
Empirical Evaluation of the Effects of Experience on Code Quality and
Programmer Productivity: An Exploratory Study
Oscar Dieste, Universidad Politécnica de Madrid, odieste@fi.upm.es
Escuela Técnica Superior de Ingenieros en Informática
Universidad Politécnica de Madrid
Campus de Montegancedo
28660 Boadilla del Monte, Spain
Alejandrina M. Aranda, Universidad Politécnica de Madrid, alearanda@gmail.com
Escuela Técnica Superior de Ingenieros en Informática
Universidad Politécnica de Madrid
Campus de Montegancedo
28660 Boadilla del Monte, Spain
Fernando Uyaguari, Universidad Politécnica de Madrid, fuyaguari01@gmail.com
Escuela Técnica Superior de Ingenieros en Informática
Universidad Politécnica de Madrid
Campus de Montegancedo
28660 Boadilla del Monte, Spain
Burak Turhan, University of Oulu, Burak.Turhan@oulu.fi
Department of Information Processing Science,
P. O. Box 3000
90014 University of Oulu, Finland
Ayse Tosun, Istanbul Technical University, tosunmisirli@itu.edu.tr
Faculty of Computer & Informatics
Istanbul Technical University
34469 Maslak Istanbul, Turkey
Davide Fucci, University of Oulu, Davide.Fucci@oulu.fi
Department of Information Processing Science,
P. O. Box 3000
90014 University of Oulu, Finland
Markku Oivo, University of Oulu, Markku.Oivo@oulu.fi
Department of Information Processing Science,
P. O. Box 3000
90014 University of Oulu, Finland
Natalia Juristo, University of Oulu and Universidad Politécnica de Madrid, Natalia.Juristo@oulu.fi
Escuela Técnica Superior de Ingenieros en Informática
Universidad Politécnica de Madrid
Campus de Montegancedo
28660 Boadilla del Monte, Spain
Department of Information Processing Science,
P. O. Box 3000
90014 University of Oulu, Finland

Empirical Evaluation of the Effects of Experience on Code Quality and
Programmer Productivity: An Exploratory Study

Abstract.
Context. There is a widespread belief in both SE and other branches of science that experience helps

professionals to improve their performance. However, cases have been reported where experience not only does
not have a positive influence but sometimes even degrades the performance of professionals. Aim. Determine
whether years of experience influence programmer performance. Method. We have analysed 10 quasi-experiments
executed both in academia with graduate and postgraduate students and in industry with professionals. The
experimental task was to apply ITLD on two experimental problems and then measure external code quality and
programmer productivity. Results. Programming experience gained in industry does not appear to have any effect
whatsoever on quality and productivity. Overall programming experience gained in academia does tend to have a
positive influence on programmer performance. These two findings may be related to the fact that, as opposed to
deliberate practice, routine practice does not appear to lead to improved performance. Experience in the use of
productivity tools, such as testing frameworks and IDE also has positive effects. Conclusion. Years of experience
are a poor predictor of programmer performance. Academic background and specialized knowledge of task-related
aspects appear to be rather good predictors.

Keywords: experience, industry, academy, programming, iterative test-last development, external quality,
productivity, performance

1 Introduction
The older you are, the wiser you get; An old ox makes a straight furrow; They who live longest will see most: the
passage of time is, proverbially, one and perhaps the major factor facilitating learning. This factor is none other than
experience.

Things are not very different in software engineering (SE) either. Some people within an organization know more
or better, and their participation in the project can be vital to its success (e.g., (B. Curtis, Krasner, & Iscoe, 1988)).
These truisms are backed up by a large number of papers in a range of SE areas, e.g., requirements (Marakas & Elam,
1998), design (Sonnentag, 1998), usability (MacDorman, Whalen, Ho, & Patel, 2011) or testing (Chmiel & Loui,
2004), where it is generally agreed that experience makes the difference with respect to practitioner performance.

There are two different definitions of experience (Merriam-Webster, 2015): (1) skill or knowledge that you get by
doing something, and (2) the length of time that you have spent doing something (such as a particular job). The two
definitions mirror the fact that experience is a theoretical construct: the substance of experience (skills, knowledge)
cannot be directly observed, and its existence has to be estimated, where the length of time that a subject has been
performing a particular task is the most obvious and easiest-to-measure operationalization. Accordingly, it is common
practice to divide subjects into two groups: (1) experts, whose characteristic is that they have been working in an area
for quite a long time, typically years, and (2) novices who not been working in the field for very long.

Focusing on SE, programming, which is the area addressed in this paper, is the field where most evidence for the
beneficial effects of experience has been found. To cite just a few examples, expert programmers are quicker at
identifying valid sentences in a programming language (Wiedenbeck, 1985), more accurately remember meaningful
code snippets (McKeithen, Reitman, Rueter, & Hirtle, 1981) or have more sophisticated reasoning strategies than
novices (Jeffries, Turner, Polson, & Atwood, 1981). These results match the findings for other areas of SE (e.g., cited
above), and other fields outside SE, e.g., physics (Larkin, McDermott, Simon, & Simon, 1980). Until quite recently at
least, it looked as if achieving expert performance was the inevitable result of a length of service from around ten
years in an area (Ericsson, 2006a).

Later research into experience has tinged the above picture. The key difference between the previous and present
conception of experience is the intensity of practice. Activity execution does not in itself appear to lead to

deliberate effort is made in order to improve
performance (Ericsson, 2006b). In fact, performance has even been found to drop as experience increases (Ericsson,
2006a). This should not come as a surprise. Surely everyone can think of someone that they know who has a lot of
experience but is a poor performer. There are some (not very many) SE studies that conclude that there no differences
of performance between experts and novices, e.g., (Agarwal & Tanniru, 1991). Some of these studies also focus on
programming (Adelson, 1984).

There is therefore a lot of uncertainty surrounding whether experience is associated with better performance. As
regards programming, this uncertainty is especially worrying because: (1) programming, together with testing, are

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

2

quantitatively the most important activities in the software development process, and (2) experience is one of the key
variables used by employers to hire programmers. The aim of this paper is to determine whether expert programmers
exhibit better performance than novice programmers. To do this, we have conducted a series of quasi-experiments
analysing the quality of the generated code by programmers and programmer productivity depending on their years of
experience. We collected data at four companies and three universities from a total of 115 programmers with a range
of experiences, averaging from 0 to 10 years. A key issue is the inclusion of professional programmers currently
working in industry, as many earlier studies were conducted without access to real programmers (Votta, 1994).

Our results suggest that: (1) experience gained in industry is not related to better quality or higher productivity, (2)
secondary issues, like familiarity with the unit testing framework or integrated development environments (IDE),
appear to have quite a positive effect on quality and productivity, and (3) academic learning, which could be
considered as an instance of deliberate practice, does influence quality and productivity as opposed to on-the-job
learning.

The conclusion from our findings is that years of experience are a poor predictor of programmer performance. In
turn, academic background (probably also formal training courses in industry) and knowledge of specialized task-
related aspects (e.g., the IDE in our case) are good predictors.

This paper is structured as follows. Section 2 briefly describes research into the effects of experience, focusing
especially on programming. Section 3 describes the family of experiments. Section 4 describes the working
hypotheses and working methodology. Section 4 describes the quasi-experiments, characteristics of the collected
data, and the choice of the best-suited statistical analysis method. Section 5 reports the results of the linear analysis,
whereas Section 6 reports the nonlinear analysis; both are discussed in Section 7. The paper ends with a discussion of
the validity threats and conclusions in Section 8 and 9, respectively.

2 Background
The study of experience goes way back. The original aim was to determine which factors caused expert subjects to
perform better than novices. Studies by (De Groot, 1978) revealed that experts had two key characteristics in
common: an in-depth knowledge of their field of expertise and a long length of service in the area. (Chase & Simon,
1973) formalized experience as a process by means of which, over time, experts acquired knowledge that they stored
as complex mental patterns and that they used to quickly and effectively solve problems in their area of expertise.
Experience had nothing to do with natural talent, such as intelligence, and was very specialized, that is, it was not
transferable from one area to another (Colvin, 2008). Related literature reports that it takes around 10 years or 10,000
working hours to acquire a substantial amount of patterns, although this is by no means a fixed number and depends
on the area and type of instruction received (K. A. Ericsson, Krampe, & Tesch-Römer, 1993). For quite some time,
therefore, experience was assumed to be a natural consequence of the passage of time (Ericsson, 2006a). From this
viewpoint, experience could be likened to a measure of time, e.g., the above 10 years of service.

SE has also studied experience ever since the early days of the discipline. The focus in the 1980s was on
programming and low-level design (B. Curtis, 1984). Since then, however, experience has been studied in almost all
areas of SE: requirements (Marakas & Elam, 1998), design (Sonnentag, 1998), usability (MacDorman et al., 2011),
testing (Chmiel & Loui, 2004), etc.

A weakness of the study of experience in SE is that there are hardly any synthesis papers. (B. Curtis, 1984)
conducted a broad literature review, which is, however, completely out of date today. (Mayer, 1997) reviewed 33
studies on the effect of experience on programing published prior to 1997 but, since then, a number of similar studies
have been published (e.g., (Lui & Chan, 2006)). (Siegmund, Kästner, Liebig, Apel, & Hanenberg, 2014) conducted a
review on how to measure programming experience, but without any reference to expert-novice behaviour.

As opposed to an exhaustive state of the art, which is beyond the scope of this paper, Table 1 shows a summary of
the existing studies that address the effects of experience in programming. Programming is a rather complex area, in
which a diversity of notations, languages, design approaches, programming techniques, etc. have been investigated.
In Table 1, we have included only studies that explore programming abilities. For instance, (Burkhardt, DÃ©tienne,
& Wiedenbeck, 1997) examines the mental representations of objects (in a program). This study seems to be
exploring a design but not a programming aspect, and therefore has not been included in Table 1. In the same vein (F.
Ricca, M. Di Penta, M. Torchiano, P. Tonella, & M. Ceccato, 2007), investigates the impact of annotations in UML
but not a programming feature.

The studies in Table 1 have the following characteristics:

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Ta
ble

 1 R
ela

ted
 em

piri
cal

 stu
die

s
Re

f
Stu

dy
#Su

bje
cts

Ind

epe
nde

nt
Va

ria
ble

De

pen
den

t V
ari

abl
e

Me
tric

Ex

per
ime

nta
l ta

sk
Re

sul
ts

(W
ied

enb
ec

k, 198
5)

Exp
erim

ent
 10

Exp
erts

 10

No
vic

es

Ex
per

ts:
11,

000
 hr.

pro

gra
mm

ing
 ex

per
ien

ce.
 No

vic
es:

200
 hr.

 pro
gra

mm
ing

exp

erie
nce

.

Spe
ed

and
 acc

ura
cy

for

gen
era

ting
 syn

tac
tica

lly
pro

gra
mm

ing
 sen

ten
ces

.

Rec
ogn

itio
n o

f sy
nta

ctic
 err

ors
 an

d
und

ers
tan

din
g o

f th
e st

ruc
ture

 an
d

fun
ctio

n o
f si

mp
le s

tere
oty

ped
 co

de
seg

me
nts

The
 ex

per
ts w

ere
 ap

pro
xim

ate
ly

25%
 fas

ter
and

 ha
d 4

0%
 low

er
erro

r ra
tes

tha
n th

e n
ovi

ces
.

(Ye
 &

Sal
ve

ndy
,

199
4)

)

Qu
asi-

Exp
erim

ent
 10

Exp
erts

 10

No
vic

es

Ex
per

ts:
gra

dua
te s

tud
ent

s in

com
put

er s
cie

nce
.

 No
vic

es:
und

erg
rad

uat
es w

ith
one

 co
urs

e in
 C

pro
gra

mm
ing

.
Rat

ing
s

0 to
 6 L

ike
rt s

cale

Rat
e th

e re
late

dne
ss o

f 23
 co

nce
pts

 in
C

com
put

er p
rog

ram
min

g.
The

 ex
per

ts b
eat

 no
vic

es o
n

def
inin

g re
lati

ons
hip

s be
twe

en
term

s an
d c

ate
gor

ies
cre

atio
n.

(M
cK

eith
en

, Rei
tm

an,

Ru
ete

r, &

Hir
tle

, 198
1)

Exp
erim

ent
 6 E

xpe
rts

 23
Inte

rme
dia

tes

 4 N
ovi

ces

Ex
per

ts:
400

 hr.
 in

AL
GO

L W

and
 20

00
hr.

of g
ene

ral
pro

gra
mm

ing
.

 No
vic

es:
0 h

r.
Rec

all
Nu

mb
er o

f lin
es w

ritt
en

ver
bat

im
in t

hei
r pr

ope
r

rela
tive

 ord
er.

Par
tici

pan
ts v

iew
ed

a 3
1-li

ne
AL

GO
L

pro
gra

m p
res

ent
ed

in e
ithe

r no
rma

l or

scr
am

ble
d o

rde
r fo

r 2
min

ute
s, a

nd
the

n
we

re g
ive

n 3
 mi

nut
es t

o re
cal

l th
e

pro
gra

m.

For
 the

 no
rma

l pr
ogr

am
s, e

xpe
rts

rec
alle

d a
ppr

oxi
ma

tely
 thr

ee t
ime

s
as m

any
 lin

es a
s th

e n
ovi

ces
.

 For
 the

 scr
am

ble
d p

rog
ram

s, t
he

exp
ert-

nov
ice

 dif
fere

nce
s w

ere

larg
ely

 era
sed

.

(E.

Ari
sh

olm
,

H. Ga
llis

, T.

Dy
ba,

& D

.
I. K

.
Sjo

be
rg, 200

7)

Qu
asi-

Exp
erim

ent
 Jun

ior
 Inte

rme
dia

te
 Sen

ior

Jun
ior

: In
d.:

0-2
3 y

r., P
air:

 0-2
5

yr. Int
erm

edi
ate

: In
d.:

0-2
6 y

r.,
Pai

r: 0
-24

 yr.

Sen
ior

 pr
ofe

ssio
nal

 Ja
va

con
sul

tan
ts:

Ind
.: 0

-27
 yr.

, Pa
ir:

1-3
0 y

r.

Du
rati

on
Ela

pse
d ti

me
 tak

en
to

per
for

m a
 set

 of
cha

nge

task
s.

Per
for

m m
ain

ten
anc

e ta
sks

 on
 Jav

a
cod

e.
Dif

fere
nce

s b
etw

een
 pa

irs
and

ind

ivid
ual

s d
o n

ot d
epe

nd
on

pro
gra

mm
er e

xpe
rtis

e.
Eff

ort
Tot

al n
um

ber
 of

pro
gra

mm
er h

our
s ta

ken

to d
eve

lop
 a c

orr
ect

pro

gra
m.

Co
rrec

tne
ss

Wh
eth

er o
r no

t th
e fi

nal
,

ma
inta

ine
d p

rog
ram

pos

ses
sed

 the
 req

uire
d

fun
ctio

nal
ity.

(As
ka

r &

Da
ve

npo
rt,

200
9)

Sur
vey

200
 fir

st y
ear

stu

den
ts f

rom
 the

com

put
er,

ele
ctro

nic
s, a

nd
ind

ust
rial

eng

ine
erin

g
dep

artm
ent

s.
 20

firs
t ye

ar
scie

nce
 stu

den
ts,

all
of w

hom

we
re e

nro
lled

Exp
erie

nce
 ye

ars

Sel
f-ef

fica
cy

sco
res

.
1 to

 7 L
ike

rt s
cale

An

swe
r a

que
stio

nna
ire

reg
ard

ing
 sel

f-
effi

cac
y in

 JA
VA

 pro
gra

mm
ing

.

The
 nu

mb
er o

f ye
ars

 of
exp

erie
nce

a st

ude
nt h

ad
wit

h c
om

put
ers

 ha
d a

sig

nifi
can

t lin
ear

 co
ntri

but
ion

 to
the

ir s
elf-

effi
cac

y sc
ore

s.
 As

the
 co

mp
ute

r ex
per

ien
ce

inc
rea

ses
, th

ere
 is

a te
nde

ncy
 to

gai
n s

elf-
effi

cac
y in

 pro
gra

mm
ing

.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

4 Re
f

Stu
dy

#Su
bje

cts

Ind
epe

nde
nt

Va
ria

ble

De
pen

den
t V

ari
abl

e
Me

tric

Ex
per

ime
nta

l ta
sk

Re
sul

ts
in a

n
intr

odu
cto

ry J
ava

pro

gra
mm

ing

cou
rse

.
 106

 sec
ond

, th
ird

and
 fou

rth
yea

r
com

put
er

eng
ine

erin
g

stu
den

ts.

(B.

Ad
els

on,

198
1)

Exp
erim

ent
 5 E

xpe
rts

 5 N
ovi

ces

No
vic

es:
 un

der
gra

dua
tes

wh
o

had
 jus

t co
mp

lete
d a

n
intr

odu
cto

ry c
our

se i
n c

om
put

er
pro

gra
mm

ing
 in

PPL
.

 Ex
per

ts:
tea

chi
ng

fell
ow

s fo
r

the
 sam

e co
urs

e.

Rec
all

The
 nu

mb
er o

f it
em

s
rec

alle
d.

Rec
alli

ng
16

line
s of

 PP
L c

ode
.

The
 ex

per
ts r

eca
lled

 mo
re t

han
 the

nov

ice
s, a

nd
had

 lar
ger

 rec
all

chu
nks

.
Ch

unk
 siz

e
Nu

mb
er o

f ite
ms

 in
a

bur
st o

f re
cal

l.

(Sh
ep

par
d,

Cu
rtis

, Mi
lli

ma
n,

& Lov
e,

197
9)

Qu
asi-

exp
erim

ent
 Pro

fes
sio

nal

pro
gra

mm
ers

Pro

gra
mm

ing
 ye

ars

Co
mp

reh
ens

ion

Per
cen

t of
 sta

tem
ent

s
cor

rec
tly

rec
alle

d.

The
 pa

rtic
ipa

nts
 we

re a
llow

ed
25

min
ute

s to
 stu

dy
sev

era
l pr

ogr
am

s,
dur

ing
 wh

ich
 tim

e th
ey

cou
ld m

ake

not
es o

r dr
aw

 flo
wc

har
ts.

At
the

 en
d o

f
stu

dy
per

iod
, th

e p
rog

ram
 an

d a
ll s

cra
p

pap
er w

ere
 co

llec
ted

, an
d e

ach

par
tici

pan
t w

as g
ive

n 2
0 m

inu
tes

to
rec

ons
truc

ts f
unc

tion
ally

 eq
uiv

ale
nt

cod
e fr

om
 me

mo
ry o

n b
lan

k sh
eet

 of
pap

er.

The
 nu

mb
er o

f ye
ars

 of
pro

gra
mm

ing
 ex

per
ien

ce d
id n

ot
cor

rela
te w

ith
per

for
ma

nce
.

Pro
gra

mm
ing

 ye
ars

Mo

difi
cat

ion

Per
cen

t co
rrec

t tim
e (t

o
com

ple
te t

he
mo

difi
cat

ion
).

The

 nu
mb

er o
f ye

ars
 of

pro
gra

mm
ing

 ex
per

ien
ce d

id n
ot

cor
rela

te w
ith

per
for

ma
nce

.

(So
lo

wa
y,

Bo
nar

, &

Ehr
lic

h, 198
3)

Exp
erim

ent
 S

tud
ent

s

No
vic

es h
ad

bee
n ta

ugh
t ab

out

and
 ha

d e
xpe

rien
ce

wit
h th

e
wh

ile
loo

p a
nd

the
 oth

er t
wo

loo

pin
g c

ons
truc

ts;
this

 oc
cur

red

thre
e-q

uar
ters

 of
the

 wa
y

thro
ugh

 the
 sem

este
r.

 Int
erm

edi
ate

s w
ere

 stu
den

ts
cur

ren
tly

two
-thi

rds
 thr

oug
h a

sec

ond
 co

urs
e in

 pro
gra

mm
ing

(e.g

., e
ithe

r a
dat

a st
ruc

ture
s

cou
rse

 usi
ng

Pas
cal

 or
an

ass
em

bly
 lan

gua
ge

cou
rse

).
 The

 ad
van

ced
 gro

up
we

re
jun

iors
 an

d s
eni

ors
 in

sys
tem

s
pro

gra
mm

ing
 an

d p
rog

ram
min

g
me

tho
dol

ogi
es.

Ac
cur

acy

No
t de

fine
d in

 the

ma
nus

crip
t

Stu
den

ts w
ere

 giv
en

a tw
o-p

art
test

. In

the
 fir

st p
art,

 the
y w

ere
 ask

ed
to w

rite
 a

pla
n th

at w
oul

d s
olv

e th
e st

ate
d

pro
ble

m.
In t

he
the

 sec
ond

 pa
rt, h

alf
stu

den
ts w

ere
 ask

ed
to w

rite
 a P

asc
al

pro
gra

m t
hat

 sol
ved

 the
 pro

ble
m,

wh
ile

the
 oth

er h
alf

wer
e as

ked
 to

sol
ve

the

pro
ble

m u
sin

g P
asc

al L
.

Ac
cur

acy
 im

pro
ves

 fro
m 1

9%
 for

the

 no
vic

e g
rou

p to
 49

% f
or t

he
inte

rme
dia

te g
rou

p to
 83

% f
or t

he
adv

anc
ed

gro
up.

