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Abstract 

This research focuses on the theoretical analysis, development and experimental evaluation of a 

water cooled Electromagnetic Acoustic Transducer (EMAT) specifically designed for high-

temperature Guided Wave Testing (GWT). Its novel design and detailed calculation of its optimum 

operating conditions resulted in its effectiveness at high temperatures for both short (500
o
C) and 

long-term inspection (250
o
C).    

All the steps followed for the theoretical and experimental investigation of the limitations of the 

existing technology and the development of a probe that can overcome these boundaries are 

presented. Finite Element Analysis (FEA) was performed for the optimization of the EMAT design 

and estimation of its ultrasonic and thermal properties at room and high temperatures over time. 

The wave mode purity profile of the Periodic Permanent Magnet (PPM) EMAT was theoretically 

studied as well as the effect of temperature rise on its ultrasonic performance. Thermal and 

Computational Fluid Dynamics (CFD) analysis was accomplished for the EMAT design 

optimization and calculation of its optimum operating conditions. 

The experimental validation of the theoretical study was also accomplished. The novel water 

cooled EMAT was developed and experimentally evaluated regarding its ultrasonic and thermal 

response at room and high temperatures. An empirical method for the enhancement of EMAT 

performance and its SNR was established. The wave mode purity characteristics of PPM EMAT 

were experimentally investigated via Laser vibrometry tests, which agreed with FEA results. The 

impedance analysis and ultrasonic evaluation of the EMAT at both room and high temperatures 

against various operating conditions were linked and compared to the results obtained from the 

ultrasonic, thermal and fluid FEA. In all cases, the experimental study is in good agreement with 

the theoretical results.        
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Chapter 1 

Introduction 

1.1 Motivation 

In nuclear, solar thermal and oil industry, critical components operate under hostile conditions. 

Pipelines, tanks, pressure vessels and absorber tubes carrying flammable liquids can suffer from 

creep, thermomechanical fatigue and hot corrosion due to high temperatures [1-4]. This can result 

in the appearance of an internal or surface defect on them, which can lead to the shutdown of the 

plant, economic damage and in some cases to severe hazard for human life as well. The structural 

assessment of these components is of high importance since defects can be detected, localised and 

sized in early stage before an irreversible failure of the structure occurs. Non-Destructive Testing 

(NDT) can be employed for structural monitoring or inspection of structures operating at high 

temperature.  

NDT is an interdisciplinary subject that has been widely applied to industrial environments for the 

structural assessment of components of various shapes and sizes without causing any further 

damage to them [5-7]. The operating conditions, access, size and structural complexity of the 

object under inspection limits the number of NDT techniques that can be efficiently employed.  

Acoustic Emission (AE), Eddy Current (EC), Laser Ultrasonic, Interferometry, Thermography and 

Guided Wave Testing (GWT) have been used at high temperatures, with shortcomings [8-13]. The 

sensitivity to noise and vibrations, instrumentation complexity, high cost and achieving qualitative 

results are some of their drawbacks. The high-temperature performance of the sensors or 

transducers used can limit the efficiency of the technique used.  

GWT is commonly used for the inspection or monitoring of large structures from single point [14-

15]. Long pipelines, large tanks and buried pipes carrying flammable fluids are usually inspected 

with the use of GWT, due to their size and limited number of access points. Guided waves can 
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propagate large distances without significant attenuation; however, their wave velocity depends on 

both the geometry of the specimen and the excitation frequency – a phenomenon called dispersion, 

which complicates the interpretation of signals [15-18]. Shear Horizontal (SH0) or T(0,1) is not 

dispersive and cannot propagate in liquids, simplifying signal interpretation and online inspection 

of structures containing liquids. GWT can also be used for the inspection of high-temperature 

structures, like absorber tubes whose length can reach 12 meters and operate up to 500
o
C [2]. 

However, its efficiency is limited by the high-temperature performance of the transducers.  

The dominant technology of transducers for GWT is piezoelectric. They have high signal to noise 

ratio, are easy to use, have low cost and small size and do not require high driving voltages. 

However, they demand physical contact with the specimen either by means of coupling medium 

between them and the specimen or of large force exerted on them (dry coupling) [19]. As a result, 

moving structures or components under vacuum cannot be inspected by piezoelectric transducers. 

Since the first high-temperature piezoelectric transducer appeared in 1940 several piezoelectric 

materials have been tested at high temperatures [20-22]. PZT is the most widely used material, 

operating efficiently up to 200
o
C. Piezoelectric transducers can thermally decompose and lose 

oxygen at high temperatures [20-22]. The duration of exposure to high temperatures can 

significantly influence transducers properties. PZTs’ performance degrades greatly over time at 

high temperatures making it unsuitable for that particular target temperature of 500
o
C. When the 

Maximum Operating Temperature (MOT) of PZTs is exceeded, the transducers permanently lose 

their piezoelectric property and require costly replacement.  

Electromagnetic Acoustic Transducers (EMATs) are non-contact transducers, have simple design 

and can be used with GWT to inspect long, moving structures, high-temperature objects or 

structures under vacuum. Therefore, they can potentially be employed for the inspection of 

absorber tubes, which are long stainless steel pipes inside glass envelope under vacuum [2]. They 

can excite/receive all types of wave (bulk, Rayleigh and Lamb) and require neither a viscous 

couplant nor a large force exerted to excite SH waves in the specimen [23-27]. They are not subject 

to skin effect and can be employed for the inspection of any electrically conductive material. They 

are more efficient on ferromagnetic specimens. However, they are power demanding and their 
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ultrasonic performance varies with the material properties of the specimen. Their ultrasonic 

response is also lower than PZTs’ – inspected lengths with EMATs are an order of magnitude 

smaller.  

To date, high-temperature EMATs have been developed only for thickness measurements on metal 

blocks. The already reported high-temperature EMAT technology is not suitable for GWT [231-

235]. An EMAT that can be used in GWT and withstand high temperatures for both inspection and 

monitoring is still required to be designed and tested and it is the subject of the study reported in 

this thesis. This EMAT can be employed in oil and gas industry for high-temperature GWT 

inspection of long pipelines or tanks which carry flammable liquids and their structural integrity 

assessment is of great importance. The high-temperature GWT of moving or under vacuum 

structures, like absorber tubes, can also be accomplished with the use of this EMAT. 

1.2. Aim 

The development of novel EMAT for high-temperature GWT for both short and long-term thermal 

exposure is the aim of this study. The limitations of the current EMAT technology for GWT at high 

temperatures (100
o
C-500

o
C) are needed to be experimentally investigated and surpassed by the 

new GWT EMAT. The transducer is designed to exceed the boundaries and MOT of existing 

technology and operate up to 500
o
C for short period of time and at lower temperatures over longer 

time periods. Finite Element Analysis (FEA) for the calculation of the effect of temperature rise on 

EMAT ultrasonic performance and its thermal properties and the estimation of the optimum EMAT 

design has been performed. The experimental characterisation, ultrasonic and thermal evaluation of 

the transducer at both normal and extreme operating conditions are the final targets of this research.    

1.3. Specific Objectives 

This research aimed to meet the aforementioned targets by materialising the following objectives.  



Introduction  20 

 

 

 Identification of potential and constraints existing GWT EMAT technology experiences at 

high temperatures.  

 Coupled electromagnetic/mechanical FEA model for the qualitative estimation of 

temperature effect on the ultrasonic performance of EMAT.  

 Thermal and Computational Fluid Dynamics (CFD) FEA for optimum material selection, 

EMAT design and operating conditions at elevated temperatures. 

 Establishment of an empirical method for the enhancement of Signal to Noise Ratio (SNR) 

of the signal received of EMATs and improvement of their defect detection capabilities. 

 EMAT development and experimental investigation of its impedance profile against 

various operating parameters and its wave mode purity characteristics via vibrometry tests. 

 Experimental comparison of the ultrasonic performance of novel EMAT at ambient 

temperature to that of existing room temperature EMAT for GWT. 

 Thorough experimental evaluation of ultrasonic potential and limitations and thermal 

properties of new EMAT at high temperatures against various operating conditions for both 

short and long-term thermal exposure. 

1.4. Summary of Methodology Used 

This research focuses on the theoretical analysis and development of an SH EMAT for GWT at 

high temperatures (above 100
o
C) for both inspection and monitoring. A Periodic Permanent 

Magnet (PPM) EMAT was designed to operate efficiently up to 500
o
C for inspection and 250

o
C for 

continuous monitoring, for potential deployment on absorber tubes. Thermal and CFD FEA were 

performed for material selection, optimisation of EMAT design and calculation of its optimum 

operating conditions. FEA of the ultrasonic response of the PPM EMAT transmitter was carried out 

and experimentally validated by means of vibrometry analysis on both steel and stainless steel at 

room temperature. Experimental impedance analysis of the transducer at both room and high 

temperature was also accomplished and correlated to the final ultrasonic results obtained when the 

EMAT was experimentally evaluated regarding its GWT performance at room and high 

temperatures.   
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1.5. Thesis Outline 

The skeleton of the thesis is presented below. The first three Chapters summarise the research on 

EMAT technology that has been performed already, mainly focusing on EMATs for GWT and 

high temperatures, and introduces the main novelties of this study compared to the existing. The 

next three Chapters present the theoretical analysis performed for the designing of a novel EMAT 

for GWT at high temperatures and the experimental methodology followed for the ultrasonic 

characterisation and evaluation of the final EMAT prototype. A detailed description of the 

contributions of this study can be found in the following five Chapters.   

Chapter 2 gives an overview of the NDT techniques that have been successfully employed at high 

temperatures, with emphasis given on GWT. The advances of piezoelectric transducer technology 

for GWT and more especially their high-temperature performance are also summarised. A 

literature review on EMAT technology and more particularly, on EMATs for high-temperature 

applications and GWT is also presented. 

In Chapter 3 the operating principles of guided waves and EMATs are described. The basic theory 

of guided waves, their wave propagation mechanisms, dispersion nature and the effect of 

temperature rise on the guided wave propagation and the physics governing the excitation and the 

reception of ultrasound by EMATs are presented and emphasis is given on both Lorentz and 

magnetostriction mechanism. The effect of temperature on EMAT performance is also analysed in 

this Chapter. The electrical circuit of EMAT, its impedance and their relationship with temperature 

rise are also highlighted in this section. 

The theoretical analysis performed for the identification of the optimum EMAT design for GWT at 

high temperatures is presented in Chapter 4. The ultrasonic response of PPM EMAT transmitter on 

stainless steel plate and the guided wave propagation at both room and high temperatures was 

analysed via FEA. Also, the results obtained from thermal and CFD FEA in regards to material 

selection, optimum EMAT design and operating conditions are presented in this Chapter. Part of 

this Chapter is the basis of an article published in Applied Sciences [P2]. 
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The results obtained from preliminary high-temperature experiments with the existing EMAT 

technology designed for GWT at room temperature are cited in Chapter 5 and can be used as a 

benchmark for the novel high-temperature EMAT. An empirical approach regarding the SNR 

enhancement of the signal received from PPM EMAT at room temperature and its correlation to 

the electrical properties of EMATs against the specimen are also analysed in this Chapter. The 

wave purity characterisation of the new EMAT prototype via vibrometry tests and the results 

obtained from its impedance analysis at room and high temperature are also summarised. Parts of 

this Chapter are the basis of an article published in Applied Sciences [P2] and another article 

published in Sensors [P1].  

Chapter 6 describes the experimental procedure followed for the ultrasonic evaluation of the new 

EMAT design against high temperatures. The experimental setup and results collected from the 

GWT of steel and stainless steel plates with the use of the new EMATs up to 500
o
C for short 

period of time and 250
o
C over time are presented in details. Parts of this Chapter and Chapter 4 are 

the material of an article published in Sensors [P1].    

Finally, the conclusions of this study are summarised in Chapter 7 and further work is also 

suggested. 

1.6. Contributions to Knowledge 

This study managed to shed light on various questions regarding EMAT technology and GWT at 

both ambient and high-temperature environment, as they are listed below.  

 A shielding technique for the enhancement of the SNR of the signal received by PPM 

EMAT was established and theoretically analysed.  

 FEA model calculating the ultrasonic response of PPM EMAT at both room and high 

temperatures was accomplished and can be utilised further for qualitative estimation of the 

ultrasonic properties of other EMAT configurations at high temperatures.  
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 Thermal and CFD models determining the thermal properties of EMAT were developed 

and experimentally validated; they can provide valuable information regarding the thermal 

response of EMAT designs operating under hostile conditions.  

 An experimental investigation concerning the wave purity characteristics of PPM EMAT 

was also performed, rendering critical and fundamental information about the GWT 

performance of this EMAT configuration. It was proved that PPM EMAT exhibits poor 

wave mode purity capabilities.   

 A novel, water cooled EMAT for GWT operating efficiently up to 500
o
C for short time 

period and 250
o
C over time was developed and thoroughly evaluated against various 

operating conditions.   
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Chapter 2 

Literature Review 

2.1 Introduction 

This Chapter briefly presents the operating principles of the main NDT techniques that have been 

successfully deployed at high temperatures and their limitations. GWT is highlighted and a 

literature review on GWT transducers and more particularly, on EMATs and their potential on 

GWT and high-temperature applications is also given.  

2.2 NDT Techniques for High-Temperature Inspection 

There are several NDT techniques that can be applied for the inspection or monitoring of structures 

operating at elevated temperatures. AE, Optical Inspection techniques, EC, Thermography, Laser 

Ultrasonic and Ultrasonic Testing (UT) can successfully be employed at least up to 300
o
C.  

AE is the class of phenomena whereby transient elastic waves are generated by the rapid release of 

energy from a localized source or sources within a material, or the transient elastic wave(s) so 

generated. The initiation or propagation of a structural deformation/discontinuity in specimen 

generates elastic waves that can be received by transducers that are attached to the surface of the 

specimen. The interpretation and feature extraction of the signal received can lead to the detection 

and localization of a defect [28]. AE has been widely deployed for the Structural Health 

Monitoring (SHM) of bridges, nuclear reactors, engines and aerospace metallic structures since 

real-time information regarding the structural integrity of the specimen can be obtained [28-34]. 

AE transducers have been employed at high temperatures as well [35-41]; piezoelectric 

transducers, like Yttrium Calcium Oxyborate and Aluminium Nitride, have been successfully used 

in AE up to 700
o
C and 1200

o
C respectively [8, 42]. Nevertheless, AE is greatly sensitive to 

background noise and gives qualitative results [43]; recent advances show that this problem has 
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been partially tackled [43-46]. However, real-time de-noising and interpretation of the signal 

received from complicating structures is still a non-trivial task [34].  

Optical inspection methods are non-contact NDT techniques that assess the structural integrity of 

the specimen by comparing its current state to a reference signal. A laser beam illuminates a large 

area of the specimen and the electromagnetic response of the latter is collected and compared to the 

initial laser beam characteristics. Both signals are of the same frequency and any difference in the 

distance they travel results in their phase difference, which is used for the construction of a pattern 

image of the specimen. Shearography, Holographic and Photothermal Interferometry and Digital 

Image Correlation have often been employed for surface defect detection [11, 47-54]. Holographic 

Interferometry and Digital Image Correlation have been successfully used for the structural 

assessment of high-temperature structures (up to 1600
o
C) like, turbines blade [55-57]. However, 

their instrumentation is complicating and are mainly utilised for laboratory tests. Specially trained 

personnel is also needed.   

EC is a non-contact technique that can be employed for the inspection of any electrically 

conductive material regardless of its magnetic properties. EC probes comprise a coil that carries 

alternating current. A dynamic magnetic field is produced all around the coil, which induces eddy 

current on the surface of specimen that is underneath the coil in good proximity. When the 

magnetic and/or the electrical properties of the specimen alter or a defect exists on the surface of 

the specimen, the eddy current distribution on the surface of the specimen differs and causes an 

alteration in the impedance of the EC receiver. EC has been widely employed for pitting detection 

on metals, weld inspection and defect sizing [58-64]. It has been also employed at high 

temperatures up to 500
o
C [65, 66]. There are commercial high-temperature EC probes operating up 

to 280
o
C and 380

o
C (continuously) [67, 68]. Urayama et al. have also developed and preliminarily 

tested a dual EMAT/EC probe for high-temperature monitoring (300
o
C) of pipe wall thinning [69]. 

However, it can only be utilized on electrically conductive materials for surface and subsurface 

defects, since it is subject to skin effect [70]. Also, EC scanning of large structures can be greatly 

time -consuming.  
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Thermography monitors the temperature gradient on the surface of the specimen. As the structure 

under inspection is heated up, it emits infrared energy which can be captured by infrared camera. 

The radiation emitted by the specimen is directly related to its temperature and emissivity. If any 

internal or surface discontinuities are present, the temperature gradient of the specimen alters. 

Hence, the thermal imaging of the specimen can provide valuable information regarding its 

structural integrity [71]. Large areas can be inspected or monitored online, since thermography is a 

non-contact technique. Infrared thermography has been widely employed for the non-destructive 

testing of concrete structures, bridges and composites [71-74] and the inspection of high-

temperature structures [12]. Commercial infrared cameras operating up to 3000
o
C are available and 

suitable for the inspection of industrial furnaces, heaters and boilers [75, 76]. Nevertheless, 

thermography cannot be used efficiently when the access on the surface of the specimen is limited 

and it is time-consuming for the inspection of large structures [77].     

Lasers can generate ultrasound by means of either thermal expansion or ablation. In the former 

case, the laser beam heats up a small area on the surface of the specimen; if the temperature on this 

area exceeds the melting point of the specimen, thermal expansion occurs and some material is 

evaporated resulting in the generation of ultrasound [78-81]. In ablation regime, plasma is 

generated in the area the laser beam points at and it contributes to ultrasound generation due to its 

expansion [78-81]. Lasers produce short pulses of high power signals and therefore the energy 

introduced to the specimen results in broadband ultrasound with dominant high-frequency content. 

The ultrasound can be detected by lasers [54] or any other technology of ultrasonic transducers [91-

95]. Lasers have been employed for crack sizing, wall thickness measurements and elastic 

properties estimation up to 1000
o
C [82-85]. Laser/EMATs setups have been reported in the 

literature for non-contact generation/reception of ultrasound at both room [86-93] and various high 

temperatures up to 1300
o
C [10, 94-101]. In all cases, the ultrasound is generated by lasers and is 

detected by EMATs. Laser ultrasonic has a small and adjustable footprint. Therefore, it can be used 

for the inspection of irregular surfaces and samples of small and complex geometry [102]. It 

induces high-frequency ultrasound to the specimen and thus very small defects can be detected as 

well [78-81]. However, its setup is complex and it is mainly used for laboratory tests [78-81].  
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UT is an established NDT technique that can be categorized into conventional UT where bulk 

waves propagate in the structure and GWT in which guided waves are of interest. The geometry of 

the specimen, the wave propagation mechanisms and the specifications of the application 

determine the technique that should be applied. Bulk waves propagate in infinite structures and 

their velocity depends only on the material properties of the specimen. Shear and longitudinal 

waves propagate inside the specimen and their velocity is independent of frequency. Conventional 

UT is mainly used for thickness measurements, weld inspection and defect sizing [103-114], while 

it is time-consuming when scanning of large structures is needed. Guided waves derive from the 

interaction of bulk waves with the boundaries of the specimen; reflection, refraction and mode 

conversion between shear and longitudinal waves occur. Guided waves can be divided into 

Rayleigh and Lamb waves in terms of the wave propagation mechanism; the former propagate at 

the boundaries while the latter travel between the boundaries of the specimen. Guided waves can 

propagate large distances without significant attenuation and their velocity is dependent on the 

material properties and the geometry of the specimen and frequency. A phenomenon called 

dispersion which complicates the interpretation of the signals received [14-17]. GWT is used for 

the inspection or monitoring of large structures from a single point and therefore it has been widely 

employed for pipeline and tank inspection in nuclear, solar, oil and gas industries [2, 115-121]. 

Conventional UT and GWT can also be used for the inspection of high-temperature structures, but 

their efficiency is limited by the high-temperature performance of the transducers [122, 123]. 

