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I 

 

ABSTRACT 

 

Nowadays, the need for more contributions from renewable energy sources is rapidly 

growing. This is forced by many factors including the requirements to meet the targeted 

reductions of greenhouse gas emissions as well as improving the security of energy supply. 

According to the International Renewable Energy Agency (IRENA) report 2016, the total installed 

capacity of solar energy was at least 227 GWs worldwide by the end of 2015 with an annual 

addition of about 50 GWs in 2015, making solar power the world’s fastest growing energy 

source. The majority of these are grid-connected photo voltaic (PV) solar power plants, 

which are required be integrated efficiently into the power grids to meet the requirements of 

power quality standards at the minimum total investment cost. For this, multilevel voltage 

source inverters (VSI) have been applied extensively in recent years.    

In practice, there is a trade-off between the  inverter’s number of levels and the required size 

of output filter, which is a key optimisation area. The aim of this research is to propose a 

generic model to optimise the design number of levels for the Cascaded H-Bridge Multilevel 

Inverter (CHB-MLI) and the size of output filter for medium voltage – high power 

applications. The model is based on key measures, including inverter power loss 

minimisation , efficient control for minimum total harmonic distortion (THD), minimisation  

of total system cost and proposing the optimum size of output filter. This research has made a 

contribution to knowledge in the optimisation of CHB-MLI for medium-voltage high-power 

applications, in particular, the trade-off optimisation of the inverter’s number of levels and 

the size of the output filter. The main contribution is the establishment and demonstration of a 

sound methodology and model based on multi-objective optimisation for the considered key 

measures of the trade-off model. Furthermore, this study has developed a generic precise 

model for conduction and switching loss calculation in multilevel inverters. Moreover, it 

applied Genetic Algorithm (GA) optimisation to provide a complete optimum solution for the 

problem of selective harmonic elimination (SHE) and suggests the optimum size of output 

passive power filter (PPF) for different levels CHB-MLIs.   

The proposed trade-off optimisation model presents an efficient tool for finding the optimum 

number of the inverter’s levels and the size of output filter, in which the integration system is 

at its lowest cost, based on optimisation dimensions and applied system constraints. The 

trade-off optimisation model is generic and can be applied to any multilevel inverter 

topologies and different power applications.  
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1 CHAPTER 1: INTRODUCTION 

1.1 Preface 

The demand for an efficient power-generation contribution from renewable energy 

sources has grown exponentially in the last decade. This fast growth has been mainly 

forced by the requirements to meet the targeted reductions of greenhouse gases 

emissions, the price volatility of fossil fuel and the need to improve the security of 

power supply. Among renewable energy sources, solar and wind are considered to be 

the most dominant. Figure 1.1 depicts the annual growth of wind and solar energy 

generation capacity over the last decade [1].   

 

 

Figure 1.1: Annual growth of worldwide total installed capacity for wind and solar power. 

 

It is possible to see that the generation capacity from wind and solar sources has 

increased six times over the last ten years. Power grids are experiencing more and 

rapid penetration of medium- and large-scale power plants from wind and solar. 

According to the International Renewable Energy Agency (IRENA) report 2016 , the 

installed capacity of wind power farms was around 432 GWs worldwide by the end of 

2015 [1]. In addition, the installed capacity of solar photovoltaic (PV) technology was 

at least 227 GWs worldwide by the end of 2015, with an annual addition of about 50 
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GWs in year 2015. Most of these are grid-connected PV power plants. In the next few 

years, more than 250 solar (PV) power plants will be installed, some of them in 

excess of 500 MW capacity. This rapid spread is supported by the substantial 

decrease in the cost of PVs, which have reduced in price by more than 80% in the last 

eight years. Furthermore, PV power plants can be built and installed within a 

relatively short time scale (typically 6–12 months), which is much quicker compared 

to conventional fossil fuel power plants (typically 4–5 years) [2]. It is expected that 

solar PV power plants will continue to grow rapidly in the near future.  

Due to the rapid spread and growth in renewable energy generation, more power 

electronics devices are being implemented in today’s electrical power networks. 

Medium- and large-scale PV power plants are integrated into utility grids via power 

electronics inverters, which are considered a major source of harmonics and affect the 

power quality significantly. Therefore, it is important to efficiently design the inverter 

required for this integration to meet the harmonic limits as recommended by 

international standards for acceptable power-quality levels [3]. 

Several conventional inverters have been proposed and implemented for the 

integration of PV power plants into power grids. In conventional inverters, it is 

difficult to connect a single semiconductor switch to medium voltage – high power 

applications. Therefore, integration with conventional inverters requires the 

implementation of a step-up transformer, line filter and series/parallel connection of 

multiple high-voltage power switches; these increase the total system size, weight, 

power loss, cost and complexity. Nowadays, multilevel voltage-source inverters are 

replacing conventional inverters to better integrate PV grid-connected power plants. 

These multilevel inverters are capable of building a higher output voltage with a 

smaller number of switching devices with a lower blocking voltage. The application 

of multilevel inverters for direct grid connection of PV power plants has attracted 

many researchers and continues to gain more attention. The purpose is to achieve a 

more efficient and cost effective inverter design, which can be connected directly to 

the power grid without the need to use a step-up transformer or an output filter, or to 

significantly reduce the size of the required output filter.  
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1.2 Motivations  

With today’s movement towards deregulation and liberalization of  power markets, a 

greater contribution and penetration of distributed generations (DGs)  is taking place 

across the world. The rapid growth in renewable energy is expected to continue. 

According to British Petroleum Plc report-2016, solar energy grew by 33% in 2015, 

making sun power the world’s fastest-growing energy source [4]. This has been 

supported by sharp cost reductions and technological advancement of PVs. Figure 1.2 

depicts solar PV global capacity and annual additions for the period 2005–2015 [5].   

 

 

Figure 1.2: Solar PV global capacity and annual additions 2005–2015 [5].  

 

Most of the installed capacity of solar PV power plants is grid-connected. These 

additional PV power plants should be integrated efficiently with the power grids. 

Voltage-source multilevel inverters  play a vital rule in the integration of these 

distributed generators (DGs) due to their superiority compared to conventional two-

level inverters in having: 1) higher output voltage at low-switching  frequency, 2) low 

voltage stress (dv/dt), 3) lower total harmonic distortion   (THD), 4) less electro-

magnetic interference (EMI), 5) a smaller output filter and 6)  higher fundamental 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi20uHf6abQAhWPyRoKHQ8oDngQjRwIBw&url=http://www.ren21.net/status-of-renewables/global-status-report/&psig=AFQjCNFO0tKgXKBjoP0yX4JIiiH4Vi_Ihw&ust=1479164041013044
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output. In practice, there is a trade-off between the  inverter’s number of levels and the 

required size of output filter, which is  considered to be a key area for optimisation. 

This requirement has encouraged exploration and investigation of the potential for 

optimizing the integration system of solar PV power plants by proposing a generic 

optimisation model to deal with the trade-off problem. The optimisation model is 

based on key system-performance measures including: design efficiency, inverter 

control for minimum THD, number of inverter levels, system power losses and 

system cost for the required medium-voltage–high-power application and to 

recommend the optimum size of output filters.  

 

1.3 Thesis Aim and Objectives  

The aim of this thesis is to develop a generic optimization model for multilevel 

inverters for renewable energy sources. This will be achieved by finding a feasible 

way of quantifying the existing trade-off key measures to optimize the designed 

number of levels for the cascaded H-bridge multilevel inverter (CHB-MLI) topology 

and the required size of output filter for medium voltage – high power applications. 

The model is based on precise inverter power-loss minimisation , efficient control for 

minimum THD, minimisation  to total system cost and proposing the optimum size of 

output filter. There is an optimum number of inverter levels and size of output filter 

where the integration system achieves its lowest cost, based on optimisation 

dimensions and applied system constraints. To achieve the research aim stated above, 

the following main objectives are set:  

 

1. To undertake an extensive literature review through books, journals and conference 

papers about high-power inverters, with a focus on multilevel voltage-source 

inverter topologies and their applied control methods.  

2. To critically review the problem of power-system harmonics, description of the 

phenomenon, causes/effects and applied solutions for harmonic mitigations.  

3. To critically review and classify power-filter circuit configurations, key features, 

and the advantages and disadvantages of different filter topologies.   
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4. To propose a generic model to solve the problem of selective harmonic elimination 

(SHE) control and minimize THD for any number of inverter levels. This will be 

based on genetic algorithm (GA) optimisation and implementing the proposed 

algorithm to obtain the solution of SHE switching angles for inverter levels (3 to 

31), according to the proposed GA solution.  

5. To analyse and compare the results of %THD for different-level inverters when 

applying SHE and sinusoidal pulse-width modulation (SPWM) control.  

6. To build a precise generic model for calculating conduction and switching power 

loss in multilevel inverters, based on actual switching device datasheets. The 

model is generic and can be applied for any multilevel inverter topology with any 

number of levels.  

7. To implement an optimisation model based on GA to find the optimum design for 

the composite passive power filter at the output of CHB-MLI, which minimizes 

filter cost, power loss, %THD, and improves the power factor at the point of 

common coupling PCC. 

8. To investigate the optimum number of levels for different CHB-MLI designs, 

based on inverter inverter’s power loss, %THD, device counts and cost.  

9. To analyse the optimum trade-off between number of inverter levels and size of 

output filters, based on the proposed optimisation approach.  

 

1.4 Thesis Outline  

The work accomplished in this thesis is presented and organized in six chapters, 

which are illustrated in Figure 1.3, with the relationship to the thesis objectives 

presented in section 1.3  



Chapter One: Introduction                                                                                                                     6 

 

 

 

Chapter 1

Introduction 

Chapter 4

Proposed Optimum Trade-off Model 

(Objective 4, 6 & 7) 

Chapter 5

Modelling and Simulation of the Proposed Optimum Trade-off Model

(Objective 5, 8 & 9) 

Chapter 2

Voltage-Sourced Multilevel Inverters - 

Critical Review 

(Objective 1) 

Chapter 3

Passive & Active Power Filters for 

Harmonic Mitigation - Critical Review 

(Objective 2 & 3) 

Chapter 6

Conclusion 

BackgroundBackground

System ModellingSystem Modelling

Simulation & ResultsSimulation & Results

jj

 

Figure 1.3: Thesis structure. 

 

The content of each chapter is summarized below: 

Chapter 1 provides general background about the worldwide rapid growth of 

renewable energy, especially wind and solar, with a focus on PV power plants. This is 

followed by a demonstration of the research aim, objectives and layout of the thesis.   

Chapter 2 starts with a general classification of high-power inverters. Current-source 

inverters (CSIs) and voltage-source inverters (VSIs) are discussed in terms of 

historical development, main operating principles and key features. To sum up this 

part, a technical comparison is presented. A critical review for VSIs is conducted. 

This covers the three basic topologies and applied control techniques, and it highlights 

the superiority of the CHB-MLI for medium-voltage–high-power applications.      



Chapter One: Introduction                                                                                                                     7 

 

 

Chapter 3 addresses the problem of power-system harmonics by describing the 

phenomenon, classifying its main sources, discussing the adverse effects of harmonics 

on power systems and illustrating the existing solutions applied for harmonic 

mitigation. The second part of this chapter critically reviews power filters, and the 

chapter concludes by providing critical review tables for passive, active and hybrid 

power filters.        

Chapter 4 sets out the background for the trade-off problem under investigation. It 

then presents the proposed optimisation for the trade-off model. The mathematical 

problem formulation for SHE control is demonstrated, and a GA-based generic 

optimisation model is introduced. The evaluation of power loss in multilevel inverters 

is reviewed. The chapter then proposes a generic detailed model for calculating 

conduction and switching power losses, particularly in multilevel inverters, based on 

actual switching device datasheets. The model can be applied for any multilevel 

inverter topology with any number of levels. The last part of this chapter investigates 

the problem of passive power filter design optimisation. First, a comparison review is 

demonstrated between conventional and heuristic approaches in passive power filter 

(PPF) design. Then, a GA-based optimum design model for PPFs, based on both 

economic and technical considerations, is proposed for the trade-off problem.  

Chapter 5 illustrates the proposed optimum trade-off model implementation and 

simulation outcome in a Matlab/Simulink environment. The switching angles of SHE 

are determined for inverter levels (3 to 31) using GA-based optimisation. In addition, 

the %THD for CHB-MLI is compared for different inverter levels using SHE and 

SPWM control techniques. Furthermore, detailed analysis of conduction and 

switching power losses in CHB-MLI at different levels is presented. An investigation 

of the trade-off problem to find the optimum number of inverter levels and size of 

output filter is carried out. All discussions, investigations and analysis are supported 

by appropriate results.   

Chapter 6 summarizes the main conclusions, findings and contribution to knowledge 

for the thesis and suggests possible future work.  
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2 CHAPTER 2: VOLTAGE-SOURCED MULTILEVEL 

INVERTERS – CRITICAL REVIEW 

2.1  Introduction  

Power electronics plays a vital role in achieving efficient, reliable and high-power quality 

integration of renewable energy sources into power grids via power conversion and inversion, 

and through HVDC links. This chapter presents a critical review of high-power inversion, 

with a focus on voltage-source multilevel inverters. First, a general classification of high-

power inverters is discussed, and a technical comparison of the major types is presented. 

Then, the three classical voltage-source multilevel-inverter topologies are reviewed and 

compared in depth, with a focus on the superiority of the cascaded H-bridge in high-power 

applications. The chapter concludes by demonstrating the main modulation techniques 

applied for multilevel inverters.  

2.2  Classification of High-Power Inverters  

Figure 2.1 shows the basic classification of high-power inverters, classified into two main 

categories: 1) current-source inverters (CSIs) and 2) voltage-source inverters (VSIs). Below, 

the basic concept and features of each type are explained, followed by a detailed technical 

comparison between CSIs and VSIs. [6]          

  

High-Power 

Inverters

Current-Source Inverters 

(CSI)

PWM-CSI

Voltage-Source Inverters 

(VSI)

LC-CSI
Multilevel 

Inverters

Two-Level 

Inverters

NPC-MLI FC-MLI CHB-MLI Hybrid

 

Figure 2.1 : Classification of high-power inverters. 
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2.2.1 Current-Source Inverters (CSI) 

The current-source inverter (CSI) is a well-established technology and considered to be the 

classical topology for high-power inversion. It is also called a line commutated inverter (LCI) 

because it uses system voltage to force the commutation process between the inverter valves. 

It was the first technology applied for bulk power inversion and HVDC applications. In the 

early days of the twentieth century, the mercury-arc valve was introduced to handle high-

power conversion and inversion. The first HVDC was installed between the island of Gotland 

and Sweden in the early 1950s. Mercury-arc valve technology has its own operational 

drawbacks and a limited-voltage–power-ratings ability. To overcome these problems, the 

thyristor or silicon-controlled rectifier (SCR) was developed, which revolutionized CSI 

technology . In order to increase the voltage ratings of valves, thyristors are simply connected 

in series; higher current ratings can be achieved by adding more thyristors in parallel, and 

stacking more thyristors in series and parallel for each valve results in a high-power inverter. 

For this reason, thyristor-based CSI is still the dominant technology for very-high-power 

inversion and HVDC links. The largest and longest HVDC will transmit 6.4 GW power from 

Xiangjiaba hydro power plant to Shanghai at 800 kV, 2071 km longline [7].    

As shown in the high-power inverters classification given in Figure 2.1, there are two basic 

topologies for current-source inverters applied in industry, which are named: 1) load-

commutated current-source inverter (LC-CSI) and 2) pulse-width modulation current-source 

inverters (PWM-CSI). The load-commutated inverter is considered a mature technology that 

has been applied for some time. It is considered a low-cost reliable topology that has a simple 

structure and suffers from distorted-input current and low-input power factor [7-9].                             

CSIs are designed in 6- and 12-pulse thyristor-based inverters. The circuit layout for a 6-

pulse CSI is given in Figure 2.2. The 6-pulse CSI is basically a three-phase full-wave bridge 

that contains six controlled power switches – usually thyristor valves. This is known as a 

Greatz bridge or a 6-pulse bridge. In order to achieve higher DC voltage ratings, multiple 

thyristors are connected in series. However, the configuration of a 12-pulse CSI comprises 

two 6-pulse bridges connected in series and a phase displacement – usually 30
 
degrees 

between the phases on the AC side. The 30-degree phase displacement is achieved by 

connecting the AC side of one 6-pulse bridge to a delta transformer winding, while the other 

6-pulse bridge is connected to a Y- (star) transformer winding as shown in Figure 2.3. The 

12-pulse CSI produces fewer harmonics compared to the 6-pulse as the 5
th

 and 7
th

 harmonics 

are eliminated when used in the 12-pulse configuration. This results in minimizing the size of 
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the output filter; hence, the 12-pulse CSI is widely applied for high-power and HVDC 

applications.  
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Figure 2.2: Greatz bridge (6-pulse) CSI circuit layout. 
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Figure 2.3: 12-pulse bridge CSI circuit layout. 

 

Figure 2.4 demonstrates an HVDC system based on CSI technology. The main limitation of 

CSI is that thyristor valves can only be controlled to be turned ON and require an AC 

synchronous voltage source for commutation. 
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Figure 2.4 : HVDC based on current-source conversion technology.  

 

2.2.2 Voltage-Source Inverters (VSI)  

The VSI is based on the use of fully controlled semiconductors,  mainly: insulated gate 

bipolar transistors (IGBTs), gate turn-off thyristors (GTOs) or integrated  gate-commutated 

thyristors (IGCTs). The latter are replacing GTOs for high-power applications as IGCTs can 

be fully controlled to be turned ON and OFF, which gives two degrees of freedom. 

Nowadays, IGBTs and IGCTs are available on the market with blocking voltages of up to 6.5 

kV. VSI is considered to be a new technology generation, mostly using IGBTs as a power 

switch. This technology is growing fast in industrial and utility power applications such as 

renewable energy integration and HVDC. It is a well-established technology for high-power–

medium-voltage applications and is gaining attention for high-power–high-voltage 

applications. VSIs are also called self-commutated inverters. In such inverters, the DC 

voltage is considered constant and they are therefore called voltage-source inverters (VSIs), 

which are self-commutated as these inverters do not require an external synchronous voltage 

source for commutation. 

VSIs are categorized into two main categories, which are: 1) two-level inverters and 2) 

multilevel inverters. In two-level inverters, the output-voltage waveform comprises two 

levels. In such a topology, it is necessary to stack many power switches in series and parallel 

to handle high-power ratings. This results in many operational drawbacks such as: unequal 

voltage distribution between stacked semiconductors, poor efficiency, reliability issues, high 

losses and high total harmonic distortion (THD). To overcome these drawbacks, the concept 

of multilevel inverters was proposed in 1975 [10].  Multilevel inverters are those producing 

the output-voltage waveform in three levels or more. Compared to conventional two-level 

inverters, multilevel inverters have the following key advantages: 1) higher output voltage at 
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low switching frequency, 2) low voltage stress (dv/dt), 3) lower THD, 4) less electromagnetic 

interference (EMI), 5) a smaller output filter and 6) higher fundamental output [11, 12].     

The voltage-source multilevel inverters are classified into classical topologies and hybrid 

topologies. The classical topologies are named: 1) neutral-point clamped (NPC-MLI), 2) 

flying capacitor (FC-MLI) and 3) cascaded H-bridge (CHB-MLI). These topologies have 

been well established in industry for some time and are commercially available. Hybrid 

multilevel inverters are proposed topologies based on a combination of the two classical 

topologies mentioned above, or with a little modification of them [13]. Throughout the 

literature, numerous topologies have been proposed to suit certain applications, or to improve 

the original features.  

In 1997, the first HVDC that implied IGBT-based VSIs was installed in Hellsjön, Sweden 

with ratings ±10 kV, 3 MW and 10 km distance [14]. Currently, VSIs are operated much 

beyond this at very high voltage and power ratings ±320 kV, 1000 MW. Figure 2.5 

demonstrates an HVDC system based on VSI technology. In the next section, the three 

classical topologies of multilevel inverters are critically reviewed.  

 

AC 1 AC 2

Reactive
 Power 

Reactive
 Power 

Real
 Power 

 

Figure 2.5 : HVDC based on voltage-source conversion technology. 

 

2.2.3 Technical Comparison between CSI and VSI 

Comparing CSI and VSI technologies, each technology has its own advantages and 

drawbacks. There is always a trade-off to decide which technology to use. The final decision 

is based on technical and economic factors and the nature of the required application. Table 

2-1 presents a detailed technical comparison between CSI and VSI technologies, based on the 

literature review.  
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Table 2-1: Technical comparison of CSIs versus VSIs 

Current-Source Inverters (CSIs) Voltage-Source Inverters (VSIs) 

Employing mercury-arc valves or thyristors.  Thyristor- or transistor-based technology [15]. 

Difficult to control, needs external AC voltage 

source for commutation. 
Fully controllable and self-commutated. 

Absorbs reactive power (Q) in operation and 

generates many harmonics; hence, large filter 

size and local Q compensation is essential. 

Produces fewer harmonics; hence, smaller filter 

size is required and does not consume reactive 

power in operation, which makes it more 

compact. [16]           

Dominant technology for high-voltage–high- 

power applications. 

Preferable for medium-voltage–high- power 

applications [6].             

Lower switching losses, about 0.8% per 

converter station [15] .   

Higher switching losses. Typically, the total 

losses per converter in a VSI station are 1.8%.                      

Lower switching frequency.  Higher switching frequency can be achieved [14].  

Cannot be connected to weak systems.  Has “black-start capability” [17]. 

Limited power control and needs local reactive 

power compensation.  

Can control both active and reactive power 

independently and rapidly.  

Power flow in one direction.  
Bidirectional power flow is possible with VSIs 

[18].    

Requires phase-shifting transformer.  Requires ordinary transformer.  

Uses series and parallel connection of thyristors 

to achieve high-power ratings.  
VSIs have modular and compact structure. 

Commutation failure occurs in CSIs as a result of 

disturbances in the AC side.  
This problem is eliminated when using VSIs.       

Operates in two quadrants of the PQ operating 

plane.  

VSIs operate in all four quadrants of the PQ 

operating plane [17].  



Chapter Two: Voltage-Sourced Cascaded H-Bridge Multilevel Inverters – Critical Review                     15 

 

2.3 Classical Topologies of Voltage-Source Multilevel Inverters 

Many topologies have been introduced by researchers for multilevel inverters. However, 

most of the proposed topologies were built according to the three basic topologies that are 

well established in industry. The basic topologies, also known as classical   (traditional) 

topologies, are: 1) neutral-point clamped multilevel inverters (NPC-MLI), 2) flying capacitor 

multilevel inverters (FC-MLI) and 3) cascaded H-bridge multilevel inverters (CHB-MLI). 

These classifications are shown in Figure 2.6. This section presents the theoretical 

background, operating principles, circuit layouts, and main features of the three classical 

topologies.  

Cascaded H-

Bridge 

(CHB-MLI)

Neutral-Point 

Clamped

 (NPC-MLI)

Flying 

Capacitor 

(FC-MLI)

Classical Multi-

Level Inverters

 

Figure 2.6: Classical topologies for multilevel inverters. 

 

2.3.1 Neutral-Point Clamped Multilevel Inverter (NPC-MLI) 

The first neutral-point clamped multilevel inverter was introduced by Nabae,  Takahashi and 

Akagi in 1981 [19]. This was essentially a three-level inverter. It is called the  neutral-point 

clamped inverter, based on the introduction of a neutral point as an additional level on  the dc 

bus. Sometimes, it is called diode-clamped. This topology is very popular and commonly 

used in industry. Figure 2.7 illustrates the NPC-MLI single-phase circuit layout for a) three 

levels and b) five levels. 
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               (a)                                                              (b) 

Figure 2. 7 : Neutral-point clamped multilevel inverter circuit layout for a) 3-levels, and b) 5-levels. 

                               

In this topology, for an m-level inverter, the main DC voltage 𝑉𝑑𝑐  is split by a 

connection  of (𝑚 − 1) bulk series capacitors from the DC side. At steady state, the 

voltage across each  capacitor is 𝑉𝑑𝑐 (𝑚 − 1)⁄ . The clamped diodes are used to limit 

the voltage across each active  switch to one capacitor voltage. Hence, each switch is 

only required to block 𝑉𝑑𝑐 (𝑚 − 1)⁄  voltage value. Multisteps in the output voltage can 

be easily generated by implementing the appropriate  switching. Tables 2-2 and 2-3 

present  the switching states to synthesize 3- and 5-level output voltages, respectively 

[8, 20]         

Table 2-2: Switching states for 3-level neutral-point clamped multilevel inverter (NPC-MLI) 

Output voltage(Van) Switch State (3-Level NPC-MLI) 

Level Value S1 S2 S1’ S2’ 

V2 Vdc/2 1 1 0 0 
V1 0 0 1 1 0 

V0 -Vdc/2 0 0 1 1 

 

Table 2-3: Switching states for 5-level neutral-point clamped multilevel inverter (NPC-MLI) 

Output voltage (Van) Switch State (5-Level NPC-MLI) 

Level Value S1 S2 S3 S4 S1’ S2’ S3’ S4’ 

V4 Vdc/2 1 1 1 1 0 0 0 0 
V3 Vdc/4 0 1 1 1 1 0 0 0 

V2 0 0 0 1 1 1 1 0 0 

V1 -Vdc/4 0 0 0 1 1 1 1 0 

V0 -Vdc/2 0 0 0 0 1 1 1 1 



Chapter Two: Voltage-Sourced Cascaded H-Bridge Multilevel Inverters – Critical Review      17 

 

For an m-level diode-clamped inverter, each phase has (𝑚 − 1)  pairs of 

complementary switches. When one switch from the pair is turned on, the other 

complementary switch should be turned off. Tables 2.2–2.3 show that the switches that 

are turned on are always adjacent and in series [13]. In addition, for an m-level 

inverter, there should be (𝑚 − 1) switches turned on at a time. Table 2-4 demonstrates 

the required number of devices for an m-level diode-clamped inverter.  

 

Table 2-4: Device count for neutral-point clamped multilevel inverter (NPC-MLI) 

Device Count per Phase Leg 

Active Switching Devices 2 (m-1) 

Freewheeling Diodes 2 (m-1) 

Clamping Diodes (m-1) (m-2) 

DC Link Capacitors (m-1) 

 

The clamping diodes should have different voltage-blocking ratings compared to the 

active power-switching devices. However, when the inverter is designed in such a way 

that each clamping diode needs the same power ratings as the switches,(𝑚 − 1)(𝑚 −

2) diodes are required [13, 21].   

 

 

2.3.2 Flying Capacitor Multilevel Inverter (FC-MLI) 

A new inverter based on the flying capacitor concept was introduced by Meynard and 

Foch in 1992 [12]. It was introduced as an alternative to the neutral-point clamped 

inverter. The basic idea behind this topology is the use of capacitors to clamp the 

device voltage to one capacitor voltage instead of using diodes, as with the neutral-

point clamped inverter. Hence, this type of inverter is also called a capacitor-clamped 

invertor. Figure 2.8 demonstrates the FC-MLI single-phase circuit layout for a) three 

levels, and b) five levels.  
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(a)   (b)              
Figure 2.8: Flying capacitor multilevel inverter circuit layout for a) 3-levels, and b) 5-levels. 

                 

In this topology, as in diode-clamped inverters, for an m-level inverter, the main DC 

voltage 𝑉𝑑𝑐  is split by a connection of (𝑚 − 1) bulk-series capacitors from the DC 

side. These capacitors have a ladder structure in which the voltage across each 

capacitor differs from the voltage on the other capacitors. The voltage increase 

between two adjacent capacitors shapes the size of the voltage step in the output-

voltage waveform [13, 22].  The clamping capacitors are used to limit the voltage 

across each active switch device to 𝑉𝑑𝑐 (𝑚 − 1)⁄  voltage value. Multisteps in the 

output voltage can be easily generated using the appropriate switching of the inverter 

semiconductors. To illustrate this, consider the three-level multilevel capacitor-

clamped inverter shown in Figure 2.8 (a). The three-level staircase output voltage can 

be obtained according to the switching table presented in Table 2-5. Similarly, Table 

2-6 presents the switching states to synthesize a five-level inverter [8, 20].  

