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Abstract: In this paper, the distortion of cantilever box girders with inner flexible thin diaphragms 14 
is investigated under concentrated eccentric loads using initial parameter method (IPM), in which 15 
the in-plane shear strain of diaphragms is fully considered. A high-order statically indeterminate 16 
structure was established with redundant forces, where the interactions between the girder and 17 
diaphragms were indicated by a uniform distortional moment. Based on the compatibility 18 
condition between the girder and diaphragms, solutions for the distortional angle and the warping 19 
function were obtained by using IPM. The accuracy of IPM was well verified by finite element 20 
analysis for the distortion of cantilever box girders with 2, 5 and 9 diaphragms under three 21 
diaphragm thicknesses. Taking a lifting mechanism as an example, parametric studies were then 22 
performed to examine the effects of the diaphragm number and thickness, the ratio of height to 23 
span of the girder, the hook’s location and the wheels' positions on the distortion of cantilever box 24 
girders. Numerical results were summarized into a series of curves indicating the distribution of 25 
distortional warping stresses and displacements for various cross sections and loading cases. 26 
Keywords: cantilever girder; distortion; flexible diaphragm; initial parameter method; finite 27 
element analysis; shear deformation 28 
 29 
Nomenclature 30 
A, C = top and bottom flanges t1 t2 = thickness of left and right webs 

B, D = right and left webs t3 = thickness of flanges 

B, D = total number of diaphragms and loads before the 

calculated point z 

tpi = thickness of ith diaphragm 

Bd(z) = distortional bimoment of cross section z v = possion’s ratio 

b,h = width and height of girder Wadd = the additional distortional warping function 

E= Young’s elastic modular W(z) = distortional warping function 

G = shear modular x,y = in-plane coordinate axes of cross section 

Hij, Vij = inner horizontal and vertical redundant forces z = longitudinal axis of girder 

H(α) = unit step function of variable α zj = location of jth concentrated load Pj 

It, Ik , IR = warping/polar/frame moment of inertia zpi = mid-line position of ith diaphragm 
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l = span of girder Z(z) = state vector of cross section z in IPM 

M, N, J, K = four angle nodes βd = ratio of warping stresses between nodes J and N 

Md(z) = distortional moment of cross section z γpi = in-plane shear strain of ith diaphragm 

Mj = distortional moment produced by jth loads P j φ1, φ2, φ3, φ4 = combinations of trigonometric function 

Mpi = distortional moment for ith diaphragm λ1, λ2 = distortional coefficients of girder 

m, n = total number of loads and diaphragms θ = torsional angle of cross section 

md = distributed distortional moment χ(z) = distortional angle of cross section z 

n1,n2 = distance between point O and webs χadd = the additional distortional angle 

O = original point τd = distortional shear stress 

Pj = jth concentrated load Φ(z) = initial transfer matrix in IPM 

P(z) = transfer matrix in IPM (1), (2), (3), (4), (i), (j) = first, second, third, fourth, ith and jth 

differentiates s = circumferential coordinate around profile 

 31 
1. Introduction 32 

Cantilever box girders are widely applied in many cases. For instance, at container seaports, 33 
cantilever cranes are applied to handle containers from the boat to port (Fig.1a). In construction 34 
process, precast bridge segments are elevated and installed by cantilever cranes (Fig.1b). For 35 
cantilever girders subjected to eccentric loads, the flexure, torsion and distortion of the cross 36 
section are commonly concerned by designers. Both the warping deformation and stresses 37 
produced by distortional loads are usually so large that it may have significant values in 38 
comparison with the torsional and flexural ones. 39 

(a) gantry crane (b) bridge construction  40 
Fig.1 Examples of cantilever girders 41 

In order to control the distortion of the beam cross section, diaphragms are installed at the 42 
interior of girders, which can increase not only the stability of local plate, but also the resistance to 43 
warping deformation and stresses [1,2]. The primary research on the distortion of girder has been 44 
performed using two methods - the Beam on Elastic Foundation (BEF) analogy [3] and the 45 
Equivalent Beam on Elastic Foundation (EBEF) analogy [4,5], where a thin diaphragm is 46 
analogous to simple supports and a thick solid diaphragm to fixed supports. Additionally, the 47 
effect of shear strain of the cross section on distortion is considered in EBEF analogy and cannot 48 
be ignored when the frame shear stiffness is significant to distortional warping one for box girders 49 
[6,7]. Since there is no clear boundary between the thin and thick diaphragms, it is difficult to 50 
accurately estimate the deformation and stresses of beams in BEF and EBEF methods when 51 
considering the thickness of diaphragms. 52 

For a cantilever box girder with inner diaphragms, the key point of analyzing the deformation 53 
and stresses is to find out the interactions between the girder and diaphragms. A high-order 54 
statically indeterminate structure is modeled for girders with inner diaphragms under eccentric 55 
loads, where the interactions are indicated by redundant forces and moments [8-10], both are 56 



 

 

obtained from finite strip method [11] and force method [8]. This model is extensively researched 57 
on multi-span curved beams [12, 13]. Besides, an extended trigonometric series method [14] is 58 
applied to analyze the deformation and stresses of the girder with inner diaphragms, where webs 59 
and flanges are divided into several thin plates, and the thin-plate theory is applied to all members 60 
– flanges, webs and diaphragms. Interactions between the girder and diaphragms are indicated by 61 
compatibility conditions with respect to both displacements and forces. This method can achieve a 62 
high accuracy for both displacement and stresses, but the number of simultaneous equations is so 63 
large even for girders with few numbers of diaphragms that it is difficult to apply in practice. For 64 
example, there are up to 720 simultaneous equations for a girder with only two diaphragms. 65 

