
Results from an Ethnographically-informed Study in the
Context of Test Driven Development

Simone Romano
University of Basilicata
Viale Dell’Ateneo 10

Macchia Romana
Potenza, Italy

simone.romano@unibas.it

Davide Fucci
University of Oulu

Pentti Kaiteran katu 1
Oulu, Finland

davide.fucci@oulu.fi

Giuseppe Scanniello
University of Basilicata
Viale Dell’Ateneo 10

Macchia Romana
Potenza, Italy

giuseppe.scanniello@unibas.it
Burak Turhan

University of Oulu
Pentti Kaiteran katu 1

Oulu, Finland
Burak.Turhan@oulu.fi

Natalia Juristo
Facultad de Informatica,

Universidad Politecnica de
Madrid

Campus de Montegancedo,
28660 Boadilla del Monte

Madrid, Spain
natalia@fi.upm.es

ABSTRACT
Background : Test-driven development (TDD) is an itera-
tive software development technique where unit tests are 
defined before production code. Previous studies fail to an-
alyze the values, beliefs, and assumptions that inform and 
shape TDD.
Aim: We designed and conducted a qualitative study to un-
derstand the values, beliefs, and assumptions of TDD. In 
particular, we sought to understand how novice and profes-
sional software developers, arranged in pairs (a driver and a 
pointer), perceive and apply TDD.
Method : 14 novice software developers, i.e., graduate stu-
dents in Computer Science at the University of Basilicata, 
and six professional software developers (with one to 10 
years work experience) participated in our ethnographically-
informed study. We asked the participants to implement a 
new feature for an existing software written in Java. We im-
mersed ourselves in the context of the study, and collected 
data by means of contemporaneous field notes, audio record-
ings, and other artifacts.
Results: A number of insights emerge from our analysis of 
the collected data, the main ones being: (i) refactoring (one 
of the phases of TDD) is not performed as often as the pro-
cess requires and it is considered less important than other 
phases, (ii) the most important phase is implementation,
(iii) unit tests are almost never up-to-date, (iv) participants 
first build a sort of mental model of the source code to be im-
plemented and only then write test cases on the basis of this

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than 
ACM must be honored. Abstracting with credit is permitted. 

EASE ’16, June 01-03, 2016, Limerick, Ireland
 ACM. ISBN 978-1-4503-3691-8/16/06

DOI: http://dx.doi.org/10.1145/2915970.2915996

model; and (v) apart from minor differences, professional
developers and students applied TDD in a similar fashion.
Conclusions: Developers write quick-and-dirty production
code to pass the tests and ignore refactoring.

CCS Concepts
•Software and its engineering → Software develop-
ment techniques;

Keywords
Ethnographically-informed Study, Qualitative Study, Test
Driven Development

1. INTRODUCTION
Test-driven development (TDD) is an iterative software

development practice within agile methodologies [1]. Some
software organizations have been quick to adopt TDD, while
others are still evaluating its benefits in terms of cost, qual-
ity, and productivity [8, 29]. A number of primary (e.g.,
controlled and quasi-experiments) and secondary (e.g., sys-
tematic literature reviews) empirical studies have been pub-
lished. The primary studies (e.g., ([11, 32]) have been quan-
titative in nature, and have produced contrasting or incon-
clusive results [39]. The secondary studies summarize the
empirical research results regarding TDD by aggregating,
to varying extent, the evidence from controlled experiments,
quasi-experiments, and case studies [8, 29, 39, 42].

TDD has been marginally investigated from a qualitative
point of view and from the perspective of the developer [23,
41]. Qualitative studies, unlike quantitative ones, inquire
into the underlyinge reasons and motivations behind a given
phenomenon [43]. In this paper, we present the results of
an ethnographically-informed study involving students and
professional software developers. Our goal is to gain insights
into how they apply TDD and deal with each of its phases.
In particular, we sought to explore the values, beliefs, and
assumptions that inform and shape the application of TDD

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
Copyright is held by the owner/author(s).

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NoDerivs International 4.0 License.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/


and its phases. Given this motivation, our methodologi-
cal approach can be characterized as ethnographic [17]. We
involved 14 graduate students in Computer Science at the
University of Basilicata and six professional developers with
one to 10 years work experience. We asked the participants,
working in pairs, to add a new functionality to an existing
software implemented in Java. The software is a complex,
industrial-like case of which participants had some knowl-
edge. We immersed ourselves in the study environment and
participated in conversations, and asked the participants
how they were applying TDD to perform the assigned imple-
mentation task. We collected data by means of contempora-
neous field notes, audio recordings of discussions, and copies
of artifacts produced by the participants during the study.
Information about participants’ conformance to TDD was
also gathered through an automated tool installed in the
participants’ integrated development environment (IDE).

The remainder of the paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we explain
our method, while in Section 4, we present our findings. We
show and discuss our findings in Section 5. In Section 6, we
highlight limitations of these findings. Final remarks and
future work conclude the paper.

2. RELATED WORK
We first discuss ethnographically-informed studies in soft-

ware engineering, and then papers reporting investigations
regarding TDD.

2.1 Ethnographically-informed Studies
Little ethnographic research exists in the field of software

engineering. Beynon-Davies [4] observed that ethnographic
research may be useful for capturing knowledge about in-
tangible or unquantifiable aspects of the software life cycle.
Later, Beynon-Davies et al. [5] used ethnographic methods
to investigate the negotiated order of work and the role of
collective memory in rapid application development. Button
and Sharrock [6] carried out an ethnographically-informed
study in global software development with the goal of ex-
plaining knowledge that is displayed in collaborative ac-
tions and interactions of design and development. Sharp
and Robinson [37] used ethnographic methods in their study
of eXtreme Programming (XP) focusing on developers in a
small company implementing web-based intelligent adver-
tisements. Their result suggested that XP developers were
clearly “agile.”