 

Table 2-5: Switching states for 3-level fly capacitor multilevel inverter (FC-MLI) 

Output Voltage(Van) Switch State (3-Level FC-MLI) 

Level Value S1 S2 S1’ S2’ 

V2 Vdc/2 1 1 0 0 

V1 0 1 0 0 1 

0 1 1 0 

V0 -Vdc/2 0 0 1 1 
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Table 2-6: Switching states for 5-level fly capacitor multilevel inverter (FC-MLI) 

Output Voltage (Van) Switch State (5-Level FC-MLI) 

Level Value S1 S2 S3 S4 S1’ S2’ S3’ S4’ 

V4 Vdc/2 1 1 1 1 0 0 0 0 

V3 Vdc/4 
1 1 1 0 1 0 0 0 

0 1 1 1 0 0 0 1 

1 0 1 1 0 0 1 0 

V2 0 

1 1 0 0 1 0 0 1 

0 0 1 1 0 0 1 1 

1 0 1 0 1 0 1 0 

1 0 0 1 0 1 1 0 

0 1 0 1 0 1 0 1 

0 1 1 0 1 0 0 1 

V1 -Vdc/4 
1 0 0 0 1 1 1 0 

0 0 0 1 0 1 1 1 

0 0 1 0 1 0 1 1 

V0 -Vdc/2 0 0 0 0 1 1 1 1 

 

 

It is clear from Table 2-6 that the FC-MLI has more flexibility compared to the NPC-

MLI. The flying capacitor’s topology has many more redundancies for inner-voltage 

levels compared to the diode-clamped. This means there are two or more valid switch 

states that can synthesize the output-voltage waveform. As in the case of the NPC-

MLI, for an m-level inverter, there should be (𝑚 − 1) switches on at a time. The 

number of devices required for an m-level FC-MLI can be found using Table 2-7. 

 

 

Table 2-7: Device count for fly capacitor (FC-MLI) 

Device Count per Phase Leg 

Active Switching 

Devices 

2 (𝑚 − 1) 

Freewheeling Diodes 2 (𝑚 − 1) 

Auxiliary Capacitors (𝑚 − 1)(𝑚 − 2)/2 

DC Link Capacitors (𝑚 − 1) 
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2.3.3 Cascaded H-bridge Multilevel Inverters (CHB-MLI) 

The third classical topology is the cascaded H-bridge multilevel inverter (CHB-MLI). 

In [23], the author implemented the cascaded H-bridge multilevel inverter in medium-

voltage AC drives. Figure 2.9 shows the CHB-MLI single-phase circuit layout for a) 

three-levels, and b) five-levels. 
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           (a)                                                             (b) 

Figure 2.9: Cascaded H-bridge multilevel inverter-circuit layout for a) 3-levels, and b) 5-levels. 

                                 

This topology comprises a series connection of single H-bridge inverters with separate 

DC sources. It has the lowest number of devices among the classical multilevel 

inverter topologies. The main idea is that each H-bridge cell will generate three 

different voltages, and the output waveform can be synthesized by the sum of the 

voltages generated by each cell. Each single H-bridge is able to generate +Vdc, 0, or –

Vdc. This can be obtained by the appropriate selection of the four switches S1, S2, S3 

and S4 of the cell. The switching states for three-level and five-level CHB-MLI are 

given in Tables 2-8 and 2-9, respectively [8, 20]. Assuming the number of separate DC 

voltage sources to be (S), the inverter can generate m-levels given by 𝑚 = (2𝑆 + 1). 

Generally, the separate DC sources (SDCS) are obtained by the use of batteries, fuel 

cells or solar PV cells. For reactive power flow, pre-charged capacitors are used at the 

dc side of the inverter. [13]  
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Table 2-8: Switching states for 3-level cascaded H-bridge multilevel inverter (CHB-MLI) 

Output Voltage (Van) 

(Van) 

Switch State (3-Level CHB-MLI) 

Level Value S1 S2 S3 S4 

V2 Vdc 1 0 0 1 

V1 0 1 1 0 0 

  0 0 1 1 

V0 -Vdc 0 1 1 0 

 

Table 2-9: Switching states for 5-level cascaded H-bridge multilevel inverter (CHB-MLI) 

Output Voltage (Van) Switch State (5-Level CHB-MLI) 
Level Value S1 S2 S3 S4 S5 S6 S7 S8 

V4 Vdc/2 1 0 0 1 1 0 0 1 

V3 Vdc/4 
1 0 0 1 0 0 1 1 

1 0 0 1 1 1 0 0 

0 0 1 1 1 0 0 1 

  1 1 0 0 1 0 0 1 

V2 0 

0 0 1 1 0 0 1 1 

0 0 1 1 1 1 0 0 

1 1 0 0 0 0 1 1 

1 1 0 0 1 1 0 0 

1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 

V1 -Vdc/4 
0 1 1 0 1 1 0 0 

0 1 1 0 0 0 1 1 

0 0 1 1 0 1 1 0 

  1 1 0 0 0 1 1 0 

V0 -Vdc/2 0 1 1 0 0 1 1 0 

 

The cascaded H-bridge multilevel inverter has the lowest number of device counts 

when compared to the diode-clamped or the flying capacitor multilevel inverters. 

Table 2-10 exhibits the required number of devices per phase leg for the cascaded H-

bridge multilevel inverter topology.  

 

Table 2-10: Device count for cascaded H-bridge multilevel inverter (CHB-MLI) 

Device Count per Phase Leg 

Active Switching Devices 2 (𝑚 − 1) 

Freewheeling Diodes 2 (𝑚 − 1) 

SDCSs (𝑚 − 1)/2 
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2.3.4 Comparison of the Three Classical Multilevel Voltage-Source Inverter 

Topologies  

The three-level neutral-point clamped inverter has been used extensively in industry 

for various applications. It is popular and considered to be one of the most used 

multilevel inverter topologies in industrial applications. The flying capacitor multilevel 

inverter has also been used in industry, but to a lesser degree than the neutral-point 

clamped and cascaded H-bridge. Both NPC-MLI and FC-MLI were found applied at a 

low number of levels – usually three-level to five-level as it becomes more 

complicated with level increase and requires a greater number of devices. Conversely, 

the cascaded H-bridge converter has a modular structure and has gained more attention 

for application in medium-power–high-voltage applications, as well as for high-

power–high-voltage industrial and utility applications.  

Figure 2.10 illustrates the number of devices required for each topology as the number 

of output-voltage levels increase. In Table 2-11, a critical comparison of the three 

classical topologies is presented [6, 12, 24, 25].  

 

 

Figure 2.10: Device counts versus inverter levels for the classical topologies.
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Table 2-11: Technical comparison of the three classical multilevel inverter topologies 

Features NPC-MLI FC-MLI CHB-MLI 
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Merits 

1) Common dc bus for all the phases, which 

results in minimum capacitor requirements. 

2) Suitable and efficient for back-to-back 

applications.  

3) Group pre-charging for the capacitors is 

possible. 

4) High efficacy for fundamental frequency 

switching. 

5) Fast dynamic response.  

1) More switching redundancies, which might 

be used for balancing capacitor voltage levels.  

2) Both real and reactive power flow can be 

controlled. 

3) The existence of a large number of 

capacitors makes the inverter able to stay on 

during short outages and deep voltage sags. 

1) Requires lowest number of components 

compared to NPC and FC. Hence, lower price 

and weight. The level number of generated 

output waveform is, m = 2S+1.  

2) Easy packing as it has a modularized 

circuit layout. Mainly similar cell structures.  

3) No need for clamping devices or voltage 

balancing.  

4) Safe switching and inverter does not 

require a bulky snubber circuit. 
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Table 2-11 (Continued): Technical comparison of the three classical multilevel inverter topologies 

 

 

 

 

 

Demerits 

1) Difficulty in power flow for single 

inverter.  

2) Needs a balancing method for the 

capacitor voltage on the dc bus. 

3) The number of clamping diodes required 

increases quadratically with the number of 

level increases. 

4) Diode clamping requirement and inverter 

packaging become more difficult with a 

higher number of levels. 

1) Complicated control.  

2) Complexity in the process of pre-charging 

the capacitors and start up.  

3) Poor efficiency and switching utilization 

for real power. 

4) Requires large number of capacitors, 

which are more expensive and bulky. 

5) Packing of the inverter for high number 

of levels is difficult. 

1) The need to use SDCSs limits the 

applications of this topology to those 

products that already have multiple SDCSs 

available. 

 

 

 

Applications 

1) PV systems, 2) wind turbines, 3) electrical 

ship propulsion, 4) train traction, 5) 

automotive applications: large heavy-duty 

trucks such as mining and military, 6) 

regenerative conveyors, 7) hydro-pumped 

storage, 8) FACTS, STATCOM, Active 

Filters, UPFC, UPQC, DVR and 7) HVDC.  

1) PV systems, 2) electrical ship propulsion, 

3) train traction. 4) automotive applications 

and FACTS devices such as: active power 

filters, UPFC, UPQC and DVR. 

1) PV systems, 2) wind turbines, 3) 

electrical ship propulsion, 4) train traction, 

5) automotive applications,  

 6) FACTS (STATCOM, active power 

filters, UPFC, UPQC and DVR) and 7) 

HVDC.   
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2.4  The Superiority of CHB-MLI for High-Power–Medium-Voltage 

Applications  

For high-power and medium-voltage, the CHB-MLI is an attractive topology 

compared to a conventional two-level inverter and other multilevel topologies due to 

its superior merits. For high-power–medium-voltage applications, the conventional 

two-level inverter needs to have a series of connected semiconductors, which results 

in unequal voltage-sharing between connected devices as well as reliability issues 

[26]. The neutral-point clamped multilevel inverter (NPC-MLI) is widely applied with 

three levels in such applications. However, application becomes extremely complex 

for five levels and more as a greater number of clamping diodes is required. The same 

applies to the fly capacitor (FC-MLI) as it needs more capacitors for higher levels [6].             

Nowadays, CHB-MLI topology is gaining more attention for use in even high-power 

and high-voltage applications. The main attractions and features of this topology are 

summarized as follows: 

 The topology comprises a series of connected cascaded H-bridge cells, each 

connected to an SDCS to synthesize the required voltage. These multiple SDCSs 

make this topology suitable for integrating renewable energy sources (such as 

photovoltaics, fuel cells and battery storage) with the grid. [27] 

 It has a modular structure and compact size, which makes it easy to construct, 

and it can be assembled in less time.  

 It is easy to package as each H-bridge has the same structure [25].   

 It has the lowest number of components for the same number of levels compared 

to other topologies.  

 Due to its modularity, CHB-MLI can achieve higher voltage operation and higher 

power levels with classical low-voltage semiconductors. Higher voltage levels 

enable transformerless grid connection [6].         

 It is commercially available at a wide range of power ratings and high number of 

output voltage levels, up to 17 levels [6].   

 It can be operated at a low frequency when phase-shifting is applied, typically ≤ 

500 Hz. This results in lower operation losses. [6]                     
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 It does not require any clamping diodes, or capacitors. Furthermore, safe 

switching is possible with no bulky snubbers. [28]  

 Because of its modularity, a faulty H-bridge can easily be replaced. The 

replacement can be done without even turning off the CHB-MLI after proper 

isolation of the faulty H-bridge. [25] 

 This topology has more switching redundancies compared to other classical 

topologies. As the number of inverter levels increases, there will be an increase in 

the number of redundancies. This provides an advantage through enabling fault-

tolerant operation. [29]           

                   

2.5  Main Modulation Techniques Applied for CHB-MLI 

Different modulation schemes have been employed and developed by scholars for 

controlling different multilevel inverter topologies and applications. Each modulation 

method has its advantages and drawbacks. This section reviews classification of 

existing modulation techniques. Then, the most popular modulation techniques are 

applied in practice, and selective harmonic elimination (SHE), space vector 

modulation (SVM) and multicarrier sinusoidal pulse-width modulation (SPWM) are 

explained and discussed in detail.  

 

2.5.1 Classification of Existing Modulation Techniques  

Existing control techniques are classified mainly, based on switching frequency, into 

three types, which are: 1) low- (fundamental-) switching frequency modulation, 2) 

high-switching frequency modulation, and 3) hybrid-switching frequency modulation 

[13]. The classification of the most common modulation methods and the 

applicability of each modulation method for the three classical topologies are 

demonstrated in Figure 2.11. [6, 29] 
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Figure 2.11: Classification of control and modulation techniques for multilevel inverters. 

 

At high-switching frequency, the active power-switch device is commutated many 

times within one cycle of fundamental-output voltage. However, the active power-

switch device, at low-switching frequency, is commutated only one or two times 

during one cycle of the output voltage [12]. In practice, those frequencies above 1 

kHz are assumed to be high-switching frequency [29]. Among all different control 

schemes, three are mainly mentioned throughout the literature. These are: 1) selective 

harmonic elimination (SHE), 2) space vector modulation (SVM), and 3) sinusoidal 

multicarrier-based pulse-width modulation (SPWM).  
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2.5.2 Selective Harmonic Elimination (SHE) 

Selective harmonic elimination (SHE) is a widely used low-switching frequency-

control method. It is also known as the ‘fundamental-switching frequency’ method. It 

is based on the harmonic elimination theory presented by Patel and Hoft in 1974 [30]. 

The main concept in this modulation is to predetermine the switching angles based on 

Fourier analysis of the output signal, which results in eliminating a number of 

undesired low-order harmonics, and at the same time, in synthesizing the desired 

multilevel fundamental-voltage waveform. All the switching angle calculations are 

performed offline, so it is a pre-calculated control technique and can be classified as 

an open-loop control [22]. SHE is usually applied to control multilevel inverters 

operating in high-power applications and HVDC [29]. The proper application of SHE 

results in minimizing the total harmonic distortion %THD at the inverter output.  
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Figure 2.12: Generalized output stepped-voltage waveform for n-level inverter. 
 

Figure 2.12 shows the generalized stepped-voltage waveform for an n-level inverter. 

Applying Fourier’s expansion, the stepped-voltage waveform can be written as a sum 

of sine and cosine periodic signals, plus a dc constant. Such a signal consists of odd 

and even harmonics. As a result of the quarter symmetry of the waveform, the even 

harmonics and the dc constant are cancelled out. Hence, only odd harmonics remain. 

Assuming a balanced three-phase system, all triplen harmonics will be zero. For a 

multilevel inverter with m-levels, there will be 𝑆 switching angles in a quarter cycle to 

be calculated in which (𝑆 =  
𝑚−1

2
) , and (𝑆 − 1) undesired low-order harmonics can 
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be eliminated. Mathematically, the output-stepped voltage waveform of a multilevel 

inverter can be written as: 

𝑣𝑎𝑛(𝜔𝑡) = ∑
4𝑉𝑑𝑐

𝑘𝜋

∞

𝑘=1,3,5,…..

[𝑐𝑜𝑠(𝑘 ∝1) + 𝑐𝑜𝑠(𝑘 ∝2)… . . +𝑐𝑜𝑠(𝑘 ∝𝑠)] 𝑠𝑖𝑛(𝑘𝜔𝑡) 2.1 

  

where 𝑆 is the number of switching angles to be calculated. For CHB-MLI topology, 

𝑆  is equal to the number of series-connected H-bridge cells of the inverter. All 

switching angles, as shown in Figure 2.12, are in ascending order and smaller than 

90°.  

𝜃1 < 𝜃2  < ⋯⋯⋯ < 𝜃𝑆  <  90°             2.2 

 

By solving the following system of a non-linear set of equations, it is possible to 

eliminate a total number, equal to (S-1), of low-order harmonics:  

𝑐𝑜𝑠(𝜃1) +  𝑐𝑜𝑠(𝜃2) + ⋯⋯⋯+  𝑐𝑜𝑠(𝜃𝑆) = 𝑆 × 𝑀𝑖    

𝑐𝑜𝑠(5𝜃1) + 𝑐𝑜𝑠(5𝜃2) + ⋯⋯⋯+ 𝑐𝑜𝑠(5𝜃𝑆) = 0      

𝑐𝑜𝑠(7𝜃1) + 𝑐𝑜𝑠(7𝜃2) + ⋯⋯⋯+ 𝑐𝑜𝑠(7𝜃𝑆) = 0        

⋮           ⋮                       ⋮ 

⋮           ⋮                       ⋮ 

𝑐𝑜𝑠(ℎ𝜃1) + 𝑐𝑜𝑠(ℎ𝜃2) + ⋯⋯⋯+ 𝑐𝑜𝑠(ℎ𝜃𝑆) = 0                

 2.3 

 

Where: 

𝑀𝑖 is the modulation index. And (ℎ = 3𝑆 − 𝑘) is the highest harmonic order that can 

be eliminated. (𝐾 = 1), for an even number of 𝑆, and (𝐾 = 2), for an odd number of 

𝑆 [31].  

This system of transcendental equations is a highly non-linear system and is 

sometimes known as SHE equations. The number of equations is equal to the number 

of switching angles to be calculated. In the case of CHB-MLI, the number of non-

linear equations to be solved is equal to the number of series H-bridge cells.  
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In order to solve such a system, different techniques have been applied. Iterative and 

evolutionary algorithms (EA) are the most commonly used in the literature. Newton-

Raphson (NR) has been applied extensively for this problem as an iterative technique. 

The key disadvantage is that when the inverter level increases, the algorithm becomes 

more difficult to converge into a solution. In addition, iterative techniques need good 

initial guessed switching angles to help the algorithm converge into a feasible 

solution. However, EA was found to be powerful and can solve the problem by 

applying intelligent approaches. The main idea is to transform the problem of SHE 

into an optimisation problem, in which the set of transcendental equations will be the 

constraints for the optimizer. The key attractions and drawbacks of SHE modulation 

are listed in Table 2-12 [12, 27].  

 

Table 2-12: Key Attractions and Drawbacks of Selective Harmonic Elimination in Multilevel Inverters 

Attractions Drawbacks 

 Low switching techniques and hence 

lower switching losses. 

 Eliminates lower harmonics.  

 Low %THD. 

 Requires offline pre-calculations to 

determine switching angles. 

 Becomes more complicated when 

solving at higher inverter levels. 

 Narrow range of modulation index. 

 

 

2.5.3 Space Vector Modulation (SVM)  

One of the promising high-switching frequency control methods is space vector 

modulation (SVM) or SV-PWM. This method is based on the theory of vectorial 

representation of the three-phase system presented by Park [32] and Kron [33]. Since 

the 1970s, it has been used extensively and is well established for many industrial 

applications. This control scheme was first implemented for multilevel inverters by 

Choi [34]. The main attraction of SVM is the ability to analyse the three-phase 

systems as one system instead of dealing with each phase alone. 
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A three-phase system of three voltages can be represented by a unique rotating-space 

vector in a complex plane using Park’s transformation as follows: 

 

𝑉𝑆 =
2

3
∙ [𝑉𝑎(𝑡) + 𝑎 𝑉𝑏(𝑡) + 𝑎2 𝑉𝑐(𝑡)]  2.4 

 

Where   𝑎 = 𝑒𝑗.
2𝜋

3   and 𝑎2 = 𝑒𝑗.
4𝜋

3  

The main difference in SVM compared to other PWM methods is the use of a 

reference vector. The reference vector (𝑉𝑅𝑒𝑓 = 𝑉∝ + 𝑗 𝑉𝛽) is represented in a two-

dimensional plane (αβ-plane) as shown in Figure 2.13, and it can be found by 

applying the matrix transformation in equation 2.5. 
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Figure 2.13: Reference vector in two dimensions. 
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To illustrate this, it is necessary to consider the basic two-level voltage-source 

inverter with six switches shown in Figure 2.14.  
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Figure 2.14: Two-level three-phase voltage-source inverter. 

 

In the above inverter, there is a set of three upper switches and a set of three 

complementary lower switches. For the upper switches, the switching signal is (1) 

when it is ON. However, the switching signal is (0) for the lower switches to be ON. 

Hence, each phase (a, b or c) can either be switched from the upper switch (switch 

signal q=1) or the lower switch (switch signal q=0). There will be eight possible 

switching states as shown in Table 2-13. The generated eight-space vectors are 

presented in Figure 2.15. Vectors (V1–V6) are active vectors and vectors (V0 & V7) 

are zero vectors.  

Table 2-13: Voltage Space Vectors with their Switching States for Two-Level Three-Phase Inverter 

Space Vector 
Switching State (q) 

Phase A Phase B Phase C 

V0 0 0 0 

V1 0 0 1 

V2 0 1 0 

V3 0 1 1 

V4 1 0 0 

V5 1 0 1 

V6 1 1 0 

V7 1 1 1 
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Figure 2.15: Space vector diagram for two-level three-phase voltage-source inverter. 

 

The reference voltage can be found as the value of two active- and one zero-space 

vector, depending on the sector of operation. For example, if the reference voltage lies 

in sector 1, it can be calculated using V0, V1 and V2. In this case, 𝑉𝑅𝑒𝑓 = 𝑉1. 𝑇1 +

𝑉2. 𝑇2 + 𝑉0. 𝑇0 in which (𝑇1 + 𝑇2 + 𝑇0) is the total cycle time. The main idea here is 

to control the output voltages of the inverter by making their Park representation as 

close as possible to the reference voltage vector [22].   

At steady state, the space vector should have a constant value of amplitude and should 

rotate at constant speed. This amplitude provides the maximum voltage that it is 

possible to obtain using SVM. To calculate this, the amplitude will be the value of the 

radius of the circle of rotation. It can be shown that the maximum line-to-line rms 

value of the obtained voltage is 𝑉𝐿𝐿,𝑚𝑎𝑥(𝑟𝑚𝑠) = 0.707 𝑉𝑑𝑐 , which is about 15% 

greater than in the case of SPWM. The main justification for this increase is that the 

voltage at the centre point of the winding is not fixed at 
𝑉𝑑𝑐

2
 as is the case in SPWM. 

The voltage increase results in the ability to operate at a higher speed, making it 

suitable for higher-voltage applications. The SVM operates with significantly lower 

switching losses as it has fewer switching transitions compared to SPWM. To explain 

this, it is necessary to consider the modulation from V2=(110) to V3=(010), where 

only phase (a) switches state change. The other phases (b) and (c) remain in the same 

state, and hence, no switching is required for phase legs (b) and (c).   

In the case of multilevel inverters, there will be more switching states and space 

vectors. For example, for a three-level diode-clamped multilevel inverter, there will 
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be 27 switching states, leading to a 19-space vector. Figure 2.16 shows the space 

vector diagram for a three-level inverter. The generated space vector diagrams are 

universal, which means they do not depend on the type of inverter used. For example, 

the space vector diagram shown in Figure 2.16 is suitable for all basic three-level 

topologies. As the levels increase, the switching redundancy increases, which make 

SVM difficult and complex. 
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Figure 2.16: Space vector diagram for three-level inverter. 

 

Compared to a traditional SPWM, the control of an SVM is much more complicated 

and difficult. However, digital signal processing (DSP) has played an important role 

in overcoming this complexity; hence, SVM is now used in most motor applications. 

The main attractions and drawbacks of SVM are presented in Table 2-14 [12, 27].  

Table 2-14: Key Attractions and Drawbacks of Space Vector Modulation in Multilevel Inverters 

Attractions Drawbacks 

 Good utilization of dc-link voltage. 

 Fewer switching transitions; hence, 

significantly lower switching losses. 

 Low current ripple. 

 Easy-to-implement DSP.  

 Good for high-voltage–high-power 

applications.  

 15% higher output peak voltage 

compared to SPWM.  

 With the level increase of the inverter, 

the redundancy switching states and 

complexity in selecting them increases 

dramatically.  

 Complicated sector identification and 

switching sequence.  
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2.5.4 Multicarrier Sinusoidal Pulse-Width Modulation (SPWM) 

The sinusoidal pulse-width modulation (SPWM) is considered to be the most popular 

control scheme used by authors throughout the literature and in practice for multilevel 

inverter control. In principle, SPWM generates pulses by comparing a sinusoidal 

reference waveform with a triangular carrier waveform, as demonstrated in Figure 

2.17.   

+

-
Carrier Signal at frequency (fs)

Sinusoidal Reference Signal at 

frequency (fr)

PWM-Generated Pulses 

 

Figure 2.17: Basic principle of PWM control. 

The triangular carrier waveform has a high frequency 𝑓𝑐 (called the carrier frequency) 

and a peak-to-peak amplitude of 𝐴𝑐. The frequency of the carrier signal defines the 

switching frequency of the inverter and the high-order harmonic component of the 

output voltage. [25] However, the sinusoidal modulation signal will be at low 

frequency 𝑓𝑟  (typically 50 Hz or 60 Hz) and a peak-to-peak amplitude of 𝐴𝑟 . The 

frequency of the sinusoidal modulation waveform defines the required line-voltage 

frequency at the output of the inverter, and its amplitude controls the modulation 

index 𝑀𝑖  [27].  

In the case of a multilevel inverter control, there should be one reference waveform 

signal and multicarrier triangular waveforms. For an m-level inverter,  

(𝑚 − 1) triangular carriers are required. For the case of a cascaded H-bridge 

multilevel inverter, the number of carriers is equal to the number of series-connected 

H-bridge cells. All the carrier signals have the same value of peak-to-peak amplitude 

𝐴𝑐 and switching frequency 𝑓𝑐. In the control process, each carrier signal is compared 

to the reference waveform every time. This comparison generates a string of pulses 

that control the power switches. The active power switch is ON when the reference 
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waveform is greater than the carrier signal associated with that switch, and it is 

otherwise OFF.  

The multicarrier SPWM control method can be classified according to the 

arrangement of the carrier signals into either a) phase-shifted or b) level-shifted [27]. 

The phase-shifted is further subdivided into: 1) phase disposition (PD), 2) phase 

opposite disposition (POD) and 3) alternative phase opposite disposition (APOD).  

 

2.5.4.1 Phase-Shifted SPWM  

In this technique, the carriers are disposed horizontally by a displacement-phase angle 

𝜃. This modulation is not applicable for NPC-MLI topology, but is mostly applied 

and suitable for CHB-MLI and FC-MLI topologies as each cell has two-level and 

three-level output in FC-MLI and CHB-MLI, respectively [12, 29]. Bipolar PWM and 

unipolar PWM can be applied to modulate each cell independently as both topologies 

are modular in structure. It has been proved that, to obtain the minimum distortion at 

the output waveform for an inverter with 𝑁𝑐𝑒𝑙𝑙𝑠, the carrier signals should be shifted 

by a displacement angle 𝜃 = 1800/𝑁𝑐𝑒𝑙𝑙𝑠 or 𝜃 = 3600/𝑁𝑐𝑒𝑙𝑙𝑠 for the case of CHB-

MLI and FC-MLI, respectively [12, 35]. The illustration of this modulation method is 

shown in Figure 2.18 for the case of a seven-level multilevel inverter. Here, the 

phase-0 shifted angle is 𝜃 =  1800 3⁄ =  600,    considering CHB-MLI topology.  

 

 

 

 

 

 

 

 

 

Figure 2.18: Modulation signals for seven-level inverter applying phase-shifted SPWM. 
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2.5.4.2 Level-Shifted SPWM  

In this modulation method, all the carriers are in phase but vertically disposed. The 

carriers are placed to cover the whole possible amplitude range of the controlled 

inverter [29]. In this case, each carrier signal will represent one level. In practice, 

level-shifting can be applied for all the three classical multilevel inverter topologies. 

However, it is more practical and suitable for the NPC-MLI topology [35]. There are 

three categories of level-shifted SPWM, which are:  

 

1. Phase disposition (PD), in which all carriers are in-phase. Figure 2.19 

demonstrates the reference waveform and the arrangement of carrier waveforms 

in this type of modulation for a seven-level inverter.  

 

 

 

 

 

 

 

 

 

Figure 2.19: Modulation signals for seven-level inverter applying PD-SPWM.  

 

2. Phase opposite disposition (POD), in which all carriers above the zero reference 

are in-phase. However, they are in opposition (shifted by 180°) from carriers 

below the zero reference. Figure 2.20 shows the reference waveform and carrier 

waveform arrangement for POD-SPWM modulation.  
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Figure 2.20: Modulation signals for seven-level inverter applying POD-SPWM. 

 

3. Alternative phase opposite disposition (APOD), in which each carrier is shifted 

by 180° from the adjacent carrier. This modulation method is illustrated for a 

seven-level inverter in Figure 2.21 

 

 

 

 

 

 

 

 

 

Figure 2.21: Modulation signals for seven-level inverter applying APOD-SPWM. 

It was found that phase-shifted modulation generates N-time fewer switching losses 

compared to level-shifted modulation, where N is the number of series-connected H-

bridge cells. However, level-shifted modulation results in less distortion in the output-

line voltage as all carriers are in phase [8]. The known key attractions and drawbacks 

of SPWM modulation are listed in Table 2-15. [12, 27]  
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Table 2-15: Key Attractions and Drawbacks of Multicarrier SPWM in Multilevel Inverter Control 

Attractions Drawbacks 

 Very popular and most commonly used 

high-switching modulation. 

 Lower switching losses compared to 

other high-switching frequency 

modulations.  

 Easy to implement.  

 Lower THD compared to other control 

techniques.  

 To further reduce the THD of voltage and 

current, it is necessary to increase the 

switching frequency, which significantly 

affects the switching losses. 

 DC utilization is lower compared to other 

high-frequency control methods. 