Finite element analysis (FEA) is another important method for analyzing the distortion of the 66 
girder with inner diaphragms. Researchers evaluated the influence of the number of diaphragms 67 
on the deformation and stresses of straight [15-17], curved [18-20] and multi-cell [21,22] box 68 
girders with diaphragms by using FEA, where diaphragms were presumed to possess infinite 69 
in-plane shear stiffness and free warping for both torsion and distortion. Obviously, the 70 
assumption of infinite shear stiffness does not fit for girders with flexible thin diaphragms. 71 
Considering the finite in-plane shear stiffness of diaphragms, a distortional stiffness ratio is 72 
introduced [23] which is between the stiffness of various types of diaphragms over the stiffness of 73 
the solid-plate diaphragm. Both the type and location of diaphragms will make an influence on the 74 
horizontal loading distribution and to a less extent on the vertical one [24-26]. A research shows 75 
that orthogonal diaphragms are superior to skew ones in reducing the transversal bending stresses 76 
[27] and arranging the lateral loading distribution [28]. 77 

Initial parameter method (IPM), initially introduced to solve the non-uniform torsion of 78 
beams by Vlasov [29], has been extended to analyze the distortional deformation and stresses. In 79 
IPM, either the distortional angle or the warping function was taken as the original variable in the 80 
distortion equation [30-32], and the distortional deformation and stresses can be obtained 81 
according to the boundary conditions. High accuracy for both deformations and stresses produced 82 
by IPM has been verified by using FEA for girders without diaphragms. However, IPM has not 83 
been extensively applied to the distortion of girders with inner diaphragms. In addition, 84 
interactions between the girder and flexible thin diaphragms are still not clear in IPM. 85 

Previous researches on girders with inner diaphragms has been generally performed under the 86 
assumption of infinite in-plane shear (distortional) stiffness, where the in-plane shear deformation 87 
of diaphragms was totally restrained and the out-of-plane warping deformation was free [15-22]. 88 
However, this assumption is not applicable to girders with flexible thin diaphragms [15, 18]. The 89 
main objective of this work is to analyze the distortion of cantilever girders with inner flexible thin 90 
diaphragms under eccentric loads, where the in-plane shear deformation of diaphragms is fully 91 
considered. Considering the compatibility between the girder and diaphragms, solutions for both 92 
the distortional deformations and stresses are obtained by using IPM. Numerical results are 93 
verified by applying FEA. Finally, taking a lifting mechanism as an example, a series of 94 
parametric studies are performed to examine the effects of the number and thickness of 95 
diaphragms, the hook’s location and loading positions of trolley wheels on the distortion of 96 
cantilever girder with inner flexible diaphragms. 97 
2. Structural model 98 

Consider a cantilever box girder with inner diaphragms subjected to concentrated eccentric 99 
loads Pj (j=1, 2,…, m). The coordinate system O-xyz is illustrated in Fig.2a with its original point O 100 



 

 

set at shear center of the cross section at the fixed end. For analysis, the distances between the 101 
point O and mid lines of webs B and D are marked by n1 and n2 in Fig.2b, respectively. The girder 102 
is made of a homogeneous, isotropic and linearly elastic material with the Young’s and shear moduli 103 
E and G, respectively. The entire span is l. The thicknesses of webs B and D are t1 and t2 and the 104 
height is h, while the thicknesses of flanges A and C are t3 and the width is b. The mid-line 105 
location of ith diaphragm, with the thickness being tpi, is denoted as zpi (i=1, 2,…,n) measured 106 
from the point O. The eccentric loads Pj are acted on the top of web D at zj. 107 
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Fig.2 Cantilever box girder with diaphragms and its cross section 109 
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Fig.3 Loading decomposition, deformations and stresses of girders 111 
Fig.3a shows that the load Pj can be decomposed into three components – flexural, torsional 112 

and distortional loads. In Fig.3b, the frame rigidly rotates around the point O with angle θ under 113 
torsional loads. In Fig.3c, both webs and flanges present transversal deflections under distortional 114 
loads, where uM and vM are horizontal and vertical in-plane displacements at node M, respectively. 115 
The variation of angle at node N is defined as the distortional angle χ, given by χ=χ1+χ2. The 116 



 

 

warping displacements wd and stresses σd, produced by distortional bimoment Bd, are illustrated 117 
in Fig.3d. Also, there exists shear stress τd in the cross-sectional profile, developed by distortional 118 
moment Md, as shown in Fig.3e. 119 

This paper will only focus on the distortional deformations and stresses of cantilever box 120 
girders with inner flexible thin diaphragms subjected to concentrated eccentric loads. That’s also 121 
the deformations and stresses of cantilever box girders under concentrated distortional loads. 122 
3. IPM for the distortion of cantilever box girder without diaphragms 123 

In distortional analysis, the warping function W(z) usually equals the first differentiate of 124 
angle χ(z). But when the shear stiffness has significant value in comparison with the warping one, 125 
the effect of shear strain of the cross section on deformations and stresses cannot be ignored [6,7]. 126 
The distortion equation is given by [6,7] 127 

(4) (2) (1)
d( ) ( ) ( )R t

t R
k

EI EIEI W z W z EI W z m
GI

− + =                    (1) 128 

where md is the distributed distortional moment; the superscripts ‘(1), (2) and (4)’ indicate the first, 129 
second and forth differentiates of W(z) and md; It is the distortional warping moment of inertia, 130 

given by 2 ( )dt
F

I s Fω= ∫ , ω(s) is the sector coordinate, F is the cross-sectional area, s is the 131 

circumferential coordinate around the cross-sectional profile; Ik is the distortional polar moment 132 

of inertia, given by 2 ( )dk
F

I s Fψ= ∫ , ψ(s) is the generalized coordinate that describes the 133 

deformation in the s direction corresponding to a unit distortional angle; IR is the distortional 134 

frame moment of inertia, given by 
( )