Piezoelectric, Macro Fiber Composite (MFC) and EMAT are the main three types of GWT 

transducers. The first two share similar operating principles, since they experience mechanical 

deformations when electrical energy is applied to them resulting in the vibration of the specimen 

and the generation of ultrasound, and vice versa [19, 124]. Nevertheless, only piezoelectric 

transducers have been reported for their successful deployment at high temperatures [21]. EMATs 

are non-contact transducers that have been used at both conventional UT and GWT and can 

efficiently substitute piezoelectric technology in challenging applications like inspection of moving 

or under vacuum structures or at high temperatures [95, 125].   
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A more detailed overview of GWT as well as a brief literature review of piezoelectric and mainly 

EMAT transducers follow.   

2.3 Guided Wave Testing 

In nuclear, solar, oil, gas and petrochemical industries there are meters of pipelines carrying 

inflammable liquids that operate under hostile conditions like high pressure and high temperatures. 

They are likely to suffer from corrosion, creep and fatigue. Defects like cracks and corrosion can 

appear on these structures and result in their structural failure and even in life hazard. Regular 

inspections regarding their structural integrity are therefore needed. A considerable number of 

these pipelines is insulated and thus any insulation removal required for their inspection can be 

significantly costly. In some cases, buried pipelines need to be also assessed regarding their 

structural integrity, however, the access to these pipes is limited and their excavation is expensive. 

Pressure vessels, tanks, absorber tubes and rail-rods are also large structures that require either 

monitoring or regular inspections. An NDT technique that has been widely employed in the 

aforementioned applications and has managed to tackle the above problems is GWT. 

Guided waves are low-frequency ultrasonic waves that can propagate either at the boundaries of a 

structure or within them. They can travel long distances without great attenuation making them 

attractive for the inspection of large structures. Insulation removal is required only in few small 

areas where the transducers are to be employed; structures of tens of meters of length can be 

inspected from a single point, since GWT systems usually operate in a pulse-echo configuration. 

Since 1957, when Worlton [16, 126] experimentally investigated the use of Lamb waves in GWT, 

many a researcher have studied Lamb and Rayleigh waves; especially from the 1970s onwards, 

Viktorov [14], Doyle and Scala [127], Silk and Bainton [128], Bottger et al. [129], Rose [130] and 

Mohr and Holler [131] researched the potential of guided waves in the structural assessment of 

planar and tubular structures. During 1990s Cawley and Alleyne studied the interaction of Lamb 

waves with defects and optimized Lamb wave inspection [15-19, 132, 133]. Their research has set 

the foundations for the production of the first commercial GWT system [116]. To date, there are 

three commercial GWT systems available from Plant Integrity Ltd (wholly owned subsidiary of 
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TWI) [134], Guided Ultrasonics Ltd [135] and MKC NDT [136]. The first two systems make use 

of piezoelectric transducers and technology that has been patented by Cawley et al. in 1994 [116], 

while the third system uses magnetostrictive transducers. Guided Ultrasonics Ltd has also 

developed a high-temperature GWT system (High-Temperature Wavemaker Pipe Screening 

System) that can operate up to 240
o
C for inspection purposes with the use of PZT transducers and 

Plant Integrity Ltd has also launched a GWT system (Teletest) for high-temperature inspection up 

to 250
o
C and monitoring up to 200

o
C that again make use of high-temperature PZT transducers.      

The SNR of the signal received at room and high temperatures, the wave mode purity 

characteristics, the length of inspection and the defect detection probabilities of GWT system vary 

for different applications due to the physics of guided waves, but also to the ultrasonic 

characteristics of the transducers used. The following subsection analyses the GWT potential of the 

two main technologies of GWT transducers and presents their capabilities at room and high 

temperatures.      

2.4 Piezoelectric Transducers for GWT 

The dominant GWT transducers are piezoelectric. They are easy to use, have low cost and small 

size and do not require high driving voltages but do need physical contact with the specimen [19]. 

A coupling medium (water-based gel) is usually applied on the surface of the structure under 

inspection so that the ultrasound will be efficiently introduced to it [19]. Alternatively, a large force 

is exerted upon the transducer so that the latter will be in full contact with the specimen while the 

piezo-crystal will not break as well; so-called dry-coupled piezoelectric transducer [19]. As a 

result, moving structures or components under vacuum cannot be inspected by this technology of 

transducers, while specially designed couplants and transducers withstanding high temperatures are 

required for high-temperature inspection or monitoring.  

The phenomenon of piezoelectricity was firstly reported by Pierre and Jacques Curie in 1880 and 

refers to the ability of piezoelectric crystals to generate an electric field when external stress is 

applied to them (receiver), and conversely, to exhibit a mechanical deformation when they 
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experience an electric field (actuator) [20]. Quartz was the first natural piezoelectric material that 

has been studied, but synthetic ferroelectric materials exhibit larger piezoelectric properties than 

those of natural elements [20]. In more details, piezoelectric crystals have no center of symmetry 

along their piezoelectric axes; they are composed of randomly oriented dipoles with no net 

polarization. When a relatively large electric field is applied to a piezoelectric material, its dipoles 

get aligned to the orientation of the external electric field and they maintain this alignment even in 

its absence. This procedure is called poling and results in the polarization of the material, which 

can be described as the charge per unit area. 

Polarization and subsequently ultrasonic efficiency of a piezoelectric material are directly affected 

by the piezoelectric, dielectric and elastic properties of the material. The main three parameters that 

influence the ultrasonic performance of a piezoelectric element or transducer are the piezoelectric 

voltage (g) and the piezo strain (d) coefficients and the thickness shear coupling factor (k). Their 

values can render an indication of the GWT potential of a piezoelectric material and thus they can 

be utilized as criteria for the material selection of a piezoelectric GWT transducer.  

Curie temperature is another essential criterion for the selection of suitable high-temperature 

piezoelectric transducer. As temperature increases, the kinetic energy of the dipoles increases and 

leads them to lose their alignment. Consequently, a significant drop in the piezoelectric activity of 

the material occurs. Especially when temperature exceeds the Curie temperature of the material, the 

dipoles lose permanently their polarization and therefore extra poling is required when the material 

is cooled down. The electromechanical properties of the piezo-crystal also alter with temperature 

rise. The MOT of piezoelectric elements is usually chosen to be half of its Curie temperature. 

At high temperatures, and especially at low frequencies, some piezoelectric materials are subjected 

to pyroelectric effect; charge drifts interfere with the piezoelectrically induced charges and the 

material exhibits electrical moment even in the absence of an external electric field. Thermal 

expansion can also contribute to a further drop in the piezoelectric activity of the material due to 

the increase of its volume. Another fundamental limitation that can rise at elevated temperatures is 

phase transition which can alter the piezoelectric properties of the material and turn the element to 

a nonpiezoelectric phase. Twinning can also occur at elevated temperatures in both ferroic and 
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ferrobielastic materials like Quartz and SiO2. Some compositions can also become chemically 

unstable at high temperatures and can experience oxygen loss and even decomposition; therefore, 

they cannot be exposed to high-temperature environment for long time periods. Unlike inspection, 

the piezoelectric properties and subsequently the ultrasonic performance of PZT degrade greatly 

over time at elevated temperatures, making it unsuitable for monitoring. Hence, careful study of the 

relationship of the piezoelectric properties of piezoelectric materials with temperature is needed for 

the design of a high-temperature piezoelectric transducer. 

Since the first high-temperature piezoelectric transducer appeared in 1940, several piezoelectric 

materials have been tested at high temperatures [13, 20-22, 42, 123, 137-151]. Lead Zirconate 

Titanate (PZT) is the most widely used material, operating efficiently up to 250°C. It has been 

extensively used in accelerometers, hydrophones, AE sensors and UT and GWT transducers [20]. 

Bismuth Titanate is commercially available and has been used in accelerometers operating up to 

400
o
C, however, its electromechanical properties, d and g, are lower than those of PZT; making it a 

moderately attractive high-temperature piezoelectric material [20]. Lithium Niobate possesses 

Curie temperature of 1150
o
C and its electromechanical properties are relatively high, since they are 

slightly smaller than those of PZT. It is an ideal candidate for the development of accelerometers 

and UT and GWT transducers [20]. However, its resistivity is a limiting factor especially at 

temperatures higher than 650
o
 [20]. It also suffers from pyroelectricity and oxygen loss at 600

o
C 

and it can start decomposing at 300
o
C [20]. Lanthanum Titanate, Aluminium Nitride and Langasite 

possess high Curie temperature, however, their piezoelectric coefficients are considered to be low 

for the manufacturing of GWT transducers [20]. To date, the commercially available GWT systems 

designed for high-temperature inspection make use of PZT and potentially Lithium Niobate shear 

transducers that can operate up to 250
o
C [152]; still, further research has to been conducted for the 

development of piezoelectric transducers for higher temperatures and especially monitoring. 

2.5 EMATs 

EMATs are non-contact transducers that have been utilized in conventional UT for thickness 

measurement [153, 154] and welding inspection [155] and in GWT for inspection of moving 
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structures [93, 125, 156] and potentially structures under vacuum [2, 157]. They have simple 

design and can generate/receive all kinds of waves (bulk, Rayleigh and Lamb) without requiring 

either any couplant or force exerted on them. Only electrical conductive materials can be inspected 

by EMATs while their efficiency is dependent on the material properties of the specimen. The 

electric and magnetic properties of the structure under inspection can greatly affect EMAT 

performance; EMATs are more efficient on ferromagnetic materials like steel. They are also 

power-demanding, with some configurations like electromagnet EMATs requiring significantly 

more energy than conventional, permanent magnet EMATs do and resulting in high operating cost 

and bulky instrumentation. Their ultrasonic response is also lower than PZTs’—inspected lengths 

with EMATs are an order of magnitude smaller, making them more desirable as receivers rather 

than as transmitters. 

Their operating principles are primarily governed by Maxwell equations describing 

electromagnetism and Lorentz force [158] and by magnetostrictive effect firstly stated by Joule 

[159]. Dobbs [160] was the first that investigated the relationship between electromagnetism and 

ultrasound. Based on his research Lorentz force can generate ultrasonic waves within a material. 

However, it was Thompson that set the foundations of EMAT research and technology. He studied 

the generation and detection mechanisms of EMATs for Rayleigh and Lamb waves as well as their 

dependency on lift-off, material properties and coil geometry [161]. Apart from Lorentz force, he 

also investigated in depth the effect of magnetostriction and magnetization force on EMAT 

ultrasonic performance [162, 163]. In 1979, Period Permanent Magnet (PPM) EMAT was 

introduced and analyzed by Thompson and Vasile about its potential to excite and receive Shear 

Horizontal wave modes, a non-trivial task for piezoelectric transducers at that time [164]. 

Contemporarily, Kawashima contributed further to the modeling of EMAT ultrasonic properties 

and the effect of coil geometry on the ultrasound generation and reception [165, 166]. Hoeller and 

Mohr developed the first EMAT system for guided wave testing of cylindrical structures in 1976 

[131].      

Since the early 1990s and onwards, many advances in the theoretical study of EMATs have been 

reported due to general technological progress and more particularly the increasing computational 
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capabilities of computers [167-176]. Ludwig et al. developed a finite element model that calculates 

the ultrasound generated by an EMAT based on all three mechanisms of ultrasound generation 

[177-179]. This research sheds light on the EMAT performance against variable excitation means 

and lift-offs, by analyzing the ultrasonic response of EMAT coil driven by a tone-burst excitation 

signal. However, this work has never been experimentally validated. Further research was 

conducted by Ogi regarding the magnetostrictive effect on the ultrasonic properties of EMATs 

[180] and the conclusions of this study have been only qualitatively validated by experiments. In 

recent years, more research has been conducted regarding EMATs for GWT. Dixon et al. have 

investigated the EMAT physics and designs for Rayleigh and Lamb waves and their defect/crack 

detection probabilities on metal sheets, tubular structures and rail tracks [125, 181-186]. They 

studied the electrical and frequency characteristics of various EMAT designs and their impact on 

EMAT wave mode purity and directivity mainly for Rayleigh waves [183, 187]. Supplementary to 

this, Wilcox et al. focused more on guided wave theory, wave mode purity characteristics and 

directivity of EMATs for Lamb wave inspection [26, 188]. The skin effect on the efficiency of 

EMAT transmitters was investigated by Shapoorabadi et al. in 2001 by means of FEA model, 

whose results agree well with experimental results. Rose et al. theoretically investigated the defect 

detection probabilities of an EMAT system employed on coated pipes for GWT [189, 190]. The 

attenuation and phase change of the wave propagating in the pipe in regards to the material 

properties of coating were also analyzed. To date, Ribichini’s research about the magnetostriction 

effect on the ultrasonic performance of EMATs in 2011 is the first theoretical study regarding this 

topic that has been experimentally validated [27, 191].       

Added to the numerical and FEA of EMAT literature presented above, a plethora of experimental 

studies about EMAT potential and limitations on GWT have been performed on both planar and 

cylindrical structures [192-204]. EMATs have been employed for numerous industrial applications 

like material properties measurements, on-line UT and GWT of plate-like and tubular structures 

operating under extreme conditions and tomography.  

In 1979, Thompson et al. successfully developed an EMAT system for flaw detection in steam 

generator tubes [205] and a few years later Bottger et al. experimentally investigated the defect 
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detection capabilities of magnetostrictive EMATs exciting/receiving L(0,2) on ferrite pipes [129]. 

Hirao [206] has been experimentally evaluating EMATs to various applications since 1995 when 

he and his co-workers designed and tested an on-line EMAT system for measuring the S0 wave 

velocity and subsequently the r-values in cold rolled steel sheets. GWT of gas pipelines with PPM 

EMATs, corrosion detection and SH-wave mode conversion nature have been studied by Hirao et 

al. [25, 207] and they have also developed new EMAT designs for line focusing and wire 

inspection [208, 209]. Hirao and Ogi experimentally studied the ultrasonic performance of a novel 

meander-line coil (periodic coil) EMAT specifically designed to be driven with chirp signals and 

their research resulted in an EMAT with enhanced wave mode characteristics [256]. Ribichini [27] 

and Wilcox [26] have also developed periodic coil EMATs with improved magnetostrictive 

performance and Lamb tomography efficiency respectively. Over the years several researchers 

have proposed methods to enhance the ultrasonic performance of permanent magnet EMATs for 

GWT of pipelines [194]. However, it has been the magnetostrictive EMAT technology that has 

received most of the scientific and industrial attention. Murayama empirically analyzed the 

ultrasonic properties and GWT potential of various magnetostrictive EMAT designs in 1996 [210-

212] and ten years later Kwun et al. developed a magnetostrictive EMAT for both Lamb and SH 

wave modes [213]. During the last ten years, researchers have managed to optimize the shape, size 

and efficiency of Magnetostrictive Patch Transducers (MPT) for GWT of pipelines [214-223].  

EMATs specifically designed for the inspection of complex structures, moving structures or 

tomography have been reported in the literature [125, 224-230]. The on-line GWT of rail tracks 

with the use of EMATs has been studied in depth by Dixon et al. [185, 186]. One of the outcomes 

of this research was the development of a novel EMAT design for online rail-track inspection and a 

technique for lift-off compensation [125, 224]. EMATs have been widely utilized with other NDT 

techniques like Laser Ultrasonic and EC probes, for welding inspection, thickness measurement, 

crack detection and defect sizing [87-96, 225-227]. Dixon et al. established a non-contact setup of 

Laser and EMAT ultrasonic for crack detection on metal sheets where guided waves are generated 

via laser and are detected by EMATs [91-93]. Non-contact tomography and 2D imaging has been 

achieved with the use of omnidirectional EMATs specifically designed for tomography purposes 

[188, 228-230]. In 2005, Wilcox et al. designed and tested an EMAT array exciting S0 for Lamb 
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wave tomography of large areas on plate-like structures [188] and in 2007, Hutchins et al. 

accomplished a multi-mode guided wave tomography for defect detection and tomographic 

reconstruction of plates with the use of EMATs [228]. Recently, Huang et al. designed and tested a 

novel omnidirectional EMAT for ultrasonic Lamb wave tomography of defects in metallic plates 

that comprises a permanent magnet and a contra-flexure coil [229].      

The potential use of EMATs at high-temperature environments has been investigated since 1991 

when Idris et al. have designed and tested a water-cooled EMAT that can obtain ultrasonic signals 

up to 1000 °C for thickness measurements [231]. A Nd-Fe-B permanent magnet, a printed circuit 

board (PCB) spiral coil, a 0.5mm thick layer of mica and a cooling system were the main parts of 

this EMAT. Steel, Cu 10.2% Sn alloy and Al 4.86% Si alloy were tested. The ultrasound was 

introduced to the specimen via a Q-switched Nd:YAG laser and the EMAT was utilized as a 

detector. The EMAT was exposed to the heat source for as much time as it needed for the signal to 

be recorded and then it was removed. Oil- and air-cooled EMATs have been also designed and 

reported to operate efficiently for thickness measurements at high temperatures for short periods 

[232-234]. In 2011 Hernandez et al. have designed an electromagnet EMAT for thickness 

measurement up to 600 °C for short time periods without any cooling [235]. The EMAT comprised 

a pulsed electromagnet designed for high temperatures and an alumina-encapsulated, copper, spiral 

coil. The EMAT was exposed to heat for times less than two minutes, depending on the 

temperature of the specimen. The EMAT performance was investigated at room temperature on 

both steel and aluminum while at high temperatures the transducer was tested only on steel. To 

date, high-temperature EMATs have been developed only for thickness measurements on metal 

blocks and they are not suitable for GWT at high temperatures. An EMAT that can be used in 

GWT and withstand high temperatures for either inspection or monitoring is still required to be 

developed. The current study focused on the theoretical analysis and optimization of EMAT design 

for high-temperature GWT and on its development and experimental characterisation and 

evaluation.      
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2.6 Summary 

An overview of the state-of-the-art of high-temperature NDT and mainly GWT and transducers has 

been presented. A literature review of the historical progress of the modeling and experimental 

development of EMATs for GWT and EMATs withstanding high temperatures was performed and 

its conclusions set the basis of the current study. The underlying physics of guided waves, 

ultrasonic transduction and reception mechanisms of EMATs as well as the effect of temperature 

on them are introduced in the following Chapter.   
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Chapter 3 

Theoretical Background for the Design of High-

Temperature EMAT  

3.1 Introduction 

This Chapter gives an overview of the physics underlying the guided wave propagation in solids 

and the effect of dispersion and temperature rise on wave propagation and interpretation of signal 

received. EMAT transduction and detection mechanisms are also analyzed in this Chapter. Lorentz, 

magnetization and magnetostriction force, are mathematically described in terms of 

electrodynamics and elasticity theory. The main parameters that influence EMAT operation, like 

skin effect, lift-off and coil impedance, are studied and emphasis is given to their relationship to the 

ultrasonic performance of EMAT. A brief introduction to the main EMAT designs and their 

ultrasonic characteristics and a qualitative analysis of the effect of temperature rise on the EMAT 

operating parameters are also given.  

3.2 Guided Waves  

3.2.1 Introduction 

In Chapter 2 a brief introduction to GWT was given with emphasis on its capability to inspect large 

structures from a single point due to low attenuation guided waves exhibit over long distances. 

However, guided waves are subject to dispersion. Their velocity is dependent on the geometry and 

material properties of the specimen and excitation frequency. The quality, resolution in time and 

thus interpretation of the signal received can become complicating and lead to invalid conclusions 

regarding the structural integrity of the specimen if dispersion is not successfully confined. Hence, 
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weight should be given to the analysis of the propagation mechanisms of guided waves in solids 

and their correlation to EMAT design.   

The geometry of the specimen affects the wave propagation of guided waves; both the number of 

the wave modes present in a structure and their velocity differs with the shape of the specimen. An 

infinite number of guided wave modes can propagate inside a structure. In plate-like structures, the 

number of wave modes that can be present in a certain bandwidth is smaller compared to pipes. 

Hence, the interpretation of the signals received from plates is less complicated than that of pipes. 

In both cases, though, all guided wave modes apart from SH0 in plates and T(0,1) in pipes are 

dispersive; their velocity is dependent on the frequency-thickness product. The shape of a wave 

package of miltiple frequencies changes as it propagates in the specimen and it can result in poor 

resolution and inefficiency in defect detection. Hence, wave mode purity is of great importance in 

GWT; GWT systems are designed to introduce ultrasound to the specimen in a manner that only 

one wave mode will be excited and propagate in it. Provided this, the interpretation of the signal 

received can provide useful information for both known and unknown features of the specimen, the 

SNR of the signal received is enhanced and the defect detection probability increases. The ratio of 

the wave mode that the system should generate to any other unwanted wave generated is a way to 

estimate the wave mode purity potential of a GWT system.  

