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Discrete data are collected in many application areas and are often characterised by highly-skewed
distributions. An example of this, which is considered in this paper, is the number of visits to a
specialist, often taken as a measure of demand in healthcare. A discrete Weibull regression model
was recently proposed for regression problems with a discrete response and it was shown to possess
desirable properties. In this paper, we propose the first Bayesian implementation of this model. We
consider a general parametrization, where both parameters of the discrete Weibull distribution can
be conditioned on the predictors, and show theoretically how, under a uniform non-informative prior,
the posterior distribution is proper with finite moments. In addition, we consider closely the case of
Laplace priors for parameter shrinkage and variable selection. Parameter estimates and their credible
intervals can be readily calculated from their full posterior distribution. A simulation study and the
analysis of four real datasets of medical records show promises for the wide applicability of this
approach to the analysis of count data. The method is implemented in the R package BDWreg.
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1. Introduction

Data in the form of counts appear in many application areas, from medicine, social and
natural sciences to econometrics, finance and industry [10]. In medicine, two examples
of this are the length of stay in hospital, commonly used as an indicator of the quality
of care and planning capacity within a hospital [4, 11], and the number of visits to
a specialist [32], often taken as a measure of demand in healthcare. Other examples
are high-throughput genomic data generated by next generation sequencing experiments
[5, 38, 43] or lifetime data, such as the number of cycles before a machine breaks down
[35].

Similarly to Weibull regression, which is widely used in lifetime data analysis and sur-
vival analysis for continuous response variables, [24] have recently proposed a regression
model for a discrete response based on the discrete Weibull distribution. A number of
studies have found a good fit of this distribution in comparison with other distribu-
tions for count data [9, 15, 29]. In the context of regression, [24] show two important
features of a discrete Weibull distribution that make this a valuable alternative to the
more traditional Poisson and Negative Binomial distributions and their extensions, such
as Poisson mixtures [22], Poisson-Tweedie [16], zero-inflated semiparametric regression
[30] and COMPoisson [44]: the ability to capture both over and under-dispersion and a
closed-form analytical expression of the quantiles of the conditional distribution.

In [24], maximum likelihood is used for the estimation of the parameters. This is in
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general the most common approach for parameter estimation in regression analysis of
counts, due to a lack of simple and efficient algorithms for posterior computation [49].
Among the contributions to Bayesian estimation of discrete regression models, [14] con-
sider the case of Poisson regression, [49] provide an efficient Bayesian implementation of
negative Binomial regression, [34] develop Bayesian estimation for a Poisson and nega-
tive Binomial regression with a conditional autoregressive correlation structure, whereas
[2, 18, 31, 36] study zero-inflated Poisson regression. In this paper, we contribute to this
literature, by providing the first Bayesian approach for parameter estimation in discrete
Weibull regression. For the choice of prior distributions, we consider both the case of
non-informative priors, such as Jeffreys and uniform, and the case of Laplace priors with
a hyper penalty parameter. We prove that under a uniform non-informative prior, the
posterior distribution is proper with finite moments. The choice of Laplace priors induces
parameter shrinkage [28, 40], and, with the use of Bayesian credible intervals, leads to
variable selection, similar to alternative approaches such as spike and slab priors [23].

The remainder of this paper is organized as follows. Section (2) describes the discrete
Weibull regression model, with a more general parametrization than that presented in
[24]. Section (3) describes Bayesian parameter estimation for a discrete Weibull regres-
sion model. Section (4) proves that the posterior distribution is proper under a uniform
non-informative prior distribution on the parameters. Section (5) presents an extensive
simulation study, whereas Section (6) shows the analysis of real data and a comparison
with existing approaches. Finally, we draw some conclusions in Section (7).

2. Discrete Weibull regression

2.1 Discrete Weibull distribution

The discrete Weibull distribution was introduced by [35], as a discretized form of a
continuous Weibull distribution, similarly to the geometric distribution, which is the
discretized form of the exponential distribution, and the negative Binomial, which is the
discrete alternative of a Gamma distribution. In some papers, this is referred to as a type
I discrete Weibull, as two other distributions were subsequently defined. [9] review the
three different distributions and point out the advantages of using the type I distribution:
it has an unbounded support, in contrast to the type II distribution, and it has a more
straightforward interpretation, in contrast to the type III distribution.

If a random variable Y follows a (type I) discrete Weibull distribution, then the cumu-
lative distribution function of Y is given by

F (y; q, β) =

{
1− q(y+1)β if y = 0, 1, 2, . . . (jump points)
0 if y < 0

(1)

with 0 < q < 1 and β > 0 the shape parameters. A similar definition can be given on the
support 1, 2, . . .. In this case, F (y; q, β) = 1 − qyβ , for y = 1, 2, . . .. Comparing this cdf
with that of a continuous Weibull distribution with parameters α and β, which is given
by

FC(y;α, β) = 1− exp
[
−
( y
α

)β]
for y > 0, (2)

one can see that there is a direct correspondence between β, whereas q in the discrete

case corresponds to exp
[
−
( 1

α

)β]
in the continuous case [26].
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Given the form of the cumulative distribution function, the discrete Weibull distribu-
tion has the following probability mass function:

p(y; q, β) = qy
β − q(y+1)β , y = 0, 1, 2, ...

with q and β denoting the shape parameters. Throughout the paper, we will refer to this
distribution as DW(q, β).