22 3

2 2

d ( ) d
d 12 1R

F

s tI F
s v
ζ 
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∫ , ζ(s) is the deflection of the 135 

periphery of the profile in the direction normal to the s axis corresponding to a unit distortional 136 
angle; t is the thickness of the cross-sectional profile, and t=t1 and t2 for webs D and B, t=t3 for 137 
flanges A and C;. v is the poisson’s ratio. 138 

Under concentrated distortional loads, md=0, and the solution for Eq.(1) is 139 
4

1
( ) ( )i i

i
W z B zϕ

=

=∑                                 (2) 140 

where Bi (i=1,2,3,4) are the parameters determined by boundary conditions, and the φi (z) are: 141 
φ1(z)=cosh(λ1z)sin(λ2z), φ2(z)=cosh(λ1z)cos(λ2z) 142 
φ3(z)=sinh(λ1z)cos(λ2z), φ4(z)=sinh(λ1z)sin(λ2z) 143 

where λi (i=1,2) is the distortional coefficients, given by 144 

1
41
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λ = −  145 

Relations between the function W(z) and the angle χ(z), the bimoment Bd(z) and the moment 146 
Md(z) are [6,7]: 147 

( ) ( )t

R

EIz W z
EI

χ ′′′= − , d ( ) tB z EI W ′= − , d ( ) tM z EI W ′′= − .              (3) 148 

Substitute Eq.(2) into Eq.(3), the matrix equation 149 
Z(z)=Φ(z)B                                 (4) 150 

is obtained, where  151 
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Φ ; B={B1, B2, B3, B4}T;  152 

Z(z) is the state vector of any section in IPM, 153 
T

d d( ) ( )( ) ( ), ( ), ,
t t

B z M zz z W z
EI EI

χ
 

= − 
 

Z .                    (5) 154 

The boundary conditions for cantilever girders are 155 
χ(0)=0, W(0)=0, for initial end z=0; 156 

Bd(l)=0, Md(l)=0, for ultimate end z=l. 157 
Correspondingly, the state vectors are 158 

T

d d(0) (0)(0) 0, 0, ,
t t

B M
EI EI

 
= − 
 

Z , { }T( ) ( ), ( ), 0, 0l l W lχ=Z             (6) 159 

For z=0, Z(0)=Φ(0)B and the inverse transformation is 160 
B=[Φ(0)]inv·Z(0)                              (7) 161 

where [Φ(0)]inv is the inverse matrix of Φ(0). 162 
Then substitute Eq.(7) into Eq.(4), Z(z) can be expressed as 163 

Z(z)=P(z)·Z(0)                               (8) 164 
where P(z) is the transfer matrix, given by P(z)= Φ(z)·[Φ(0)]inv. 165 

Eq.(8) is the standard form of initial parameter method for distortion. Based on the relations 166 
between φi(z) and its differentiations (see Eq.(A.1)~Eq.(A.3) in Appendix A), P(z) is simplified as: 167 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

SC ''' z KC ''' z SKC ''' z KC ''' z
S C z C z SC z C z
K

z S C ' z C ' z SC ' z C ' z
K
S C '' z C '' z SC '' z C '' z
K

− − − 
 
 −
 
 =

− 
 
 
− − −  

P                (9) 168 

where 2 2
1 2

1
2 2

S
λ λ

=
+

, t

R

EIK
EI

= , 3 1
1

1 2

( ) ( )( ) z zC z ϕ ϕ
λ λ

= − ,
2 2 2 2

1 2 1 2
3 3 1

1 2

3 3( ) ( ) ( )C z z zλ λ λ λϕ ϕ
λ λ
− −

= − , 169 

2 2
1 2

2 2 4
1 2

( ) ( ) ( )
2

C z z zλ λϕ ϕ
λ λ
−

= − , 4
4

1 2

( )( )
2

zC z ϕ
λ λ

= . 170 

Besides, the jth eccentric load is indicated by a vector Zj in IPM, given by 171 
T

0, 0, 0, j
j

t

M
EI

 
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 

Z                            (10) 172 

in IPM, where Mj is the distortional moment produced by the jth eccentric loads, given by Mj 173 
=Pj·n1/2 [32], n1 is the distance between web D and point O (see Fig.2b). 174 
4. IPM for the distortion of cantilever box girder with inner diaphragms 175 
4.1. IPM solution 176 

For analysis, a statically indeterminate structure is modeled with redundant forces acting 177 



 

 

along the junctions between the girder and diaphragms, as shown in Fig.4a. The horizontal and 178 
vertical redundant forces Hij and Vij are illustrated in zoomed picture, where the subscript i 179 
indicates webs and flanges, i=A,B,C,D (see Fig.2b) and j=2,3…,q. The small circles indicate the 180 
joints where the redundant forces are located. 181 
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Fig.4 High-order statically indeterminate structure 183 

In order to analyze the interactions between the girder and diaphragms, two assumptions are 184 
made: 185 

(1) Self balance assumption for in-plane forces of diaphragms 186 
For diaphragms, summations of in-plane redundant forces and moments are all zeros under 187 

distortional loads. So only the distortional component of redundant force is reserved, as illustrated 188 
in Fig.4b. Furthermore, referred to the formation of the external moment Mj [32], all distortional 189 
components of redundant forces can be gathered and indicated by a moment Mpi for the ith 190 
diaphragm. So the interactions between the girder and diaphragms can be represented by the 191 
moment Mpi. The Mpi, in the direction opposite to Mj, will resist the warping deformation and 192 
stresses of the cross section. Similar to Eq.(10), the moment Mpi is indicated by the vector Zpi in 193 
IPM, given by 194 

