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This article develops a numerical model suitable for analysing elastic wave scattering in buried

pipelines. The model is based on a previous so-called hybrid approach, where a nominally infinite

length of pipe is split up into uniform and non-uniform regions. The key challenge for buried struc-

tures is in enforcing the appropriate boundary conditions in both the axial and radial directions,

which must encompass the entire length of the structure, as well as the surrounding material.

Accordingly, the focus of this article is on developing a model suitable for accurately applying

these boundary conditions, and so the analysis is restricted here to the study of axisymmetric

defects and to an incident sound field that consists of the fundamental torsional mode only. It is

shown that this problem may be addressed in a numerically efficient way provided one carefully

choses a perfectly matched layer for the surrounding material, and then integrates over this layer

using a complex co-ordinate stretching function. This enables the use of mode matching to deliver

a convergent system of equations that enforce the appropriate axial and radial boundary conditions.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1121/1.4983192]
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I. INTRODUCTION

Elastic waves are often used in the non-destructive eval-

uation of structures. Normal practice is to use a pulse-echo

technique and in order to identify fabrication or in-service

defects one must analyse and interpret the returning echo in

the time domain. For long slender structures, such as pipe-

lines or rails, a technique known as Long Range Ultrasonic

Testing (LRUT) is popular, as it uses lower ultrasonic fre-

quencies and ultrasonic wave modes with inherently low

attenuation properties to penetrate long sections of a struc-

ture.1 However, structures such as pipelines support the

propagation of many different guided wave eigenmodes and

the interpretation of echoes returning from a defect presents

many challenges. Furthermore, it is common for pipelines to

be buried underground and this further complicates the prop-

agation, and hence interpretation, of pipe eigenmodes. It is,

therefore, desirable to develop theoretical models in order to

obtain a good understanding of how elastic waves scatter in

buried structures, before then investigating ways to improve

the effectiveness of LRUT. Accordingly, this article presents

a theoretical model suitable for analysing scattering from an

axisymmetric defect in a buried, or embedded, pipeline. The

theoretical model is based on a hybrid numerical method

that solves the problem in a computationally efficient way;

this enables the generation of theoretical predictions for a

problem that is likely to require a prohibitive number of

degrees of freedom to solve when using commercial finite

element based software.

The theoretical investigation of guided waves in struc-

tures such as pipelines is now well established, although

the majority of articles focus on computing the propagating

eigenmodes. This may be achieved by solving analytic

expressions written in matrix form, see for example the pop-

ular software Disperse,2,3 or by using numerical methods

such as the Semi Analytic Finite Element (SAFE) method.4

The computation of eigenmode properties for a structure

provides important information for use in LRUT, with prop-

erties such as modal energy velocity enabling the user to dis-

tinguish between different modes through time of flight

calculations. However, solving the eigenproblem does not

provide information regarding the amplitude of each scat-

tered mode when the waveguide incorporates non-uniform

regions. This is a different challenge, as one must move

from the analysis of an infinite waveguide to a finite, or

more usually semi-infinite, guide. This is especially prob-

lematic in the analysis of large structures such as pipelines,

where under favourable conditions the inspection range can

extend to well over 10 m. For example, in a recent study

Leinov et al.5 required 21.13 million hexahedral elements to

study a partially embedded pipe that was 4 m long. This is

likely to deliver over 100 million degrees of freedom for this

pipe, and even with such a large number, the upper centre

frequency was restricted to 35 kHz. Cleary this is not practi-

cal approach for larger systems, higher frequencies and/or

fully buried pipes, especially in view of problems that are
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likely to be encountered with numerical dispersion with such

large discretisation schemes. This means that commercial

finite element based software is likely to find it very difficult

to address a fully buried system, and to the best of the

authors’ knowledge no solutions for this type of problem are

currently available. Accordingly, alternative methods are

required if long lengths of fully buried systems are to be

studied and so the development of a new computationally

efficient approach forms the subject of this current article.

This article focusses on the development of a numerical

model for the analysis of pipes that are buried, or completely

embedded, in an elastic material that extends to infinity as

one moves away from the pipe. That is, the energy radiated

outward from the pipe into the surrounding elastic medium

is not reflected back toward the pipe. In general FE formula-

tions the application of this non-reflecting boundary condi-

tion requires a numerical approximation to be developed and

common methods include absorbing layers,6 or the popular

perfectly matched layers (PMLs).7 However, this means that

a PML must surround the entire length of the pipe, and

clearly this would significantly increase the degrees of free-

dom required to study this problem. It would also present

significant problems associated with choosing an appropriate

PML that minimises numerical noise in three dimensions.

Accordingly, alternative methods are required that are far

more computationally efficient, and here the authors favour a

so-called hybrid numerical approach that has been developed

for unburied structures. This method couples an eigensolution

for a uniform region to a full FE discretisation of a region

closely surrounding a defect. This method is much faster than

a full FE discretisation, although it does depend on the

assumption that the structure consists of long uniform lengths

and relatively small non-uniform defects. Fortunately, this is

normally the case in problems such as non-destructive testing

in pipelines and so this method provides a practical way of

systematically reducing the size of a computational model

used to study LRUT in pipelines. The basic methodology for

this hybrid method has been around for many years and is

reported in a number of articles that examine defects in a

solid cylinder (for example, see Ref. 8). The hybrid method

has also recently been reported for pipelines by Duan

et al.,9,10 and here it is shown that the efficiency of the

method enables the analysis of long lengths of coated and

uncoated pipes in both the time and the frequency domain.

However, this hybrid method has not yet advanced as far as

the analysis of buried or embedded structures, and given the

large number of applications of buried pipelines there is a

clear need to advance this approach so that it is capable of

addressing the scattering problem for buried pipelines.

