. 2, pp. 103–112, Apr. 2015.

[6] I. Park, D. Kim, and D. Har, “MAC achieving low latency and energy
efficiency in hierarchical M2M networks with clustered nodes,” IEEE
Sensors J., vol. 15, no. 3, pp. 1657–1661, Mar. 2015.

[7] Y.-J. Chen, Y.-H. Shen, and L.-C. Wang, “Traffic-aware load balancing
for M2M networks using SDN,” in Proc. IEEE 6th Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Singapore, Dec. 2014, pp. 668–671.

[8] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[9] “Transmission of IPv6 packets over IEEE 802.15.4 networks,” IETF,
Fremont, CA, USA, RFC 4944, 2007, accessed on Jan. 2017. [Online].
Available: https://tools.ietf.org/html/rfc4944

[10] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors
in Internet of Things’ virtualization via OpenFlow,” in Proc. 3rd FTRA
Int. Conf. Mobile Ubiquitous Intell. Comput. (MUSIC), Vancouver, BC,
Canada, Jun. 2012, pp. 195–200.

[11] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: Enabling
software-defined wireless sensor networks,” IEEE Commun. Lett.,
vol. 16, no. 11, pp. 1896–1899, Nov. 2012.

[12] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
defined wireless networks: Unbridling SDNs,” in Proc. Eur. Workshop
Softw. Defined Netw., Darmstadt, Germany, Oct. 2012, pp. 1–6.

[13] H. Kim, J. Kim, and Y.-B. Ko, “Developing a cost-effective OpenFlow
testbed for small-scale software defined networking,” in Proc. 16th Int.
Conf. Adv. Commun. Technol. (ICACT), Feb. 2014, pp. 758–761.

[14] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solu-
tion for wireless SEnsor networks,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Hong Kong, Apr. 2015, pp. 513–521.

[15] S. Han and S. Lee, “Implementing SDN and network-hypervisor based
programmable network using pi stack switch,” in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Jeju-do, South Korea, Oct. 2015,
pp. 579–581.

[16] F. Olivier, G. Carlos, and N. Florent, “SDN based architecture for clus-
tered WSN,” in Proc. 9th Int. Conf. Innov. Mobile Internet Services
Ubiquitous Comput. (IMIS), Blumenau, Brazil, Jul. 2015, pp. 342–347.

[17] M. Ariman, G. Seçinti, M. Erel, and B. Canberk, “Software defined
wireless network testbed using raspberry pi of switches with routing
add-on,” in Proc. IEEE Conf. Netw. Funct. Virtualization Softw. Defined
Netw. (NFV-SDN), San Francisco, CA, USA, Nov. 2015, pp. 20–21.

[18] S. Salsano et al., “Hybrid IP/SDN networking: Open implementation
and experiment management tools,” IEEE Trans. Netw. Service Manag.,
vol. 13, no. 1, pp. 138–153, Mar. 2016.

[19] R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez,
“The SDN/NFV cloud computing platform and transport network
of the ADRENALINE testbed,” in Proc. 1st IEEE Conf. Netw.
Softwarization (NetSoft), London, U.K., Apr. 2015, pp. 1–5.

[20] Open Networking Foundation. Accessed on Jan. 2017. [Online].
Available: https://www.opennetworking.org/

[21] F. Hu, Network Innovation Through OpenFlow and SDN: Principles and
Design, 1st ed. Boca Raton, FL, USA: CRC Press, 2014.

[22] J. Doherty, SDN and NFV Simplified: A Visual Guide to Understanding
Software Defined Networks and Network Function Virtualization, 1st ed.
Upper Saddle River, NJ, USA: Addison-Wesley, 2016.

[23] A. Sabbeh, Y. Al-Dunainawi, H. S. Al-Raweshidy, and M. F. Abbod,
“Performance prediction of software defined network using an artifi-
cial neural network,” in Proc. SAI Comput. Conf. (SAI), London, U.K.,
Jul. 2016, pp. 80–84.