T

0, 0, 0, pi
pi

t pi

M
EI t

  =  
  

Z .                        (11) 195 

(2) Compatibility condition between the girder and diaphragms 196 
The in-plane shear strain γpi of the ith diaphragm is considered, given by γpi =Mpi /(Gbhtpi), 197 

which is opposite to the distortional angle at the mid line of diaphragm. That is: χ(zpi)= – γpi for 198 
0≦i≦n. This is the key point to analyze the distortion of cantilever girders with diaphragms. 199 

Combining Eq.(10) and Eq.(11) with Eq.(8), the vector Z(z) is given by 200 
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(12) 201 

where B and D are total numbers of diaphragms and eccentric loads before the calculated point z, 202 
respectively; zpi is the mid-line location of the ith diaphragm (i=1,2,…, B); zj is the location of the 203 
jth distortional loads (j=1,2,…, D); transfer matrices P(z–zi) and P(z–zj) are those obtained from 204 
P(z) by substituting the variable z by ‘z–zi’ and ‘z–zj’. 205 

For z=l, Eq.(12) changes into 206 
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where Z(l) and Z(0) are matrices referred to Eq.(6).  208 
Combining the third and forth equations in Eq.(13), Bd(0) and Md(0) are obtained. Then, the 209 

angle χ(z) and function W(z) are finally solved by substitute Bd(0) and Md(0) into Eq.(12). 210 
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(15) 212 

where the superscripts '1' and '2' in η(z) and ε(z, zj) are related to the angle χ(z) and function W(z). 213 
Similarly, the subscripts 'B' and 'D' are related to the values of B and D. 214 
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where H(α) is a unit step function. Specifically, H(α)=1 for α>0; H(α)=0 for α<0. The superscripts 219 
‘(1), (2), (3), (i) and (j)’ is the first, second, third, ith and jth differentiates of functions φn(α) and 220 
φm(α). 221 
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In calculation, φn(-1)(α) is the integral of φn(α), given by 225 
( 1) 1 3 2 1
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+
. 226 

Besides, when the calculated point z is located in the thickness of (B+1)th diaphragm (zp(B+1)227 

－tp(B+1)/2≦z≦zp(B+1)+tp(B+1)/2), the additional χadd and Wadd should be involved. 228 
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where zp(B+1), tp(B+1) and Mp(B+1) are the mid-line location, thickness and distortional moment for 231 
(B+1)th diaphragm, respectively. 232 

Obviously, from Eqs.(14)~(17), both the angle χ(z) and function W(z) are related to moments 233 
Mj and Mpi. Since the moment Mj has been given in Eq.(10), the solutions rest in Mpi. 234 
4.2. Derivation of Mpi 235 

Based on the compatibility condition, compatibility equation is given by (T=1,2,…,n) 236 
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where 238 
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, 240 

kT is the number of eccentric loads before the T th diaphragm. 241 
Correspondingly, the matrix equation system for Eq.(18) is 242 

η·Mp+ε=0                              (19) 243 
where 244 
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and the diagonal element in the matrix η is 247 
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Then the moment Mpi is obtained based on the Cramer rule, given by 249 
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where Qij=|ηi|/|η|; the ‘|η|’ indicates the determinant of the matrix η; For the matrix η i, all columns 251 

keep the same with the η except for the ith column [ 1
13 1( , )T p jz zε , 1

13 2( , )T p jz zε ,…, 1
13 ( , )T pn jz zε ]T. 252 

4.3. Simplification for χ(z) and W(z) 253 
Substitute Eq.(20) into Eq.(14), and the angle χ(z) changes into 254 
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                   (21) 255 

where m and n are the total numbers of distortional loads and diaphragms, respectively. 256 
The number of calculation steps in Eq.(21) is m×n, which is time-consuming for girders with 257 

many diaphragms under lots of loads. So a matrix equation system is established, given by 258 
η·x = γ                                (22) 259 

where the matrix η is referred to Eq.(19); the matrices x and γ are 260 
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In this way, the numerator of the angle χ(z) in Eq.(21) is transferred to the summation of 263 
diagonal elements in matrix x. And the angle is expressed as 264 
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Similar to the solution χ(z) in Eq.(23), the function W(z) is given by 266 
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Taking the node N as an example, the distortional warping displacement wN, stress σN and 269 
shear stress τN can be obtained [33], given by 270 
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where βd is the ratio of distortional warping stresses between the nodes J and N, 3 1
d

3 2

3
3
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+
. 272 



 

 

5. Verifications with FEA 273 
In order to verify the accuracy of IPM, cantilever box girders with 2, 5 and 9 diaphragms are 274 

investigated under three diaphragm thicknesses by using FEA software package ANSYS. In the 275 
FEA model, Young’s modulus E=210GPa, Poisson’s ratio υ=0.3, the span l=1m, width b=0.1m, 276 
height h=0.2m and the flanges and webs thickness t=0.01m. Diaphragms are uniformly distributed 277 
along the span, with the thickness tp being 0.005m, 0.01m and 0.02m, respectively. 278 