 

2.6  Summary  

This chapter provided a general view of multilevel inverters, the main existing 

topologies, circuit configurations, and the applied modulation techniques for 

multilevel inverters. In the first part, a general classification of high-power inverters 

was presented. This was followed by a brief historical view of CSIs and VSIs, with an 

explanation of the key features of each configuration. Next was a technical 

comparison between CSIs and VSIs, based on the literature. This comparison 

indicated that there is a future for VSI technology in different power applications – 

including the integration of renewable energy sources into power grids. Hence, 

greater emphasis is placed on this technology in the second part of this chapter, which 

reviews the three classical topologies of voltage-source multilevel inverters. A very 

important comparison was made, based on the literature, which included key 

advantages, disadvantages, applications and device counts for the classical multilevel 

inverter topologies. Among the three topologies, the superiority of CHB-MLI for 

high-power–medium-voltage applications was highlighted and discussed. Based on 

the topology, technical, economical and structural features explained in section 2.4, 

the CHB-MLI was selected as an inverter topology for the trade-off optimisation 

model. In the chapter’s final part, the existing modulation techniques applied for 

multilevel inverters were classified, and the most widely used modulations were 

discussed in detail.    
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3 CHAPTER 3: PASSIVE AND ACTIVE POWER FILTERS FOR 

HARMONIC MITIGATION – CRITICAL REVIEW 

3.1  Introduction  

Nowadays, the problem of power-system harmonics is attracting greater concern as a result 

of the rapid growth in power-electronics technology, the need for more penetration by 

renewable energy sources into the power system and implementation of HVDC technology. 

A huge amount of literature has addressed the problem of power-system harmonics. This 

chapter presents the problem of power-system harmonics, including: a description of the 

phenomena, sources of harmonics, its adverse effects on power quality, implemented 

solutions and existing power-harmonics standards and guidelines.  

Power-harmonics filters are the most effective and widely applied techniques for harmonic 

mitigation in power systems and industrial applications. Throughout the literature, many 

circuits have been proposed, particularly over the last 30 years, for harmonics reduction. A 

well-implemented filter should reduce harmonics levels below the levels recommended by 

the international power-quality standard. Power filters are mainly categorized into passive 

and active filters. This chapter classifies power filters and presents a review of the most 

commonly applied topologies in industrial systems and utility grids. At the end of this 

chapter, a technical comparison is presented that highlights the key features, advantages and 

disadvantages of each topology.    

 

3.2  Problem of Electrical Power Harmonics  

This section reviews problems with power-system harmonics. It starts with an explanation of 

power-harmonics history, definition and theoretical background. Then, there is a discussion 

and clarification of the problem main causes and sources. Furthermore, the harmful effects of 

power harmonics are reviewed for the main system components. Finally, applied harmonic-

mitigation techniques are classified and discussed, and the most common and well-known 

technical power-quality standards are briefly mentioned.   
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3.2.1 Description of the Phenomenon 

Since the early 1990s, the phenomenon of power-system harmonics began. In 1916, 

Steinmetz’s book was published, Theory and Calculation of Alternating Current Phenomena, 

which investigated the problem of harmonics in power systems [36]. Essentially, the nature 

of AC electrical voltage and current waveforms are periodic. The fundamental frequency of 

an electrical waveform in AC power systems can be defined as the number of repeating 

waveform periods within one-second duration. In any power system, the fundamental 

operating frequency is either 50 or 60 Hz, depending on the country’s regulations; the UK 

system implies 50 Hz. An electrical load is said to be a “linear load”, when it draws a linear 

current from the electrical power system in which the current is proportional to the supply 

voltage. Conversely, a “non-linear load” draws non-linear current from the electrical power 

system in which the current is non-sinusoidal. Naturally, electrical power systems have linear 

and non-linear loads. As a result of this, the periodic waveforms of voltage or current in 

electrical power systems comprise the summation of an infinite number of periodic sinusoidal 

waveforms in which each waveform has a frequency that is an integer multiple of the 

operating fundamental frequency [37] . The fundamental component of the voltage or current 

waveform is the fundamental frequency in which the system is designed to operate (50 Hz or 

60 Hz). The other different waveforms that are at an integer multiple (˃ 1) of the fundamental 

frequency are the so-called harmonics (non-fundamental components) of the signal. The sum 

of all harmonics components of a waveform, including the fundamental component, is 

referred to as the Fourier Series of that waveform. In this dissertation, the fundamental 

frequency of 50 Hz has been considered throughout the analysis.  

At steady state and by applying Fourier transform, periodic waveforms of voltage and 

currents can be expressed as follows: 

𝑓(𝑡) = 𝐴𝑜 + ∑ 𝐴ℎ

∞

ℎ=1

 𝑠𝑖𝑛(ℎ𝜔𝑡 + ∅ℎ)          3.1 

Where:  

𝑓(𝑡) : is the time domain voltage or current waveform 

𝐴𝑜 : is the magnitude of the dc component of the waveform 

ℎ : is the harmonic order, 𝐴ℎ : is the magnitude of the harmonic component ℎ 
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𝜔 : is the fundamental frequency, and ∅ℎ : is the phase shift of the harmonic component ℎ 

This waveform comprises odd and even harmonics, plus a dc component. The nature of non-

sinusoidal current waveforms drawn by the majority of loads in power systems is 

symmetrical above and below its average centreline. Due to the quarter-wave symmetry of 

the waveform, the even harmonics and the dc component are cancelled and are almost zero. 

Therefore, only the odd harmonics are present. In balanced three-phase systems, all triplen 

harmonics (odd multiplies of third harmonics 3, 9, 15, 21…) are cancelled out to zero. In 

practice, harmonics up to the 50
th

 order are considered in the harmonic analysis.  

Electrical power-system utilities should generate and deliver perfectly sinusoidal waveforms 

of voltage and currents to their customers. However, as explained, this is not practically 

possible because of the presence of harmonics waveforms due to non-linear currents. As a 

result, the non-fundamental harmonics cause deviation of the voltage and current 

fundamental waveforms from perfect sinusoidal waveforms. This deviation is the so-called 

harmonic distortion of voltage or current. Harmonic distortion in voltage and current 

waveforms affect the power system and the quality of power being delivered. The harmonic 

distortion in voltage or current waveform is measured mathematically by means of an index 

factor called total harmonic distortion (THD). The IEEE-519 standard defines the THD as the 

ratio of the rms value of all non-fundamental harmonics to the rms value of the fundamental 

component [3]. The voltage and current THDs are given in Equations 3.2 and 3.3, 

respectively.  

 

%𝑇𝐻𝐷𝑣 = 
√∑ 𝑉ℎ

2∞
ℎ=2

𝑉1
 × 100                   

         3.2 

 

 

%𝑇𝐻𝐷𝑖 = 
√∑ 𝐼ℎ

2∞
ℎ=2

𝐼1
 × 100  

          3.3 

 

 

In the last decade, the technology of power-electronics components has been revolutionized 

and has grown very rapidly. In addition, there is a need for greater integration of renewable 

energy sources, such as photovoltaic systems (PV), wind turbines and fuel cells, into power 

systems. This leads to the extensive application of power-electronics devices and more non-

linear loads in power systems, which results in more power harmonics. These harmonics have 
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harmful effects on power quality for both the electrical power system itself and for 

customers. Hence, there is currently serious concern about the THD levels in electrical power 

systems.  

There is a great engineering challenge to investigate the harmonics problem and to keep the 

electrical power system operating within recommended harmonics standards to ensure 

delivery of quality power throughout the power system and to all customers. There are many 

international standards, which provide guidelines and recommendations for harmonics limits, 

such as Institute of Electrical and Electronics Engineers (IEEE), American National Standard 

Institute (ANSI) and European Norms (EN). A detailed discussion of these standards is 

presented later in this chapter. The following section discusses the sources of power-system 

harmonics in detail.  

 

3.2.2 Sources of Power Harmonics  

 

Electrical Power 

System
Non-Linear Load

Total Harmonic 

Current

 

Figure 3.1 Harmonics caused by a connection of non-linear load. 

 

As a result of non-linear loads connected to power systems, harmonic currents flow through 

the electrical power system, which causes voltage distortion. The flow of harmonic currents 

is shown in Figure 3.1. In the past, harmonic distortion was mainly caused by transformer 

saturation, industrial arc furnaces and other arc devices, such as welding equipment. [38] 

Since that time, there was a rapid growth of non-linear loads in electrical power systems. 

Recently, more power-electronics interfaces are required to integrate different renewable 

energy sources into electrical power systems. This results in an increase of harmonic 

distortion in distribution networks. Figure 3.2 provides a classification of the common 

sources of harmonics in electrical power systems [39]. 
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Figure 3.2: Classification of the common sources of harmonics in electrical power systems. 

 

 

3.2.2.1 Non-Power-Electronics Sources  

This category includes sources that have existed for some time and which are not related to 

the technology of power electronics; these are the classical or traditional sources of 

harmonics. The causes of harmonics in this category are either due to non-linear relationships 

between voltage and current, as in the case of arc devices. Alternatively, they result from 

nonlinearity of the magnetic core due to electromagnetic saturation, which occurs in rotating 

machines and power transformers. Typical sources in this category are: 1) power-transformer 

saturation, 2) rotating machines (synchronous generators, induction motors, refrigerators, 

freezers, air conditioning) and 3) arc devices (electrical furnaces, soldering equipment, 

fluorescent lamps, mercury-vapour or high-pressure lamps).  
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3.2.2.2 Power-Electronics Sources 

This category of harmonics sources is considered new compared to the first category as it 

relates to the technology of power electronics. As a result of rapid development in the area of 

power electronics, most harmonics in power systems come from this category. The switching 

of power semiconductor devices associated with the control of power-electronics circuits 

generates harmonics. This switching is required for power converters, including AC/DC 

converters, DC/AC inverters, DC/DC choppers and AC/AC cycloconverters. Such power 

conversion and control is required for different applications in power systems such as 

electrical drives, renewable energy sources and HVDC applications. Other power-electronics 

applications include VAR compensators and power-factor improvement. In addition, power 

electronics are applied in switch-mode power supplies. In summary, the harmonic sources of 

this category include: 1) power-electronics converters (converters, inverters, choppers and 

cycloconverters), 2) static VAR compensators and capacitor banks and 3) switch-mode 

power supplies (typically, personal computers, televisions, fax machines, printers, home-

entertainment devices, battery chargers and UPS).  

 

3.2.3  Adverse Effects of Power Harmonics on Power Quality   

Harmonic-current flow in electrical power systems causes several technical and economic 

problems. The adverse effects of harmonics on electrical power systems can be summarized 

as [40, 41]:  

 Series and parallel resonance, which result in increased harmonics levels.  

 Lower efficiency of generation, transmission and power delivery.  

 Reduced life of insulation for power-system components.  

 Malfunctioning power-system equipment. 

  

However, each power-system component has a different sensitivity and reaction to harmonic 

distortion. In Table 3-1, the undesirable effects of power harmonics on the main components 

in electrical power systems are displayed separately for each component.  
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Table 3-1: Effects of Power Harmonics on Power-System Components  

Device Effects 

T
ra

n
sf

o
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 Increase in core losses as a result of an increase in iron loss.  

 Increased copper and stray flux losses. 

 Overheating conductors and winding-insulation stress, which reduce their life and efficiency. 

 A possibility of resonance between the transformer inductance and system capacitance and small core 

vibrations, which cause audible noise [42]         

R
o
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n
g

 

M
a

ch
in

es
 

 Increased heating as a result of loss increase. 

 The temperature increase in the machine winding reduces the service life of the machine. 

 There might be an interaction between the airgap flux density and the fluxes generated by harmonic 

current in the rotor, which produces mechanical oscillation or pulsating torque [43]. 

 Because of the differences between harmonic frequencies, an audible noise is produced [42].    
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 Conductor (𝐼2𝑅) losses increase due to carrying harmonic currents.  

 This results in more heating of the conductor. 

C
ir
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u
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 Failure of the interruption capability of the circuit breaker. 

 At low-level faults, the load current might contain a high component of distortion current. This makes 

high 𝑑𝑖 𝑑𝑡⁄  at zero crossing, making it difficult for the circuit breaker to interrupt. 

 The need to consider higher rms current caused by harmonics in fuse settings to avoid improper 

operation.  

L
ig

h
ts

 

 Light flickering, which for some lamps might not be convenient for the human eye. 

 Operating continuously at slightly increased rated voltage significantly reduces lamp life.  

T
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h
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n

e 
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 Possibility of power frequency interference with telephone communication between power lines and 

telephone lines connected on the same poles.  

 The interface mechanism might occur by inductive, capacitive or conductive coupling [42, 43].    

C
a

p
a
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n
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 Major concerns about the possibility of system resonance.  

 With the increase in harmonics frequency, capacitive reactance decreases, which results in high 

harmonic currents flowing into capacitor banks.  

 Overloading of capacitor bank and higher dielectric stress, which reduces the operating life of these 

banks [43].  
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  Harmonics may cause malfunction of protective relays.  

 Harmonic distortion has significant effects on low-level faults, which needs to be considered for 

proper operation of the protection system [42] .                        
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3.2.4 Implemented Solutions for Harmonics Mitigation 

There are several well-established techniques for harmonics mitigation in electrical power 

systems. These techniques can be classified into two main categories, which are [44]: 1) 

internal solutions and 2) external solutions. Internal solutions are those that can be applied 

within existing system components. Common internal solutions include: choice of 

transformer connection, using higher pulse converters, or modification of electric circuit 

configuration. External solutions include: application of passive power filters or active power 

filters. In some applications, hybrid harmonic mitigation, which combines the use of two 

solution techniques, can give better results. Figure 3.3 presents a general classification of 

applied harmonic-mitigation techniques [45-47].   
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Filters
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Filters
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Figure 3.3: General classification of applied harmonic-mitigation techniques.  
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3.2.5 Power-Quality Standards: Harmonics in Power Systems 

There are many technical standards that provide guidelines to engineers for the accepted 

levels of harmonics in power networks. The most popular and widely applied standards in the 

world are: IEEE-519, and IEC 61000. In this dissertation, the guidelines, recommendations 

and limits of the IEEE-519 standard have been followed. 

The IEEE-519 standard “The IEEE Recommended Practice and Requirements for Harmonic 

Control in Electrical Power Systems” was issued in 1981 to provide guidelines, 

recommendations and limits for communication notching, voltage-distortion flickering and 

telephone interference generated by power converters [38].  In 2014, the standard was revised 

to make it more general and practical for application in power systems. Table 3-2 

demonstrates the recommended limits of voltage distortion at point of common coupling PCC 

as given by the IEEE-519 [3].  

Table 3-2: IEEE-519 Standard Recommended Voltage-Distortion Limits at PCC  

Bus Voltage at PCC Individual Voltage Distortion Total Voltage Distortion THD 

1 𝑘𝑉 < 𝑉 ≤ 69 𝑘𝑉 3.0 % 5.0 % 

69 𝑘𝑉 < 𝑉 ≤ 161 𝑘𝑉 1.5 % 2.5 % 

𝑉 > 161 𝑘𝑉 1.0 % 1.5 % 

 

3.3 Passive Power Filters (PPF)  

This section reviews passive power filters (PPF). A general classification of PPF, based on 

the type of connection, is presented first. Then, each category is illustrated by discussing its 

circuit layout, operating principle, mathematical model and key features in brief.  

3.3.1 Classification of Passive Power Filter (PPF)  

A Passive Power Filter (PPF) comprises passive electrical elements such as resistors, 

inductors and capacitors; hence the term passive filters. Throughout the literature, many 

circuits with different configurations, employing passive filters, have been proposed for 

harmonic mitigation in power systems. The proposed passive power filters can be 

categorized, based on their connection, into: 1) series-connected PPFs, and 2) shunt-

connected PPFs. This classification is illustrated in Figure 3.4. Compared to other harmonic- 

mitigation techniques, PPFs are simple, cheap and effective.  
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Figure 3.4: General classification of passive power filters (PPFs).  

 

3.3.2 Series-Connected Passive Power Filters 

RD XL

 

Figure 3.5: Series-connected passive power filter. 

 

Series-connected power filter topology is essentially a reactor and damping resistor 

connected in series with the non-linear load; this is shown in Figure 3.5. The series-connected 

reactor acts as low-pass filter. It is designed to block the high harmonics as it provides high 

impedance for higher harmonics. However, it passes fundamental and low harmonics. The 

harmonic reduced by this filter is limited and usually not able to satisfy recommended 

standards. By increasing the inductance of the filter, more harmonic reduction can be 

obtained. However, this will result in a worse voltage drop and displacement factor [48]. This 

topology has several advantages as it is simple, cheap, small and does not cause resonance 

with the system. However, it results in minimum harmonic reduction and handles the full-
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rated current [49]. Figure 3.6 illustrates the filter-impedance harmonic frequency 

characteristic with different damping resistors.  

 

Figure 3.6: L-filter impedance-harmonic frequency characteristic with different damping resistors. [49] 

 

3.3.3 Shunt-Connected Passive Power Filters 

These filters are connected as shunt elements and are the most widely used in harmonic 

mitigation. Essentially, they are classified into: 1) single-tuned, 2) double-tuned, 3) high-pass 

and 4) composite. Each class is explained below.  

 

3.3.3.1 Single-Tuned Passive Power Filters  

C

L

RD

 

Figure 3.7: Single-tuned passive power filter (ST-PPF).  
 

A single-tuned passive power filter is connected in shunt at PCC. It consists of a resistor (R), 

an inductor (L) and a capacitor (C) connected in series as shown in Figure 3.7. The word 
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“tuned” for passive filters means that the filter’s inductive and capacitive reactances are equal 

at the tuned frequency of the filter. The tuning’s sharpness is determined by the filter’s 

quality factor (𝑄) [40].  

 

𝑄 =  
√𝐿 𝐶⁄

𝑅
        3.4 

 

 

For the single-tuned low-order harmonic, the quality factor is set high for sharp tuning. 

Conversely, low-quality factor values cover a wide range of harmonic frequencies and are 

usually applied for a high-pass filter. Single-tuned filters are the most-used solution in 

industrial applications [50]. The impedance of a single-tuned filter is given as: 

 

𝑍 = 𝑅 + (𝜔𝐿 − 
1

𝜔𝐶
)             3.5 

 

 

When tuned at the n
th

 harmonic, inductive and capacitive reactances becomes equal; hence, 

filter impedance is lowest at the harmonic frequency 𝑓𝑛. This makes the n
th

 harmonic-current 

flow through the filter (trapped); hence, it is eliminated from the power system. The filter 

design equations in this case are: 

 

𝜔𝑛 = 
1

√𝐿𝐶
     3.6 

 

 

𝑄 =  
1

𝜔𝑛𝑅𝐶
=

𝜔𝑛𝐿

𝑅
     3.7 

 

 

Where, (𝜔𝑛 = 2𝜋𝑓𝑛) is the angular frequency of the n
th

 harmonic, Q is the quality factor of 

the filter. Figure 3.8 demonstrates the filter impedance-harmonic frequency characteristic 

with different quality factors.  
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Figure 3.8: ST filter impedance-harmonic frequency characteristic with different quality factors. [49] 
 

3.3.3.2 Double-Tuned Passive Power Filters  

The double-tuned passive filter circuit configuration is shown in Figure 3.9. This topology is 

more difficult to tune compared to a single-tuned filter. However, it can eliminate two 

harmonics with the same filter. In practice, this filter is not popular and an application of two 

single-tuned filters is preferred. The following are the main advantages of double-tuned 

filters over two single-tuned filters [50]: 1) low power losses, 2) compact and 3) require only 

a single breaker. The disadvantages of this configuration include: 1) difficult tuning and 2) 

more sensitive in frequency to component values. The design equations for a double-tuned 

filter are as follows: 
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Parallel 
Part (Zp)

 

Figure 3.9: Double-tuned passive power filter (DT-PPF)  
 



Chapter Three: Passive and Active Power Filters for Harmonic Mitigation - Critical Review                            53 

 

𝜔𝑠 =
1

√𝐿1𝐶1
              3.8 

 

 

𝜔𝑝 =
1

√𝐿2𝐶2
               3.9 

 

 

𝜔𝑠 = 
𝜔𝑛1𝜔𝑛2

𝜔𝑝
               3.10 

 

 

𝐶2 = 
𝜔𝑠

2

𝜔𝑛1
2 +𝜔𝑛2

2 −𝜔𝑝
2−𝜔𝑠

2  𝐶1  
            3.11 

 

 

𝐶1 = {𝜔1 (
𝜔𝑝

𝜔𝑛1𝜔𝑛2
)
2

−
1

𝜔1
+

𝜔1[(𝜔𝑛1
2 +𝜔𝑛2

2 −𝜔𝑝
2)𝜔𝑝

2−𝜔𝑛1
2 𝜔𝑛2

2 ]

𝜔𝑛1
2 𝜔𝑛2

2 (𝜔𝑝
2−𝜔1

2)
} 

𝑈2

𝑄𝐹
  

           3.12 

 

 

3.3.3.3 High-Pass Passive Power Filters  

High-pass filters are the second category of shunt filters, and they are also called damped 

filters. The circuit layout for the high-pass filter is illustrated in Figure 3.10 for 1
st
 order, 2

nd
 

order, 3
rd

 order and C-type circuit configurations. This topology is configured at a cutoff 

frequency 𝑓𝑐 . Its operation principle is to provide low impedance for a wide spectrum of 

frequencies higher than the cutoff frequency > 𝑓𝑐  [40]. However, the filter provides high 

impedance for frequencies lower than the cutoff frequency < 𝑓𝑐. The filter design equations 

for the high-pass passive filter are given as: 

 

𝜔𝑛 = 
1

𝑅𝐶
 

        3.13 

 

 

𝑄 =  
𝑅

√𝐿 𝐶⁄
 

        3.14 
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Figure 3.10: High-pass passive power filter configurations (HP-PPF).  

 

The 1
st
 order high-pass filter circuit consists of simply a capacitor and a resistor connected in 

series as shown in Figure 3.10-(a). Compared to other high-pass filters, the 1
st
 order high-pass 

filter experiences higher power losses at fundamental frequency [51]. Furthermore, a greater 

capacitor size is required for better reduction of harmonics, which results in reactive power 

overcompensation and increases filter costs. Consequently, the 1
st
 order high-pass filter is not 

preferred in industry. Figure 3.11 shows the filter-impedance harmonic frequency 

characteristic with different damping resistors.  

 

Figure 3.11: 1st-HP filter-impedance harmonic frequency characteristic with different resistors. [49] 
 

The 2
nd

 order high-pass filter circuit layout is shown in Figure 3.10-(b). The circuit consists 

of a capacitor connected in series with a parallel inductor and a resistor branch. This filter 

topology is the most widespread and preferred high-pass filter applied in industrial and utility 

systems [51]. Its topology is simple in design and has low-power losses compared to the 1
st
 

order topology. Filter parameters are designed so that the filter acts like a single-tuned filter 

for tuned frequencies and like a 1
st
 order high-pass filter for higher frequencies [49]. Figure 
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3.12 depicts the filter-impedance harmonic frequency characteristic with different quality 

factors.  

 

Figure 3.12: 2nd-HP filter-impedance harmonic frequency characteristic with different quality factors. [49]  
 

The third configuration of the high-pass filter is the 3
rd

 order topology illustrated in Figure 

3.10-(c). Compared to the 2
nd

 order filter circuit, there is an additional capacitor in series with 

the resistor. Actually, the 2
nd

 order filter performs better than the 3
rd

 order filter, but the 3
rd

 

order filter offers the advantage of lower power loss [51]. This filter topology provides high 

capacitive impedance at the fundamental frequency and low resistive impedance over high 

frequencies [49]. The 3
rd

 order high-pass filter is more complex in design compared to the 2
nd

 

order filter. Figure 3.13 shows the filter impedance-harmonic frequency characteristic with 

different quality factors.  

 

Figure 3.13: 3rd -HP filter-impedance harmonic frequency characteristic with different quality factors. [49] 
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The C-type high-pass filter circuit is similar to the 2
nd

 order filter with the addition of a 

capacitor in series in the inductor branch as presented in Figure 3.10-(d). The harmonic-

filtering performance of the C-type filter is intermediate between the 2
nd

 and the 3
rd

 order 

high-pass filters [51]. This topology is usually applied to filter lower-order harmonics 

compared to the 2
nd

 and the 3
rd

 order filters. At the fundamental frequency, the filter is 

mainly a capacitor branch as the resistor branch is bypassed by the tuned low-impedance 

branch of the capacitor and the inductor [49]. However, the filter behaves like the 1
st
 order 

high-pass filter at high frequencies as the inductor’s reactance will be high and the current fill 

flows through 𝐶1  and 𝑅𝐷  [52]. The C-type filter has the minimum power loss as the 

fundamental current does not pass through the resistor [50]. The filter-impedance harmonic 

frequency characteristic with different quality factors is presented in Figure 3.14.    

 

Figure 3. 14: C-type filter-impedance harmonic frequency characteristic with different quality factors. [49] 

 

 

3.3.3.4 Composite Passive Power Filter  

In practice, harmonic mitigation in electrical power systems can be improved by application 

of composite shunt-filter banks as shown in Figure 3.15. As the double-tuned passive filters 

are complex in structure and difficult to tune, the composite filter comprises several single-

tuned filters and a high-pass filter [53]. In order to maintain the harmonic distortion well 

below the maximum allowable limits, the single-tuned filters are tuned for low-order 

harmonics, typically 5
th

, 7
th

, 11
th

 and 13
th

, and a high-pass filter, usually 2
nd

 order, is applied 

to remove high-order harmonics > 13𝑡ℎ. 
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Figure 3.15: Composite passive power filter configurations.  

 

3.4  Active Power Filters (APF)  

Active Power Filters (APF) are considered to be the newest technology for power-harmonics 

mitigation. This technology is based on power-electronics devices, and harmonic filtering is 

performed by applying the appropriate control for these devices. The rapid advancement in 

the field of power electronics has drawn more attention to APF for harmonic filtering. The 

principle function of APF is to measure distortion and inject equal-but-opposite current or 

voltage distortion into the power system so that the original distortion is cancelled [45]. APF 

can be applied to cancel up to the 50
th

 harmonic and significantly reduces THD [46]. It is 

capable of dealing with more than one harmonic at a time. Compared to PPFs, APFs have 

several advantages such as: 1) superior filtering performance, 2) smaller physical size, 3) 

flexibility and 4) they do not cause resonance in the system. However, they have the 

following disadvantages: 1) higher operating losses, 2) higher costs and 3) greater complexity 

[54].  

Active power filters can be classified based on the circuit configuration into: 1) parallel, 2) 

series and 3) hybrid as presented in Figure 3.16. In hybrid APFs, active and passive power 

filters are combined together to improve the filter-harmonic performance. [49]  
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Figure 3.16: General classification of active power filters (APF). 

 

3.4.1 Shunt Active Power Filters  

The shunt active power filter is the most popular type of APF, and it is widely applied in 

industry. It was named shunt as the filter is connected in parallel to the electrical circuit as 

demonstrated in Figure 3.17. It applies controllable voltage or current source. The main 

attraction of this topology is that it carries the load harmonic current and not the full load of 

the circuit current [45].  

 

Figure 3.17: Shunt active power filter configuration. 

 

Here, the shunt filter acts like a current source and injects the same harmonic current as 

generated by the load, but with a 180
o
-phase shift so it is cancelled out with the harmonic 

current [55]. The instantaneous load current is detected by the controller, which applies 

digital signal processing (DSP) to extract the harmonic-current component from the total-load 
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current [54] . In this way, the harmonic-distortion current is mitigated from the system. In 

practice, shunt active power filters are applied with two levels (PWM-VSIs). Nowadays, 

multilevel inverters are becoming mature technology and are attractive for medium-voltage–

high-power applications. Because of this, cascaded H-bridge multilevel inverters are 

considered to be an alternative for the conventional two levels (PWM-VSIs) for shunt APFs. 

[49] 

3.4.2 Series Active Power Filters  

Series APFs are connected to the electrical power system via an isolation transformer. The 

circuit configuration is presented in Figure 3.18. Here, the main idea is to isolate harmonics 

between the supply and the non-linear load. A series APF generates a PWM voltage 

waveform. This waveform is added or subtracted instantaneously to deliver a pure sinusoidal 

voltage waveform to the load. [56] First, the controller identifies the instantaneous supply 

current. Then, DSP is applied to extract harmonic current from the supply current. Finally, a 

compensation voltage is supplied across the primary windings of the isolation transformer 

using the series APF, which reduces harmonic distortion. [45]   

 

Figure 3.18: Series active power filter configuration. 

 

The main drawback of this configuration is that it must carry the full-load current, which 

results in higher device ratings, higher losses and larger filters [56]. Because of this, series 

APFs are not commonly used in industry compared to shunt APFs. However, series APFs are 

superior to shunt APFs as they mitigate voltage harmonic distortions and can be used to 

balance three-phase voltage. 
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3.4.3 Hybrid Active Power Filters  

At present, there is considerable interest in hybrid active power filters for different power-

quality applications. The main reason for this interest in hybrid APFs is the performance 

improvement in harmonic mitigation and other power-quality problems. Essentially, hybrid 

APFs comprise passive and active power filters in different configurations. Hybrid APFs are 

classified, based on the literature review, into four basic categories: 1) series APF with shunt 

APF connected in series, 2) series APF and shunt PPF and 3) shunt APF with shunt PPF. In 

summary, the key advantages that can be achieved by implementing hybrid APFs are: 1) 

maximizing filter performance, 2) eliminating drawbacks of conventional topologies and 3) 

minimizing overall filter costs. 