Singer et al. [40] studied the behavior of software engineers
responsible for maintaining a large telecommunications sys-
tem at a particular company. The authors examined devel-
opers’ habits and tool usage during software development.
The authors discovered a discrepancy between what devel-
opers claimed to do when performing maintenance opera-
tions, and what they actually did. In particular, developers
claimed to solve problems by“reading documentation”, while
in fact Singer et al. found that more often than not they re-
solved issues by looking up and copying source code. Later,
Salviulo and Scanniello [33] conducted an ethnographically-
informed study with students and professionals to under-
stand the role of comments and identifiers in source code
comprehensibility and maintainability. Outcomes can be
summarized as follows: (i) professional developers (with re-
spect to students) prefer to deal with identifiers rather than
comments, (ii) all participants believed essential the use

of naming convention techniques for specifying identifiers,
and (iii) all participants stated that the names of identi-
fiers are important and developers should properly choose
them. Ethnography can thus be a useful tool for detecting
and explaining such a kind of discrepancies, and to make
clearer un-remarked aspects of a practice [38]. Indeed, this
is the main motivation behind our use of ethnography in the
present study.

2.2 Empirical studies on TDD
Several quantitative studies have assessed the effective-

ness of TDD, and the results of these studies have in turn
been examined in a number of systematic reviews and meta-
analyses [26, 30, 42]. The results of these analyses have
been contradictory regarding both software products (e.g.,
defects) and developers (e.g., productivity). Interestingly,
one of the secondary studies [8] suggested that insufficient
adherence to the TDD protocol and insufficient testing skills
are among the factors hampering industrial adoption of TDD.
Only a few studies have focused on the perception of devel-
opers regarding the TDD practice. For example, Mueller
and Tichy [25] examined several Agile methodologies, in-
cluding TDD, within a university course and found that
TDD was one of the most difficult techniques to adopt be-
cause developers felt that it was impractical to write test
cases before coding. On the other hand, Gupta and Jalote [16]
reported that students felt more confident that testing ef-
fort applied by using TDD would yield better results than a
traditional test-after-code setting (test-last approach), while
feeling the need for some upfront design. Pancur et al. [27]
reported that students perceived TDD as more difficult for
professionals to adopt. In particular, students perceived
TDD as a practice that hindered their productivity, effi-
ciency, and the quality of their code. Both students and
professionals agreed that TDD helped in devising a better
design and prevents bugs, but they also believed that this
practice cannot replace a quality assurance engineer [39].
Even more interesting, participants also believed that the
use of TDD improved confidence by minimizing the fear that
existing parts of well-functioning source code would be com-
promised by the implementation of new features [15].

While quantitative studies provide objective frameworks
for assessing TDD effectiveness, qualitative studies may en-
able a deeper understanding of TDD and its use. Existing
studies have relied upon non-interactive research methods
such as questionnaires. In quantitative studies, TDD is of-
ten compared to a test-last approach (e.g., [41]). In the
present study we employed an ethnographic approach in or-
der to develop a better understanding of TDD, the under-
lying phenomena, and developer perceptions thereof. We
are not interested in comparing TDD to other development
techniques or practices. Furthermore, we included both stu-
dents and professionals in our study, since previous work
has found that perceptions of TDD vary between these two
groups (e.g., [32]).

3. ETHNOGRAPHIC STUDY
Qualitative studies are considered a necessary complement

to quantitative investigations [36], essential for gaining an
understanding of the reasons and motivations behind the
problem under study. Among qualitative methodological
approaches, ethnographic studies are better suited to ask
questions such as how, why and what are the characteris-



tics of [31]. Usually, such investigations are conducted on a
small number of subjects, while researchers conduct study
by immersing themselves in the study environment [37]. In
some fields of research, such as software engineering, this
practice is not always possible (e.g., because of time con-
straints). In such cases, it is common to adapt ethnographic
methods to the shorter timeframe [31, 33].

3.1 Definition and Context
TDD is an iterative software development technique where

unit tests are defined before production code. Developers
repeat short cycles consisting of: (i) writing a unit test
for an unimplemented functionality or behavior, namely the
red phase; (ii) supplying the minimal amount of produc-
tion code to make unit tests pass, namely the green phase;
(iii) applying refactoring where necessary, and checking that
all tests are still passed after refactoring [1].

Often pair-programming is used together with TDD [14,
44]. For this reason, in the present study we focused on
programmer pairs instead of teams or organizations. In this
setting, we were interested in exploring the following topics:

how practitioners and novice programmers perceive TDD

how they approach each phase of TDD

why they adhere (or do not adhere) to TDD

why they feel more comfortable with one or another of the
TDD phases

how refactoring is carried out in TDD

what are the characteristics the developers believe an
application must have so that they can successfully
apply TDD

In order to mitigate subjective assumptions, we considered
all the activities related to our study as “strange”, as Sharp
et al.’s suggestion [38].

The participants in the study were 14 graduate students
in Computer Science at the University of Basilicata and
six professional software developers taking a specialization
course at the same university. Both professionals and stu-
dents were familiar with TLD (Test Last Development), a
more traditional development technique where unit tests are
written after a feature (or a set of related features) is imple-
mented in a given software.

In the literature, graduate students are considered not far
from novice software developers (e.g., [20, 34]). However, a
comparison with professional developers would help in bet-
ter understanding whether and under which conditions this
assumption can be considered true [7, 18]. This may not be
considered as the main point here, but it might represent an
additional contribution of our study.