Figs.5a, b and c give the mesh condition for cantilever girders with inner diaphragms using 279 
four-node element Shell63, where all DOFs are restrained on the fixed end. Convergence tests 280 
show that 1650 elements are appropriate for girders with two diaphragms, 1942 for those with five 281 
diaphragms and 2026 for those with nine diaphragms under the element size of 0.02m. Two 282 
concentrated distortional loads are applied at the cross sections z1=0.45l and z2=0.55l, including 283 
two horizontal components Ph (Ph=1.25 kN) on flanges and two vertical ones Pv (Pv=2.5 kN) on 284 
webs, as shown in Fig.5d. 285 
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 286 
Fig.5 Meshing grid and loading application 287 

(b) warping stress (c) frame deformation(a) warping displacement  288 
Fig.6 3D contours of cantilever box girder with 2 diaphragms under distortional loads (amp=3000) 289 

(b) warping stress (c) frame deformation(a) warping displacement  290 

Fig.7 3D contours of cantilever box girder with 5 diaphragms under distortional loads (amp=10000) 291 
Fig.6~Fig.8 give the 3D contours of warping displacements and stresses for cantilever box 292 

girders with 2,5 and 9 diaphragms, in which tp=0.01m. The ‘amp’ indicates the amplified factor of 293 

deformations. It is seen that the largest warping displacement and stress both occur at the junctions 294 

between webs and flanges at the loading sections. With the increment of the diaphragm number, 295 

the largest warping stress reduces from 5.86Mpa to 1.55Mpa and displacement from 1.83μm to 296 

0.268μm, and the frame deformation on the free end obviously become small. 297 



 

 

(b) warping stress (c) frame deformation(a) warping displacement  298 

Fig.8 3D contours of cantilever box girder with 9 diaphragms under distortional loads (amp=20000) 299 
Fig.9~Fig.11 give the comparison results between IPM and FEA for the distortional angle, 300 

warping displacement and stresses of cantilever box girders with 2,5 and 9 diaphragms, 301 

respectively. Each subplot includes three groups of curves and dots, divided by three thicknesses 302 

tp/t=0.5, 1 and 2. The distortional angle in FEA model is calculated by the transversal 303 

displacements at nodes J, N and M (see Fig.2b). 304 

N M N JUX UX UY UY( )z
h b

χ − −
= +                      (26) 305 

where UXN and UXM are x-axial displacements at nodes N and M, respectively; UYJ and UYN are 306 

y-axial displacements at nodes J and N, respectively. 307 

0 0.5 1
-2

-1

0

1

2 x 10-6

 

 

0 0.5 1
-1

0

1

2 x 10-4

 

 

IPM-tp/t=0.5
IPM-tp/t=1
IPM-tp/t=2
ANSYS-tp/t=0.5
ANSYS-tp/t=1
ANSYS-tp/t=2

χ(
z)

z/l

w d
(z

)

z/l
(a) angle χ(z) (b) warping displacement wd(z)

0 0.5 1
-4

-2

0

2

4

6 x 106

 

 

σ d
(z

)

z/l
(c) warping stress σd(z)

IPM-tp/t=0.5
IPM-tp/t=1
IPM-tp/t=2
ANSYS-tp/t=0.5
ANSYS-tp/t=1
ANSYS-tp/t=2

IPM-tp/t=0.5
IPM-tp/t=1
IPM-tp/t=2
ANSYS-tp/t=0.5
ANSYS-tp/t=1
ANSYS-tp/t=2

 308 
Fig.9 Comparisons of distortional angle, warping displacements and stresses between IPM and FEA for cantilever 309 

girders with two diaphragms under three diaphragm thicknesses 310 
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 311 
Fig.10 Comparisons of distortional angle, warping displacements and stresses between IPM and FEA for cantilever 312 

girders with five diaphragms under three diaphragm thicknesses 313 
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 314 
Fig.11 Comparisons of distortional angle, warping displacements and stresses between IPM and FEA for cantilever 315 

girders with nine diaphragms under three diaphragm thicknesses 316 
Some findings can be drawn from Fig.9~Fig.11 as follows: 317 
(1) Good agreements between IPM and FEA are evident for the distortional angle, warping 318 

displacement and stress of cantilever box girders with inner diaphragms, which well verifies the 319 
two aforementioned assumptions. 320 

(2) The diaphragm thickness cannot be ignored, since the differences between girders with 321 
thin flexible diaphragms and thick solid ones become evident with the increment of the diaphragm 322 
number. 323 

(3) Compared the girders strengthened by 2 diaphragms with those by 5 or 9 ones, it’s worth 324 
being noted that the mid diaphragm effectively restrains the transversal deformation of the cross 325 
section at midspan. 326 

(4) The largest error of distortional angles between IPM and FEA occurs at loading sections, 327 
where the FEA result is 20% larger than the IPM one for girders with two diaphragms (Fig.9a). 328 
However, this error reduces to 13.9% for girders with five diaphragms (Fig.10a) and 10.9% for 329 
those with nine diaphragms (Fig.11a). Since there is no diaphragms or stiffeners at the loading 330 
sections z1=0.45l and z2=0.55l, the error between IPM and FEA can be attributed to the local 331 
stress concentration. So the distortional angle obtained from IPM is susceptible to the influence of 332 
stress concentration, and it is necessary to install more diaphragms at the loading sections. 333 
6. Parametric study 334 
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 335 
Fig.12 Lifting mechanism and the eccentric wheel loads 336 

As shown in Fig.12a, a lifting mechanism model, including two girders and one trolley, is 337 
applied to investigate the effect of the diaphragm number and thickness on the distortion of 338 
cantilever girders. For simplicity, the measurements are set as t1=t2=t3=t, t/b=0.1 and b/l=0.1. 339 



 

 

Diaphragms are distributed uniformly in the span. As shown in Fig.12b, eccentric loads Pj and Pj' 340 
( j=1, 2) on trolley wheels are located at the cross sections z=0.9l and z=l, and only the distortional 341 
deformations and stresses are studied in this section. 342 