(Cr
os

Exp
erim

ent
 4

5 P
rog

ram
me

rs
No

vic
e: C

S s
tud

ent
s.

The
 pro

gra
mm

ers
 we

re t
hen

 0
 to

6 L
ike

rt s
cale

Rat

e li
nes

 of
cod

e as
 to

how
 ind

ica
tive

No

vic
es d

iscr
imi

nat
e v

ery
 litt

le

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

5
 Re

f
Stu

dy
#Su

bje
cts

Ind

epe
nde

nt
Va

ria
ble

De

pen
den

t V
ari

abl
e

Me
tric

Ex

per
ime

nta
l ta

sk
Re

sul
ts

by,

Sch
ol

tz,
&

Wi
de

nbe
ck

, 200
2)

 Int
erm

edi
ate

: C
S S

tud
ent

s at

the
 jun

ior
or s

eni
or

und
erg

rad
uat

e le
vel

.
 Ad

van
ced

: gr
adu

ate
 CS

stu

den
ts a

nd
CS

 fac
ulty

.

ask
ed

to r
ank

 (on
 a 6

 po
int

sca
le)

how
 lik

ely
 it w

as t
hat

a p

arti
cul

ar l
ine

 of
cod

e
cam

e fr
om

 a b
ina

ry s
ear

ch
pro

gra
m.

the
y w

ere
 of

a p
rog

ram
 fun

ctio
n.

bet
we

en
pro

gra
m a

rea
s.

 Mo
re e

xpe
rien

ced
 pro

gra
mm

ers

ten
d to

 co
nce

ntra
te o

n th
e im

por
tan

t
are

as o
f a

pro
gra

m.

Exp
erim

ent
 15

inte
rme

dia
te

pro
gra

mm
ers

 15

adv
anc

ed
pro

gra
mm

ers

Int
erm

edi
ate

: C
S S

tud
ent

s at

the
 jun

ior
or s

eni
or

und
erg

rad
uat

e le
vel

.
 Ad

van
ced

: gr
adu

ate
 CS

stu

den
ts a

nd
CS

 fac
ulty

.

Co
rrec

tne
ss

The
 res

pon
se w

as
cla

ssif
ied

 as
cor

rec
t if

 the

pro
gra

mm
er w

as a
ble

 to
ide

ntif
y th

e o
rigi

n (d
ept

h
firs

t se
arc

h, s
hel

l so
rt o

r
bin

ary
 sea

rch
) of

 a l
ine

of c

ode
.

De
term

ine
 wh

ich
 pro

gra
m a

 lin
e o

f
cod

e w
as m

ost
 lik

ely
 to

rep
res

ent
.

The
 ad

van
ced

 gro
up

com
ple

ted
 the

task

 in
less

 tim
e.

 The
 int

erm
edi

ate
 an

d m
ore

adv

anc
ed

pro
gra

mm
ers

 dis
pla

yed

the
 sam

e ab
ility

 in
term

s o
f

per
cen

tag
e o

f co
rrec

t re
spo

nse
s.

 The
 mo

re a
dva

nce
d p

rog
ram

me
rs

we
re a

ble
 to

acc
om

plis
h th

is i
n

sig
nifi

can
tly

less
 tim

e, r
ega

rdle
ss o

f
the

 lin
e o

f co
de.

Res

pon
se t

ime

Exp
erim

ent
 9 n

ovi
ce

pro
gra

mm
ers

 10

adv
anc

ed
pro

gra
mm

ers

No
vic

e:
stu

den
ts w

ith
one

sem

este
r of

 pro
gra

mm
ing

exp

erie
nce

.
 Ad

van
ced

: C
S fa

cul
ty m

em
ber

s
and

 stu
den

ts f
rom

 ad
van

ced

und
erg

rad
uat

e an
d g

rad
uat

e
cla

sse
s.

Fix
atio

ns
(att

ent
ion

 tha
t a

pro
gra

mm
er p

ays
 to

a p
iec

e
of c

ode
 de

tec
ted

 by
 an

 ey
e

trac
kin

g d
evi

ce)
.

Nu
mb

er o
f fi

xat
ion

s
Thi

s ex
per

ime
nt u

sed
 ey

e tr
ack

ing
 to

pre
cise

ly d
ete

rmi
ne

not
 on

ly w
hat

pro

gra
mm

ers
 vie

wed
 bu

t al
so h

ow
 lon

g
the

y fi
xat

ed
on

eac
h ty

pe
of p

rog
ram

stat

em
ent

.

The
 av

era
ge

fixa
tion

 du
rati

on
wa

s
stat

isti
cal

ly s
ign

ific
ant

 for

exp
erie

nce
.

Fix
atio

ns
tim

es
Fix

atio
n ti

me
s

(E.

Sol
o

wa
y

& K
.

Ehr
lic

h, 198
4)

Exp
erim

ent
 94

nov
ice

pro

gra
mm

ers

 45
 ad

van
ced

pro

gra
mm

ers

No
vic

e: p
rog

ram
me

rs w
ere

stu

den
ts a

t th
e en

d o
f a

firs
t

cou
rse

 in
Pas

cal
 pro

gra
mm

ing
.

 Ad
van

ced
: pr

ogr
am

me
rs w

ho
had

 co
mp

lete
d a

t le
ast

3
pro

gra
mm

ing
 co

urs
es,

and
 mo

st
we

re e
ithe

r co
mp

ute
r sc

ien
ce

ma
jors

 or
firs

t ye
ar g

rad
uat

e
stu

den
ts i

n c
om

put
er s

cien
ce;

 all

had
 ex

ten
siv

e ex
per

ien
ce

wit
h

Pas
cal

.

Ac
cur

acy
 of

res
pon

se
A c

orr
ect

 res
pon

se w
as

one
 tha

t co
mp

lete
d th

e
inte

nde
d p

lan
.

On
e li

ne
of c

ode
 wa

s ta
ken

 ou
t fr

om
 the

pro

gra
m a

nd
rep

lac
ed

wit
h a

 bla
nk

line
.

The
 su

bje
cts

fill
ed

the
 bla

nk
line

 wi
th

the
 pie

ce o
f co

de
tha

t, in
 the

ir o
pin

ion
,

bes
t co

mp
lete

 the
 pro

gra
m.

The
 ex

per
ts p

erfo
rme

d b
ette

r th
an

nov
ice

s.

Tim
e

(B.

Ad
els

on,

198
4)

Exp
erim

ent
 18

No
vic

es
 18

Exp
erts

No
vic

e: u
nde

rgr
adu

ate
s w

ho
had

 co
mp

lete
d a

n in
trod

uct
ory

com

put
er p

rog
ram

min
g c

our
se.

 Ex
per

t: f
ello

ws
of t

he
sam

e
cou

rse
.

Typ
e o

f pr
ogr

am

rep
res

ent
atio

n.
Ab

stra
ct o

r co
ncr

ete

rep
res

ent
atio

n.

Eac
h p

arti
cip

ant
 wa

s gi
ven

 a c
onc

rete

or a
bst

rac
t flo

wc
har

t fo
llow

ed
by

the

pro
gra

m a
nd

by
con

cre
te o

r ab
stra

ct
com

pre
hen

sio
n q

ues
tion

s. A
bst

rac
t

que
stio

ns
foc

use
d o

n th
e u

nde
rlyi

ng
pla

n o
f th

e p
rog

ram
. C

onc
rete

 qu
esti

ons

foc
use

d o
n su

rfac
e d

eta
ils

of h
ow

 the

pro
gra

m e
arn

ed
out

 the
 pla

n.

Exp
erts

 pe
rfo

rme
d b

ette
r on

abs

trac
t qu

esti
ons

, w
her

eas
 no

vic
es

per
for

me
d b

ette
r on

 co
ncr

ete

que
stio

ns.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

6 Re
f

Stu
dy

#Su
bje

cts

Ind
epe

nde
nt

Va
ria

ble

De
pen

den
t V

ari
abl

e
Me

tric

Ex
per

ime
nta

l ta
sk

Re
sul

ts
(Bu

rk
har

dt,
D\&

\
#23

3,
tien

ne
, oi

se,
& Wi

ed
enb

ec
k, 200

2)

Exp
erim

ent
 21

No
vic

es

 30
Exp

erts

No
vic

e: a
dva

nce
d s

tud
ent

s.
 Ex

per
t: p

rof
ess

ion
al

pro
gra

mm
ers

 ex
per

ien
ced

 in
OO

des

ign
 wi

th C
++.

Co

mp
reh

ens
ion

Co

rrec
tne

ss o
f re

spo
nse

s
Du

ring
 ph

ase
 1,

par
tici

pan
ts w

ere

allo
we

d to
 stu

dy
the

 pro
gra

m,
run

 it (
an

exe
cut

abl
e w

as p
rov

ide
d),

and
 tak

e
not

es.
Aft

er t
his

 ini
tial

 stu
dy

pha
se,

par
tici

pan
ts a

nsw
ere

d a
 qu

esti
onn

aire
.

Exp
erts

 are
 be

tter
 tha

n n
ovi

ces
 at

con
stru

ctin
g c

orr
ect

 me
nta

l
rep

res
ent

atio
ns o

f th
e p

rog
ram

.

(J. We
ise

r &

She
rt

z, 198
4)

Exp
erim

ent
 6 N

ovi
ces

 9 E

xpe
rts

No
vic

es:
stu

den
ts o

f se
con

d a
nd

thir
d s

em
este

r
 Ex

per
ts:

gra
dua

te s
tud

ent
s

Pro
gra

mm
ing

 pro
ble

m
rep

res
ent

atio
n.

A s
et o

f ca
teg

orie
s

pro
pos

ed
by

exp
erim

ent
al s

ubj
ect

s
afte

r so
rtin

g ta
sk.

Eac
h p

arti
cip

ant
 wa

s gi
ven

spe

cifi
cat

ion
s fo

r 27
 dif

fere
nt

pro
gra

mm
ing

 pro
ble

ms
, an

d w
as a

ske
d

to g
rou

p to
get

her
 pro

ble
ms

 wh
ose

me

tho
d o

f so
luti

on
wo

uld
 be

 sim
ilar

.

No
vic

es c
ons

ide
r th

e su
rfac

e
fea

ture
s o

f th
e p

rob
lem

 bu
t

rep
res

ent
 pro

ble
ms

 inc
ons

iste
ntly

.
 Exp

erts
 co

nsi
der

 the
 de

ep
fea

ture
s

and
 ten

d to
 ag

ree
 wi

th o
ne

ano
the

r.
Sor

ting
 tim

e

(M
üll

er &

Hö
fer

, 200
7)

Exp
erim

ent
 7 T

DD
 Ex

per
ts

 9 T
DD

 No
vic

es

Ex
per

ts.
 Pr

ofe
ssio

nal

pro
gra

mm
ers

 wi
th i

ndu
stri

al
TD

D e
xpe

rien
ce

 No
vic

es.
Stu

den
ts w

ho
fini

she
d

an
XP

 lab
 co

urs
e

Co
nfo

rma
nce

 to
TD

D.
TD

D c
han

ges
 plu

s
refa

cto
ring

s, o
ver

 all

cha
nge

s

Per
for

min
g a

 co
din

g ta
sk i

n T
DD

.

The
 ex

per
ts a

chi
eve

 a h
igh

er
con

for
ma

nce
 to

the
 rul

es o
f th

e te
st-

driv
en

dev
elo

pm
ent

 pro
ces

s th
an

the
 no

vic
es.

 The

 nu
mb

er o
f ch

ang
ed

line
s of

cod

e d
urin

g th
e w

hol
e

imp
lem

ent
atio

n p
roc

ess
 is

sm
alle

r
for

 the
 ex

per
ts t

han
 for

 the
 no

vic
es.

 The
 ex

per
ts a

re f
aste

r in
 ch

ang
ing

app

lica
tion

 co
de

and
 tes

t co
de.

 The

 ex
per

ts a
re s

ign
ific

ant
ly f

aste
r

tha
n th

e n
ovi

ces
.

 The
 tes

ts d
eve

lop
ed

by
the

 ex
per

ts
ach

iev
e a

hig
her

 co
ver

age
 on

 the

app
lica

tion
 co

de
tha

n th
e te

sts
of

the
 no

vic
es

Ch
ang

es
to l

ine
s of

 co
de.

The

 nu
mb

er o
f ch

ang
ed

line
s o

f co
de

(CL
OC

)
dur

ing
 the

 wh
ole

imp

lem
ent

atio
n p

roc
ess

Spe

ed
for

 ap
plic

atio
n c

ode

and
 tes

t co
de

Ch
ang

ed
line

s o
f co

de
per

 ho
ur

Du
rati

on
of I

mp
lem

ent
atio

n
Du

rati
on

of t
he

imp
lem

ent
atio

n u
ntil

 the

firs
t ac

cep
tan

ce
test

Qu
alit

y o
f T

est
The

 qu
alit

y o
f th

e
dev

elo
ped

 tes
ts i

n te
rms

of s

tate
me

nt a
nd

blo
ck

cov
era

ge

(M
.

M.

Mu
lle

r &
 F.

Pad
be

rg, 200
4)

Qu
asi-

exp
erim

ent
 38

com
put

er
scie

nce
 stu

den
ts

wit
h J

AV
A

pro
gra

mm
ing

exp

erie
nce

Pro
gra

mm
ing

 ye
ars

, bo
th a

t th
e

ind
ivid

ual
 an

d p
air

lev
els

Imp
lem

ent
atio

n ti
me

Per
for

min
g a

 co
din

g ta
sk i

n T
DD

.

Ind
ivid

ual
 ex

per
ien

ce l
eve

ls a
nd

the

pai
r pe

rfo
rma

nce
 are

 un
cor

rela
ted

.
 The

re i
s n

o c
orr

ela
tion

 be
twe

en
the

exp

erie
nce

 lev
el a

nd
the

imp

lem
ent

atio
n ti

me
.

 Jav
a p

rog
ram

min
g e

xpe
rien

ce
(me

asu
red

 eit
her

 in
yea

rs o
r lin

es o
f

cod
e) a

nd
imp

lem
ent

atio
n ti

me
 are

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

7
 Re

f
Stu

dy
#Su

bje
cts

Ind

epe
nde

nt
Va

ria
ble

De

pen
den

t V
ari

abl
e

Me
tric

Ex

per
ime

nta
l ta

sk
Re

sul
ts

unc
orr

ela
ted

.
 The

re i
s n

o c
orr

ela
tion

 be
twe

en
the

se i
ndi

vid
ual

 ex
per

ien
ce l

eve
ls

and
 the

 im
ple

me
nta

tion
 tim

e.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Research methodology: The vast majority of studies are experiments. In most cases, they compare two groups
(novices vs. experts). Studies with only one group of subjects, characterized by their experience years, are also
common, e.g., (Sheppard et al., 1979). These later studies, with the exception of (Askar & Davenport, 2009), are
quasi-experiments.
Characterization of novices and experts: All studies use novices with very little (e.g., (Wiedenbeck, 1985)) or no
experience (e.g., (McKeithen et al., 1981)). On what regards expert characterization, the situation is far from
uniform. Some studies use experts with limited experience, e.g., graduate students (J. Weiser & Shertz, 1984; Ye
& Salvendy, 1994). In other cases, experts may have quite a lot of experience, e.g., (Burkhardt et al., 2002) use
professional programmers with experience in OO design with C++.
Response variables and measurement procedures: Programmer performance is typically measured indirectly, e.g.,
ability to identify valid programming language sentences (Wiedenbeck, 1985), ability to remember meaningful
code snippets (McKeithen et al., 1981), etc. Subjective measures, e.g., self-efficacy scores (Askar & Davenport,
2009) have been also used. Direct measurements (e.g., effort (E. Arisholm et al., 2007)) are uncommon.
Experimental tasks: Most of the studies have many points in common with classical experiments on expert
behaviour. There are plenty of recognition, matching and recall tasks. There are relatively few studies where
subjects are called upon to generate code, e.g., (M. M. Muller & F. Padberg, 2004). Experimental objects are ad-
hoc and especially prepared for each study. With regard to complexity, the objects are generally simple. Studies
where actual coding is performed, e.g., (Müller & Höfer, 2007) use general problem domains where specialized
(domain-specific) knowledge is not required.

 Simon, 1973) has generally been
repeatedly confirmed. Experts identify or remember more programming language sentences than novices (McKeithen
et al., 1981), consider deeper program features (J. Weiser & Shertz, 1984) or are faster than novices (Müller & Höfer,
2007). Experts do not always outperform novices (e.g., (McKeithen et al., 1981)) but this can usually be explained by
the non-transferability of experience, i.e., in such cases, experts are working outside their area of expertise, where
their strategies are not applicable and, therefore, they perform similarly to novices.

There have been reports in the literature of cases where experience does not always lead to better performance.
(McDaniel, Schmidt, & Hunter, 1988) reported low correlations between experience and performance. (Camerer &
Johnson, 1997) conclude that subjects with experience make decisions or predictions that are no better or even worse
than those made by inexperienced subjects. There are studies with similar outcomes in the area of programming (M.
M. Muller & F. Padberg, 2004; Sheppard et al., 1979), as well as in other areas of SE, e.g., (Marakas & Elam, 1998;
Sonnentag, 1995). This apparent contradiction can be explained if a distinction is made between experience and
expertise. In order to achieve the performance of an expert, subjects need to complete a period of intensive practice,
with the deliberate intention of improving performance (i.e., achieving expertise). The mere practice of an activity
(i.e., the years of experience) may improve performance but not to the point of it being equal to that of people who
are generally recognized as experts in an area (Ericsson & Charness, 1994).

Finally, it is noteworthy that experience has mainly been studied indirectly. The typical study presents some
task(s) to expert and novices subjects, and some facet of the problem solving process (e.g., the top-down or bottom-
up programming strategy) is observed. Later, on the basis of e (Chase &
Simon, 1973) a given strategy (e.g., top-down) is associated to expert behaviour. It is assumed that such strategy will
lead to better programs and subjects are categorized according to it. However, expert behaviour does not equate to
expert performance. Existing studies are missing direct measures of programmer performance, e.g., whether expert
programmers are more productive or generate programs of better quality than novices. In fact, one of the two existing
studies reporting negative results (M. M. Muller & F. Padberg, 2004) uses direct measures. Recent research, e.g.,
(Ericsson, 2006b) emphasizes the need of explicitly measuring expert performance, instead of relying on (apparent)
expert behaviour. On this ground, this paper addresses the following research question:

RQ: Is the performance (measured directly) of expert programmers (i.e., with longer periods of service)
superior than that of novice programmers?

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

9

3 Family of experiments
3.1 Conducted quasi-Experiments
We conducted 10 quasi-experiments, six of which were run in industry and four in academia. All the quasi-
experiments were conducted as part of the Empirical Software Engineering Industry Lab (ESEIL) project, led by N.
Juristo and funded by TEKES1. The research has been conducted according to the regulations laid out by the
Universidad Politécnica de Madrid Ethical Boards. Both the funding agency and the
participating researchers state that they have no conflicts of interest with respect to the research results. In all cases,
the experimental procedure was as follows:

 Before conducting the quasi-experiments, the experimental tasks (shown in Appendix B) were selected and the
code templates were prepared. H. Erdogmus, B. Turhan, D. Fucci, A. Tosum and T. Raty performed this task.

 Again before the quasi-experiments were performed, the forms described in Appendices C and D were used to
acquire data about the experimental subjects. A. Santos processed these demographic data.

 Each quasi-experiment used a particular programming language, testing framework and IDE depending on the
preferences of the host organization. The most commonly used technology was Java + jUnit + Eclipse.

 The quasi-experiment had a total duration of eight hours:
 The first four hours were spent on training the subjects to use the selected testing frameworks and

practical exercises. B. Turhan delivered the training for quasi-experiments 1-5 (with the help of T. Raty in
one case2). O. Dieste delivered the training for experiments 6-10.

 The experimental task (MR, BSK, with or without slicing) was completed after training. It had a duration
of two hours without breaks. The task assignment to experimental subjects differed slightly in each quasi-
experiment for the purpose of alignment with the needs of the research on programming strategies and
TDD of which this study is part. Tasks were assigned rigorously without introducing validity threats.

 D. Fucci, A. Tosum and S. Vegas (depending on the case) supervised the experimental task. At the end of
the experimental task, subjects handed in their code and the quasi-experiment was concluded with a short
debriefing.

Table 2 shows the particular conditions under which each quasi-experiment was conducted. As such contextual
variables can have a bearing on code quality and programmer productivity (e.g., C++ and Boost Test are more
complicated to use than Java and jUnit), they have to be specifically considered and, where appropriate, added as
blocking variables to the analysis. One exception to this rule is the IDE, as it is the same in almost all cases (Eclipse)
and has no predictive power. Although the same might be said of programming language (C++ and Java) and testing
framework (jUnit, Google Test and Boost Test), each group has a sizeable number of subjects in these two cases (e.g.,
29 subjects used C++). It is therefore preferable not to jump to conclusions and have the actual analysis procedure
determine (e.g., by collinearity) whether or not these contextual variables should be omitted.