Guided wave modes are categorized into families based on their particle displacement format. The 

nomenclature of guided waves differs from planar to tubular structures, due to the different wave 

mode families existing in each structure. In plates, the wave modes are named based on the family 

they belong to, symmetric (Sx), axisymmetric (Ax), and Shear Horizontal (SHx) and the integer x 

that corresponds to their order. Their order is related to their cut-off frequency. Guided waves can 

propagate after their cut-off frequency; S0, A0 and SH0 do not have any cut-off frequency and thus 

they are called fundamental wave modes. In cylindrical structures, wave modes are divided into 

three families; longitudinal and axisymmetric L(n,m), torsional and axisymmetric T(n,m) and 

flexural and non-axisymmetric F(n,m). Integer n denotes the number of harmonic vibrations of 

displacement around the circumference and integer m represents the order of the wave mode.  
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Although the commercial GWT systems are mainly designed for pipeline inspection and they 

usually excite either L(0,2) or T(0,1), this study focuses on plate-like structures. Hence, emphasis is 

given to the physics of guided wave propagation in plates and more particularly SH0 wave mode 

and the effect of temperature rise on wave propagation.  

3.2.2 Guided Waves Physics 

Guided waves are governed by the same partial differential, wave motion equations that bulk 

waves also do. However, boundary conditions are also required for a guided wave propagation 

problem to be solved. Assuming the conservation of the mass within an arbitrary volume of a 

linearly elastic solid, neglecting any external body forces and applying Newton’s second law, 

Euler’s equation of motion can be derived as shown below [236]. 

𝜌
𝜕2u

𝜕𝑡2
= 𝛻 ∙ 𝜎s                                                                                                                                                 (3.1) 

where 𝛻 is the vector operator, u is the particle displacement vector, 𝜌 is the density and 𝜎s is the 

stress tensor that can be also expressed in terms of tensor 𝜖s by using Hooke’s law. 

𝜎s = C 𝜖s                                                                                                                                                         (3.2)  

where C is the stiffness tensor. If the specimen is made of an isotropic, homogeneous, linear elastic 

material, the stiffness tensor can be replaced by two material constants called Lamé constants (𝜆,𝜇) 

and the Hooke’s law becomes 

𝜎s = 𝜆 I 𝛻 u + 𝜇(𝛻 u + u𝛻𝑇)                                                                                                                      (3.3) 

where I is the identity matrix. From 3.1 and 3.3, Euler’s law equation results in 

𝜇𝛻2u + (𝜆 + 𝜇) 𝛻𝛻 u = 𝜌
𝜕2u

𝜕𝑡2
                                                                                                                 (3.4) 

Equation 3.4 is Navier’s equation of motion for an isotropic elastic medium. This vector equation 

can expand to a set of three scalar linear equations which cannot be directly integrated and their 
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solution must be assumed according to the application. If Helmholtz decomposition is used, the 

displacement u becomes 

u = 𝛻𝜑 + 𝛻 × Ψ                                                                                                                                           (3.5) 

where 𝜑 is a compressional scalar potential and 𝚿 is a vector potential whose divergence is zero 

(∇𝚿 = 0) [236].Navier’s equation finally becomes 

𝛻 [(𝜆 + 2𝜇)𝛻2𝜑 −
𝜕2𝜑

𝜕𝑡2
] + 𝛻 × [𝜇𝛻2Ψ − 𝜌

𝜕2Ψ

𝜕𝑡2
] = 0                                                                        (3.6) 

Equation 3.6 is satisfied when both square brackets are equal to zero. The two new equations 

derived from the above can be used for the wave propagation analysis for both bulk and guided 

waves and are shown below. They are called Helmholtz differential equations.  

𝜕2𝜑

𝜕𝑡2
= 𝑐L

2𝛻2𝜑                                                                                                                                                (3.7) 

𝜕2Ψ

𝜕𝑡2
= 𝑐S

2𝛻2Ψ                                                                                                                                               (3.8) 

Equation 3.7 describes the wave motion of the longitudinal waves and equation 3.8 governs the 

shear wave modes. 𝑐L and 𝑐S are the longitudinal and shear velocity respectively and can be 

calculated based on the following equations. 

𝑐L =  (
𝜆 + 2𝜇

𝜌
)

1
2⁄                                                                                                                                           (3.9) 

𝑐S =  (
𝜇

𝜌
)

1
2⁄                                                                                                                                                   (3.10) 

Helmholtz equations show that the two kinds of waves that can propagate in an infinite, isotropic 

medium do not interact with each other, since the two equations are independent of each other. The 

general solutions of equations 3.7 and 3.8 are given by 

𝜑 = 𝜑0 𝑒𝑖(kL z−𝜔𝑡)                                                                                                                                        (3.11) 

Ψ = Ψ0𝑒𝑖(kS z−𝜔𝑡)                                                                                                                                        (3.12) 
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where 𝜑0 and Ψ0are arbitrary initial constants, 𝑡 is time, z is the spatial coordinate of the wave, 𝜔 is 

the circular frequency and kL and kS are the longitudinal and shear wavenumber vectors 

respectively. The particle displacement of longitudinal waves is in the same direction with the 

wave propagation, while the vibration of shear waves is perpendicular to the direction of wave 

propagation.    

As it was mentioned before, guided waves propagate either at the boundaries of a structure or 

within them while bulk waves propagate in infinite mediums. Hence, in guided wave theory, the 

wave propagation equations, presented briefly above, should be coupled with the appropriate 

boundary conditions so that a guided wave propagation problem will be solved. In an isotropic 

plate of thickness 𝑡, where the planes at y=0, t are traction free boundary surfaces and the direction 

of wave propagation is on z axis, as Figure 3.1 shows, the unknown variables of the wave 

propagation problem, 𝜑 and Ψ, can be calculated if equations 3.7 and 3.8 are solved and coupled 

with the above boundary conditions. When it is assumed that no particle displacement but only 

rotations exist around y axis, Lamb waves propagate within the boundaries of the plate and they are 

described by the following simplified version of Helmotz differential equations.  

𝜕2𝜑

𝜕𝑡2
= 𝑐L (

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑧2 )                                                                                                                           (3.13) 

𝜕2Ψ

𝜕𝑡2 = 𝑐S (
𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑧2 )                                                                                                                                 (3.14) 

Lamb waves comprise vertically polarized shear waves (SV) and longitudinal waves, both coupled 

together. The solution of the above set of equations is complicating and can only be calculated by 

x 

y 

z 

Figure 3.1. Schematic of Lamb wave propagation in an isotropic plate 
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means of numerical models. Lamb waves are dispersive and thus their velocity is dependent on the 

geometry and material properties of the specimen and the frequency.   

If in the same medium, the displacement in x and z-axis is assumed zero and also the scalar 

potential φ is ignored and set to zero, equation 3.7 vanishes and equation 3.8 becomes 

𝜕2Ψ

𝜕𝑡2
= 𝑐S (

𝜕2Ψ

𝜕𝑥2 )                                                                                                                                        (3.15) 

This wave equation corresponds to SH waves and its general solution can be of the same format 

with 3.12. Hence, if the unknown potential in 3.15 is substituted by its general solution, the 

unknown vector potential Ψ0 can be expressed as below  

Ψ0(0) = A 𝑠𝑖𝑛(𝑘y𝑦) + B𝑐𝑜𝑠(𝑘y𝑦)                                                                                                          (3.16) 

where 𝑘y is the through thickness wavenumber and is given by 

𝑘y
2 = 𝑘S

2 + 𝑘z
2                                                                                                                                           (3.17) 

Provided the fact that stresses are related to displacement via Hooke’s law, the boundary conditions 

can be correlated with the unknown vector potential. Again the surface planes of the plate are 

traction free. The full numerical analysis of this SH wave propagation problem can be found in 

[236] and yields the dispersive nature of SH waves modes. The phase and group velocity of SH 

wave modes can be calculated from the two following equations respectively. 

𝑐p(𝑓𝑡p) = ±2𝑐S (
𝑓𝑡p

√4(𝑓𝑡p)2 − 𝑙2𝑐S
2

)                                                                                                     (3.18) 

𝑐g = 𝑐S
√

1 −
(𝑙

2⁄ )2

(
𝑓𝑡p

𝑐S
⁄ )2

                                                                                                                               (3.19) 

where 𝑙 is an integer from zero to infinity, 𝑓 is frequency, 𝑡p is thickness and 𝑐S is the velocity of 

bulk shear wave. The integer 𝑙 determines the number of SH wave modes existing in a band of 

frequencies; there are infinite SH wave modes as the product of frequency and thickness reaches 
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infinity. SH0 is the only non-dispersive guided wave and its velocity remains constant and equal to 

that of bulk shear wave; as it can be confirmed by solving equation 3.18 for 𝑙 equal to zero. For any 

non-zero, positive value of 𝑙, the phase velocity of SH wave modes varies with frequency and thus 

all the rest wave modes apart from SH0 are dispersive. Consequently, the shape of a wave packet 

containing multiple frequencies alters as the wave propagates, resulting in a complicating signal 

interpretation. The root of the denominator of equation 3.18 gives the cut-off frequency of the 𝑙 -

order wave mode; below this frequency the wave does not propagate. Only SH0 does not have any 

cut-off frequency and thus it can propagate at any frequency. As the product of frequency-thickness 

increases, the phase velocity of all wave modes converges to the velocity of SH0. The entire multi 

frequency wave-packet travels with a velocity equal to group velocity. The dispersion curves of a 

3mm thick steel plate are depicted in Figure 3.2, as they were calculated by Disperse software 

[237].           

As it has been already emphasized, SH0 is non-dispersive leading to a less complicating signal 

interpretation when it is the only wave mode propagating in the specimen. Also, it cannot 

Figure 3.2. Dispersion curves of a 3mm thick steel plate 
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propagate in liquids due to its in-plane displacement, making the online inspection of tanks and 

pipes carrying liquids feasible [236]. Weld inspection and crack detection can also be accomplished 

with the use of SH0 (or T(0,1) in pipes) [236]. However, it has been experimentally proved that SH0 

is not as sensitive as SH1 is to corrosion detection [192], due to its non-dispersive nature. The high 

sensitivity SH0 has to axial features like longitudinal cracks can limit its efficiency in corrosion 

detection under support brackets, since the latter are usually axially welded on the pipe and thus 

reflections can be generated from the welds resulting in false indications of structural 

discontinuities [116]. Consequently, each wave mode is suitable for a specific number of 

applications. This study focuses on crack detection at both room and high temperatures and 

therefore SH0 wave mode is one of the main aspects of this research.  

3.2.3 Temperature Rise Effect 

Wave velocity can also change due to temperature variations [238, 239]. Temperature increase 

leads to thermal expansion of the specimen and alternation of its density and elastic properties. The 

density 𝜌 and Young’s modulus 𝐸 on steel decrease with temperature increase and they are given 

by the following equations respectively [240].   

𝜌 =
𝜌TH

1 + 𝛼∆𝑇
                                                                                                                                               (3.20) 

𝐸 = [1 +
𝑇

2,000 ln(
𝑇

1,100
)
] 𝐸TH,         𝑓𝑜𝑟 20o𝐶 < 𝑇 ≤ 600o𝐶                                                                 (3.21)  

where 𝜌TH represents density at room temperature, 𝛼 denotes the linear coefficient of thermal 

expansion, ∆𝑇 is the temperature increase, 𝑇 is temperature and 𝐸TH is Young’s modulus at room 

temperature. On the contrary, Poisson’s ratio 𝜈 of steel increases with temperature rise, as the 

following equations show [240]. 

𝜈 = 3.78 10−5 𝑇 + 0.283,        𝑓𝑜𝑟 20o𝐶 < 𝑇 ≤ 450o𝐶                                                                    (3.22) 

𝜈 = 9.2 10−5 𝑇 + 0.259,         𝑓𝑜𝑟 𝑇 > 450o𝐶                                                                                    (3.23)   



Theoretical Background for the Design of High-Temperature EMAT  46 

 

 

Consequently, the wave velocity of longitudinal and shear bulk wave, 𝑐L and 𝑐S, change with 

temperature, since both are directly related to the three aforementioned material properties and thus 

the phase and group velocity of Lamb and SH wave modes also change. As a result, the ultrasonic 

response of the specimen alters with temperature increase yielding useful information regarding its 

structural state and thermal properties. Nevertheless, the temperature should be kept stable or 

temperature compensation should be also accomplished during the signal interpretation so that 

reliable conclusions can be made regarding the structural integrity of the specimen.      

The SNR of the signal received at room and high temperatures, the wave purity characteristics, the 

length of inspection and the defect detection probabilities of GWT system vary for different 

applications due to the physics of guided waves, but also to the ultrasonic characteristics of the 

transducers used. The following subsection analyses the GWT potential of EMATs and presents 

their capabilities at room and high temperatures. 

3.3 EMAT Transduction 

EMATs comprise permanent magnet or electromagnet, for providing a static magnetic field, and a 

coil driven by alternating current. The coil shape and size and the magnet configuration determine 

the wave mode purity and ultrasonic characteristics of EMAT design. Depending on the magnetic 

and electric properties of the specimen, EMAT performance alters. When an electrically 

conductive, non-ferromagnetic material, is in proximity to an EMAT, Lorentz force is the dominant 

mechanism for the generation and detection of ultrasound. Whereas, in ferromagnetic materials, 

Lorentz, magnetization and magnetostriction force contribute to ultrasound generation/reception. 

The EMAT design and its operating conditions as well as the magnetic properties and condition of 

the specimen define which mechanism will preponderate each time. Hence, the EMAT operation 

on ferromagnetic materials can be more efficient but also its analysis can be more complicating 

compared to that on paramagnetic materials.    

In both cases, the electromagnetic coupling between the EMAT and the specimen is governed by 

Maxwell’s equations (including Faraday’s and Ampére’s law), as they are shown below [158]. 
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∇ ∙ D = 𝜌q                                                                                                                                                      (3.24)                               

∇ ∙ B = 0                                                                                                                                                        (3.25) 

∇ × E = −
𝜕B

𝜕𝑡
                                                                                                                                              (3.26) 

∇ × H = J +
𝜕D

𝜕𝑡
                                                                                                                                           (3.27) 

where D is the electric displacement, 𝜌q is the charge density, B is the magnetic field, E is the 

electric field, H is the magnetic field strength and J is the current density. Additionally to these, the 

constitutive equations accompany the above mathematical framework. 

J = 𝜎E                                                                                                                                                            (3.28) 

B = 𝜇0(H + M)                                                                                                                                            (3.29) 

where 𝜎is the electric conductivity, M represents the magnetization and 𝜇0 is the magnetic 

permeability of free space. Equations 3.24 to 3.29 calculate the electromagnetic interaction 

between the EMAT and the specimen. The mechanical equilibrium of the specimen after it has 

been subjected to electromagnetism generated by EMAT, can be determined by its electromagnetic 

properties and solid mechanics. The physics underlying the forces exerted on a conductive material 

after an electromagnetic wave is introduced to the latter are further analysed in the following 

subsection.  

3.3.1 Lorentz Force 

Based on Ampere’s and Faraday’s law, as they are mathematically described by equations 3.27 and 

3.26 respectively, the alternating current J applied to the coil generates a dynamic magnetic field 

that in its turn induces a mirror alternating current (eddy current - Je) on the surface of the 

specimen. The particles of eddy current interact with the magnetic flux density yielding a body 

force, Lorentz force, given by the following equation.  

FL = 𝑞(E + ν × B)                                                                                                                                      (3.30) 
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where FL is Lorentz force, 𝑞 is the electric charge, E  stands for electric field, ν represents the 

velocity of a single charged particle and B is the overall magnetic field. If the specimen does not 

macroscopically undergo additional electric charges, then equation 3.30 can be simplified to: 

FL = 𝑞(ν × B)                                                                                                                                              (3.31) 

From a microscopic perspective, the electrons on the surface of the sample experience a Coulomb 

force due to the electric field induced on the specimen from the coil and they also are subjected to 

Lorentz force due to the presence of magnetic field. Therefore, the equation of motion for an 

electron is given by [235]: 

𝑚
𝑑νe

𝑑𝑡
= −𝑒(E +  νe × B) −

𝑚νe

𝜏
                                                                                                          (3.32)  

where 𝑚 is electron mass, νe represents mean velocity of an electron and 𝜏 is the mean time 

required for electron-ion collision. If the mean velocity of electron remains constant, then equation 

3.32 becomes 

−𝑒(E +  νe × B) =
𝑚νe

𝜏
                                                                                                                             (3.33) 

For a given volume of 𝑛e and 𝑁i electron and ion density respectively, the body force per unit 

volume yielded on ions due to scattering of electrons and transfer of momentum to ions can be 

calculated as below [235]: 

FL = 𝑁i𝑍i(E + νi × B) + 𝑛e (
𝑚νe

𝜏
)                                                                                                          (3.34) 

where 𝑍i and νi are the charge and velocity of an ion. Provided that the specimen is neutrally 

charged and also the velocity of ions can be considered negligible compared to that of electrons, 

equation 3.34 can be further simplified to equation 3.35 in which the term −𝑛e𝑒νe is equal to eddy 

current density.   

FL = −𝑛e𝑒νe × Β                                                                                                                                          (3.35) 

Finally, Lorentz force is the product of the eddy current density and the overall magnetic flux 

density on the surface of the specimen, as equation 3.36 shows.  
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FL = Je × (Bst + Bdyn)                                                                                                                                 (3.36) 

where Je is eddy current density, Bst and Bdyn represent the static and dynamic magnetic field 

respectively. Both the static magnetic field provided by the magnets and the dynamic magnetic 

field generated by the coil contribute to Lorentz force generation. The former can affect Lorentz 

force mechanism more than the latter. Although the impact of the dynamic magnetic field on force 

generation is relatively smaller compared to that of the static field, still it is not negligible after a 

specific threshold of current amplitude. The frequency components of the resultant force are also 

related to the frequency characteristics of eddy current and magnetic fields. Lorentz force 

associated with the dynamic magnetic field has double the frequency compared to that generated 

due to the static magnetic field.  

As it has been already mentioned, Lorentz force is the dominant transduction/reception mechanism 

of EMATs when they are employed on paramagnetic materials like aluminum or stainless steel. 

Two additional mechanisms are present in ferromagnetic materials, magnetization and 

magnetostriction. 

3.3.2 Magnetization Force 

Magnetization force (M) ensues when a ferromagnetic material is subject to an external magnetic 

field and is present both on the surface and in the bulk of the sample, as the following equation also 

attests [27]. 

M = ∫ ∇∗(M ∙ H)𝑑𝑉 +
1

2𝑉

𝜇0 ∫nMn
2𝑑𝑆

𝑆

                                                                                                (3.37) 

where n is the unit vector normal to the sample surface, Mn stands for the normal to surface 

component of Magnetization and M is Magnetization force.The first integrand of this equation 

represents Magnetization force, while the second is related to electromagnetic fields that are 

present only on the surface of the sample and thus it can be neglected.   

The impact of Magnetization on the ultrasonic performance of EMATs was firstly investigated by 

Thompson [162] and it has been further studied in [163]. It was proved that waves generated under 
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Magnetization are of similar amplitude and out of phase with those generated by Lorentz force 

when the bias magnetic field is tangential to the sample surface.  Subsequently, the overall 

generation of ultrasound is limited and thus Magnetization can be neglected. On the contrary, 

magnetostriction can significantly influence EMAT performance on ferromagnetic materials under 

certain conditions and therefore the following subsection outlines its underlying physics.  

3.3.3 Magnetostriction 

Magnetostriction occurs in ferromagnetic materials under the presence of an external magnetic 

field, since the dipoles of the ferromagnetic domains of the former tend to align to the orientation 

of the latter, resulting in elastic strain. The dynamic magnetic field generated by EMAT coil can 

lead to a time-varying elastic strain and wave generation. The elastic, electric and magnetic 

properties of the specimen, as well as the orientation and magnitude of the static against dynamic 

magnetic field of EMAT,  can alter the ultrasonic wave generation efficiency of magnetostriction.  