 

3.4.3.1 Series APF with Shunt APF Connected in Series  

To come up with an APF topology with the merits of shunt APF and series APF, these two 

APFs are constructed to operate together in harmonic mitigation. The circuit layout of such a 

configuration is presented in Figure 3.19. This combination can achieve better harmonic 

elimination, but a special control algorithm is required to control the combined shunt and 

series APFs [49]. Due to control complexity and high costs, this hybrid filter topology is not 

commonly used compared to other topologies [56]. 

 

Figure 3.19: Series APF with shunt APF configuration.  
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3.4.3.2 Series APF with Shunt PPF  

This hybrid APF combines a series APF and shunt PPF as displayed in Figure 3.20. In this 

configuration, the series APF efficiently isolates harmonic current between the supply and the 

non-linear load and improves the performance of the shunt passive filter by inserting high 

resistance in the source impedance branch for harmonic current [57]. The shunt passive filter 

is usually a shunt passive filter bank consisting of a group of single-tuned filters to eliminate 

low-order dominant harmonics – typically, the 5
th

 and 7
th

 in parallel with a 2
nd 

order high-

pass filter. There is little interest in such a configuration as series APFs are less preferred in 

industry [56]. 

 

Figure 3.20: Series APF with shunt PPF configuration. 

 

3.4.3.3 Shunt APF with Shunt PPF 

Figure 3.21 demonstrates the circuit configuration of this filter. In this type of hybrid filter, 

the shunt APF and shunt PPF are connected in parallel to the PCC with non-linear load. The 

shunt PPF’s main function in this configuration is to eliminate the low-order dominant 

harmonics of the load current and provide reactive power compensation [58] . The shunt APF 

is designed to eliminate part of the low-frequency harmonics. This design significantly 

reduces the series APF cost, and hence, the total filter cost [54]. In addition, low THD values 

can be achieved by applying this filter. The main disadvantage of this combination is that it 

requires a large number of power components [56]. 
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Figure 3.21: Shunt APF with shunt PPF configuration. 

 

 

3.5 Technical Comparison of PPF and APF  

Passive power filters (PPF) are widespread in both industrial and power-utility applications, 

mainly because they have a simple structure and are considered to be a cost-effective solution 

for harmonics. However, APFs have more features, which make them more suitable in 

certain applications. In operation, hybrid filters merge the benefits of passive and active 

filters, and having the features of both topologies makes them efficient. The system engineer 

is responsible for determining the most suitable filtering topology. Tables 3-3 and 3-4 each 

provide a selection matrix that serves as guidelines to help select the most suitable filter 

topology according to application requirement. [40, 45, 46, 48, 49, 51, 52, 54, 56-60] 
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Table 3-3: Passive Power Filter Selection Matrix  

 Topology Passive Power Filters 

 Series  Shunt-tuned High-pass 

Components R, L R, L, C R, L, C 

Circuit 

Layout 

RD XL

 
 

C1

L1

R1

R2 R3

C

L

RD

L2C2

Double - TunedSingle - Tuned  

C1

C2

C1

C2

RD
RDRD

RD

C1

C1

L L
L

a) 1st HP b) 2nd HP c) 3rd   HP d) C-type 

 

Key 

Features 

 Series reactor connected in series with the 

line. 

 Mainly applied for current smoothing. 

 Typically available in percentage 

impedance (1–1.5%, 3% and 5%). 

 Moderate reduction in both voltage and 

current harmonics.  

 

 Most commonly used filters in industry. 

 Tuned to eliminate particular harmonics. 

 Available in single-tuned or double-tuned. 

 Connected in shunt with the system. 

 At tuned frequency, provide a low-impedance 

path for tuned-harmonics current. 

 When designed, care should be taken to avoid 

capacitive overcompensation at light load. 

 Two single-tuned filters in parallel have the 

same characteristic as double-tuned.  

 Tuned at a cut-off frequency, and all harmonics 

above cut-off frequency are filtered out. 

 Shunt-connected. 

 Usually applied to filter higher-order 

harmonics. 

 Used in complement with tuned filters. 

 Typically: 1
st
, 2

nd
, 3

rd
 order and C-type. 

 1
st
 order: high losses and not commonly used. 

 2
nd

 order: most commonly used in industry. 

 3
rd

 order: complicated – high number of 

components. 

Merits 

 Low cost. 

 Minimum number of components. 

 Better input protection for non-linear load 

and components from system transients.  

 Simple and reliable.  

 Cost-effective. 

 Handles only the harmonic component of load 

current.  

 Eliminates a wide range of harmonics spectrum 

using only one filter. 

 Not sensitive to parameter deviations (shallower 

notch valley).  

Demerits 

 Not enough harmonic reduction to power-

quality requirements.  

 Handles full-load current, hence:  

 High power loss and high component 

ratings are required.  

 Possible resonance with system impedance.  

 Eliminates one/two harmonics per filter and 

hence multiple shunt filters are required.  

 Possibility of detuning. 

 Possible resonance with system impedance. 

 Large ratings at fundamental, hence: 

 Higher power losses. 

 Requires high number of components. 
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Table 3-4: Active Power Filter Selection Matrix 

Topology Active Power Filter (APF) 

 Shunt Series 

Components Semiconductor Devices Semiconductor Devices 

Circuit 

Layout 

Non-Linear 

Load

AC Supply  

Active Power 

Filter (APF)

Supply Impedance 
PCCIs IL

IAF

 

Non-Linear 

Load

AC Supply  

Active Power 

Filter (APF)

Supply Impedance 

Coupling 

Transformer
IS IL

IAF

 

Key 

Features 

 

 Most popular type of APF applied in industrial applications. 

 Connected in shunt at PCC. 

 Current harmonics compensation.  

 Detects instantaneous load current, supresses harmonics components by 

applying DSP and injects equivalent current to the system, but 180
o-

phase 

shifted to cancel harmonics. 

 In practice, it is applied on two levels (PWM-VSIs). 

 Multilevel VSIs are considered an alternative of conventional (PWM-

VSIs). 

 

 

 Not commonly used compared to shunt APFs. 

 Series-connected via isolation transformer.  

 Voltage harmonics compensation.  

 Main purpose to isolate harmonics between supply and non-linear load. 

 Detects instantaneous supply current, supresses harmonics components by 

applying DSP and injects equivalent current to the system, but 180
o-

phase 

shifted to cancel harmonics.  

 Applied as voltage regulators and harmonic isolators. 

 Attractive for unbalanced voltage compensation, voltage sags, swells and 

low-power applications.  

Merits 

 Filter handles and carries harmonic-current component only.  

 Superior harmonic mitigation, can cancel up to 50
th

  harmonic. 

 Multifunction: harmonics reduction, power-factor correction and VAR 

compensation. 

 Effectively protects supply from load harmonics.  

 

 Filter handles and carries full-load current component. 

 Higher device ratings, higher losses and large filter size.  

 Effectively protects the load from supply harmonics.  

 

Demerits 

 

 High cost compared to passive filters.  

 High switching frequency. 

 

 Filter handles and carries full-load current component. 

 Higher device ratings, higher losses and large filter size.  

 Higher cost and complex control compared to shunt APFs. 

 Isolation transformer failure leads to power disruption.  
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Table 3-4 (continued): Active Power Filter Selection Matrix  

Topology 
Hybrid Active Power filters (Hybrid APFs) 

Series APF + Shunt APF connected in series Series APF + Shunt PPF Shunt APF + Shunt PPF 

Components R, L, C + Semiconductor Devices R, L, C + Semiconductor Devices R, L, C + Semiconductor Devices 

Circuit 

Layout 

Non-Linear 

Load

AC Supply  

Active Power 

Filter (APF)

Supply Impedance 

PCCIs

IF

IL

 

Non-Linear 

Load

AC Supply  

Active Power 

Filter (APF)

Supply Impedance 

Coupling 

Transformer

IPF

IL

IAF

IS

PCC

 

Non-Linear 

Load

AC Supply  

Active Power 

Filter (APF)

Supply Impedance 

IPF

IL

IAF

IS PCC

 

Key 

Features 

 Combination of series and shunt APFs. 

 Combines merits of both topologies. 

 Not commonly used topology due to 

complex control and high cost. 

 Eliminates both voltage and current 

harmonics. 

 Combination of series APF and shunt PPF. 

 Series APF provides isolation of harmonic 

current between supply and load, and improves 

performance of the shunt APF. 

 Shunt passive filters are usually of composite 

type (single-tuned 5
th

 and 7
th

 + 2
nd

 order high- 

pass filter). 

 Little interest as series APF not preferred in 

industry. 

 Combination of shunt APF and shunt PPF. 

 Most popular and preferred in industry.  

 Both filters connected in parallel into PCC. 

 Shunt PPF eliminates low-order dominant 

harmonics and provides reactive power 

compensation.  

 

Merits 
 Better harmonic reduction performance 

can be achieved.  

 

 Lower switching losses. 

 Simple control because of shunt PPF presence.  

 Better harmonic reduction performance. 

 Significant reduction in filter cost. 

 Handles harmonic components of current only. 

 Simple control because of shunt PPF presence.  

Demerits 

 

 Special control algorithm is required. 

 Complex control. 

 High cost. 

 

 Presence of series APF results in drawbacks for 

this topology.  

 

 Requires high number of components.  

 Higher power losses.  

 Requires high number of components. 
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3.6 Summary  

This chapter presented a critical review of power-system harmonics and harmonic-power 

filters. In the first part of the chapter, a brief historical and theoretical background of the 

harmonic phenomenon was introduced. Then, a classification of sources of power harmonics 

was introduced and the main classification categories were discussed. Next, the adverse 

effects of power harmonics were illustrated as per the main components of the power system. 

The first part of the chapter ended by presenting a detailed classification for existing 

solutions, mitigation techniques and international standards applied for harmonics.  

The second part of this chapter introduced a general classification for power-harmonics 

filters. PPF topologies were explained in terms of circuit layout, operating principles, features 

and main applications. Similarly, APF topologies were discussed. The chapter concluded 

with an important comparison of PPF and APF topologies, addressing circuit layout, key 

features, advantages and disadvantages.      

Based on this review, the composite PPF was proposed for optimum multilevel inverter 

design as it features a cost-effective harmonic-elimination solution, a simple structure, 

reliability and easy implementation. Furthermore, the composite passive filter has excellent 

harmonic-mitigation performance compared to other filters and does not require any complex 

control. In addition, the shunt-tuned and high-pass PPF do not carry full-load current, which 

considerably reduces power loss and component weight and size. More details on the trade-

off optimisation model and optimum passive filter design will be discussed in Chapter Four.  
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4 CHAPTER 4: PROPOSED OPTIMUM TRADE-OFF 

MODEL 

4.1 Introduction 

For a given grid voltage, it is possible to design a CHB-MLI with either a low number of 

series-cascaded H-bridge cells featuring devices with high blocking voltage, or with a high 

number of cascaded cells featuring switching devices with low blocking voltage. The 

required size of the output filter is also affected by the number of inverter levels. While an 

inverter with few levels requires a larger filter, an inverter with many levels requires a 

smaller filter, or even eliminates the need for a filter. This trade-off in inverter levels and 

output-filter size is affected by several factors. This chapter proposes a generic genetic 

algorithm (GA)-based optimisation model to solve this trade-off problem and to determine 

the optimum design for the required application.   

The chapter starts by defining the trade-off problem, the main factors affecting the problem 

and the main steps implemented for optimisation. Then, an overview of GA is presented, 

followed which, a generic GA-based model is proposed to solve the SHE problem in 

multilevel inverters. Next, the problem of power-loss evaluation in multilevel inverters is 

reviewed. A precise generic model for calculating conduction and switching losses in 

multilevel inverters is proposed and discussed in detail. The chapter concludes with an 

optimum GA model for passive power filter (PPF) implementation at the multilevel inverter 

output to optimize the trade-off.   

4.2 Trade-off between Number of Cascaded H-Bridges and Size of 

Output Filter in CHB-MLIs 

For medium-voltage grid-connected applications (typically 6–36 kV), renewable energy 

sources such as solar (PV) power plants are usually integrated into the power grid via a step-

up transformer, which is bulky, heavy and space-consuming. This results in a significant 

increase in overall system cost, weight and size, as well as requiring more complex 

installation and maintenance. To overcome these drawbacks, multilevel voltage-source 

inverters might be a feasible solution. These multilevel inverters are capable of building a 

higher output voltage with low-voltage switching devices. The application of multilevel 

inverters for direct grid connection of PV power plants has attracted many researchers and 
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continues to gain attention. Among the three classical multilevel inverter topologies, the 

cascaded H-bridge is superior and has many attractive features. The modularity of this 

topology allows easy packaging, simple implementation and a higher number of levels with 

the lowest number of devices. The CHB-MLI is a well-established technology and 

commercially available up to 13.8 kV.  

For the integration of renewable energy sources at a given power-grid voltage, there is always 

a trade-off between the number of inverter levels to be implemented and the size of the 

output filter. There are several factors affecting this trade-off. Integration can be achieved by 

using an inverter with a low number of levels (few cascaded cells) featuring switching 

devices with high blocking voltage, or an inverter with a high number of levels (many 

cascaded cells) featuring switching devices with lower blocking voltage. The inverter 

designed with a low number of levels will require higher switching frequency, a larger output 

filter, switching devices with higher blocking voltage, and it will experience worse switching 

losses. However, the inverter with a low number of levels implements the lowest number of 

devices and has better conduction-loss performance. Conversely, the inverter with many 

levels requires a lower switching frequency, a smaller output filter (or it eliminates the need 

for a filter), switching devices with lower blocking voltage, and it has better switching-loss 

performance. However, the inverter with many levels needs more devices and has higher 

conduction losses. The trade-off between the number of levels for multilevel inverters is 

summarized in Table 4-1 [61].  

 

Table 4-1: Effect of Inverter’s Number of Levels on the Trade-Off 

Inverter with Low Number of Levels Inverter with High Number of Levels 

Few cascaded cells. Many cascaded cells. 

Devices with high blocking voltage. Devices with low blocking voltage. 

Higher switching frequency 𝑓𝑠. Lower switching frequency 𝑓𝑠. 

Less conduction loss. More conduction loss. 

Worse switching losses. Better switching losses. 

Higher %THD and needs large filter. Lower %THD and needs small filter. 

Few components required. Many components required. 
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This chapter proposes a model to quantify and optimize the trade-off in the number of 

inverter levels and the size of the output filter based on GA. The model is applied to optimize 

the CHB-MLI for a given grid-voltage level and output-rated power. Table 4-2 summarizes 

the main steps that the optimisation model approach was based on. It is crucial to have a 

quantifying methodology that helps to determine the number of inverter levels and size of 

output filter for the required design. Figure 4.1demonstrates the general model architecture 

for the applied trade-off optimisation approach.   

 

 

Table 4-2: Main Steps for Optimisation Approach 

 

 

 

 

 

 

 

 

 

 

1 

• A GA-based generic optimisation is proposed to address the SHE problem for 
controlling the inverter and minimizing THD. 

2 

• A precise model is proposed for conduction and switching loss calculations in 
multilevel inverters.  

3 

• A GA-based optimisation model is proposed for the output passive power filter 
design.  

4 
• Multi-objective function and constraints are defined. 

5 

• Optimum solution is obtained based on the considered design key measures 
values.  
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Figure 4.1: General model architecture for the applied trade-off optimization approach 
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4.3 Genetic Algorithm (GA)  

4.3.1 Overview  

The idea of applying evolution as an optimisation tool for engineering applications was 

considered by computer scientists in the 1950s and 1960s [62]. The basic concept is to 

generate a population of candidate solutions for the considered problem and apply operators 

according to natural genetic variation and natural selection.  

 

A genetic algorithm (GA) is a heuristic global evolutionary optimisation algorithm that is 

based on the mechanics of natural selection and genetics. This algorithm was initially 

described by John Holland in the 1960s and was further developed by Holland and his 

colleagues and students in the 1960s and 1970s [63]. GA applies biological evolution in the 

process of optimisation. The key difference compared to other optimisation techniques is that 

GA searches by population rather than by an individual point search. GA has been 

successfully and widely applied to solve both constrained and unconstrained optimisation 

problems. In practice, most of the engineering problems are combinatorial problems that 

include minimisation  or maximization of different objectives, with some applied constraints. 

Compared to conventional optimisation, heuristic techniques are more powerful, efficient and 

capable of finding the global optimum solution to such combinatorial problems. Table 4-3 

summarizes the key attractions of GA over other artificial intelligence techniques [59, 64].  

 

 

Table 4-3: Genetic Algorithm (GA) Key Attractions 

Key Attractions of GA Optimisation 

 GA deals with the coded form of the problem’s parameters and not the parameters 

themselves. 

 Rather than searching by a single point, GA starts searching in a group of points.  

 GA optimizes the objective function itself and not its derivatives or other auxiliary 

information.  

 The algorithm implements probabilistic and not deterministic rules in its choice. 

 It is a robust algorithm. 

 GA can handle a wide range of optimisation problems.  
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The process of any GA optimisation consists of four main steps: 1) initialization of the 

population, 2) evaluation of fitness function, 3) selection and 4) applying genetic operators. 

Figure 4.2 shows a general flow chart for GA optimisation. The algorithm starts by 

generating a random population of candidate solutions for the considered optimisation 

problem. Then, it moves from one generation to another by applying natural selection, with 

genetic operators for crossover and mutation. The algorithm stops when the applied stopping 

criterion is achieved. In the following subsections, a discussion of each step of GA 

optimisation is presented and discussed.  

START

END

Stop Conditions 

Satisfied?

Initialization of 

Population 

Evaluate Fitness 

Function 

Selection 

Crossover & Mutation

YES

NO

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

 

Figure 4.2: General flow chart for genetic algorithm (GA) optimisation. 

 

4.3.2 Initialization of the Problem  

A set of “genes” make up a “chromosome” in natural genetics. In GA, the optimisation 

parameters are considered to be “genes”, and a “chromosome” represented by a “string” is 

made up from the problem “genes” [65].  At the start, the algorithm should be initialized. 

Each parameter “gene” of the optimisation problem is coded in a binary or floating-point 

“string”. Then, a set of solutions is randomly generated, based on the coded parameters for 
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the specified size of population. This generated set of solutions is called the “initial 

population”, 𝑃𝑖. Each individual feasible solution is considered a “chromosome”. The number 

of generated solution “chromosomes” indicates the “population size”, which should be 

defined in the design of the algorithm. The “population size” affects the performance of GA. 

It should not be either very small or very large as GA might perform poorly in such a 

scenario [66].   

 

4.3.3 Evaluation of Fitness Function  

An objective function must be defined as a measure to guide the algorithm through the 

optimisation process. This helps to evaluate the goodness of each generated solution string. 

The objective function plays a crucial role in the performance of GA optimisation and 

significantly affects the quality of the solution. Hence, it should be determined very carefully. 

In some optimisation problems, there are multi-objectives to be optimized. Practically, the 

range of values for the objective function varies from one optimisation problem to another. 

Accordingly, each individual string is evaluated and assessed by a measure, the so-called 

“fitness function”, which normalizes the values of the objective function to a convenient 

range between (0 and 1) [67].   

 

4.3.4 Selection 

Based on the objective function, a “fitness function” (sometimes called “fitness score” or 

“fitness value”) for each individual solution is determined, which indicates the goodness of 

the solution for the optimisation problem [64]. At selection stage, only those individuals with 

high fitness values are likely to survive, and those with low fitness function are eliminated 

when they “die”. Parents for the next generation are selected according to selection rules (for 

example, roulette-wheel or tournament selection) to produce off-spring chromosomes. The 

selected parents are the main contributors to form the next generation. This means that strings 

with high fitness-function values in the old generation are most likely to contribute one or 

more off-spring in the next generation [65]. Figure 4.3 illustrates roulette-wheel selection for 

five individuals. The fittest individual has the largest share of the roulette wheel.                
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Figure 4.3: Sample roulette wheel and assigned areas for population individuals. 

 

 

4.3.5 Crossover and Mutation  

Crossover is a genetic operator that is applied, in which a number of bits are swapped 

between parents. The purpose is to differentiate the population so that new individuals are 

created in the next generation [59].  Essentially, in crossover, the two individuals that become 

the parents are selected randomly. Then, some genes are exchanged at the selected crossover 

point to form a new, improved combination and create two new individuals for the next 

generation. Crossover is considered an important and powerful genetic operator. Figure 4.4 

illustrates an example of a one-point crossover. 

1 0 1 0 1 0 0 1 1 1

0 0 0 0 1 1 0 0 0 1

1 0 1 0 1

0 0 0 0 1

1 0 0 0 1

0 0 1 1 1

Crossover Point

Parents Offspring

 

Figure 4.4: Example of an individual crossover. 
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After the crossover is performed, another operator is applied at low probability, which is 

called mutation. In this operator, genes are alerted and mutated. Mutation of individuals can 

be accomplished by changing a bit within a gene from 0 to 1, or from 1 to 0. Mutation 

expands the search space and prevents the algorithms from converging on local minima. 

Figure 4.5 shows a mutation example of a bit-by-bit flipping at a random position. Mutation 

is the last genetic operator to be applied and after that, off-spring generation is obtained, 

which is further improved from the previous parent generation.  

1 0 1 0 1 1 0 0 0 1

1 0 1 1 1 1 0 0 0 1

Mutation point 

Offspring

Mutated Offspring
 

Figure 4.5: Example of bit-flip single mutation.  

 

4.3.6 Stopping Criterion  

When designing a GA-based optimisation, it is important to use a stopping criterion, whose 

purpose is to tell the algorithm when to terminate. To achieve this, the algorithm decides the 

optimum solution as an output of the optimisation problem. Typically, the algorithm is 

designed to stop after 100 generations are performed. In some cases, the algorithm might 

converge on a solution before 100 generations. In such cases, the GA should stop when the 

weighted average change in the objective function over 50 generations is less than a given 

tolerance function, for example (휀 = 1 × 10−6). 

4.3.7 Test of Applied GA 

For evaluation of the GA performance based on the applied settings, Rastrigin’s function of 

two independent variables is used which is mathematically represented by Equation 4.1.  

𝑅𝑎𝑠 (𝑥) = 20 + 𝑥1
2 + 𝑥2

2 − 10 (cos 2𝜋𝑥1 + cos2𝜋𝑥2)             4.1 

 

Where the searching domain of the function is: 

−5.12 ≤ 𝑥𝑖 ≤ +5.12             4.2 
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The 3D representation of this function is plotted in Figure 4.6. The Rastrigin’s function has 

many local minima as shown in the plot, but has just one global minimum in which its value 

(0) and occurs at the point ( 𝑥1 = 𝑥2 = 0) in the x-y plane. The applied GA was successful in 

finding the global optimum solution for the Rastrigin’s function as shown in the GA 

performance in Figure 4.7 

 

Figure 4.6: Rastrigin’s function – 3D representation 

 

 

Figure 4.7: GA performance for Rastrigin’s function optimisation 
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4.4 Genetic Algorithm for SHE control of CHB-MLI  

This section discusses the implementation of GA for solving the switching angles of the 

selective harmonic elimination control problem. First, the mathematical model of SHE 

control for CHB-MLI is explained. Then, a critical review of the existing applied solutions 

for the SHE problem is discussed and compared. The main features, advantages and 

disadvantages for each solution’s approach are presented. At the end of this section, there is a 

proposal for a GA-based generic optimisation to solve the SHE-control problem with any 

number of inverter levels.      

  

4.4.1 Mathematical Model for the Problem of SHE in CHB-MLI  

 

…...
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900

1800 3600 
2700 
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Figure 4.8 Generalized output stepped-voltage waveform for n-level inverter. 

 

A generalized stepped-voltage waveform of n-level generated by CHB-MLI is illustrated in 

Figure 4.8. Applying Fourier’s expansion, the stepped-voltage waveform can be expressed in 

terms of odd harmonics only as a result of quarter-wave symmetry as explained in Chapter 

Two (Section 2.5.2). Assuming a balanced three-phase system, all triplen harmonics will be 

zero [11]. The general equation of the output voltage given by Fourier’s expansion can be 

written as:  

 

𝑣𝑎𝑛(𝜔𝑡) = ∑
4𝑉𝑑𝑐

𝑘𝜋

∞

𝑘=1,3,5,…..

[𝑐𝑜𝑠(𝑘 ∝1) + 𝑐𝑜𝑠(𝑘 ∝2)… . . +𝑐𝑜𝑠(𝑘 ∝𝑠)] 𝑠𝑖𝑛(𝑘𝜔𝑡) 

 

        4.3 
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Where 𝑆  is the number of switching angles to be calculated. In the case of CHB-MLI 

topology, 𝑆 is equal to the number of series-connected H-bridge cells of the inverter. The 

magnitude of the fundamental component and the non-triplen odd harmonics expressed by 

Equation 4.4 and all switching angles are in ascending order and less than 90°. 

𝑉1 = 𝑐𝑜𝑠(𝜃1) +  𝑐𝑜𝑠(𝜃2) + ⋯⋯⋯+  𝑐𝑜𝑠(𝜃𝑆) = 𝑆 × 𝑀𝑖    

𝑉5 = 𝑐𝑜𝑠(5𝜃1) + 𝑐𝑜𝑠(5𝜃2) + ⋯⋯⋯+ 𝑐𝑜𝑠(5𝜃𝑆) = 0      

𝑉7 = 𝑐𝑜𝑠(7𝜃1) + 𝑐𝑜𝑠(7𝜃2) + ⋯⋯⋯+ 𝑐𝑜𝑠(7𝜃𝑆) = 0  

        ⋮           ⋮                    ⋮ 

𝑉ℎ = 𝑐𝑜𝑠(ℎ𝜃1) + 𝑐𝑜𝑠(ℎ𝜃2) + ⋯⋯⋯+ 𝑐𝑜𝑠(ℎ𝜃𝑆) = 0  

 

            4.4 

 

𝜃1 < 𝜃2  < ⋯⋯⋯ < 𝜃𝑆  <  90°                4.5 

Where: 𝑀𝑖 is the modulation index. 

ℎ = 3𝑆 − 𝑘 , is the highest harmonic order that can be eliminated. 𝐾 takes the value of 1 for 

an even number of 𝑆, and takes the value of 2 for an odd number of 𝑆. [31]  

Equations 4.4 and 4.5 form the mathematical model to solve the problem of selective 

harmonic elimination. In the next subsection, a critical literature review discusses the 

methods most applied to solve the SHE problem.  

 

4.4.2 Critical Review of Applied Solution Techniques for the SHE Problem 

The SHE system given in Equations 4.4 and 4.5, is a highly nonlinear system. In the 

literature, this equation system for calculating switching angles is called the “system of 

transcendental equations” or “SHE equations”. For cascaded H-bridge multilevel inverters 

(CHB-MLI), the number of equations is equal to the number of H-bridge cells of the inverter. 

A survey of the literature on solving the SHE problem shows considerable interest in the last 

decade. Throughout the literature reviewed, many techniques and mathematical approaches 

were proposed and investigated to solve the SHE problem in multilevel inverters. In general, 

the proposed solution techniques can be classified into: 1) iterative techniques, 2) resultant 

theory techniques, or 3) heuristic optimisation techniques.  
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Newton Raphson (NR) is the most common iterative technique used in the literature [68]. It 

is widely applied and has been implemented to calculate switching angles in multilevel 

inverters. Two of the main advantages of NR are: 1) it is easy to implement and 2) it is 

efficient at eliminating low-order harmonics. However, it suffers from the following 

drawbacks: 1) it needs a good initial guess for switching angles to converge, 2) it does not 

find solutions over the entire range of the modulation index and 3) difficulty of converging 

with higher numbers of inverter levels.  

Other authors have suggested the application of resultant theory to solve the SHE problem in 

multilevel inverters [69]. With this method, the transcendental equations are transformed to 

polynomial equations to be solved using resultant theory. The main drawback of this 

approach is that as the levels in the inverter increase, the number of transcendental equations 

to be solved increases. Consequently, the degree of the polynomials will be large; thus, the 

computation burden increases, and the problem becomes more difficult to solve.  

A more recent approach is to solve the SHE problem by applying heuristic algorithms such 

as: particle swarm optimisation (PSO), genetic algorithm (GA), simulated annealing (SA), 

tabu search (TS) and so forth. Heuristic algorithms were found to be powerful and can solve 

the problem by applying artificial intelligence. The main idea here is to transform the SHE 

problem into an optimisation problem. The optimizer is designed to minimize the THD with 

maintaining the desired fundamental component and to eliminate dominant low-order 

harmonics as constraints on optimisation. Key advantages of heuristic algorithms in solving 

the SHE problem are: 1) as well as the elimination of low-order harmonics, it can minimize 

THD, 2) solving capability for the entire range of the modulation index and 3) an initial guess 

of switching angles is not required. In [70], GA was applied to find optimum switching 

angles, while paper [71] investigated PSO’s capacity to solve the SHE problem.  