2.2 Inference for Discrete Weibull: Existing Approaches

[26] derive estimators of the parameters q and β using the method of moments and a new
method which they call the method of proportions, and they find a good performance for
the latter. Let Y1, . . . , Yn be a random sample from a DW(q, β) distribution and denote
Z =

∑n
i=1 I(Yi = 0) and U =

∑n
i=1 I(Yi = 1). Using the method of proportions, the

following estimators of q and β are proposed:

q̂ = 1− Z

n

β̂ = ln
[

ln
(

1− Z

n
− U

n

)
/ ln

(
1− Z

n

)]
/ ln(2).

These estimators use only the zeros and ones in the sample. [3] derive an improved
estimator of β, by taking all observations into account. In particular, let dm be the
maximum observed value of Y and let k = dm − 1. If dm > 2, then the following
improved estimator is proposed:

β̂ =
1

k

k∑
d=1

ln
[

ln
(

1− F̂ (d)
)
/ ln(q̂)

]
/ ln(d+ 1),

where F̂ denotes the empirical cdf. When dm = 2, this estimator is equivalent to the one
from [26]. Note that in both cases, no estimates of β can be obtained when q̂ = 1, i.e.
there are no zero counts in the observed data, or q̂ = 0, i.e. all counts are zero. However,
in other cases, the estimators perform relatively well, particularly in the case of small
sample sizes.

[27] considers maximum likelihood for the estimation of q and β. The likelihood function
for a discrete Weibull sample is given by:

L(y|q, β) =

n∏
i=1

(
qy

β
i − q(yi+1)β

)
,

the maximum of which can be found numerically.
There is no explicit work in the literature for building confidence intervals for discrete

Weibull parameters, although standard asymptotic likelihood and bootstrap approaches
can be used. The Bayesian approach that we devise in this paper will lead naturally to
credible intervals for the parameters.

2.3 Regression via a discrete Weibull

Let Y be the response variable with possible values 0, 1, . . ., and let X1, . . . , Xp be p
covariates. We assume that the conditional distribution of Y given X follows a DW
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distribution with parameters q and β. Similar to the approach of [42], we introduce a
regression model by linking each parameter, q and β, to the predictors. In particular, we
propose the following link functions:

(1) q dependent on X via

log(− log(q)) = Xθ or

log
( q

1− q

)
= Xθ,

where X = (1X1 . . . Xp) and θ = (θ0 . . . θp)
′.

(2) β dependent on X via

log(β) = Xγ,

where γ = (γ0 γ1 . . . γp)
′.

The first parametrization was proposed by [24], in line with the link function used in con-
tinuous Weibull regression. As q = 1−P (Y = 0) for a DW distribution, we consider also
a parametrization for q via a logit link function, which is commonly used in classification
problems, for probabilities that are bounded between 0 and 1. In addition, we consider a
log link for the parameter β, in order to capture more complex dependencies. In general,
there are no identifiability issues in the model, as the part of the likelihood from zero
observations depends only on q. However, in our simulation and real data analyses, we
found the logit function to be only marginally superior to the log-log transformation,
whereas the additional β parametrization leads to a significant increase in the number
of parameters and is therefore often not selected.

3. Bayesian inference for discrete Weibull regression

In this section, we discuss Bayesian estimation of the regression parameters θ =
(θ0 . . . θp)

′ and γ = (γ0 . . . γp)
′. The advantage of choosing Bayesian approaches over

classical maximum likelihood inference is two-fold. Firstly, the possibility of taking prior
information into account, such as sparsity or information from historical data, and, sec-
ondly, the procedure returns automatically the distribution of all parameters, from which
credible intervals can easily be obtained.

Given n observations yi and (xi1 . . . xip), i = 1, . . . , n, for the response Y and the
covariates X, respectively, and letting xi be the row vector xi = (1 xi1 . . . xip), the
likelihood for the most general case (and using a logit(q) link) is given by

L(x, y|θ,γ) =

n∏
i=1

(( exiθ

1 + exiθ

)yiexp(xiγ)

−
( exiθ

1 + exiθ

)(yi+1)exp(xiγ))
.

We consider different prior distributions on θ and γ. Unfortunately, in the context
of discrete Weibull regression, there are no conjugate priors. However, in the next sec-
tion, we will show theoretically how a uniform non-informative prior leads to a posterior
distribution which is proper with finite moments and, in the simulation and real data
study, we show how this prior achieves an acceptable rate of mixing as well as compa-
rable estimation to maximum likelihood. Similar results are obtained using an objective
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Jeffreys prior, which we also discuss in the next sections. In addition, we consider closely
a proper prior distribution on the regression coefficients that encourages sparsity, by
setting a Laplace prior on θ and γ, i.e

p(θ|λ) = λ
2 e
−λ|θ|, λ > 0, (3)

p(γ|τ) = τ
2e
−τ |γ|, τ > 0.