The Professional developers participating in this study
worked in different small/medium sized companies located
in southern Italy. The most experienced among the pro-
fessional held a Master degree in Computer Science, while
others held Bachelor degrees in Computer Science. All the
professionals had knowledge of testing approaches and tech-
niques (e.g., unit testing, integration testing, and system
testing) before participating in our study. At the time of the
study they were attending a refresher course on agile soft-
ware development. The lecturer devoted the greater part of
the course to the introduction of TDD and to its application

it to real-life cases. The course lasted for eight weeks (with
four hours of frontal instructions per week) and included
both homework and classwork.

The students participated in our study as part of a se-
ries of optional laboratory exercises conducted within an
Information System (IS) course. This course covered ele-
ments of software testing, software development, software
maintenance, agile development techniques with a focus on
TDD, XP, regression testing, and refactoring. Homework
and classwork provided students with opportunities to prac-
tice TDD, regression testing, and a testing framework (i.e.,
JUnit1). Java was the programming language of reference
used throughout the class, for both homework and the class-
work. Before participating in the study, the students had
passed the following courses: Procedural Programming, Soft-
ware Engineering I, Object-Oriented Programming I and
II, and Databases. The students had knowledge regarding
the development of object-oriented software systems and/or
web-based applications. Their prior knowledge can be con-
sidered rather homogeneous. The same lecturer held both
the training course for professional adjournment and IS.

Pairs worked on MusicPhone—an application written in
Java which runs on GPS-enabled devices. MusicPhone gives
the user recommendations for artists he/she may like, and
finds upcoming concerts for such artists and bands. Music-
Phone was primarily chosen for the availability of its source
code and because it was used in previous empirical studies
on TDD (e.g., [12, 32]).

The total number of classes in the existing application was
30, while the non-commented lines of source code were 1,225.
The number of methods and constructors was 157 and 22,
respectively. The participants worked on a legacy system,
i.e., an existing codebase that is not covered by tests [9].
We asked pairs to implement a new feature for MusicPhone.
This feature, Compute an itinerary for artists, can be de-
scribed as follows:

An itinerary is a list of destinations, where each destina-
tion contains artist’s concert information and distance to the
concert’s location from the previous destination. The first
destination’s distance in the list is the distance from user’s
current position. The itinerary must be chronologically or-
dered according to the start date of the concerts in it.

This feature was described by means of a user card (or
simply card, from here on) and its confirmations. We chose
this kind of representation because a traditional card is a
very high-level definition of a requirement that contains just
enough information for the developers to reasonably esti-
mate the effort required to implement it. In other words, a
card contains little information for the implementation of a
requirement. In agile methodologies, it is customary to flesh
out a card (e.g., during the brainstorming with stakeholders)
when it has to be implemented. This was why we provided
participants with a card with confirmations. Confirmations
summarize conversations among stakeholders, namely they
revolve around those they have been reached on a given as-
pect (e.g., constraints of a functionality for the software un-
derdevelopment) [19]. In this sense, they are a sort of accep-
tance test for a story. The more formal and unambiguous
confirmations are, the better.

1http://junit.org



Figure 1: Story card used in the study

The story card used in our study is shown in Figure 1
(top). It contains four confirmations (on the bottom) that
allow the developer to better understand the feature to be
implemented and constraints to be tackled.

MusicPhone source code was scarcely commented (56 com-
ment lines in total), as is often the case in the context of ag-
ile software development, where the goal is to produce clean
code and working software is preferred over documentation
[10]. We provided the participants with the documentation
of MusicPhone architecture. The use of such documentation
in agile projects is common in order to avoid big design up-
front [13]. Both source code comments and documentation
were written in the English language.

All participants were familiar with the problem domain
of MusicPhone because the lecturer previously used parts of
the same system for homework and classwork when intro-
ducing TDD. Used parts of MusicPhone did not contain the
source code we asked the participants to implement in our
ethnographically-informed study.

3.2 The Setting
For the scope of this ethnography, we kept as close as pos-

sible to the natural settings in which the developers, working
in pairs, would carry on their everyday work activities. De-
scribing the setting is a good practice in ethnographically-
informed studies, as the spatial organization could be rel-
evant insofar for developers working to accomplish a given
task [37]. Figure 2 shows a pair of participants in the physi-
cal settings where they worked on the task. The participants
worked on MusicPhone following a fixed schedule. Only the
observer and the pair were present each time. All the pairs
used the same laptop to carry out the task. These mea-
sures were taken to minimize any possible bias arising from
differences in physical settings.

3.3 The Study
The study was conducted by a single observer (the first

author of this paper) between May and July 2015, and was
founded on one-to-one sessions between the observer and
each pair. The use of one-to-one sessions is almost custom-
ary in ethnographically-informed studies (e.g., [31]). We
conducted our study in Italian to minimize any bias aris-
ing from participants’ varying levels of familiarity with the

Figure 2: A pair of professional developers

spoken English language.
The observer spent more than three hours working with

each pair. As mentioned before, all the pairs had some fa-
miliarity with some parts of MusicPhone source code which
were previously the object of homework and classwork. This
scenario is not unlike in industry; developers often do not
exactly know all the source code of a given application, but
are familiar with certain parts of it.

The observer, if needed, engaged with the pairs—without
conditioning their work habit—by focusing on both the ap-
plication and solution domains of MusicPhone. Such inter-
action is critical because: (i) the ethnographic methodolog-
ical approach encourages participation [38]; (ii) it provides
the observer with opportunities to appreciate the perspec-
tive of developers while carrying out assigned tasks; and
(iii) it provides the observer with opportunities to gather
information on how a method is applied (TDD in our case).
The observer in our study (as customary) avoided influenc-
ing pairs’ task execution.