Based on the IPM, four quantities - distortional angle, warping displacement and stress, shear 343 
stress are analyzed with respect to the diaphragm number and thickness, the ratio of height to span 344 
of the girder, the hook’s location and the trolley wheels' position. Specifically, the effects of the 345 
diaphragm number and thickness, the ratio of height to span of the girder on four distortional 346 
quantities are considered in Case I, followed by the hook’s location in Case II and the wheels' 347 
positions in Case III. 348 
6.1. Case I 349 

Taking the node N (see Fig.2b) of the cross section z=0.95l as an example, relationships 350 
between the four quantities and the diaphragm number n are summarized in Fig.13 varying with 351 
the ratio h/l of height to span of the girder, where tp=t and P1=P2. The ‘R-χ’, ‘R-wd’, ‘R-σd’, ‘R-τd’ 352 
represent the non-dimensional values of distortional angle, warping displacement and stress, shear 353 
stress of cantilever girders with inner diaphragms over those without diaphragms, respectively. 354 

Some findings can be drawn from Fig.13 as follows 355 
(1) In Fig.13a, the distortional angle reduces exponentially with the increment of the 356 

diaphragm number. The descending tendency is initially remarkable and then slows down when 357 
n>5, especially for girders with smaller ratio h/l. The warping displacement has the similar 358 
variability except for the girder with h/l=0.1, where its apex occurs at n=4, as shown in Fig.13b. 359 

(2) Both the non-dimensional warping stress and shear stress are larger than 1 and increase 360 
exponentially with the diaphragm number. The ascending tendency is initially remarkable and 361 
then slow down when n>4, especially for girders with smaller ratio h/l, as shown in Fig.13c and d. 362 
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Fig.13 Relationships between four distortional quantities and the diaphragm number n 364 

varying with the ratio of height to span h/l 365 

2 3 4 5 6 7 8 91

1.2

1.4

1.6

1.8

2

 

 

2 3 4 5 6 7 8 91

1.1

1.2

1.3

1.4

 

 

2 3 4 5 6 7 8 90.2

0.4

0.6

0.8

1

1.2

 

 

2 3 4 5 6 7 8 90

0.2

0.4

0.6

0.8

1

 

 

R
-χ

n

R
-w

d

n

R
-σ

d

n

R
-τ

d

n
(a) distortional angle (b) warping displacement (c) warping stress (d) shearing stress

tp/t=0.25
tp/t=0.5
tp/t=1

tp/t=0.25
tp/t=0.5
tp/t=1

tp/t=0.25
tp/t=0.5
tp/t=1

tp/t=0.25
tp/t=0.5
tp/t=1

 366 
Fig.14 Relationships between four distortional quantities and the diaphragm number n 367 

varying with the thickness ratios tp/t 368 
Four quantities are also analyzed in Fig.14 varying with the ratio tp/t of thicknesses between 369 



 

 

diaphragms and the girder, where h/l=0.2 and P1 =P2. 370 
Some findings can be drawn from Fig.14 as follows 371 
(1) In Fig.14a and b, the distortional angle and warping displacement reduce exponentially 372 

with the increment of the diaphragm number. The descending tendency is initially remarkable and 373 
then slow down when n>5. While in Fig.14c and d, the warping stress and shear stress increase 374 
exponentially and then slow down for larger diaphragm numbers. 375 

(2) As aforementioned in Section ‘Verifications with FEA’, the effect of the diaphragm 376 
thickness on four quantities increases with the diaphragm number. So the diaphragm thickness 377 
cannot be ignored for the distortion of cantilever girders with diaphragms, especially when n>3. 378 
6.2. Case II 379 
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Fig.15 Distribution of eccentric loads caused by the hook’s location 381 

In this section, three loading cases LC1~LC3 in Fig.15 are analyzed, where the distribution 382 
of eccentric loads caused by the hook’s location is fully considered. The location of loads P1 and 383 
P2 is referred to Case I. The distance between two wheels is lw, and lw=0.1l. The total hook’s 384 
force is 40kN. In LC1, the hook is located at one eighth of lw away from the right wheel, and 385 
P1=5kN and P2=35kN. In LC2, the hook is located symmetrically , and P1=P2=20kN. In LC3, the 386 
hook is located at one eighth of lw away from the left wheel, and P1=35kN and P2=5kN. 387 

(b) warping stress, LC1(a) warping displacement, LC1

(d) warping stress, LC2(c) warping displacement, LC2

(f) warping stress, LC3(e) warping displacement, LC3  388 
Fig.16 3D contours of warping displacements and stresses for cantilever girders with two diaphragms  389 

under LC1~LC3 (amp=100) 390 



 

 

(b) warping stress, LC1(a) warping displacement, LC1

(d) warping stress, LC2(c) warping displacement, LC2

(f) warping stress, LC3(e) warping displacement, LC3  391 

Fig.17 3D contours of warping displacements and stresses for cantilever girders with five diaphragms  392 
under LC1~LC3 (amp=100) 393 
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Fig.18 Distribution of (a) warping displacement and (b) warping stress of the cantilever girder with  395 

two diaphragms under LC1~LC3 396 
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Fig.19 Distribution of (a) warping displacement and (b) warping stress of the cantilever girder with  398 

five diaphragms under LC1~LC3 399 
Fig.16~Fig.17 give the 3D contours of distortional warping displacements and stresses for 400 

cantilever box girders with 2 and 5 diaphragms under LC1~LC3, respectively. The ‘amp’ indicates 401 



 