The analysis of guided wave propagation in buried

structures has to date followed the practice seen for the early

studies of unburied structures, so that analysis has focussed

on the computation of eigenmodes. For example, low order

axisymmetric modes may be obtained at ultrasonic frequen-

cies using a matrix based analytic technique,11 as well as at

low audio frequencies using limiting values.12,13 The SAFE

method may also be applied to buried structures and here

Castaings and Lowe6 applied the method to a structure of

arbitrary cross-section. Castaings and Lowe used an artificial

absorbing layer to represent the surrounding medium, and

the properties of this layer are chosen to enforce of the radial

boundary condition at infinity. However, absorbing layers

have been shown to be relatively inefficient for this type of

problem and more efficient approaches have recently been

developed using PMLs.7 For example Nguyen et al.7 intro-

duced a two dimensional PML to extract eigenmodes for a

structure of arbitrary cross-section, and Treyssède14 further

improved the efficiency of the method by using spectral ele-

ments. Duan et al.15 recently introduced a one dimensional

approach for buried pipelines by taking advantage of the

symmetric nature of this particular problem, which enabled

modes to be extracted in a fast and efficient way. Additional

methods may also be found in the literature for solving this

eigenproblem, and a more comprehensive review is provided

in the article by Duan et al.15 These methods are, however,

limited to solving the eigenproblem for buried pipes and this

analysis has yet to be extended to address the full scattering

problem associated with defects in slender structures such as

pipelines.

Solving the scattering problem for buried structures

presents additional problems related to fulfilling the radial

boundary condition in the surrounding material. For this rea-

son there are very few articles that address scattering in bur-

ied, or embedded, cylindrical structures of finite or semi-

finite length. The recent work of Leinov et al.5 examined a

partially buried pipe, whereas for fully buried systems that

avoid a full FE discretisation, previous work has generally

been restricted to viscometers, where guided waves are used

to infer the properties of a surrounding medium. Relevant

examples for viscometers include the use of longitudinal

modes to measure the viscosity of different fluids,16 as well

as the measurement of density17,18 and the dependence of

properties on temperature.19 These studies, and many other

related articles in this area, all rely on a combination of the

computation of eigenmodes and experimental measurement.

It is only Vogt et al.20 who go further and develop a theoreti-

cal model to capture the reflection of elastic waves from the

junction between the bulk fluid and the viscometer. Vogt

et al. found it necessary to develop a theoretical model to

capture the scattering from the bulk fluid because they were

measuring the properties of epoxy resin during curing. The

resin generates significant reflections and it was found to be

necessary to try and quantify this in order to interpret experi-

mental measurements. Accordingly, Vogt et al. developed

an analytic approach based on mode matching to obtain a

scattering matrix for the junction between the two regions.

However, in order to obtain this matrix the authors enforce

the axial continuity conditions over the cylinder only, and so

do not enforce the traction free boundary condition over the

vertical surface of the embedding medium. This approxima-

tion does have the advantage of removing the singularity in

the stress field at the corner of the step change where the cyl-

inder becomes immersed in the epoxy resin. Removing this

singularity means that one may readily obtain a convergent

system of equations using only a small number of propagat-

ing modes, and so Vogt et al. were able to apply their tech-

nique with some success. However, the method only

provides an approximation of the axial matching conditions,
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and if one seeks also to include the appropriate boundary

condition over the free surface of the resin then any mode

matching technique must also accommodate the singularity

in the stress field at the corner where the free surface meets

the cylinder. It is possible to do this using mode matching,

however this normally requires additional evanescent modes

in order to enforce accurately the axial matching conditions,

and the number of evanescent modes required is related to

the strength of the singularity.21 Thus, the method of Vogt

et al.20 is only an approximation of the true scattering prob-

lem and it is not clear how accurate such an approach is

likely to be when applied to different problems, or to differ-

ent parameters for a similar problem. Furthermore, the

method of Vogt et al. relies on a uniform geometry to be pre-

sent on either side of the step change, and so their mode

matching technique is not suited to the study of non-uniform

scattering problems, such as those associated with cracks or

corrosion. Accordingly, there is a need to move on from ana-

lytic mode matching techniques when analysing more com-

plex scattering problems, and so this article extends the

hybrid approach seen previously for unburied structures8–10

and applies it to the study of scattering in buried structures.

The extension of a hybrid SAFE-FE modelling approach

to buried structures is, however, far from straightforward

because of difficulties associated with the enforcement of the

appropriate boundary conditions over a semi-infinite

domain. Furthermore, Vogt et al.20 raise questions regarding

modal orthogonality and the impact this may have on a

mode matching based solution, which normally underpins a

hybrid based approach. Therefore, this remains a complex

problem and in order to focus on key issues relating to modal

orthogonality and the enforcement of relevant boundary and

matching conditions, this article will focus on the scattering

of the fundamental [shear] torsional mode T(0,1) from an

axisymmetric defect in a pipe. The article begins by briefly

recapping on the eigenproblem for a buried pipe, and then

introduces a hybrid modal-FE model in Sec. II. The accuracy

of the new approach, including the issue of modal orthogo-

nality and mode matching, is examined in Sec. III; and addi-

tional results are also presented in Sec. IV to illustrate some

practical problems that may occur when undertaking LRUT

in the field; conclusions are then drawn in Sec. V.

II. THEORY

The geometry of an axially non-uniform axisymmetric

defect is shown in Fig. 1. Here, the term ‘non-uniform’

means that the geometry of the defect changes in the axial

direction, which is illustrated using tapering of the defect in

Fig. 1. The defect is placed in a semi-infinite pipeline that

consists of three regions: regions 1 and 3 are axisymmetric

and uniform, and region 2 is axisymmetric and this encloses

the non-uniform defect. The pipe is buried so that each

region is embedded by an elastic material, so that this mate-

rial is in contact with the surface of the pipe as well as the

defect. Each region is joined to an adjacent region by a ver-

tical interface, so that CA separates regions 1 and 2, and CB

separates regions 2 and 3. The hybrid SAFE-FE approach is

adopted here so that SAFE modal solutions are sought for

regions 1 and 3, and a full finite element discretisation

is adopted for region 2. Mode matching is used to enforce

the appropriate continuity conditions over each vertical

interface.