As a preliminary study of this research work, the ability of NR, PSO and GA to solve the 

SHE problem of a seven-level CHB-MLI was investigated [72].  In this paper, the 

performance of GA and PSO was much better than NR as shown in Table 4-4, in which “**” 

indicates no convergence.  
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Table 4-4: Solving the SHE Problem Using Different Methods (NR-PSO-GA)   

Mi 
Ө1 Ө2 Ө3 % THD 

NR PSO GA NR PSO GA NR PSO GA NR PSO GA 

0.1 ** 39.3 8.0 ** 59.6 34.3 ** 81.1 88.9 ** 10.5 8.2 

0.2 ** 7.6 24.7 ** 34.0 52.5 ** 88.7 66.5 ** 8.1 8.0 

0.3 46.4 7.6 24.5 83 33.9 52.5 89.6 88.6 66.2 28.1 8.1 8.0 

0.4 40.5 13.2 13.2 65.1 34.3 34.3 88.9 60.0 60.0 17.2 6.4 6.4 

0.5 39.4 13.1 5.3 56.3 34.1 16.9 80.1 59.9 35.6 11.7 6.4 5.2 

0.6 33.5 13.1 5.3 54.8 34.0 16.7 67.1 59.9 35.3 10.3 6.4 5.2 

0.7 18.3 5.3 5.3 44.1 16.6 16.6 64.4 35.0 35.0 11.4 5.2 5.2 

0.8 11.5 5.4 5.4 28.7 16.5 16.4 57.1 34.8 34.8 8.0 5.2 5.2 

0.9 11.2 5.4 5.4 13.4 16.4 16.4 37.4 34.8 34.8 9.2 5.2 5.2 

1 ** 5.4 5.4 ** 16.4 16.4 ** 34.8 34.8 ** 5.2 5.2 

 

This PhD study set out to solve the SHE problem for different CHB-MLI levels. Due to its 

superiority over other conventional calculus methods, GA-based optimisation for solving the 

SHE problem was chosen for analysis. The next section presents a detailed explanation of 

how to apply GA-based optimisation to solving the SHE problem. 

 

4.4.3 Implementation of GA to Determine Switching Angles in CHB-MLI   

In order to implement GA for the SHE problem, MATLAB software was used as a 

simulation environment. Based on the basic flow chart of GA optimisation demonstrated in 

Figure 4.1, the main steps considered in the implementation of GA for solving the problem 

are: 

 STEP-1: Initialization 

In the design of a GA-based optimisation to solve the SHE problem in  CHB-MLI, there are 

𝑆 number of switching angles to be determined in the solution. Each switching angle is 

considered a  gene. The switching angles (genes) are coded in a binary string as the binary 

coding system was chosen  for the problem. An individual solution or chromosome will be 

made from all genes – S switching angles in this case – where S is  the number of cascaded H-

bridges.   
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𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 =  [𝜃1, 𝜃2, 𝜃3,………………..,𝜃𝑠]          4.6 

  

Where,   

𝜃1 = [1 0 0 1 1] , 𝜃2 = [0 0 0 1 0] , ………… . 𝜃𝑠 = [1 0 1 1 0]           4.7 

 

In this study, the population size was chosen as (30). For n-level CHB-MLI, there will be 

𝑆 switching angles to be calculated. At the initial population, θ1, θ2,…θs  are assumed 

randomly to start the solution. This is a constrained optimisation, with a constraint stating 

that angles should be in ascending order between 0° and 90°, as per Equation 4.5.   

 

 STEP-2: Evaluating Fitness Function 

As the objective function significantly affects optimisation performance, it should be defined 

carefully. The purpose of the proposed GA-based optimisation model for SHE is to have the 

desired fundamental component, eliminate the low-order dominant harmonics and minimize 

THD at the output of the inverter. The following objective function has been considered for 

analysis and found to be effective in eliminating the undesired low-order harmonics, while 

maintaining the required fundamental component [11, 72]:   

𝑂𝑏𝑗𝐹 = |𝑉1 − 𝑆𝑀𝑖|
4 + |𝑉5|

2 + |𝑉7|
2 + ⋯+ |𝑉𝑧|

2 + %𝑇𝐻𝐷 

 

          4.8 

 

Where 𝑉1, 𝑉5  and 𝑉7  are the amplitudes of the fundamental 5
th

 and 7
th

 harmonics, 

respectively, 𝑉𝑧  is the highest odd harmonic that can be eliminated,  𝑆  is the number of 

cascaded H-bridges. The objective function is used as a measuring tool to test the goodness 

of individual solutions generated at the first step.  

 STEP-3: Selection 

Here, the individuals with higher fitness values are selected from the population. In this 

investigation, the tournament-selection method was used.  

 STEP-4: Crossover and Mutation 

Crossover and mutation are the last genetic operators to be applied in the optimisation. The 

scattered and constraint-dependent functions were applied for crossover and mutation, 

respectively.  
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 STEP-5: Stopping Criterion 

This determines when the algorithm stops. In the case of either of the following two 

conditions being satisfied, the algorithm should terminate: 1) the number of iterations reaches 

100 generations, or 2) the weighted average change in the fitness-function value over 50 

generations is less than the function tolerance of (1 x 10
-6

).  

 

4.5  CHB-MLI High-Voltage Power Switches  

Power-semiconductor devices are used for switching and are considered to be the main 

building blocks of any power-electronics system. These devices are either uncontrolled (e.g. 

diodes), half-controlled (e.g. thyristors), or fully-controlled (e.g. insulated gate bipolar 

transistors (IGBTs), gate turnoff thyristors (GTOs) and integrated gate commutated thyristors 

(IGCTs)). They are commercially available at different ratings, characteristics and costs, so 

they can suit a wide range of power applications. Figure 4.9 presents the commercially 

available power-semiconductor devices [6].   

    

 

Figure 4.9: Commercially available power-semiconductor devices. [6] 
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The history of the power-semiconductor device revolution started in 1958 when silicon- 

controlled rectifiers (SCRs) became commercially available. Since then, there have been two 

milestone improvements in power-semiconductor devices: 1) when insulated gate bipolar 

transistors (IGBTs) were introduced in the 1980s and 2) the invention of integrated gate 

commutated thyristors (IGCTs) in the late 1990s, which is still considered to be recent 

technology. [6]                       

In practice, IGBTs are dominant and the most widely applied valve for medium-voltage–

high-power multilevel VSI applications. High-voltage insulated gate bipolar transistors (HV-

IGBTs) are replacing the gate turnoff thyristors (GTOs) for medium- and high-power 

applications. This is mainly due to feature advantages: 1) low on-state voltage drop, 2) 

superior on-state current, 3) modularity, 4) reduced cost, 5) easily controlled, 6) excellent 

forward and reverse blocking capability and 7) well-established mature device [73].   

For this study, IGBTs were considered for CHB-MLIs power-semiconductor switches. Table 

4-5 summarizes commercially available IGBT modules at different ratings, along with the 

associated cost for each module, which were considered in the analysis. Practically speaking, 

it is recommended that HV-IGBTs be operated at only 50–60% of blocking-voltage 

capability. This is to ensure a reliability of 100 FIT, where 1 FIT represents one failure in 10
9
 

operation hours [74].   

  

 

Table 4-5: Selected IGBTs for Medium-Voltage–High-Power Applications 

IGBT Device Ratings 
Device Name Manufacturer Cost/Module (£) 

Voltage (kV) Current (A) 

1.7 400 FZ400R17KE3 Infineon 213 

2.5 400 CM400DY-50H Mitsubishi 375 

3.3 400 FZ400R33KL2c-B5 Infineon 855 

4.5 400 CM400HB-90H Mitsubishi 1,125 

6.5 400 FZ400R65KE3 Infineon 2,000 
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4.6 Precise Modelling for Power-Loss Calculation in Different-Level 

CHB-MLIs  

Power dissipation in electronic devices, which involves switching semiconductors, is 

categorized into four types: 1) conduction losses, 2) switching losses, 3) off-state losses and 

4) gate losses. The off-state and gate losses are  small and are normally ignored [75].  

Accordingly, only  conduction and switching losses have been considered in the current 

research.  The aim of this section is to propose a generic model for precise  calculation of 

conduction and switching losses in CHB-MLI. The proposed model can be applied for any 

multilevel inverter topology, any number of levels and with any applied control techniques.  

The model is based on an online calculation in which  MATLAB-SIMULINK software was 

used for  modelling. This section is based on the papers published by the author [76, 77].  

4.6.1 Literature Review of Power-Loss Estimation in Multilevel Inverters  

Compared to two-level inverters, the estimation of  inverter-power losses is a complicated 

task for multilevel inverters.  The usual conventional methods used to estimate losses  in two-

level inverters are not suitable for application in multilevel inverters. The main reason is that 

in  multilevel inverters, each semiconductor device has a different  current than other devices, 

which implies different  power-loss behaviour for each device. This results from having 

a  different on-state ratio for each device during one  period of output-phase voltage. 

Furthermore, with a higher  number of levels, the switching frequency of each device is 

different ,which adds more complexity to the estimation process.   

In the literature, different methods have been suggested and applied to calculate power loss in 

multilevel inverters. Some of these methods are based on an online estimation from the 

simulated circuit, and some are based on deep mathematical analysis and evaluation. Ramu et 

al., proposed a method in which each IGBT was modelled with characteristic curves using 

curve-fitting exponential equations as a function of load current to calculate the losses [78]. 

Then, the power loss was calculated for a five-level CHB-MLI. This approach is not correct 

as it considers the same load current for all switches and antiparallel diodes. In practice, each 

power switch has its own current based on the applied switching function in multilevel 

inverters. Drofenkin and Kolar improved the procedure for loss-estimation in power 

electronic circuit simulations [79]. Their model is helpful for implementing the online 

estimation of conduction and switching losses in circuit simulations. In other paper, 

switching functions have been used to model inverter losses for a three-phase–nine-level 
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cascaded H-bridge inverter in which the load was assumed to be a mixed RL load and the 

modulation index was 0.85 [80]. The main drawback of this method is that it is not generic; it 

is only applicable for selective harmonic-elimination control and for a nine-level CHB-MLI 

circuit. In case the applied control technique or inverter levels were changed, different 

modelling is required.  

 

Previous studies used online modelling to calculate losses by applying curve fitting to 

characterize the IGBT based on the device datasheet. However, another approach has been 

proposed for estimating power losses in multilevel inverters, which evaluates losses 

mathematically [81-83]. In this approach, a mathematical model is introduced in which the 

voltage across the switch is modelled by a threshold voltage and a series resistance. The main 

drawback in this approach is lack of accuracy as it only gives an approximation of the losses.  

 

This section implements a new generic model for precisely calculating conduction and 

switching losses in CHB-MLIs, based on the method applied in [79], with some modification 

to make it suitable for application in multilevel inverters. A clear and efficient procedure is 

explained in detail, which should serve as a guide to loss evaluation for multilevel inverters. 

The proposed modelling will be based on an online simulation in which inverter losses are 

precisely calculated, with less computational effort. The proposed method is generic and can 

be applied to any multilevel topology with any number of levels. The complete general block 

diagram for the proposed model of loss calculation in CHB-MLIs is presented in Figure 4.10 
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Figure 4.10: General flow model of proposed methodology for precise calculation of power losses in CHB-MLI. 
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4.6.2 Proposed Model for Conduction-Loss Calculation  

For a semiconductor device, the power losses that occur while the power device is in the on-

state and conducting current, is defined as the device-conduction power loss. In CHB-MLI, 

the conduction loss increases proportionally with the number of cascaded cells. At 

conduction, the power dissipation can be computed by multiplying the on-state saturation 

voltage by the on-state current, and this is illustrated in the next equation. 

 

𝑃𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑖𝑐| . 𝑣𝑜𝑛              4.9 

 

The absolute value is taken as the conducting current is always positive for the device. Most 

of the literature has modelled on-state voltage by inserting a voltage source (𝑉𝑜), representing 

the device’s voltage drop (called threshold voltage), and a resistor (𝑟𝑜𝑛), representing the 

current dependency in series with the ideal switch. The main drawbacks of this modelling 

approach are [76, 77, 79]:  

 

1) Additional parameters to be added in series with the ideal switches, hence partially 

rebuilding the circuit. 

2) The model might not be accurate as it is not based on actual curves given in the device 

datasheet. 

 

In the proposed model, the power-conduction loss is computed more easily and efficiently. 

The on-state voltage is represented by a mathematical equation in terms of the on-state 

current. This mathematical equation is obtained by applying a curve-fitting tool to the actual 

characteristic device curves as given in the device datasheet. For each power device, there 

will be two mathematical equations, one for the IGBT switch and one for the antiparallel 

diode. Hence, in the MATLAB-SIMULINK model, the pure IGBT switch current and the 

pure diode current need to be obtained separately. This can be achieved by plotting the on-

state device current, in which the positive portion of the power-switch current above zero 

representing the pure IGBT current, and the negative portion below zero representing the 

pure diode current. With these currents separated, the conduction loss for the IGBT switch 

and diode can be calculated by simply applying the power-conduction loss-calculation block 

shown in Figure 4.11. 

 



Chapter Four: Proposed Optimum Trade-off Model                                                                                           87 

 

Device 

Datasheet:

Vce=aI²+bI+c

Device 

Datasheet: 

VD=aI²+bI+c

Measure 

Total Switch 

Current 

Pure I_IGBT

Pure I_Diode

+
P_Cond_Loss (W)

P_IGBT_Cond (W)

P_Diode_Cond (W)

 

Figure 4.11: Conduction power-loss calculation block. [76, 77] 

 

4.6.3 Proposed Model for Switching-Loss Calculation 

Switching-power losses can be defined as the power dissipated during turnon and turnoff 

switching of the power-semiconductor device. It occurs in both the IGBT switch and the 

antiparallel diode. The power-switching loss is highly proportional to the switching 

frequency, and hence it substantially contributes to the inverter’s total power losses, 

especially for inverters controlled by SPWM. For each power switch in the inverter, there is 

turnon energy loss (𝐸𝑜𝑛) and turnoff energy loss (𝐸𝑜𝑓𝑓). However, for the antiparallel diode, 

only turnoff (𝐸𝑟𝑒𝑐) energy loss is considered, while turnon loss is normally ignored due to 

fast conduction of the diode when it becomes forward biased. In modern diodes, the turnon 

loss is less than 1% compared to the turnoff loss [84].   

In practice, five main factors affect the behaviour of switching loss: 1) current being 

switched, 2) blocking voltage, 3) junction temperature, 4) gate resistor and 5) wiring stray 

inductance [79]. Switching loss is considered a major drawback in multilevel inverters, 

causing significant increases in system cost and reducing efficiency in HVDC applications.  

This study proposes an online estimation of switching-power losses based on the switching-

energy curves in the semiconductor-device datasheet. Mathematically, switching-power 

losses are energy losses multiplied by switching frequency. 

𝑃𝐼𝐺𝐵𝑇_𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = (𝐸𝑜𝑛 + 𝐸𝑜𝑓𝑓)  × 𝑓𝑠𝑤             4.10 

 

𝑃𝐷𝑖𝑜𝑑𝑒_𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝐸𝑟𝑒𝑐  ×  𝑓𝑠𝑤             4.11 
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In the datasheet of a semiconductor device, three energy curves are given: IGBT 

turnon  (𝐸𝑜𝑛) , IGBT turnoff (𝐸𝑜𝑓𝑓)  and diode turnoff (𝐸𝑟𝑒𝑐) . This study considered the 

curves with the highest temperatures. These energy curves are given in terms of device 

current. First, an energy-factor curve (𝐹) is introduced, which can be obtained when dividing 

energy by switching current.  

 

𝐹 = 
𝐸

𝐼
            4.12 

 

This will result in three new curves for the energy factor in terms of current. Then, a curve-

fitting tool is applied to model these energy-factor curves using a mathematical equation. 

Multiplying the energy-factor curve equation by the switching current should give the 

switching-energy losses, which are further multiplied by switching frequency to obtain 

switching-power loss. In case the blocking voltage is different, a normalization factor is 

applied to the switching-power loss block to consider this in the calculation. Figure 4.12 

demonstrates the block implemented for the switching-power loss calculation.  
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Figure 4.12: Switching-power losses calculation block. [76, 77] 
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4.7  Passive Power Filter (PPF) Optimisation  

4.7.1 Overview of the Problem  

While harmonics have adverse effects on both power utilities and customers, harmonic 

filtering is considered the most  widely applied method among different harmonic-mitigation 

techniques. This section discusses the implementation of passive power filters (PPFs) at the 

output of investigated CHB-MLIs as PPFs are currently more economical and commonly 

applied than APFs, as discussed in Chapter Three. The function of the added shunt filter is to 

ensure that the harmonics profile is well below  the recommended limits, as per the IEEE-519 

power-quality standard. The proposed PPF should be based on cost-effective design.  

First, the modelling of a composite PPF bank is demonstrated. Then, the key design 

parameters for a cost-effective PPF are  illustrated. For PPF design, there are two main 

approaches, which either use a: 1) the conventional method, or 2) a heuristic method. The 

conventional approach is considered an old methodology in PPF design, but it suffers 

from  several drawbacks and is not capable of finding the optimum design. The key design 

steps of this  approach are illustrated, with the main drawbacks highlighted. Conversely, 

heuristic methods are   powerful optimisation tools that can assure optimum design for PPF 

problems when properly applied.  

The optimum design of PPF for electrical power systems should reduce the THD of currents 

and voltage at PCC below the recommended limits stated in power-quality standards. 

Furthermore, appropriate PPF design should minimize proposed filter costs. In this study, an 

optimisation model of PPF design based on genetic algorithm (GA) is  proposed as a heuristic 

approach has many advantages over the conventional design approach. The essential 

design  steps of successful GA optimisation for PPF design are addressed in this section to 

optimize the trade- off model for the assigned problem.      

 

4.7.2 Implemented Model of Composite PPF Bank 

PPFs are widely employed in electrical and industrial power systems compared to APFs 

because PPFs are simple in design, cheap and effective. There are different PPF topologies, 

which are classified into tuned and high-pass filters. These topologies were critically 

reviewed in Chapter Three. Among all PPF topologies, the composite topology is commonly 

applied for high-power  applications to assure reduction of harmonics below IEEE-519 limits. 
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While the shunt single-tuned filters are to be tuned to eliminate low-order harmonics,  the 

second-order high-pass filter eliminates most of the higher-frequency harmonics. The PPF 

provides a low-impedance path for the tuned-harmonics currents and provides reactive-power 

compensation at the fundamental frequency [85]. A typical circuit layout for the implemented 

composite PPF at the output of the CHB-MLI is demonstrated in Figure 4.13.   
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Figure 4.13: Proposed PPF circuit layout at the CHB-MLI output. 

 

4.7.3 Key Design Principles and Considerations  

PPF design is a complicated task as it should consider many parameters in the design stage 

such as: filter size, filter cost, power losses, system configuration and the harmonics limits 

defined in power-quality standards. Table 4-6 illustrates the key design principles and 

considerations for appropriate PPF design [53, 86].      

Table 4-6: Key Design Principles and Considerations for Efficient PPF Design 

 Filter-design parameters C, L and R should satisfy the filtering objective.  

 The filter should compensate the system reactive-power demand at fundamental 

frequency.  

 Lower harmonic contents of voltage and current at PCC below the limits recommended 

in power-quality standards. 

 Minimize total filter cost. 

 Higher power factor at PCC. 

 Avoid series or parallel resonance between filter impedance and system impedance.  
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4.7.4 Conventional Versus Heuristic Methods for PPF Design  

The design output should be the passive parameters of the filter R, L and C and the filter size. 

In this section the two main approaches for PPF design, namely 1) conventional approach and 

2) heuristic approach, are illustrated.  

 

4.7.4.1 Conventional Approach  

In the conventional design, the PPF is designed based on several factors: 1) harmonics order 

to be eliminated, 2) reactive-power demand of the system and 3) system configuration [85].  

The designer should have detailed system information, including system impedance, loads 

and harmonics profile. This design method is simple to apply. However, it does need 

engineering experience and might not result in the optimum design solution. PPF size can be 

defined as the reactive power generated by the filter at fundamental frequency. The 

conventional design method for a single-tuned PPF can be summarized in the following steps 

[40]:  

1) Assign the system demand of reactive power and calculate the capacitor size 𝐶,  

 

𝐶 =  
𝑄𝑑𝑒𝑚𝑎𝑛𝑑

𝑤𝑜 𝑉
2

 
 

         4.13 

2) Solve filter inductor size 𝐿 in terms of capacitor value and tuned frequency, 

𝐿 =  
1

𝑤𝑛 
2  𝐶

 

            

           4.14 

 

3) Optimum quality factor 𝑄, which gives the lowest harmonic voltage, is obtained by: 

 

𝑄 =  
𝐶𝑜𝑠 ∅𝑚 + 1

2 𝛿 𝑠𝑖𝑛∅𝑚
 

           4.15 

 

 

Where, ∅𝑚  is the maximum phase angle of network impedance, and 𝛿  is the relative 

frequency deviation and is given by: 

𝛿 =  
∆𝑓

𝑓𝑛
+ 

1

2
 (

∆𝐿

𝐿𝑛
+ 

∆𝐶

𝐶𝑛
) 

           

           4.16 
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Here, 𝑓𝑛 , 𝐶𝑛 𝑎𝑛𝑑 𝐿𝑛 are the nominal values of frequency, capacitance and inductance.   

4) The size of the filter resistor 𝑅, is then computed:  

𝑅 =  
1

𝑤𝑛 𝑄 𝐶
 

           

           4.17 

 

The conventional PPF design approach essentially relies on engineering experience and 

requires more detail about the electrical power system under investigation. Furthermore, it 

does not achieve optimum filter design. Because of these drawbacks, researchers have 

investigated and applied more efficient methods to solve the problem.  

 

4.7.4.2 Heuristic Approach  

The problem of PPF design is considered to be a combinatorial optimisation problem that can 

be solved by applying artificial intelligence. In recent literature, heuristic methods have been 

extensively used to design PPFs. The problem is solved as an optimisation problem in which 

multi-objectives can be minimized in the design, subject to operational and technical 

constraints. Generally, multi-objective optimisation can be written as: 

Minimize objective function, subject to equality and inequality constraints:  

𝑀𝑖𝑛. ( 𝑓1(𝑥), 𝑓2(𝑥),……… . . 𝑓𝑘(𝑥) ) , 

Subject to:                                                                                                                    4.18 

𝑥 = (𝑥1, 𝑥2, …………𝑥𝑘)  ∈ 𝑋 

Heuristic methods are powerful optimisation techniques and have many advantages such as: 

no requirement for detailed information about the power system and ability to achieve 

optimum PPF design compared to the conventional method. In addition, the cost of PPF 

implementation can be added to the optimisation objective, which is not considered in 

conventional design. Hence, design using heuristic methods is more practical, and the 

designed PPF will perform better and cost less compared to one designed using the 

conventional approach.  

In the literature, many researchers addressed the PPF design problem and implemented 

heuristic optimisation to solve it. Simulated-annealing-based multi-objective optimisation has 

been applied for optimal planning of PPFs [87]. It has also been adopted to optimize the cost 
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of PPF as an objective function, with applicable constraints such as power factor, filters’ 

lower and upper limits for VARs, THD and voltage at PCC [88]. Others papers suggested a 

genetic algorithm (GA) to optimize PPF design [89, 90]. Juan et al. found that the application 

of GA in the design of PPF results in better harmonics suppression and lower initial filter cost 

compared to the conventional design method [60]. In their optimisation model, two 

objectives were minimized in the design: 1) current total harmonic distortion (THDi) and 2) 

filter cost. The reactive-power compensation was applied as a constraint for the optimisation. 

The multi-objective optimisation design of PPFs has also been solved using the particle 

swarm optimisation (PSO) method [91]. Huang et al. proposed an optimisation approach for 

optimal PPF design in a hybrid power filter based on PSO [86].    

The heuristic design approach overcomes problems associated with PPF design using the 

conventional design approach. In this study, a GA-based optimisation model is implemented 

for PPF design at the output of the CHB-MLI. The detailed steps of the implemented GA 

optimisation for composite PPF design are presented in the following section. 

 

4.7.5 GA-Based Optimisation for PPF Design 

Improper parameter design of the PPF will result in poorer filtering, higher cost, resonance 

with system impedance and overcompensation of reactive power [91] . The size of filter 

elements is discrete in nature and this should be considered in the optimisation process. The 

problem of PPF design is a combinatorial optimisation, which has a non-differentiable 

objective function, with many constraints. This section proposes an optimized PPF design 

approach based on GA. The four optimisation objectives are: 1) initial investment cost, 2) 

power-loss cost, 3) THD filtering effect and 4) reactive-power compensation.  

The filter to be optimized comprises multiple single-tuned filters in parallel with a 2
nd

 order 

high-pass filter. The unknown variables are the fundamental reactive-power 𝑄𝑐1 injected by 

each filter branch. Once determined, the filter parameters can be easily calculated. The 

implemented GA optimisation for the single-tuned and the 2
nd

 order high-pass filters are 

demonstrated below. 
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4.7.5.1 Single-Tuned PPF Design  

In the design of shunt single-tuned PPF tuned for the n
th

 harmonic order, the branch 

impedance 𝑍𝑆𝐻𝑛 can be expressed as follows [92]: 

𝑍𝑆𝐻𝑛 = 𝑅𝑆𝐻 + 𝑗 (𝑛𝑋𝐿𝑆𝐻 − 
𝑋𝐶𝑆𝐻

𝑛
) 

           

          4.19 

 

First, the reactive power, 𝑄𝑆𝐻1 supplied by the shunt single-tuned branch at fundamental 

frequency is determined. Based on the value of 𝑄𝑆𝐻1 , the magnitude of the fundamental 

capacitive reactance of the shunt-tuned branch 𝑋𝐶𝑆𝐻 can be calculated simply by applying the 

following formula: 

𝑋𝐶𝑆𝐻 = 3 × 
𝑛2

𝑛2 − 1
 (

𝑉𝐿1
2

𝑘 ∗ 𝑄𝐿1
) =  3 ×

𝑛2

𝑛2 − 1
 (

𝑉𝐿1
2

𝑄𝐶1
) 

            

           4.20 

 

  

Where 𝑉𝐿1, is the fundamental voltage at the tuned shunt branch and 𝑄𝐿1 is the load-reactive-

power demand at fundamental frequency. In practice, the shunt-capacitor components are 

available in discrete incremental steps of reactive-power ratings. In Equation 4.20, (𝑘) is a 

factor that takes this into consideration and allows for incremental discrete steps of 𝑄𝐶1. In 

this study, a step of 50 kVar was used as per recommendations for low-voltage industrial 

power application [92, 93].   

Then, the magnitude of the fundamental inductive reactance 𝑋𝐶𝑆𝐻 and the resistance 𝑅𝑆𝐻 of 

the shunt single-tuned branch can be calculated based on the value of the capacitance 𝑋𝐶𝑆𝐻, 

quality factor Q and the harmonic order as shown below: 

𝑋𝐿𝑆𝐻 = 
𝑋𝐶𝑆𝐻

𝑛2
 

            

           4.21 

 

𝑅𝑆𝐻 = 
𝑋𝐶𝑆𝐻

𝑛𝑄
 

            

           4.22 
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In a single-tuned PPF, it is important to choose the optimum value of the filter quality factor 

(𝑄),  which indicates the tuning sharpening of the filter. Based on the literature and 

engineering experience, (𝑄) values range from 30 to 60 [91].  This study sets the value of the 

quality factor as 60 for all single-tuned filters to assure the best filter performance [60, 94].  

 

4.7.5.2 High-Pass PPF Design  

Similarly, for the high-pass filter branch, the impedance of the high-pass filter is given by 

[53]:  

𝑍𝐻𝑛 = −𝑗
𝑋𝐶𝐻

𝑛
+ (

1

𝑅𝐻
+ 

1

𝑗𝑛𝑋𝐿𝐻
) 

           4.23 

 

 

Once the injected fundamental reactive power 𝑄𝑐1 of the high-pass filter is determined, the 

magnitude of the fundamental capacitive reactance of the shunt high-pass filter branch 𝑋𝐶𝐻 

can be calculated simply by applying the following formula: 

𝑋𝐶𝐻 =  3 ×
𝑛2

𝑛2 − 1
 (

𝑉𝐿1
2

𝑘 ∗ 𝑄𝐿1
) = 3 × 

𝑛2

𝑛2 − 1
 (

𝑉𝐿1
2

𝑄𝐶1
) 

            

           4.24 

 

Then, the magnitude of the resistance 𝑅𝐻, the fundamental inductive reactance 𝑋𝐿𝐻 and the 

shunt high-pass filter branch can be calculated based on the value of the capacitance 𝑋𝐶𝐻, 

quality factor m and the harmonic order as shown below: 

𝑅𝐻 = 
𝑋𝐶𝐻

𝑛
 

           4.25 

 

 

𝑋𝐿𝐻 = 
𝑚 𝑅𝐻

𝑛
 

           4.26 

 

 

Here, 𝑚 is the damping-time constant ratio, which usually takes a value between [0.5, 2]. In 

this study, 𝑚 is chosen to be equal to (0.5) as this results in minimum losses [60].   
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4.7.5.3 Objective Function and Constraints Formulation  

In order to satisfy the key design principles and considerations given in Table 4-6, the 

following objectives have been set for the optimisation: 

 Objective 1: Minimize the total harmonic distortion of the output voltage THDv   

𝑓1 = 𝑀𝑖𝑛. 𝑇𝐻𝐷𝑣  

 

           4.27 

 

 𝑇𝐻𝐷𝑣 = √∑ (
𝑈𝑛

𝑈1
)
2

∞
𝑛=2   

 

           4.28 

 

Where:  

THDv is the total harmonic distortion of output voltage.  