 

the amplified factor of deformations. In FEA model, Young’s modulus E=2.1×1011Pa, Poisson’s 402 
ratio υ=0.3, the span l=2m, the width b=0.1m, the height h=0.2m and the flanges and webs 403 
thicknesses t1=t2=t3=0.01m. Diaphragms are distributed uniformly along the span with 404 
tp=0.005m. 405 

Comparison results between FEA and IPM are shown in Fig.18 and Fig.19 for warping 406 
displacements and stresses for cantilever girders with 2 and 5 diaphragms under LC1~LC3. 407 

Some findings can be drawn from Fig.18 and Fig.19 as follows 408 
(1) The IPM results show good agreements with the FEA ones for the distortional warping 409 

stresses and displacements. Besides, the warping stresses and displacements in LC2 are right the 410 
average of those in LC1 and LC3 due to the linear superposition. 411 

(2) The distribution of loads P1 and P2 will influence the position and value of maximum 412 
warping displacement and stress. For girders with 2 diaphragms, when the hook moves from the 413 
right (LC1) to left (LC3), the maximum warping displacement reduces from 33.7μm to 10.2μm 414 
and the corresponding position changes from the free end to the section z=1.7m; meanwhile, the 415 
maximum warping compressive stress reduces from 15.2Mpa to 4.93Mpa and the position from 416 
the section z=1.7m to z=1.4m. While for girders with 5 diaphragms, the maximum displacement 417 
reduces from 36.3μm to 11.2μm and the position changes from the free end to the section z=1.8m; 418 
meanwhile, the maximum warping compressive stress reduces from 22.2Mpa to 10.2Mpa and the 419 
position from the section z=1.7m to z=1.6m. 420 

(3) Both the maximum warping displacement and compressive stress in LC3 are the smallest 421 
among all LCs. However, the maximum tensile stress in LC3 is 36% larger than the compressive 422 
one for girders with 2 diaphragms, which may result in the crack propagation when there is crack 423 
in the tensile field. It will be effective to reduce the tensile stress by installing more diaphragms. 424 
As shown in Fig.19b, the maximum tensile stress get reduced to 2.74Mpa for girders with 5 425 
diaphragms in LC3, taking only 40.96% of those for girders with 2 diaphragms. 426 

So the warping displacements, the compressive and tensile stresses should be all taken into 427 
account when choosing the reasonable hook’s location for cantilever girders with diaphragms. 428 
6.3. Case III 429 

The distortional warping stresses and displacements at node N for the sections z=0.05l, 0.5l 430 
and 0.95l are analyzed with the trolley moving from the fixed end to the free one for cantilever 431 
girders with 2 and 5 diaphragms in LC2, where the measurements for both the section and 432 
diaphragms are referred to Case II. The influence lines for warping stresses and displacements are 433 
analyzed in Fig.20 to Fig. 22 in terms of the sections z=0.05l, 0.5l and 0.95l. 434 

Fig.20 shows the influence lines for warping stresses and displacements at the section z=0.05l 435 
varying with the position z1 of the left wheel for cantilever girders with and without diaphragms in 436 
LC2. It is seen that the minimum values occur at z1=0.15l for warping stresses (Fig.20a) and 437 
z1=0.1l for the displacements (Fig. 20b). Compared with the girder without diaphragms, the 438 
minimum warping stress gets reduced by 24.3% for girders with 2 diaphragms and 87.3% for 439 
girders with 5 diaphragms, while for warping displacements, the percentages are 10.7% and 440 
72.1%. Besides, all curves converge to zero after z1=0.6l. 441 

Fig.21 gives the case of the cross section z=0.5l for the warping stresses and displacements in 442 
LC2. It shows that the warping stress is approximately symmetrical to z1=0.45l in Fig.21a. The 443 
maximum stress occurs at around z1=0.4l and z1=0.5l for girders without diaphragms and with 2 444 
diaphragms. While for the warping displacement in Fig.21b, it shows anti-symmetry to z1=0.45l. 445 



 

 

Both the warping stresses and displacements are largely restrained by more diaphragms. 446 
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Fig.20 Influence lines of warping stresses and displacements of the cross section z=0.05l for cantilever girders 448 

without and with diaphragms under moving wheel loads 449 
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Fig.21 Influence lines of warping stresses and displacements of the cross section z=0.5l for cantilever girders 451 

without and with diaphragms under moving wheel loads 452 
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Fig.22 Influence lines of warping stresses and displacements of the cross section z=0.95l for cantilever girders 454 
without and with diaphragms under moving wheel loads 455 

Fig.22 shows the influence lines of the cross section z=0.95l for the warping displacements 456 



 

 

and stresses in LC2. For the warping stresses in Fig.22a, it shows a big drop after the critical 457 
position around z1=0.3l for girders with 5 diaphragms and z1=0.6l for those without diaphragms 458 
and those with 2 diaphragms. While for the warping displacements in Fig.22b, the similar big drop 459 
is shown after z1=0.58l for girders with 2 diaphragms and z1=0.35l for those without diaphragms 460 
and those with 5 diaphragms. Besides, compared with those with 2 diaphragms, girders with 5 461 
diaphragms have a larger increment for both displacements and stresses at the free end. 462 

Based on the analysis, both the loading position and the cross section being concerned should 463 
be taken into account when choosing the proper diaphragm number for cantilever girders. 464 

Also, as aforementioned in Section ‘IPM solution’, the moment Mpi is introduced to indicate 465 
the interactions between the girder and diaphragms. Mpi is believed to be the key point in solving 466 
the distortion of cantilever girders with inner flexible diaphragms. So it is necessary to examine 467 
the variability of the moment Mpi (i=1,2,…,n) under moving wheel loads. 468 
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Fig.23 Distortional moments Mpi of diaphragms for cantilever girders with (a) two and (b) five diaphragms 470 