Data were collected in a variety of forms, including con-
temporaneous field notes, audio recordings of discussions,
and copies of various artifacts (e.g., source code and notes).
In addition, we also gathered information on developer’s
conformance to TDD. This was possible because pairs used
Besouro,2 an Eclipse plug-in capable of tracing how develop-
ers applied TDD. This plug-in runs in the background and
does not interfere with the use of Eclipse.

3.4 Design
The study was organized in the following four steps:

1. Pre-questionnaire. Each participant was asked to fill
out a pre-questionnaire to gather information about
their experience in the industry, grade point average,
and knowledge. We used this information to get fur-
ther information on participants, namely the context
of the study (see Section 3.1). Gathered information
was also used to select the IDE. We opted for Eclipse
because participants had a good level of familiarity
with this IDE.

2. Introduction to the study. The observer introduced
the study to each pair. A prearranged schema was

2Besouro - https://github.com/brunopedroso/besouro

https://github.com/brunopedroso/besouro


employed, namely a few sentences to describe what
participants had to do. The observer did not provide
details on research topics of interest. At the end of this
step, participants could ask questions for clarification.

3. Inspecting confirmations. In this step, pairs were asked
to carefully read the card and its confirmations for
Compute an itinerary for concerts. Pairs were work-
ing on a new feature divided into 4 confirmations (see
Figure 1), presented in logical order. A pair had to
tackle a confirmation before passing to the subsequent
one. Each confirmation required the implementation
of one or more test cases.

4. Tackling with a confirmation. The observer did not
suggest any strategy to deal with this implementa-
tion task. For example, pairs could freely decide to
inspect the entire source code before or after having
defined test cases. The observer appointed neither
the driver3 nor the pointer4 (or navigator) develop-
ers. Each pair freely choose who was the driver and
who the pointer. During the implementation the roles
could be swapped.

In our study, the observer immersed himself and partici-
pated in step 4–joining in conversations and reading the card
and its confirmations (to clarify them, if necessary). He did
not disturb or change the natural setting of our study. An
informal approach was used to probe possible issues in a nat-
uralistic manner [28]. The observer possibly provided sup-
port for steps 1, 2, and 3. He could clarify concerns related
to the study and/or to questions of used pre-questionnaires.

4. FINDINGS
Our analysis followed a standard approach (i.e., [5]). We

identified the main themes emerging from our data.

4.1 Ethnographic Analysis
The goal of an ethnographic analysis is to find insights

from recurrent themes. The meaning behind the observed
activities must be inferred from the details of the collected
data [37]. In this process, the observer must first reflect
upon the experience gained in the immersion and used all
of the data to recollect, revisit, and reconsider what was
found, he then discussed them with the other researchers. In
this case, the discussion was based on audio recordings and
source code written by the participants, and other artifacts
such as the data collected by the IDE plug-in.

When a theme appeared to be emerging in a group (i.e.,
students and/or professional developers), we searched for
data in the same group that could contradict this theme. If
no contradictory evidence emerged then the theme was pur-
sued. This kind of analysis proceeded iteratively as themes
were identified, dropped, or validated and then confirmed.
This approach required a considerable degree of effort, espe-
cially in the validation of potential themes with respect to
the collected data. Potential themes were identified during
and after conducting the study.

In the following subsections, we illustrate and detail the
themes that emerged in our analysis.

3The developer in charge of writing code.
4The developer in charge of reviewing each line of code as
it is typed in.

4.1.1 Dealing with legacy code
Before tackling a confirmation, pairs took some time to

comprehend the legacy source code. Both students and pro-
fessionals read a confirmation and then browsed source code
to specify the tests needed for that confirmation. In the
following example, one pair of professionals, while reading a
confirmation, inspected the source code to re-use an existing
method:

A: In order to find the starting point of the itinerary
we should have a look at the Recommender class,
I spotted a method we must re-utilize.
B: Let’s find it!

This process of understanding source code was time consum-
ing. However, with each successive confirmation the pair be-
came more familiar with the MusicPhone source code, and
thus spent less time working through it. Nevertheless, most
of the pairs did not use unit tests to understand existing
source code in an explorative manner, but rather relied on
visual inspections.

4.1.2 Discussion on the card
The pairs preferred to discuss an implementation plan for

a given confirmation before passing to the subsequent phase
of development. The discussion regarded the implementa-
tion details rather than the definition of test cases and iden-
tification of refactoring possibilities. For example, one pair
of professionals had the following discussion regarding con-
firmation 1:

A: We need to fetch each artist’s destinations list,
that should be an ArrayList of Destination ob-
jects... Do you know how to use an ArrayList?
B: Should we define a test first?
A: First let’s find out how to work with an Ar-
rayList.

Often the mental model is built using information such as
syntactical structure and the control and data flow of exist-
ing source code [22]. In our case, it seemed that participants
first built a sort of mental model of the source code to be
implemented, and only then wrote test cases on the basis
of this model. This point is very interesting and deserves
future research. In theory a developer should be able to de-
fine a test only by imagining the interface of the code to be
implemented rather than it entirely. Our work sets the stage
for further work in this direction.

4.1.3 TDD phases
Pairs preferred the green phase because it involved writing

production code and the rewarding green bar. However,
production code was often not entirely covered by the test
case defined in the red phase.

Pairs were unmotivated during the red phase. They found
it difficult to define tests before production code for two rea-
sons: (i) defining an oracle implied the difficulty of imagin-
ing a concrete scenario under which to test system; (ii) ar-
ranging the data (e.g., instantiating objects and preparing
them) necessary to execute the JUnit asserts.