For a given choice of λ and τ , maximising the posterior probability under these priors
corresponds to maximising the L1 penalised log-likelihood

logL(x, y|θ,γ)− λ
p∑
j=1

|θj | − τ
p∑

k=1

|γk|,

as in the traditional lasso approach [40, 48]. We further assume an InverseGamma(a,b)
hyper prior for both λ and τ , leading to the posterior distribution

p(θ,γ|x, y) ∝ L(x, y|θ,γ)× p(θ|λ)× p(γ|τ)× p(λ)× p(τ).

As conjugate priors are not available, we choose an adaptive Metropolis-Hastings sam-
pling to draw samples from the full conditional posterior [20, 21]. MCMC samplers have
been used before in the continuous Weibull regression context by [37], which utilizes a
Reversible Jump MCMC, and [46] which uses a hybrid method consisting of Metropolis-
Hastings and Gibbs sampler to estimate parameters in a three parameters continuous
Weibull distribution. Moreover, [41] make use of a Metropolis-Hasting sampler to make
inference for a continuous two-parameters Weibull distribution in a censoring frame-
work. In line with this literature, we consider the following adaptive Metropolis-Hastings
procedure:

Step 1. Initialize the algorithm with MLE estimation of the parameters or random values
within the space of the parameters.

Step 2. Set a proposal distribution g(.) on the full set of parameters π = (θ, γ). We choose a
multivariate normal proposal with covariance matrix set from the Fisher information
matrix, but other choices are possible.

Step 3. Draw a random sample from the proposal distribution, e.g. πk at iteration k.
Step 4. Evaluate the acceptance probability

α = min

(
1,

L(X, y|πk)p(πk)g(πk−1|πk)
L(X, y|πk−1)p(πk−1)g(πk|πk−1)

)
,

where L(X, y|πk) is the conditional DW likelihood given the proposal values and p(.)
is the prior.

Step 5. Accept the proposal πk with probability α.
Step 6. Following the adaptive Metropolis-Hasting approach of [20], we update the covariance

of the proposal by computing the sample covariance of the estimated chain.
Step 7. Remove a percentage of the chain for burn-in. We use 25%, in our simulations and

real applications.

This algorithm is implemented in the R package BDWreg, which is freely available in
CRAN at https://cran.r-project.org/package=BDWreg. From the posterior distri-
bution, the mode of the marginal densities can be used as point estimate of the param-
eters, whereas the whole distribution is used for building credible intervals. In the case
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of Laplace priors, the inclusion or not of zero in the Highest Posterior Density (HPD)
interval is used to guide variable selection as in [40], although Bayes factors should be
used for model selection. In terms of computational complexity, DW and NB distribu-
tions have the same number of parameters, but there are fewer operations involved in the
evaluation of the DW distribution than in the NB distribution, leading to an expected
lower computational complexity for DW.

4. Some key theoretical results

Although a standard conjugate prior distribution is not available for the discrete Weibull
regression model, MCMC methods can be used to draw samples from the posterior
distributions, as described above. This, in principal, allows us to use virtually any prior
distribution. However, in the case of non-informative priors, we should select only those
that yield proper posteriors. In this section, we show some key theoretical results on
this. In particular, we prove that the choice of uniform non-informative priors on the
parameters, i.e. p(θ) ∝ 1 and p(γ) ∝ 1, leads to a proper posterior distribution with
finite moments.

Thus, as a first result, we show that, under uniform non-informative priors, the poste-
rior is proper, that is

0 <

∫
θ

∫
γ
L(x, y|θ,γ)dγ dθ <∞.

For simplicity, we consider the case where there is no regression model on β, i.e. p(β) ∝ 1
for β > 0. In addition, we consider the logit link for q, although the proof will cover also
the log-log case, as we explain later on.

Lemma 4.1 Let

f(y) = 1− (e−a)y
β −

( a

1 + a

)yβ
,

and assuming y > 0, β > 0 and a > 0, then f(y) is an increasing function of y.

Proof. The derivative of f with respect to y is

d f(y)

dy
= −βyβ−1e−ay

β

log(e−a)− βyβ−1
( a

1 + a

)yβ
log
( a

1 + a

)
= βyβ−1

(
ae−ay

β −
( a

1 + a

)yβ
log
( a

1 + a

))
.

Since a > 0 and log(
a

1 + a
) < 0, the derivative is always positive.

�

Theorem 4.2 Let y, X and θ = (θ0 . . . θp)
′ be vector of response, matrix of covariates

and regression parameters, respectively. Let S = {i; yi 6= 0, yi 6= 1} 6= ∅ and assume X

is of full rank. Under the DW regression model Y |x ∼ DW
( exθ

1 + exθ
, β
)

and choosing

uniform non-informative priors on θ and β, i.e. p(θ) ∝ 1 and p(β) ∝ 1 for β > 0, the
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posterior distribution is proper, i.e.

∫
β

∫
θ

n∏
i=1

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β
}
dθ dβ <∞.

Proof. Since S 6= ∅,

n∏
i=1

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β
}
≤
∏
i∈S

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β
}
.

Choosing any k ∈ S, such that min |xkj | 6= 0, j = 1, . . . , p, results in

∏
i∈S

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β
}
≤
(

e|xk|θ

1 + e|xk|θ

)yβk
−
(

e|xk|θ

1 + e|xk|θ

)(yk+1)β

=

(
e|xk|θ

1 + e|xk|θ

)yβk(
1−

(
e|xk|θ

1 + e|xk|θ

)(yk+1)β−yβk)

≤
(

e|xk|θ

1 + e|xk|θ

)yβk
.