The magnetostrictive constitutive equations are non-linear and can be expressed in an analogous 

fashion with piezoelectricity, as it is shown below [27]. 

𝜖s = 𝑆𝐻𝜎s + 𝒟 H                                                                                                                                         (3.38) 

B = 𝒟𝑇𝜎s + 𝜇𝜎H                                                                                                                                         (3.39)   

where 𝜖s and 𝜎s are the strain and the stress tensors, 𝑆 is elastic compliance matrix measured under 

constant magnetic field, 𝒟 is the magnetostriction matrix (magneto-mechanical coupling) and 𝜇 is 

permeability at constant stress. Considering that the bias magnetic field of EMATs is much larger 

than the dynamic magnetic field, their operating point on the magnetostriction curve does not alter 

significantly, allowing the assumption that the EMAT operating area on magnetistriction curve is 

linear. Additionally to this, the hysteresis effect can also be neglected for further simplification of 

the analysis. Hence, the set of equations 3.38 and 3.39 can be decomposed into their static and 

dynamic components where the analysis of the latter can yield more valuable information [27].  

Given the above hypotheses, the magnetostrictive strain generated in all directions is directly 

proportional to magnetostriction matrix 𝒟. The magneto-mechanical coefficients are calculated via 
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magnetostriction curve and therefore, they are related to bias magnetic field in a non-linear manner. 

Once, the bias magnetic strength is known and relatively larger than that of dynamic field, the 

number of magneto-mechanical coefficients needed for the calculation of the magnetostriction 

strain, decreases significantly and leads to a less complicating magnetostriction analysis. 

Otherwise, both the amplitude and the direction of the total magnetic field alters resulting in a more 

complex magnetostriction matrix and analysis.  

It has been reported that magnetostriction can contribute more compared to Lorentz force for 

specific EMAT designs, ferromagnetic materials and operating conditions [27]. Apart from bias 

magnetic strength and material properties of specimen, the frequency of excitation current and skin 

effect can also influence the amplitude of magnetostriction [27]. However, this research focuses on 

the performance of EMATs on paramagnetic materials and therefore the magnetostriction effect is 

not further studied in the following Chapters.  

3.4 EMAT Reception 

As ultrasound has been generated and wave propagates in the sample, the motion of particles 

(atoms) under the presence of a magnetic field can result in an electric field, as it is attested below. 

E =
𝜕u

𝜕𝑡
× B                                                                                                                                                   (3.40) 

If this occurs in the vicinity of an EMAT receiver, the current on the surface of the specimen 

generates an alternating magnetic field that induces eddy current on the EMAT coil. Hence, the 

ultrasound can be detected by the EMAT and based on the Time of Flight (ToF) of each wave 

mode/reflection, the structural integrity of the specimen can be assessed. The voltage detected on 

the edges of the coil is proportional to the wave velocity, as Dixon et al. have mathematically 

proved that EMATs operate as particle velocity sensors [153]. 

It has been well documented that EMATs operate more efficiently as receivers rather than as 

transmitters [87-96]. The high power requirements of EMAT transmitters, combined with their 

lower GWT performance compared to other technologies like piezoelectric transducers, limit their 



Theoretical Background for the Design of High-Temperature EMAT  52 

 

 

efficiency and utilization as actuators. On the contrary, EMATs have been successfully employed 

as detectors along with EC probes for enhanced thickness measurements and defect sizing [225-

227]. A typical non-contact setup that several researchers have established for different 

applications comprises laser as ultrasound transmitter and single or multiple EMATs for reception 

[87-96]. In these experiments, EMATs have been applied for both conventional UT and GWT of 

either moving or high-temperature structures. The coil shape and size, as well as the magnet 

polarization and arrangement, define the wave mode and directivity of EMAT. Therefore, a brief 

overview of the main EMAT designs follows.          

3.5 EMAT Designs 

The shape, size and material properties of coil as well and magnets affect greatly the EMAT 

performance and applicability. Many an EMAT design has been reported in the literature over the 

years [27], but in this section, only the main EMAT configurations and their ultrasonic 

characteristics are presented. The four main coil shapes are spiral, racetrack, meander and butterfly, 

are shown in Figure 3.3. Combined with corresponding magnet configuration, the six most widely 

utilized EMAT designs are developed [27]. Depending on the application, EMAT design alters and 

therefore, EMATs for bulk waves (conventional UT) differ from those for guided waves (GWT). 

a b 

c d 

Figure 3.3. EMAT coil (a) spiral (b) racetrack (c) meander (d) butterfly 
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However, the former have successfully been employed for generating Lamb waves as well [167]. 

The main three configurations for bulk waves are the spiral (or pancake), racetrack and butterfly 

coil EMATs, while meander coil EMAT can be utilized for bulk, Rayleigh and Lamb waves. PPM 

EMAT has been successfully employed in GWT for SH wave modes excitation/reception and 

magnetostrictive EMATs have been also documented for their GWT potential.  

As the name implies, spiral coil EMATs are composed of a flat spiral-shaped coil and normal to the 

sample surface magnetic field (Figure 3.4 a). Therefore, they can generate radially polarized shear 

waves in all directions around the coil, rendering them omnidirectional. However, the magnetic 

field is never completely normal to the sample surface; a substantial part of the magnetic lines is 

tangential to the specimen surface and can result in the generation of longitudinal waves as well; 

arising questions about the wave purity characteristics of this EMAT design especially on 

paramagnetic materials. In ferromagnetic materials, though, a destructive interference between 

Lorentz and magnetization mechanism occurs leading to a significant energy loss in longitudinal 

wave propagation. It is a suitable candidate for thickness measurement and defect detection 

applications using conventional UT and it has been also reported for ultrasonic Lamb wave 

tomography [188, 228, 229], due to its omni-directivity.  

When the orientation of both the electric and magnetic field change simultaneously, the orientation 

a b 

c d 
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Figure  3.4. EMAT designs (a) spiral EMAT (b) racetrack EMAT (c) meander 

EMAT (d) butterfly EMAT 

Spiral EMAT Racetrack EMAT 

Meander EMAT Butterfly EMAT 



Theoretical Background for the Design of High-Temperature EMAT  54 

 

 

of the resultant force remains constant. Racetrack coil EMAT design relies on this principle, as it is 

illustrated in Figure 3.4 b. The racetrack coil comprises two limbs of straight wire lines with 

opposite current orientation. The magnetic field interfering with the electric field of each limb is of 

alternating orientation as well. As a result, linearly polarized shear waves propagate in the bulk of 

the specimen. An alternation of this EMAT design, the butterfly coil EMAT is composed of a 

butterfly coil, shown in Figure 3.3 d, and a tangential to the sample surface magnetic field, as 

Figure 3.4 d demonstrates. Still the wave generated is linearly polarized, however, this EMAT 

configuration excites longitudinal waves. 

EMATs with meander coil can be applied in both conventional UT and GWT, since they can excite 

bulk, Rayleigh and Lamb waves, if the orientation of the magnetic field is perpendicular to the 

sample, as Figure 3.4 c also shows. Especially bulk waves are generated at an angle and thus they 

propagate obliquely in the specimen. The wavelength of the wave generated is equal to double 

spacing within the limbs of the coil (or equal to its pitch). The meander coil has been also cited to 

have been used in conjunction with arrays of magnets of alternating polarization [27]. This 

configuration permits the excitation/reception of angled SH wave modes. 

An established and widely deployed EMAT design in NDT industry is the PPM EMAT, since 

many applications can avail of its capability to excite/receive SH wave modes [155, 194]. PPM 

EMATs consist of two arrays of magnets of alternating polarization and a racetrack coil, as Figure 

3.5 depicts. The orientation of Lorentz force alternates for adjacent magnets resulting in SH 

displacement. The orientation of the electric and the magnetic field of one EMAT side is 

Figure 3.5. PPM EMAT  
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supplementary to the other side, similarly to racetrack EMAT for bulk waves. Therefore, the force 

generated on both sides has the same orientation and SH displacement doubles. The SH wavelength 

equals to the pitch of magnets, in other words, the distance between two adjacent magnets of the 

same polarization. Hence, the operating frequency of PPM EMAT is strictly fixed due to its design; 

however, the frequency of the excitation current applied to the coil can alter the frequency 

characteristics of EMAT and result in a narrow operating bandwidth. SH0 wave mode is notably 

attractive in GWT due to its non-dispersive nature and thus PPM EMAT is equally critical. This 

research focuses on SH0 and therefore the high-temperature EMAT design has a PPM 

configuration.  

Magnetostrictive EMATs (Magnetostrictive Patch Transducers – MPT) is another EMAT 

technology that is mainly deployed on ferromagnetic materials, since its operation relies only on 

magnetostriction. Several MPT configurations have been reported in the literature for GWT of both 

plates and pipes [214, 223] and can excite/receive all the essential wave modes for GWT like S0 

and A0 for plates and L(0,1), L(0,2) and T(0,1) for pipes. Another EMAT design whose operating 

principles avail of only magnetostriction, consists of meander coil within a tangential magnetic 

field. In this case, the bias magnetic field is parallel to the current and thus no Lorentz force is 

generated. The shear strain resulted by magnetostriction leads to the excitation of SH wave modes. 

A more detailed overview of this design can be found in the literature [27]. 

Apart from the wave mode purity, EMAT design has been optimized in terms of ultrasonic 

efficiency and specifications of applications. Dixon et al. have developed an EMAT design that 

eliminates the eddy current losses on the magnets with the use of a ferrite sheet between the coil 

and the magnets [241]. The same researcher has reported a novel EMAT design for online rail-

track inspection with the use of a spring-like mechanism for lift-off stabilization [125]. Impedance 

matching is another critical part of the EMAT instrumentation that is required for the optimization 

of the energy transfer to and from the EMAT. The next section analyzes the parameters that limit 

EMAT efficiency and also presents methods that can be followed for the tackling of these 

challenges.  
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3.6 Electromagnetic Losses 

The GWT performance of EMATs is considered lower compared to that of piezoelectric 

transducers.  The electromagnetic losses due to skin effect, impedance mismatch between the 

instrumentation and EMAT as well as the EMAT and the specimen and lift-off variations moderate 

the efficiency of EMATs. A brief analysis of the above issues is followed.  

3.6.1 Skin Effect 

Although the elastic wave generated by an EMAT can travel all through the bulk of the specimen, 

the electromagnetic wave introduced to the latter cannot penetrate its depth and thus their 

electromagnetic coupling is spatially restrained to the specimen surface. Based on Faraday’s law, 

the electromagnetic wave launched by an EMAT on the surface of a sample is given by [235]:  

∇ × (∇ × E) = −
𝜕

𝜕𝑡
(∇ × B)                                                                                                                     (3.41) 

The above equation can be simplified with the use of vector identity, shown below (equation 3.42), 

and by taking into account that the sample remains neutrally charged, as equation 3.43 shows. 

∇ × (∇ × E) = −∇2E + ∇(∇ ∙ E)                                                                                                             (3.42)  

∇2E =
𝜕

𝜕𝑡
(∇ × B)                                                                                                                                        (3.43) 

The term on the left-hand side of the above equation can be expressed as follows. 

 ∇2E = 𝜇0𝜇r𝜎
𝜕E

𝜕𝑡
+ 𝜇0𝜇r𝜀0𝜀r

𝜕2E

𝜕𝑡2                                                                                                                 (3.44) 

where 𝜇r , 𝜎 and 𝜀r is the magnetic permeability, electrical conductivity and relative permittivity of 

specimen and 𝜀0 is the permittivity of free space. Given that 𝜎 ≫ 𝜔𝜀0𝜀r, the second term in the 

right hand side of equation 3.44 can be omitted. Hence, equation 3.44 reduces to 

∇2E =
𝜕2E

𝜕𝑧2                                                                                                                                                      (3.45)   
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From equations 3.44 and 3.45, the differential equation for the propagation of the electromagnetic 

wave inside the sample is derived as:  

𝜕2E

𝜕𝑧2
= 𝜇0𝜇r𝜎

𝜕E

𝜕𝑡
                                                                                                                                          (3.46) 

The attenuation of the wave as it propagates in the bulk of the specimen can be measured by skin 

depth which is given below. 

𝑑 = √
2

𝜇0𝜇r𝜎𝜔
                                                                                                                                              (3.47) 

where 𝑑 is the skin depth and 𝜔 is the angular frequency. Finally, the electromagnetic wave 

propagating inside the sample can be described in terms of skin effect as equation 3.48 shows. 

Ez = Ez0𝑒𝑖(𝜔𝑡)𝑒−(1+𝑖)(
𝜋

𝑑
)                                                                                                                            (3.48)  

where Ez represents the electric field at z depth inside the bulk of the specimen and Ez0 is the 

electric field at the surface of the sample.  

The electromagnetic attenuation inside a conductive material is directly related to the frequency of 

the electromagnetic wave and the material properties of the specimen. As the frequency of the 

electromagnetic wave increases, the penetration depth decreases. Similarly, good electrical 

conductors tend not to allow the electromagnetic wave to propagate in their thickness, as well as 

highly ferromagnetic materials, like iron, also do. Hence, the electromagnetic coupling between the 

EMAT and the specimen gets spatially confined within the surface of the specimen and the EMAT 

coil wires and limits EMAT efficiency. EMAT coils of large wire diameter tend to suffer from skin 

effect and thus experience electromagnetic losses, resulting in lower EMAT performance. As the 

electromagnetically active area of both EMAT and specimen is restricted due to skin effect, the 

current flowing in the coil and the electromagnetic energy introduced to the specimen decreases. 

The EMAT impedance, and more particularly its mutual inductance with specimen, alters with 

magnetic properties of specimen and skin effect and consequently EMAT performance differs with 

material properties of sample.   
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3.6.2 Impedance – Electrical Circuit  

The shape, size and materials properties of EMAT coil as well as its interaction with magnets and 

specimen affect the overall EMAT impedance. Assuming that an EMAT that is not in proximity 

with any conductive material operates as a single coil, its impedance can be modeled as Figure 3.6 

depicts. The shape, size, wire diameter and magnetic permeability of the coil have a direct impact 

on its self-inductance, Lcoil. The parasitic capacitance formed within the turns of the coil, Cp, as well 

as the resistivity of the wire, Rcoil, contribute to coil impedance. The equivalent impedance of the 

electrical circuit presented in Figure 3.6 is given below.  

Zcoil =
1 + 𝑗((1 −

𝜔2

𝜔R
2)

𝜔𝐿coil

𝑅coil
− 𝜔𝐶p𝑅coil)

(1 −
𝜔2

𝜔R
2)2 + (𝜔𝐶p𝑅coil)2

𝑅coil                                                                                    (3.49) 

θcoil = 𝑡𝑎𝑛−1((1 −
𝜔2

𝜔R
2)

𝜔𝐿coil

𝑅coil
− 𝜔𝐶p𝑅coil                                                                                           (3.50) 

ωR =
1

√𝐿coil𝐶p

                                                                                                                                               (3.51) 

where ωR represents the resonant angular frequency. For low parasitic capacitance, the impedance 

maximizes at the resonant angular frequency. For frequencies lower than the resonant, the phase is 

positive and the real part of the impedance increases with frequency increase. Whereas, when the 

angular frequency is larger than the resonant frequency, the phase becomes negative and the real 

part still increases with frequency increase.  

Figure 3.6. Equivalent electric circuit of EMAT coil  
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The above schematic does not take into account the eddy current losses the coil experiences due to 

the electromagnetic coupling between itself and the magnet. The alternating dynamic magnetic 

field generated by the coil induces eddy current on the magnets as well. This eddy current causes 

eddy current losses back to the coil. Nevertheless, when the EMAT is employed on a specimen, 

these electromagnetic losses derived from the destructive interference between the coil and the 

magnets can be neglected. A more substantial electromagnetic issue the EMAT coil experiences is 

the skin effect. Based on the analysis given in the Section 3.5.1, the electromagnetic wave applied 

to EMAT coil from the power generator (pulser instrumentation) does not necessarily propagate 

through the entire cross section of the coil. The high-frequency current driven to the coil in 

conjunction with relatively large diameter coil of EMAT transmitter, can result in skin effect and 

lessening of the electromagnetism launched by the EMAT. Hence, EMAT receiver coils are usually 

composed of small diameter wires (0.2mm), while EMAT transmitter coils are of relatively large 

wire diameter, and are driven by low-frequency current. Additionally, the material selection for the 

coil is of great importance again due to skin effect. Both the resistivity and the magnetic 

permeability of the wire can affect the skin depth and thus copper has been reported as a suitable 

candidate for the coil manufacturing.  

When the EMAT is in good proximity with a conductive material, its performance alters since it 

interacts with the specimen and its impedance changes accordingly. The electromagnetic coupling 

established between the EMAT and the specimen lead them to operate as a transformer, as Figure 

3.7 shows. In Figure 3.7 a the EMAT transmitter is modeled as primary winding and the specimen 

as secondary, while Figure 3.7 b shows that EMAT receiver operates as secondary winding and the 

specimen as primary. In either case, both coil windings experience electromagnetic losses due to 

their resistance, magnetic flux leakage and parasitic capacitance. These parameters are strongly 

related to the magnetic and electrical properties (permittivity, permeability, and electrical 

conductivity) of EMAT and specimen.  

The self-inductance of the coil of an EMAT transmitter can be decomposed into the primary, 

leakage and mutual inductance, when the EMAT is employed on a sample. The primary leakage 

(Llcoil) denotes the portion of magnetic flux launched by EMAT that has not been coupled with the 
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specimen. The mutual inductance (M) characterizes the strength of the electromagnetic coupling 

between the EMAT and the specimen and as soon as it is established, the electromagnetic wave is 

introduced to the specimen and causes the wave generation. The electromotive force produced in 

the sample induces eddy current losses (Lm) to the EMAT transmitter coil almost instantaneously 

with the wave generation. The time required for the electromagnetic wave to be detected back by 

the transmitter coil is significantly smaller than the duration of a pulse of a typical ultrasonic wave 

generated by an EMAT. Hence, the equivalent inductance of an EMAT transmitter, while it is 

deployed on a conductive material, is given by the following equation. 

Leq = Llp − LM + M                                                                                                                                     (3.52)    

 Depending on the material properties of the specimen, the mutual inductance and the eddy current 

losses on the EMAT coil vary. It has been experimentally proved that the equivalent inductance of 
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Figure 3.7. Equivalent electric circuit of (a) EMAT transmitter and sample (b) sample and EMAT receiver 
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the coil of an EMAT transmitter decreases with the presence of a conductive material and more 

particularly, its decrease is greater when the sample is made of a paramagnetic material compared 

to ferromagnetic [242]. On the other hand, when the EMAT operates as a receiver, the equivalent 

inductance of the receiver coil is equal to secondary leakage and mutual inductance. No eddy 

current losses are induced to the coil and therefore EMATs can operate more efficiently as 

receivers rather than as transmitters. Nevertheless, the magnetic properties of specimen can affect 

the inductance of the coil of an EMAT receiver and its efficiency, since the mutual inductance is 

directly correlated to the magnetic permeability of the specimen.   

However, in both cases, part of the energy transmitted to EMAT coil dissipates as heat due to the 

resistance of wire (Rcoil). Low resistance conductive materials are, therefore, used for the 

manufacturing of an EMAT coil like copper, silver, platinum and constantan. The parasitic 

capacitance between the EMAT and specimen (Cw) is attributed to the dielectric medium in 

between them which can lead to an increase of electrical noise, a drop of the SNR and of the 

overall EMAT efficiency. The relative permittivity of the dielectric material present between the 

EMAT and specimen like air and lift-off are the main parameters that can affect parasitic 

capacitance. For given material properties and EMAT geometry, lift-off increase leads to 

capacitance drop. Alternatively, it has been experimentally shown that an autotransformer 

connection between the EMAT and the specimen can drop the noise level and increase the 

amplitude and the SNR of the signal received [151]. More particularly, the connection/interaction 

between the EMAT and the specimen is differential, since one induces to the other alternating, 

differential mode current of almost the same amplitude. Transformers perform in a similar way and 

they also suffer from common mode noise; in real transformers, a small capacitance links the 

primary to the secondary winding and also performs as a path for the common mode current across 

the transformer. As a result, in both cases, the common mode current flows to the ground via the 

parasitic capacitance and thus no current flows to the EMAT coil/specimen or secondary winding. 