A. Eigensolution for a uniform region

To maintain generality the buried pipe is assumed to

have an arbitrary number of layers that may have different

material properties (for example, a viscoelastic coating), as

well a PML layer that provides the outer boundary and is

used to enforce the appropriate radiation boundary condition.

The pipe substrate is numbered j ¼ 1, additional layers are

numbered j ¼ 2 to m� 1, and the outer PML layer is num-

bered j ¼ m. A SAFE-PML technique for this geometry was

recently presented by Duan et al.,15 and this can be used to

calculate all axisymmetric and non-axisymmetric (flexural)

modes. However, in this study we will simplify the analysis

of Duan et al. and focus on the torsional modes only. This

means that the governing equation for the waveguide in

region 1, may be reduced to15

qj

@2u01hj

@t2
¼
@r01hrj

@r
þ
@r01hzj

@z
þ 2

r
r01rhj

; (1)

where r, h and z form an orthogonal cylindrical co-ordinate

system in the radial, circumferential and axial direction of the

waveguide, respectively; q is density, t is time, u01h is the tor-

sional displacement in region 1, and r01hr and r01hz are shear

stresses. A time dependence of eixt is assumed throughout

this article, where x is the radian frequency and i ¼
ffiffiffiffiffiffiffi
�1
p

.

The torsional displacement is expanded as an infinite set of

eigenmodes so that for any mode, n,

u01hðr; zÞ ¼ u1hðrÞe�ikcz; (2)

where u1hðrÞ is the eigenfunction, and c the dimensionless

wavenumber. In addition, k ¼ x=cT, and cT is the shear (tor-

sional) bulk wave velocity of the substrate pipe (layer j ¼ 1).

In the outer layer j ¼ m, the radial coordinate r is replaced

by a stretched coordinate ~r , which is defined as

~r ¼
ðr

0

nrðsÞ ds: (3)

Here, nr is a non-zero, continuous and complex-valued coor-

dinate stretching function, which defines the PML. The func-

tion proposed by Duan et al.15 is adopted here, so that

nrðrÞ ¼ ea�r � i eb�r � 1½ �; (4)FIG. 1. Geometry of non-uniform defect in a buried pipeline.
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where �r ¼ ðr � amÞ=h, and the thickness of the PML layer is

h ¼ bm � am. In addition, a and b are real valued constants.

Following the analysis of Duan et al.,15 Galerkin’s method is

used to derive the weak form of the governing equation, and

so integration by parts yields

ðbj

aj

lj

1

nr

@w1hj

@r

@u1hj

@r
�
@w1hj

@r

u1hj

~r
� 2

w1hj

~r

@u1hj

@r

�

þ2nrw1hj

u1hj

~r2
þ nr k2c2 �

qjx
2

lj

" #
w1hj

u1hj

)
dr

¼ w1hj
r1hrj
jbj
� w1hj

r1hrj
jaj
; (5)

where for j ¼ 1; m� 1, nr ¼ 1 and ~r ¼ r. In addition, l is a

Lam�e coefficient, and aj and bj are the inner and outer radius

of layer j. Finite element discretisation in the radial direction

only yields

u1hðrÞ ¼
Xph

p¼1

NhpðrÞu1hp ¼ N1hu1h; (6)

where Nh is a global trial (or shape) function, u1hp is the

value of u1h at node p, and ph is the number of nodes (or

degrees of freedom) used to discretise the radial geometry.

In addition, N1h and u1h are row and column vectors of

length ph, respectively. Isoparametric elements are used so

the weighting functions W1h ¼ N1h.

The appropriate boundary conditions that join together

layers in the problem are continuity of displacement and shear

stress, as well as a traction free boundary condition that closes

the problem at the inner surface of the pipe, r ¼ a1. The

choice of boundary condition on the outer surface of the PML

layer is arbitrary because a PML damps down outward propa-

gating waves.7 Therefore, it is convenient to choose a traction

free boundary condition to close the outer surface of the PML

at r ¼ bm, as this permits a simplification of the equations

that follow. After applying these boundary conditions to each

layer, the following eigenequation is obtained:

ðZ1h þ Z1mÞu1h ¼ �k2c2 Rm
j¼1ljK4j

� �
u1h: (7)

The matrices that make up this equation are listed in

Appendix A. Equation (7) is a sparse eigenequation and

solution of this equation will deliver an unordered list of ph

eigenmodes. This equation is solved here using the sparse

eigensolver “eigs” in MATLAB. This delivers an unordered list

of ph eigenvalues, c, and associated eigenvectors, A. This

then enables the displacement in each uniform region to be

expressed as a sum of these eigenmodes, so that

u1hðrÞ ¼
Xm1

n¼0

AnAn
hþðrÞe�ikcnz þ

Xm1

n¼0

BnAn
h�ðrÞeikcnz; (8)

uh3ðrÞ ¼
Xm3

n¼0

CnWn
hþðrÞe�ikbnz0 : (9)

Here, An, Bn and Cn are modal amplitudes, An
hþ and An

h�
are eigenvectors for the incident and reflected waves in

region 1, respectively. In region 3, it is convenient to use a

different notation so that b is the dimensionless eigenvalue

and Wn
hþ is the eigenvector. Finally, these infinite sums are

truncated at mode m1 in region 1, and m3 in region 3.