Un is the n
th

 harmonic of output voltage.  

U1 is the fundamental of output voltage.  

 

 Objective 2: Minimize the system-capital cost and energy-loss cost.  

𝑓2 = 𝑀𝑖𝑛. (𝑓𝐶𝑎𝑝𝑖𝑡𝑎𝑙_𝐶𝑜𝑠𝑡 + 𝑓𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝐶𝑜𝑠𝑡)  

 

          4.29 

 

Richards et al. presented a method to compute the total capital-investment cost of a single-

tuned PPF [95]. Here, the capital-investment cost of the filter is calculated based on the size 

MVAR ratings of the filter. In this study, the cost of a single-tuned and high-pass filter is 

calculated as follows: 

𝑓𝐹𝑖𝑙𝑡𝑒𝑟_𝐶𝑜𝑠𝑡(£) =  𝑈𝐶 × 𝑄𝐶 + 𝑈𝐿 × 𝑄𝐿 

        

          4.30 

 

Where, 𝑈𝐶 and 𝑈𝐿are the unit cost of capacitor and inductor in (£/MVARs), respectively. In 

this optimisation, both cost of capacitor and inductor are assumed to be equal in order to 

maintain simplicity and obtain generic optimisation, so that 𝑈𝐶 = 𝑈𝐿 = 10,000 £/MVAR 

[96].  
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The other capital cost to be included in the trade-off optimisation is the total capital cost of 

purchasing IGBT valves for the inverter. This cost is not fixed and will change as the 

inverter’s number of levels change; it can generally be calculated as follows: 

𝑓𝐼𝐺𝐵𝑇_𝐶𝑎𝑝𝑖𝑡𝑎𝑙_𝐶𝑜𝑠𝑡 (£) = 𝐼𝐺𝐵𝑇𝐶𝑜𝑠𝑡 (£) ×  𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝐼𝐺𝐵𝑇𝑠 

 

           4.31 

 

However, the operating cost of the system is mainly the cost of energy losses. It is calculated 

in terms of equivalent annualized capital cost by applying the present value factor as shown 

below [96]:  

𝑓𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝐶𝑜𝑠𝑡 (£) =  𝐻 × 𝑈𝐸𝑛𝑒𝑟𝑔𝑦 ×
(1 + 𝑖)𝑦 − 1

𝑖(1 + 𝑖)𝑦
× 𝑃𝑙𝑜𝑠𝑠 

            

           4.32 

 

Where: 

𝐻 : is total operating hours annually (h/year)  

 𝑈𝐸𝑛𝑒𝑟𝑔𝑦 is the energy cost in (£/kWh), 

𝑖 : is the annual interest rate for capital cost, which is assumed to be 5%,  

𝑦 : is the levelaization period or system lifetime (years), which is assumed to be 15 years.  

The interest rate for the cost of integration system for renewable energy was assumed to be   

5 %.  This was an assumption to test the developed trade-off model. However, in reality the 

cost of debt and the required return on equity, as well as the ratio of debt-to-equity, varies 

between individual projects and countries depending on a wide range of factors. The model is 

generic and depending on the project in which it was applied, accurate interest rate can be 

added.  

 

 Objective 3: Maximize the generated fundamental reactive power supplied by the filter. 

This will give the maximum possible power factor for the optimisation.  

𝑓3 = 𝑀𝑎𝑥.∑𝑄𝑖  

 

           4.33 

 

Where Qi is fundamental reactive power supplied by the i
th

 filter.   
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In order to combine all three objectives into one function and simplify the fitness function, a 

weighted multi-objective technique is implemented. The three objectives are transformed into 

one objective function as shown below: 

 

 𝑀𝑖𝑛. [ 𝑤1𝑓1 + 𝑤2𝑓2 + 𝑤3(𝐶 − 𝑓3)]                4.34 

 

Here, C is a large constant to ensure that (𝐶 − 𝑓3), is always a positive number. In this 

equation, the weighting factors w1, w2 and w3 are given the values 0.5, 0.4 and 0.1, 

respectively.  

 

GA will minimize the objective function stated previously. However, there are some 

constraints for the optimisation that should be considered, as follows: 

 

 IEEE-519 Standard 

Based on the standard, for voltage levels up to 69 kV, THDv should be kept under 5%, and 

non-individual voltage harmonics should exceed 3%. Similarly, THDi follows the 

standards limits according to the system short-circuit ratio.  

 

 Load Power Factor  

PPF compensation for reactive power should maximize the power factor, and at the same 

time, the system should not be overcompensated. For this reason, there are compensation 

limits for a minimum and maximum reactive power that can be supplied by the filter, 

according to the desired load power factor. In this optimisation, the power factor is 

targeted to be between 92% and 98%.  

 

𝑄𝑚𝑖𝑛 ≤ ∑𝑄𝑖  ≤  𝑄𝑚𝑎𝑥 

 

           4.35 
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4.8  Summary  

This chapter addressed an important existing problem for the trade-off of multilevel 

inverter’s number of levels and size of output filter in PV power-plants for medium-voltage- 

high-power applications. A general trade-off model was proposed. The model considered the 

key evaluation measures: 1) the %THD, 2) power losses, 3) filter size and 3) cost. To 

optimize the inverter control, GA was implemented to solve switching angles for the SHE 

problem. The main reason is that heuristic techniques are able to find a solution over the 

complete range of the modulation index and also to minimize THD. Furthermore, heuristic 

techniques can solve the SHE problem, even for a higher number of levels when iterative or 

resultant theory solutions are not able to converge, or become complicated.  

Evaluation of power losses in multilevel inverters is a complicated task. The author proposed 

a generic model based on an actual device datasheet for power-loss evaluation in a multilevel 

inverter, which can be applied for any multilevel inverter topology and at any number of 

levels. The proposed model is an important tool for evaluating a key measure of the trade-off 

optimisation, which is power loss.  

To ensure optimum design of the inverter output filter, a GA design approach based on filter 

cost and efficiency was considered part of the proposed optimum trade-off model for the 

inverter composite PPF design. The proposed optimisation model is generic in nature, which 

can be applied for any application and can achieve optimum design in the early planning 

stages.  

The next chapter illustrates all the simulation results of the proposed models for SHE 

optimisation, power-loss calculations and filter GA optimisation.  
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5 CHAPTER 5: MODELLING AND SIMULATION OF THE 

PROPOSED OPTIMUM TRADE-OFF MODEL 

 

5.1 Introduction 

The rapid growth in medium voltage PV power plants has increased the potential to improve 

the efficiency of the integration system of the DGs that are connected to a grid. Voltage 

source multilevel inverters have become an attractive and efficient technology in this field. In 

Chapter 4, the author proposed a generic trade-off optimisation model for optimizing the 

number of levels and the size of the output filter used in a medium voltage CHB-MLI. The 

proposed model is based on the main key measures: %THD, power losses and system cost. 

Chapter 4 presented the detailed mathematical formulations of the trade-off problem. 

This chapter presents the simulation results of the author’s proposed model. The obtained 

results are analysed and discussed to show the performance validity of the proposed model. 

Matlab/Simulink was used to set the simulation environment. 

 

5.2 Optimum Selective Harmonic Elimination for Different Number 

of Inverter Levels 

 

5.2.1 GA performance in the SHE problem versus NR and PSO 

As discussed in Chapter 4, the problem of SHE is solved efficiently by applying heuristic 

algorithms compared to other solution using iterative methods or resultant theory. Table 5-1 

presents a comparison of the main approaches to solving the problem of SHE. 
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Table 5-1: Comparison of main approaches to solving the SHE problem 

Iterative Methods Resultant Theory Heuristic Algorithms 

 Easy to implement, but 

require good initial guess. 

 Eliminate low-order 

harmonics efficiently. 

 Do not find solutions over 

the entire range of 

modulation index. 

 Difficult to converge for 

higher number of levels.  

 The transcendental equations 

are transformed into 

polynomials to be solved 

using resultant theory. 

 The degree of polynomial 

increases as the inverter level 

increases, which makes it 

difficult to solve.  

 In addition to eliminating the 

low-order harmonics, they 

minimise the THD. 

 Initial guess of switching 

angles is not required. 

 Capable of finding a solution 

over the entire range of the 

modulation index.  

 

The GA is superior in solving the problem of SHE, which was found in a primarily study 

conducted on 7-level CHB-MLI [72]. Figure 5.1 demonstrates the minimum THD obtained in 

this study by using NR, GA and PSO as solution methods. NR was not able to find a solution 

over the entire range of the modulation index, whereas both heuristic methods, GA and PSO, 

were able to find a solution over the entire range of the modulation index. Moreover, the 

performance of GA in solving the problem was better than that of PSO. 

 

Figure 5.1: Minimum THD obtained for solving the SHE Problem Using NR-PSO-GA 
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5.2.2 GA solution of SHE problem for different inverter levels 

In this section, the problem of SHE is investigated in multilevel inverters for levels 3–31 

when the modulation index is varied. The problem is solved based on the proposed GA 

optimisation model, which was explained in Chapter 4. MATLAB software is used to 

perform all the required simulations. The objective is to eliminate the low-order harmonics 

and minimise the %THD. 

Tables 5-2 to 5-11 present the optimum switching angles and the lowest %THD, which were 

obtained applying the SHE control technique to different levels of inverters (3 levels–31 

levels). The results are shown are approximated to two decimal places. Modern digital 

control systems applying DSP can easily generates switching angles and such accuracy. The 

solution was generic for these levels at different modulation indices. The method applied to 

solve the problem of SHE was successful, and it minimised the %THD. Figure 5.2 illustrates 

the GA optimisation performed to solve the switching angles of the 11-level inverter. The 

proposed GA could solve the switching angles even in higher levels, which iterative methods 

cannot solve feasibly. The subsequent Tables 5-2 to 5-11, which show the switching angles, 

could be used by researchers to simulate and implement the optimal SHE control for different 

inverter levels. 

 

Figure 5.2: GA performance in solving SHE Problem in 11-level CHB-MLI 
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Figure 5.3: %THD versus inverter number of levels in the Modulation Index 0.9 

 

 

Figure 5.3 shows an example of the %THD versus the inverter number of levels at 

modulation index 0.9. The simulated results indicated that as the number of levels increased, 

the THD at the output of the inverter decreased. It was observed that %THD was decreased 

gradually between adjacent levels as the number of levels increased. However, the reduction 

in %THD was saturated and became very slight between the higher levels. For example, the 

%THD declined by around 21% when the number of inverter levels increased from three to 

five. However, the %THD value dropped only by 0.08% when the number of inverter levels 

increased from 29 to 31. The curve fitting tool was applied to represent the relationship 

between the minimum obtained %THD and the number of inverter levels, as shown in 

Equation 5.1 where 𝑚 is the number of inverter levels. 

 

%𝑇𝐻𝐷𝑀𝑖𝑛 = 121.62 × 𝑚−1.479              5.1 

 

Figure 5.3 shows that when the SHE control was applied, the %THD of the inverter was less 

than 5%, which is the recommended IEEE-519 standard for a nine-level inverter and above. 

However, multilevel inverters with levels three, five or seven had %THD of above 5% at its 

output; hence, the output filter was required. 
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Table 5-2: Optimum SHE Switching Angles for Different Inverter Levels (Mi =0.95) Solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

                ∝1 29.67 9.11 5.56 5.30 3.13 3.54 3.27 2.91 3.82 1.12 2.34 1.62 1.25 1.79 0.72 

∝2 
 

26.73 16.68 11.80 8.89 8.55 7.83 5.54 4.29 5.12 3.87 3.96 4.03 2.91 3.26 

∝3 
  

35.81 23.07 18.18 12.86 9.65 10.04 8.52 7.95 7.32 7.04 5.69 5.83 5.73 

∝4 
   

38.67 27.31 23.08 18.65 14.96 13.44 11.65 10.65 9.22 9.10 8.13 7.17 

∝5 
    

41.00 28.83 23.01 19.95 17.25 14.68 13.01 12.66 10.57 10.63 10.10 

∝6 
     

42.35 31.62 26.18 22.44 20.24 17.36 14.93 14.12 12.25 11.52 

∝7 
      

41.49 32.66 27.73 23.69 21.13 18.97 16.94 16.19 14.78 

∝8 
       

42.39 34.28 28.88 25.34 22.67 20.62 17.74 16.13 

∝9 
        

43.20 35.12 30.01 26.76 23.54 22.30 20.03 

∝10 
         

43.50 35.80 31.71 27.83 24.22 22.58 

∝11 
          

43.10 36.55 31.72 28.74 25.93 

∝12 
           

43.46 36.94 32.26 29.26 

∝13 
            

43.53 37.44 33.05 

∝14 
             

43.41 37.73 

∝15 
              

43.18 

                
%THD 29.78 8.80 5.31 4.70 3.66 2.31 2.71 1.79 1.76 1.31 1.06 1.01 0.95 1.00 1.08 

 

 

 

Table 5-3: Optimum SHE Switching Angles for Different Inverter Levels (Mi =0.90) solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 29.69 9.03 5.09 3.29 3.67 4.19 1.52 2.74 2.79 1.23 2.70 0.94 0.64 1.22 1.69 

∝2 
 

26.82 16.92 13.24 8.79 8.25 8.48 6.10 4.67 4.65 3.56 4.63 4.15 3.20 2.95 

∝3 
  

35.71 23.14 19.89 13.08 10.46 9.80 9.44 9.47 8.00 6.51 6.40 6.71 5.54 

∝4 
   

39.36 25.81 23.89 18.63 16.32 13.23 10.56 10.29 9.80 8.53 7.74 8.32 

∝5 
    

41.92 28.32 24.21 20.89 18.65 16.28 15.02 13.04 12.91 11.17 9.43 

∝6 
     

43.14 32.32 27.07 23.07 20.37 18.24 17.02 14.93 14.80 13.03 

∝7 
      

42.88 34.55 28.89 24.75 22.38 19.82 18.65 16.52 15.80 

∝8 
       

44.94 35.78 30.61 26.97 23.93 22.03 20.26 18.25 

∝9 
        

45.24 36.34 31.83 28.20 25.42 23.35 21.84 

∝10 
         

45.11 38.32 32.77 29.87 26.80 24.05 

∝11 
          

46.82 39.04 34.25 31.10 28.32 

∝12 
           

47.21 40.53 35.14 31.63 

∝13 
            

48.39 41.30 36.08 

∝14 
             

48.83 41.46 

∝15 
              

47.86 

                
%THD 29.78 8.83 5.28 4.70 3.45 2.85 2.97 1.68 1.34 0.99 0.96 0.74 0.63 0.64 0.45 
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Table 5-4: Optimum SHE Switching Angles for Different Inverter Levels (Mi = 0.85) Solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 29.71 5.62 5.47 5.40 4.41 5.56 5.90 4.34 4.41 3.33 3.46 2.70 2.68 2.63 2.79 

∝2 
 

40.31 17.57 12.70 9.65 6.63 8.75 8.29 7.25 7.26 5.92 5.99 5.28 4.80 6.24 

∝3 
  

36.80 23.07 20.41 17.59 15.62 13.81 11.54 10.08 9.65 8.48 8.09 7.72 8.39 

∝4 
   

39.83 28.95 23.63 22.21 18.53 17.38 15.92 13.92 12.50 12.02 11.01 10.14 

∝5 
    

44.58 33.71 28.87 25.53 21.29 19.03 17.63 16.23 14.75 13.77 14.32 

∝6 
     

47.65 40.37 31.96 27.55 24.93 21.97 19.66 18.09 16.93 16.56 

∝7 
      

58.07 42.45 34.34 29.20 26.61 23.69 21.93 20.15 19.40 

∝8 
       

58.65 44.17 36.83 31.83 28.33 25.59 23.58 22.82 

∝9 
        

59.17 46.23 38.85 33.39 30.30 27.37 25.93 

∝10 
         

59.62 47.61 39.77 35.01 31.52 30.03 

∝11 
          

59.86 48.20 41.37 36.54 34.01 

∝12 
           

60.13 49.96 42.70 39.47 

∝13 
            

60.09 50.84 46.79 

∝14 
             

60.26 57.26 

∝15 
              

61.74 

                
%THD 29.74 10.95 5.75 4.87 3.93 3.70 3.01 1.89 1.52 1.18 1.12 0.85 0.81 0.80 0.58 

 

 

 

Table 5-5: Optimum SHE Switching Angles for Different Inverter Levels (Mi = 0.80) Solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 29.67 19.79 12.15 9.45 5.84 7.36 4.98 4.68 5.62 4.92 6.39 5.30 5.94 4.10 7.24 

∝2 
 

55.78 32.99 18.81 18.56 11.69 13.58 12.27 10.62 10.08 10.91 9.69 11.44 10.52 8.01 

∝3 
  

59.66 35.31 25.74 23.15 18.67 16.24 15.57 13.72 13.33 12.39 12.82 11.25 13.34 

∝4 
   

58.63 43.22 29.43 26.95 23.74 21.42 18.83 18.93 16.66 18.09 15.97 14.53 

∝5 
    

61.18 45.69 36.47 30.28 26.95 23.36 23.47 20.69 21.52 19.05 18.59 

∝6 
     

61.67 51.19 40.51 35.02 29.34 28.90 24.87 26.12 22.83 21.77 

∝7 
      

63.01 54.06 44.99 36.41 34.97 30.00 30.57 27.12 25.81 

∝8 
       

63.15 57.14 46.33 43.07 35.85 36.52 31.87 29.50 

∝9 
        

62.28 57.23 54.91 44.01 44.01 36.91 34.51 

∝10 
         

62.89 60.49 54.76 53.00 43.69 40.47 

∝11 
          

62.22 59.91 59.04 52.35 48.02 

∝12 
           

62.70 59.61 57.69 56.11 

∝13 
            

65.16 60.50 59.13 

∝14 
             

65.69 61.06 

∝15 
              

63.39 

                
%THD 29.89 11.92 6.67 4.96 4.45 4.04 3.2 2.63 1.76 1.62 1.28 1.04 0.90 0.74 0.69 

 

 



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       106 

 

Table 5-6: Optimum SHE Switching Angles for Different Inverter Levels (Mi =0.75) solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 29.84 22.97 12.33 14.91 9.41 3.44 10.73 9.09 9.08 9.24 9.69 11.48 9.87 11.18 7.37 

∝2 
 

59.07 33.50 32.02 20.60 18.84 18.05 15.25 13.00 14.40 12.63 12.81 12.76 12.62 11.85 

∝3 
  

59.83 52.33 33.00 29.10 25.74 21.60 20.02 19.25 18.23 18.71 17.92 18.02 16.22 

∝4 
   

64.79 51.08 42.21 36.52 29.76 24.93 25.11 22.59 23.28 21.03 21.95 19.48 

∝5 
    

64.51 51.72 51.69 39.32 32.85 31.35 29.60 28.86 25.88 25.57 23.79 

∝6 
     

71.21 59.45 52.84 43.14 40.62 35.26 34.86 31.29 30.60 28.55 

∝7 
      

64.20 59.70 55.56 51.91 43.40 42.85 37.72 36.59 32.94 

∝8 
       

64.14 59.44 57.40 54.28 52.92 45.52 43.79 38.47 

∝9 
        

63.92 60.96 57.84 55.31 53.77 52.71 45.04 

∝10 
         

65.26 61.82 59.34 56.84 54.45 50.15 

∝11 
          

64.25 63.32 59.13 57.76 55.40 

∝12 
           

66.54 64.29 60.93 58.18 

∝13 
            

64.58 63.70 61.32 

∝14 
             

66.68 63.98 

∝15 
              

70.22 

                
%THD 29.79 12.00 6.87 5.65 5.00 4.11 3.69 2.72 1.96 1.74 1.33 1.17 0.98 0.84 0.74 

 

 

 

Table 5-7: Optimum SHE Switching Angles for Different Inverter Levels (Mi =0.70) Solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 30.08 23.49 13.73 16.35 20.96 7.86 14.32 14.06 14.36 14.99 14.21 13.03 5.67 13.89 12.91 

∝2 
 

59.49 37.28 29.05 36.79 28.35 22.51 21.77 21.31 20.97 20.25 18.51 16.23 18.22 17.60 

∝3 
  

61.90 55.43 51.68 40.04 32.87 30.06 28.87 27.02 25.47 23.34 20.96 22.99 21.04 

∝4 
   

60.63 58.43 47.13 46.80 42.20 37.97 35.38 32.50 30.07 25.48 27.87 25.77 

∝5 
    

68.67 61.82 55.95 52.21 48.42 45.98 41.25 36.13 31.08 33.48 30.55 

∝6 
     

77.42 60.08 57.19 54.34 52.56 49.57 45.01 37.98 39.21 35.99 

∝7 
      

68.02 61.79 58.34 55.12 52.92 51.22 45.40 47.01 43.38 

∝8 
       

68.53 63.69 60.15 57.12 55.02 48.85 51.62 49.29 

∝9 
        

68.89 64.89 61.14 57.00 52.93 53.26 52.17 

∝10 
         

69.19 65.00 63.33 59.07 57.16 54.60 

∝11 
          

69.86 64.20 61.18 59.71 58.07 

∝12 
           

70.67 68.31 63.53 60.15 

∝13 
            

72.90 66.10 64.55 

∝14 
             

70.40 66.00 

∝15 
              

70.11 

                
%THD 30.06 12.09 8.31 6.43 6.17 4.26 3.76 2.97 2.23 1.92 1.42 1.58 1.03 0.94 0.82 
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Table 5-8: Optimum SHE Switching Angles for Different Inverter Levels (Mi = 0.65) Solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 30.56 23.84 23.36 16.85 22.46 18.38 10.92 20.02 19.53 17.95 19.85 18.36 17.43 18.29 18.23 

∝2 
 

59.89 50.04 37.22 39.51 30.62 27.87 29.31 27.85 24.66 25.78 24.32 22.53 23.34 22.64 

∝3 
  

64.50 53.86 52.43 45.17 38.68 41.41 38.01 32.75 33.09 30.10 28.30 28.96 27.53 

∝4 
   

67.14 59.70 55.28 45.23 48.47 46.46 42.68 42.26 38.25 34.76 34.83 33.38 

∝5 
    

71.20 60.37 58.02 53.87 51.04 49.54 47.37 46.31 42.66 41.82 39.95 

∝6 
     

70.09 61.71 59.65 55.99 52.48 51.08 48.22 48.01 47.05 45.55 

∝7 
      

77.56 65.87 61.72 57.94 54.97 53.69 50.49 48.74 47.70 

∝8 
       

72.66 66.69 62.10 59.87 55.66 54.33 52.85 50.99 

∝9 
        

73.28 66.96 62.98 60.90 57.75 55.55 54.05 

∝10 
         

72.66 68.74 64.10 61.21 59.24 56.84 

∝11 
          

73.33 68.16 65.15 62.51 60.43 

∝12 
           

73.10 68.85 66.33 63.01 

∝13 
            

73.45 70.20 66.85 

∝14 
             

73.85 70.08 

∝15 
              

74.09 

                
%THD 30.19 12.25 8.79 6.58 6.97 5.07 3.83 3.10 2.66 2.25 1.76 1.74 1.09 0.99 0.83 

 

 

 

Table 5-9: Optimum SHE Switching Angles for Different Inverter Levels (Mi = 0.60) Solved by GA 

No. of 

Levels 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 31.10 43.62 33.22 35.11 28.23 21.85 26.63 26.27 22.16 26.78 20.64 24.36 25.13 24.22 23.34 

∝2 
 

64.20 54.65 47.84 46.25 36.53 39.45 37.53 31.07 36.35 28.38 30.73 31.67 29.68 28.85 

∝3 
  

66.75 59.92 50.43 48.10 46.14 45.10 41.61 41.60 36.48 38.31 38.62 36.99 34.74 

∝4 
   

75.15 64.09 55.94 52.88 48.92 47.06 46.13 43.64 43.76 41.85 41.37 40.95 

∝5 
    

73.12 62.45 59.90 56.99 52.02 50.32 48.29 46.69 46.06 44.45 43.02 

∝6 
     

73.07 67.71 61.52 57.20 56.17 51.29 51.90 49.24 47.76 47.42 

∝7 
      

76.07 69.58 62.71 60.16 56.76 53.93 53.04 51.10 48.65 

∝8 
       

76.24 68.61 66.17 59.95 59.31 56.56 55.09 53.44 

∝9 
        

75.13 71.64 65.60 62.85 60.64 57.95 55.69 

∝10 
         

78.17 69.90 67.83 64.67 62.43 60.76 

∝11 
          

75.30 71.86 68.91 64.93 61.19 

∝12 
           

77.81 73.28 69.80 66.57 

∝13 
            

78.62 73.73 69.82 

∝14 
             

78.76 74.19 

∝15 
              

78.23 

                
%THD 30.12 17.65 10.42 7.27 6.60 5.61 3.87 3.18 2.86 2.43 1.80 1. 91 1.12 1.02 0.88 
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Table 5-10: Optimum SHE Switching Angles for Different Inverter Levels (Mi = 0.55) Solved by GA 

No. of 

Level 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 31.82 43.49 35.16 33.24 34.44 29.77 30.57 32.23 32.48 32.86 27.12 27.33 29.20 29.49 31.18 

∝2 
 

64.19 54.36 49.08 44.84 43.04 41.56 39.53 37.98 36.96 35.50 35.14 36.06 36.12 35.60 

∝3 
  

68.80 58.90 54.29 48.21 45.50 44.82 43.57 42.69 41.39 40.80 39.35 37.87 37.49 

∝4 
   

75.00 64.96 58.28 54.73 51.74 48.92 46.85 44.28 42.58 43.56 42.30 41.52 

∝5 
    

77.29 66.23 60.85 57.71 54.86 52.25 49.65 48.43 47.15 45.48 44.39 

∝6 
     

77.01 69.90 65.13 60.80 57.85 53.56 51.10 50.55 48.85 48.29 

∝7 
      

78.71 72.40 67.35 62.98 58.71 56.22 54.56 52.88 51.55 

∝8 
       

81.38 74.23 69.41 63.28 60.20 57.99 56.27 55.12 

∝9 
        

82.52 75.41 68.53 65.28 63.36 60.56 58.58 

∝10 
         

83.22 74.10 69.73 67.13 64.15 62.13 

∝11 
          

80.38 75.32 71.55 68.87 66.01 

∝12 
           

80.41 76.42 73.11 70.20 

∝13 
            

82.32 77.95 74.73 

∝14 
             

83.14 79.74 

∝15 
              

84.78 

                
%THD 29.82 17.57 10.89 8.95 6.59 5.69 4.92 3.81 2.90 2.66 1.92 1.88 1.22 1.05 0.93 

 

 

 

Table 5-11: Optimum SHE Switching Angles for Different Inverter Levels (Mi = 0. 50) Solved by GA 

No. of 

Level 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

∝1 32.6 42.06 39.34 36.44 35.77 37.34 34.59 34.14 33.29 31.73 32.32 32.58 32.43 31.78 32.60 

∝2 
 

77.68 56.22 48.27 45.56 39.45 39.99 38.48 38.45 38.36 37.45 36.58 35.68 35.94 35.02 

∝3 
  

80.02 62.23 57.32 52.63 48.99 46.58 44.26 42.56 42.12 41.11 40.36 39.33 39.04 

∝4 
   

78.31 69.65 59.48 55.71 51.96 50.55 48.66 47.41 45.66 43.56 43.55 42.18 

∝5 
    

85.19 71.39 64.88 59.86 56.53 53.76 52.22 50.29 48.18 47.06 46.28 

∝6 
     

82.41 73.63 66.94 63.06 59.89 58.25 55.05 52.18 51.15 49.10 

∝7 
      

85.15 75.66 70.00 65.46 62.64 59.73 56.72 55.38 53.50 

∝8 
       

85.75 78.06 72.41 68.98 65.03 60.82 59.60 56.59 

∝9 
        

87.18 79.79 75.39 70.34 65.55 63.81 61.07 

∝10 
         

88.59 82.79 76.33 70.56 68.62 65.01 

∝11 
          

89.60 83.45 76.21 73.45 69.19 

∝12 
           

89.49 82.00 78.83 73.61 

∝13 
            

88.37 84.93 78.75 

∝14 
             

89.99 84.63 

∝15 
              

89.56 

                
%THD 29.55 17.31 11.63 9.51 7.51 6.51 5.40 3.91 2.95 2.78 1.91 1.52 0.90 1.03 0.94 
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5.3 Simulation Modelling Results for CHB-MLI Using the SHE 

Control 

In order to validate the results of the optimal switching angles, the output voltage waveforms 

for different levels of inverters (3–31) were modelled and simulated. The value of the 

modulation index was selected as 0.9 for the simulation. The three-phase line-to-line voltage 

waveforms and the associated harmonic profile are demonstrated in Figures 5.4 to 5.18 for 

CHB-MLI at levels (3–31). The output voltage is given in per-unit (pu) values in order to 

ensure that the simulation is generic. The modelling of these CHB-MLI circuits will be used 

in the evaluation %THD, conduction and switching power losses, which are considered the 

key measure values in the optimisation of the trade-off model. Furthermore, the Simulink 

models of different levels of inverter circuits are used for the optimisation of the trade-off 

model. 
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Figure 5.4: Simulated three-phase output voltage and harmonic distortion analysis for three-level CHB-MLI 

 

  

Figure 5.5: Simulated three-phase output voltage and harmonic distortion analysis for five-level CHB-MLI 

 

  

Figure 5.6: Simulated three-phase output voltage and harmonic distortion analysis for seven-level CHB-MLI 
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Figure 5.7: Simulated three-phase output voltage and harmonic distortion analysis for nine-level CHB-MLI 

 

   

Figure 5.8: Simulated three-phase output voltage and harmonic distortion analysis for 11-level CHB-MLI 

 

  

Figure 5.9: Simulated three-phase output voltage and harmonic distortion analysis for 13-level CHB-MLI 

 



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       112 

 

  

Figure 5.10: Simulated three-phase output voltage and harmonic distortion analysis for 15-level CHB-MLI 

 

  

Figure 5.11: Simulated three-phase output voltage and harmonic distortion analysis for 17-level CHB-MLI 

 

  

Figure 5.12: Simulated three-phase output voltage and harmonic distortion analysis for 19-level CHB-MLI 
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Figure 5.13: Simulated three-phase output voltage and harmonic distortion analysis for 21-level CHB-MLI 

 

   

Figure 5.14: Simulated three-phase output voltage and harmonic distortion analysis for 23-level CHB-MLI 

 

  

Figure 5.15: Simulated three-phase output voltage and harmonic distortion analysis for 25-level CHB-MLI 
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Figure 5.16: Simulated three-phase output voltage and harmonic distortion analysis for 27-level CHB-MLI 

 

  

Figure 5.17: Simulated three-phase output voltage and harmonic distortion analysis for 29-level CHB-MLI 

 

  

Figure 5.18: Simulated three-phase output voltage and harmonic distortion analysis for 31-level CHB-MLI 
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5.4 Simulation Modelling Results for CHB-MLI Using the SPWM 

Control 

For the purpose of the comparison study, the author modelled different CHB-MLI circuits 

that are controlled by high frequency SPWM. The simulated levels were from (3–31). 