Nevertheless, an autotransformer acts as a high-value parallel impedance that does not attenuate the 

differential current significantly but presents zero impedance to the common mode signals by 

shorting them to ground potential [151]. Autotransformers have smaller resistance and leakage 

reactance compared to conventional two winding transformers; therefore, the former is more 
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efficient than the latter [151]. Hence, if we presume that the interaction between the EMAT and the 

specimen is equivalent to a transformer and we connect them so as to perform as an 

autotransformer, then the common mode noise should be canceled and the EMAT receiver would 

work more efficiently. In this case, the alternating, differential mode current will be induced in the 

EMAT coil and the signal received will have an enhanced SNR and valid information will be 

retrieved from it. The autotransformer connection is also more robust resulting in the increase of 

the amplitude of the "wanted" signal. If an extra layer of stainless steel is attached to EMATs, 

touching both the EMAT housing and the specimen, then a common ground connection 

(autotransformer) is established. Figure 3.8 shows the equivalent electrical circuit of the 

EMAT/specimen connection. 

As far as the impedance of the specimen is concerned, its resistance and inductance can be 

calculated based on the eddy current density induced on its surface and the impact of the skin effect 

on it. As the electromagnetic wave launched by the EMAT attenuates quickly inside the sample, 

the electromagnetic coupling between the EMAT and the specimen mainly occurs on the surface of 

the specimen. The resistance the specimen shows against the electromagnetic wave propagation 

can be calculated as if a conductive material of length 𝐿 and width 𝑊 was subjected to a current 

density given by [235]: 

jz = jz0𝑒𝑖(𝜔𝑡)𝑒−(1+𝑖)(
𝜋
𝑑

)                                                                                                                               (3.53) 

The total eddy current is equal to the integral of the eddy current density for infinite depth and over 

the entire width of the sample, as it is shown below: 

Iexc Ieddy 

a c b 

Figure 3.8. Electric circuit (a) EMAT/specimen transformer connection (b) autotransformer connection 

(c) autotransformer connection without parasitic capacitance 
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Ie = 𝑊 ∫ jz 𝑑𝑧 = jz0𝑒𝑖(𝜔𝑡)𝑊
𝑑

𝑖+1

∞

0
                                                                                                            (3.54)  

The impedance on the surface of the sample can be calculated as the ratio of the applied voltage on 

the surface to the eddy current along the length of the sample, as it is shown below: 

 

𝑍sample =
V

I
= (1 + 𝑖)

𝜌r𝐿

𝑊𝑑
= (1 + 𝑖)

𝜌r𝐿

𝑊(√
2

𝜇0𝜇r𝜎𝜔
)

= 𝑒𝑖(
𝜋

4
) 𝐿

𝑊
√𝜇0𝜇r𝜌r𝜋𝑓                                              (3.55) 

where 𝜌r denotes the resistivity of the sample. The above equation 3.55 exhibits that the real and 

imaginary part of impedance on the surface of the sample are equal and thus its resistance and 

reactance are equal and dependent on the magnetic permeability and resistivity of the specimen as 

well as the frequency of excitation current. Also, the average eddy current over the entire thickness 

of the sample is of 
3𝜋

4
 phase lag compared to the excitation current on the EMAT coil, provided the 

fact the eddy current has at least a phase lag of 
𝜋

2
 compared with the excitation current [235].  

Impedance analysis is of great importance in EMAT technology and signal interpretation. 

Variations in EMAT impedance can alter its efficiency, the SNR and amplitude of the signal 

received and can lead to invalid information regarding the structural integrity assessment of the 

specimen. Impedance matching between the EMATs and the instrumentation is required for the 

enhancement of the EMAT performance, since a portion of the electromagnetic losses can be 

eliminated. Impedance also varies with lift-off and thus their relationship is critical as well and 

analyzed further in the next subsection.   

3.6.3 Lift-off 

Based on impedance analysis performed in the previous subsection, the distance between the 

EMAT and the specimen, lift-off, alters the EMAT impedance, its electromagnetic coupling with 

the sample and finally its ultrasonic efficiency. As lift-off increases, the electromagnetic coupling 

between the EMAT and the specimen dwindles and the equivalent impedance of EMAT increases, 

since the eddy current losses decrease. When the EMAT is relatively away from any conductive 

material, its equivalent impedance is equal to its self-inductance, as no electromagnetic interference 
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occurs. Consequently, lift-off variations cause impedance alternations and finally changes in the 

signal received. This can result in misleading observations regarding the structural integrity of the 

sample under inspection and therefore lift-off should be kept stable during the inspection or lift-off 

compensation techniques should be developed.  

Lift-off has been experimentally shown to affect the frequency characteristics of the excitation 

current applied to the coil and thus the frequency response of Lorentz force and the resultant 

ultrasonic wave [242]. The duration of the excitation current in a spiral coil that is in good 

proximity to an aluminum sample increases with lift-off increase and therefore, the Lorentz force 

produced is of larger duration as the lift-off increases. The ultrasound generated is also of lower 

frequency. In the same research, it has been cited that the lift-off response of an EMAT varies with 

regards to its coil shape. Spiral EMATs exhibit higher sensitivity to lift-off variations compared to 

linear coils. Further research was conducted by Morrison et al. regarding the ToF of S0 against lift-

off for different EMAT coil shapes, confirming that ToF of S0 change as a predictable function of 

lift-off, hence, if the lift-off of the transducers is known at the time of measurement the absolute 

ultrasonic ToF may be determined. [224]. Thus, lift-off compensation can be accomplished either 

by measuring the inductance of the EMAT receiver or the spread of the excitation pulse on the 

EMAT transmitter or by analyzing the frequency content and ToF of the signal received.      

The electromagnetic losses and mechanisms described above refer to room temperature operating 

environment. As temperature rises, the material, electric, magnetic and thermal properties of 

EMAT and specimen alter resulting in further changes in the electromagnetic coupling between the 

EMAT and the specimen and the impedance of the former. The development of a high-temperature 

EMAT requires the study of its performance at high temperatures and the impact of temperature 

increase on its electromagnetic potential and impedance. 

3.7 Temperature Effect 

As it was mentioned in the Section 3.2.3, temperature increase affects the material properties of the 

specimen resulting in wave velocity variations and changes in ToF of waves. Additionally to this, 
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the electric and magnetic properties of specimen and EMAT components like the relative 

permittivity, magnetic permeability and electrical resistivity, also alter with temperature. The 

magnetic leakage and mutual inductance, skin effect and resistance of both alter with temperature.  

Equation 3.56 shows that the electrical resistance of any conductive material increases with 

temperature rise, implying that additional electromagnetic losses can be noticed on both EMAT 

coil and specimen due to resistance increase.         

𝑅(𝑇) = 𝑅0 (1 + 𝛼∆𝑇)                                                                                                                                (3.56)    

where 𝑅 represents the electrical resistance in temperature T, 𝑅0 denotes the electrical resistance at 

room temperature, 𝑎 is the temperature coefficient of resistance and ∆𝑇 is temperature difference 

from room temperature. EMAT coil specifically designed to withstand high temperatures should be 

made of a low resistance conductive material that also possesses relatively small temperature 

coefficient, like constantan.  

The parasitic capacitance between EMAT and specimen can alter with temperature due to changes 

in permittivity. Especially, in cases where the EMAT coil is embedded into ceramics, the 

permittivity of both air and ceramic influence parasitic capacitance. The thickness of ceramic can 

also function as additional lift-off between EMAT and specimen and drop in parasitic capacitance. 

Similarly, the parasitic capacitance within the turns of coil alters with temperature rise accordingly 

to the material surrounding the coil. Ceramic embedded coils experience larger capacitance at room 

temperature compared to bare coils due to larger permittivity ceramic materials possess compared 

to air. The relationship between relative permittivity of ceramic material and temperature 

determines the capacitance trend against temperature rise. Unlike resistance, relative permittivity 

does not change with temperature in the same manner in all materials. Hence, no universal 

mechanism in terms of specimen material can be formed for the calculation of EMAT parasitic 

capacitance.   

The way magnetic permeability changes with temperature both in EMAT coil and specimen 

determines the alterations in self-inductance of EMAT coil, magnetic leakage, mutual, and eddy 

current inductance with temperature rise. Similarly to relative permittivity, prior knowledge of the 



Theoretical Background for the Design of High-Temperature EMAT  66 

 

 

relationship between magnetic permeability and temperature for different specimen materials is 

required for the estimation of the overall EMAT inductance at high temperatures. Thus, the trend of 

the overall EMAT inductance against temperature can differ when the EMAT is employed on mild 

steel as opposed to stainless steel.  

Based on equation 3.47, skin depth is dependent on magnetic permeability and resistance of 

specimen. Therefore, its behavior over temperature increase is disproportional to that of magnetic 

permeability and resistance of specimen. When the resistance increases with temperature, skin 

depth should decrease. However, additional information regarding magnetic permeability is 

required for the valid estimation of the skin depth at elevated temperatures. 

The MOT of EMAT components is another crucial parameters that can greatly affect the design of 

a high-temperature EMAT. As it has been already mentioned, the EMAT coil should be made of a 

low resistance and magnetic permeability material. Copper meets these specifications and thus is an 

ideal candidate for coil manufacturing. However, it is subjected to oxidation at elevated 

temperatures and therefore it cannot be utilized in a high-temperature EMAT. Alternatively, silver, 

platinum and constantan can be used instead of copper, since all of these materials possess 

relatively low resistivity, smaller temperature coefficient compared to copper and melting point 

above 950
o
C. Especially, the former two exhibit similar characteristics, with platinum having 

smaller resistivity but slightly larger temperature coefficient than constantan. Nevertheless, 

platinum is also more expensive compared to constantan whose temperature coefficient is the 

lowest among all the four materials, making it the most suitable candidate for the manufacturing of 

high-temperature EMAT coil. Additionally, thermal insulation should be also applied on the coil 

structure for impeding the heat transfer to it without though affecting the electromagnetic coupling 

between the EMAT and the specimen. Ceramics are widely employed for thermal insulation and 

some types do not interact electromagnetically with the component they are applied on, like 

alumina.  

Temperature rise also influences the performance of permanent magnets. The MOT of Nd-Fe-B is 

only 200
o
C, restricting its use in high-temperature EMAT technology. High Curie magnets can be 

used instead. SmCo and Alnico possess MOTs of 300
o
C and 500

o
C respectively, however, the 
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magnetic field they generate is weaker than Nd-Fe-B. Alnico also gets demagnetized easily in 

magnetic fields of opposite polarity and should not be employed in a PPM EMAT. EMATs 

designed for GWT should possess high magnetic capabilities, for maximum electromagnetic 

coupling with the specimen. The wave generated in the specimen must propagate long distances, 

requiring more energy to be introduced to the specimen compared to thickness measurements. Nd-

Fe-B magnets are the strongest, but cannot be utilized at high temperatures without a cooling 

system so that their temperature remains below their MOT. 

3.8 Summary 

In this Chapter, the propagation mechanisms of guided waves in solids and main parameters that 

affect it were outlined and linked to EMAT design. The operating principles of EMATS were also 

explained. All three mechanisms of ultrasonic transduction and reception, Lorentz, magnetization 

and magnetostriction force, were mathematically analyzed. A brief overview of the main EMAT 

designs for both bulk and guided waves was given emphasizing on the wave purity characteristics 

of each design. The parameters that limit the ultrasonic performance of EMATs were also outlined. 

An analysis of skin effect, EMAT impedance and lift-off for both room and high temperatures was 

accomplished. The challenges of the designing of a high-temperature EMAT were also introduced, 

manifesting the importance of material selection and estimation of optimum operating conditions.  

The following Chapter presents the methodology followed for the determination of the optimum 

EMAT design for SH excitation/reception at elevated temperatures. FEA models for the wave 

purity characteristics of PPM EMAT at room and high temperatures were carried out. Thermal and 

CFD simulations for the material selection and estimation of the optimum operating conditions, 

thermal potential and limitations of the final EMAT design were also performed. The theoretical 

results and their analysis are presented in the following Chapter.  

                                                         

  



Chapter 4  68 

 

 

Chapter 4 

Numerical Simulation of High Temperature EMAT 

4.1 Introduction 

In this Chapter, the methodology and results obtained from coupled electromagnetic and 

mechanical FEA regarding the ultrasonic signal response of a PPM EMAT against temperature rise 

are summarized. The wave mode purity characteristics of a standard room temperature PPM 

EMAT attached on a stainless steel plate were investigated via Comsol software at room and high 

temperatures, by solving only the operating equations related to Lorentz force. The conclusions 

made out of this analysis were utilized as a benchmark for the design of the high-temperature 

EMAT. Thermal and CFD analysis was also performed for the material selection and optimization 

of the high-temperature EMAT design. Transient thermal simulations were accomplished for the 

estimation of the optimum coil design and its thermal insulation against its lift-off limitations. CFD 

analysis calculating the most suitable operating conditions for the water cooled EMAT was 

conducted for both short (at 500
o
C) and long term (at 250

o
C) inspection purposes.    

4.2 Wave Propagation FEA 

4.2.1 FEA Model Overview 

In the previous Chapter, the physics underlying guided wave propagation in solids and the main 

operating principles of EMATs were described. The analytical solution of the equations given can 

yield useful information regarding the final output of EMATs only for simple geometries and when 

specific assumptions have been made for simplification purposes. To date, numerical models have 

been widely utilized for calculating accurately the response of complicating structures under the 

presence of different physical phenomena. FEA (alternatively called Finite Element Method – 

FEM) was adopted in the present study for the estimation of the electromagnetic and ultrasonic 
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interaction between a PPM EMAT and a stainless steel plate. Commercial software, Comsol 

Multiphysics [243], was used for solving the partial differential equations governing 

electromagnetism and continuum mechanics coupled together. Custom constitutive equations can 

also be used for the investigation of more complicating problems such as magnetostriction. All the 

above render this package appropriate for the estimation of the electromagnetic coupling between 

PPM EMAT and stainless steel plate and their ultrasonic response.  

In this current research, the EMAT is studied regarding its ultrasonic signal response and wave 

purity characteristics mainly on paramagnetic materials and more particularly stainless steel. Based 

on the EMAT theory analyzed in the previous Chapter, Lorentz force is the dominant transduction 

and reception mechanism on paramagnetic materials and thus it is the only force taken into 

consideration in the implementation of the numerical model. The static magnetic module computes 

the magnetic flux density Bst generated by the arrays of permanent magnets and the dynamic 

electromagnetic module is utilized for the calculation of the magnetic flux of the dynamic magnetic 

field Bdyn produced by the coil and eddy current density Je induced on the plate given the excitation 

current. After the calculation of these three quantities, Lorentz force can be directly estimated 

based on equation 3.13 and used as a load input to the mechanical module that simulates the guided 

wave propagation (ultrasonic signal) in the plate.  

Several researchers have followed the same approach for calculating the 

electromagnetic/mechanical interaction between EMAT and sample [27, 174, 175, 179, 181]. 

However, in most cases, the EMAT configuration was simpler than that of PPM EMAT and also 

the temperature effect on the above problem was not taken into account, since only room 

temperature models have been developed so far. Therefore, there were still challenges to be 

overcome for the successful and meaningful execution of the model, such as the mesh size and 

number of elements of a 3D simulation against computational limitations and temperature effect 

consideration over complexity of the mathematical/physics problem. Along with the above 

challenges, skin effect can also affect the computational complexity of the FEA model. 

Nevertheless, it has been shown that in metals Lorentz force mechanism is not greatly affected by 

the skin effect phenomenon, since only the spatial distribution of eddy current alters with skin 
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depth while the overall eddy current density induced in the sample remains constant [27]. Hence, 

skin effect can be neglected in the FEA model for both magnets and sample.  

The FEA model was developed to solve the mathematical framework described by equations 3.1-

3.6 as if the electric field E and magnetic field B were related to a scalar potential 𝑉and a Magnetic 

Vector Potential (MVP) A, as given below. 

E = −∇𝑉 −  
𝜕A

𝜕𝑡
                                                                                                                                              (4.1)      

B = ∇ × A                                                                                                                                                        (4.2) 

The two new quantities can be retrieved from the following set of equations that are a simplified 

version of Ampére’s law and its divergence respectively.  

𝜎
𝜕A

𝜕𝑡
+ ∇ × (𝜇0

−1∇ × A − M) − 𝜎v × (∇ × A) + 𝜎∇𝑉 = Jexc                                                              (4.3) 

−∇ ∙ (𝜎
𝜕A

𝜕𝑡
− 𝜎v × (∇ × A) + 𝜎∇𝑉 − Jexc) = 0                                                                                     (4.4) 

where v is the velocity in the conductor (which can be equal to the velocity of electrons ve ) and Jexc 

denotes the density of excitation current. All the above constitute the mathematical problem 

addressed to the electromagnetic solver and its solution yielded the Lorentz force distribution 

generated in the plate.  

After the electromagnetic analysis and the calculation of Lorentz force, the elastic problem and 

guided wave propagation were performed under the principle of virtual work. Based on this theory, 

the overall, internal virtual work equals to the overall virtual work derived from external forces and 

thus the total energy stored remains constant. The mechanical solver calculated the displacement u 

generated due to Lorentz force by coupling together all the wave propagation equations described 

in Chapter 2.  

4.2.2 FEA Model Implementation  
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The configuration of PPM EMAT directly affects the frequency characteristics of the wave mode 

generated into the specimen and therefore, prior knowledge of the ultrasonic specifications the 

EMAT should meet are required for its design. The frequency and subsequently the wavelength of 

the wave mode introduced to the sample are related to the minimum defect size the ultrasonic 

system needs to detect. The wavelength should be smaller than double the minimum defect size. In 

GWT, low-frequency waves, from 20 to 100 kHz, are usually introduced into the structure under 

inspection due to their low attenuation over long distance. However, their relatively large 

wavelength limits the size of defect that can be detected. The pitch of PPM EMAT determines the 

wavelength of the wave mode generated and thus the size of the magnets affects the frequency 

characteristics of the EMAT. Nevertheless, the size of magnet influences its magnetic strength if it 

is assumed that its density remains constant and therefore PPM EMATs are usually designed for 

relatively high-frequency GWT, 150-500 kHz. In this study, a 10mm long crack is the minimum 

defect detection requirement and the EMAT was designed to excite/receive SH0 of 12mm 

wavelength. 

 The EMAT is primarily developed for the inspection/monitoring of structures made out of 

stainless steel, since stainless steel is extensively used for the construction of critical components 

operating at elevated temperatures. Pipelines, tanks and absorber tubes are made out of stainless 

steel in solar thermal industry [2]. Provided that the shape and thickness of the structure under 

inspection determines the complexity of the GWT signal interpretation, this EMAT is mainly 

designed for thin, plate-like structures. The dispersion curves of a 3mm thick, 316L stainless steel 

plate of 8000 Kg/m
3
 density, 195GPa Young’s modulus and 0.285 Poisson ratio, have been 

calculated via Disperse commercial software and are shown in Figure 4.1. This figure shows that 

the optimum operating frequency for SH0 excitation for a 12mm pitched PPM EMAT is 256kHz. 

S0 and A0 can also be present though. The red circles in Figure 4.1 and Table 4.1 show at which 

frequency SH0, S0 and A0 can be excited by a 12 pitched PPM EMAT and their phase velocity at 

these frequencies.  
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 Hence, an EMAT designed for 12mm wavelength SH0 should be driven with AC current of 

256kHz frequency. At this frequency though, SH0 and A0 have the same group velocity. As a 

result, both wave modes can be excited/received from the EMAT simultaneously resulting in a 

more complicated signal, since A0 is dispersive at this frequency. Nevertheless, the orientation of 

the displacement of each wave mode is different; SH0 has an in-plane displacement while A0 has an 

out of plane displacement as well. Thus, the wave mode, and more particularly the displacement, 

the PPM EMAT is sensitive to needs to be investigated via FEA for both room and high 

temperatures.    