Table 2 Contextual variables characterizing each of the conducted quasi-experiments

 TRAINER SITE PROGRAMMING
LANGUAGE

TESTING
FRAMEWORK IDE

Experiment
code

1 B. Turhan Industry Java jUnit Eclipse
2 B. Turhan Industry Java jUnit Eclipse
3 B. Turhan Industry Java jUnit Eclipse
4 B. Turhan Industry C++ Google Test Eclipse
5 B. Turhan Academia Java jUnit Eclipse
6 O. Dieste Industry Java jUnit Eclipse
7 O. Dieste Academia Java jUnit Eclipse
8 O. Dieste Academia Java jUnit Eclipse
9 O. Dieste Academia Java jUnit Eclipse
10 O. Dieste Industry C++ Boost test Eclipse (17 cases) Vim (2 cases)

1 TEKES: Finnish Funding Agency for Technology and Innovation
2 Not specified so .

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

10

3.2 Dependent variables
The effect construct is programmer performance. As the research question states, we passed over the response
variables typically used to study the effect of programmer experience, e.g., ability to identify valid sentences in a
programming language (Wiedenbeck, 1985), and we used operationalizations focused on code properties that could
be directly measured.

Code can be examined from different viewpoints. In this research, we used the External quality of the code and
the Productivity of programmers as response variables. External quality is equivalent to the functional concept of
quality defined in ISO/IEC 25010 as the extent to which a software product satisfies certain needs (ISO, 2011). In this
respect, quality is related to what functionality code users get rather than the internal structure of the code, which is
why we use the adjective external. Productivity is generally defined as the amount of work done. Section 3.9 details
the metrics and measurement procedures for both variables, which are basically percentages representing the ratio of
External Quality or Productivity to their respective maximum values.

The use of the above variables has two practical advantages. On one hand, this research into the effect of
programmer experience is part of a wider research project into programming strategies and test-driven development
(TDD). The External Quality and Productivity variables are often used in TDD studies, e.g., (Erdogmus, Morisio, &
Torchiano, 2005) (Munir, Moayyed, & Petersen, 2014). Therefore, their use will keep both research projects aligned
and create synergies. On the other hand, External quality and Productivity can be defined separately from the task,
programming language, etc. This provides for the comparison and joint analysis of data from a range of experiments.
This is a very important point, as sample sizes of over a hundred subjects are required to achieve adequate statistics
power (see Section 5.1.2). The sample size of a single experiment is not usually this big, and several experimental
replications have to be conducted and jointly analysed.

3.3 Subject selection
The experimental subjects were convenience sampled (i.e. selected by availability). They are members of two
separate groups:

 Programmers with different levels of experience from four European companies located in Finland and
Estonia.

 Senior undergraduate and postgraduate students from three universities located in Spain and Ecuador. Most
of the students do not have professional experience, although some have already worked or are working in
industry.

3.4 Experimental task
The quasi-experiment has only one experimental task, which is to apply an Incremental test-last development (ITLD)
strategy (Madeyski, 2005). This strategy involves writing production and testing code in parallel, without prioritizing
testing code as in TDD. The ITLD strategy is in widespread use in industry, where there is a recognized need for
automated testing to increase production code quality (Williams, Kudrjavets, & Nagappan, 2009). ITLD is not
unusual, albeit less common, in academia. No further conditions were imposed on ITLD, i.e., each programmer was
allowed to select whichever slice granularity and tests he or she wanted to use. In other words, the programmers
completed the task more or less as per usual practice. All programmers were informed verbally, at the beginning of
the experimental session, that the goal was to complete the experimental problem in the allocated time frame.

3.5 Experimental Problems
The subjects applied ITLD on two experimental problems, MarsRover API (MR) and Bowling Scorekeeper (BSK).
BSK and MR are generic programming assignments, and thus they do not specifically belong to the domain of ex-
perience of any of the experimental subjects. They enable a clear separation between potential domain knowledge
effects (i.e., the performance improvements achieved because the programming assignment is familiar) and the
effects due only to the length of programming experience, which are the ones relevant for this research.

Appendix B gives a full description of the programming assignments that the subjects were set. There are two
versions: with and without slices. Slices conform the original definition by (M. Weiser, 1981), although we are using
them from a different perspective (Lee, Chung, Yoon, & Kwon, 2001). MR and BSK problems are not at all
challenging for professional programmers and should be doable for undergraduate and postgraduate students.

3.5.1 MarsRover API

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

11

MR is a programming exercise that requires the development of a public interface for controlling the movement of a
fictitious vehicle on a grid with obstacles. MR is a popular exercise used by the agile community to teach and practice
unit testing.

MR is an algorithm-oriented task and does not involve the creation of a user interface. The implementer needs to
handle several boundary cases in order to produce the expected results. The implementation of MR leverages a NxN
matrix data structure representing an imaginary planet on which the rover moves. Each matrix cell may store an

stacles are without behaviour and can be modelled using simple data types (e.g., a
Boolean for representing presence/absence). Subjects have to implement six main operations necessary to move the

 using just one class. The possible operations are:
 Matrix initialization and assignment of obstacles to cells
 Command parsing
 Forward and backward moves
 Left and right turns.

The forward and backward moves are the most complex operations. Command parsing and left/right turns are
straightforward operations. The assignment of obstacles to cells upon initialization requires some parsing and type
casting.

Subjects were given the MR specification document and a project template in order to get them started and provide
a common package structure that would make data collection easier to automate.

3.5.2 Bowling Scorekeeper
BSK is a modified version of Rober (Bob, 2005). This task is also popular in the agile
community. The goal of the task is to calculate the score of a single bowling game. The task is algorithm-oriented and
it does not involve the creation of a user interface. The task does not require prior knowledge of bowling scoring
rules: this knowledge is embedded in the specification. BSK also has six main operations:

 Add a frame or bonus throws
 Detect when a frame is a spare or strike
 Calculate a frame score
 Calculate the game score.

The most complex operation is the calculation of the frame score. It depends on the type of the frame (regular,
spare or strike), the position of the frame in the game, and whether or not the next frame is a strike.

We gave subjects the BSK specification document and a code template.

3.6 Treatment assignment to subjects
We have used a quasi-experimental design to study the effect of experience. Quasi-experiments are used when the
subjects cannot be randomly assigned to an experimental condition, or, alternatively, a treatment cannot be assigned
to a group. This applies in our case, as the experimental su
randomized or blocked. Consequently, all the subjects have performed the same task (ITLD) to the same
experimental object (MR or BSK, either sliced ir not). Note that each subject participated only once. The quasi-
experimental design of this study means that the relationship between the independent and dependent variables
cannot be said to be causal.

3.7 Instrumentation
The subjects implemented the experimental tasks in Java or C++. The language was selected depending on
preferences at the site where each quasi-experiment was conducted. They used the jUnit, Google Test and Boost Test
testing frameworks. In all cases, we gave subjects stubs so that they did not have to write the testing framework
initialization code (not necessarily evident in the case of Boost Test) and could focus exclusively on writing the tests
that they considered necessary. Most subjects used the Eclipse integrated development environment (IDE), although
some subjects preferred to use text-mode editors like Vim.

3.8 Measurement Procedure
3.8.1 Independent variables

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

12

We gathered the values of the independent variables using a questionnaire implemented in Google Forms.
Appendices C and D show the questionnaires for professionals and students, respectively.

3.8.2 Dependent variables
We used acceptance tests as the main instrument for extracting the Productivity (PROD) and External Quality
(QLTY) response variable data. We wrote a set of acceptance tests for all tasks. MR can be decomposed into 11
subtasks (or slices) that represent all the functionality required to complete this tasks. A total of 13 subtasks can be
defined for BSK. Appendix B lists the MR and BSK subtasks. One of the researchers (D. Fucci) wrote tests for MR,
whereas the BSK tests were adapted from a previous experiment (Erdogmus et al., 2005).
has 11 test classes, 52 test methods and 89 assertions. BSK has 13 test classes, 51 test methods and 56 assertions.
Each test class implements the test of a particular subtask.

Productivity can be defined as (B. Kitchenham & E. Mendes, 2004):
 (1)

Process output is some measure of size, such as the number of lines of code (LOC) produced by a developer,
number/percentage of user stories implemented, or the number/percentage of passing test cases. LOC has known
weaknesses as a metric (Armour, 2004). Conformance-based metrics are widely used (Darcy & Ma, 2005). Therefore,
we opted to use the percentage of passing test assertions over all assertions as the basis for output calculation.

The most common input is some measure of effort (Fenton & Bieman, 2014), such as man-months or monetary
cost. In our case, subjects have a set time in which to complete the tasks and also tend to use up all the allotted time.
Therefore, a time-based metric is of no use. We also ruled out monetary cost, due to the quasi-experimental character
of our research. It implies, in essence, that the process input is constant across subjects and experimental runs. Being
constant, it can be discarded for productivity calculation.

Thus, PROD represents the amount of functionality delivered by programmers (i.e., the amount of work done),
and it is defined as shown in Equation 2 below:

 (2)

The concept of quality that we are using is the extent to which a software product satisfies certain needs (ISO,

2011). Defined as such, quality can be interpreted as the amount of functionality delivered by programmers, i.e.,
productivity. However, this equality is only valid when coding is complete, that is, when programmers are able to
finish completely a task before delivery. When it does not happen, the amount of functionality underestimates quality.
or her productivity is clearly 80% (the amount of delivered functionality), but the quality of the code cannot be 80%
because it is completely correct; quality should be 100%.

In this research, most experimental subjects have been unable to complete the programming tasks. Therefore, we
need to find out the degree of termination of each task to fine-tune quality accordingly. We have accomplished this
goal examining MR and BSK subtasks. We have considered that an experimental subject has worked on a given
subtask when at least one assert statement in the acceptance test suite associated with that subtask passes. This
criterion is used to objectively separate subtasks into whose completion a subject put a reasonable amount of effort
from other subtasks into which a subject put little or no effort.

In order to formalize this criterion, we have defined whether a subtask i TSTi) as indicated in
Equation 3:

 (3)
The number of tackled subtasks (TST) is calculated using Equation 4, where n is the total number of subtasks

making up the measured task.
 (4)

We use TST to calculate QLTY in Equation 5:

 (5)

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

13

where QLTYi is the quality of the i-th tackled subtask, and is defined as:
 (6)

#Asserti(Pass) represents the number of passing assertions in the acceptance test suite associated with the i-th

subtask. In other words, QLTY represents how correct (in percentage) the code corresponding to the tasks
tackled by subjects is.

The dependent variables PROD and QLTY are related in such a way that QLTY >= PROD. This restriction
implies that QLTY can take any value when PROD is low but, as PROD increases, QLTY increases accordingly.
When PROD nears 100%, QLTY also approaches 100%. The strong relationship between PROD and QLTY makes
that both constructs cannot be differentiated when subjects are highly productive, i.e., in such a case we observe
Productivity or External Quality (likely the later), but not both. Fortunately, in the set of quasi-experiments that we
are using for this research, the time is constrained and only a fraction of subjects achieves high PROD values.
Therefore, we are rather confident that the constructs Productivity and External Quality have been reasonably
operationalized.

3.8.3 Data collection
The measurement procedure involved executing the test suites on the code written by subjects. Subjects were told not
to modify the API for the MR and BSK problems which was well defined in the code templates that they were given.
Even so, they did. This caused compilation errors in the test suite. These errors were corrected by adapting the
production code to the test code and vice versa depending on each case. We tried to modify the code written by
subjects as little as possible so as not to introduce validity threats. However, the alternative in many cases was to
assign QLTY = PROD = 0 values for the subjects that had altered the API, which was clearly going too far.

Measurement was based on a set of test cases, but some type of adaptation of the sub
aligning return data types, fixing problems with leading/training spaces, etc.) should be made in almost all cases. The
measurer can have an influence here, e.g., one measurer might make more changes to the production code than
another. This possible threat to validity is addressed in Section 7. D. Fucci measured quasi-experiments 1-3 (a total of
24 subjects), O. Dieste measured quasi-experiments 8-9 (a total of 22 subjects), and F. Uyaguari measured the other
five quasi-experiments (a total of 80 subjects). We collected data from a total of 126 subjects.

3.9 Experimental repository
Experimental data is confidential nowadays. A sanitized version is available at
http://www.grise.upm.es/sites/extras/11. This website also stores the test cases used for measurement.

4 Methodology
The study of the effects of experience on programmers was conducted by means of a series of quasi-
experiments. The programmers completed a programming assignment, and their experience and performance were
then compared. The quasi-experiment design is detailed in the following.

4.1 Hypothesis
The main hypothesis of this paper, stated as null/alternative hypothesis, is as follows:

 H0: programmer experience does not influence their performance
 H1: programmer experience does influence their performance.
It is a generally accepted fact in SE that experience improves programmer performance. Therefore, one might be

tempted to test the hypotheses using one-tailed (i.e., programmer experience improves their performance) rather than
two-tailed tests. However, the reviewed literature shows that there are contradictory opinions with respect to
experienced programmers performing better. As this is an exploratory study, we decided provide for possible effects
in both directions, i.e., experience having both positive and negative effects, to be on the safe side.

In this research, performance has been operationalized as the quality (QLTY) and productivity (PROD) response
variables. QLTY represents the degree of correctness in the experimental task that the programmers were able to

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

14

achieve. PROD represents the amount of functionality delivered. If experience influence performance positively, then
we should find a direct relationship between any experience-related variable and quality/productivity. It is unlikely
that experience influence positively quality or productivity alone. Common sense suggests that an expert programmer
does not only do more work than novices in the same time, but the work outcome is also better, i.e., of higher quality.
Nevertheless, we will test H0 independently for quality and productivity to evaluate all possible alternatives.

4.2 Independent variables
4.2.1. Experience-related independent variables
The cause construct refers to Programmer experience. Experience is not a directly observable construct (Siegmund et
al., 2014) that can be operationalized using multiple independent variables (e.g., programming experience, unit
testing experience), where each independent variable can be measured in different ways (e.g., years, Likert scales).

In this research, we decided to use as many independent variables as possible to prevent mistaken conclusions
being reached due to the operationalization. For example, Unit testing experience could be considered a poor
operationalization of Programmer experience, as a good tester is not necessarily a good programmer. However, it is
reasonable to assume that a programmer with some Unit testing experience might produce better quality code.
Therefore, it is not wrong to use the Unit testing experience as an independent variable. Table 3 details the studied
independent variables.

Table 3 Independent variables used
Categorical (dummies) Ordinal Scalar

 Holds a CS degree
 Currently uses a unit testing

framework
 Has specialized training in

unit testing
 Has specialized training in

TDD
 Current uses the IDE used

in the experiment
 Currently uses TDD

 Experience in the unit testing
framework used during the
experiment

 Experience in the programming
language used in the
experiment

 Overall programming
experience

 Unit testing experience
 TDD experience in TDD (if

currently uses TDD = YES)

 Experience in the programming
language used in the experiment
acquired in academia

 Experience in the programming
language used in the experiment
acquired in industry

 Overall programming experience
acquired in academia

 Overall programming experience
acquired in industry

The categorical variables have two possible values (No/Yes) with a numerical equivalence for ease of
interpretation if their effect is as expected (e.g., 1 = NO CS degree, 2 = YES CS degree, assuming that CS degree
holdership improves both programmer quality and productivity). The ordinal variables are measured by means of
four-point Likert scales, coded as follows:

 1 = No experience (< 2 years)
 2 = Novice (2-5 years)
 3 = Intermediate (5-10 years)
 4 = Expert (>10 years)

The Likert scale is based on year ranges that are equivalent to the time spans commonly specified in the literature
that it takes to acquire the respective expertise. (Campbell & Bello, 1996) point out that programmers need (at least)
two years to become Smalltalk experts. (Sim, Ratanotayanon, Aiyelokun, & Morris, 2006) consider that 5 experience
years are a reasonable period (not necessarily sufficient) for an engineer to achieve expertise. Additionally, these
ranges counteract the optimism with which the subjects interpret the text labels (i.e., novice, expert), which biases
measurements (Aranda, Dieste, & Juristo, 2014). Positive biases have been reported in several SE activities, e.g.,
(Jørgensen, Faugli, & Gruschke, 2007).

Programming experience is probably the most interesting aspect in this research. The ordinal variables Experience
in the programming language used in the experiment and Overall programming experience are very useful for
studying the effect of experience on programming, as they are handy means for subjects to rate and report their
experience. On the other hand, however, their accuracy is limited on two grounds:

 The results of the multiple linear regression analyses (i.e., the analysis method used in this research, see Section
4.3) may be biased by the use of ordinal values (Winship & Mare, 1984).

 The experimental subjects (see Section 3.4) are both professionals working in industry and students taking
different programmes in academia. The extent and rate of exposure to the programming activity in both

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

15

groups should be considerably different and it is seldom clear that they can be measured using the same
variables.

In order to set off the ordinal variables, we have also captured separate scalar variables for industry and academia
measured in years and referred to both experience in the programming language used in the experiment and overall
experience.

4.2.2. Other independent variables
This paper is, in essence, a secondary analysis that relies on data collected in diverse contexts using different

experimental designs. Such diversity gives rise to the appearance of several variables, such as TRAINER, SLICING
or TASK_ITLD, not directly related to the experience construct. For the reader convenience, the independent
variables used are listed in Appendix A.

4.3 Dataset
Table 4 summarizes the key demographic sample data. As we can see, both professional programmers and students
state that they have from two to 10 years of overall programming experience and slightly less (from zero to five
years) experience in the specific programming language used in each experiment. Appendix E shows the breakdown
of experience measured in years. Generally, the experience measured in years is quite well aligned with the Likert-
scale data. The experience on the programming language used in each quasi-experiment is slightly greater among
students than in industry (2.1 vs. 1.8 years). This is probably a reflection of the widespread use of Java in academia as
opposed to the wider range of programming languages that are used at companies. Overall programming experience
is, predictably, greater in industry (4 vs. 5.1 years).

As regards experience broken down by subject types, we found that students have slightly more academic
experience than practitioners regarding the programming language used in each quasi-experiment (2.2 vs. 2.0 years
on average, respectively). However, practitioners, predictably, have more experience than students in industry (0.7 vs.
2.7 years). The pattern is similar for overall programming experience (5.9 vs. 2.7 and 2.4 vs. 7.1 years). Experience
measured in years clearly appears to better account for population characteristics than the ordinal variables, and will
be given preference.

The biggest difference between both groups (professionals and students) is with respect to years of unit testing
experience, IDE use and academic training received. Most students are pursuing a degree in computer science,
whereas professionals have different educational backgrounds. On the other hand, professional programmers have
more experience in unit testing, whereas students are more acquainted with IDE use.

The number of subjects in each independent variable category is reasonably well balanced, on which ground we
expect the research results will not be biased by group size, except perhaps with regard to educational background
and TDD use. This could be considered as a possible threat to validity as described in Section 7. Additionally, the
experience ranges at our disposal match the specifications in the related literature, where theoretically expertise is
acquired after from five to 10 years of deliberate practice (see Section 2). The experimental subjects should therefore
be suitable for identifying the effects of experience on code quality and programmer productivity.

Table 4 Characterization of subjects. Totals do not match due to missing responses.

CHARACTERISTICS LEVELS ENVIRONMENT
ACADEMIA INDUSTRY TOTAL

 CS degree holdership No computer science 1 29 30
Computer science 54 36 90

 Total 55 65 120
Overall programming
experience

No experience (< 2 years) 7 5 12
Novice (2-5 years) 25 20 45
Intermediate (5-10 years) 23 29 52
Expert (>10 years) 1 15 16
Total 56 69 125

Experience in programming
language used in the
experiment

No experience (< 2 years) 16 24 40
Novice (2-5 years) 28 26 54
Intermediate (5-10 years) 12 12 24
Expert (>10 years) 0 8 8
Total 56 70 126

Experience in unit testing No experience (< 2 years) 50 31 81
Novice (2-5 years) 6 25 31
Intermediate (5-10 years) 0 11 11
Expert (>10 years) 0 3 3

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

16

CHARACTERISTICS LEVELS ENVIRONMENT
ACADEMIA INDUSTRY TOTAL

Total 56 70 126
Current usage of the IDE used
in the experiment

No 10 36 46
Yes 45 34 79
Total 55 70 125

 Current usage of TDD No 50 51 101
Yes 6 19 25
Total 56 70 126

4.4 Analysis strategy
Each quasi-experiment separately is insufficient for detecting effects in either of the response variables. For example,
a correlation analysis requires 67 subjects to identify medium effects (r = 0.3) with a power of 80%. The
simultaneous analysis of several variables would be less statistically powerful. Consequently, the data collected from
the quasi-experiments must be analysed jointly.

We have to rule out meta-analysis on two grounds: (1) there are not many well-developed meta-analysis models
for multiple independent variables, and (2) we have subject-level data, meaning that the most common analysis
methods (e.g., ANOVA, multiple regression) are applicable (provided the right blocking variables are introduced
(Hedges & Olkin, 1985). The analysis of subject data just might, although the literature on this point is unclear,
output more solid findings (e.g., with a higher statistical power) than experiment-level analyses (Riley, Lambert, &
Abo-Zaid, 2010).

The independent variables that we have used in this research are ordinal (dummy-coded binary) or scalar. Apart
from these independent variables, the particular characteristics of each quasi-experiment have generated categorical
contextual variables (e.g., testing framework, programming language, etc., see Appendix A) which have to be
accounted for in the analysis as blocking variables. The mix of variables is problematic, as there is no method that can
analyse all of these variables together. Possible scenarios follow:

1. The usual experiment analysis methods, such as ANOVA or mixed models, cannot use scalar independent
variables.

2. If we were to omit the scalar variables and use only ordinal independent variables, we could use ANOVA and
mixed models but the different ordinal variable values would be considered as different categories. This means
that we would lose all the information associated with the order relationship between the ordinal variables. We
do not think that this is a good strategy as: (1) it is equivalent to a dichotomization that may lead to incorrect
results (MacCallum, Zhang, Preacher, & Rucker, 2002), and (2) the very phenomenon under study (the effect of
Programmer experience) requires the magnitudes to be specifically considered, e.g., three years of experience <
four years of experience, irrespective of the fact that three and four years of experience can be considered as
intermediate experience.