[24] P. A. Morreale and J. M. Anderson, Software Defined Networking:
Design and Deployment. Boca Raton, FL, USA: CRC Press, 2014.

[25] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira, and
M. Nogueira, “Programmable networks—From software-defined radio
to software-defined networking,” IEEE Commun. Surveys Tuts., vol. 17,
no. 2, pp. 1102–1125, 2nd Quart., 2015.

[26] R. Chayapathi, S. F. Hassan, and P. Shah, Network Functions
Virtualization (NFV) With a Touch of SDN, 1st ed. Indianapolis, IN,
USA: Pearson Educ., 2016.

[27] Q. Duan, N. Ansari, and M. Toy, “Software-defined network virtual-
ization: An architectural framework for integrating SDN and NFV for
service provisioning in future networks,” IEEE Netw., vol. 30, no. 5,
pp. 10–16, Sep. 2016.

[28] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT,
and Cloud. Indianapolis, IN, USA: Pearson Educ., 2016.

[29] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things, 1st ed.
San Francisco, CA, USA: Morgan Kaufmann, 2011.

[30] Arduino. Accessed on Jan. 2017. [Online]. Available:
https://www.arduino.cc/

[31] J. Batalle, J. F. Riera, E. Escalona, and J. A. Garcia-Espin,
“On the implementation of NFV over an OpenFlow infrastructure:
Routing function virtualization,” in Proc. IEEE SDN Future Netw.
Services (SDN4FNS), Trento, Italy, Nov. 2013, pp. 1–6.

[32] Arduino Pico IPv6 Stack (pIPv6). Accessed on Jan. 2017. [Online].
Available: https://github.com/telecombretagne/Arduino-pIPv6Stack

[33] Neighbor Discovery for IP Version 6 (IPv6), IETF, Fremont, CA, USA,
2007, accessed on Jan. 2017. [Online]. Available: https://tools.ietf.org/
html/rfc4861

[34] Neighbor Discovery Optimization for IPv6 Over Low-Power Wireless
Personal Area Networks (6LoWPANs). IETF, Fremont, CA, USA,
2012, accessed on Jan. 2017. [Online]. Available: https://tools.ietf.org/
html/rfc6775

[35] Internet-of-Things Platform. Accessed on Jan. 2017. [Online]. Available:
https://www.thingspeak.com/

[36] J. W.-Y. Hui, “An extended Internet architecture for low-power wire-
less networks—Design and implementation,” Ph.D. dissertation, Dept.
Elect. Eng. Comput. Sci., Univ. California at Berkeley, Berkeley,
CA, USA, 2008. [Online]. Available: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2008/EECS-2008-116.html

Bilal R. Al-Kaseem (M’15) received the B.Sc.
and M.Sc. degrees in computer engineering from
Nahrain University, Baghdad, Iraq, in 2006 and
2010, respectively, and is currently pursuing
the Ph.D. degree in wireless network engi-
neering at Brunel University London, London,
U.K.

His current research interests include design and
implementation of smart sensors, wireless sen-
sor networks, software-defined networking, network
functioning virtualization, machine-to-machine com-

munication, cloud computing, and intelligent Internet-of-Things applications.

Hamed S. Al-Raweshidy (M’92–SM’97) received
the B.Eng. and M.Sc. degrees from the University
of Technology, Baghdad, Iraq, in 1977 and 1980,
respectively, the Post Graduate Diploma degree from
Glasgow University, Glasgow, U.K., in 1987, and the
Ph.D. degree from Strathclyde University, Glasgow,
in 1991.

He was with the Space and Astronomy Research
Centre, Baghdad, Iraq, PerkinElmer, Waltham, MA,
USA, British Telecom, London, U.K., Oxford
University, Oxford, U.K., Manchester Metropolitan

University, Manchester, U.K., and Kent University, Canterbury, U.K. He is cur-
rently the Director of the Wireless Network Communications Centre, Brunel
University London, London.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