A: I am pretty sure we need to write a test to
calculate the distances between points.
B: Any idea where to find the expected output dis-
tance between point A and B?



A: We could get such information by logging the
execution.

This is in line with what was shown in Section 4.1.2. This
difficulty was less clear for professional developers. The stu-
dents very often were not able to adequately define test cases
of the right granularity. It is possible that students were less
capable than professionals to imagine the source code to be
implemented. This difference could be also due to the way
students dealt with the card and its confirmations.

Refactoring was perceived as a risky undertaking; there-
fore the pairs performed refactoring only when forced to.

A: Here I realize I should do something about this
method. If I refactor it now it is going to take
forever.
B: If we were to touch anything here, I think it
is gonna mess-up our code.
A: Yes, but we should do something about it later.

They performed refactoring only when it was needed and
when all the confirmations were taken into account. In this
sense, refactoring was performed mostly when the previously
written code was needed for the implementation of the next
confirmation. As for refactoring, it was very often skipped
because the pairs considered a development cycle (i.e., the
sequence of phases in TDD) completed already when the
production code was written and all tests were passed (i.e.,
the green phase).

4.1.4 Trusting test cases
Test cases were considered a silver bullet: written test

cases were never modified or updated. That is to say, the
pairs believed that the test cases they originally wrote were
always correct even though passing a single test case did not
imply that the production code was correct.

A: All tests are passing! I guess we are done.
B: Yes, this confirmation seems completed to me.

In addition, tests were never modified in accordance with
the evolution of the source code.

4.1.5 TDD conformance
We observed that TDD was not applied in two cases. In

the first case, pairs wrote source code to deal with a con-
firmation and then moved to the implementation of a new
confirmation before concluding the implementation of the
former. In the second case, we observed that conformance
degree to TDD gradually decreased from the implementa-
tion of a confirmation to the next one. We also noted that
pairs wrote more production code than was strictly nec-
essary for the implementation of a confirmation (see Sec-
tion 4.1.3). Pairs were often getting ahead of themselves by
adding source code to implement the next confirmation, be-
fore finishing the current one.

4.1.6 Working in pairs
As is customary, driver developers were in charge of ap-

proaching problems and implementing solutions, while pointer
developers verified that drivers did not make any mistakes.
We observed a slight difference between professionals and
students when working in pairs. Whereas professionals in
the role of pointer actively participated in problem solving

activities related to the source code, and the implementa-
tion of necessary test cases. Student pointers held aloof from
such activities, focusing exclusively on their job of verifying
that the driver did not make any mistakes while dealing with
the card and its confirmations.

A: There is an error because we have to imple-
ment Comparable to sort this list of objects.
B: Ok! Let me modify the code.

4.2 A Quantitative Look Inside the Study
To better understand the themes described in Section 4.1,

we also analyzed quantitative data gathered by Besouro.
The Eclipse plug-in is able to identify different types of ac-
tivities performed by the developers (defined in Table 1) and
their duration based on the heuristics defined in [21]. For
example, RG indicates that regression testing is performed
without adding new code (test or production).

Table 2 presents the descriptive statistics for the type of
development activities recognized during the study. In terms
of total duration, the test first activity was predominant.
When the activities are visualized in temporal order (i.e., in
Figure 3), the majority of the pairs had a cold start. The
duration of the initial activity was close to 50 minutes, indi-
cating that pairs needed time to familiarize themselves with
the legacy code before being able to progress, as noted in
Section 4.1.1 and 4.1.2. Two pairs (CC and ZP) decided
to start by writing tests for the existing code, in order to
understand it.

Pairs tended to attempt to tackle more than they could
handle, resulting in prolonged development cycles. TDD ad-
vocates that a card should be divided into manageable sub-
tasks which should not take longer than 5 to 10 minutes to
complete [2]. Although TDD was followed most of the time,
the average duration of the test-first activities was 30 min-
utes. It appears that TDD was preceded by a tacit design
phase. Moreover, refactoring was performed in a manner
inconsistent with the expected TDD flow. In line with the
what reported in Section 4.1.3, Table 2, and Figure 3, the
refactoring activities were executed in bulk.

Although we do not attempt statistical inference, it can
be observed from Table 3 and Table 4, that the professional
pairs (DG, RB and ZP in Figure 3) had shorter, more gran-
ular activities than the students. The professionals had a
more agile mindset, whereas the students might have been
influenced by the exposure to waterfall and big design up-
front strategies in their academic curricula, maturated be-
fore this course.

Although the professionals were able to apply TDD with-
out the need of an upfront design, and able to divide a card
into a set of manageable tasks, they adopted the same ap-
proach as the students for the refactoring.

5. DISCUSSION
The “So What?” factor is relevant in empirical software

engineering and ethnography, in particular. That is, what
significance do the results have for software development?
One of the main goals of ethnographically-informed study is
to uncover implicit features of practice [37]. What do the
results presented in this study tell us about TDD in gen-
eral? And what do the achieved results tell us about TDD
applicability to the execution of software evolution tasks

Pairs seemed not to be concerned about the internal qual-



Table 1: Types of activities recognized within the IDE
Type Description
TF Test-first activity in which production code is written once a test passed.
TL Test-last activity in which production code is written before a test passed.
TA Test addition activity in which a new test is added to existing production code, and passed.
PR Production code activity in which production code is added without the accompanying test.
RG Regression testing activity in which tests are run but no new code (test or production) is added.
RF Refactoring activity in which production code is modified and then passes its associated test.