B. FE discretisation of the non-uniform region

Region 2 encloses an axisymmetric defect of arbitrary

geometry. Accordingly, a conventional two dimensional finite

element discretisation is applied here and this is coupled to a

PML that abuts onto the pipe, see Fig. 2. That is, the conven-

tional finite element discretisation encompasses the pipe wall

X1, any additional layers (e.g., X2 and X3), and the region

abutting the defect that does not extend beyond the outer radius

of the additional layers, which is denoted here X4. The PML

starts at the radius of the outer layer of the pipe and this region

is denoted Xm in Fig. 2. The weak form of Eq. (1) is obtained

using the weighting function w2, and then integrating by parts

in the radial and axial directions separately. This separation of

variables allows the PML to be applied in the radial direction

only and so for layer j, with for j ¼ 1 to m� 1, this yields

ð
Xj

lj

@w2j

@r

@u02j

@r
þ @w2j

@z

@u02j

@z
� @w2j

@r

u02j

r

�

� 2

r
w2j

@u02j

@r
þ 2w2j

u02j

r2
�

qjx
2

lj

w2ju
0
2j

)
dXj

¼
ð

Cj

w2jr
0
2rhj

nrdCj þ
ð

Cj

w2jr
0
2hzj

nzdCj: (10)

Here, Xj denotes the two dimensional area of layer j, and Cj

is the outer boundary of Xj. Application of the PML in the

radial direction only for layer j ¼ m yieldsð
Xm

lm

�
1

nr

@w2m

@r

@u02m

@r
þ nr

@w2m

@z

@u02m

@z

� @w2m

@r

u02m

~r
� 2

~r
w2m

@u02m

@r
þ 2nrw2m

u02m

~r2

� qmx2

lm

nrw2mu02m

�
dXm

¼
ð

Cm

w2mr02rhm
nrdCm þ

ð
Cm

nrw2mr02hzm
nzdCm:

(11)

FIG. 2. A two dimensional finite element discretisation is applied to the cen-

tral region, between CA and CB. Here, two additional layers are shown, and

each area Xj (j ¼ 1; 2; 3; 4;mÞ is bounded by the surface Cj, so that Cj does

not extend beyond the vertical boundaries CA and CB and areas Xj ðj ¼
1; 2; 3;mÞ all include a portion of CA and CB.

J. Acoust. Soc. Am. 141 (5), May 2017 Duan et al. 3253



Finally, the circumferential displacement u02hðr; zÞ in region

2 is discretised to give

u02hðr; zÞ ¼
Xp2

p¼1

N2pðr; zÞu2p ¼ N2u2; (12)

where N2p is a global shape function and u2p is the value of

u02h at node p, and p2 is the number of nodes in region 2.

C. Application of boundary conditions

Equations (10) and (11) apply to individual layers and

so to combine these layers together the appropriate boundary

conditions must be enforced between them. The usual rela-

tionships between stress and strain apply, so that

r02rhj
¼ lj

@u02j

@r
�

u02j

r

� �
(13)

and

r02hzj
¼ lj

@u02j

@z
: (14)

Note that for the PML layer (j ¼ m), the radial coordinate in

Eq. (13) should be replaced by the complex coordinate

stretching function.

To join each region together it is necessary to enforce

the axial continuity conditions of displacement and normal

shear stress over planes CA and CB. The shear stress condi-

tion is enforced by substituting the modal expansions in Eqs.

(8) and (9) into the integrals on the right hand sides of Eqs.

(10) and (11). Note that the normal on planes CA and CB in

the radial direction equals zero and so the first term on the

right hand sides of Eqs. (10) and (11) vanishes. For the pipe

and additional layers this yields

ð
CA

w2j r
0
2hzj

nzdr ¼ ikcn An
Xm�1

j¼1

ðbj

aj

ljw2jU
n
hþdr

2
4

�Bn
Xm�1

j¼1

ðbj

aj

ljw2jU
n
h�dr

3
5 (15)

and

ð
CB

w2jr
0
2hzj

nzdr ¼ �ikcnCn
Xm�1

j¼1

ðbj

aj

ljw2jW
n
hþ dr; (16)

for mode n. Note that the unit normal in region 2 points in

the negative z direction on CA, whereas it points in the posi-

tive z direction on CB. These axial matching conditions must

also be enforced over the outer PML, and this forms a crucial

part of implementing the hybrid method for buried struc-

tures. The key to applying these axial conditions is to inte-

grate over the stretched co-ordinate in the PML region,

which for mode n gives

ð
CA

nrw2mr02hzm
nzdr¼ ikcn An

ðbm

am

lm nrw2mUn
hþdr

"

�Bn

ðbm

am

lm nr w2m Un
h�dr

#
(17)

and

ð
CB

nrw2mr02hzm
nzdr ¼ �ikcnCn

ðbm

am

lmnrw2mWn
hþ dr:

(18)

Substitution of Eqs. (15) to (18) back into Eqs. (10) and

(11), and the application of the boundary conditions between

each layer in the radial direction (remembering that each

unit normal points outward), enables the governing equa-

tions in region 2 to be written as

K1g �K2g � 2KT
2g þ 2K6g � x2K4g

h i
u2

¼ Q1gþA�Q1g�B�Q2gþC; (19)

where A, B and C are column vectors holding the modal

amplitudes An, Bn, and Cn respectively. The matrices in these

equations are given in Appendix B.

Continuity of displacement over planes CA and CB is

enforced separately and in order to do this it is convenient to

weight this matching condition.9,10 Accordingly, the weight-

ing functions ikclAl
h� and ikblWl

hþ are chosen here, and inte-

grations for layers from j ¼ 1 to m� 1 are carried out in the

usual way; integration for the PML layer j ¼ m is carried

out in the stretched coordinate in the same way as for the

shear stress. This yields

u02hðr; 0Þ ¼
Xm1

n¼0

AnAn
hþðrÞ þ

Xm1

n¼0

BnAn
h�ðrÞ (20)

and

u02hðr; LÞ ¼
Xm3

n¼0

CnWn
hþðrÞ; (21)

where L ¼ 2le þ ld . Application of the weighting functions

and integration over cross-sectional planes CA and CB,

yields

�QT
3g�u2 þM1h�B ¼ �M1hþA (22)

and

QT
4gþu2 �M3hþC ¼ 0: (23)