Without loss of generality, we assume p = 1, so θ = (θ0 θ1)′ and xk = (1 xk1). Then
we consider the four cases where the θs are both positive, negative or of different signs,
respectively.
Assuming θj ≤ 0, j = 0, 1 we get,

(
e|xk|θ

1 + e|xk|θ

)yβk
≤ (e|xk|θ)y

β
k ,

where the integral over θ and β is bounded (≤ 1

2|xk1| log(yk)
).

Similarly, for θ0 ≤ 0 and θ1 > 0 we have,

(
e|xk|θ

1 + e|xk|θ

)yβk
≤ (eθ0)y

β
k

(
1 + e−|xk1|θ1

)−β
,

and ∫ ∞
0

∫ ∞
θ1=0

∫ 0

θ0=−∞
(eθ0)y

β
k

(
1 + e−|xk1|θ1

)−β
dθ0dθ1dβ

=

∫ ∞
θ1=0

∫ ∞
β=0

1

yβk

(
1 + e−|xk1|θ1

)−β
dβ dθ1

=

∫ ∞
θ1=0

1

log

(
yk(1 + e−|xk1|θ1)

)dθ1.

The function log−1

(
yk(1 + e−|xk1|θ1)

)
is continuous and bounded over the domain of
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θ1, provided yk > 1. Thus, the integral is bounded. A similar derivation would hold for
the case θ0 > 0, θ1 ≤ 0.

For the final case, θj > 0, j = 0, 1, we have

n∏
i=1

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β}
≤
(

1 + e−|xk|θ
)−yβk

−
(

1 + e−|xk|θ
)−(yk+1)β

≤ e−e|xk|θ(yk+1)β − e−e|xk|θyβk

= e−e
θ0 (yk+1)βe−e

|xk1|θ1 (yk+1)β − e−eθ0y
β
k e−e

|xk1|θ1yβk

≤ e−θ0(yk+1)βe−|xk1|θ1(yk+1)β − e−θ0y
β
k e−|xk1|θ1y

β
k ,

where the last term is a direct result of Lemma (4.1) with a = e|xkj |θj , j = 0, 1. Thus,

∫ ∞
θ1=0

∫ ∞
θ0=0

e−e
θ0 (yk+1)βe−e

|xk1|θ1 (yk+1)β − e−eθ0y
β
k e−e

|xk1|θ1yβk dθ0 dθ1

≤
∫ ∞
θ1=0

∫ ∞
θ0=0

e−θ0(yk+1)βe−|xk1|θ1(yk+1)β − e−θ0y
β
k e−|xk1|θ1y

β
k dθ0 dθ1

=
1

|xk1|

(
1

(yk + 1)2β
− 1

y2β
k

)
,

and

∫ ∞
β=0

1

|xk1|

(
1

(yk + 1)2β
− 1

y2β
k

)
dβ =

1

|xk1|

(
−(yk + 1)−2β

2 log(yk + 1)
+

y−2β
k

2 log(yk)

)∣∣∣∣β=∞

β=0

=
1

2|xk1|
log(yk+1

yk
)

log(yk) log(yk + 1)
<∞,

which completes the proof. Similar derivations can be carried out in the general case of
p > 1 by finding the bounds for all different combinations of signs of the parameters,
following a similar approach to that used in this proof. �

Having proved that the posterior is proper, in the following theorem we show that the
posterior moments exist and are finite.

Theorem 4.3 Under the same conditions of Theorem (4.2), the posterior distribution
of (θ, β) has finite (m0,m1, . . . ,mp,mβ) moments, that is

∫
β

∫
θ

n∏
i=1

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β}
θm0

0 . . . θmp
p βmβ dθdβ <∞.

Proof. This proof is similar to the proof of theorem (4.2).
Without loss of generality, we consider p = 1. Then, for example in the last case,
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assuming θj > 0, j = 0, 1,

∫
β

∫
θ=(θ0,θ1)>0

n∏
i=1

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β}
θm0

0 θm1

1 βmβ dθdβ ≤

( 1∏
i=0

Γ(mi + 1)

|xmi+1)
ki |

)
1

(m0 +m1 + 2)mβ+1

(
1

(log(yk))mβ+1
− 1

(log(yk + 1))mβ+1

)
.

In general, for p + 2 parameters (θ0, . . . , θp, β) and corresponding moments
(m0, . . . ,mp,mβ) we have,

∫
β

∫
θ=(θ0,...,θp)>0

n∏
i=1

{(
exiθ

1 + exiθ

)yβi
−
(

exiθ

1 + exiθ

)(yi+1)β}
θm0

0 . . . θmp
p βmβ dθdβ ≤

( p∏
i=0

Γ(mi + 1)

|xmi+1)
ki |

)
1

(
∑p

i=0mi + 1)mβ+1

(
1

(log(yk))mβ+1
− 1

(log(yk + 1))mβ+1

)
,

which completes the proof. �

Theorem (4.2) and Theorem (4.3) refer to the model with logit link on q and constant
β. In fact, the results apply also to the case of log-log link, given Lemma (4.1). In the next
sections, we consider empirical results on simulated and real data using non-informative
priors. Of course, any proper prior distribution can also be used when prior information is
available. In particular, in the next sections, we consider the case of sparsity and variable
selection. In this case, we use Laplace priors as defined in Equation 3.