3. The linear regression model can deal with categorical variables. When categorical variables have just two
values (/levels), they can be used directly (provided that they are recoded as dummy variables). Categorical
variables with more than 2 levels require a more complicated apparatus (Weisberg, 2005). Ordinal and scalar
variables can be used without restrictions.

We believe that the best analysis option is to use the multiple linear regression model (MLR), because, as
discussed in Section 3.1, there are only two categorical variables with more than two values (Testing framework used
in the quasi-experiment and Experiment code) in our dataset. In the first case, we would not be running too much of a
risk if we recoded the variable, as specified in Section 4.4. This way we would be able to take advantage of the fact
that MLR is better able to deal with ordinal and scalar variables. The second case is not as straightforward. There is a
definite possibility of subject performance being better at one company or university than another. Therefore, the
analysis should take into account Experiment code. However, as we will see later, Experiment code is highly collinear
(i.e., the values of Experiment code are confounded with other variables). This rules out its use in MLR. A possible
trade-off is to ignore the Experiment code during the first stage of the analysis using MLR, and then study whether
the model residuals are systematically related to Experiment code. This is the approach that we take.

Four basic conditions have to hold for MLR to be reliable. They are: collinearity, sample size, normality and
homoscedasticity (Field, Miles, & Field, 2012).

1. Collinearity. For the model to be reliable, we have to assure that the model predictor variables are not collinear.
Collinearity occurs in a regression model when one or more of the predictor variables (dummies, ordinal or

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

17

scalar) are linearly correlated with other model variables. We used the variance inflation factor (VIF), tolerance
(T) and condition index (CI) to test for the collinearity between variables.

2. Sample size. The study will be more statistically powerful the larger the sample size is, that is, the statistical
power of a study with a small sample size will be low. Consequently, the estimates will be less accurate, and we
will be less likely to detect significant effects. This highlights the importance of a large enough sample size.

3. Normality. The distribution of residuals must be normal with zero mean and random but constant variance. We
used the Lilliefors-corrected Kolmogorov-Smirnov test, the Shapiro-Wilks test, and Q-Q plots to test for the
normal distribution of residuals.

4. Homoscedasticity. We tested for homogeneity of variance using scatter plots of model residuals against
predicted values.

In addition to the MLR, we will use decision trees to explore nonlinear effects (Brandmaier, von Oertzen,
McArdle, & Lindenberger, 2013). For instance, it is possible that the relationship between experience and
performance has a bell-like shape, i.e., growing up to certain point (e.g., 30s-40s-50s), and decreasing both to left and
right. A linear regression model would report a null effect in this case. The decision tree could split the dataset in
three groups: left, middle and right side, along with their respective averages.

Several algorithms for building decision stress could be used: CHAID, exhaustive CHAID, CART and QUEST.
Each one has strengths and weaknesses. We will use CART (Classification and Regression Trees), because they have
intimate connections with MLR analysis (they both use mean squared errors for scale dependent variables).
Therefore, the outcomes of the CART tress and the MLR support each other. Furthermore, CART does not impose
restrictions on independent and dependent variables, and it is not affected by the variable type (categorical, ordinal o
scale), outliers, heteroskedastic, collinearity or distributional error structures (Nisbet, Elder, & Miner, 2009). CART
can be used with smaller datasets than e.g., CHAID as well (Chulis, 2012).

4.5 Data transformations
As illustrated in Section 4.2, Table 3, the categorical variable Testing framework has three levels: gTest, jUnit and
Boost Test. In order to use MLR, we had to recode one of the variable levels to output a dummy variable.
Specifically, we have recoded the gTest levels and jUnit levels as a single xUnit value. We believe that this is feasible
as the syntax of gTest and jUnit is very similar and the gTest code templates given to students mean that it is used in
more or less th
syntax is much more complex and it has a number of concepts that are quite far removed from jUnit and gTest. It
could therefore be considered more complex than jUnit and gTest, for which reason we decided to consider it
separately in the analysis.

After this procedure, the Testing framework was transformed to a dummy value with the following levels: xUnit
and Boost Test.

5 Linear Model Analysis
5.1 Data exploration
This section reports some descriptive statistics about the dataset that we will use to answer the research questions.
First, we show the overall distribution of the QLTY and PROD variables, separated by programming assignment
(MR, BSK). Later, we give an account of the average quality and productivity scores obtained by the subjects,
depending on their experience level and site (industry or academy).

5.1.1 Overall distribution
Table 5 contains histograms describing the distribution of the quality and productivity scores. We have provided
separated histograms for MR and BSK because, although both experimental objects have comparable complexity,
othe
performance. The plots suggest that MR and BSK are not exactly alike. Subjects fail quite more often (see the tall
column in the 0-10 class) when they work on MR. The lesser complexity of BSK can also be seen in the skewness (to
the right) of the distribution: more subjects achieve high quality/productivity when solving BSK. Leaving this apart,
the shapes of the histograms do not reveal dramatically different patterns.

Table 5 Data distribution (per programming assignment)

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

18

 MR BSK

QLTY

PROD

5.1.2 Quality
Table 6 and Table 7 report the number of subjects and the corresponding quality averages for different experience
levels. The grand means (both in Table 6 and Table 7) are similar, although the scores are slightly higher (3%
difference) for industry than academia. The most striking difference is the relationship between experience levels and
scores. In academia, students improve in quality as their experience increase. In industry, the scores are essentially
constant (with some exceptions, as the zigzag pattern shown in Table 7).

Table 6 Mean quality of subjects depending on programming language experience
QLTY ACADEMY INDUSTRY

#SUBJECTS MEAN #SUBJECTS MEAN
No experience (< 2 years) 14 40.33% 24 68.89%
Novice (2-5 years) 28 56.91% 26 45.65%
Intermediate (5-10 years) 12 77.04% 12 65.55%
Expert (>10 years) 8 73.01%
Total subjects 54 57.08% 70 60.15%

Table 7 Mean quality of subjects depending on overall programming experience

QLTY ACADEMIA INDUSTRY
#SUBJECTS MEAN #SUBJECTS MEAN

No experience (< 2 years) 6 36.08% 5 58.97%
Novice (2-5 years) 25 60.09% 20 61.24%
Intermediate (5-10 years) 22 61.99% 29 63.36%
Expert (>10 years) 1 .00% 15 53.57%
Total subjects 54 57.08% 69 60.30%

The patters are more evident when we run Pearson correlations, as we show in Table 8. Experiences in academy
have low/medium effects (Cohen, 1988), statistically significant or close to significance. In turn, experiences in
industry are low in both cases and non-significant.

Table 8 Pearson correlations (for QLTY)

RESPONSE VARIABLE SITE INDEPENDENT VARIABLE CORRELATION
r p-value N

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

19

QLTY
Academia Experience Programming Language .155 .086 124

Overall Programming Experience .240* .007 124
Industry Experience Programming Language .131 .146 124

Overall Programming Experience .108 .235 122

5.1.3 Productivity
Table 9 and Table 10 show the productivity scores using the same conventions than previous section. There are
several differences as compared to quality. First regards the grand mean for the Academia and Industry categories:
students achieve higher productivity than practitioners. Second, students increase productivity with experience,
whereas practitioners display a decreasing trend.

Table 9 Mean productivity of subjects depending on programming language experience

PROD ACADEMY INDUSTRY
#SUBJECTS MEAN #SUBJECTS MEAN

No experience (< 2 years) 14 37.74% 24 40.08%
Novice (2-5 years) 28 40.89% 26 26.64%
Intermediate (5-10 years) 12 66.74% 12 39.34%
Expert (>10 years) 8 31.46%
Total subjects 54 45.82% 70 33.97%

Table 10 Mean productivity of subjects depending on overall programming experience

PROD ACADEMIA INDUSTRY
#SUBJECTS MEAN #SUBJECTS MEAN

No experience (< 2 years) 6 25.98% 5 47.16%
Novice (2-5 years) 25 46.06% 20 36.44%
Intermediate (5-10 years) 22 53.04% 29 36.14%
Expert (>10 years) 1 0.00% 15 24.26%
Total subjects 54 45.82% 69 34.44%

Pearson correlations, shown in Table 11 confirm the visual exploration of Table 9 and Table 10. The overall
programming experience in academia has a very strong correlation with productivity. Next is the experience with the
programming language used in the experimental session (r = 0.064), although non-significant. Industry-related
experience exhibit very low correlation coefficients, negative (confirming the decreasing trend), and non-significant.

Table 11 Pearson correlations (for PROD)

RESPONSE VARIABLE SITE INDEPENDENT VARIABLE CORRELATION
r p-value N

PROD
Academia Experience Programming Language .064 .481 124

Overall Programming Experience .378** .000 124
Industry Experience Programming Language -.010 .913 124

Overall Programming Experience -.096 .292 122
The descriptive statistics suggest that industry experience does not seem to be related to superior performance.

Academic experience could. However, the previous tables and correlation coefficients summarize the dataset in a
very coarse-grained manner. There are many other independent variables that may have an influence on the quality
and productivity scores. A more in-depth analysis will be conducted in the following sections.

5.2 Choosing the best regression model
The aim of this section is to determine which regression model best fits the data. The original model contained all the
demographic variables and contextual variables (see Appendix F). We then checked that the independent variables
were not collinear. If they were, we eliminated any variables that were strongly correlated to the others, thereby
simplifying the regression model.

5.2.1 Checking for collinearity
One way of determining whether the independent variables are collinear is to use the variance inflation factor with the
condition index.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

20

 The variance inflation factor (VIF): a measure of the impact of collinearity between the regression model
variables. High VIF values are a sign that a variable can be largely explained by the other variables, that is, that
the model variables are collinear. A VIF-related parameter is tolerance (T), which is defined as T = 1/VIF. A
guideline often used by researchers is to use a high VIF, that is, VIF > 10, which is output when R2 > 0.9 and T
< 0.1. A second, more rigorous, option is to lower the bounds to VIF > 5 with R2 > 0.8 and T < 0.2 (Heiberger
& Holland, 2013) as evidence of collinearity.

 Condition index (IC): a measure of ill-conditioning in a matrix. (Belsley, 1991) suggest three levels of
collinearity depending on the CI: slight (
has a severe CI, the variance of one or more of its variables is substantially collinear with the other variables. A
high proportion of variance explained (greater than 0.5) is usually considered to be a sign that the respective
variable is involved in the collinear relationship.

As shown in Appendix F we have 15 independent variables that might be included in the regression model. The
collinearity statistics shown in Table 12 suggest that none of the variables has a VIF greater than 10 (a T less than
0.1). Looking at the more rigorous option (VIF > 5 or T < 0.2), we find that the pattern for the Testing framework
variable (UNIT_TESTING_FRAMEWORK_ ADAPTED) could pose problems of collinearity, as its values are close
to the bounds established for the VIF (VIF=4.943) and tolerance is (T=0.202). On the other hand, the collinearity
statistics for the other variables are within the expected bounds (FIV < 5 and T > 0.2), which suggests that they are
not collinear.

Table 12 VIF and T for original MLR model

Model
Unstandardized

Coefficients
Standardized
Coefficients

t P-val.
Collinearity Statistics

B Std. Error Beta Tolerance VIF
1 (Constant) -64.527 65.070 -.992 .324

SITE 36.151 10.468 .425 3.454 .001 .429 2.330
TRAINER 2.476 11.380 .028 .218 .828 .398 2.512
CS_TITLE 17.018 9.767 .177 1.742 .085 .628 1.592
UNIT_TESTING_FRAMEWORK_ADAP
TED -14.927 21.838 -.123 -.684 .496 .202 4.943
EXPERIENCE_UNIT_TESTING_FRAM
EWORK_LIKERT_SCALE 8.903 8.841 .119 1.007 .316 .464 2.157
EXPERIMENT_PROGRAMMING_LAN
GUAGE 23.861 17.329 .230 1.377 .172 .233 4.292
EXPERIENCE_EXPERIMENT_PROGR
AMMING_LANGUAGE_ACADEMY_Y
EARS

.337 1.995 .022 .169 .866 .382 2.621
EXPERIENCE_EXPERIMENT_PROGR
AMMING_LANGUAGE_INDUSTRY_Y
EARS

1.198 1.978 .086 .606 .546 .321 3.119
OVERALL_EXPERIENCE_PROGRAM
MING_ACADEMY_YEARS 3.326 1.289 .285 2.581 .011 .534 1.873
OVERALL_EXPERIENCE_PROGRAM
MING_INDUSTRY_YEARS .959 1.039 .135 .923 .358 .304 3.292
EXPERIENCE_UNIT_TESTING_LIKER
T_SCALE -9.577 7.411 -.162 -1.292 .199 .412 2.426
EXPERIMENT_IDE_USED_DUMMY 16.605 9.187 .190 1.807 .074 .590 1.694
TDD_USED_DUMMY -1.873 10.723 -.017 -.175 .862 .650 1.540
TASK_ITLD 8.511 13.514 .094 .630 .530 .290 3.449
SLICED_ITLD_DUMMY 29.735 13.477 .330 2.206 .030 .292 3.430

Dependent Variable: QLTY
The collinearity diagnostics of the model specified in Table 12, as shown in Appendix F, report that the

UNIT_TESTING_FRAMEWORK_ADAPTED and EXPERIMENT_PROGRAMMING_LANGUAGE variables
have an collinearity problem. One way of solving the collinearity problem is to remove the most collinear variable,
which, in this case, is UNIT_TESTING_FRAMEWORK_ADAPTED.

The removal of collinear variables has two implications: one positive and one negative. The positive consequence
is the elimination of the UNIT_TESTING_FRAMEWORK_ADAPTED variable, which represents the recoding of
the three testing frameworks (gTest, jUnit and Boost Test) into two (xUnit and Boost Test). The removal of
UNIT_TESTING_FRAMEWORK_ADAPTED variable eliminates the potential threats to validity posed by

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

21

recoding. In either case, we checked that UNIT_TESTING_FRAMEWORK would have been collinear even if the
UNIT_TESTING_FRAMEWORK had not been recoded.

On the negative side, discourages the removal of variables as a means to solve collinearity
problems. One exception to this advice is that the elimination is theoretically motivated. In our case, the collinearity
between UNIT_TESTING_FRAMEWORK_ADAPTED, EXPERIMENT_PROGRAMMING_LANGUAGE and the
other variables is probably due to most of the experiments were run using Java and jUnit. In other words, the data that
we have are not diverse enough to identify the moderator effects of UNIT_TESTING_FRAMEWORK_ADAPTED
and EXPERIMENTAL_PROGRAMMING_LANGUAGE. Furthermore, those variables are not related to the
construct of interest, i.e., programmer experience. Thus, the elimination of those variables looks justified and, in turn,
we obtain a reduction in the variance of the model residuals and more power to identify significant effects.

Note that this is not a single-phase process; it is repeated as often as necessary to output the best model whose
variables do not have serious collinearity problems. In our case, the final regression model was output after three
rounds, as shown in Appendix F. The regression model that meets the collinearity conditions is composed of 12
predictor variables, as shown below:

DEPENDENT VARIABLE =
 1*SITE +
 2*CS_DEGREE +

3*EXPERIENCE_UNIT_TESTING_FRAMEWORK_LIKERT_SCALE +
4* EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_ACADEMIA_YEARS +
5*EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_INDUSTRY_YEARS +
6*OVERALL_EXPERIENCE_PROGRAMMING_ACADEMIA_YEARS +
7*OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS +
8*EXPERIENCE_UNIT_TESTING_LIKERT_SCALE +

9*EXPERIMENT_IDE_USED_DUMMY +
10*TDD_USED_DUMMY +
11*TASK_ITLD +
12*SLICED_ITLD_DUMMY + Error

5.2.2 Determining the sample size necessary in order to achieve a statistical power of 80%
There are many ways of determining the minimum sample size for a regression model. The most often used are based
on: 1) number of model predictors or 2) the effect size and expected statistical power.

Determining the sample size depending on the number of predictors
(Green, 1991) suggests two heuristic rules for determining an acceptable sample size. The first refers to the overall

goodness of fit of the model and the second to the goodness of fit of each of the independent variables in the model.
1. Overall goodness of fit of the regression model. A rule of thumb often used to determine overall goodness of

fit is that the required sample size for k variables is n = 50 + 8*k.
2. Goodness of fit for each independent variable in the model. The suggested minimum samples size is n = 104

+ k.
As we have 12 independent variables, we would need approximately 50 + 8*12 = 146 subjects for a good overall

model fit, whereas we would need 104 + 12 = 116 experimental subjects in order to detect a significant effect for each
predictor variable. The two heuristic rules do not appear to be consistent (it does not make sense that the overall
goodness of fit of a model should be more demanding than for the 12 individual predictors). On this ground, we use
other methods to estimate the sample size later. In any case, the required sample size is consistent with the number of
subjects3 in our dataset.

3 Although we had 126 experimental subjects, 11 observations were lost during the analysis as two subjects failed to complete

the experimental task, six failed to report their academic qualifications and four failed to report any experience. Consequently, we
were only able to effectively process 115 cases.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

22

Determining sample size depending on the effect size
Apart from using the number of predictors, it is possible to determine the sample size depending on the effect size
and required statistical power. There are several ways of conducting this analysis. The most common one is to use
specialized tools like G*Power (Faul, Erdfelder, Lang, & Buchner, 2007). In this case, for 12 predictor variables, with
a moderate effect size (f2 = 0.15) and a statistical power of 80% (which is usually required to consider the results of
an empirical study to be reliable), we would require 127 subjects for a good overall regression model fit.

On the other hand, (Miles & Shevlin, 2001) propose some very useful plots that illustrate the sample sizes required
to achieve a power of 80% for different effect sizes and predictor numbers. In order to detect a moderate effect size
with 12 variables, we would need approximately 150 experimental subjects. A large effect only requires 60. In sum,
we believe that the available 126 (in actual fact 115) subjects are enough to detect moderate effects with a statistical
power very close to 80%. Additionally, as the sample size is large enough, we avoid the risk of overfitting.
Overfitting occurs when the model is a very good fit for the data because there are a large number of independent
variables with respect to number of cases/observations. This does not appear to apply in our case.

5.3 Results of model application
Table 13 and Table 14 show the results of the model regression for both QLTY and PROD, respectively. Note that
the observed patterns and effects are quite similar with respect to both quality and productivity. In both cases, the
models were significant, with R2= 0.339 and R2 = 0.422, respectively. It is thus possible to interpret the results for
each independent variable reported below.

5.3.1 Quality
As Table 13 shows, none of the programming experiences, except OVERALL_EXPERIENCE_ PROGRAMMING_
ACADEMIA_YEARS, have a significant effect:

 Experience in the specific programming language used in the experiment in industry
(EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_INDUSTRY_YEARS) and in academia
(EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_ACADEMIA_YEARS) are nowhere near
statistical significance (p-value = 0.671 and 0.684, respectively) and have a very small and practically

4=- 5=0.79 respectively, which is equivalent in the independent variable metric to
increases or decreases of -0.76% and 0.79% per year, respectively). The same could be said about overall
programming experience gained by subjects in industry (OVERALL_EXPERIENCE_ PROGRAMMING_
INDUSTRY_YEARS).

 On the other hand, overall programming experience gained in academia (OVERALL_EXPERIENCE_
PROGRAMMING_ ACADEMIA_YEARS) has a clearly significant (p-value = 0.004) moderate effect (3.6%
per year).

 Experience in the unit testing framework (EXPERIENCE_UNIT_TESTING_FRAMEWORK_
LIKERT_SCALE) has a relatively large effect on quality compared to the other experience variables. The
quality of the product output by subjects impro

-value is
relatively small (0.147). This variable is not significant because of its high standard error (8.5), which is
probably due to this variable being measured on a Likert scale. This suggests that this variable actually does
have an impact on the quality of the code produced by programmers.

 Unit testing (EXPERIENCE_UNIT_TESTING_LIKERT_SCALE) has a similar pattern to
EXPERIENCE_UNIT_TESTING_FRAMEWORK_LIKERT_SCALE, albeit in the opposite direction. The
variable has a sizeable, but negative, effect (-11.25%). The p-value is also quite low, although not significant
(0.124) because of the high standard error associated with the variable (7.3), which was again measured on a
Likert scale.

Table 13 MLR results for QLTY
Model Unstandardized

Coefficients
Standard

ized
Coefficie

nts

t p-
val.