Figure 3: Development cycles for each pairs

Table 2: Descriptive statistics for each type of de-
velopment activity
TYPE n total mean median min max stddev
TF 22 663.82 30.17 18.73 4.12 136.03 30.42
TA 27 403.74 14.95 6.18 1.07 114.63 23.48
RG 6 4.36 0.73 0.41 0.23 1.58 0.61
RF 23 223.43 9.71 2.97 0.55 55.13 14.52
PR 1 31.58 31.58 31.58 31.58 31.58 -
TL 5 92.00 18.4 13.18 8.27 44.07 14.86

ity,5 since they skipped refactoring and focused on complet-
ing a user card. The lack of concern regarding refactoring
had also manifested during a focus group we had previously
run in a similar setting [35]. In the participants’ view, the
only goal of TDD was to prompt them to write unit tests.
The pairs needed to plan how to develop their solution in ad-
vance by building a mental model of the solution that would
later be put in form of unit tests. In other words, we believe
that the pairs approached the problem in a white box rather
than a black box fashion, i.e., they conceived and developed
unit tests according to the implementation details framed in
their minds rather than the intended interface behavior.

5In this context defined as the code-based properties for cre-
ating and maintaining the developed solution.

Table 3: Descriptive statistics for each type of de-
velopment episode (Professionals)
TYPE n total mean median min max stddev
TF 10 167.06 16.71 13.31 4.12 38.88 12.26
TA 13 123.73 9.52 5.08 1.07 51.77 1367
RG 4 2.65 0.66 0.42 0.23 1.58 0.61
RF 9 75.92 8.44 2.22 1.18 32.12 11.86
PR - - - - - - -
TL 3 70.12 23.27 17.78 8.27 44.07 18.54

Although the main impediment in the adoption of TDD
is often reported to be the switching from test-last to test-
first [8], it seemed that the real problem was switching from
a plan-intensive mindset to a lightweight and flexible one.
The issue of how to design in the context of TDD is con-
sidered a limiting factor [8], as well as the issue of losing
sight of the big picture due to the lack of design [3]. The
pairs tended to write unit tests that were large and com-
plex rather than relying on small iterations aided by simple
unit tests. This tendency was particularly marked for stu-
dents, whereas professionals were more aware of the bene-
fits of granular iterations. The professionals in our study,
although new to the practice, were more disciplined with re-
spect to the students. This was the main difference between



Table 4: Descriptive statistics for each type of de-
velopment episode (Students)
TYPE n total mean median min max stddev
TF 12 496.76 41.4 34.34 7.77 136.03 36.62
TA 14 280.01 20 7.86 2.35 114.63 29.55
RG 2 1.71 0.86 0.86 0.28 1.43 0.81
RF 14 147.51 10.54 4.24 0.55 55.13 16.37
PR 1 31.58 31.58 31.58 31.58 31.58 -
TL 2 21.88 10.94 10.94 8.70 13.18 3.17

students and professionals, and may be a deciding factor in
the adoption/non-adoption of TDD. [24, 32]. The TDD pro-
cess does not explicitly include a preliminary planning phase
that focuses on dividing the task at hand into sub-tasks of
a suitable granularity. We believe that clearly adding such
phase to the process, for example by integrating it with an-
other practice,6 would be beneficial in this regard.

Refactoring was not perceived as a step worthy of effort.
It was often performed at last, and postponed for several
iterations. This was observed for both student and profes-
sional pairs. In this regard, better support from the tool
could be beneficial. The IDE could inform the user when
a code smell is detected after the end of each development
cycle, i.e., once the unit tests for that feature passed. As
TDD becomes more widespread, there is a need for ad hoc
tools integrated in the IDE to support the process [8, 35].

Pairs felt most comfortable with the green phase, i.e.,
when writing production code that would make a failing
test pass. This was to be expected, as this phase is where
the software was actually developed, and seemed to be the
most rewarding for the pairs. Nevertheless, pairs wrote pro-
duction code regardless of the associated test’s boundaries.
In other words, they wrote more code than necessary to just
pass the test, giving priority to the mental model of the so-
lution they built at the beginning of the task. Hence, we
reiterate the idea that pairs gave more importance to the
model of the solution they built in their heads, than the
tests. We suspect that applying TDD in such a way can
be detrimental. What we observed is a mismatch between
the mental solution and its implementation in the form of
unit tests. If that were the case, the IDE could support the
process by prompting the user to take action with respect
to the parts of the system with poor test coverage. Never-
theless, we could not collect evidence to substantiate such a
claim, and so this remains a subject which we will address
in future investigations.

We observed another behaviour regarding TDD in the red
phase; pairs never changed or removed existing unit tests.
In this regards, we believe that refactoring should be en-
forced not only for production code, but also (and most im-
portantly so) for unit tests, as they represent the core of
the TDD practice. Although the process employed by pairs
seemed to differ in several respects from the one proposed
by Beck [2], a traditional test-last approach was deliberately
followed only in few situations.

We previously described the shortcomings the pairs faced
when applying TDD to a legacy system. Given Figure 3
and our observations, the pair that best applied TDD was
RB. They did not suffer from a cold start, but rather started
by applying TDD to smaller sub-tasks than the other pairs.
They also emphasized refactoring, although most of it was

6http://alistair.cockburn.us/Elephant+carpaccio

left until the end.

6. LIMITATIONS
In this section, we discuss possible limitations of our study.

Regarding the timing of the study, the duration was approx-
imately 3 hours for each pair, roughly half of a normal work-
ing day. Although we were able to observe how developers
use TDD during the initial development phase of a new fea-
ture of a legacy system, the study omits the remainder of
the process up to completion and implementation of the fea-
ture. Thus we may be excluding some important elements
from our observations.