The matrices that make up these two equations are reported

in Appendix B. The question of modal orthogonality is rele-

vant to the M matrices in these equations. For example,

M1h6 is given as
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M1h6 ¼ ikcl
Xm�1

j¼1

lj

ðbj

aj

rAl
h�An

h6dr

2
4

þlm

ðbm

am

~rnrA
l
h�An

h6dr

#

for l ¼ 0; 1;…;m1; n ¼ 0; 1;…;m1: (24)

The first term in Eq. (24) relates to the pipe and additional

layers attached to the pipe, and this term is known to be

orthogonal.10 However, the addition of the outer layer (m)

complicates the relationship and currently there is no proof

that Eq. (24) is orthogonal, even with the second integral

being computed using the stretched coordinate. Accordingly,

the implementation of the axial matching conditions will be

investigated in Sec. III. Finally, Eqs. (22) and (23) are com-

bined with Eq. (19) to deliver the final system equation:

�M1h� QT
3g� 0

Q1g� K1g�K2g�2KT
2gþ2K6g�x2K4g Q2gþ

0 QT
4gþ �M3hþ

2
664

3
775

�
B

u2

C

8><
>:

9>=
>;¼

M1hþA

Q1gþA

0

8><
>:

9>=
>;: (25)

This equation is solved for the unknown modal amplitudes

in regions 1 and 3, as well as the displacement in the central

section, once one has specified an incident wave field in vec-

tor A. In the results that follow, this equation is solved using

a finite element mesh that consists of three noded line ele-

ments and eight noded quadratic elements.

III. MODE MATCHING IN BURIED STRUCTURES

The key challenge with the implementation of a hybrid

SAFE-FE approach for buried pipes is the implementation of

the appropriate boundary conditions for the material that sur-

rounds the pipe. Accordingly, in this section the application

of these boundary conditions is studied for scattering from a

defect, as well as the reduced problem of a step change in

the surrounding material. This is because a step change facil-

itates the isolation of the relevant axial matching conditions

and the problem is similar to the one studied by Vogt et al.20

Note that the accuracy of this method is investigated here for

larger pipelines over a relatively large frequency range. This

is to maintain relevance to common engineering applica-

tions; however, this precludes the use of commercial soft-

ware to validate these predictions because, as discussed in

the introduction, this approach would require a prohibitive

number of degrees of freedom.

A. Scattering from a step change

Vogt et al.20 examined scattering from a step change

between an unburied and a buried cylindrical steel rod, with

a diameter of 0.5 mm. This is a rather thin structure and for

this reason it is not well suited to testing the convergence of

the hybrid method, and so the much larger 8 in. schedule 40

steel pipe studied by Duan et al.15 is studied here instead.

This pipe has an outer radius of 109.54 mm and a wall thick-

ness of h ¼ 8:179 mm; the material properties of steel are

cT1
¼ 3260 m=s and q1 ¼ 8030 kg=m3. It is worthwhile

retaining some of the geometrical features of the viscometer

studied by Vogt et al. such as the simple step change from

unburied to buried pipe; however, the surrounding material

should be more representative of that typically found in pipe-

line applications and so two common materials are examined

here:15 dry sand with cTm
¼ 105 m=s and qm ¼ 1620 kg=m3,

and fine soil with cTm
¼ 300 m=s and qm ¼ 2000 kg=m3.

The step change is assumed to extend to infinity in the radial

direction and this is modelled using a PML with values of

a ¼ 4 and b ¼ 4 [see Eq. (4)]. These values for the PML

have been chosen following extensive parametric studies

aimed at minimising the thickness of the PML in order to

reduce solution times. The parametric study is similar in

nature to that undertaken by Duan and Kirby15 for the eigen-

problem, and the general observations drawn by Duan and

Kirby are applicable also to this current model. Moreover,

this article focuses on the scattering of leaky modes and this

permits the PML to be attached directly to the outer surface

of the pipe. This is demonstrated by Duan and Kirby,15 and

it is also further demonstrated for the scattering problem

later on in Sec. III B of this article. It should be noted, how-

ever, that for different problems, such as those where surface

waves are of interest, attaching a PML layer directly to the

outer surface of the pipe may produce non-physical predic-

tions. This can easily be addressed by adding an additional

layer between the pipe and the PML. However, in this article

the focus remains on the scattering of leaky modes, and fol-

lowing a number of studies into the convergence of the

model for leaky modes it is found to be possible to attach the

PML to the pipe wall and to reduce the width of the PML

(see also Ref. 15) to that of the width of the pipe wall, so

that h ¼ b1 � a1. Clearly, minimising the degrees of free-

dom required for the PML confers significant computational

advantages, especially when one is studying the scattering

problem.

The purpose of this article is to introduce a hybrid

SAFE-FE method for a buried pipe and so to validate this

approach for a step change, a central FE section is retained.

That is, region 2 surrounds the step change so that CA cuts

the pipe in vacuo, and CB cuts the buried section. It is of

course also possible to examine a uniform step change using

only modal expansions on either side of the step change, and

then applying mode matching across the interface. This

approach was used by Vogt et al.,20 who used analytic meth-

ods to obtain the longitudinal eigenmodes and then mode

matching to enforce the axial continuity conditions, although

Vogt et al. restricted matching to the cylinder only and this

meant that they did not enforce a traction free condition over

the free surface of the embedding medium. In this article an

alternative approach is used because our focus is on the

hybrid method, and so a region surrounding the step is dis-

cretised using finite elements, so that region 2 has a finite

length. This has the additional advantage of enabling com-

parison between the implementation of the axial matching

conditions for a pipe in vacuo, which has been studied
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before, and a buried pipe, which has not been studied before.

Accordingly, a two dimensional mesh is used to discretise

the step change. The length of region 2 is L ¼ 0:01m, and

the centre of the step change is equidistant from CA and CB.