95.0% Confidence
Interval for B

 Collinearity
Statistics

B Std.
Error

Beta Lower
Bound

Upper
Bound

Effect
Size
(d)

Toleran
ce

VIF

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

23

1 (Constant) -58.384 29.399 -1.986 .050 -116.697 -.070
SITE 32.447 9.901 .382 3.277 .001 12.809 52.085 .646 .477 2.095
CS_TITLE 18.813 9.412 .196 1.999 .048 .145 37.482 .394 .673 1.485
EXPERIENCE_UNIT_TE
STING_FRAMEWORK_
LIKERT_SCALE

12.411 8.489 .166 1.462 .147 -4.428 29.249 .288 .501 1.998

EXPERIENCE_EXPERI
MENT_PROGRAMMIN
G_LANGUAGE_ACADE
MY_YEARS

-.761 1.786 -.050 -.426 .671 -4.303 2.780 -.084 .474 2.109

EXPERIENCE_EXPERI
MENT_PROGRAMMIN
G_LANGUAGE_INDUS
TRY_YEARS

.793 1.945 .057 .408 .684 -3.064 4.650 .080 .330 3.029

OVERALL_EXPERIENC
E_PROGRAMMING_AC
ADEMY_YEARS

3.599 1.209 .308 2.976 .004 1.200 5.997 .586 .604 1.657

OVERALL_EXPERIENC
E_PROGRAMMING_IN
DUSTRY_YEARS

1.085 1.033 .153 1.051 .296 -.963 3.134 .207 .306 3.267

EXPERIENCE_UNIT_TE
STING_LIKERT_SCALE

-11.256 7.260 -.191 -1.550 .124 -25.656 3.143 -.305 .428 2.339
EXPERIMENT_IDE_US
ED_DUMMY

18.514 8.810 .212 2.102 .038 1.040 35.989 .414 .639 1.565
TDD_USED_DUMMY -.463 9.917 -.004 -.047 .963 -20.133 19.206 -.009 .756 1.323
TASK_ITLD 8.332 13.385 .092 .622 .535 -18.218 34.881 .123 .294 3.400
SLICED_ITLD_DUMMY 31.962 13.330 .354 2.398 .018 5.521 58.403 .473 .297 3.372

Dependent Variable: QLTY
Apart from the variables directly related to programmer experience, the analysis also yielded results related to

other influential variables, all of which, except for subject academic background (CS_DEGREE), are moderator
variables:

 -value = 0.048) and big positive
effect (2 = 18.8). Subjects with specialized training in computer science tend to produce products whose quality
is 18.8% better than non-computer scientists.

 Subject typology (students vs. professionals) or, rather, the SITE where the quasi-experiments were run
(academia vs. industry) has a statistically significant (p- 1 =
32.0). The industry subjects tend to output better quality code than students.

 When subjects are familiar with the use of the IDE used in the experiments
(EXPERIMENT_IDE_USED_DUMMY), it has a statistically significant (p-value = 0.038) and positive effect

9 =18.5). In other words, code quality improves if subjects have used the IDE before.
 The use of sliced specifications (SLICED_ITLD 12= 31.96) on quality

irrespective of the task completed (TASK_ITLD), which is not significant. The extent to which TDD skills
might improve the quality of programmer output (remember that the treatment was an Iterative test-last
strategy) also turned out not to be significant.

The results of the MLR cannot be graphically displayed, due to the existence of multiple independent variables
(the corresponding scatter plot would be 13-dimensional). However, we can create scatter plots for the most
interesting variables (overall programming experience, both for industry and academy), provided that we plot them
independently, using the model residuals (which is probably arguable from the statistical viewpoint, but reasonably
accurate). The strategy is the following:

1. We have created a predictive model including all the influential variables (e.g.: SITE, CS_DEGREE, etc.)
for quality, with the exception of the OVERALL_PROGRAMMING_EXPERIENCE_ACADEMY
_YEARS.

2. We have obtained the residuals of the model. The residuals represent the original data, once the influence of
the statistically significant variables (all the model variables, actually) has been removed.

3. We have plotted the model residuals against the variables representing the overall programming experience,
both for industry and academy.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

24

The corresponding scatter plots are shown in Fig. 1. It can be easily perceived that the point cloud has an
appreciable ascending direction. The regression lines confirm the visual impression. The variable
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS is strongly correlated with quality (r = 0.26).
Correlation is statistically significant. In turn, OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS
is weakly correlated with quality (r = 0.13), and this correlation is non-significant (p-value = 0.15).

Fig. 1 Correlation between industry/academy experience and the residuals of the linear model with the variables SITE,
CS_DEGREE, EXPERIMENT_IDE_USED_DUMMY and SLICED_ITLD_DUMMY

5.3.2 Productivity
The results with respect to Productivity reported in Table 14 are more or less that same as the above, although they
differ as to the specific values. There are only two new noteworthy points:

 The significance associated with testing framework experience (EXPERIENCE_UNIT_TESTING_
FRAMEWORK_LIKERT_SCALE) is p-value= 0.069, that is, very nearly significant. This strengthens our
belief that this variable does have an influence on both code quality and productivity (effect = 13.25%).

 The statistical significance of unit testing experience (EXPERIENCE_UNIT_TESTING_LIKERT_SCALE) is
much greater (p-value = 0.404). The simplest, albeit not altogether convincing, explanation is that unit testing
experience does not affect productivity, despite it downgrading code quality.

Fig. 2 shows the scatter plot for the overall programming experience, both for industry and academy, using the same
strategy than in previous section. The variable OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY
_YEARS is strongly and significantly correlated with both productivity (r = 0.349). The correlation with
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS is virtually zero.

Fig. 2 Correlation between industry/academy experience and the residuals of the linear model with the variables
SITE, EXPERIMENT_IDE_USED_DUMMY and SLICED_ITLD_DUMMY

Table 14 MLR results for PROD

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

25

Model Unstandardized
Coefficients

Standardi
zed

Coefficie
nts

t p-val. 95.0% Confidence
Interval for B

 Collinearity
Statistics

B Std.
Error

Beta Lower
Bound

Upper
Bound

Effect
Size
(d)

Toleranc
e

VIF

1 (Constant) -
61.699

24.927 -2.475 .015 -111.142 -12.257
SITE 20.252 8.394 .263 2.412 .018 3.601 36.902 .475 .477 2.095
CS_TITLE 14.333 7.980 .165 1.796 .075 -1.496 30.162 .354 .673 1.485
EXPERIENCE_UNIT_TE
STING_FRAMEWORK_
LIKERT_SCALE

13.245 7.198 .196 1.840 .069 -1.031 27.522 .363 .501 1.998

EXPERIENCE_EXPERI
MENT_PROGRAMMIN
G_LANGUAGE_ACADE
MY_YEARS

-1.938 1.514 -.140 -1.280 .203 -4.941 1.065 -.252 .474 2.109

EXPERIENCE_EXPERI
MENT_PROGRAMMIN
G_LANGUAGE_INDUS
TRY_YEARS

-.574 1.649 -.046 -.348 .728 -3.844 2.696 -.068 .330 3.029

OVERALL_EXPERIENC
E_PROGRAMMING_AC
ADEMY_YEARS

4.345 1.025 .410 4.238 .000 2.311 6.379 .835 .604 1.657

OVERALL_EXPERIENC
E_PROGRAMMING_IN
DUSTRY_YEARS

.519 .876 .081 .593 .554 -1.217 2.256 .117 .306 3.267

EXPERIENCE_UNIT_TE
STING_LIKERT_SCALE

-5.160 6.155 -.096 -.838 .404 -17.370 7.049 -.165 .428 2.339
EXPERIMENT_IDE_USE
D_DUMMY

17.573 7.470 .221 2.353 .021 2.757 32.389 .464 .639 1.565
TDD_USED_DUMMY -9.295 8.408 -.096 -1.106 .272 -25.972 7.382 -.218 .756 1.323
TASK_ITLD 12.029 11.349 .147 1.060 .292 -10.482 34.540 .209 .294 3.400
SLICED_ITLD_DUMMY 28.777 11.303 .352 2.546 .012 6.358 51.196 .502 .297 3.372

Dependent Variable: PROD

5.4 Normality and homoscedasticity examination
The MLR has two requirements: (1) the model residuals should be normally distributed and (2) the variance

should be the same across all independent variable levels. These conditions are studied below.

5.4.1 Normality of model residuals
We used the Lilliefors-corrected Kolmogorov-Smirnov and the Shapiro-Wilk tests in order to test for the

normality of model residuals, Error! Reference source not found.and Q-Q plots to Error! Reference source not
found.illustrate the results of the tests..
The Kolmogorov-Smirnov testError! Reference source not found. shows that the residuals are normal (p-value =
.200 > 0.05) for both Quality (QLTY) and Productivity (PROD). The Shapiro Wilk test (which is better suited for
small sample sizes) returns a similar result. Skewness and kurtosis statistics are within the normal ranges of ± 1, as
expected for normal distributions.

Table 15 Normality Tests
STATISTIC KOLMOGOROV-SMIRNOVA SHAPIRO-WILK

SKEWNESS KURTOSIS STATISTIC DF P-VAL. STATISTIC DF P-VAL.
QLTY .023 -.470 .076 115 .096 .986 115 .261
PROD .310 .021 .072 115 .200* .989 115 .464
*. This is a lower bound of the true significance.
a. Lilliefors-corrected significance.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

26

Q-Q plots simultaneously plot for each data point the observed residual value against the standardized residual value.
If the residuals are normally distributed, the points are arranged more or less on a straight line (bisecting the
coordinate axes). Fig. 3 (a) and (b)Error! Reference source not found. show that the residuals for both QLTY and
PROD line in a more or less a straight line. Q-Q plots confirm that the residuals follow a normal distribution.

a. QLTY b. PROD

Fig. 3 Q-Q plot of residuals (a. QLTY, b. PROD)

5.4.2 Testing for homoscedasticity
This condition can be tested visually using a scatter plot of the predicted and expected values of the standardized

residuals. As the plots in Fig. 4 (a) and (b) show, the variance is quite uniform across the range of standardized
predicted values in both cases. Thus, the data meet the homoscedasticity or equality of variances condition for both
Quality (QLTY) and Productivity (PROD). Note that this effect is clearer for PROD than for QLTY. For QLTY,
there is a region to the left of the plot with missing data points. This could pose a validity threat, as discussed in
Section 7.

a. QLTY b. PROD

Fig. 4 Scatter plot (a. QLTY, b. PROD)

6 Nonlinear analysis
Multiple linear regression (MLR) is often used for the analysis of large datasets. In this research, the directional

character of the research question (/hypotheses) and the existence of multiple independent variables make MRL the
best-suited analysis method. However, MLR has two limitations:

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

27

The existence of potential nonlinear effects: It is possible that the relationship between experience and
performance has a bell-like shape, i.e., growing up to certain point (e.g., 40 years old), and decreasing both
to left and right. A linear regression model would report a null effect in this case. The decision tree could
split the dataset in three groups: left, middle and right side, along with their respective averages.

 Interactions when dummies or ordinal variables are involved: It is easy to define the interactions
between scale variables (i.e., multiplying them into a new variable which represents the interaction).
However, dummies and ordinal variables have arbitrary numerical codes. In this case, the multiplication
makes little sense. That is the reason why we have not included interactions in the MLR (in addition to a
propensity to analyse main effects only with limited size datasets).

In the following sections, we include the CART decision trees for the response variables QLTY and PROD,
respectively. This statistical procedure has been previously outlined in Section 4.4.

6.1 Quality
In order to create a decision tree, the researcher has some freedom to define the analysis parameters, such as the

max tree depth and the minimal number of cases per node. Choosing one of another value yields different (although
related) results.
We have set the max tree depth to 5. This is the default value in SPSS. We have tested different values for the number
of cases. The respective decision trees are shown in Appendix J. Trees with few levels are uninformative. Very
complex trees (many nodes and levels) are difficult to interpret. We examined the different trees and chose those with
average complexity (3-5 levels and 2 nodes per level). The most informative trees were obtained setting the number
of cases to 12 for parent nodes, and 6 for child nodes). It is noticeable that, according to (Glenwick, 2016), for small
datasets the optimum number of cases is the 10% and 5% of the sample size for parent and child nodes, respectively.
The values that we have chosen match exactly these percentages (our sample size is N = 124).

Fig. 5 shows the decision tree for the QLTY response variable. The tree has 5 levels (including the root node).
This root node defines the average quality for the entire population (59%). As we move down from the root node, we
find subpopulations defined by values of the independent variables exhibiting different quality averages.

The second level is defined by the SLICED_ITLD_DUMMY variable. This variable represents whether the
subjects have used a sliced specification during the experimental sessions. Those subjects who have used a sliced
specification (SLICED_ITLD_DUMMY > no, that is, SLICED_ITLD_DUMMY = yes) obtain 80% quality in
average. The average quality for non-sliced specifications is considerably lower (50%).

Two variables define the third level: OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY _YEARS and
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS for non-sliced and sliced specifications,
respectively. This result is equivalent to the existence of two interactions SLICED_ITLD_DUMMY x
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS and SLICED_ITLD_DUMMY x
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS. These interactions have not been considered
in the MLR. In the case of non-sliced specifications:

 Subjects with very little industry programming experience (less than 0.6 years) perform poorly (quality =
19%). Subjects above 0.6 years obtain average quality values (56%).

 Among the 83 subjects that used a non-sliced specification, there are both students and professionals.
However, academy-related experience does not play a role in this level/branch. This suggests that subjects
with industry experience can use regular, real-life (non-sliced) specifications effectively, whereas subjects
with longer academic experience (probably, the students themselves) perform better with more detailed
(sliced) specifications (see below).

 It is also noticeable that the variable OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY _YEARS
does not show a significant main effect (that is, by itself, without considering the type of specification) in the
MLR.

In the case of sliced specifications:
 Subjects with more than 2.5 years programming experience in academia obtain rather high quality scores

(89%). The scores situate in the average for lower experiences (59%).
 As above, among the 41 subjects in this group, there are both professionals and students. However, those

subjects who take more advantage of the sliced specifications are the ones with longer programming
experience obtained during their academic training.

The fourth level is defined by the variable EXPERIENCE_EXPERIMENT_PROGRAMMING
_LANGUAGE_ACADEMY_YEARS, regardless of the tree branch. The direction of the effect is as expected: longer

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

28

experiences increase quality scores by 19%-25%. However, this increment applies only to experienced (either in
industry or academy) subjects. Notice that this variable does not show a significant effect in the MLR.

The firth level is defined by the CS_DEGREE and EXPERIENCE_EXPERIMENT_PROGRAMMING_
LANGUAGE_INDUSTRY_YEARS. Holding a CS degree makes a big difference in the average scores (22%
difference). The impact of the industry experience in the programming language used in the experiment is negligible
(4% difference).

In general, the results of the CART decision tree are aligned to the MLR. The most influential variable is the sliced
character of the specification. This variable has the 2nd larger effect size in the MLR, and it appears at the top level in
the decision tree. The overall programming experience obtained in academy and holding a CS degree also show
beneficial effects both in the MLR and the decision tree.

There are some differences as well between the MLR and the CART decision tree. The site where the experiment
was conducted and the actual usage of the IDE used during the experiment do not appear as explanatory variables in
the CART tree. In turn, the overall programming experience in academy appears to be influential, although limited to
non-sliced specifications. The experience in the programming language used in the experiment obtained in academy
has an influential effect also, but only for experienced (either industry or academy) subjects.

Fig. 5 CART decision tree for QLTY

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

29

6.2 Productivity
We have used the same values for the max tree depth, and number of cases per node, than in the previous section. The
corresponding tree is displayed in Fig. 6.

The tree has only 4 levels, and a much simple splitting pattern than Fig. 5. The grand mean is 39%. The second
level is defined by SLICED_ITLD_DUMMY variable. Those subjects who used a sliced specification perform better
(36% difference in average) than those who used a regular specification. The subjects who used a sliced specification
can be further divided at the third level depending on their overall programming experience acquired in academia.
Again, those subjects with longer experiences (1.5 or more years) perform dramatically better (45% difference) than
inexperienced ones. Finally, the fourth level is defined by the actual usage of the experimental IDE, exhibiting
smaller but also considerable improvements (24% difference).

The coincidences with the MLR are almost perfect. All variables, with the exception of SITE, that yielded
significant results in the MLR, also appear as influential in the CART decision tree. It is also noticeable that the
second and third levels in Fig. 6 replicate the right branch in Fig. 5. This suggest that the most influential variables
are independent of the measurement procedure (i.e., the concrete response variable used).

Fig. 6 CART decision tree for PROD

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

30

7 Discussion
7.1 Preliminary considerations
Before trying to interpret the results, it is worth considering whether: (1) the measurement of experience (in years)
yield different results than the measurement of experience using Likert scales, and (2) whether there are any
systematic differences (note, for example, that the analysis omitted the EXPERIMENT_CODE variable) between
experiments that rule out joint analysis and pose a threat to the validity of the results.

With regard to the first question, Appendix G reports the MLR analysis in which experience measured in years
was replaced by variables measured on a Likert scale. The observed trends in terms of both -values and statistical
significance are exactly the same. Indeed, the standard error for the
EXPERIENCE_EXPERIMENT_PROGRAMMING_LANGUAGE_LIKERT_SCALE and
OVERALL_EXPERIENCE_PROGRAMMING_LIKERT_SCALE variables is inflated with respect to their
equivalent values measured in years. This worsens the detection of significant effects.

With regard to the second question, Appendix H analyses the model residuals against the EXPERIMENT_CODE
variable. We noted in Section 5 that the model residuals were normal and, consequently, had zero mean and random
but constant variance. The boxplots charting the residuals by experiment appear to follow the same pattern: each box
is centred around zero, and the Q1-Q3 ranges are almost equal (note that there are not many subjects in each
experiment, so exact matches are unlikely). The results of the tests of the equality of means (a univariate ANOVA)
are not significant. This implies that the quality or productivity does not depend on the concrete company or
university were the quasi-experiments were conducted. The Levene test is significant for Quality, but non-significant
for Productivity. Nevertheless, it is not a surprise that that the quasi-experiments have different variances due to
sample size and diversity of the underlying populations. It appears, therefore, that the data can be jointly analysed and
interpreted.

7.2 Effect of experience
The results of the Multiple Linear Regression (MLR) suggests that programming experience (except for
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMIA_YEARS) is not related to better programmer
performance (in terms of quality or productivity). In turn, the impact of the programming experience gained in
academia is considerable. In terms of percentages, each training year adds around 4% increment in both quality and
productivity, i.e., 3 years of programming experience gained by subjects during their degree (a reasonable
assumption) implies that the code contains 12% less errors (in average).
values represent a medium effect size for quality (d = 0.59) and a large effect size for productivity (d = 0.84).

These results appear to be consistent with the more modern theories of experience (Ericsson, 2006a) that make a
distinction between length of service (which does not lead to expertise) and deliberate and intensive practice (which
does lead to expertise):

 The experience gained in industry could (generally) be considered as a routine. Professionals are expected to
Although at the individual level programmers can attend to training courses and/or self-educate to beat those
limits, such improvement is not likely intensive enough (e.g., not performed daily for several hours), because
the daily work is priority, and the remaining (/spare) time is usually filled with personal or family activities.

 In academia, students perform programming tasks within training courses. In turn, these courses are typically
designed in such a way that: (1) new topics are introduced progressively; (2) the difficulty of the tasks, e.g.,
programming assignments, increase with time and (3) students make every effort, every day during the
academic period, to get high grades. Thus, the salient feature of academia is deliberate and intensive training,

erformance, which is exactly what we have
observed in this research.

Of course, the problem is how to reconcile our results with the findings of previous programming studies. We
cannot, of course, rule out error on our part. However, we can venture a hypothesis. Table 6 to Table 10 show the
average quality and productivity achieved by subjects depending on their programming experience and SITE
(academia, industry), without considering the other variables in the analysis. As said before, these tables should be
used merely to identify trends and not as an independent instance for analysis. However, the data reported are
informative:

 Looking at the average values for academia, we find that there is a clear trend towards better performance as
experience increases. This being true, studies that use students with different experience levels (e.g.: freshmen

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

31

vs. seniors) could find significant differences between them. There is some evidence that the positive effects
of experience become visible in this context, e.g., (Daun, Salmon, Weyer, & Pohl, 2015; Runeson, 2003).

 In industry, the data plot has zigzag profile with no clear trends. However, the MLR yields a positive,
significant effect for SITE, i.e., professionals perform better than students in average (see Section 5.3.1).
Considering that several studies have been conducted comparing students with professionals, it is not
surprising that they found that experience did have an effect.

The decision trees give a somewhat different picture. The most noticeable difference is the absence of the variable
SITE in both trees, whereas SITE has a strong, statistically significant effect (in the MLR
for both quality and productivity. The reason for difference lies, most likely, in an interaction among variables.

The decision tree algorithm splits the root note using the variable that more clearly separates the original dataset
into subsets. This variable is SLICED_ITLD_DUMMY (i.e., the sliced character of the specification), both for
quality and productivity. This decision could be expected just by looking at the MLR tables, because
SLICED_ITLD_DUMMY has the greatest effect size, both for quality and productivity.

Further splitting is dependent upon the decisions taken in the higher level nodes i.e., they represent interactions.
Here, the splitting pattern draw a distinction between quality and productivity.

 For quality, the 2nd level nodes are defined by two variables:
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS (for non-sliced specifications) and
OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS (for sliced specifications).

 For productivity, only the node corresponding to sliced specifications breaks down into two child nodes,
defined again by the OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS variable.

We venture that the positive, statistically significant effect for SITE in the MLR is related to the interaction
SLICED_ITLD_DUMMY x OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS and
SLICED_ITLD_DUMMY x OVERALL_EXPERIENCE_PROGRAMMING_ACADEMY_YEARS. The MLR does
not contain this interaction, so that SITE is assigned the variability associated to SLICED_ITLD_DUMMY x
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS. The p-values in the MLR tables (see
Sections 5.3.1 and 5.3.2) also back up this explanation: SITE has lower p-values (or higher effect size) for quality;
OVERALL_EXPERIENCE_PROGRAMMING_INDUSTRY_YEARS emerges precisely in the quality decision
tree).