Table 4.1 Frequency and Velocity of S0, A0 and SH0 for a 12mm magnet pitch PPM EMAT 

Dispersion Curves 

Wave Mode 
Frequency 

(kHz) 

Phase Velocity 

(m/ms) (kHz) (m/s) 

   
SH0 256 3080 

S0 420 5040 

A0 146 1750 

   

Figure 4.1. Dispersion curves of a 3mm thick 316L stainless steel plate 
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As the temperature of the specimen increases, its material, electric and magnetic properties alter, 

resulting in variations in the velocity and attenuation of the propagating wave mode. Young’s 

modulus and density of the specimen decrease with temperature increase, while Poisson ratio 

increases. These changes result in the velocity drop of bulk shear and longitudinal waves and the 

decrease of the phase and group velocity of SH0, A0 and S0 as well, as it was discussed in 

subsection 3.7. Table 4.2 and Table 4.3 summarize the phase and group velocity of SH0, S0 and A0 

respectively at 256 kHz from room temperature up to 500
o
C with a step of 100

o
C. Hence, as the 

temperature rises and the wave velocity decreases, any reflections received by the EMAT will be 

shifted in time. The electrical resistance and permeability of 316L stainless steel also change with 

temperature increase.  

Table 4.2 Phase Velocity of S0, A0 and SH0 for various temperatures 

 

Table 4.3 Group Velocity of S0, A0 and SH0 for various temperatures 

Phase Velocity at 256kHz 

 
Wave 

Mode 

20 

(
o
C) 

100 

(
o
C) 

200 

(
o
C) 

300 

(
o
C) 

400 

(
o
C) 

500 

(
o
C) (

o
C) (

o
C) (

o
C) (

o
C) (

o
C) (

o
C) 

       
SH0 3080 3052 3001 2924 2808 2621 

S0 5118 5076 5003 4888 4699 4384 

A0 2110 2102 2079 2041 1992 1896 

       

Group Velocity at 256kHz 

 
Wave 

Mode 

20 

(
o
C) 

100 

(
o
C) 

200 

(
o
C) 

300 

(
o
C) 

400 

(
o
C) 

500 

(
o
C) (

o
C) (

o
C) (

o
C) (

o
C) (

o
C) (

o
C) 

SH0 3080 3052 3001 2924 2808 2621 

S0 5047 5006 4928 4807 4604 4277 

A0 3013 2994 2950 2885 2779 2609 
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The electrical resistance increases while permeability decreases with temperature rise; leading to 

electromagnetic losses, lessening of the strength of the electromagnetic coupling between the 

EMAT and the specimen and finally attenuation and amplitude drop of the signal received at high 

temperatures. Table 4.4 summarizes the values of density, Young’s modulus, Poisson ratio and 

electrical resistivity of 316L stainless steel for room and high temperatures, as they were calculated 

based on [142] and used in the FEA model. The way permeability changes with temperature is 

strongly dependent on the composition of the metal and therefore no universal formula can be 

retrieved from literature for its calculation. Similarly, permittivity alters with temperature rise 

strictly dependently on the material composition. Therefore, the model does not take into account 

any variation caused in permeability and permittivity due to temperature changes. In the same 

manner, the resistance of the EMAT coil and permeability of the magnets change with temperature, 

however, the model investigates the effect of temperature on EMAT/specimen interaction only for 

inspection purposes. It is assumed that the EMAT is exposed to heat for short period of time where 

no significant changes can be observed on EMAT impedance and the electromagnetic energy it 

generates as temperature increases. Consequently, the results obtained from the FEA model can 

only provide a qualitative idea of the EMAT/specimen interaction at high temperatures. 

Table 4.4 Material properties over temperature rise 

Material Properties 

Material Properties 
20 

(
o
C) 

100 

(
o
C) 

200 

(
o
C) 

300 

(
o
C) 

400 

(
o
C) 

500 

(
o
C) (

o
C) (

o
C) (

o
C) (

o
C) (

o
C) (

o
C) 

Density 

(Kg) 

8000 7967 7895 7783 7635 7453 

Young’s Modulus 

(GPa) 

195 190 183 172 156 133 

Poisson Ration 0.285 0.286 0.290 0.294 0.298 0.30 

Resistivity 

(nΩm) 

17.2 23.1 30.5 37.9 45.3 52.7 
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Provided that EMAT for GWT at high temperatures has never been studied before, the FEA model 

calculates the ultrasonic signal performance of a typical PPM EMAT design at ambient and high 

temperatures. This analysis focuses on the wave mode purity and temperature limitations of the 

existing EMAT technology and can be utilized as a benchmark for the design of the high-

temperature PPM EMAT. Two arrays of six Nd-Fe-B magnets each were simulated as shown in 

Figure 4.2 a, b. Each magnet has 15mm width, 5 mm depth, 5mm height and Magnetization of 

750kA/m. The direction of their magnetic flux is on the z-axis and the distance between them is 

1mm.  Due to computational limitations, the copper coil has been simplified and designed as two 

rectangular blocks of 35mm width, 15mm depth and 0.4mm height each. The AC current driven to 

the coil is a 3 cycle, Hanning windowed sinusoidal wave of 20A amplitude and of 256kHz central 

frequency along the x-axis. The orientation of the excitation current flowing inside one rectangular 

coil limb is opposite to the orientation of the current inside the other limb. The EMAT has a lift-off 

of 0.6mm from the specimen, which is a square 316L stainless steel plate of 3mm thickness and 

1000mm length. A rectangular air block encapsulated the entire configuration, both EMAT and 

plate, providing electromagnetic coupling of EMAT and specimen. The external sides of that block 

are magnetically insulated.    

The above configuration should yield an in-plane wave mode (x-y plane) propagating in y-axis, 

since the magnetic field is primarily in z-axis and eddy current on x-axis. The frequency response 

of racetrack coil is broadband and thus only the magnets arrangement and the frequency of the AC 

current can affect the frequency response of PPM EMAT. The pitch of the magnets is 12mm and 

equal to the wavelength of SH0 at 256 kHz. The wavelength of the wanted wave mode directly 

15 

5 

5 15 
35 

Magnets 

Coil 

Stainless Steel Plate 

Absorbing/Coupling Block 

EMAT 

Figure 4.2. (a) Comsol FEA model configuration (b) EMAT configuration 

b a 
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affects the mesh element size and computational requirements of the model. It is well documented 

that the maximum mesh element size should not exceed the tenth fraction of the wavelength of the 

wanted wave mode [27]. The smaller the element size, the higher accuracy and resolution can be 

obtained. However, the time required for the simulation to be completed and its computational 

requirements increase greatly with the element size decrease, while the resolution of the final 

results plateaus after a certain element size. Thus, the optimum element size should be defined in 

terms of model resolution against computational limitations. Additionally, the element size is not 

only calculated based on the wavelength of the wave mode the EMAT is designed to excite/receive. 

According to guided wave theory, numerous, additional wave modes can propagate simultaneously 

with the wave mode the EMAT is to generate/detect. The dispersion curves of the 3mm thick 

stainless steel plate show that at 256kHz, S0 and A0 wave modes can also be present and propagate 

either at the same or different angle with SH0. Although, the phase velocity of each wave mode is 

distinctly different from the others, the group velocity of A0 is slightly smaller than that of SH0, 

indicating that both wave modes can have the same ToF. This can result in mode conversion, 

complicating signal interpretation and invalid conclusions. However, both S0 and A0 exhibit an in– 

and out–of-plane displacement by contrast with SH0 that propagates only in–plane. This feature can 

be selected for the wave mode purity analysis performed via FEA. In this case, the mesh element 

size should be calculated based on the smallest wavelength of the potentially propagating wave 

modes. Therefore, the maximum mesh element size is equal to the tenth fraction of A0 wavelength 

at 256 kHz and is equal to 0.1mm. Finally, the relatively small mesh element size in conjunction 

with the large dimensions of the specimen render the model computationally demanding. As a 

result, any further refining of the element size resulted in the unsuccessful completion of the 

simulation based on the available computational resources and thus its optimum mesh element size 

equals to 0.8mm.  

4.2.3 FEA Results and Discussion 
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Figure 4.3 shows the excitation/eddy current at 11μsec and the static magnetic flux distribution 

respectively. Both the electric and the magnetic field are uniformly distributed. The orientation of 

the eddy current alters between the two sides of the coil and it is on the x-y plane; the first label 

refers to excitation current density and the second to eddy current (A/m
2
). The orientation of the 

magnetic field alters as it is depicted in Figure 4.3 b; it is mainly on the z-axis and its maximum 

strength is observed at the center of each magnet separately, as it is expected. The labels 

correspond to Magnetic Scalar Potential (MSP) in y – z, x – z and x – y plane respectively (T). 

Thus, the Lorentz force generated should mainly result in an in–plane displacement (x – y plane). 

Figure 4.4 shows how in- and out-of-plane displacement are related to coordinate system of the 

model. In the rest of thesis, any citation of in- and out-of-plane displacement will be in accordance 

with Figure 4.4. A probe was placed 30cm away from the EMAT at 0
o
 angle from the direction that 

SH0 amplitude is expected to maximize. At this angle, SH0 propagates in x – y plane, while S0 and 

A0 have z and x component. Any displacement in the y-axis in this direction is a strong indication 

of SH0 propagation whilst z displacement refers to both S0 and A0 depending on the ToF. The 

displacement in x-axis can be the result of both SH0 and A0.  Hence, the probe obtained the 

displacement on y and z-axis, as they can be used for the wave mode distinction. Figure 4.5 shows 

that the y displacement (blue line) maximized at 98 μsec while the z displacement (green line) 

maximized at 100 μsec. The ToF of the former matched with the wave velocity of the SH0, as it 

Figure 4.3. (a) Excitation/Eddy current distribution at 11μsec (b) Magnetic Flux Distribution (MSP) 

a b 
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was calculated from the dispersion curves, while the latter could be A0. No S0 reflections were 

noticed at this angle.   

 The three polar plots shown in Figure 4.6 and 4.7 individually provide more information regarding 

the wave purity characteristics and beam spread of this EMAT design. Each presents how the 

normalized x, y and z displacement at 59 μsec and 97 μsec respectively altered all around the 

transducer in 30 cm distance from its center. Thirty-six reception points were evenly distributed 

along the circumference of this circle. The ultrasonic signal response of the EMAT was 

symmetrical in all axis, since no imperfections were attributed to the EMAT design. Although, the 

largest displacement generated by the EMAT propagated in the y-axis at 0
o
 angle with SH0 

velocity, indicating that most of the energy introduced to the specimen resulted in SH0 wave mode 

Figure 4.5. Y and Z displacement at 0o angle 

Displacement in z axis:  

Out of plane displacement 

z 

x 

y 

Displacement in x-y plane:  

In plane displacement 

EMAT 
Plate 

Figure 4.4. Schematic of coordinate system and displacement orientation 
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propagating at the right angle, portion of the energy resulted in out-of-plane displacement in 

various angles and propagating with both S0 and A0 velocity. The maximum out-of-plane 

displacement (z-axis) was observed at 90
o
 angle from the SH0 direction. At this point, the out-of-

plane energy traveled with both S0 and A0 velocity and its amplitude is considerable to x and y 

components. Nevertheless, a considerable y displacement was noticed at this angle as well. At 90
o
 

angle, both Lamb waves propagated in y-axis and their particle oscillation was noticed on both z 

and y-axis. As a result, both observations led to the conclusion that S0 and A0 can be excited by this 

EMAT configuration at 256 kHz and especially at 90
o
 their amplitude maximizes. Nevertheless, the 

out–of–plane displacement was smaller compared to the in–plane and especially at 0
o
 where y 

displacement maximized, the out–of–plane displacement minimized. Consequently, most of the 

energy transmitted to the sample resulted in an in-plane displacement propagating with SH0 

velocity and maximizing at 0
o
, with a beam spread of 35

o
. This confirms that PPM EMAT is 

suitable for SH0, however, other wave modes can be present at various angles leading to poor wave 

purity characteristics.      

Figure 4.6. Displacement of S0 wave mode at a) x, b) y and c) z axis 

b a c 

Figure 4.7. Displacement measure at 97 μsec a) x, b) y and c) z axis 

c b a 
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The same FEA model was implemented for the theoretical evaluation of the ultrasonic signal 

response of PPM EMAT at high temperatures, as it was described before. Figure 4.8 shows how 

the total eddy current density induced on the plate altered with temperature rise, from 20
o
C up to 

500
o
C with 100

o
C step. The results were normalized to the eddy current density calculated for 

room temperature. As it was expected, the eddy current density decreased with temperature rise 

substantially (drop rate of 16% per 100
o
C), as the electrical resistance of copper increased 

significantly with temperature increase and thus electromagnetic losses occurred. However, the 

eddy current distribution did not alter with temperature rise, since the electrical resistance changed 

with temperature uniformly through the entire volume of the plate and the skin effect was not taken 

into consideration. No changes were noticed on the magnetic field flux introduced on the surface of 

the sample, since the magnetic permeability of the sample remained constant in all simulations. 

However, it is known that magnetic permeability dwindles with temperature rise. Therefore, more 

information regarding the magnetic behavior of the material against temperature is required, so that 

a more accurate FEA model will be developed.  

Figure 4.9 demonstrates the effect of temperature rise on the amplitude of the ultrasonic signal of 

the simulated configuration. In more details, Figure 4.9 a shows how y displacement corresponding 

to SH0 measured at 0
o
 angle dropped with temperature, since the out–of–plane displacement at this 

angle was significantly smaller than y component and can be neglected. All amplitude 

measurements were taken in regards to the effect of temperature rise on ToF. The amplitude 

dropped quadratically with temperature rise due to the eddy current behavior at high temperatures. 

Still, was in plane displacement more than 20% of its initial value at 500
o
C, indicating that the 

current EMAT technology can withstand high temperatures. Figure 4.9 b depicts the normalized y 

Figure 4.8. Eddy current density against temperature rise 
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and z displacement at room temperature and 500
o
C; both the in– and out–of–plane displacement 

decreased with the same rate. However, the temperature effect was more noticeable in out–of–

plane displacement due to its relatively small amplitude compared to in–plane even at room 

temperature. The in–plane displacement decreased, but it was not negligible and it also shifted in 

time. However, the magnetic losses due to temperature rise were not taken into consideration and 

therefore a considerable divergence between the theoretical and experimental results is expected 

regarding the high-temperature performance of the existing EMAT technology. Despite this, any 

divergence between the theoretical and experimental results due to magnetic losses can still be 

counterbalanced with the thermal insulation and optimization of the EMAT design. The high-

temperature EMAT should be designed so that its electromagnetic losses will be minimized over 

temperature and thus its experimental evaluation can still validate the above theoretical results. 

Moreover, the displacement dropped at the same rate in all axis around the EMAT, since the eddy 

current and Lorentz force distribution did not alter with temperature rise. Hence, the ratio of the 

maximum in–plane to maximum out–of–plane displacement remained the same over temperature 

rise, resulting in poor wave mode purity characteristics. However, the out–of–plane displacement 

decreased so greatly at 500
o
C compared to room temperature (71.7%) that it can be neglected, as 

shown in Figure 4.9 c.     

a b 

Figure 4.9. (a) Y displacement against temperature rise (b) Displacement at 0o angle at 500oC (c) Out–of–plane 

displacement at room temperature and 500oC (zoom) 

c 
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The above analysis sheds light to the wave mode purity characteristics of PPM EMAT transmitter 

when it is employed on a stainless steel plate, as it shows that not only in–plane but also out–of–

plane displacement can be generated at various angles all around the transducer. The ToF of out–

of– plane displacement matches with both S0 and A0 velocity, while the in–plane propagates with 

SH0 velocity. Consequently, the FEA model partially agrees with literature, since this EMAT 

configuration is suitable for SH0 generation, but can also introduce S0 and A0 wave modes in the 

specimen at both room and high temperatures. Similarly to this, shear piezoelectric transmitters 

also experience poor wave mode purity characteristics [158], although their operating principles 

and specifications are different from those of EMATs. This indicates that the wave mode purity 

limitations both transducer technologies experience are due to guided wave physics. The spatial 

distribution of the force generated into the specimen determines the plane of particle oscillation. 

Hence, the EMAT transmitter produces Lorentz force of a particular spatial distribution that results 

in SH0 at a specific direction, but also S0 and A0.  

The guided wave analysis of a stainless steel plate with the same material properties at room 

temperature and dimensions and under the same excitation/displacement with those simulated in 

the coupled electromagnetic/mechanical FEA model was conducted. An FEA model calculating the 

guided wave propagation of the above configuration was implemented in Abaqus commercial 

software [244]. A single point of excitation was introduced to the plate, corresponding to a single 

pair of alternated polarization EMAT magnets. The displacement introduced into the middle of the 

plate was of the same frequency with Lorentz force calculated previously, but of more cycles, 10 

cycles. Due to computational limitations and symmetrical nature of the wave propagation problem, 

only one-quarter of a 30cm radius circle all around the excitation point was simulated. Nineteen 

reception points were used all around the arc. The polar plots in Figure 4.10 and Figure 4.11 

summarize the results obtained from this analysis. Figure 4.10 a-c show the x, y and z displacement 

at 59 μsec respectively and corresponding to S0 and Figure 4.10 a-c presents x, y and z 

displacement at 97 μsec. Both figures matched well with Figure 4.6 and 4.7. In both cases in–and 

out–of–plane displacement was generated at various angles, where the y displacement maximized 

at 0
o
 and the z displacement at 90

o
. Hence, the energy introduced to the specimen by the EMAT 

was of a specific pattern that unavoidably resulted in the generation of multiple wave modes inside 
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the structure, due to the mechanics of the latter. Nevertheless, the EMAT is sensitive to only one 

particular force/displacement distribution in a certain direction, which is strongly related to its 

design. Thus a PPM EMAT receiver can only detect an in–plane displacement regardless of the 

total number of propagating wave modes.     

At high temperatures, the theoretical results demonstrate that the temperature effect on the material 

and electric properties of the specimen can greatly influence the electromagnetic interaction 

between the EMAT and the specimen and their ultrasonic output signal, even if the electromagnetic 

and thermal properties of the EMAT remain constant. A PPM EMAT transmitter designed for 

room temperature can generate ultrasound to the sample even up to 500
o
C. However, the signal 

received at a 30cm distance from the center of the transducer was weak (80% drop), although the 

temperature effect on electromagnetic properties of the specimen was partially evaluated. Provided 

the fact that the magnetic properties of the sample also change with temperature increase and can 

result in further degradation of the electromagnetic coupling between EMAT and specimen, the 

ultrasonic performance of a room temperature EMAT can be lower than what was already 

theoretically estimated. The high-temperature EMAT should be designed to compensate for greater 

Figure 4.10. Displacement of S0 wave mode at a) x, b) y and c) z axis 

b c a 

Figure 4.11. Displacement measured at 97 μsec a) x, b) y and c) z axis 

c b a 
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electromagnetic losses than those calculated by the FEA model. Also, the EMAT should be 

designed so that its electromagnetic properties will not alter significantly with temperature rise and 

therefore its thermal response should be maintained constant as the temperature increases. As a 

result, a careful study regarding the material selection and optimum thickness of any thermal 

insulation applied on the EMAT was conducted, so that the EMAT would be thermally insulated 

efficiently and also its ultrasonic performance would not degrade significantly at high 

temperatures. A cooling system should also be incorporated in the EMAT design, so that its 

thermal properties would remain constant with temperature rise. Any electromagnetic divergence 

between the high-temperature EMAT design and the already existing technology observed at room 

temperature should be compensated as the temperature increases and could be also counterbalanced 

by providing additional power to the EMAT. The FEA model calculated the ultrasonic performance 

of a PPM EMAT designed for room temperature as it was driven by less power than its typical 

requirements and thus extra power could be also provided to the high-temperature EMAT, if it was 

needed.  Consequently, a thermal and CFD analysis is of great importance for the material selection 

and estimation of the optimum EMAT design and its operating conditions at high temperatures.  