Regarding the pairs, neither students nor the profession-
als were experts in TDD. Therefore, our findings represent
a setting in which new developers join a brownfield project
in which the use of TDD and pair-programming is enforced
(e.g., within an agile-certified company). Nevertheless, we
acknowledge a difference between such settings and the ones
in our study, in that usually a pair consists of one new de-
veloper, and one already experienced in TDD.

Finally, social factors should be taken into account when
evaluating the findings (e.g., evaluation apprehension). In
order to address with this concern, one of the authors (the
observer) immersed himself in the study and used an infor-
mal approach to interact with pairs. To mitigate social fac-
tors, students were not evaluated based on the results they
achieved in our study. Participation in the study was done
on voluntary basis. Although the observer did not work to-
gether with the pairs, his presence was comparable to that
of a project manager, and thus unlikely to have biased our
study results.

7. CONCLUSION
In this paper, we report the results of an ethnographically-

informed study conducted to investigate how students and
professional developers apply TDD to software evolution
tasks. We kept as close as possible to the natural set-
tings in which developers, working in pairs, would normally
carry on their everyday work activities. Based on collected
data, we have identified and confirmed some themes that
can be summarized in the following results: (i) refactoring
is not performed as often as TDD requires and is considered
less important than other phases, (ii) the most important
phase is the implementation of production code, (iii) unit
tests are not up-to-date, (iv) participants first imagine the
source code to be implemented and then write test cases;
and (v) students and professionals slightly differed in how
they worked in pairs and in their application of TDD.

More qualitative studies are necessary to understand how
TDD is currently practiced, as well as its shortcomings and
strengths. We believe that ethnographically-informed stud-
ies are needed in companies which have adopted and are
adopting the practice. Nevertheless, our results already set
the stage for a number of future investigations. For exam-
ple, future work should address how refactoring is performed
during a TDD cycle, and how tools can support such activ-
ity. The traditional TDD cycle can be improved by adding
an additional phase focused on splitting the task at hand into
simpler and finer-grained sub-tasks, more apt to be framed
in a unit test during the red phase. The developers tended
to write more code than necessary to pass the unit test at
hand; thus leaving part of the code uncovered by tests. It

http://alistair.cockburn.us/Elephant+carpaccio


stands to reason that better tool support for the green phase
(e.g., coverage metrics for each TDD cycle) can be beneficial.
In conclusion, we observed a shallow application of TDD by
both professionals and novices. This can be problematic for
researchers assessing the impact of TDD, since the practice
they are observing may be substantially different from the
one proposed by Beck [2]. One should therefore be cautious
about the detrimental effects that may arise when TDD is
exercised in such way.

Acknowledgment
This research is supported in part by the Academy of Fin-
land Project no. 278354. We would like to acknowledge
Dr. Lucas Layman and Dr. Hakan Erdogmus, who de-
signed the task used in the study. We thank the students
and the professional developers for their participation in our
ethnographically-informed study.

8. REFERENCES
[1] Beck. Test Driven Development: By Example.

Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[2] K. Beck. Test Driven Development: By Example.
Addison Wesley, 2003.

[3] A. Begel and N. Nagappan. Usage and perceptions of
agile software development in an industrial context:
An exploratory study. In Empirical Software
Engineering and Measurement, 2007. ESEM 2007.
First International Symposium on, pages 255–264.
IEEE, 2007.

[4] P. Beynon-Davies. Ethnography and information
systems development: Ethnography of, for and within
is development. Information & Software Technology,
39(8):531–540, 1997.

[5] P. Beynon-Davies, D. Tudhope, and H. Mackay.
Information systems prototyping in practice. Journal
of Information Technology, 14(1):107–120, Mar. 1999.

[6] G. Button and W. Sharrock. Project work: The
organisation of collaborative design and development
in software engineering. Computer Supported
Cooperative Work, 5(4):369–386, 1996.

[7] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues
in using students in empirical studies in software
engineering education. In Proceedings of the
International Symposium on Software Metrics, pages
239–. IEEE Computer Society, 2003.

[8] A. Causevic, D. Sundmark, and S. Punnekkat. Factors
limiting industrial adoption of test driven
development: A systematic review. In Proceedings of
International Conference on Software Testing, pages
337–346. IEEE Computer Society, 2011.

[9] M. Feathers. Working Effectively with Legacy Code.
Prentice Hall, 2004.

[10] M. Fowler and J. Highsmith. The agile manifesto.
Software Development, 9(8):28–35, 2001.

[11] D. Fucci and B. Turhan. On the role of tests in
test-driven development: a differentiated and partial
replication. Empirical Software Engineering,
19(2):277–302, 2014.

[12] D. Fucci, B. Turhan, N. Juristo, O. Dieste,
A. Tosun-Misirli, and M. Oivo. Towards an

operationalization of test-driven development skills:
An industrial empirical study. Information and
Software Technology, 68:82–97, 2015.

[13] D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass,
P. Clements, and P. Merson. Documenting Software
Architectures: Views and Beyond. Addison-Wesley
Professional, 2nd edition, 2010.

[14] B. George and L. Williams. A structured experiment
of test-driven development. Information and Software
Technology, 46(5):337–342, 2004.

[15] A. Geras, M. Smith, and J. Miller. A prototype
empirical evaluation of test driven development. In
Software Metrics, 2004. Proceedings. 10th
International Symposium on, pages 405–416, 2004.

[16] A. Gupta and P. Jalote. An experimental evaluation
of the effectiveness and efficiency of the test driven
development. In Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International
Symposium on, pages 285–294, 2007.