Scattering from the step change is obtained by exciting

the pipe using the fundamental torsional mode T(0,1) only.

This means that in Eq. (8) A0 ¼ 1, and An ¼ 0 for n > 0.

The solution is obtained by computing the eigenmodes for

each region using Eq. (7), and then substituting them into

Eq. (25). At least 21 nodes per wavelength is maintained for

frequencies up to and including 100 kHz; this delivers an

element size of ep ¼ 0:5 mm in the pipe, and es ¼ 0:1mm in

the sand or soil, which translates into ph1 ¼ m1 ¼ 35,

ph3 ¼ 199, and m3 ¼ 120. Note that significantly more

modes are used in the buried pipe region than in the unburied

pipe region. This is because a large number of radiation

modes exist in the buried pipe section and the energy carried

by these modes is largely confined to the PML region.

Therefore, radiation modes do not contribute to enforcing

the axial matching continuity conditions over the pipe wall.

Thus, it is only the leaky and quasi-evanescent leaky modes

that contribute to enforcing the axial matching conditions.

This means that it is necessary to obtain a larger number of

modes when analysing the buried pipe region in order to

ensure that a sufficient number of leaky and quasi-evanescent

leaky modes are present. The terminology “quasi-evanescent”

is used here to indicate those modes that have a close correla-

tion to evanescent modes in a lossless system. In the current

problem, all modes are complex, however some modes have

very small real parts and so they oscillate in the near field of a

junction in a fashion similar to evanescent modes in lossless

systems. These modes do not fit into the classification of

propagating modes that are useful for non-destructive testing

in buried pipes, and they are of use here only in enforcing the

matching conditions over planes CA and CB. Accordingly,

these modes are termed quasi-evanescent in order to retain a

link with their lossless counterparts, but also to acknowledge

that they are not imaginary modes. This gives a final system

matrix of order 16 394, which takes about 1 s to solve at each

frequency. Note that the frequency independent stiffness and

mass matrices need to be calculated only once, and they are

then stored for subsequent calculations at all the other

frequencies.

Before the scattering analysis, it is helpful to review the

characteristics associated with the incident mode T(0,1), and

so phase velocity and attenuation curves for the 8 in. sched-

ule 40 pipe buried in soil are presented in Fig. 3. It can be

seen that above 10 kHz, the phase velocity and attenuation

curves are non-dispersive, however, as the frequency

approaches zero, the energy carried by T(0,1) transfers from

the pipe to the soil, and this so this mode converts from a

leaky type mode to a radiation type mode and the attenuation

increases rapidly. Note that in the frequency range studied

here, there is only one propagating torsional mode.

There are no alternative analytic or numerical solutions

currently available in the literature for this scattering prob-

lem, and so the accuracy of the solution presented here is

investigated by examining the implementation of the physi-

cal boundary conditions. The implementation of the axial

matching conditions is examined first, and in Fig. 4 the nor-

malised circumferential displacement for soil on either side

of CA and CB is compared for an excitation frequency of 50

kHz. In Fig. 5, this comparison is repeated for the normal-

ised axial shear stress r0hz. It is evident in Figs. 4 and 5 that

the axial matching conditions closely match one another and

that good agreement has been obtained for both displace-

ment and shear stress. Moreover, if one compares the dis-

crete values calculated at each node over the entire surface,

then it is possible to calculate a mean average relative error

for each matching condition. For CA this yields a mean error

of 10�12 for displacement, and 10�5 for shear stress; for CB

FIG. 3. Dispersion curves for T(0,1) in an 8 in. schedule 40 pipe buried in

soil: ——, phase velocity; – – – attenuation.

FIG. 4. Circumferential displacement for a step change at 50 kHz: ——,

modal expansion; – – –, FE solution; (a) plane CA; (b) plane CB: modal

expansion overlays FE solution.
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the mean error is 10�7 for displacement and 10�5 for shear

stress. This demonstrates that the accuracy achieved when

enforcing the axial continuity conditions is satisfactory even

when one includes the surrounding medium. This is impor-

tant, because in the unburied section the modes are known to

be orthogonal, whereas in the buried section Eq. (24) deliv-

ers only a semi-orthogonality relation. It is seen in Figs. 4

and 5 that the absence of a true orthogonality relation has

not unduly affected the ability to enforce the axial matching

conditions in the buried section. A further test of this semi-

orthogonality condition may be obtained by looking at the

size of the off-diagonal elements in Eq. (24), and here the

values on the first row (and column) are Oð10�8Þ, whereas

the values for all other off diagonal elements are Oð10�3Þ,
for both soil and sand. These values are similar to those

observed by Vogt et al.,20 and so when combined with the

results in Figs. 4 and 5 it appears reasonable to conclude that

the semi-orthogonality relation in Eq. (24) provides a conver-

gent system of equations. This has been further verified by

repeating these tests for many different parameters, including

for different pipe sizes. It is interesting also to observe that

the PML is highly efficient in absorbing sound power, so that

in Figs. 4 and 5 the displacement on the outer surface of the

PML is seen to be very close to zero, even for a very modest

PML thickness. This ensures that no artificial reflections arise

from the PML at the outer boundary, so that the radial bound-

ary condition is properly enforced. Accordingly, the results

presented here provide confidence in extending the hybrid

SAFE-FE method to buried systems and shows that it is possi-

ble to use a one-dimensional PML based numerical mode

matching approach to accommodate infinite systems in the

radial direction.

It should be noted here that the level of accuracy seen in

Figs. 4 and 5 is possible only after the use of appropriate

quasi-evanescent modes in the modal expansions that appear

in Eqs. (8) and (9). In this application, seven so-called

“leaky”15 quasi-evanescent modes were required to achieve

high levels of accuracy in the implementation of the axial

matching conditions. The number required is likely to vary

with frequency and other parameters but they need to be

included for most practical frequencies of interest. This

makes the use of analytic mode matching schemes very diffi-

cult for this type of problem, as it is likely to be extremely

challenging to obtain appropriate numbers of quasi-

evanescent leaky modes from analytic dispersion relations.