If we accept that programming experience in industry has an effect when subjects use non-sliced specifications,
the previous argumentation regarding the routine character of the experience in industry would be wrong. In reality,
the impact of the experience in industry is rather low. The child nodes are split at 0.6 experience years, and only a
fraction of subjects (17 vs. 66) are located the in low performing node. In other words, after 7 experience months,

 performance (in average).
We have not discussed further above the impact of the sliced character of the specification because it is secondary

B clearly shows that sliced specifications are more detailed
and provide guidance to the programmers during the coding task. We expected that sliced specification exhibit higher
quality and productivity scores. However, it is somewhat surprising that sliced specifications interact with
programming experience. In our opinion, we are envisioning a domain knowledge effect here:

 Non-sliced specifications (not the ones we provide in Appendix B but comparable to some extent) are
typically used in industry. After some time (our decision tree says 0.6 years), programmers get used to this
type of specification and solve the corresponding task professionally.

 Students are not usually exposed to problem assignments where a lot of domain knowledge is needed to
enable resolution. Problem sheets are typically detailed (again, comparable to the specifications in Appendix
B, including hints and examples to ease understanding. Students get used to this type of documents after
some time (2.5 years) and become proficient.

The influence of the type of specification represents, probably, another confirmation of the specificity of the
experience (K. A. Ericsson & Lehmann, 1996). Subjects exhibit expertise in some domains only. Notice the restricted
character of domain, which is linked in our case to specification types. Domain influence could extend to the types of
tasks, development environment, etc. We discuss these issues below.

7.3 Effect of other variables
Three other variables (besides the sliced character of the specification) have shown a clear influence on

programmer performance, although only the first was statistically significant: use of IDE, testing framework
experience and unit testing experience.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

32

The results for IDE use and testing framework experience are not at all surprising. It is reasonable to assume that
the use of proper tools should improve programmer performance. It is remarkable, however, that these variables

-values are from 10% to 20%) should have such a noticeable effect.
With regard to unit testing experience, we did not expect to find that it had negative effects. There are two more or

less obvious interpretations of this result. Subjects who are experienced in unit testing might pay more attention to
quality and thus be less productive. However, the result of the MLR suggests just the opposite. Unit testing
experience has a negative impact on quality -value of around -10%, not far from statistical significance) but
not on productivity (p-value = 0.4, far from statistical significance).

A possible alternative argument is that the testing activity and the programming activity are performed by different
subject profiles, i.e., testers do not make code and programmers do not code. An obvious implication of this
assumption would be that testers (i.e., people with unit testing experience) achieve low quality and productivity
scores. This could be true: Quality decreases as unit testing experience increases, and although productivity has a
large p-value, the associated -value is negative, around -5%. However, the correlations between unit testing
experience and programming experience are substantial, positive () and statistically significant. Also, the
correlation between unit testing experience and testing framework experience is very high, positive (r = 0.568) and
statistically significant. In other words: it seems that testers do know (at least in our sample) how to make code.

The reason why unit testing experience leads to decreasing quality and productivity is unclear for us; it requires
further research.

8 Validity Threats
8.1 Threats to statistical conclusion validity

 Homoscedasticity-related problems. Although the regression model for external quality satisfactorily meets
the normality condition, we found, when testing for homoscedasticity, that the data were not uniformly
distributed -values),
although it does influence statistical significance. We believe that this threat is not at work, as our results with
respect to programming experience show that the associated effect sizes are very small. On this ground,
although the statistical significances could be affected, we can likewise conclude that experience does not have
a sizeable effect on code quality and subject productivity.

 Unbalancing in some independent variables. The parameter estimation could be subject to unbalanced groups
(for example, academic background or use of IDE). However, although we cannot rule out this having a
negative effect among variables, we believe that this threat does not challenge our main findings on two
grounds: (1) the size and power of the regression models are large enough, and they are significant, normal and
reasonably homoscedastic, and (2) unbalancing does not affect the main variables concerning programming
experience.

 Recoding of the Experience in testing framework used in the experiment variable. The process of recoding
applied to the testing framework experience levels could cause some sort of bias. However, this should not
happen on two grounds: (1) this variable has been removed from the model on collinearity grounds, and (2) we
have found that, if introduced into the MLR without applying recoding (i.e., considering all three levels
gTest, jUnit and Boost Test), this variable is still collinear and would therefore also have been removed from
the model.

 Measurement bias. Each quasi-experiment was measured by a single measurer. More than one person should
conduct the measurement process in order to improve measurement accuracy. In order to counteract this threat,
we defined and gave experimental subjects API code templates for the experimental tasks. These code
templates contain methods and parameters definitions that can be used to solve the experimental tasks. Those
methods and parameters are also used by the test suites. Code templates reduce the manipulations that
measurers need to make in the -measurers accuracy.

8.2 Threats to internal validity
 Ambiguity surrounding the causality of the effects. Since this is quasi-experimental research, the conclusions

cannot be interpreted in causal sense. In our research, we have studied several independent variables (k = 12)
regarding experience or specialized knowledge for performing an experimental task. However, there could be
moderator variables that we have not taken into account and that explain the results, e.g., variables referring to

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

33

soft skills or programmer personality. The strategy that we used to counteract this was to measure all the
moderator variables that looked as if they might realistically have an effect on code quality and programmer
productivity. But, of course, we cannot be sure that we have considered all the relevant variables.

 Population heterogeneity. The results of this research may be threatened by combining several experimental
populations with different characteristics, which could interact with experience and counteract the effects when
analysed jointly. We believe that this threat is not at work.
Individual experiments (in particular, industry experiments) have insufficient sample size for the regression
model achieving a minimum power. The approach that we have followed to assess whether the population
coming from a given experiment (which, in turn, corresponds to a concrete company/university and moment in
time) exhibit a particular behavior is the examination of the global regression model residuals at the experiment
level. We have not detected substantial differences between the model residuals when they are studied
separately by experiment (see appendix H).
Population subgroups can be defined on different grounds. Probably, the two most relevant (and meaningful)
sub-populations are students vs. professionals. When they are analysed independently, the results are not
exactly alike, but much the same; in particular, the lack of effect of industry experience, and the positive effect
of academic training, does not change.
On the other side, the mix of populations can be seen as a strength of our study, as the diversity of the
populations increases the external validity of the resulting conclusions.

 Perturbations caused by the use of ITLD. Although ITLD is a very well-known and popular strategy among
programmers, we cannot be sure that all the subjects were familiar with its use. This might lead to a change in

method, which would affect their productivity and performance. We have applied two
strategies to counteract this threat. First, we provided specific training on ITLD before applying the treatment.
Second, we did not oblige programmers to apply a particular ITLD variant; it was left up to them to apply
whichever ITLD strategy they saw fit without this having any impact whatsoever on the response variable
measurement.

 Perturbations caused by the use of specific IDEs or Unit Testing Frameworks. A large proportion of
subjects do not have experience with the IDE used during the experiment and/or unit testing. Although we have
controlled these variables explicitly (notice that they have been included both the in multiple linear regression
and decision tree analyses), we cannot rule out that experienced subjects perform particularly bad when they
have to code in unfamiliar contexts (e.g., an IDE they do not know). This makes identifying experience effects
more difficult.

8.3 Threats to construct validity
 Nature of the experimental tasks. We used the MarsRover API (MR) and Bowling Scorekeeper (BSK)

experimental tasks. Both are basically algorithmic tasks. BSK uses some terms (e.g., strike, spare) with which
the experimental subjects may not be familiar. These tasks were specified in two ways: sliced and non-sliced.
We cannot rule out that these decisions may have biased our results. In order to counteract this threat, we
included variables that represent the task and the specification type in the MLR analysis, which we trust will
separate their effects from the effects of experience.

8.4 Threats to external validity
 Effects of programming experience vs. domain knowledge. The area of expertise under study is

programming. Programming is generally defined here as consisting of knowledge of programming languages,
algorithms and strategies (e.g., dynamic programming), good practices (e.g., design patterns), some libraries
(e.g., regex), etc. Programming could also be construed as meaning knowledge of how to perform a task in a
specific domain, e.g., code a specific network controller. Our aim was to study the effect of programming
experience and not the effect of domain knowledge (which is ultimately another facet of expertise). BSK and
MR are outside of the domain of the experimental subjects, particularly professional programmers. By using
tasks that are outside the domain, we have separated the effects of domain knowledge from the
effects of programming experience. Therefore, our results: (1) should be interpreted exclusively in terms of the
effect of programming experience (the results might differ if we used other, more familiar experimental
problems), and (2) have greater external validity, as they are domain independent.

 Limitation of the number of experimental problems. We have only used two experimental problems (MR
and BSK) so that the groups derived from the combination of treatments, tasks and blocking variables have the

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

34

largest possible number of subjects. This improves the statistical analysis. On the other hand, our study has been
conducted in a limited setting. Therefore, our results should be extrapolated to other contexts with due caution.

9 Conclusions
This paper studied the effects of different types of experience (academic background, programming experience, unit
testing experience, and IDE and TDD use) on the performance of a set of 126 programmers from four companies and
three universities across 10 quasi-experiments. The experimental design used separates the effects of domain
knowledge from the effects of programming experience, which is the focus of this study.

The most important result is that years of experience are not able to predict programmer performance at all. The
only exception is years of programming experience in academia (in other words, years of training), which does
appear to have a positive influence on programmer performance. Other influential variables are testing framework
experience and routine use of the IDE, which we believe reflects the positive influence of modern programming tools
on programmer performance.

From another viewpoint, companies should give serious consideration to their programmer lifelong training, as the
mere repetition of routine tasks does not improve their performance beyond mere competency. However, training
courses may, or may not, contribute to increased performance. For instance, industry training courses tend to skip
strict performance assessment, on social, psychological or labor law grounds. In turn, academic training is
characterized by setting goals and thresholds, and reasonably strict assessment procedures. To what extent
transferring academic strategies to industry could be successful? Which strategies have higher yields? Answering
those questions require interdisciplinary research, from the perspectives of applied psychology, education, and
software engineering disciplines.

From the viewpoint of the representativeness of our sample, as well as the statistical power and rigour of the
of determination (R2 0.4) clearly indicates that there is a lot of unexplained variance. This variance is very likely to
testing experience appear to be rela We intend to explore this line of research in the
future.

Acknowledgement
We would like to acknowledge Dr.Hakan Erdogmus who contributed to the design of one of the tasks used in the

study (BSK) and the corresponding test cases. We also wish to acknowledge Mr. Timo Raty for his participation in
the creation of the code templates for C++, and the training given in one of the quasi-experiments. We wish also
acknowledge Mr. Adrian Santos for his support in the collection of the sub

References
Adelson, B. (1981). Problem solving and the development of abstract categories in programming languages. Memory

& Cognition, 9(4), 422-433.
Adelson, B. (1984). When novices surpass experts: The difficulty of a task may increase with expertise. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 10(3), 483.
Adelson, B., & Soloway, E. (1985). The role of domain experience in software design. IEEE Transactions on

Software Engineering, (11), 1351-1360.
Agarwal, R., & Tanniru, M. R. (1991). Knowledge extraction using content analysis. Knowledge Acquisition, 3, 421-

441.
Aranda, A., Dieste, O., & Juristo, N. (2014). Evidence of the presence of bias in subjective metrics: Analysis within a

family of experiments. Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2014), London, UK. pp. 24-27.

Arisholm, E. Gallis, H., Dyba, T. & Sjoberg, D. I. K. (2007). Evaluating pair programming with respect to system
complexity and programmer expertise. IEEE Transactions on Software Engineering, 33(2), 65-86.

Armour, P. G. (2004). Beware of counting LOC. Communications of the ACM, 47(3), 21-24.
Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for java programming among

engineering students. The Turkish Online Journal of Educational Technology, 8(1), 26-32.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

35

B. Kitchenham, & E. Mendes. (2004). Software productivity measurement using multiple size measures. IEEE
Transactions on Software Engineering, 30(12), 1023-1035.

Belsley, D. A. (1991). Conditioning diagnostics: Collinearity and weak data in regression Wiley.
Bob, U. (2005). The bowling game kata. Retrieved from

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees.

Psychological Methods, 18, 71-86.
Burkhardt, J., Détienne, F., & Wiedenbeck, S. (1997). Mental representations constructed by experts and novices in

object-oriented program comprehension. In S. Howard, J. Hammond & G. Lindgaard (Eds.), (pp. 339-346)
Springer US.

Burkhardt, J., Détienne, F., & Wiedenbeck, S. (2002). Object-oriented program comprehension: Effect of expertise,
task and phase. Empirical Software Engineering., 7(2), 115-156.

Camerer, C. F., & Johnson, E. J. (1997). 10 the process-performance paradox in expert judgment: How can experts
know so much and predict so badly? Research on Judgment and Decision Making: Currents, Connections, and
Controversies, , 342.

Campbell, R. L., & Bello, L. D. (1996). Studying human expertise: Beyond the binary paradigm. Journal of
Experimental & Theoretical Artificial Intelligence, 8(3-4), 277-291.

Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess.
Chmiel, R., & Loui, M. C. (2004). Debugging: From novice to expert. ACM SIGCSE Bulletin, , 36. (1) pp. 17-21.
Chulis, K. (2012). Optimal segmentation approach and application. clustering vs. classification trees. Retrieved from

http://www.ibm.com/developerworks/library/ba-optimal-segmentation/
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (Second ed.). Hillsdale, NJ: Lawrence

Erlbaum Associates.
Colvin, G. (2008). Talent is overrated: What really separates world-class performers from EverybodyElse Penguin

Publishing Group.
Cooke, N. J., & Schvaneveldt, R. W. (1988). Effects of computer programming experience on network

representations of abstract programming concepts. International Journal of Man-Machine Studies, 29(4), 407-
427.

Crosby, M., Scholtz, J., & Widenbeck, S. (2002). The roles beacons play in comprehension for novice and expert
programmers. 14th Workshop of the Psychology of Programming Interest Group, Brunel University. 58-73.

Curtis, B. (1984). Fifteen years of psychology in software engineering: Individual differences and cognitive science.
Orlando, Florida, USA: IEEE Press.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process for large systems.
Communications of the ACM, 31(11), 1268-1287.

Darcy, D. P., & Ma, M. (2005). Exploring individual characteristics and programming performance: Implications for
programmer selection. Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
314a-314a.

Daun, M., Salmon, A., Weyer, T., & Pohl, K. (2015). The impact of students' skills and experiences on empirical
results: A controlled experiment with undergraduate and graduate students. Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, Art. No. 29.

Davies, S. P. (1991). Characterizing the program design activity: Neither strictly top-down nor globally opportunistic.
Behaviour & Information Technology, 10(3), 173-190.

De Groot, A. D.(1978). Thought and choice in chess Walter de Gruyter.
Doane, S. M., Pellegrino, J. W., & Klatzky, R. L. (1990). Expertise in a computer operating system:

Conceptualization and performance. Human-Computer Interaction, 5(2), 267-304.
Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of the test-first approach to programming.

Software Engineering, IEEE Transactions on, 31(3), 226-237.
Ericsson, K. A. (2006a). The influence of experience and deliberate practice on the development of superior expert

performance. The Cambridge Handbook of Expertise and Expert Performance, , 683-703.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

36

Ericsson, K. A. (2006b). An introduction to cambridge handbook of expertise and expert performance: Its
development, organization, and content. In K. A. Ericsson, N. Charness, R. R. Hoffman & P. J. Feltovich (Eds.),
The cambridge handbook of expertise and expert performance (pp. 3-19) Cambridge University Press.

Ericsson, K. A., & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist,
49(8), 725.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and Exceptional Performance: Evidence of maximal adaptation to
task constraints. Annual Review of Psychology, 47(1), 273-305.

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert
performance. Psychological Review, 100(3), 363-406.

Experience. (n.d.). Retrieved October 7, 2015, from http://www.merriam-webster.com/dictionary/experience
Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis program for

the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
Fenton, N., & Bieman, J. (2014). Software metrics: A rigorous and practical approach, third edition. CRC Press.
Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. SAGE Publications.
Glenwick, D. S. (2016). Handbook of methodological approaches to community-based research: Qualitative,

quantitative, and mixed methods Oxford University Press.
Green, S. B. (1991). How many subjects does it take to do A regression analysis. Multivariate Behavioral Research,

26(3), 499-510.
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis Academic Press.
Heiberger, R. M., & Holland, B. (2013). Statistical analysis and data display: An intermediate course with examples

in S-plus, R, and SAS Springer New York.
ISO, I. (2011). IEC25010: 2011 systems and software engineering Systems and software quality requirements and

evaluation (SQuaRE) System and software quality models. International Organization for Standardization,
Jeffries, R., Turner, A. A., Polson, P. G., & Atwood, M. E. (1981). The processes involved in designing software.

Cognitive Skills and their Acquisition, 255, 283.
Jørgensen, M., Faugli, B., & Gruschke, T. (2007). Characteristics of software engineers with optimistic predictions.

Journal of Systems and Software, 80(9), 1472-1482.
Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics

problems. Science (New York, N.Y.), 208(4450), 1335-1342.
Lee, W. K., Chung, I. S., Yoon, G. S., & Kwon, Y. R. (2001). Specification-based program slicing and its

applications. Journal of Systems Architecture, 47(5), 427-443.
Lui, K. M., & Chan, K. C. C. (2006). Pair programming productivity: Novice novice vs. expert expert. International

Journal of Human-Computer Studies, 64(9), 915-925.
MacCallum, R., Zhang, S., Preacher, K., & Rucker, D. (2002). On the practice of dichotomization of quantitative

variables. , 7. pp. 10-40.
MacDorman, K. F., Whalen, T. J., Ho, C., & Patel, H. (2011). An improved usability measure based on novice and

expert performance. International Journal of Human-Computer Interaction, 27(3), 280-302.
Madeyski, L. (2005). Preliminary analysis of the effects of pair programming and test-driven development on the

external code quality. Proceedings of the 2005 Conference on Software Engineering: Evolution and Emerging
Technologies, pp. 113-123.

Marakas, G. M., & Elam, J. J. (1998). Semantic structuring in analyst and representation of facts in requirements
analysis. Information Systems Research, 9(1), 37-63.

Mayer, R. E. (1997). From novice to expert. In M. Helander, T. K. Landauer & P. Prabhu (Eds.), Handbook of
human-computer interaction (2nd ed., pp. 781-795) Elsevier Science B.V.

McDaniel, M. A., Schmidt, F. L., & Hunter, J. E. (1988). Job experience correlates of job performance . Journal of
Applied Psychology, 73(2), 327.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). Knowledge organization and skill differences
in computer programmers. Cognitive Psychology, 13(3), 307-325.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

37

Miles, J., & Shevlin, M. (2001). Applying regression and correlation: A guide for students and researchers SAGE
Publications.

Muller, M. M. & Padberg, F. (2004). An empirical study about the feelgood factor in pair programming. Proceedings.
10th International Symposium on Software Metrics, 151-158.

Müller, M. M., & Höfer, A. (2007). The effect of experience on the test-driven development process. Empirical
Software Engineering, 12(6), 593-615.

Munir, H., Moayyed, M., & Petersen, K. (2014). Considering rigor and relevance when evaluating test driven
development: A systematic review. Information and Software Technology, 56(4), 375-394.

Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications Academic
Press.

 Quality & Quantity, 41(5), 673-
690.

Ricca, F., Di Penta, M. Torchiano, M. Tonella, P. & Ceccato, M. (2007). The role of experience and ability in
comprehension tasks supported by UML stereotypes. 29th International Conference on Software Engineering,
375-384.

Riley, R. D., Lambert, P. C., & Abo-Zaid, G. (2010). Meta-analysis of individual participant data: Rationale, conduct,
and reporting. Bmj, 340 doi:10.1136/bmj.c221

Runeson, P. (2003). Using students as experiment subjects an analysis on graduate and freshmen student data.
Proceedings 7Th International Conference on Empirical Assessment & Evaluation in Software Engineering, 95-
102.

Sheppard, S. B., Curtis, B., Milliman, P., & Love, T. (1979). Modern coding practices and programmer performance .
Computer, 12, 41-49.

Siegmund, J., Kästner, C., Liebig, J., Apel, S., & Hanenberg, S. (2014). Measuring and modeling programming
experience. Empirical Software Engineering, 19(5), 1299-1334.

Sim, S. E., Ratanotayanon, S., Aiyelokun, O., & Morris, E. (2006). An initial study to develop an empirical test for
software engineering expertise. Institute for Software Research, University of California, Irvine, CA, USA,
Technical Report# UCI-ISR-06-6,

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE Transactions on Software
Engineering, SE-10(5), 595-609.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer Psychology Press.
Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs: An empirical study.

Commun.ACM, 26(11), 853-860.
Sonnentag, S. (1995). Excellent software professionals: Experience, work activities, and perception by peers.

Behaviour & Information Technology, 14(5), 289-299.
Sonnentag, S. (1998). Expertise in professional software design: A process study. Journal of Applied Psychology,

83(5), 703-715.
Votta, L. G. (1994). By the way, has anyone studied any real programmers, yet? Software Process Workshop, 1994.

Proceedings., Ninth International, pp. 93-95.
Weiser, J., & Shertz, J. (1984). Programming problem representation in novice and expert programmers.