[17] M. Hammersley and P. Atkinson. Ethnography:
Principles in Practice. Taylor & Francis, 2007.

[18] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects—a comparative study of students and
professionals in lead-time impact assessment.
Empirical Software Engineering, 5(3):201–214, 2000.

[19] R. Jeffrie. Essential XP: Card, Conversation,
Confirmation. 2001.

[20] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones,
D. Hoaglin, K. El Emam, and J. Rosenberg.
Preliminary guidelines for empirical research in
software engineering. IEEE Trans. Softw. Eng.,
28(8):721–734, 2002.

[21] H. Kou, P. M. Johnson, and H. Erdogmus.
Operational definition and automated inference of
test-driven development with zorro. Automated
Software Engineering, 17(1):57–85, 2010.

[22] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. Journal of
Systems and Software, 7(4):341–355, 1987.

[23] A. Marchenko, P. Abrahamsson, and T. Ihme.
Long-term effects of test-driven development A case
study. In Proceedings of Internation Confernce on
Agile Processes in Software Engineering and Extreme
Programming, pages 13–22. Springer, 2009.

[24] G. Melnik and F. Maurer. A cross-program
investigation of students’ perceptions of agile methods.
In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages
481–488. IEEE, 2005.

[25] M. Muller and W. Tichy. Case study: extreme
programming in a university environment. In
Proceedings of the 23rd International Conference on
Software Engineering, pages 537–544, May 2001.

[26] H. Munir, M. Moayyed, and K. Petersen. Considering
rigor and relevance when evaluating test driven
development: A systematic review. Information and
Software Technology, 2014.

[27] M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar.
Towards empirical evaluation of test-driven
development in a university environment. In
EUROCON 2003. Computer as a Tool. The IEEE
Region 8., pages 83–86, 22-24 September 2003.



[28] C. Passos, D. S. Cruzes, T. Dyb̊a, and M. Mendonça.
Challenges of applying ethnography to study software
practices. In Proceedings of the ACM-IEEE
international symposium on Empirical software
engineering and measurement, ESEM ’12, pages 9–18.
ACM, 2012.

[29] Y. Rafique and V. B. Misic. The effects of test-driven
development on external quality and productivity: A
meta-analysis. IEEE Trans. Softw. Eng.,
39(6):835–856, June 2013.

[30] Y. Rafique and V. B. Misic. The Effects of
Test-Driven Development on External Quality and
Productivity: A Meta-Analysis. IEEE Transactions on
Software Engineering, 39(6):835–856, 2013.

[31] H. Robinson, J. Segal, and H. Sharp.
Ethnographically-informed empirical studies of
software practice. Inf. Softw. Technol., 49(6):540–551,
June 2007.

[32] I. Salman, A. T. Misirli, and N. Juristo. Are Students
Representatives of Professionals in Software
Engineering Experiments? In Procedings of
International Conference on Software Engineering,
pages 666–676, 2015.

[33] F. Salviulo and G. Scanniello. Dealing with identifiers
and comments in source code comprehension and
maintenance: Results from an
ethnographically-informed study with students and
professionals. In Proceedings of International
Conference on Evaluation and Assessment in Software
Engineering, pages 48:1–48:10. ACM, 2014.

[34] G. Scanniello and M. Risi. Dealing with faults in
source code: Abbreviated vs. full-word identifier
names. In Proceedings of International Conference of
Software Maintenance. IEEE Computer Society, 2013.

[35] G. Scanniello, S. Romano, D. Fucci, B. Turhan, and
N. Juristo. Students’ and Professionals’ Perceptions of
Test-driven Development: A Focus Group Study. In
Proceedings of the 31th Annual ACM Symposium on
Applied Computing, SAC ’16, New York, NY, USA,
2016. ACM.

[36] C. B. Seaman. Qualitative methods in empirical
studies of software engineering. IEEE Trans. Softw.
Eng., 25(4):557–572, July 1999.

[37] H. Sharp and H. Robinson. An ethnographic study of
xp practice. Empirical Softw. Eng., 9(4):353–375, 2004.

[38] H. Sharp, H. Robinson, and M. Woodman. Software
engineering: Community and culture. IEEE Softw.,
17(1):40–47, Jan. 2000.

[39] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep,
and H. Erdogmus. What Do We Know about
Test-Driven Development? IEEE Software,
27(6):16–19, 2010.

[40] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work
practices. In Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative research,
pages 21–. IBM Press, 1997.

[41] M. Siniaalto and P. Abrahamsson. A comparative case
study on the impact of test-driven development on
program design and test coverage. In Proceedings of
the International Symposium on Empirical Software
Engineering and Measurement, pages 275–284.

ACM/IEEE Computer Society, 2007.

[42] B. Turhan, L. Layman, M. Diep, H. Erdogmus, and
F. Shull. How effective is test-Driven Development.
Making Software: What Really Works, and Why We
Believe It, pages 207–217, 2010.

[43] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering. Springer, 2012.

[44] K. Zieliriski and T. Szmuc. Preliminary analysis of the
effects of pair programming and test-driven
development on the external code quality. Software
engineering: evolution and emerging technologies,
130:113, 2006.


	Introduction
	Related Work
	Ethnographically-informed Studies
	Empirical studies on TDD

	Ethnographic Study
	Definition and Context
	The Setting
	The Study
	Design

	Findings
	Ethnographic Analysis
	Dealing with legacy code
	Discussion on the card
	TDD phases
	Trusting test cases
	TDD conformance
	Working in pairs

	A Quantitative Look Inside the Study

	Discussion
	Limitations
	Conclusion
	References