Given that the parameters q and β of a discrete Weibull distribution are non-location
parameters, we also consider the use of a Jeffreys prior [7], as this prior has the property
of being invariant under model reparametrization. Taking a DW (q, β) distribution, this
prior is defined by p(q, β) =

√
|I(q, β)|, with I(q, β) being the Fisher information matrix.

This prior has already been studied in the context of the continuous Weibull distribution
by [45], who also study its theoretical properties. By exploiting the link between the
parameters of the discrete Weibull and those of the continuous Weibull distribution, and
considering that the Jeffreys prior for the continuous Weibull distribution in equation

(2) is proportional to
1

αβ
, the corresponding prior for the DW (q, β) distribution is given

by

p(q, β) ∝ [− log(q)]1/β

β
.

This leads to a natural choice of prior for the regression case with the log-log link, which
is also used in continuous Weibull regression models.

5. Simulations study

In this section, we perform a simulation study where we show the effectiveness of the
Bayesian estimation procedure, both in the case of data drawn from a DW regression
model and in the case of model misspecification, where the generating model is that
of Poisson or Negative Binomial (NB). Finally, we test the use of Laplace priors in a
variable selection scenario.
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5.1 Simulation from a DW regression model

Table (1) shows six configurations of parameters used in the simulation, where we consider
the two link functions for q and the link function for β described in Section (2), i.e.
imposing a linear model on logit(q) or log-log(q), and on log(β). We choose the regression
and distribution parameters in such a way to obtain different shapes of the distribution.
For cases 2 to 6, we generate the two predictors uniformly in the interval [−1.5, 1.5]

Table 1. The configuration of DW regression models used in the simulations.

Case Model True Parameters
1 DW (q, β) q = .41 β = .75
2 DW (q, log : regβ) q = .8 γ0 = .1 , γ1 = −.15 , γ2 = .5
3 DW (logit : regQ, β) θ0 = .4 , θ1 = −.1 , θ2 = .34 β = .7
4 DW (logit : regQ, log : regβ) θ0 = .4 , θ1 = −.1 , θ2 = .34 γ0 = .1 , γ1 = −.15 , γ2 = .5
5 DW (log-log : regQ, β) θ0 = .4 , θ1 = −.1 , θ2 = .34 β = .7
6 DW (log-log : regQ, log : regβ) θ0 = .4 , θ1 = −.1 , θ2 = .34 γ0 = .1 , γ1 = −.15 , γ2 = .5

and we simulate 500 observations. For the Bayesian estimation of the parameters, we
use non-informative priors and make use of an adaptive Metropolis-Hastings algorithm
with an independent Gaussian proposal to draw samples from the posterior. The scale
of the proposal is adjusted so that a recommended acceptance rate lies in the interval
(22, 25)% [6]. We consider 25,000 iterations of the sampler and use the first 25% of the
data as burn-in.

Figure (1) shows the posterior distribution of the parameters and the chain convergence
in the first case, when no exogenous variables are present. Similar plots are obtained for
the other cases. Table 2 reports also the coverage of 95% confidence and credible intervals.
For the Bayesian approach, we consider both the uniform and Jeffreys non-informative
priors. Figure (2) shows the marginal densities of the parameters and the 95% HPD
interval for all six cases, as well as the maximum likelihood point estimate and the true
value of the parameters. Overall, the plots show convergence of the chain and accurate
estimation of the parameters. Table 2 shows how the coverage obtained when using a
Jeffreys prior is closer to the nominal level than when using a uniform prior, and is in
line with the coverage of the frequentist approach.

Table 2. Parameter estimates for case 1 from likelihood and Bayesian approaches, under uniform and Jeffreys

priors. The last row reports the coverage of 95% confidence and credible intervals.

Frequentist Bayesian (Uniform) Bayesian (Jeffreys)
q = .41 β = 0.75 q = .41 β = 0.75 q = .41 β = 0.75

Estimate 0.411 0.761 0.412 0.758 0.418 0.772
Standard Error 0.042 0.081 0.042 0.080 0.046 0.083
95% Coverage 98% 96% 100% 96% 98% 97%

5.2 Simulation from a Poisson and NB regression model

The aim of this section is to test the fitting of a DW regression model to data generated
from a Poisson and NB regression. To this end, we design two experiments using two
explanatory variables, X = (X1, X2), and n = 500 data points. We simulate data for
the predictors from uniform distributions, namely X1 ∼ U(0, 1) and X2 ∼ U(0, 1.5).
In the first experiment, we assume that the conditional distribution of Y given X is
Poisson(eXα), whereas in the second experiment, we assume it to be a NB distribution
with mean µ = eXα and variance µ + µ2/θ with θ = 4.5. We fix the intercept and
the regression parameters to α = (−0.5, 4.3,−2.2), with values chosen to cover a wide
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Figure 1. Marginal densities and chain convergence for q (top) and β (bottom), for case 1 where there are no
exogenous variables in model.

range of shapes for the target distribution. Figures (3) shows the conditional posterior
distribution fitted by DW (regQ, β) for a fixed value of x1 = 0.5 and sliding values of
x2 in the [0, 0.7] interval. The figure shows overall a good fitting, both for Bayesian and
frequentist approaches, and a better fit when the logit link is used compared to the log-log
link in both Poisson and NB experiments. For the frequentist estimation, we use the R
package DWreg [24].