Fig.23 shows the distortional moments Mpi (i=1,2,…,n) of diaphragms for cantilever girders 471 
with 2 and 5 diaphragms, where Mj (j=1,2) are the external moments produced by distortional 472 
loads, and M1=M2=500Nm and ΣMj=1000Nm in LC2. The range for the negative moment Mpi is 473 
defined as ‘effective interval’ (EI) for diaphragms, since only the Mpi, in the direction opposite to 474 
Mj, will resist the warping deformation and stresses of the cross section. 475 

It is seen from Fig.23a that the EIs for both Mp1 and Mp2 occupy approximately 70 percent of 476 
the span for cantilever girders with 2 diaphragms. While the occupations for all Mpis reduce to less 477 
than 50 percent for girders with 5 diaphragms in Fig.23b. Besides, several segments are divided in 478 
the bottom belt based on EIs, and the numbers in segments indicate the diaphragms with negative 479 
Mpi. This means: when the trolley moves from the left to right, the 1th diaphragm is the first to 480 
resist distortional deformations, followed by both diaphragms in the middle and the 2th diaphragm 481 
at last for cantilever girders with 2 diaphragms. The similar process is performed for girders with 482 
5 diaphragms in the order of the 1th, 1th and 2th, 2th and 3th, 3th and 4th, 4th and 5th, 5th 483 
diaphragms. Besides, considering the linearity between the moment Mpi and the shear strain γpi, 484 
Fig.23 also shows the variability of the shear strain γpi of diaphragms under moving wheel loads. 485 
7. Conclusions 486 

The distortion of cantilever girders with inner flexible diaphragms subjected to concentrated 487 
eccentric loads is investigated using initial parameter method, in which the in-plane shear strain of 488 
diaphragms is considered. Based on the compatibility condition between the girder and 489 
diaphragms, solutions for distortional warping displacements and stresses are both obtained. The 490 



 

 

main conclusions can be drawn as follows 491 
(1) Compared with FEA results, the IPM has a high accuracy in calculating the distortional 492 

angle, warping displacements and stresses for cantilever girders with inner flexible diaphragms. 493 
However, the distortional angle obtained from the IPM is susceptible to the influence of stress 494 
concentration, and it is necessary to install more diaphragms at the loading sections. 495 

(2) A series of parametric studies are performed to examine the effects of the diaphragm 496 
number and thickness, the ratio of height to span of the girder, the hook’s location and the wheels' 497 
positions on the distortion of cantilever girders with inner diaphragms. 498 

In Case I, four quantities - distortional angle, warping displacement and stress, shear stress all 499 
vary exponentially along with the diaphragm number under various ratios h/l and tp/t. The effect 500 
of the diaphragm thickness on four quantities increases with the diaphragm number and cannot be 501 
ignored when the diaphragm number exceeds 3. 502 

In Case II, the distribution of eccentric loads influences the positions and values of maximum 503 
warping displacement and stress. The maximum compressive stress in LC3 is the smallest among 504 
all LCs, but the tensile stress is the largest, which may result in the crack propagation when there 505 
is a crack in the tensile field. It would be effective to lower the tensile stress by installing more 506 
diaphragms. 507 

In Case III, a series of influence lines of distortional warping stresses and displacements are 508 
obtained at node N for the cross sections z=0.05l, 0.5l and 0.95l for cantilever girders with 2 and 5 509 
diaphragms under moving wheel loads. The influence lines of displacements and stresses are 510 
related to the number of diaphragms and the position of cross section being analyzed. Results 511 
show that both the loading position and the cross section being concerned should be taken into 512 
account when choosing the proper diaphragm number for cantilever girders. 513 

Based on the initial parameter method, it is possible to optimize the warping displacements 514 
and stresses of cantilever girders considering the position and thickness of diaphragms. The future 515 
work will be extensively researched for (1) the optimization of warping displacement and stress, 516 
(2) the distortion of cantilever girders with perforated diaphragms. 517 
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Appendix A 521 

The relationships between φi(z) (i=1,2,3,4) and their differentiations are 522 

(1)
1 1 4 2 2ϕ λϕ λ ϕ= + , (1)

2 1 3 2 1ϕ λϕ λ ϕ= − , (1)
3 1 2 2 4ϕ λϕ λ ϕ= − , (1)

4 1 1 2 3ϕ λϕ λ ϕ= + ;       (A.1) 523 

( )(2) 2 2
1 1 2 1 1 2 32ϕ λ λ ϕ λ λ ϕ= − + , ( )(2) 2 2

2 1 2 2 1 2 42ϕ λ λ ϕ λ λ ϕ= − − , 524 

( )(2) 2 2
3 1 2 3 1 2 12ϕ λ λ ϕ λ λ ϕ= − − , ( )(2) 2 2

4 1 2 4 1 2 22ϕ λ λ ϕ λ λ ϕ= − + ;            (A.2) 525 

( ) ( )(3) 3 2 2 3
1 1 1 2 4 1 2 2 23 3ϕ λ λ λ ϕ λ λ λ ϕ= − + − , ( ) ( )(3) 3 2 2 3

2 1 1 2 3 1 2 2 13 3ϕ λ λ λ ϕ λ λ λ ϕ= − − − , 526 

( ) ( )(3) 3 2 2 3
3 1 1 2 2 1 2 2 43 3ϕ λ λ λ ϕ λ λ λ ϕ= − − − , ( ) ( )(3) 3 2 2 3

4 1 1 2 1 1 2 2 33 3ϕ λ λ λ ϕ λ λ λ ϕ= − + − .  (A.3) 527 
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