International Journal of Man-Machine Studies, 19, 391-398.
Weiser, M. (1981). Program slicing. San Diego, California, USA: IEEE Press.
Wiedenbeck, S. (1985). Novice/expert differences in programming skills. International Journal of Man-Machine

Studies, 23(4), 383-390.
Williams, L., Kudrjavets, G., & Nagappan, N. (2009). On the effectiveness of unit test automation at microsoft.

Software Reliability Engineering, 2009. ISSRE '09. 20th International Symposium on, pp. 81-89.
Winship, C., & Mare, R. D. (1984). Regression models with ordinal variables. American Sociological Review, 49(4),

512-525.
Ye, N., & Salvendy, G. (1994). Quantitative and qualitative differences between experts and novices in chunking

computer software knowledge. International Journal of Human-Computer Interaction, 6(1), 105-118.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX A: DESCRIPTION OF THE INDEPENDENT VARIABLES
Table1 shows the 15 independent variables used in this research. The main aim of this appendix is to list each varia-
ble giving a brief description of the variable, its type (nominal, ordinal or dummy) and its respective levels. Section 3
details the types and measurement of variables.

Table1 Independent variables
Independent variable Description Variable type Levels (metric)

CS_DEGREE Education of experimental
subjects

Dummy 0. Non-computer science
1. Computer science

EXPERI-
ENCE_EXPERIMENT_PRO
GRAM-
MING_LANGUAGE_ACAD
EMIA_YEARS

Years of programming
language experience gained
in academia

Scalar Number of years

EXPERI-
ENCE_EXPERIMENT_PRO
GRAM-
MING_LANGUAGE_INDU
STRY_YEARS

Years of programming
language experience gained
in industry

Scalar Number of years

EXPERI-
ENCE_UNIT_TESTING_LI
KERT_SCALE

Unit testing experience
measured on a Likert scale
(1-4)

Ordinal 1. No experience (< 2 years)
2. Novice (2-5 years)
3. Intermediate (5-10 years)
4. Expert (>10 years)

EXPERI-
MENT_IDE_USED_DUMM
Y

Knowledge of IDE use Dummy 0. No
1. Yes

EXPERI-
MENT_PROGRAMMING_L
ANGUAGE

Programming language used
in the experiment

Categorical 1. C++
2. JAVA

OVER-
ALL_EXPERIENCE_PROG
RAM-
MING_ACADEMIA_YEAR
S

Years of overall program-
ming experience gained in
academia

Scalar Number of years

OVER-
ALL_EXPERIENCE_PROG
RAM-
MING_INDUSTRY_YEARS

Years of overall program-
ming experience gained in
industry

Scalar Number of years

SITE Site at which the experiment
was run

Dummy 0. Academia
1. Industry

SLICED_ITLD_DUMMY Whether or not slicing was
used in the task

Dummy 0. No
1. Yes

TASK_ITLD Tasks that subjects had to
solve

Categorical 1. MR
2. BSK

TDD_USED_DUMMY Knowledge of TDD use Dummy 0. No
1. Yes

TRAINER Trainer for TDD Dummy 1. Burak Turhan
2. Oscar Dieste

UNIT_TESTING_FRAMEW
ORK_LIKERT_SCALE

Framework used to write
unit tests

Categorical 1. GTEST
2. BOOST
3. JUNIT

UNIT_TESTING_FRAMEW
ORK_LIKERT_SCALE_AD
APTED

Testing framework recoded
in order to transform the
categorical variable into a
dummy variable

Dummy 2. BOOST
3. xUNIT

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX B: DETAILS OF THE EXPERIMENT
B1. SPECIFICATION FOR MARS ROVER API WITH SLICING

Develop an API that moves a rover around a planet. The planet is represented as a grid with x and y coordinates.
The rover is also facing in a direction. The direction can be north (N), south (S), west (W) or east (E). The input re-
ceived by the rover is a string representing the commands it needs to execute.

1. The planet
The planet on which the rover moves is represented as a square grid, with size (x, y).
Requirement: Define a planet of size (x, y).
Example: (100,100) creates a planet of size 100x100.

2. Landing
When the rover lands on the planet, it begins its journey at the start of the grid facing north.
Requirement: When the rover lands on the planet its position shall be (0,0) facing north.
Example: An empty command to the rover returns its landing status (0,0,N).

3. Turning
The rover turns right or left. It remains in the same cell of the grid. Its direction changes accordingly.
Requirement: Compute the position of the rover after turning left
Example: A rover at position (0,0,N) is at position (0,0,E) after executing command
(0,0,N) is at position (0,0,W) after executing

4. Moving
does not change.
Requirement: Compute the position of the rover after moving forward

grid cell.
Example: A rover at position (7,6,N) moves to (7,7,N) after executing a command. A rover at position (5,8,E)
moves to (4,8,E)

5. Moving and turning combined

Requirement: Compute the position of the rover after executing a series of commands.
Example: A rover at position (0,0,N) moves to position (2,2,E) after executing

6. Wrapping
Since the planet is a sphere the rover wraps at the opposite edge once it moves over it.
Requirement: Compute the position of the rover moving over the edges. The rover shall spawn on the opposite
side.
Example: A rover on a planet of size 100x100, which moves backward after landing (remem-
ber that landing always takes place at position (0,0,N)) moves to position (0,99,N).

7. Positioning of obstacles
Obstacles can be positioned on specific cells of the grid.
Requirement:
Example: ice that the

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

planet grid should be greater than or equal to 6x6.

8. Identifying a single obstacle
The rover might encounter (i.e., tries to move into) an obstacle. When it does it should report the obstacle and
continue executing the remaining commands.
Requirement: Compute the position of a rover encountering an obstacle and report the obstacle. The same obsta-
cle should be reported only once.
Example: A rover just landed (position (0,0,N)). There is one obstacle at planet coordinates (2,2). The rover
executes encountered twice but reported only
once.

9. Identifying multiple obstacles
The rover might encounter multiple obstacles. When it does, it should report all of them once and in the order
they were encountered.
Requirement: Compute the position of the rover encountering obstacles, and report the obstacles encountered in
the order they are encountered. The same obstacle shall be reported only once.
Example: A rover just landed (position(0,0,N)). There are two obstacles at planet coordinates (2,2) and (2,1). The
rover executes encountered twice but re-
ported only once.

10. A tour around the planet
The rover goes on a tour around the planet encountering several obstacles, and wrapping in both axes.
Requirement: Compute the position of a rover that executes a series of commands that result in moving along
both axes in both directions, encountering several obstacles and wrapping from both edges of the planet.
Example: The rover lands on a 6x6 planet with obstacles at (2,2), (0,5) and (5,0). It executes the command

Congratulations, you are done!

B2. SPECIFICATION FOR MARS ROVER API WITHOUT SLICING
The API manages a rover that moves on a planet (/squared grid) of arbitrary size (x,y). The rover starts the movement
at position (0,0). The direction of the movement can be N (north), S (south), E (east) and W (west). The rover is north
facing at the start.

direction counter- and clockwise, respectively, but do not alter its position. f and b move the rover 1 position on the
grid in or away from the direction that it is facing, respectively. The direction in which the rover is facing does not
change. When the rover moves over the edges of the planet, it spawns on the opposite side.
The planet
the cell in which the obstacle is located) and continues to execute the remaining commands.

same obstacle shall be reported only once. Obstacles are reported in the order in which they are found.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

facing north. After the 1st f (forward) command, the
rover moves to position (0,1) facing north. Subsequent
commands keep the rover moving. The expected output
is (1,2,E). With two more fs, the rover would spawn
over the right edge to the final position (0,2,E).

Example o
After the 1st f (forward) command, the rover moves to
position (0,1) facing north. The 2nd f command does

e is an
obstacle in (0,2). This second f command is thus
skipped. The expected output is (1,1,E)(0,2).

B3. SPECIFICATION FOR BOWLING SCORE KEEPER WITH SLICING
The objective is to develop an application that can calculate the score of a single bowling game using TDD. There is
no graphical user interface. All that you will use in this assignment is the objects and JUnit testing. You will not need
a main method.
The application requirements are divided into a set of user stories, which is as your to-do list. You should be able to

 and handle the requirements one at a time in the stated order. Solve the problem using TDD,
starting with the requirement for the first story. Remember to always lead with a test case, taking hints from the ex-
amples provided. Do not move to the next story until you have done with the last one. A story is done when you are
confident that your program correctly implements the functionality stipulated by the requirement for the story. This
means that all of your test cases for that story and all of the test cases for the previous stories pass. You may need to
tweak your solution as you progress towards more advanced stories.
1. Frame
Each turn of a bowling game is called a frame. 10 pins are arranged in each frame. The goal of the player is to knock
down as many pins as possible in each frame. The player has two chances, or throws, to do so. The value of a throw
is given by the number of pins knocked down in that throw.
Story: As the scorekeeper, I want to be able to record a frame as composed of two throws. The first and second
throws should be distinguishable.
Example: [2, 4] is a frame with two throws, in which two pins were knocked down in the first throw and four pins
were knocked down in the second.
2. Frame Score

s throws.
Story: As the scorekeeper, I want to be able to compute the score of an ordinary frame after a player has rolled both
throws.
Examples: The score of the frame [2, 6] is 8. The score of the frame [0, 9] is 9.
3. Game
A single game consists of 10 frames.
Story: As the scorekeeper, I want to define a game as a sequence of 10 frames.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Example: The sequence of frames [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] represents a game.
You may reuse this game from now on to represent and test different scenarios, modifying only a few frames each
time.
4. Partial Game
When the player rolls a throw, the throw is automatically recorded in the correct frame.
Story: As the scorekeeper, when a player rolls throws, I want the game to keep track of the frames and figure out in

Example: If the game currently consists of the frames [1, 5] [3, 6] [7, 2] [3, ?] and the player rolls a throw with a
value of 4, the game becomes [1, 5] [3, 6] [7, 2] [3, 4]. Another roll with a value of 5 transforms the game to [1, 5]
[3, 6] [7, 2] [3, 4][5, ?].
5. Game Score

The score of a bowling game is the sum of the individual scores of its frames.
Story:
Example: The score of the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] is 81. Partial scores are
possible for an incomplete game if the frame scores are known up to the last complete frame. The score of the game
[1, 5] [3, 6] [7, ?] is 15. The frame [7, ?] is not yet complete.
6. Strike
A frame is called a strike if all 10 pins are knocked down in the first throw. In this case, there is no second throw. A
strike frame can be written as [10, 0]. The score of a strike equals 10 plus the sum of the next two throws of the sub-
sequent frame.
Story: As the scorekeeper, I want to be able to recognize a strike frame, compute its score after the next frame has
been completed, and compute the game score.
Examples: Suppose [10, 0] and [3, 6] are consecutive frames. Then the first frame is a strike and its score equals 10 +
3 + 6 = 19. The game [10, 0] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 94. The partial
game [10, 0] [3, 6] has a score of 28.
7. Spare
A frame is called a spare when all 10 pins are knocked down in two throws. The score of a spare frame is 10 plus the
value of the first throw from the subsequent frame.
Story: As the scorekeeper, I want to be able to recognize a spare frame, compute the score of a game containing a

Examples: [1, 9], [4, 6], [7, 3] are a
is 10 + 3 = 13. The game [1, 9] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 88. The partial
game [1, 9] [3, 6] has a score of 22.
8. Strike and Spare

Story:
spare.
Examples: In the sequence [10, 0] [4, 6] [7, 2], a strike is followed by a spare. In this case, the score of the strike is
10 + 4 + 6 = 20, and the score of the spare is 4 + 6 + 7 = 17. The game [10, 0] [4, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4,
5] [8, 1] [2, 6] has a score of 103.

9. Multiple Strikes
Two strikes in a row are possible. You must take care when this happens as you need the values of throws from the
next two frames to compute the score of the first strike..

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Story: As the scorekeeper, I want to make sure that I can record two consecutive strikes correctly in the game, and
correctly compute the score of the first strike after the next two throws have been rolled.
Examples: In the sequence [10, 0] [10, 0] [7, 2], the score of the first strike is 10 + 10 + 7 = 27. The score of the
second strike is 10 + 7 + 2 = 19. The game [10, 0] [10, 0] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score
of 112. The score of the partial game [10, 0] [10, 0] [7, ?] is 27 (we cannot compute the scores of the last two frames
yet).
10. Multiple Spares
Two spares in a row are possible. The score of the first spare is not affected when this happens.
Story: As the scorekeeper, I want to be able to compute the score of a game with two spares in a row, and the scores
of the first spare after the next spare has been completed.
Example: The game [8, 2] [5, 5] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 98.
11. Spare as the Last Frame
When the last frame in a game is a spare, the player will be given a bonus throw. However, this bonus throw does not
belong to a regular frame. It is only used to calculate the score of the last spare.
Story: As the scorekeeper, I hate it when the last frame is a spare: let the game please figure out that the next roll is a
bonus throw and compute the score of the last frame and the whole game based on the value of that bonus throw.
Example: The last frame in the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 8] is a spare. If the
bonus throw is [7], the last frame has a score of 2 + 8 + 7 = 17. The game has a score of 90.
12. Strike as the Last Frame
When the last frame of the game is a strike, the player will be given two bonus throws. However, these two bonus
throws do not belong to a regular frame. They are only used to calculate score of the last strike frame.
Story: As the scorekeeper, I hate it even more when the last frame of a game is a strike: let the game please figure out
that the next rolls are bonus throws and compute the score of the last frame and the whole game based on the value of
those bonus throws.
Example: The last frame in the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [10, 0] is a strike. If the

19. The game score is 92.
13. Bonus is a Strike
No more bonus throws are granted when the last frame in the game is a spare and the bonus throw is a strike.
Story: As the scorekeeper, I hate it most when the last frame is spare and the bonus throw is a strike: please God, let
the game figure this scenario out correctly.
Example: In the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 8], the last frame is a spare. If the
bonus throw is [10], the game score is 93.
14. Best Score
A perfect game consists of all strikes (a total of 12, including the bonus throws), and has a score of 300.
Story: As the scorekeeper, I love it when the game is just a sequence of strikes, including the bonus throws, because I
know that the player then deserves a perfect score of 300.
Example: A perfect game looks like [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] with
bonus throws [10, 10]. Its score is 300.
15. Random Game
Story: As the scorekeeper, I want to make sure that the game [6, 3] [7, 1] [8, 2] [7, 2] [10, 0] [6, 2] [7, 3] [10, 0] [8,
0] [7, 3] [10] has a score of 135.

Congratulations, you are done!

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

B4. SPECIFICATION FOR BOWLING SCORE KEEPER WITHOUT SLICING

The game consists of 10 frames as shown above. The player has two opportunities in each frame to knock down 10
pins. The score for the frame is the total number of pins knocked down, plus bonuses for strikes and spares.
A spare is when the player knocks down all 10 pins in two tries. The bonus for that frame is the number of pins
knocked down by the next ball rolled. So, the score in frame 3 above is 10 (the total number knocked down), plus a
bonus of 5 (the number of pins knocked down on the next roll.).
A strike is when the player knocks down all 10 pins on his or her first try. The bonus for that frame is the value of the
next two balls rolled.
A player who rolls a spare or strike in the tenth frame is allowed to roll the extra balls to complete the frame. How-
ever, no more than three balls can be rolled in tenth frame.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX C: INDUSTRY QUESTIONNAIRE
Demographics
Respondent ID* (*) Required
Company*
Location*
Function*
Education
1. Please state your academic degree title(s) (e.g., BS in computer science, MS in management).*
2. Please state any certification(s) that you have received during your professional career (e.g. SEI certification as Personal Soft-
ware Process (PSP) developer, CMMI certification, or ITIL certification as application engineer).

Professional experience
3. Please state the roles that you have performed during your professional career (e.g. developer XX months/years, tester YY
months/years). *
4. Please describe the type of code you currently build (e.g. web interfaces using html+css+javascript; business logic using beans).
5. Please state the programming languages that you have used (during your education as well), and the number of years of experi-
ence in each one.

Programming Language 1
5.1.1 Programming language*
5.1.2 Years (education)*
5.1.3 Years (professional career)*

Programming Language 2
5.2.1 Programming language
5.2.2 Years (education)
5.2.3 Years (professional career)

Programming Language 3
5.3.1 Programming language
5.3.2 Years (education)
5.3.3 Years (professional career)
6. How would you rate your programming experience?*

 No experience (only casual usage)
 Little experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

7. How would you rate your Java experience?*

 No experience (only casual usage)
 Little experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

8. Which development methodologies have you used so far?

(e.g., waterfall, iterative, spiral, agile. If you choose agile, please indicate the type (scrum, tdd, xp, etc.). Include the methodologies
you used in academia as well. State the number of years of experience in each one.)

Methodology 1
8.1.1 Methodology*
8.1.2 Years (education)*
8.1.3 Years (professional career)*

Methodology 2
8.2.1 Methodology
8.2.2 Years (education)
8.2.3 Years (professional career)

Methodology 3
8.3.1 Methodology
8.3.2 Years (education)
8.3.3 Years (professional career)

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Testing experience
9. How would you rate your unit testing experience?*

 No experience (only casual usage)
 Little experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

10. Do you write automated tests?*
 Yes
 No

a brief explanation.
11. Do you currently use a tool for unit testing (for executing, monitoring)?*

12. What IDE (Integrated Development Environment) do you currently use?*
13. Do you have substantial experience of other IDEs? If so, please specify which ones.
14. How would you rate your experience with the JUnit testing framework?*

 No experience (only casual usage)
 Little experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

15. Have you ever used TDD as a development methodology?*
 Yes
 No

TDD experience?

 No experience (only casual usage)
 Little experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

16. Have you ever attended any training on testing or more specifically unit testing?*
 Yes
 No

brief description of its content.
17. Have you ever attended any training on TDD?*

 Yes
 No

If you

17.1. What was taught during the training?
17.2. How long did the training take (in days or hours if possible)?
17.3. When did you take the training?
17.4. Did you take the training at your current job?
17.5. Are you still practising TDD? Why?
18. Have you ever been involved in TDD studies in industry?*

 Yes
 No

ss.
19. Have you ever attended any coding kata?*Required kata = programming exercise

 Yes
 No

above, please state when and which katas (name of the programming exercises) you completed.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX D: ACADEMIC QUESTIONNAIRE
Demographics

Respondent ID* (*) Required
University*
Location*
Education
1. Please state your academic degree title(s), if any (e.g., BS in computer science, MS in management).*
2. Please state the roles that you have performed during your professional career, if any (e.g., developer XX months/years, tester
YY months/years, etc.).*
3. Please state the programming languages that you have used (during your education as well), and the number of years of experi-
ence in each one.

Programming Language 1
3.1.1 Programming language*:
3.1.2 Years (education)*Required
3.1.3 Years (professional career), if any

Programming Language 2
3.2.1 Programming language
3.2.2 Years (education)
3.2.3 Years (professional career), if any

Programming Language 3
3.3.1 Programming language
3.3.2 Years (education)
3.3.3 Years (professional career), if any
4. How would you rate your programming experience?*

 No experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

5. Which development methodologies have you used so far? (e.g., waterfall, iterative, spiral, agile. If you choose agile, please state
the type (scrum, tdd, xp, etc.). State the number of years of experience in each one (e.g., waterfall, 1 year of education, 5 years of
professional practice).
Methodology 1

5.1.1 Methodology*
5.1.2 Years (education)*Required
5.1.3 Years (professional career), if any

Methodology 2
5.2.1 Methodology
5.2.2 Years (education)
5.2.3 Years (professional career), if any

Methodology 3
5.3.1 Methodology
5.3.2 Years (education)
5.3.3 Years (professional career), if any
6. How would you rate your unit testing experience?*

 No experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

7. Have you used a unit testing tool? If you answered yes above, please write the names of the tools.
8. What IDE (Integrated Development Environment) have you used?*
9. How would you rate your Java experience?*

 No experience (<2 years)
 Novice (2-<=5 years)

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

 Intermediate (5-<=10 years)
Expert (>10 years)

10. How would you rate your JUnit testing framework experience?*
 No experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

11. Have you ever used TDD as a development methodology?*
 Yes
 No

 experience?
 No experience (<2 years)
 Novice (2-<=5 years)
 Intermediate (5-<=10 years)
 Expert (>10 years)

13. Please state the certification(s) you have received during your professional career, if any (e.g., SEI certification as Personal
Software Process (PSP) developer, CMMI certification, or ITIL certification as application engineer.)
14. Have you ever attended any training on testing, or more specifically unit testing? If yes, please give a brief explanation of its
content.
15. Have you ever attended any training on TDD?*Required

 Yes
 No

16. I above, please briefly answer the following questions:
a) What was taught during the training?
b) How long did the training take (in days or hours if possible)?
c) When did you take the training?
d) Did you take the training at a company?
17. Have you ever attended any coding kata?*

 Yes
 No

17a. If you answered

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX E: BREAKDOWN OF EXPERIENCE
E1. PROGRAMMING LANGUAGE EXPERIENCE

A. ACADEMY - TOTAL B. INDUSTRY - TOTAL

C. ACADEMY STUDENTS D. INDUSTRY STUDENTS

E. ACADEMY - PRACTITIONERS F. INDUSTRY - PRACTITIONERS

Fig. 1 Breakdown of Programming language experience

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

E2. OVERALL PROGRAMMING LANGUAGE EXPERIENCE

A. ACADEMY - TOTAL B. INDUSTRY - TOTAL

C. ACADEMY STUDENTS D. INDUSTRY STUDENTS

E. ACADEMY - PRACTITIONERS F. INDUSTRY - PRACTITIONERS

Fig. 2 Breakdown of Overall programming language experience

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX F: COLLINEARITY CONDITIONS
Table2 reports the results of the collinearity analysis for the model with 15 independent variables. The pattern shown
in Table2 suggests that the testing framework (UNIT_TESTING_FRAMEWORK2_ADAPTED) might be collinear,
as it has values close to the bounds established for the variance inflation factor (VIF=4.943) and a low tolerance
(T=0.202). On the other hand, the collinearity statistics for the other variables are within the expected values (VIF < 5
and T > 0.2), which is a sign that they are not collinear.