5.3 Simulation on Variable Selection

In this simulation, we show the performance of DW regression for variable selection.
To this end, we consider a simulation with 50 predictors and assume that 75% of the
parameters, 37 out of 50, are zero. We generate the remaining non-zero parameters
uniformly in the [−0.5, 0.5] interval. We simulate 500 observations for each predictor
from a U(0, 1.5) distribution, and the response variable from a DW distribution using a
logit link for q or the log link for β. Similar results are obtained with the log-log link
function. For parameter estimation, the number of iterations is set to 25000 iterations
and an InverseGamma(2,1) hyper prior is chosen for the penalty parameters. This prior
allows to cover a large range of penalties, in the (0.02,70) interval, with a tendency to
small penalties (i.e. sparsity) due to a mean of 1 and a median of 0.5. Variable selection
is performed by considering the 95% HPD interval for each parameter.

Table (3) shows the performance of the method in terms of selection of variables under
six different generating models. In particular, the table reports the True Negative Rate
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Figure 2. Marginal densities and 95% high probability density interval for cases 1-6 in Table (1).

(TNR), Recall
( TP

TP + FN

)
, Precision

( TP

TP + FP

)
and F1 score

( 2TP

2TP + FN + FP

)
,

averaged over 20 simulations. The table shows a good performance overall, particularly
for the BDW (regQ, β) models. The model with the log(β) link does not perform very
well when q decreases, i.e. when the number of zeros in the sample increases. In these
cases, the models show a low recall, that is a high false negative rate.

6. Analysis of counts in medicine

In this section, we show the performance of the Bayesian discrete Weibull regression
model on real datasets from the medical domain. We compare the proposed model
with the Bayesian Poisson (BPoisson) and Bayesian Negative Binomial (BNB) mod-
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Figure 3. Fitting Poisson (top) and NB (bottom) simulated data by DW (regQ, β) for a range of values of x2
and fixed x1 = 0.5. The plots show the true conditional pmf (black) together with the conditional pmf fitted by

the Bayesian DW model proposed in this paper, with the logit(q) (red) and log-log(q) (blue) links, and by the
corresponding frequentist approaches (green and light blue, respectively).

els on the basis of a number of commonly used criteria: Bayesian Information Crite-
ria (BIC) [12], Akaike Information Criteria (AIC) [12], Deviance Information Criterion
(DIC) [47], Quasi-likelihood Information Criteria (QIC) [39], Consistent AIC (CAIC) [8],
Bayesian Predictive Information Criterion (BPIC) [1] and the Prior Predictive Density
(PPD) used in the Bayes factor [25].
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Table 3. Performance of BDW with Laplace priors. Variables are selected based on the 95% HPD interval and

the selection is compared with the truth on the basis of True Negative Rate (TNR), recall, precision and F1 score.

Model TNR Recall Precision F1

BDW (regQ, β = .1) 93% 90% 93% 91%
BDW (regQ, β = .8) 95% 89% 95% 92%
BDW (regQ, β = 1.6) 93% 91% 93% 92%
BDW (regQ, regβ) 97% 68% 96% 79%
BDW (q = .85, regβ) 90% 92% 91% 91%
BDW (q = .50, regβ) 93% 37% 84% 52%

6.1 Comparison with Bayesian generalised linear models

[24] show how the discrete Weibull distribution is able to capture different levels of
dispersion in the data, as varying q and β can lead both to cases of over and under-
dispersion. In this section, we show the ability of BDW to estimate parameters in three
different scenarios, represented by the following three medical datasets:

(1) The data on inhaler usage from [19], with 5209 observations. The response is the daily
counts of inhalers usage, whereas the covariates are humidity, barometric pressure,
daily temperature, air particles level. The sample mean and variance of the data are
1.3 and 0.8 respectively, so this is a case of under-dispersion relative to Poisson [24].

(2) The German health survey dataset available in the R package COUNT under the name
badhealth, with 1127 observations. The response is the number of visits to doctors
during the year 1988 and the predictors are whether the patient claims to be in bad
health or not, and the age of the patient. The response variable ranges from 0 to 40
visits and has a sample mean of 2.4 and variance of 12, suggesting over-dispersion
relative to Poisson.

(3) The German health registry dataset available in the R package COUNT under the
name rwm, with 27326 observations. The response is the number of visits to doctors
for the years 1984-1988 and the predictors are age, years of education and household
yearly income. The response variable, number of visits, has about 37% of zeros, a
sample mean of 3.2 and a variance of 32.4, pointing again to a case of over-dispersion
and excessive zeros.