That is, for scattering problems numerical methods are attrac-

tive because they readily calculate those modes necessary for

implementing mode matching schemes. Note that Vogt

et al.20 did not encounter problems when using analytic solu-

tions of the dispersion relation because they did not match

over the entire step change. Restricting matching to the cen-

tral structure means that the singularity in the stress field at

r ¼ b1 disappears, and so Vogt et al. were able to generate a

convergent system of equations using only a small number of

propagating modes. However, if one seeks also to include the

zero axial stress boundary condition over the free surface of

the step, then the singularity re-appears. In order to overcome

this it is necessary to include quasi-evanescent leaky modes

and the number required is related to the strength of the singu-

larity.21 Accordingly, the analysis of scattering problems of

the type studied here inevitably leads toward the use of

numerical methods, and especially those methods that priori-

tise fast and efficient solutions of the eigenproblem.

Vogt et al.20 went on to calculate reflection coefficients,

and these can readily be calculated here through the use of

the modal amplitudes obtained on solution of Eq. (25).

Accordingly, the reflection coefficient for a step change,

which is defined as B0=A0eikc0L, is shown in Fig. 6, for both

sand and soil. It is seen in Fig. 6 that the reflection coefficient

follows behaviour similar to that seen by Vogt et al.,20 so that

at lower frequencies the reflection coefficient tends toward

unity, whereas at higher frequencies it tends toward zero. This

is because modal energy of T(0,1) is switching from pipe to

soil and this mode is converting from a leaky mode to a radia-

tion mode as the frequency approaches zero. Moreover, it is

also seen that soil has a higher reflection coefficient than sand

due to the higher acoustic impedance of the soil. Figure 4 also

indicates that below about 30 kHz the embedding medium

will start reflecting significant levels of energy, and if one is

looking to overcome problems with attenuation in buried

structures, problems may arise if the strategy is to steadily

lower the excitation frequency. Accordingly, in the practical

application of LRUT it may be prudent to cut away the sur-

rounding material at a shallow angle rather than leave a steep

step change such as the one studied here.

FIG. 5. Axial shear stress for a step change at 50 kHz: ——, modal expan-

sion; – – –, FE solution; (a) plane CA; (b) plane CB. Modal expansion over-

lays FE solution.
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B. Scattering from a defect

This section examines the more difficult problem of

scattering from a defect. The defect is first chosen to be uni-

form so that the problem is similar to the one studied by

Kirby et al.22,23 Accordingly, a 3 in. schedule 40 steel pipe is

examined, with an outer radius of b1 ¼ 44.65 mm and a wall

thickness of 5.65 mm. The defect is uniform in the axial

direction and rectangular (so that u ¼ 90�) with an inner

radius of a2 ¼ 41.85 mm, and a length of ld ¼ 15 mm (see

Fig. 1). The distance between planes CA and CB and the

defect is le ¼ 5 mm. The material properties of the steel pipe

and the surrounding dry sand are the same as in Sec. III A.

The thickness of the PML is equal to the thickness of the

pipe wall, so that h ¼ 5:65 mm. The element size in the pipe

is ep ¼ 0:5mm, and in the sand es ¼ 0:1 mm, which ensures

that at least 21 nodes per wavelength is maintained at the

upper frequency of 100 kHz. The solution of Eq. (7) with

m1 ¼ m3 ¼ 120 delivers a final system matrix of order

67 534, and this takes about 2 s to solve at each frequency.

The implementation of the matching conditions is exam-

ined for a uniform defect in the same way as for the step

change in the previous section. Accordingly, in Figs. 7 and

8 those solutions obtained for displacement and shear stress

over planes CA and CB using modal expansions in regions 1

and 3, are compared to FE based solutions in region 2. It can

be seen that the modal expansions again match the FE solu-

tions over both planes, and this yields a mean average relative

error of 10�10 for displacement and 10�5 for the shear stress

for both CA and CB. Thus, the axial matching conditions are

seen to be fulfilled accurately for this scattering problem and

this provides further evidence that the hybrid SAFE-FE

method may be extended to the study of defects of a finite

length. Furthermore, the radial displacement is again seen to

quickly go to zero in the outer section, and this further demon-

strates the efficiency of the PML based approach.

The reflection coefficient for the uniform defect may be

calculated in the same way as that for the step change; how-

ever, region 1 is now buried and so propagating waves in this

section will be attenuated as they travel along the pipe.

Accordingly, in order to avoid the influence of an arbitrary

length of buried pipe, the reflection coefficient for the uniform

defect is calculated at the axial position z ¼ le. In Fig. 9 the

reflection coefficient for a uniform defect is shown for a pipe

buried in dry sand and soil. To reveal the effects of the sand

or soil on scattering by the defect, the reflection coefficients

obtained are also compared against an equivalent value calcu-

lated for an unburied pipe.22 It is seen that the reflection coef-

ficient for a buried pipe is slightly lower than that for an

unburied pipe. This is because sound energy radiates from the

pipe into the surrounding medium, although the amount of

energy radiated is small because the impedance of the dry

sand or soil is much lower than the impedance of the pipe.

However, the dry sand or soil does facilitate axial resonances

between the walls of the defect, which is seen to trap small

amounts of energy and this shows up as oscillations in the

reflection coefficient in Fig. 9. The shear impedance of soil is

also larger than in dry sand, and so more energy radiates into

the soil than into the sand.

To further explore the relative convergence of the finite

element model to a unique solution over a wide frequency

range, a number of parameters that are important in deter-

mining the accuracy of the model are also investigated here.