Table2 Coefficients of the linear regression model with 15 independent variables

Model
Unstandardized Coef-

ficients
Standardized
Coefficients

t Sig.
Collinearity Statistics

B Std. Error Beta Tolerance VIF
1 (Constant) -64.527 65.070 -.992 .324

SITE 36.151 10.468 .425 3.454 .001 .429 2.330
TRAINER 2.476 11.380 .028 .218 .828 .398 2.512
CS_TITLE 17.018 9.767 .177 1.742 .085 .628 1.592
UNIT_TESTING_FRAMEWORK_ADAPTED -14.927 21.838 -.123 -.684 .496 .202 4.943
EXPERI-
ENCE_UNIT_TESTING_FRAMEWORK_LIK
ERT_SCALE

8.903 8.841 .119 1.007 .316 .464 2.157
EXPERI-
MENT_PROGRAMMING_LANGUAGE 23.861 17.329 .230 1.377 .172 .233 4.292
EXPERI-
ENCE_EXPERIMENT_PROGRAMMING_LA
NGUAGE_ACADEMY_YEARS

.337 1.995 .022 .169 .866 .382 2.621
EXPERI-
ENCE_EXPERIMENT_PROGRAMMING_LA
NGUAGE_INDUSTRY_YEARS

1.198 1.978 .086 .606 .546 .321 3.119
OVER-
ALL_EXPERIENCE_PROGRAMMING_ACA
DEMY_YEARS

3.326 1.289 .285 2.581 .011 .534 1.873
OVER-
ALL_EXPERIENCE_PROGRAMMING_INDU
STRY_YEARS

.959 1.039 .135 .923 .358 .304 3.292
EXPERI-
ENCE_UNIT_TESTING_LIKERT_SCALE -9.577 7.411 -.162 -1.292 .199 .412 2.426
EXPERIMENT_IDE_USED_DUMMY 16.605 9.187 .190 1.807 .074 .590 1.694
TDD_USED_DUMMY -1.873 10.723 -.017 -.175 .862 .650 1.540
TASK_ITLD 8.511 13.514 .094 .630 .530 .290 3.449
SLICED_ITLD_DUMMY 29.735 13.477 .330 2.206 .030 .292 3.430

Dependent Variable: QLTY

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Table 3 shows the collinearity diagnostics of the model specified inTable2. Note that component 16 has a very high
condition index (CI =86.918 > 30), which suggests that the level of collinearity is high. Comparing the proportion of
variance explained for each of the model explanatory variables, we find that the
UNIT_TESTING_FRAMEWORK_ADAPTED and EXPERIMENT_PROGRAMMING_LANGUAGE variables
have an extremely high proportion of variance explained with values of 0.90 and 0.46, respectively. One way of solv-
ing the collinearity problem is to remove the most collinear variable, which, in this case, is
UNIT_TESTING_FRAMEWORK_ADAPTED.

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Table 3 Collinearity diagnostics (1)

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Model 2
Table 4 reports the collinearity diagnostics of model 2 with 14 variables, which is composed of all the variables of the
original model, except the UNIT_TESTING_FRAMEWORK_ADAPTED variable that was eliminated on the
grounds of collinearity.
Note that dimension 15 still has a very high condition index (CI=43 > 30), which implies that there is a problem of
collinearity. There are three closely correlated variables: EXPERIMENT_PROGRAMMING_LANGUAGE, SITE
and TRAINER. In order to deal with the collinearity problem, we have opted to eliminate the variable with the high-
est proportion of variance explained, which in this case is EXPERIMENT_PROGRAMMING_LANGUAGE with a
proportion of variance explained of 0.40.

Table 4 Collinearity diagnostics (2) with 14 variables
Collinearity Diagnostics

Mo
del

Dim

ens
ion

Eigenva-
lue

Condition
Index

Variance Proportions

(Constant) SITE TRAINER CS_TITLE

EXPERI-
ENCE_UNIT
TESTING

FRAME-
WORK_LIK
ERT_SCALE

EXPERI-
MENT_PRO

GRAM-
MING_LAN

GUAGE

EXPERI-
ENCE_EXPERI-
MENT_PRO

GRAM-
MING_LAN
GUAGE_AC

ADE-
MY_YEARS

EXPERI-
ENCE_EXPERI-
MENT_PRO

GRAM-
MING_LAN
GUAGE_IN
DUSTRY_Y

EARS
1 1 10.153 1.000 .00 .00 .00 .00 .00 .00 .00 .00

2 1.346 2.747 .00 .00 .00 .00 .00 .00 .00 .05
3 .905 3.350 .00 .00 .00 .00 .00 .00 .01 .04
4 .786 3.594 .00 .00 .00 .00 .00 .00 .18 .00
5 .523 4.404 .00 .00 .00 .03 .00 .00 .04 .00
6 .353 5.366 .00 .02 .00 .05 .00 .00 .01 .23
7 .293 5.889 .00 .00 .00 .06 .00 .00 .02 .00
8 .209 6.964 .00 .00 .00 .36 .02 .01 .00 .02
9 .164 7.872 .00 .00 .02 .05 .08 .00 .27 .00
10 .084 11.011 .00 .00 .02 .08 .09 .00 .07 .26
11 .075 11.672 .00 .15 .00 .01 .45 .02 .08 .18
12 .043 15.367 .00 .02 .37 .12 .04 .36 .01 .01
13 .036 16.728 .00 .29 .18 .18 .27 .16 .20 .09
14 .025 20.150 .00 .14 .12 .00 .04 .05 .10 .06
15 .005 43.552 1.00 .38 .27 .07 .00 .40 .01 .04

Mo
del

Dim

ens
ion

 Variance Proportions
OVER-

ALL_EXPERIENC
E_PROGRAMMING_ACADEMY_

YEARS

OVER-
ALL_EXPERIEN
CE_PROGRAMMING_INDUST

RY_YEARS

EXPERI-
ENCE_UNIT_TESTING_LIKE

RT_SCALE
EXPERI-MENT_IDE_USE

D_DUMMY
TDD_USED_D

UMMY TASK_ITLD
SLI-

CED_ITLD_DUMMY
 1 .00 .00 .00 .00 .00 .00 .00
2 .01 .03 .00 .01 .05 .00 .02
3 .02 .02 .00 .00 .32 .00 .03
4 .03 .02 .00 .00 .05 .00 .01
5 .00 .01 .00 .03 .17 .00 .18
6 .06 .03 .00 .04 .07 .00 .03
7 .20 .00 .00 .43 .05 .00 .00
8 .27 .05 .04 .00 .06 .00 .00
9 .15 .24 .07 .05 .11 .00 .00
10 .02 .12 .40 .09 .00 .06 .06
11 .00 .26 .00 .06 .03 .01 .01
12 .08 .02 .01 .00 .04 .00 .01
13 .16 .06 .22 .21 .04 .00 .01
14 .01 .11 .18 .05 .01 .80 .54
15 .00 .04 .08 .02 .00 .13 .09

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Model 3
Table 5 reports the collinearity diagnostics of model 3 with 13 variables, which is composed of all the variables of
model 2 except the EXPERIMENT_PROGRAMMING_ LANGUAGE variable.
Note that dimension 14 still has a condition index greater than 30 (CI=33.67 > 30), which suggests that there is a
problem of collinearity. There are three closely correlated variables: SITE, and TRAINER and CS_DEGREE. Ac-
cording to the non-collinearity condition, we should eliminate the variable with the highest proportion of variance
explained. Bearing in mind the experimental data type, we know that SITE (which refers to whether the experiment
was conducted in academia or industry) is closely related to TRAINER. Therefore, we will eliminate the TRAINER
variable, as one of the trainers mostly trained subjects in industry and the other trained subjects in academia, and kept
SITE, which is a more interesting variable for this research.

Table 5 Collinearity diagnostics (3) with 13 variables

Mo
del

Dim

ens
ion

Eigenva-
lue

Condition
Index

Variance Proportions

(Constant) SITE2 TRAINER CS_TITLE

EXPERI-
ENCE_UNIT_T
ESTING_FRAM
EWORK_LIKE

RT_SCALE

EXPERI-
ENCE_EXPER
IMENT_PRO

GRAM-
MING_LANG
UAGE_ACAD
EMY_YEARS

EXPERI-
ENCE_EXPER
IMENT_PROG

RAM-
MING_LANG
UAGE_INDUS
TRY_YEARS

1 1 9.237 1.000 .00 .00 .00 .00 .00 .00 .00
2 1.337 2.629 .00 .00 .00 .00 .00 .00 .05
3 .903 3.199 .00 .00 .00 .00 .00 .01 .04
4 .778 3.445 .00 .00 .00 .00 .00 .18 .00
5 .510 4.254 .00 .00 .00 .03 .00 .05 .01
6 .350 5.140 .00 .02 .00 .05 .00 .01 .23
7 .292 5.620 .00 .00 .00 .06 .00 .03 .00
8 .202 6.755 .00 .00 .00 .45 .01 .00 .03
9 .163 7.520 .00 .00 .02 .03 .09 .29 .00
10 .083 10.534 .00 .00 .03 .05 .06 .08 .29
11 .072 11.321 .00 .16 .00 .00 .59 .09 .18
12 .038 15.558 .00 .26 .54 .02 .11 .19 .04
13 .026 18.895 .00 .23 .16 .04 .10 .06 .03
14 .008 33.679 .99 .32 .24 .26 .02 .01 .11

Mo
del

Dim

ens
ion

Variance Proportions
OVER-

ALL_EXPERIENCE_PROGRAMMI
NG_ACADEMY_

YEARS

OVER-
ALL_EXPERIENCE_PROGRAM
MING_INDUST

RY_YEARS

EXPERI-ENCE_UNIT_T
ESTING_LIKE

RT_SCALE
EXPERI-

MENT_IDE_USE
D_DUMMY

TDD_USED_D
UMMY TASK_ITLD

SLI-
CED_ITLD_DUMMY

 .00 .00 .00 .00 .00 .00 .00
2 .01 .02 .00 .01 .05 .00 .02
3 .02 .02 .00 .00 .32 .00 .03
4 .03 .02 .00 .00 .07 .00 .01
5 .00 .02 .00 .04 .15 .00 .18
6 .05 .03 .00 .03 .08 .00 .03
7 .20 .00 .00 .44 .05 .00 .00
8 .28 .04 .03 .00 .05 .00 .00
9 .13 .25 .07 .05 .11 .00 .00
10 .02 .14 .40 .10 .00 .07 .07
11 .00 .27 .02 .06 .03 .00 .00
12 .24 .02 .19 .15 .09 .00 .01
13 .01 .06 .21 .01 .01 .70 .49
14 .01 .09 .06 .09 .00 .22 .14

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

Model 4

Table 6 shows the collinearity diagnostics of model 4 with 12 variables, which is composed of all the variables of
model 3 except the TRAINER variable. Model 4 is the model that we finally used in this research. Note that this
model meets the collinearity conditions: a) the condition index of dimension 13 (CI = 29) is less than 30 and b) the
proportions of variance explained are within the established bounds (less than 0.5).

Table 6 Collinearity diagnostics (4) with 12 variables

Mo
del

Dim
ens

ion

Eigenvalue

 Variance Proportions

Condition Index (Constant) SITE CS_TITLE

EXPERI-
ENCE_UNIT
_TESTING_F

RAME-
WORK_LIKE
RT_SCALE

EXPERI-ENCE_EXPERI
MENT_PROGR

AM-
MING_LANGU
AGE_ACADEM

Y_YEARS

EXPERI-
ENCE_EXPERI

MENT_PROGRA
MMING_LANG
UAGE_INDUST

RY_YEARS
 1 8.373 1.000 .00 .00 .00 .00 .00 .00
2 1.288 2.550 .00 .00 .00 .00 .00 .05
3 .902 3.047 .00 .00 .00 .00 .01 .04
4 .769 3.299 .00 .00 .00 .00 .20 .00
5 .498 4.099 .00 .00 .04 .00 .06 .01
6 .337 4.988 .00 .03 .04 .00 .01 .25
7 .292 5.356 .00 .00 .06 .00 .03 .01
8 .202 6.433 .00 .00 .45 .02 .00 .03
9 .150 7.480 .00 .01 .03 .09 .45 .02
10 .079 10.272 .00 .02 .05 .03 .03 .27
11 .072 10.799 .00 .13 .00 .64 .11 .15
12 .028 17.306 .01 .48 .09 .19 .00 .00
13 .010 29.003 .98 .33 .23 .03 .09 .18

Mo
del

Dim

ens
ion

Variance Proportions
OVER-

ALL_EXPERIENC
E_PROGRAMMI
NG_ACADEMY_

YEARS

OVER-
ALL_EXPERIEN
CE_PROGRAM
MING_INDUST

RY_YEARS

EXPERI-
ENCE_UNIT_T
ESTING_LIKE

RT_SCALE
EXPERI-

MENT_IDE_USE
D_DUMMY

TDD_USED_D
UMMY TASK_ITLD

SLI-
CED_ITLD_DUMMY

 1 .00 .00 .00 .00 .00 .00 .00
2 .02 .02 .00 .01 .05 .00 .03
3 .02 .02 .00 .00 .35 .00 .03
4 .03 .02 .00 .00 .07 .00 .02
5 .00 .03 .00 .06 .16 .00 .15
6 .07 .02 .01 .01 .12 .00 .04
7 .21 .00 .00 .46 .07 .00 .00
8 .31 .05 .04 .00 .06 .00 .00
9 .23 .30 .05 .09 .07 .00 .00
10 .00 .12 .46 .06 .01 .09 .08
11 .00 .25 .06 .06 .04 .00 .00
12 .03 .02 .33 .01 .00 .49 .45
13 .08 .14 .05 .22 .01 .41 .19

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX G: MULTIPLE LINEAR REGRESSION ALTERNATIVE MODEL
G1. QUALITY
Table 7 shows the results of the multiple regression model with respect to the influence of External Quality. Note that
experience is measured on a Likert scale in this case.

Table 7 Results of the MRL - Quality
Coefficientsa

Model
Unstandardized Coef-

ficients
Standardized
Coefficients

t Sig.
Collinearity Statistics

B Std. Error Beta Tolerance VIF
1 (Constant) -52.740 27.988 -1.884 .062

SITE 32.095 9.704 .377 3.308 .001 .520 1.922
CS_TITLE 24.603 9.323 .254 2.639 .010 .727 1.375
EXPERI-
ENCE_UNIT_TESTING_FRAMEWOR
K_LIKERT_SCALE

11.087 8.998 .147 1.232 .221 .473 2.115
EXPERI-
ENCE_EXPERIMENT_PROGRAMMI
NG_LANGUAGE_LIKERT_SCALE

3.434 5.791 .069 .593 .554 .505 1.980
OVER-
ALL_EXPERIENCE_PROGRAMMIN
G_LIKERT_SCALE

2.344 5.380 .046 .436 .664 .618 1.618
EXPERI-
ENCE_UNIT_TESTING_LIKERT_SC
ALE

-11.366 7.270 -.191 -1.563 .121 .451 2.216
EXPERIMENT_IDE_USED_DUMMY 20.240 8.448 .231 2.396 .018 .728 1.374
TDD_USED_DUMMY 2.620 10.077 .024 .260 .795 .776 1.288
TASK_ITLD 5.744 13.467 .063 .427 .671 .308 3.252
SLICED_ITLD_DUMMY 36.935 13.617 .406 2.712 .008 .301 3.324

a. Dependent Variable: QLTY

G2. PRODUCTIVITY
Table 8 shows the results of the multiple regression model with respect to the influence of Productivity. Note that
experience is measured on a Likert scale in this case.

Table 8 - MRL results Productivity
Coefficientsa

Model
Unstandardized Coef-

ficients
Standardized
Coefficients

t Sig.
Collinearity Statistics

B Std. Error Beta Tolerance VIF
1 (Constant) -43.041 24.194 -1.779 .078

SITE 14.541 8.388 .190 1.734 .086 .520 1.922
CS_TITLE 19.392 8.059 .223 2.406 .018 .727 1.375
EXPERI-
ENCE_UNIT_TESTING_FRAMEWOR
K_LIKERT_SCALE

11.869 7.778 .175 1.526 .130 .473 2.115
EXPERI-
ENCE_EXPERIMENT_PROGRAMMI
NG_LANGUAGE_LIKERT_SCALE

-.161 5.006 -.004 -.032 .974 .505 1.980
OVER-
ALL_EXPERIENCE_PROGRAMMIN
G_LIKERT_SCALE

1.614 4.651 .035 .347 .729 .618 1.618
EXPERI-
ENCE_UNIT_TESTING_LIKERT_SC
ALE

-6.628 6.285 -.124 -1.055 .294 .451 2.216
EXPERIMENT_IDE_USED_DUMMY 19.122 7.303 .243 2.619 .010 .728 1.374
TDD_USED_DUMMY -4.760 8.711 -.049 -.546 .586 .776 1.288
TASK_ITLD 11.285 11.642 .138 .969 .335 .308 3.252
SLICED_ITLD_DUMMY 31.924 11.771 .391 2.712 .008 .301 3.324

a. Dependent Variable: PROD

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX H: RESIDUAL ANALYSIS BY EXPERIMENT
H1. QUALITY

Fig. 3 Residual by Experiment QLTY

Table 9 Effect of the experiment on Quality
Tests of Between-Subjects Effects Dependent Variable: Unstandardized Residual QLTY

Source
Type III Sum

of Squares df Mean Square F Sig.
Partial Eta
Squared

Noncent. Pa-
rameter

Observed Po-
werb

Corrected Model 7137.509a 9 793.057 .652 .750 .053 5.866 .305
Intercept 370.491 1 370.491 .304 .582 .003 .304 .085
EXP_CODE 7137.509 9 793.057 .652 .750 .053 5.866 .305
Error 127758.601 105 1216.749
Total 134896.110 115
Corrected Total 134896.110 114
a. R Squared = .053 (Adjusted R Squared = -.028)
b. Computed using alpha = .05

The results reported in Table 10 show that the model residuals plotted against the EXPERIMENT_CODE variable
are significant (p-value = 0.006 < 0.05), which means that the variances are not homogeneous.

Table 10 Levene test for QLTY

Levene's Test of Equality of Error Variancesa
Dependent Variable: Unstandardized Residual QLTY

F df1 df2 Sig.
2.798 9 105 .006

Tests the null hypothesis that the error variance of the de-
pendent variable is equal across groups.
a. Design: Intercept + EXP_CODE

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

H2. PRODUCTIVITY

Fig. 4 Residual by Experiment PROD

Table 11 Effect of the experiment on PRODUCTIVITY
Tests of Between-Subjects Effects

Dependent Variable: Unstandardized Residual PROD
Source

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent. Pa-
rameter

Observed Po-
werb

Corrected Model 9282.965a 9 1031.441 1.235 .282 .096 11.115 .578
Intercept 88.286 1 88.286 .106 .746 .001 .106 .062
EXP_CODE 9282.965 9 1031.441 1.235 .282 .096 11.115 .578
Error 87693.492 105 835.176
Total 96976.457 115
Corrected Total 96976.457 114
a. R Squared = .096 (Adjusted R Squared = .018)
b. Computed using alpha = .05

The results reported in Table 12show that the model residuals plotted against the EXPERIMENT_CODE variable are
not significant (p-value = 0.155 >0.05), which suggests that the residual variances are homogeneous.

Table 12 Levene test for PROD
Levene's Test of Equality of Error Variancesa Dependent Variable: Unstandardized Residual PROD
F df1 df2 Sig.

1.507 9 105 .155
Tests the null hypothesis that the error variance of the de-
pendent variable is equal across groups.
a. Design: Intercept + EXP_CODE

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX I: SPSS SCRIPTS
I.1. FILTER

I.2. ORIGINAL MLR MODEL

I.3. MLR RESULTS FOR QLTY

 I.4. MLR RESULTS FOR PROD

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

I.5. DECISION TREES FOR THE QLTY

I.6. DECISION TREES FOR THE PROD

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

APPENDIX J: DECISION TREES CART (CRT)
J.1. QLTY
Fig. 5 shows the decision tree for the QLTY response variable with different number of cases for the parent
node (N) and the child node (n).

N=20,
n=20

N=10,
n=10

N=5,
n=5

N=10,
n=5

N=12,
N=6

Fig. 5 CART decision tree for QLTY

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

J.2. PRODUCTIVITY
Fig. 6 shows the decision tree for the PROD response variable with different number of cases for the par-
ent node (N) and the child node (n).

N=20,
n=20

N=10,
n=10

N=5,
n=5

N=10,
n=5

N=12,
N=6

Fig. 6 CART decision tree for PROD

 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