We fit a BDW model with a non-informative prior on the regression parameters, 25,000
iterations for the adaptive Metropolis-Hastings sampler and we check that the acceptance
rate lies in the recommended (20, 30)% interval [6]. For the case of BPoisson, BNB regres-
sion, zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) regression,
we make use of the MCMCpack R package [33] using the same configurations as with our
approach. Table (4) shows a comparison of the models on the three datasets. We only
report the results of the BDW(regQ,β) models, which show superior performance to the
other BDW models on these datasets. Of the two links on q, the logit(q) link performs
better than the log-log(q) link. As for a comparison with the other models, Poisson has
the worst performance for all cases, while NB has a performance comparable to the
logit-BDW model in the overdispersed scenario, while it does not perform well in the
underdispersed and excessive zero scenario. In the latter case, zero-inflated negative Bi-
nomial has a performance comparable to DW. This is promising and it points to a future
extension of DW to a zero-inflated DW model.

6.2 Comparison with Bayesian penalised regression

In this section, we compare the performance of BDW to BPoisson and BNB regression
for variable selection on a dataset with several variables. In particular, we consider the
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multivariate data of [32]. The data consist of 5096 observations from the 1985 wave of
the German Socioeconomic Panel. As in [32], we measure the demand in healthcare by
the number of visits to a specialist (except gynecology or pedriatics) in the last quarter.
The 20 covariates are listed in full in Table 5 and they are the same considered in [32].
This is an extreme example of excessive zeros as the response variable contains 67.82%
of zeros.

We fit a BDW model with a Laplace prior on the regression parameters and an In-
verseGamma(2,1) hyper-prior on the shrinkage parameters. We consider 175000 itera-
tions for the MCMC routine and similar configurations for the Bayesian Poisson and
NB models. We also extend the comparison by including Bayesian zero-inflated models
and frequentist L1 regularized models. For the latter, we use the glmnet package [17] to
fit regularized Poisson regression and the glm.nb R function to fit regularized negative
Binomial regression. In both cases, the penalty parameter is chosen by BIC. According
to the results in Table (6), DW (regQ, β) with the log-log link achieves overall the best
performance compared with the others BDW models and with NB and Poisson models.

Figure (4) shows the marginal densities of the parameters for the DW (regQ, β) with
the log-log link. Highlighted in red are those variables that are found to be significant
based on the 95% HPD interval. The selection is overall in accordance with the re-
sults obtained by [32] using a jittering approach, with variables such as gender, chronic
complaints, sick leave and disability found to be significant, and other variables like un-
employment, private insurance and those related to job characteristics, such as heavy
labor, stress, variety on job, self-determined and control found not to be significant. Fig-
ure 5 shows the effect of the variable chronic complaints on the conditional distribution,
suggesting that the probability of a large number of visits is higher for the case of chronic
complaints than for the case of no complaints. Table (7) further compares the selection
of variables with those selected by Poisson and NB regression models. Overall, there is
high agreement between DW and NB, with the exception of the variable control which
is found significant by NB (both in the Bayesian and frequentist estimation) but not by
DW. Poisson and BPoisson tend to select many more variables.

7. Conclusion

In this paper we have proposed a novel Bayesian regression model for count data, by
assuming a discrete Weibull conditional distribution. A discrete Weibull regression model
was originally prosed by [24] in a frequentist context and a number of desirable features
of the model compared to existing ones were highlighted. The Bayesian implementation
in this paper is based on a more general model, where both parameters can be linked to
the predictors. We have experimented with different link functions and have found the
models with the link on q and constant β to work particularly well, with the logit(q)
link displaying superior performance than the log-log(q) link in the simulations and in
three of the four applications considered in this paper. Including a link to both q and
β was found to be too complex for the applications considered, but it may be useful
for other applications showing more complex dependencies and where more data are
available. In terms of the Bayesian inferential approach, we have shown theoretically
how the posterior is proper and with finite moments under a uniform non-informative
prior on the parameters.

We have shown the applicability of the Bayesian discrete Weibull model to count data
from the medical domain. In particular, we have analysed datasets on the number of
visits to doctors/specialists, a quantity that is often used as an indicator of healthcare
demand. The response variable in the examples considered is discrete and is characterized
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Table 4. Comparison of Bayesian DW, Poisson and Negative Binomial on three datasets and under a number of

information criteria. (*) denotes the minimum value. For the dataset with excessive zeros, the comparison includes
also zero-inflated models.
Model AIC BIC CAIC QIC DIC BPIC log(PPD) df
Inhaler Use (under-dispersed)
log-log : BDW 13497.22 13536.57 13542.57 2.59* 13487.63 13493.88 -6745.93 6
logit : BDW 13494.19* 13533.54* 13539.54* 2.59* 13484.92* 13490.49* -6739.41* 6
BPoisson 14009.01 14041.80 14046.80 2.69 13822.54 13734.31 -6960.64 5
BNB 13952.85 13992.33 13998.20 2.68 13771.0 13686.47 -6960.81 6
German Health Survey (over-dispersed)
log-log : BDW 4478.9 4499.0 4502.0 3.98 4474.60 4478.33 -2245.75 4
logit : BDW 4475.2* 4495.3* 4449.3* 3.97* 4474.16* 4477.70* -2242.23* 4
BPoisson 5638.9 5654.02 5656.10 5.01 5638.14 5641.18 -2826.88 3
BNB 4475.9 4495.9 4499.97 3.97* 4474.66 4478.10 -2243.87 4
German Health Registry (excessive zeros)
log-log : BDW 120340.1 120381.2 120386.2 4.4* 120334.6 120339.2 -60187.6 5
logit : BDW 120339.2* 120380.3* 120385.3* 4.4* 120327.0* 120331.9* -60181.8* 5
BPoisson 209636.4 209669.2 209673.2 7.7 209635.8 209639.6 -104836.7 4
BNB 120658.7 120708.0 120714.0 4.4* 129125.8 133365.3 -60344.0 5
BZIP 169417.7 169450.6 169454.6 6.2 169402.1 169398.3 -83522.3 5
BZINB 120649.5 120682.4 120686.4 4.4* 120629.1 120622.9 -60245.2 6

Table 5. List of the variables and descriptions in the number of visits to a specialist dataset [32].