Different SPWM level-shifting controls were applied. These models were used to investigate 

the THD and the power loss. Figures 5.19 to 5.21 demonstrate the three-phase voltage for the 

simulated CHB-MLI circuits at different levels. Different switching frequencies and different 

SPWM controls are shown. 

 

Figure 5.19: Output voltage for nine-level CHB-MLI controlled by PD-SPWM at switching frequency 1500 Hz 

 

 

Figure 5.20: Output voltage for 17-level CHB-MLI controlled by POD-SPWM at switching frequency 2500 Hz 

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (seconds)

O
u

tp
u

t 
V

o
lt

a
g

e
 (

p
u

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (seconds)

O
u

tp
u

t 
V

o
lt

a
g

e
 (

p
u

)



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       116 

 

 

Figure 5.21: Output voltage for 27-level CHB-MLI controlled by APOD-SPWM at switching frequency 4000 Hz 

 

5.5 THD Comparison Study of SHE and SPWM Control 

The output THD is a very important index factor that is used to measure the harmonic 

distortion in an electrical signal. In this section, THD for different inverter levels (3–31) are 

analysed. In this analysis, SHE and SPWM are applied to control the inverter, as these 

techniques are considered the most widely used in the industry. The objective of this 

investigation is to study the effects of increased inverter levels on the value of THD using 

different control methods. 

Figure 5.22 shows the %THD versus the number of inverter level in the case of the SHE 

control applied. The %THD was found to decrease as the number of levels increased. 

However, the reduction was saturated when the number of levels was above 21. In Figure 

5.22, the red dashed line indicates the recommended limit of 5% according to the IEEE-519 

standard. 

Figure 5.23 presents an important and interesting comparison of %THD versus the number of 

inverter levels for CHB-MLI implementing SHE and for those implementing SPWM control. 

In this comparison, the multicarrier switching frequency for SPWM control was 2.5 kHz. The 

comparison showed that SHE controlled inverters had lower %THD profile compared to 

those controlled with SPWM. 

In a further investigation, the CHB-MLI was simulated when applying different SPWM 

controls at the different switching frequencies of 1 kHz, 2.5 kHz, 3 kHz and 4 kHz. The 
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number of inverter levels, a better harmonic distortion profile was obtained at a high 

switching frequency. However, the value of %THD was not reduced considerably when the 

switching frequency increased at higher numbers of inverter levels. 

 

Figure 5.22: Total harmonic distortion versus the number of inverter levels in applying SHE control 

 

 

Figure 5.23: Total harmonic distortion versus number of inverter levels in applying different controls 
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Figure 5.24: THD versus the number of inverter levels controlled by SPWM-PD at different switching frequencies 

 

 

Figure 5.25: THD versus the number of inverter levels controlled by SPWM-POD at different switching frequencies 

 

 

Figure 5.26: THD versus number of inverter levels controlled by SPWM-APOD at different switching frequencies 
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5.6 Curve Fitting for the Considered IGBT’s Data Sheets 

As shown in Table 4-5, five IGBT’s modules were considered in the analysis. The blocking 

voltages of these devices were 1.7, 2.5, 3.3, 4.5 and 6.5 kV. Based on the proposed model for 

power loss, which was explained in Chapter 4, the power losses of conduction and switching 

in multilevel inverters are calculated based on the actual data sheets of the considered 

devices. In this section, the curve fitting tool of Microsoft Excel is applied to generate 

accurate mathematical equations of the voltage and energy curves for each IGBT. Tables 5-

12 to 5-16 show the mathematical equations generated based on the data sheets by applying 

the curve fitting tool. The data sheet of each device was modelled by five equations. The first 

two equations represent the on-state voltage of IGBT and the antiparallel diode in terms of 

current, respectively. The last three equations are for the IGBT on-off switching energy and 

the switch off energy for the freewheeling diode. 

 

Table 5-12: Curve Fitting Equations for Device IGBT FZ400 R17KE3 

𝑣𝑐𝑒 = −1 × 10−6𝐼𝑐
2 + 0.0047𝐼𝑐 + 0.7416  5.2 

𝑣𝐷 = −2 × 10−6𝐼𝐷
2 + 0.0041𝐼𝐷 + 0.6399  5.3 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑛 = 1 × 10−6𝐼𝑐
2 − 0.0009𝐼𝑐 + 0.5207  5.4 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑓𝑓 = 5 × 10−7𝐼𝑐
2 − 0.0007𝐼𝑐 + 0.5107  5.5 

𝐾𝐷𝑖𝑜𝑑𝑒−𝑟𝑒𝑐 = 6 × 10−7𝐼𝐷
2 − 0.0009𝐼𝐷 + 0.5105  5.6 

 

 

Table 5-13: Curve Fitting Equations for Device IGBT CM400DY-50 H 

𝑣𝑐𝑒 = −4 × 10−10𝐼𝑐
3 − 2 × 10−6𝐼𝑐

2 + 0.0062𝐼𝑐 + 1.3903  5.7 

𝑣𝐷 = −2 × 10−6𝐼𝐷
2 + 0.0058𝐼𝐷 + 1.0711  5.8 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑛 = −4 × 10−8𝐼𝑐
3 + 4 × 10−5𝐼𝑐

2 − 0.011𝐼𝑐 + 1.8941  5.9 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑓𝑓 = 2 × 10−5𝐼𝐶
2 − 0.0107𝐼𝐶 + 2.9087  5.10 

𝐾𝐷𝑖𝑜𝑑𝑒−𝑟𝑒𝑐 = 1 × 10−5𝐼𝐷
2 − 0.0067𝐼𝐷 + 1.4343 

 
5.11 
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Table 5-14: Curve Fitting Equations for Device IGBT FZ400 R33KL2C-B5 

𝑣𝑐𝑒 = −2 × 10−6𝐼𝑐
2 + 0.0073𝐼𝑐 + 1.1701  5.12 

𝑣𝐷 = −3 × 10−6𝐼𝐷
2 + 0.0061𝐼𝐷 + 0.7479 

 
5.13 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑛 = 8 × 10−6𝐼𝑐
2 − 0.0064𝐼𝑐 + 4.2836 

 
5.14 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑓𝑓 = 3 × 10−6𝐼𝑐
2 − 0.0031𝐼𝑐 + 2.2269 

 
5.15 

𝐾𝐷𝑖𝑜𝑑𝑒−𝑟𝑒𝑐 = 8 × 10−6𝐼𝐷
2 − 0.0098𝐼𝐷 + 3.8363 

 
5.16 

 

 

Table 5-15: Curve Fitting Equations for Device IGBT CM400HB-90 H 

𝑣𝑐𝑒 = −1 × 10−6𝐼𝑐
2 + 0.0049𝐼𝑐 + 1.5364  5.17 

𝑣𝐷 = −3 × 10−6𝐼𝐷
2 + 0.0075𝐼𝐷 + 1.1413 

 
5.18 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑛 = −7 × 10−6𝐼𝑐
2 + 0.0076𝐼𝑐 + 3.1898 

 
5.19 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑓𝑓 = 4 × 10−5𝐼𝑐
2 − 0.0374𝐼𝑐 + 10.382 

 
5.20 

𝐾𝐷𝑖𝑜𝑑𝑒−𝑟𝑒𝑐 = 1 × 10−6𝐼𝐷
2 − 0.0018𝐼𝐷 + 1.1044 

 
5.21 

 

Table 5-16: Curve Fitting Equations for Device IGBT FZ250 R65KE3 

𝑣𝑐𝑒 = −1 × 10−5𝐼𝑐
2 + 0.0128𝐼𝑐 + 1.2882  5.22 

𝑣𝐷 = −7 × 10−11𝐼𝐷
4 + 1 × 10−7𝐼𝐷

3 − 5 × 10−5𝐼𝐷
2 + 0.016𝐼𝐷 + 0.7468 

 
5.23 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑛 = −4 × 10−7𝐼𝑐
3 + 0.0004𝐼𝑐

2 − 0.1097𝐼𝑐 + 16.984 
 

5.24 

𝐾𝐼𝐺𝐵𝑇−𝑜𝑓𝑓 = 7 × 10−6𝐼𝑐
2 − 0.0048𝐼𝑐 + 6.511 

 
5.25 

𝐾𝐷𝑖𝑜𝑑𝑒−𝑟𝑒𝑐 = −3 × 10−7𝐼𝐷
3 + 0.0003𝐼𝐷

2 − 0.0944𝐼𝐷 + 13.37 
 

5.27 

 

The above equations were validated point-by-point for the sake of accuracy. In the next step, 

these mathematical equations are implemented in the calculation blocks of conduction and 

switching power losses. The results of the power loss analysis are presented in the next 

section. 
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5.7 Investigation of Power Loss in 11 kV CHB-MLI 

Power loss is considered a critically important measurement factor in the performance of any 

DG’s integration system because it has a significant effect on the system’s cost and 

efficiency. The purpose of this section is to investigate the behaviour of power loss in CHB-

MLIs featuring different high-voltage IGBT devices. In the case study, the inverter output 

line-to-line voltage is considered 11 kV. Based on the IGBT blocking voltage, several 

cascaded H-bridge cells are required to synthesize the required output voltage. Nevertheless, 

the evaluation of power loss in multilevel inverters is a complicated task. In Chapter 4, the 

author proposed a generic model for precisely calculating conduction and switching power 

loss in CHB-MLIs. In this section, the detailed simulation of the proposed power loss model 

is carried out. The conduction and switching loss are analysed for different levels of CHB-

MLIs using SHE as a low frequency control and SPWM as a high frequency control. 

 

 

5.7.1 Design of 11 kV CHB-MLI using different ratings of IGBTs 

The IGBTs considered for the inverter design, based on market availability, had the blocking 

voltages: 1.7, 2.5, 3.3, 4.5 and 6.5 kV. To ensure their reliability, in practice, the HV-IGBTs 

are operated at only 50–60% of their blocking voltage capability. Based on the blocking 

voltage capabilities, the design options for 11 kV CHB-MLI are presented in Table 5-17. 
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Table 5-17: 11 kV CHB-MLI Design using Different High-Voltage IGBT Devices 

Number of levels  IGBT Blocking 

Voltage (V) 

DC Voltage VDC 

(V) 

Device Counts 

(three-phase) 

7 6,500 2,722 36 

9 4,500 2,042 48 

11 3,300 1,633 60 

13 3,300 1,361 72 

15 2,500 1,167 84 

17 2,500 1,021 96 

19 1,700 907 108 

21 1,700 817 120 

 

 

5.7.2  Inverter power losses in the case of SHE control 

In a semiconductor device, the power loss of conduction is defined as the loss that occurs 

while the power device is in the on-state and is conducting current. In contrast, the switching 

power loss can be defined as the power that dissipates during the turn-on and the turn-off 

switching of a semiconductor device. In this section, detailed investigations of conduction 

and switching power losses in CHB-MLI are carried out. The inverter is controlled by low 

frequency SHE modulation. Figures 5.27 to 5.29 demonstrate the conduction, switching and 

total power losses for different high-voltage IGBTs at variable load current. While the 

Mitsubishi 2.5 kV and Infineon 1.7 kV had the worst performances in conduction losses, the 

Mitsubishi 4.5 kV and Infineon 6.5 kV had minimal conduction losses, as shown in Figure 

5.27. However, the opposite results were found for switching losses, as shown in Figure 5.28. 

The results showed that IGBT devices with higher blocking voltages experienced higher 

switching losses compared to those with lower blocking voltages. 
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Figure 5.27: Conduction power loss profile for different high-voltage IGBT devices (SHE control) 

 

 

Figure 5.28: Switching power loss profile for different high-voltage IGBT devices (SHE control) 

 

 

Figure 5.29: Total power loss profile for different high-voltage IGBT devices (SHE control) 
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A main objective of this power loss investigation was to examine the power loss behaviour in 

CHB-MLIs with respect to number of inverter levels. Figures 5.30 to 5.32 demonstrate 

comparisons of conduction, switching and total inverter power losses at different inverter 

levels. 

Figure 5.30 shows that the conduction power loss increased gradually as the number of 

inverter level increased. This result is justifiable because the number of devices per inverter 

increased. However, at a high number of inverter levels (i.e., 19 and 21), the conduction loss 

was found to be reduced compared to the previous levels. The reason for this reduction is that 

in the 19 and 21 levels, a device with the blocking voltage of 1.7 kV was used. According to 

the data sheet, this device has the very low power dissipation of almost 50% lower compared 

to the other power devices used in this study. Therefore, it is experiencing lower conduction 

power losses, despite of the high number of inverter levels. Based on this result, it can be 

concluded that in CHB-MLIs controlled by SHE, the conduction power loss depends on the 

number of devices and the ratings of these devices. Overall, the conduction loss increased as 

the inverter number of level increased, but this increase was saturated at higher levels. 

Figure 5.31 demonstrates the switching power loss versus the number of inverter levels. The 

figure clearly shows that the switching power loss decreases sharply as the number of levels 

increases. Hence, despite the increase in the number of devices in CHB-MLI, the switching 

loss always decreased when the blocking voltage of the switching devices was lower for 

inverters controlled by SHE at a low-switching modulation. 

Figure 5.32 shows the total inverter power loss with respect to the number of inverter levels. 

The major part of the power loss was through conduction. The reason is that the inverter was 

controlled at a low frequency in which each power device was conducting for a long time 

before it was switched off. The total power losses increased as the number of levels 

increased. Except 19 and 21 levels, it decreased when the implemented device had very low 

power dissipation. 

A further analysis was carried out to investigate the relation between conduction and 

switching power loss based on the high-voltage IGBTs available in the market. The results of 

this investigation are illustrated in Figure 5.33. The analysis showed that as the blocking 

voltage device decreased the contribution of switching power loss was considerably reduced. 
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Figure 5.30: Conduction power loss profile for different numbers of inverter levels (SHE control) 

 

 

Figure 5.31: Switching power loss profile for different numbers of inverter levels (SHE control) 

 

Figure 5.32: Total power loss profile for different numbers of inverter levels (SHE control) 
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(a)                                                                                     (b) 

 

 

                                          (c)                                                                                        (d) 

 

(e) 

Figure 5.33: Pie chart showing conduction and switching losses in different high-voltage IGBT devices controlled 

using SHE (11 kV CHB-MLI) a) FZ400R65KE3 (7-level); b) CM400HB-90H (9-level); c) FZ400R33KL2c-B5 (13-

level); d) CM400DY-50H (15-level); e) FZ400R17KE3 (21-level) 
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5.7.3 Inverter power losses in the case of SPWM control 

For the purpose of comparison, a further power loss investigation was carried out to apply 

SPWM as a high frequency control. The simulation results for conduction, switching and 

total power losses in the investigated IGBTs at variable load currents are displayed in Figures 

5.34 to 5.36. In this investigation, the applied switching frequency was 2500 Hz. The 

simulation results showed that the power devices Mitsubishi 2.5 kV and Infineon 1.7 kV 

experienced the highest conduction losses but the lowest switching losses. In contrast, 

designing the CHB-MLI with the Infineon 6.5 kV and Mitsubishi 4.5 kV power devices 

reduced the conduction power loss significantly, but the inverter still experienced higher 

switching power loss compared with the other devices. As shown in Figure 5.36, the total 

inverter power loss in the IGBT devices with lower blocking voltage ratings was lower 

compared to the IGBT devices that featured high blocking voltage. 

The next step was to investigate the behaviour of power losses with respect to the change in 

the number of inverter levels at the output voltage. Figure 5.37 depicts the conduction power 

loss at different inverter levels. The figure shows that generally the conduction power loss 

increased as the inverter number of levels increased, but it depended on the characteristics of 

the power switching device. 

Similarly, Figure 5.38 presents the changes in switching power loss with respect to the 

inverter number of levels. Generally, the switching power loss was reduced significantly by 

increasing the number of levels at the output voltage. The switching power loss in the 21-

level inverter was found to be about seven times less than the switching power loss in the 

seven-level inverter. This result indicates that to reduce switching power loss, the CHB-MLI 

should be designed with a high number of levels. In this study, the switching power loss was 

highly proportional to the switching frequency; hence, it contributed substantially to the 

inverter total power loss, especially in inverters controlled by SPWM. The total power loss in 

different numbers of inverter levels is demonstrated in Figure 5.39. The switching power loss 

was found to be dominant except for inverters with high levels. Figure 5.40 shows the 

percentage share of conduction and switching power loss in different high-voltage IGBT 

power devices. Based on this result, it could be concluded that in IGBT devices with high 

blocking voltage, the switching loss is dominant. However, when applying IGBTs with lower 

blocking voltage, the total losses in conduction and switching were almost equal. 



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       128 

 

 

Figure 5.34: Conduction power loss profile for different high-voltage IGBT devices (SPWM control) 

 

 

Figure 5.35: Switching power loss profile for different high-voltage IGBT devices (SPWM control) 

 

 

Figure 5.36: Total power loss profile for different high-voltage IGBT devices (SPWM control) 
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Figure 5.37: Conduction power loss profile for different numbers of inverter levels (SPWM control) 

 

 

Figure 5.38: Switching power loss profile for different numbers of inverter levels (SPWM control) 

 

 

Figure 5.39: Total power loss profile for different numbers of inverter levels (SPWM control) 

 

 

0

5

10

15

20

25

30

7-level 9-level 11-level 13-level 15-level 17-level 19-level 21-level

C
o

n
d

u
ct

io
n
 L

o
ss

es
 (

k
W

) 

0

30

60

90

120

150

7-level 9-level 11-level 13-level 15-level 17-level 19-level 21-level

S
w

it
ch

in
g
 L

o
ss

es
 (

k
W

) 

0

40

80

120

160

7-level 9-level 11-level 13-level 15-level 17-level 19-level 21-level

P
o

w
er

 L
o

ss
es

 (
k
W

) 



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       130 

 

 

(a)                                                                                   (b) 

 

 

                                          (c)                                                                            (d) 

 

(e) 

Figure 5.40: Pie chart showing conduction and switching losses for different high-voltage IGBT devices controlled 

using SPWM (11 kV CHB-MLI): a) FZ400R65KE3 (7-level); b) CM400HB-90H (9-level); c) FZ400R33KL2c-B5 (13-

level); d) CM400DY-50H (15-level); e) FZ400R17KE3 (21-level) 
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5.8 Trade-Off Optimisation 

 

5.8.1 Optimum trade-off for inverter’s number of cascaded H-bridges without 

considering the output filter 

To achieve an efficient and cost-effective CHB-MLI design in direct grid-connected 

applications, there is a trade-off in the number of inverter levels (i.e., the number of H-

bridges cascaded in series) that can be implemented. The trade-off is based on key measures, 

such as the following: 1) THD, 2) switching devices cost, 3) conduction power loss, 4) 

switching power loss and 5) device count. The purpose of this section is to find the optimal 

number of inverter levels in direct grid-connected 11 kV PV power plants in which the 

designed inverter has the best performance at minimal cost. At this stage, the output filter is 

not considered in the analysis. 

Figure 5.41 illustrates the THD and device counts versus the number of inverter levels. The 

device count measures the complexity of the inverter design. In Figure 5.41, the THD 

decreases as the inverter number of levels increases, which mean that at high number of 

levels, it is possible to connect the inverter directly to the grid and eliminate the need for an 

output filter. However, the results showed that the number of IGBTs required for the inverter 

increased linearly as the inverter number of levels increased. The lower the number of 

inverter levels, the higher the blocking voltage required in the device to synthesize the output 

voltage. However, at higher numbers of inverter levels, switching devices with lower 

blocking voltage are capable of synthesizing the required output voltage. Power switching 

devices with high blocking voltage are more expensive than devices with lower blocking 

voltage are. 

Figure 5.42 depicts the total cost of the IGBTs, the conduction and switching power losses 

per inverter design versus the number of inverter levels. Increasing the number of levels 

produced a marginal reduction in %THD, switching power loss and the cost of the IGBTs. 

However, this increase results in higher conduction power loss and greater complexity in 

control and device counts. 
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Figure 5.41: The change in %THD and device counts versus number of inverter levels 

 

 

 

Figure 5.42: The change in IGBT cost and power loss versus number of inverter levels 
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system. The cost of power losses is calculated in terms of equivalent annualised capital cost 

by applying the present value factor as follows: 

𝑃𝑙𝑜𝑠𝑠_𝑐𝑜𝑠𝑡 (£) =  𝐻 × 𝑈𝐸𝑛𝑒𝑟𝑔𝑦 ×
(1 + 𝑖)𝑦 − 1

𝑖(1 + 𝑖)𝑦
× 𝑃𝑙𝑜𝑠𝑠𝑠     5.30 

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

%
T

H
D

 -
 D

ev
ic

e 
C

o
u

n
ts

  
 

Inverter No. of Levels 

%THD Device Counts X10

0

1

2

3

4

5

6

7

8

5 7 9 11 13 15 17 19 21

IG
B

T
s 

C
o

st
 (

£
) 

 -
  

P
o

w
er

 L
o

ss
 (

k
W

) 

Number of Inverter Levels 

IGBTs Cost X 10,000 Conduction Loss X10 Switching Loss



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       133 

 

where 𝐻 is the total annual operating hours of PV power plant, assumed to be 4,380 hours at 

12 hours per day. 

 𝑈𝐸𝑛𝑒𝑟𝑔𝑦 is the energy cost (0.11 £/kWh), 

𝑖 is the annual interest rate for capital cost which is assumed to be 5%, and 

𝑦 is the levelized period or system lifetime (years), which is assumed to be 15 years. 

Table 5-18: Key Measures of Performance Calculated for Designed Inverters at Different Levels 

No. 

Levels 
5 7 9 11 13 15 17 19 21 

Device 

Counts 
48 36 48 60 72 84 96 108 120 

% THD 9.95 6.28 5.7 4.85 4 3.61 3.06 2.82 2.64 

Ploss (kW) 17.431 16.128 17.467 21.847 26.219 29.018 33.363 24.28 26.92 

Ploss Cost 

(£) 
87,171 80,657 87,351 109,255 131,119 145,117 166,846 121,422 134,625 

IGBT 

Cost (£) 
54,000 72,000 54,000 51,300 61,560 31,500 36,000 23,004 25,560 

Total 

Cost (£) 
141,171 152,657 141,351 160,555 192,679 176,617 202,846 144,426 160,185 

 

These measure values are normalized, and a total measure value that combines all the 

normalized key measures is introduced based on the weighted averages of each quantity as 

follows: 

𝑇𝑜𝑡.𝑀𝑒𝑎𝑠𝑢𝑟𝑒−𝑉𝑎𝑙𝑢𝑒 = 0.4 × 𝑇𝐻𝐷 + 0.4 × (𝑃𝑙𝑜𝑠𝑠𝑐𝑜𝑠𝑡
+ 𝐼𝐺𝐵𝑇𝐶𝑜𝑠𝑡) + 0.2 × 𝐷𝑒𝑣𝑖𝑐𝑒 𝐶𝑜𝑢𝑛𝑡𝑠   5.29 

 

The structure of the cost function composes of three main measure factors as per the study 

optimization purpose: 1) quality of output signal (%THD), 2) system cost based on (losses 

and switching device cost) ,  and 3) system complexity measured by device count. In order to 

test the developed trade off optimization model, The assigned weighs for these factors was 

40% , 40% and 20%.  However, it depends on the application and the case understudy. The 

planning engineer should decide what the weights for each factor are in the objective 

function.   Both the reliability and the system cost should be considered in the optimization. It 

is required to minimize the cost to meet reliability standards as constraints for the 

optimization. In applications that reliability in more important the objective function can be 

modified to reflects this in the optimization.  
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Figure 5.43 shows the total normalized value of different inverter designs. According to the 

calculated measure values, the optimal design for the 11 kV cascaded H-bridge multilevel 

inverter applying SHE control was found to be the nine-level inverter. The THD for the 50th 

harmonic was within the IEEE-519 limits. The performance of the 19-level inverter was very 

close to that of the nine-level design because it implemented low-cost IGBTs that featured 

low power dissipation characteristics, compared with the other devices. Compared to the 

nine-level inverter, the 19-level design had very low THD. However, it required more than 

double the number of devices implemented in the nine-level inverter and showed higher 

losses by 40%. Following the optimal solution, the 11-level and 21-level inverters showed the 

best performance. The five-level and 13-level designs were found to have the worst 

performance. The five-level inverter can implement many devices because it uses two 4.5 kV 

IGBTs in series and has a high THD value. The 13-level experienced higher losses with a 

high number of required devices and did not show a significant reduction in THD. The 

optimum solution, that is, the nine-level inverter, had the lowest power losses after the seven-

level design. In the case of minimal power loss only, the seven-level inverter was the best 

compared to the other designs. Based on these results, it can be concluded that the optimal 

solution differs from one application to another and is based on the system designer’s 

objectives in applying different weights to calculate the total measure value. In the next 

section, after the implementation of the output passive power filter (PPF), the optimal design 

of an 11-kV inverter will be investigated. 

 

Figure 5.43: Normalized total measure performance value for multilevel inverters designed at different levels 
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5.8.2 Optimum Trade-off for Inverter’s Number of Cascaded H-Bridges and 

Size of Output Filter 

 

In the case study, a 5 MW load at a lagging power factor of 0.8 is assumed at the output of 

CHB-MLI with a rated line-to-line voltage of 11 kV. The aim is to propose a design for a 

composite PPF at the output of different levels of CHB-MLI topologies. The implemented 

PPF should improve the lagging power factor to between (0.92 and 0.98) and reduce the 

%THD at the output of the inverter. In addition, the total cost of the system, including filter 

cost and energy loss should be minimised. Such compensation cases require the implemented 

PPF to inject a total reactive power between 1.6 and 3.7 MVAR. Based on the optimisation 

model for the PPF design explained in Chapter 4, this section presents the results of the GA 

optimisation for the design of the output PPF at different levels of CHB-MLIs. The proposed 

designs minimise the overall cost of the system, improve the power factor and minimise the 

%THD. 