This includes the element density in the pipe ep, the element

density in the sand or soil es, the PML inner radius am, the

PML thickness h, and the distance between plane CA (or CB)

and the defect le. A total of five different investigations are

listed in Table I, and these are compared against one another

in Fig. 9. It is evident here that the reflection coefficients cal-

culated for each scenario overlay one another throughout the

FIG. 7. Circumferential displacement for a uniform defect at 100 kHz: ——,

modal expansion; – – –, FE solution; (a) plane CA; (b) plane CB. Modal

expansion overlays FE solution.

FIG. 6. Reflection coefficient from a step change. ——, soil; ——, dry

sand.
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frequency range and this further illustrates that as the num-

ber of elements are increased the method converges to a

unique solution, even over a wide range of parameters.

IV. SCATTERING FROM A NON-UNIFORM DEFECT

In this section some further results are presented for a

non-uniform defect, as the study of non-uniform problems is

important in generating a model that works for practical

problems such as the detection of cracks or regions of corro-

sion. Accordingly, a tapered defect is chosen here, as this

has been studied before in the literature for unburied

pipes.22,23 The 8 in. schedule 40 steel pipe seen in Sec. III A

is used and the defect has a length of ld ¼ 38:89 mm and a

taper angle u ¼ 30�, so that the inner radius of the defect is

a ¼ 104:087 mm. The thickness of the defect (i.e., b1 � a)

is two thirds of the pipe wall. An element size of 0.5 mm is

used in the pipe, and 0.1 mm in the surrounding medium,

which is either soil or dry sand (see previous section for rele-

vant properties). The PML layer is attached directly to the

outer surface of the pipe, with h ¼ b1 � a1, and le ¼ 5 mm.

In Fig. 10 the reflection coefficient is shown for T(0,1)

incident upon the tapered defect. The reflection coefficient is

calculated at z ¼ le in the same way as Sec. III B, so that the

influence of sound attenuation in the pipe is removed. A

comparison between Figs. 9 and 10 reveals that the reflection

coefficient for the tapered defect is smooth and does not

exhibit the small oscillations seen for the uniform defect.

This is because the tapering of the defect removes the reso-

nance field between the two walls of the uniform defect and

so energy is radiated away from the defect and into the sur-

rounding medium. This causes the reflection coefficient to

drop for the tapered defect when compared to the uniform

defect. To further illustrate this effect, the displacement field

is shown for a uniform defect buried in sand in Fig. 11(a),

and a non-uniform defect buried in sand in Fig. 11(b). Here

it is seen that tapering removes the resonant behaviour asso-

ciated with a uniform defect, which is to be expected.

Moreover, the surfaces of the taper provide a larger area over

which to radiate energy into the surrounding medium and this

is why the reflection coefficient is lower for the tapered defect

when compared to the uniform defect. This means that regions

FIG. 8. Axial shear stress for a uniform defect at 100 kHz: ——, modal

expansion; – – –, FE solution; (a) plane CA; (b) plane CB. Modal expansion

overlays FE solution.

FIG. 9. Reflection coefficient for uniform defect buried in sand or soil. Dark

line, unburied pipe; medium line, sand; light line, soil. Numerical experiments

(a) to (e) in Table I overlay one another for both sand and soil.

TABLE I. Variation of parameters for uniform defect.

am ep (mm) es (mm) h (mm) le (mm)

a b1 0.5 0.1 5.65 5

b b1 0.2 0.05 5.65 5

c b1 0.5 0.1 11.3 5

d b1 0.5 0.1 5.65 30

e b1 þ 2:5 mm 0.5 0.1 5.65 5

FIG. 10. Reflection coefficient for a non-uniform (tapered) defect. Dark

line, unburied pipe; medium line, sand; light line, soil.
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of corrosion that have geometries similar to the tapered defect

studied here are likely to be more difficult to detect in buried

structures when compared to unburied structures.

V. CONCLUSIONS

The theoretical analysis of scattering from defects in

buried structures is a challenging problem, which requires a

bespoke computational approach in order to deliver a com-

putationally efficient and tractable solution. This article

presents a method for doing this which makes use of a hybrid

approach based on a SAFE method for obtaining the eigenm-

odes in a uniform buried section, and then couples this to an

FE discretisation of a non-uniform section that surrounds the

buried defect. In view of the difficult nature of this problem,

the analysis is restricted here to the development of a model

for an axisymmetric defect with excitation by torsional

modes only.

The results presented in this article demonstrate that

the hybrid SAFE-FE model can be successfully applied to

an axisymmetric scattering problem. It is seen that mode

matching may be used to join the uniform and non-uniform

regions together, and that this approach accurately enforces

the axial matching conditions provided a significant number

of quasi-evanescent leaky modes are included. This is the

case even though the eigenmodes in the buried section are

only semi-orthogonal. Furthermore, through an appropriate

choice of a PML for the surrounding region, and by integrat-

ing over the stretched co-ordinate in this region, it is shown

that it is possible simultaneously to enforce the appropriate

radial and axial boundary conditions in the embedding

medium. That is, the hybrid method can be extended to the

analysis of buried structures, at least for the axisymmetric tor-

sional problem.

The hybrid method presented here removes the need to

discretise the entire length of a structure, and so demon-

strates that it is possible to develop efficient theoretical

models suitable for analysing scattering in buried struc-

tures. Furthermore, the speed of solution at each frequency

is less than about 2 s for the problems studied here, which

means that the method can readily be extended to the time

domain using Fourier Transforms,9,10 and the authors have

already obtained time domain predictions for this problem

which have not been presented here to save space.

However, the analysis of guided waves in buried structures

remains a complex problem so that the analysis reported

here represents a first step toward tackling more difficult

three dimensional problems. Accordingly, future work will

seek to advance this current model and to include longitu-

dinal and flexural modes, as well as non-axisymmetric

defects.
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APPENDIX B
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FIG. 11. (Color online) (a) Normalised displacement for a uniform defect at

50 kHz. (b) Normalised displacement for non-uniform defect at 50 kHz.
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