4.3 Transient Thermal Simulations 

The high-temperature EMAT was designed so that the temperature of the coil and the magnets 

remain below their MOT. Given that the coil is directly exposed to heat and its spacing from the 

magnets is usually less than 1 mm, its cooling becomes a challenge. No cooling system can be 

easily designed to efficiently cool down the coil without affecting the specimen. Conductive 

materials, with MOT higher than 500 °C, can be used for the manufacturing of the coil, like 

constantan. In spite of its relatively large resistivity (49 10
-8

 Ω m) compared to copper (1.68 10
-8

 Ω 

m and 4.29 10
-3

/
o
C temperature coefficient of resistivity), constantan possesses a small temperature 

coefficient of resistivity (3 10
-5

/
o
C) attributing its enhanced electromagnetic performance at high 

temperatures. The low amplitude ultrasonic signal constantan coil EMAT generates at room 

temperature should be compensated with temperature rise. Therefore, an experimental investigation 

of the above was also performed along with impedance analysis at both room and high 
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temperatures. Thermal insulating materials should be also added to the coil to impede the heat 

transfer from the specimen. However, EMATs are very sensitive to lift-off variations, since the 

electromagnetic coupling strength between the EMAT and the specimen decreases with lift-off. 

Consequently, the thickness of any material added to the coil should be as small as possible so that 

both the coil will be efficiently protected from the heat and the electromagnetic coupling will be 

maximized. The optimum thickness of the thermal insulation was investigated via thermal 

simulations.  

FEA was used for the thermal evaluation of a simplified EMAT design. Only the main parts of the 

EMAT were modeled, including the cooling, the magnets/magnet holder and the coil structure. The 

housing of the EMAT was made of brass, which possesses high thermal conductivity and melting 

point compared to aluminum and stainless steel transducer housings. A rectangular box of 3 mm 

thickness of 316 L stainless steel was modeled as the specimen/heat source. Figure 4.12 shows the 

geometry analyzed in Ansys commercial software using its Transient Thermal module [245]. In all 

simulations, the EMAT was in full contact with the specimen so the results correspond to the 

severest thermal conditions. The EMAT components are denoted in Figure 4.12 a and the cooling 

chamber in Figure 4.12 b. A detailed image of the coil is given in Figure 4.12 c. The coil was made 

of constantan and was encapsulated in alumina between two layers of Kapton. 

Cooling 

Chamber 

Specimen 
Magnet 

Holder 

Kapton 

(tK) 

Coil (dc) 

Ceramic 

(tc) 

Figure 4.12. Thermal EMAT model (a) entire EMAT design (b) cooling 

chamber (c) Coil structure 

a 

c 

b 
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Alumina was selected for the thermal encapsulation of the coil, due to its relatively high specific 

heat capacity (minimum value of 0.45 J/g K) and dielectric constant (99% alumina of 9 dielectric 

constant). Thus, it is an excellent candidate for the thermal and electrical insulation of the coil. 

However, its high dielectric constant can increase the capacitance of the EMAT and limit the 

ultrasonic signal performance of the transducer. During the first set of simulations, the optimal 

thickness of alumina substrate was calculated in regards to the thermal properties and lift-

off/ultrasonic limitations of the EMAT. The temperature of the specimen was set to 100 °C with no 

active cooling. No Kapton encapsulated the coil whose diameter/thickness (dc) was fixed at 0.4 

mm. The thickness of the alumina layers (tc) was increased gradually in simulations from zero with 

a step of 0.25 mm until the thermal response of the EMAT essentially plateaued. The maximum 

thickness was 1 mm due to lift-off limitations. The time needed for the coil (tmax_coil) and magnets 

(tmax_magnets) temperature to maximize did not increase significantly for alumina thickness exceeding 

0.75 mm, as Figures 4.13 and 4.14 show. Figure 4.13 a,b show the temperature increase of the coil 

and magnets for 0.75 and 1 mm thick alumina layers respectively. In Figure 4.14, the green and 

orange solid lines show how the normalized time required for the coil and the magnets temperature 

to reach their maximum (𝑡norm_coil, 𝑡norm_magnets) converged with ceramic thickness. Equation 4.5 

gives 𝑡norm_coil and 𝑡norm_magnets was calculated in the same manner, where 𝑖 is the step in ceramic 

thickness increase. The blue and red dashed lines in Figure 4.14 present how the normalized 

Lorentz force amplitude drops with lift-off for stainless steel and steel, respectively, based on 

equations 4.6 and 4.7, respectively, where 𝐺is the lift-off and 𝐷p refers to the pitch of the PPM 

Figure 4.13. Temperature gradient of alumina encapsulated coil (a) 0.75mm alumina thickness (b) 1mm 

alumina thickness 

a b 
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EMAT.  

𝑡norm_coil =
𝑡max_coil_i − 𝑡max_coil_i+1

𝑡max_coil_i

, 𝑖 = 1,2,3        (4.5) 

𝐹L_stainless steel = 𝑒
−12𝜋
𝐺𝐷p   (4.6) 

𝐹L_steel = 𝑒
−4𝜋
𝐺𝐷p   (4.7) 

Figure 4.14 shows that 𝑡norm_magnets plateaued and 𝑡norm_coil dropped with smaller rate after 0.75 mm 

ceramic thickness. Consequently, any further ceramic thickness increase would not improve 

significantly the thermal response of EMAT over time. The ceramic thickness can also affect the 

amplitude of ultrasonic signal response of EMAT, since it increases its lift-off. When the ceramic 

thickness is 0.75 mm, Lorentz force decreases to 20% and 45% of its maximum for stainless steel 

and steel, respectively. When the ceramic thickness increases to 1 mm, Lorentz force in stainless 

steel is less than 20% of its maximum, making the EMAT inefficient for GWT. Hence, the 

minimum thickness of each alumina layer should be chosen as 0.75 mm. Regardless of the ceramic 

thickness, the time needed for the EMAT components to reach maximum temperature, whilst the 

EMAT was heated up to 100
o
C, was of the order of only a few seconds (5 seconds). Hence, 

additional thermal insulation was needed to extend the maximum operating temperature and time 

of the EMAT.  

Kapton possesses large specific heat capacity (1 J/g K) and thus it can impede the heat transfer 

from the specimen to the EMAT coil over time more efficiently than alumina. It also exhibits 

Figure 4.14. Optimum ceramic thickness graph 
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strong electrical insulating characteristics. However, its MOT is 400
o
C and therefore it can limit the 

thermal response and MOT of the transducer. Further simulations were performed with two Kapton 

layers in place. The alumina thickness increased from 0.75 mm to 1 mm in 0.25 mm steps with a 

Kapton layer (tk) of 1 mm and a specimen held at 100 °C. Figure 4.15 a (0.75 mm alumina) and 

Figure 4.15 b (1.0 mm alumina) show the temperature increase of the bottom ceramic layer, the 

coil and the magnets for the fully encapsulated EMAT. The response of all three components did 

not change significantly with the ceramic layer thickness, indicating that a 0.75 mm thick alumina 

encapsulation is suitable for this design. However, the trend of magnet temperature was affected; 

both the first and second derivatives of the magnet response changed compared to Figure 4.13, 

explained by the double insulation of the magnet compared to the coil, with two layers of alumina 

and Kapton inhibiting heat transfer. When both Kapton and 0.75 mm thick alumina encapsulation 

were used and the EMAT was heated for 1 min, the temperature of the coil and the magnets 

reached only 67 °C and 45 °C, respectively. These encouraging results indicate that this EMAT 

design can potentially withstand even higher temperatures. Thus, its higher temperature response 

was also investigated.  

In the final thermal simulations, the EMAT design (coil encapsulated with 0.75 mm thick alumina 

and two layers of Kapton) was tested up to 500 °C. No active cooling was used and the temperature 

of the specimen increased from 100 °C to 500 °C. Table 4.5 summarizes the temperature of the coil 

and the magnets with the EMAT heated for 1 min. The results show that alumina and Kapton can 

Figure 4.15. Temperature gradient of Kapton and alumina encapsulated coil (a) 0.75mm alumina thickness 

(b) 1mm alumina thickness 

a b 
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be used for thermal insulation of the coil and magnets, since the temperature of the EMAT 

components remained well below their MOT.  

The current thermal analysis resulted in the optimum EMAT design in terms of transient thermal 

properties. The EMAT was designed so that the time required for the maximum heat to be 

transferred to it would be maximized without any active cooling. The material properties and 

thickness of the thermal insulation added to the coil to limit the heat transfer were selected and 

calculated so that the EMAT would be efficiently insulated thermally up to 500
o
C and the 

electromagnetic losses would be also eliminated. The results obtained show that a Kapton and 

alumina encapsulated constantan coil can withstand high temperatures (500
o
C) for short period of 

time (1 min), since the coil and magnet temperature did not exceed their MOT during the first 

minute of operation. Thus, the current design can be utilized for inspection purposes. Nevertheless, 

in this analysis the thermal properties of the EMAT did not plateau over time and especially, at 

500
o
C the temperature of the magnets was relatively close to their MOT and it could exceed it, as 

the operating time increased. Therefore, further CFD simulations were carried out, in which the 

active cooling was also evaluated, for the enhancement of the thermal properties of the EMAT over 

time.    

Table 4.5. Thermal properties of EMAT based on transient thermal analysis 

Specimen 
Temp./°C 

100 200 300 400 500 

Coil 66.4 123.4 180.3 236.7 294.4 

Magnets 43.9 72.1 100 129.2 156.5 

 

4.4 CFD Analysis 

4.4.1 Water Cooled EMAT for Inspection 
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Based on the EMAT theory and GWT specifications outlined in Chapter 3, the electromagnetic 

coupling between the EMAT and the specimen in GWT should be as strong as possible so that the 

length of inspection will be maximized. Given that the EMAT is driven by the largest electrical 

supply that is currently available and its design permits the optimum thermal and electrical 

performance of its coil, its magnetic potential should be also optimized over temperature rise. The 

EMAT must be designed so that both Nd-Fe-B and SmCo magnets can be successfully utilized up 

to 500
o
C. Consequently, the temperature of the magnets should be constantly maintained below the 

MOT of Nd-Fe-B (200
o
C). Thermal insulation of the coil will increase the time required for energy 

to be transmitted to the magnets but excess thermal energy can lead them to break down. The heat 

must, therefore, be removed via a cooling system designed into the EMAT. A CFD analysis in 

Ansys software using its Fluid Flow (Fluent) module was performed. The EMAT was theoretically 

evaluated regarding its thermal response over time. Optimal flow velocity and inlet temperature of 

the coolant were identified and the effect of the cooling medium on the performance of the cooling 

system was also investigated.  

In the first set of simulations, the optimum coolant flow velocity was calculated. The duration of 

the coolant being inside the cooling chamber and exposed to heat affects the amount of thermal 

energy it absorbs. The temperature of the coolant increases with time, reducing its temperature 

difference with the heat sink until eventually, this is too small to dissipate sufficient heat. The 

optimum flow velocity must, therefore, be calculated. In these simulations, water with inlet 

temperature of 10 °C was used as coolant. The density, specific heat capacity, thermal conductivity 

and viscosity of water were, respectively, 998 kg/m
3
, 4182 J/kg·K,  

0.6 W/m·K and 0.001 Pa/s. The temperature of the specimen was held at 500 °C and the EMAT 

was in total contact with the specimen for 5 mins. The water flow velocity was increased in the 

simulations from 1 m/s to 9 m/s in steps of 2 m/s. Figure 4.16 a demonstrates how the maximum 

and minimum temperature of the coil and the magnets dropped with increasing flow velocity after 

5 mins of heat exposure. The minimum temperature of the magnets decreased dramatically. It 

dropped below 200 °C at a flow velocity of only 3 m/s showing that flow velocity has a major 

influence on EMAT efficiency. The optimum flow velocity for this system in terms of power 

requirement was 3 m/s since higher flow velocities would require more electrical power. However, 
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it should be highlighted that the thermal response of the EMAT did not plateau after 5 mins of 

operation. This can complicate the EMAT performance for monitoring purposes, since the 

temperature of its components may exceed their MOT after 5mins.  

 A parameter that could also affect the efficiency of the system is the temperature of the coolant 

entering the cooling area. In further simulations, the water flow velocity was kept at 3 m/s and its 

temperature increased from 0 °C to 20 °C in steps of 5 °C. The balance of the components was held 

at 25 °C. Figure 4.16 b shows how the maximum and the minimum temperature of the coil and the 

magnets changed with the water temperature after 5 mins of operation. No significant changes were 

observed in any of the four temperatures as the coolant temperature increased. Thus, this parameter 

cannot be used to control the performance of the cooling system. An optimum coolant temperature 

of 10 °C can be freely chosen since the minimum temperature of the magnets was below 200 °C 

and no additional equipment is required to cool the water. 

Figure 4.17 a shows the temperature gradient of the main EMAT components when the EMAT was 

heated up to 500
o
C for 5 mins under its optimum operating conditions, as they were calculated 

previously. It is apparent that the size and position of the cooling chamber affect the temperature 

gradient of the coil and the magnets. The area below the cooling chamber was efficiently cooled 

while areas further away from the cooling chamber and closer to the cooling outlet experienced 

higher temperatures. However, the size and position of the cooling chamber were directly affected 

by BNC connector position. Space was needed for the electrical components of the EMAT to be 

safely positioned without the overall size of the EMAT exceeding 100 mm. A design with wider 

Figure 4.16. (a) EMAT temperature against coolant flow velocity (b) EMAT temperature against coolant 

temperature 

a b 
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cooling chamber could cool the critical EMAT components more efficiently but may result in a 

bulkier EMAT. Figure 4.17 b summarizes the results obtained when the aforementioned model was 

evaluated from 100 °C to 500 °C in steps of 100 °C. In all cases, the minimum temperature of the 

main two EMAT components did not exceed their MOT, indicating that this EMAT design under 

the specified conditions can withstand high temperatures for at least 5 mins. Nevertheless, the 

maximum temperature of the magnets exceeded their MOT when the specimen temperature 

exceeded 250 °C, and the maximum water temperature exceeded 100 °C. However, these 

temperatures occurred in a small area and the short time required for the water to circulate in the 

cooling chamber means the water will not evaporate. These observations, though, can limit the 

operating time of the EMAT at high temperatures.  

4.4.2 Oil Cooled EMAT for Inspection 

The material properties of the cooling medium—heat capacity, thermal conductivity, freezing point 

and viscosity—affect the performance of the cooling system, its thermal efficiency and limitations. 

Water and oil have been widely used as coolants for transformers and EMATs. A thermal analysis 

was performed for an oil-cooled EMAT. The density, specific heat capacity, thermal conductivity 

and viscosity of the oil used in the model are respectively 890 kg/m
3
, 1860 J/kg·K,  

0.126 W/m·K and 0.06 Pa/s. Flow velocity was 3 m/s and the temperature of oil as it entered the 

cooling chamber was 10 °C while the rest of the EMAT components were at 25 °C. The 

temperature of the specimen was held at 500 °C with the EMAT in contact. Under these conditions, 

Figure 4.17. Water cooled EMAT (a) temperature gradient of EMAT components at 500oC (b) temperature of 

EMAT components against temperature rise.  

a b 

Inlet 
Outlet 
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the oil did not cool the magnets as efficiently as water; the minimum temperature of the magnets 

exceeded 200 °C within 5 mins of operation. However, optimum operating parameters change with 

the coolant and since it was simulated under the optimum conditions for water, the thermal 

performance of the oil-cooled EMAT was low. The temperature of oil can be below zero, if a 

refrigerator is used, however, this results in complicated and costly instrumentation. The oil cooled 

EMAT design was simulated again with an oil temperature of −10 °C and the flow velocity was set 

to 3 m/s and then 9 m/s. Table 4.6 summarizes the results retrieved from the three case studies for 

the oil cooled EMAT; neither flow velocity nor temperature significantly improved the oil system’s 

efficiency.  

Oil has a smaller heat capacity and thermal conductivity than water and less time is required for its 

temperature to increase. The viscosity of oil also impedes its circulation inside the cooling 

chamber. Hence, the temperature difference between coil and heat sink was smaller compared to 

that with water-cooling, resulting in lower efficiency. The cooling system must be re-designed to 

improve the thermal response of the oil cooled EMAT. Magnets and coil can be in a single 

chamber through which cooling oil flows. Oil is a minor fire hazard. It may also attenuate and alter 

the magnetic field and its dielectric constant alters with temperature. Further research with oil is 

necessary. Water is safer but its higher freezing point limits cooling efficiency.  

Table4.6. Temperature of oil cooled EMAT against flow velocity and oil temperature  

 

Medium 

Flow  

Velocity 

Coolant  

Temperature 

Coil Max.  

Temperature 

Coil Min.  

Temperature 

Magnets Max.  

Temperature 

Magnets Min.  

Temperature 

m/s °C °C °C °C °C 

Oil 3 10 497 482.9 480 421.1 

Oil 3 –10 496.8 482.2 479.1 417.9 

Oil 9 –10 496.1 480.4 477.2 413.4 

Water 3 10 491.8 428.1 431.8 183.6 
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Consequently, a water-cooled EMAT with Kapton and ceramic encapsulated coil can withstand 

high temperatures for short period (less than 5 mins) based on theoretical analysis and can 

potentially be used for high-temperature inspection. However, during this operating period of 5 

mins, the thermal response of the EMAT did not plateau. This indicates that further changes may 

be required for this EMAT to be maintained thermally stable over long periods of time. Additional 

analysis for the evaluation of the thermal potential and limitations of the current EMAT design in 

terms of long term operation at high temperatures was performed. The optimum operating 

conditions and MOT of this EMAT against high temperatures over time (> 5 mins) were identified.  

4.4.3 Water Cooled EMAT for Long Term Inspection 

The FEA model presented in the previous subsection was utilized for the thermal analysis of the 

current EMAT design over long-term operation as well. The EMAT was heated up to 500
o
C for 15 

mins under the optimum operating conditions calculated previously and the results were 

unsatisfactory. Similarly, when the temperature of the specimen decreased from 500
o
C to 250

o
C 

with 50
o
C step, the temperature of the magnets remained above 200

o
C after 15 mins of thermal 

exposure. As a result, the operating conditions had to be re-calculated and selected based on the 

steady state thermal response of the EMAT.  

Since the flow velocity can greatly affect the thermal response of the EMAT, the long-term thermal 

properties of the transducer were estimated, as it was heated up to 500
o
C for at least 15 mins and 

the flow velocity increased from 3 m/s to 30 m/s with 2 m/s step. In all cases, the temperature of 

the magnets exceeded their MOT. Hence, no variations in the flow velocity of the coolant can 

significantly enhance the thermal performance of this EMAT design for long term operation at 

500
o
C.  

Given the above limitations of this transducer design and the fact that the currently available high-

temperature GWT monitoring systems operate up to 200
o
C, the EMAT was re-evaluated regarding 

its thermal properties over time at 250
o
C. The effect of flow velocity on the thermal performance of 

EMAT was investigated again. The EMAT was heated up to 250
o
C for 60 mins incrementally. The 

flow velocity was increased with a step of 2 m/s from 3 m/s to 15 m/s when finally the minimum 
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temperature of the magnets essentially plateaued below 200
o
C over time. Figure 4.18 depicts how 

the temperature gradient of the EMAT altered over time and how the temperature of the EMAT 

components converged as the operating time increased. Figure 4.18 a-c show the temperature 

gradient of the EMAT at 250
o
C at 1 min, 15 mins and 30 mins of thermal exposure respectively, 

while Figure 4.18 d demonstrates how the temperature of the EMAT components dropped over 

time. The results obtained show that the current EMAT design required 15 mins of operation at 

250
o
C so that the temperature of its components and more particularly its magnets would drop 

below their MOT and be kept constant. Especially, after 30 mins of operation, the temperature 

gradient of the EMAT did not alter and its thermal properties constantly met its design 

requirements. Similarly to previous results (Section 4.4.1), the parts of the components that are 

under the cooling chamber or closer to its inlet were more efficiently cooled down over time.  

Consequently, this EMAT operating under the aforementioned conditions was thermally stable for 

at least 60 mins, whilst the minimum temperature of its essential components did not exceed their 

b a 

Figure 4.18.  Temperature gradient of EMAT at 250oC after (a) 1min (b) 15mins (c) 30mins (d) coil and 

magnets temperature against operating time 

d c 
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MOT. Hence, it can be potentially employed for the GWT monitoring or long-term inspection of 

structures operating up to 250
o
C.         

4.4.4 Summary 

This Chapter focuses on the theoretical investigation of the wave mode purity characteristics of 

PPM EMAT configuration and its ultrasonic signal potential and limitations at high temperatures. 