Tables 5-19 to 5-27 present the simulation results and performances of the GA optimisation 

of the PPF design in different levels of CHB-MLI topologies. In this optimisation, the quality 

factor was 60 in single-tuned filters and 5 in high pass filters to ensure the best performance 

of the PPF. The five-level CHB-MLI is compensated with three ST branch filters tuned to the 

7
th

, 11
th

 and 13
th

 harmonics. A HP filter is tuned to harmonics of the 17
th

 order and higher. In 

contrast, the seven-level CHB-MLI has two ST branches tuned to eliminate the 11
th

 and 13
th

 

harmonics. In addition, a HP filter is tuned to the harmonics beyond the 17
th

 order. The 9-

level and 11-level CHB-MLIs implement one ST filter and one HP filter. All other inverters 

at levels 13, 15, 17, 19 and 21 apply only a HP filter for the high-order harmonics because the 

low-order harmonics already have been eliminated by the SHE control. 

The GA proposed for the PPF designs improved the power factor as required and resulted in 

a significant reduction in the THD with a minimum of power loss. The three-phase line-to-

line voltage before and after the filter implementation is depicted in Figures 5.44 to 5.61, 

which clearly show that the effects of the filter significantly improved the quality of the 

output voltage. 
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Table 5-19: GA Performance for Optimum Design of Composite PPF for a five-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.44: Output three-phase voltage for five-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

Figure 5.45: Output three-phase voltage for five-level CHB-MLI (11 kV L-L) after filter implementation 
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Size (kVar) 450 600 450 2,450 

C (µF) 3.94 5.26 3.94 21.5 

L (mH) 52.4 15.9 15.2 1.63 

R (Ω) 1.92 0.92 1.03 8.7 

Quality Factor 60 60 60 5 

Total Filter Size (kVar) 3,950 

THD Before Filter (%) 9.99 

THD After Filter (%) 4.99 



Chapter Five: Modelling and Simulation of the Proposed Optimum Trade-off Model                                       137 

 

Table 5- 20: GA Performance for Optimum Design of Composite PPF for a seven-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.46: Output three-phase voltage for seven-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

Figure 5.47: Output three-phase voltage for seven-level CHB-MLI (11 kV L-L) after filter implementation 
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Size (kVar) 600 400 2,550 

C (µF) 5.3 3.5 22.4 

L (mH) 15.9 17.1 1.57 

R (Ω) 0.92 1.16 8.3 

Quality Factor 60 60 5 

Total Filter Size (kVar) 3,550 

THD Before Filter (%) 6.28 

THD After Filter (%) 2.61 
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Table 5-21: GA Performance for Optimum Design of Composite PPF for nine-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.48: Output three-phase voltage for nine-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

 

Figure 5.49: Output three-phase voltage for nine-level CHB-MLI (11 kV L-L) after filter implementation 
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Size (kVar) 350 2,900 

C (µF) 3.07 25.43 

L (mH) 19.53 1.38 

R (Ω) 1.33 7.36 

Quality Factor 60 5 

Total Filter Size (kVar) 3,250 

THD Before Filter (%) 5.7 

THD After Filter (%) 1.84 
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Table 5-22: GA Performance for Optimum Design of Composite PPF for 11-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.50: Output three-phase voltage for 11-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

 

Figure 5.51: Output three-phase voltage for 11-level CHB-MLI (11 kV L-L) after filter implementation 
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Size (kVar) 550 2,500 

C (µF) 4.82 21.92 

L (mH) 12.43 1.28 

R (Ω) 0.85 7.64 

Quality Factor 60 5 

Total Filter Size (kVar) 3,050 

THD Before Filter (%) 4.85 

THD After Filter (%) 1.42 
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Table 5-23: GA Performance for Optimum Design of Composite PPF for 13-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.52: Output three-phase voltage for 13-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

Figure 5.53: Output three-phase voltage for 13-level CHB-MLI (11 kV L-L) after filter implementation 
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R (Ω) 6.95 

Quality Factor 5 

Total Filter Size (kVar) 2,750 

THD Before Filter  4.0 % 

THD After Filter  1.33 % 
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Table 5-24: GA Performance for Optimum Design of Composite PPF for 15-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.54: Output three-phase voltage for 15-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

Figure 5.55: Output three-phase voltage for 15-level CHB-MLI (11 kV L-L) after filter implementation 
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R (Ω) 7.64 

Quality Factor 5 

Total Filter Size (kVar) 2,500 

THD Before Filter (%) 3.61 

THD After Filter (%) 1.34 
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Table 5-25: GA Performance for Optimum Design of Composite PPF for 17-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.56: Output three-phase voltage for 17-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

Figure 5.57: Output three-phase voltage for 17-level CHB-MLI (11 kV L-L) after filter implementation 
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Quality Factor 5 
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THD Before Filter (%) 3.06 

THD After Filter (%) 1.31 
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Table 5-26: GA Performance for Optimum Design of Composite PPF for 19-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.58: Output three-phase voltage for 19-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

 

Figure 5.59: Output three-phase voltage for 19-level CHB-MLI (11 kV L-L) after filter implementation 
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THD After Filter (%) 1.25 
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Table 5-27: GA Performance for Optimum Design of Composite PPF for 21-level CHB-MLI (11 kV L-L) 

 

 

Figure 5.60: Output three-phase voltage for 21-level CHB-MLI (11 kV L-L) before filter implementation 

 

 

 

Figure 5.61: Output three-phase voltage for 21-level CHB-MLI (11 kV L-L) after filter implementation 
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To quantify the trade-off, the key measures for the design of different inverter levels (5 to 21 

levels) and their corresponding optimum PPFs are displayed in Table 5-28. 

 

Table 5-28: Key Measures Performance Calculated for the Designed Inverters and optimal PPF at different levels. 

No. Levels 5 7 9 11 13 15 17 19 21 

Device 

Counts 
48 36 48 60 72 84 96 108 120 

% THD 4.99 2.62 1.84 1.42 1.33 1.34 1.31 1.25 1.29 

Ploss (kW) 22.18 22.93 15.5 19.11 18.59 24.2 23.67 16.71 18.61 

Ploss Cost 

(£) 
110,925 114,656 77,509 95,593 92,987 120,937 118,377 83,565 93,062 

IGBT Cost 

(£) 
54,000 72,000 54,000 51,300 61,560 31,500 36,000 23,004 25,560 

Filter Size 

(KVAR) 
3,950 3,550 3,250 3,050 2,750 2,700 2,100 1,800 1,750 

Filter Cost 

(£) 
40,000 36,000 32,500 30,500 27,500 27,000 21,000 18,000 17,500 

Total Cost 

(£) 
204,925 22,656 164,009 177,393 182,047 177,437 175,377 124,569 136,122 

 

A total measure value of each design that combines all the normalized key measures is 

applied based on weighted averages as follows: 

 

𝑇𝑀𝑉
= 0.4 × 𝑇𝐻𝐷 + 0.4 × (𝑃𝑙𝑜𝑠𝑠𝑐𝑜𝑠𝑡

+ 𝐼𝐺𝐵𝑇𝐶𝑜𝑠𝑡 + 𝐹𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑠𝑡) + 0.2 × 𝐷𝑒𝑣𝑖𝑐𝑒 𝐶𝑜𝑢𝑛𝑡𝑠   5.30 

 

The total measure values for each design are compared in Figure 5.62. Based on the 

calculated normalized total measure values, the CHB-MLIs with 19-level was found to be the 

best design. This result can be justified by the smaller size of PPF required for this topology 

and the low THD at its output. In addition, the implemented IGBT device at 1.7 kV for 19-

level had very low power loss dissipation compared to the high-voltage IGBTs used in the 

other designs. The nine- and 21-levels were found to be the best following to the 19-level 

topology.  In contrast, topologies with lower numbers of levels (typically 5- and 7-level) were 

found to have the worst total measure values mainly because of high components cost, high 

power losses and high THD values. Furthermore, they also required larger size PPFs with 

two single-tuned branches and one HP branch. The proposed multi-objective function could 

be modified to meet the objectives of design engineers. In some designs, the minimisation of 

power loss is very important. In other designs, the THD or power factor is important. The 

weighted averages of the multi-objectives are chosen according to the aims of the designer 

engineer. 
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Figure 5.62: Normalized total measure performance value for CHB-MLI designed at different levels with 

implemented composite PPF 

 

The optimum size of output passive power filters for different inverter’s levels are displayed 

in Figure 5.63.  The optimum solution showed that as the inverter level increased, the optimal 

size of output filter decreases.  

 

Figure 5.63: Optimum passive power filter (PPF) size in kVARs for different inverter’s levels 
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5.9 Summary 

This chapter presented an analysis of the trade-off required to achieve the optimal design of a 

CHB-MLI in a Matlab/Simulink simulation environment. The analysis was conducted in 

three main parts. 

In the first part, the inverter control was optimised for minimal THD. The optimal switching 

angles of SHE control were solved for different levels of CHB-MLIs (3 to 31 levels). The GA 

was found to be efficient and powerful in solving the problem even at higher numbers of 

inverter levels. In addition to finding the optimal switching angles for each inverter topology, 

the output THD was minimised. The generated simulation results offered a generic optimal 

solution of the switching angles in CHB-MLIs of levels 3 to 31. The THD was studied at 

different inverter levels by applying the SHE control. The outcome was compared with 

different SPWM control methods, and the SHE control was found to achieve minimal THD 

values. 

In the second part of the analysis, the conduction and switching power losses were evaluated 

and investigated for different levels of CHB-MLIs by applying the SHE control and different 

SPWM controls. The inverter losses were much lower in the case of inverters controlled by 

SHE compared to SPWM. The main reason is the that the SHE control was applied at a 

fundamental frequency, which minimised the switching losses considerably. Based on the 

results of part one and part two of the analysis, the SHE control is recommended for the 

trade-off optimisation because it had minimum THD values and significantly lower losses in 

inverter power. 

In the last part of the analysis, the trade-off optimisation model was applied in the case study 

of an 11 kV, 5 MW. Key measures, such as THD, power loss, inverter cost and inverter 

complexity represented by device counts, were applied to the trade-off optimisation. The 

results showed that the CHB-MLI with a nine-level inverter was the best design. A further 

trade-off optimisation was carried out using an output composite PPF that was designed by 

GA. The results showed that inverters with a high number of levels had a minimal objective 

function compared to those with a low number of levels. The 19-level inverter was the best 

design in this case study because it implemented switching devices with low power 

dissipation, and it required a smaller output filter.  
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The purpose for applying GA optimization in this study, was for planning of the multilevel 

inverter design in which the running time of the optimizer has no significant importance. But 

it was important to test most of the possible solution. The GA takes longer time as it 

evaluates the fitness functions for all individuals. The convergence time might be 

significantly improved when applying intelligent fitness functions or by applying hybrid 

optimization techniques which have faster convergence time.     
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6 CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions  

Currently, grid-connected PV power plants are considered the fastest-growing energy technology, 

with annual growth of about 33%, according to the British Petroleum Plc report-2016 [4]. The 

current trend is to integrate PV power plants into power grids via voltage-source multilevel inverters, 

which have many technical attractions and features compared to conventional two-level inverters. 

CHB-MLI topology is superior among voltage-source multilevel-inverter topologies for high-power–

medium-voltage applications, as explained in Section 2.3. This will lead to further implementation of 

high-power–medium-voltage CHB-MLIs in current and future power networks. These multilevel 

inverters generate output AC voltage in a number of steps, based on the inverter’s circuit design. In 

practice, there is a trade-off in deciding how many levels are required for power applications in the 

CHB-MLI design. The trade-off depends on many factors such as power loss, power quality, system 

complexity, switching devices, inverter control and output-filter size, and the overall cost of the 

system as described in Section 4.2. This trade-off problem is a research gap, which requires further 

investigation of the potential for optimisation.  

 

This thesis aims to provide a generic model to optimize the trade-off problem for the CHB-MLI’s 

number of levels and output-filter size in high-power–medium-voltage applications. The applied 

methodology is based on minimisation  of inverter conduction and switching power loss, optimisation 

of the inverter control for minimum THD and optimisation of the output-filter size and cost. In this 

study, the purpose was to find a feasible method to quantify the existing trade-off key measures in 

order to optimize the design for number of levels in the cascaded H-bridge multilevel-inverter (CHB-

MLI) topology and the required size of output filter for medium-voltage–high-power applications. 

Key measures include: 1) inverter’s number of levels, 2) conduction and switching-power losses, 3) 

output THD, 4) power-switching device counts and ratings, 5) size of output filter and 6) system cost 

per device. There is an optimum number of inverter levels and size of output filter where the 

integration system achieves its lowest cost, based on optimisation dimensions and applied system 

constraints. This has been accomplished by introducing a new trade-off model, based on 

multi-objective optimisation to minimize these key measures. GA was implemented to 

optimize the inverter control for minimum THD. A precise model for conduction and 

switching-power loss is proposed as estimation tool of a key measure value of the trade-off 

model. The filter-output design was optimized using GA. The following tasks were 
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accomplished and are considered to be contributions to current knowledge in the field of 

efficient integration of renewable energy sources into power systems:  

 

1. A comprehensive critical literature review of high-power inverters, starting with general 

classification and a detailed discussion on state-of-the-art CSIs and VSIs, highlighting 

the operating principle, key features and historical background of each topology, 

followed by a technical point-by-point comparison. Then, a further critical review of 

VSIs covered the three basic topologies, which also provided a technical comparison in a 

separate table. This literature review ended by illustrating the most widely applied 

control techniques for voltage-source multilevel inverters. The outcome achieved from 

this critical review shows that for medium-voltage–high-power applications, the CHB-

MLI is superior compared to other high-power inverters, due to its many advantages and 

features. Hence, this topology was considered for the trade-off optimisation model.  

 

2. The problem of power system harmonics was addressed by providing a description of the 

phenomenon, classifying its main sources, discussing the adverse effects of harmonics on 

power systems and reviewing the existing solutions applied for harmonics mitigation. 

Subsequently, a greater focus on power filters was provided by conducting a critical 

review of filter configurations. This task concluded by providing important and helpful 

selection tables for passive, active and hybrid power filters. 

 

3. Based on completion of the reviewing of high-power inverters, multilevel inverters and 

multilevel control, a decision was made to implement the CHB-MLI for efficient 

integration of medium-voltage– high-power application. SHE was selected as the applied 

control as it has a low switching frequency, which significantly minimized inverter-

switching losses. For the output-filter topology, a composite passive power filter was 

chosen to connect to the CHB-MLI output. This filter consisted of single-tuned shunt 

filters to eliminate predominant low-order harmonics, and a high-pass filter was chosen 

for the higher-order harmonics. The reason for selecting this topology was its simple 

structure, low cost and minimal losses. The decision to select the type of integration-

circuit configuration comprising the CHB-MLI and the output filter is the first step 

towards an efficient integration system. 
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4. A mathematical model for the problem of SHE control in CHB-MLI was demonstrated. 

Different existing solution approaches for the SHE problem were discussed, addressing 

the key features, merits and drawbacks of each approach. Based on the literature, the 

SHE problem can be solved using a) iterative methods, b) resultant theory, or c) heuristic 

methods. A preliminary study was conducted by the author to compare three techniques 

for solving the SHE problem for seven-level CHB-MLI [72]. In this study, NR, PSO and 

GA performance were compared for solving the SHE problem. Based on the review and 

the outcome of the preliminary study, it was found that heuristic techniques efficiently 

solve the SHE problem. This is mainly because heuristic techniques are capable of 

solving the problem over the entire range of the modulation index. They can also find a 

solution for inverters with a high number of levels, without additional complications and 

computational burdens. However, more care should be taken when defining the objective 

function as it has a significant effect on the solution. A generic GA-based optimisation 

model has been introduced for solving the switching angles of the SHE problem for 

CHB-MLI at any number of levels.  

 

5. The problem of power-loss evaluation in multilevel inverters was investigated. 

Calculating the conduction and switching-power losses in multilevel inverters is a 

complicated task compared to conventional two-level inverters. This is mainly due to the 

fact that the current in each power switch is different, and it is affected by the applied 

switching-function-control method. In the literature, most of the applied methods are 

based on estimation and not on accurate calculations. It is critical to evaluate inverter 

power losses in the planning stage. A proposal was made for a generic detailed model to 

precisely calculate conduction and switching-power losses in multilevel inverters, based 

on actual power-switch datasheets. The model can be applied for any multilevel-inverter 

topology with any number of levels. 

 

6. The optimum design of PPF at the output of the multilevel inverter was considered. First, 

a comprehensive review was carried out to implement conventional and heuristic 

approaches in PPF design. This review showed that the conventional approach for PPF 

design suffers from many limitations. Conversely, heuristic techniques are capable of 

efficiently finding the optimum PPF design while also taking account of cost in the 

analysis. A GA-based optimum-design model for PPF, based on both economic and 

technical considerations, is proposed for the trade-off problem.  
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7. The proposed optimum trade-off model was implemented in Matlab/Simulink. The 

simulation results were presented and discussed in detail for all considered cases, which 

led to the following achievements: 

 

 Solution of the SHE problem was obtained for CHB-MLI with different levels (3 to 31). 

The proposed GA-based optimisation determined the unknown switching angles, 

eliminated the low-order predominate harmonics and minimized the %THD for each 

level of inverter topology. The analysis showed that, beyond 31-levels, minimisation  of 

%THD is limited. It was found that it is not technically and economically feasible to 

increase the inverter number of levels beyond 31. The obtained solution tables for 

switching angles can be used directly by researchers, which is considered to be a 

contribution to knowledge in this field. 

  

 The proposed model for conduction and switching-losses calculations in multilevel 

inverters was applied to a case study in which different inverter levels with different 

power-switching devices were investigated. The considered high-voltage IGBTs were 

chosen according to market availability, with blocking voltage 1.7, 2.5, 3.3, 4.5 and 6.5 

kV. A curve-fitting tool was applied, based on the considered devices’ datasheets, to 

assure accuracy throughout the analysis. In the case study, inverter losses were 

investigated by applying different control techniques, which are low-frequency SHE and 

high-frequency SPWM, namely PD-SPWM, POD-SPWM and APOD-SPWM. The 

outcome of this study showed that CHB-MLI controlled by SHE for medium-voltage–

high-power applications experienced lower power losses compared to CHB-MLI 

controlled by a different SPWM control. This is because the SHE control applied low-

switching frequency, which minimized the switching-power loss. Generally, the 

conduction loss was found to increase as the inverter’s number of levels increased. 

Conversely, the switching loss declined sharply as the number of inverter levels 

increased. However, this also depends on the IGBT blocking voltage and power-loss 

dissipation. Devices with low blocking voltage (namely 1.7 kV) have a power-

dissipation value of almost 50% compared to devices with higher blocking voltage as per 

their datasheets.  
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  For the conducted case study of designing 11 kV CHB-MLI, applying SHE control, it 

was found that the inverters designed with nine levels or higher generate good-quality 

AC waveforms at their output, which is within the IEEE-519 recommended limits. Other 

topologies (namely 5-level and 7-level) have THD output above the recommended 

standards. In the investigation for the case without an output filter, the nine-level CHB-

MLI was considered best, based on applied key measures.  

 

 Considering the output composite PPF for different level CHB-MLIs, the GA 

optimisation design for the filter showed that, as the inverter’s number of levels 

increases, the optimum size of the output filter becomes smaller. This can be justified as 

the quality of the voltage waveforms is better for higher inverter levels. 

  

 The analysis showed that power-loss dissipation of the implemented IGBT device and 

the  required size of output filter are the main factors for the trade-off optimisation. 

Accordingly,  inverters with a higher number of levels have a minimal objective function 

compared to those  with a lower number of levels. The inverter design for 19-levels was 

found to be best for the considered case study. This is mainly because the 19-level design 

implements switching devices that have low power loss dissipation and cost less 

compared to devices with higher blocking voltage. Furthermore, the 19-level inverters 

requires small filter size at its outputs which making the design at low cost. 

 

 Finally, the applied trade-off optimisation is generic and can be applied for any 

multilevel-inverter  topology. The multi-objective function applied in the trade-off can be 

adjusted and modified to  suit the main objectives of any considered case study. Some 

designers may be interested in  minimizing power losses as a main objective. Others may 

aim to maximize the  power factor as a priority. Yet others may seek minimal THD at the 

output. Based on the  designer’s objectives, the weighting average values of each single 

objective can be adopted.    

6.2 Future Work  

Proposed future work may consider the following: 

 A further study could be undertaken as a continuation of this work, by applying the 

proposed optimisation trade-off model with different control techniques for the 

multilevel inverter. In such a study, the switching frequency might be considered a 



 Chapter 6. Conclusions and Future Work                                                                            154 

 

variable parameter and included in the optimisation model, which can be solved using 

heuristic techniques.  

 Wind and PV solar power plants are considered intermittent renewable energy sources, 

which have a highly variable output. Most of the time, these sources are not load-

following, which limits the contribution of wind and PV solar in power generation. It is 

often stated that this problem can be solved by integration with energy storage. Further 

investigation is needed in this area, for example, by including energy storage in the trade-

off optimisation for better integration of PV solar power plants. An in-depth technical 

and economic analysis of different energy-storage technologies may also be undertaken.  

 Further interesting future research topics include applying different artificial intelligence 

techniques such as PSO, ANN, Neuro-Fuzzy, Expert Systems, Tabu Search, Simulated 

Annealing, Fuzzy Logic and so forth to optimize the problem of this trade-off. This is 

considered an improvement to the applied optimisation algorithms.   
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************************************************************************* 

% This MATLAB code is for solving the problem of SHE using Newton-Raphson  

% method in Cascaded H-Bridge MLI (7-LEVEL given as example)  

% THE SWITCHING ANGLES SHOULD BE ϴ1 < θ2 < θ3< 90° 
************************************************************************* 
 

clear all 

% STEP (1): INITIAL GUESS OF SWITCHING ANGLES IN DEGREES (θ1, θ2 and θ3) 
 
x=[20;30;50]; 

  
% The Value of Modulation index is (0.8) 
mi= 0.8; 
% The Newton-Raphson iterations starts here 
del=1; 
indx=0; 
 

while del>1e-6 && indx<100  

  
% STEP (2): FIND THE VALUE OF F (θ1, θ2, θ3) 
F=[cosd(x(1))+cosd(x(2))+cosd(x(3))-3*mi; 
   cosd(5*x(1))+cosd(5*x(2))+cosd(5*x(3)); 
   cosd(7*x(1))+cosd(7*x(2))+cosd(7*x(3)); 
   cosd(11*x(1))+cosd(11*x(2))+cosd(11*x(3))]; 

   
% STEP (2): FIND THE VALUE OF JACOBIAN JF (θ1, θ2, θ3, θ4)  
JF=[-sind(x(1)) -sind(x(2)) -sind(x(3)); 
    -5*sind(5*x(1)) -5*sind(5*x(2)) -5*sind(5*x(3)); 
    -7*sind(7*x(1)) -7*sind(7*x(2)) -7*sind(7*x(3))]; 

        

  
% STEP (4): SOLVE FOR d(θ1, θ2, θ3) 
delx = -inv(JF)*(F); 

    
% NOTE THAT STEP(5) IS ALREADY DONE BY THE While Loop 

    
% STEP (6): UPDATE THE VALUES OF (θ1, θ2, θ3 and θ4) 
x=x+delx; 
del=max(abs(F)); 
indx=indx+1; 
 

end 

  
% Print the Solution 
 

 alpha=x; 

 
'NEWTON-RAPHSON SOLUTION CONVERGES IN ITERATIONS',indx 
'FINAL VALUES OF x in degrees ARE',alpha 
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************************************************************************* 

% This MATLAB code is for solving the problem of SHE using Genetic Algorithm  

% (GA) method in Cascaded H-Bridge MLI (7-LEVEL given as example)  

% THE SWITCHING ANGLES SHOULD BE ϴ1 < θ2 < θ3< 90° 
************************************************************************* 
clc 
clear all 
opts = gaoptimset(@gamultiobj); 
opts.Generations=30; 
opts.StallGenLimit=50; 
opts.PlotFcns={@gaplotbestf,@gaplotdistance }; 
lb=[0,0, 0]; 
ub=[90,90,90]; 

[Q,Fval,exitFlag,Output] = ga(@THD_Mingab7,3,[],[],[], ... 
  [],lb,ub,[],opts); 
fprintf('\Switching_Angle_1 = ' ,X(1)) 
fprintf('\Switching_Angle_2 = ',X(2)) 
fprintf('\Switching_Angle_3 = ',X(3)) 
fprintf('Total Harmonic Distortion %THD =',THD) 

 

 
function y = THD_Mingab7( x ) 

  
m=0.9;  
H1 = cosd(x(1))+cosd(x(2))+cosd(x(3)); 

  
H= [1/5*(cosd(5*x(1))+cosd(5*x(2))+cosd(5*x(3))); 
  1/7*(cosd(7*x(1))+cosd(7*x(2))+cosd(7*x(3))); 
  1/11*(cosd(11*x(1))+cosd(11*x(2))+cosd(11*x(3))); 
  1/13*(cosd(13*x(1))+cosd(13*x(2))+cosd(13*x(3))); 
  1/17*(cosd(17*x(1))+cosd(17*x(2))+cosd(17*x(3))); 
  1/19*(cosd(19*x(1))+cosd(19*x(2))+cosd(19*x(3))); 
  1/23*(cosd(23*x(1))+cosd(23*x(2))+cosd(23*x(3))); 
  1/25*(cosd(25*x(1))+cosd(25*x(2))+cosd(25*x(3))); 
  1/29*(cosd(29*x(1))+cosd(29*x(2))+cosd(29*x(3))); 
  1/31*(cosd(31*x(1))+cosd(31*x(2))+cosd(31*x(3))); 
  1/35*(cosd(35*x(1))+cosd(35*x(2))+cosd(35*x(3))); 
  1/37*(cosd(37*x(1))+cosd(37*x(2))+cosd(37*x(3))); 
  1/41*(cosd(41*x(1))+cosd(41*x(2))+cosd(41*x(3))); 
  1/43*(cosd(43*x(1))+cosd(43*x(2))+cosd(43*x(3))); 
  1/47*(cosd(47*x(1))+cosd(47*x(2))+cosd(47*x(3))); 
  1/49*(cosd(49*x(1))+cosd(49*x(2))+cosd(49*x(3)))]; 

     
HH = H.^2;  
HN = sum(HH); 
THD = sqrt(HN)/H1*100; 
'Total Harmonic Distortion %THD =', THD 
'Fundamental', H1-3*m 
'5th harmonic =', H(1,1)/H1*100 
'7th harmonic =', H(2,1)/H1*100 

  
y = 50*((H1-3*m)^4)+50*(H(1,1)^2+ H(2,1)^2)+THD/100 ; 
 

end 
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Figure A.1: Simulink block model for single H-Bridge circuit 

 

 

 

 

Figure A.2: Repeating sequence block applied to generates switching angles 
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Figure A.3: Simulink block for conduction losses calculation for a single switch 
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Figure A.4: Simulink block for switching losses calculation for a single switch 
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************************************************************************* 

% This MATLAB code is for the optimum design of passive power filter (PPF)  

% using Genetic Algorithm (GA) method in Cascaded H-Bridge MLI (7-LEVEL) 

% Two single tuned filter and one high pass filter  

************************************************************************* 
 

clc 
clear all 
opts = gaoptimset(@gamultiobj); 
opts.Generations=10; 
opts.StallGenLimit=50; 
opts.PlotFcns={@gaplotbestf,@gaplotdistance }; 
lb=[300000,300000, 1000000]; 
ub=[1500000,1500000, 3000000]; 
 [Q,Fval,exitFlag,Output] = ga(@Q_7_level_inverter,3,[],[],[], ... 
  [],lb,ub,[],opts); 

  
fprintf('\nDesigned Parameter Q1= %f',Q(1)) 
fprintf('\nDesigned Parameter Q1= %f',Q(2)) 
fprintf('\nDesigned Parameter Q1= %f',Q(3)) 
fprintf('\nSum of designed parameters Q= %f',Q(1)+Q(2)+Q(3)) 
fprintf('     1.6<%f<3.75',Q(1)+Q(2)+Q(3)) 
fprintf('\nTHD= %f \n',THD.THD) 

 

 

function [Q ] = Q_7_level_inverter(Q) 

  
assignin('base', 'Q1', Q(1)); 
assignin('base', 'Q2',Q(2)); 
assignin('base', 'Q3', Q(3)); 
sim('Seven_Level_CHB__Inverter_07') 
pause(0.5); 
assignin('base', 'Ploss', ploss); 
f1=[(Q(1)+Q(2)+Q(3))*(1/100)]+[[(max(ploss.Data)/1000)*4380*0.11]*[(((1.05)^1

5)-1)/(0.05*((1.05)^15))]]; 
assignin('base', 'VLL', VLL); 
THD=power_fftscope(VLL); 
THD.fundamental=50; 
THD.maxFrequency=2500; 
THD.startTime=0.01; 
THD=power_fftscope(THD); 
f2=THD.THD; 
f3= 100-[(Q(1)+Q(2)+Q(3))/1000000]; 
assignin('base', 'THD', THD); 
end



169 

 

 

 

Figure A.5: MATLAB genetic algorithm tool 
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