Variable Description
Age Age in decades
Chronic complaints 1 if has chronic complaints for at least 1 year
Control 1 if has a job where work performance is strictly controlled
Degree of disability > 20% 1 if the degree of disability is greater than 20%
Education Number of years in education after age 16
HH-income Net monthly household income
Hospitalized > 7 days 1 if was more than 7 days hospitalized in the previous year
Marital Status 1 if single
Month of unemployment Number of months of unemployment in the previous year
Physically heavy labour 1 if has a job in which physically heavy labour is required
Physician density Number of physicians per 100,000 inhabitants in the place of residence
Population < 5000 1 if place of residence has less than 5,000 inhabitants
Population 20000-100000 1 if place of residence has between 20,000 and 100,000 inhabitants
Population 5000-20000 1 if place of residence has between 5,000 and 20,000 inhabitants
Private insurance 1 if had private medical insurance in the previous year
Self-determined 1 if has a job where the individual can plan and carry out job tasks
Sex 1 if female
Sick leave > 14 days 1 if missed more than 14 work days due to illness in the previous year
Stress 1 if has a job with high level of stress
Variety on job 1 if job offers a lot of variety

Table 6. Comparison of BDW with Bayesian and regularized NB and Poisson on the number of visits to a

specialist dataset of [32]. (∗) denotes the minimum value, whereas df is the number of non-zero coefficients. For
the Bayesian models, these are based on the 95% HPD interval.

Model AIC BIC CAIC QIC DIC BPIC log(PPD) df
logit:BDW(regQ,β) 12720.4 12864.2 2.5* 12886.2 12710.8 12731.5 -6392.3 11
log-log:BDW(regQ,β) 12698.5* 12842.3* 2.5* 12864.3* 12693.3* 12713.6* -6383.3* 11
BDW(q,regβ) 13256.0 13399.8 2.6 13421.8 13250.4 13270.3 -6665.8 6
logit:BDW(regQ,regβ) 12750.3 12920.7 2.5* 12951.7 12713.0 12744.9 -6516.3 19
log-log:BDW(regQ,regβ) 12748.9 12924.1 2.5* 12955.2 12715.4 12741.3 -6519.1 19
BPoisson 21588.2 21705.8 4.2 21723.8 21594.6 21615.8 -10832.6 17
BNB 12867.3 12939.2 2.5* 12950.2 12838.3 12834.8 -6452.3 11
BZIP 16677.1 16760.1 3.2 16760.0 16698.7 16720.6 -8385.6 15
BZINB 12850.0 12921.1 2.5* 12932.2 12872.0 12894.1 -6456.8 13
Poisson (glmnet) 21571.1 21706.1 4.2 21724.1 - - - 17
NB (glm.nb) 12839.3 12911.2 2.5* 12922.6 - - - 12
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Figure 4. Marginal densities of the parameters for the BDW (regQ, β) model with log-log(q) link on the number

of visits to a specialist dataset. The red lines are for the cases where the 95% HDP interval does not contain zero
(significant variable). Green dotted lines for the opposite.

Table 7. Significant covariates that are selected by BDW (regQ, β) with log-log link, Bayesian and regularized
NB and Poisson regression models, and Bayesian zero-inflated Poisson and NB, for the number of visits to a

specialist dataset. An (∗) indicates a non-zero coefficient.

Variable BDW(regQ,β) NB BNB BZINB Poisson BPoisson BZIP
Sex * * * * * * *
Marital status * * * * * *
Age *
HH-income * *
Chronic complaints * * * * * * *
Private insurance
Education * *
Physically heavy labour * * *
Stress * * *
Variety on job * * *
Self-determined
Control * * * * * *
Population < 5000 * * * * * * *
Population 5000-20000 * * * * * *
Population 20000-100000 * * * * * *
Physician density *
Months of unemployment * * *
Hospitalized > 7 days * * * * * * *
Sick Leave > 14 days * * * * * * *
Degree of disability > 20 * * * * * *

by a skewed distribution, making the whole conditional distribution of interest and not
only the conditional mean. We have tested the inference procedure on simulated and real
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Figure 5. Effect of the variable Chronic Complaints on the conditional distribution for the healthcare data, when
all other variables are held constant.

data with various characteristics, such as under-dispersion, over-dispersion and excess
of zeros. Overall, we have found a good performance of the method in comparison with
Poisson and NB regression models, on the basis of a number of information criteria and
of the selection of influential variables.

The method is implemented in the R package BDWreg, which is available in CRAN.
Future work will explore an extension of the approach proposed in this paper to more
flexible DW regression models, such as zero-inflated, multilevel and mixture DW models,
in a similar spirit to the existing models for continuous responses [13].
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