FEA models were implemented for the calculation of the electromagnetic response of a room 

temperature EMAT attached to a stainless steel plate and their ultrasonic interaction. The results 

obtained from this study show that this EMAT configuration can excite SH0 waves in the right 

direction according to the literature. However, S0 and A0 can propagate in various angles and 

especially in 90
o
 angle from the SH0 direction.  

The same configuration was studied regarding its ultrasonic performance at high temperatures. This 

analysis showed that the currently existing EMAT technology can withstand up to 500
o
C, since 

valid information was retrieved from the model up to this temperature. However, the signal 

received is significantly weak and the effect of temperature rise on essential components and 

properties of EMAT and specimen were not taken into consideration. Consequently, the model 

provides a qualitative idea of the performance of the already existing technology at high 

temperatures. The high-temperature EMAT should be designed to counterbalance larger 

electromagnetic losses that those calculated.   

Thermal and CFD analysis was also performed regarding the material selection, optimization of 

EMAT design and calculation of its optimum operating conditions against temperature rise. A 

detailed study of the coil structure, thermal insulation and the thickness of each material was 

conducted in terms of optimum thermal and ultrasonic signal properties of the EMAT. A water – 

cooled EMAT with constantan coil encapsulated in alumina and Kapton was investigated regarding 

its thermal response over time up to 500
o
C. The flow velocity of the coolant was proved to greatly 

affect the thermal properties of the transducer, on the contrary to its inlet temperature, whilst the 

current design can effectively withstand high temperatures with the use of water and not oil. The 
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final EMAT design successfully met its thermal specifications up to 500
o
C for short period of time 

(5 mins) and up to 250
o
C for one hour of heat exposure. The temperature of the main EMAT 

components remained below their MOT in both cases, indicating that the current design has the 

potential to successfully operate at high temperatures.    

The following Chapter outlines the methodology followed for the experimental validation of the 

aforementioned theoretical analysis. A commercial PPM EMAT designed for room temperature 

was evaluated regarding its ultrasonic signal potential and limitations at room and high 

temperatures. The effect of autotransformer connection on the SNR and ultrasonic performance of 

the EMAT was also experimentally investigated. The results obtained constructed a benchmark for 

the experimental evaluation of the water cooled EMAT. The water cooled EMAT was developed 

and characterized regarding its impedance and wave mode purity characteristics.    
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Chapter 5 

Design and Characterization of Water Cooled EMAT 

5.1 Introduction 

Due to limited development of high temperature EMAT, the limitations of the existing EMAT 

technology for this application should be experimentally investigated and utilized as a benchmark 

for the characterization of the water cooled EMAT. A system of commercial PPM EMATs [163] 

was evaluated regarding its ultrasonic signal performance and defect detection potential at room 

and high temperatures, up to 180
o
C, with and without shielding (autotransformer connection). The 

results of this evaluation are summarized in this Chapter. A GWT system of two water-cooled 

EMATs was developed and tested regarding its ultrasonic potential and limitations at room 

temperature. An experimental comparison between the two EMAT systems and designs was 

accomplished. The experimental validation of the ultrasonic FEA study presented in the previous 

Chapter was also accomplished. Impedance analysis and wave mode purity characterization via 

vibrometry tests were also performed and presented in this Chapter. 

5.2 Existing Technology 

5.2.1 Room Temperature Ultrasonic Evaluation 

A pair of commercial PPM EMATs with the exact same design with the configuration studied in 

the previous Chapter was experimentally evaluated regarding its defect detection capabilities at 

room temperature. An experimental validation of the effect of autotransformer connection on the 

SNR of the signal received and the overall ultrasonic performance of the EMAT system was also 

performed. The effect of power input and lift-off on the performance of EMATs was investigated.   
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The EMATs were composed of racetrack, copper coil of 0.315mm wire diameter and two arrays of 

six Nd-Fe-B magnets each with 12mm pitch. They were designed for room temperature SH 

inspection. They were employed on the specimen in a pitch-catch configuration with 30 cm 

distance between them. A square, 316L stainless steel plate of 1,25m length and 3mm thickness 

was tested. Both defect free and areas with defects were tested. Five defects of different length and 

mass loss each were introduced to the specimen with 10cm distance from each other. The defect 

tested was 10mm long and of 66.6% mass loss and was placed in the middle of the distance 

between the two EMATs. Ritec RAM 5000 SNAP pulser/receiver [246] was used for driving the 

EMAT transmitter with a 7 cycle, Hanning windowed pulse of 256 kHz frequency. It was also used 

for amplifying the signal received with a gain of 80dB and filtering it within the bandwidth of 10 

kHz and 20 MHz. The signal was finally collected, averaged and recorded in an oscilloscope.  

The effect of the voltage difference between the EMATs and the specimen on the quality of the 

signal received was investigated. An additional thin, stainless steel cover was placed all around the 

transducers, touching both the EMATs housing and the specimen, for establishing a common 

ground connection (shielding) between them. In this manner, the electrical connection between the 

EMATs and specimen can be regarded as autotransformer. Four case studies were investigated; 

defect free and a defective area, with and without shielding (autotransformer connection). The 

influence of lift-off on EMAT response was investigated from zero to 1mm lift-off with a step of 

0.1mm. A study regarding the power supply requirements of these EMATs was also accomplished 

by gradually decreasing the power output of Ritec with a step of 5% starting from its maximum 

power level (5000 Watts) and stopping at 20% of its maximum power where no useful information 

could be retrieved anymore from the signal received.  

Figure 5.1 a shows the signal received from the defect-free area when the EMATs and the 

specimen did not have any common ground connection (shielding). The first reflection is the signal 

transmitted from the transmitter to the receiver and the other three are coming from the edges of the 

plate. In this case, the noise level was high and the amplitude of all the reflections was relatively 

low compared to the noise level, resulting in a low SNR (8dB). Figure 5.1 b shows the signal 

received when the defect was tested without the EMATs being shielded. Similarly to the previous 
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figure, the signal transmitted and the three reflections from the edges of the plate are obvious, but 

their amplitude was relatively small compared to the noise level. Additionally, no reflections from 

the defect were noticed, resulting in poor EMAT defect detection potential. Figure 5.2 a presents 

the signal received when the EMATs tested the defect-free area and they were shielded. The 

amplitude of the reflections increased three times, the noise level decreased and as a result, the 

SNR increased more than six times (52dB). Likewise, the signal shown in Figure 5.2 b, which 

corresponds to the ultrasonic signal response of shielded EMATs on the defect, exhibited higher 

SNR (35dB) than that of the signal shown in Figure 5.1 b. This time, both defect reflections were 

successfully detected and led to significantly enhanced defect detection EMAT capabilities.  

The results obtained agree with theory presented in Chapter 3 where it was firstly mentioned that 

an autotransformer connection between EMAT and specimen (shielding) can result in SNR 

improvement and enhanced the ultrasonic performance of an EMAT system, due to the noise 

cancellation. The electromagnetic coupling between the specimen and the EMATs was proved to 

be weak when they were connected as a two winding transformer. The electromagnetic losses 

between the EMATs and the specimen were greater than in a conventional two winding 

transformer, since no ferrite connected the EMATs and the specimen. The air between them 

increased the noise level and lessened the electromagnetic coupling. When the EMAT/specimen 

connection performed as an autotransformer, the noise level decreased and the amplitude of the 

ultrasonic signal increased. Less common mode noise interfered with the EMAT receiver and thus 

more current was induced in the coil. Consequently, the voltage difference between the EMAT and 

Signal Transmitted 

1st Reflection 

2nd Reflection 
3rd Reflection 

No Defect Reflections 

Figure 5.1. (a) Signal received from defect free area without shielding (b) Signal received from defect without 

shielding 

a b 
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the specimen affects significantly the quality of the signal received and when there is no voltage 

difference and both components are connected to ground, the probability of defect detection 

increases greatly. Therefore, all ultrasonic results presented below correspond to shielded EMAT 

systems. 

The results obtained also confirm that the frequency selected based on the size defect and the 

dispersion curves was suitable for the detection of 10mm long defect. The ToF of the reflections 

matched with the SH0 velocity, as it was calculated from the dispersion curves. The experimental 

results agreed with literature based on which PPM EMAT receivers are sensitive to SH0. However, 

still it cannot be confirmed that the EMAT transmitter did not excite multiple wave modes that 

were not detected by the EMAT receiver.      

The blue line in Figure 5.3 shows how the normalized amplitude of the signal transmitted changed 

with respect to lift-off. It decreased almost exponentially and especially when lift-off was equal to 

1mm no reflections coming from the edges of the plate were noticed, arising questions about the 

maximum length of inspection that can be achieved under these conditions. As a result, this EMAT 

Figure 5.3. Room temperature PPM EMAT: Amplitude against lift-off 

Defect Reflections 

Figure 5.2. (a) Signal received from defect free area with shielding (b) Signal received from defect with shielding 

a b 
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configuration can be efficiently employed for GWT with less than 1mm lift-off from the specimen. 

EMAT for GWT exhibit higher lift – off limitation compared to EMAT designed for other 

applications [242]. A parameter that influences its performance against lift-off is the impedance of 

the coil. The impedance changes with lift-off as well as with the material properties of the 

specimen. The self – inductance of the coil decreases with lift-off decrease, while the mutual 

inductance between the EMAT and specimen increases. Both lead to variations in the overall 

impedance of the coil. Additionally, the parasitic capacitance between the transducer and the plate 

alters with lift-off and contributes further to impedance changes. A detailed analysis of the EMAT 

impedance against several operating parameters including lift-off follows in the next subsection. At 

this point, it should be highlighted that lift-off increase results in impedance variations that should 

be counterbalanced with the use of impedance matching circuit.       

An experimental evaluation of this system regarding its power requirements was also conducted. 

The power level decreased gradually from 100% to 20% with a step of 5%; as no useful 

information could be retrieved from the signal received when the power level was smaller than 

20%. Figure 5.4 shows how the normalized amplitude of the signal transmitted increased with 

power supply increase. It can be observed that the amplitude increased almost linearly. Similarly, 

with lift-off, the impedance of the coil affects the power requirements of EMAT system. If the 

pulser/receiver unit drives the EMAT transmitter through an output resistor, the impedance of the 

coil should be equal to the output impedance of the pulser unit, so that the voltage drop in the coil 

will be minimized. Therefore, impedance matching is always required, so that the coil is driven 

with the maximum power possible and strong signals are obtained.  Nevertheless, the power 

requirements of EMAT transducers remain high, leading to the conclusion that EMATs are more 

Figure 5.4. Room temperature PPM EMAT: Amplitude against power supply 
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efficient as receivers rather than transmitters in terms of power requirements. 

5.2.2 High-Temperature Ultrasonic Evaluation 

According to the literature, high-temperature EMATs have been designed so far only for thickness 

measurements [231-235] and thus, an EMAT that can withstand high temperatures and be suitable 

for GWT is still required. An approach for that would be the material selection and calculation of 

the optimum operating conditions for the development of a novel high-temperature EMAT for 

GWT. However, a benchmark for the experimental evaluation of the new EMAT is also needed. 

Thus, further study regarding the high-temperature performance of the already existing EMAT 

technology for GWT had to be conducted prior to the design of the new EMAT.  

The room temperature EMAT system was tested from ambient temperature to 180
o
C with a step of 

10
o
C. The two EMATs were tested only up to 180

o
C, because their ultrasonic signal response had 

worsened significantly at this temperature and any further temperature increase would possibly 

cause a serious and irreversible damage to them. The EMATs were continuously exposed to heat 

with zero lift-off for 15 minutes and were employed again in a pitch-catch configuration of 30 cm 

distance and with the 10mm long defect in the middle, as shown in Figure 5.5. A three phase 

heating unit manufactured by STORK [247] was utilized for the temperature rise of the specimen. 

This set of experiments was conducted three times. Figure 5.6 a-d show the signal received at room 

temperature, 60
o
C, 100

o
C and 180

o
C respectively. In the signal obtained at room temperature both 

Figure 5.5. High temperature experimental set-up (a) EMATs attached upon specimen (b) electrical 

instrumentation - RITEC (c) thermal instrumentation 

RITEC 

a b c 
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the reflections from the plate edges and the first two reflections from the defect were clear. 

However, it is obvious that the amplitude of the signal received diminished greatly after 60
o
C, 

since the signal transmitted and the second reflection coming from the plate decreased 25% and 

75% respectively at 60
o
C. Especially, at 100

o
C and 180

o
C the second reflection of the plate edge 

was hardly noticed. The divergence in the impact of temperature rise on different reflections is due 

to the non-uniform heating of the specimen. There were areas whose temperature was largest than 

others and therefore the temperature rise effect was more noticeable on the reflections propagating 

to them. Similarly, the amplitude of the defect reflections decreased greatly after 60
o
C (98%) and 

no valid information could be retrieved at 100
o
C and 180

o
C. Both observations lead to the 

conclusion that the current EMAT technology cannot be efficiently employed at elevated 

temperatures, since both the inspection of length and the defect detection potential deteriorated 

greatly after 60
o
C. The industrial applicability of the transducers becomes questionable for 

temperatures higher than 100
o
C. In all cases, all reflections shifted in time, as it was expected. 

However, due to imperfections in the experimental setup and more especially in the mechanism 

used for the heating of the plate, the area inspected was not uniformly heated up and therefore the 

reflections did not exhibit the same shifting in time. The third reflection from the plate shifted more 

a 

d 

b 

c 

2
nd

 Reflection 

1
st 

Defect Reflection 

Figure 5.6. Signal received at (a) room temperature (b) 60oC (c) 100oC (d) 180oC 

Signal 

Transmitted 

Signal Transmitted 

(2nd time collected) 
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in time compared to the signal transmitted when it was received for the second time, as it can be 

noticed in Figure 5.6 d, and it could lead to complicating signal interpretation.     

Figure 5.7 shows how the amplitude of the signal transmitted decreased with temperature rise; it is 

clear that the amplitude decreased almost linearly with temperature rise. However, the amplitude of 

the signal transmitted in 30
o
C and 40

o
C was slightly larger than that at room temperature in the area 

marked in red in Figure 5.7. Also, the amplitude error altered with temperature rise. A reason for 

that can be the ground connection between the EMAT and the specimen. The thermal conductivity 

of stainless steel is low and therefore the specimen was not heated up uniformly. As a result, the 

plate deformed and the mechanical connection between the EMAT ground and the specimen 

altered with temperature rise due to the gradient of the bend. This mechanical/electrical connection 

influenced significantly the amplitude of the signal transmitted and thus it can be the reason for the 

amplitude increase at 30
o
C and 40

o
C. Based on the conclusions made from the previous figure, the 

EMAT performance started decreasing substantially at 60
o
C and its industrial reliability and 

applicability started being questionable after 100
o
C. Although the amplitude of the signal 

transmitted was still 75% and 56% of its maximum value at 60
o
C and 100

o
C respectively, still the 

overall energy propagating at these temperatures was not enough for the reliable structural integrity 

assessment of the sample. Hence, the room temperature EMATs cannot be used for the inspection 

or monitoring of high-temperature structures (>100
o
C). However, the performance of a new EMAT 

system specifically designed for GWT at high temperatures (>200
o
C) should be compared with that 

of this room temperature EMAT system up to 100
o
C.  

Figure 5.7. Room temperature PPM EMAT: Amplitude against temperature rise 
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5.3 Water Cooled EMAT for High-Temperature GWT 

5.3.1 EMAT Design 

The water cooled EMAT was designed and manufactured based on the numerical simulations 

carried out in Chapter 4 and is shown in Figure 5.8. All housing components were made of brass 

and both Nd-F-B and SmCo magnets were used and arranged in a PPM configuration. The CAD 

design and dimensions (mm) of the EMAT are shown in Figure 5.8 a whilst the final EMAT 

prototype is depicted in Figure 5.8 b. Figure 5.9 a shows the racetrack coil without either alumina 

or Kapton encapsulation, while Figure 5.9 b depicts the underside view of the constantan coil, as it 

was encapsulated in alumina within two Kapton layers and a thermocouple. The coil was hand 

wound, since the current Printed Circuit Board (PCB) technology does not allow the manufacturing 

of a PCB constantan coil fully encapsulated in alumina and Kapton that can operate up to 500
o
C. 

The wire diameter was 0.4 mm and the thickness of each alumina layer was 0.8 mm. The Kapton 

layer was 0.1 mm thick and its melting point was 400 °C. If a single Kapton layer of this thickness 

was not thermally efficient for impeding the heat transfer, more layers could be added to the 

structure until the total thickness of Kapton encapsulation was 1 mm at each side. Care had to be 

taken when the temperature exceeded 350 °C, since the melting point of Kapton is 400 °C.  

The EMAT was designed so that the coil could be replaced easily and coils of different shape 

and/or material could be connected to the rest of the transducer. Thus, the coil was firstly designed 

so that its ends would be connected to crimp connectors that allowed it to be easily disconnected 

from the rest of the housing. Additionally, only one end of the coil was needed to be connected to 

Figure 5.8. (a) EMAT design and dimensions in mm (b) EMAT prototype 

a b 

Water  

Inlet/Outlet 

Coil Ends 
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the signal carrier, while the other end could be directly attached to the housing of the transducer 

and establish the ground connection. Thus, an extra hole was designed on the housing of the 

transducer for the mechanical attachment of the wire on it, as Figure 5.8 a shows. However, no 

crimp connectors withstanding up to 500
o
C for continuous operation are currently available. 

Therefore, this approach can be followed for EMATs designed for lower temperatures like 250
o
C. 

Alternatively, the coil ends were extended so that a commercial BNC connector, whose MOT was 

below 500 °C, could be used and placed further away from the heat source. 

The experimental characterization of the new EMAT in terms of its impedance and wave purity 

profile was conducted. The results obtained are outlined in the following sections. 

5.3.2 Impedance Analysis 

The EMAT was firstly evaluated regarding its impedance under several conditions. As it was 

mentioned in Chapter 3, the impedance of EMAT alters with and without the presence of specimen 

as well as with magnets, coil structure, lift-off and temperature. Therefore, a detailed study 

regarding the impedance profile of the new EMAT prototype was performed prior to its ultrasonic 

evaluation and was also correlated to the latter.   

As it was cited in both Chapter 3 and 4, constantan suffers from larger resistivity (49 10
-8

 Ωm) 

compared to copper, resulting in larger EMAT impedance and possibly limited ultrasonic 

performance, if the two coils are identical. Additionally, given that eddy current induced on the 

magnets attached onto the coil results in the appearance of eddy current on the coil and further 

impedance drop, hence the EMAT impedance was measured with and without magnets. Alumina 

encapsulation also is expected to influence the EMAT impedance and especially its phase, since 

b a 

Thermocouple 

Alumina  

Encapsulated 

Coil 

Kapton 

45 

31 

1mm air gap 

Figure 5.9. (a) Constantan Coil (b) Alumina & Kapton encapsulated coil (in mm) 



Design and Characterization of Water Cooled EMAT  108 

 

 

alumina can alter the inter-winding capacitance of the coil. Agilent 4294A impedance analyzer 

[248] was utilized for the impedance measurements. A racetrack, copper coil of 0.4mm wire 

diameter and 30 turns and identical constantan coil were tested. Two arrays of six Nd-Fe-B 

magnets each were attached onto constantan coil for the evaluation of magnets effect on coil 

impedance. The impedance of the water cooled EMAT with alumina encapsulated, constantan coil 

was finally measured, when the EMAT was not in proximity of any electrically conductive 

material. Table 5.1 summarizes the results obtained from the preliminary EMAT impedance 

analysis. The results matched with theory, since the impedance of constantan coil was larger 

compared to copper coil and especially its resistance was three orders of magnitude larger. The 

magnets reduced the overall impedance and inductance of the coil, due to eddy current, but the 

ceramic encapsulation attributed lift-off between the coil and the magnets and led to eddy current 

reduction, inductance increase and capacitance decrease. The magnets effect was noticeable, but it 

was partially tackled with the use of ceramics that eliminated the inter-winding capacitance as well. 

Nevertheless, the impedance analysis shows that the EMAT cannot operate as an ideal inductor and 

substantial electromagnetic losses can occur if an impedance matching circuit is not utilized 

between the EMATs and the pulser/receiver unit. The effect of the electromagnetic properties of 

the specimen on EMAT impedance was also experimentally studied. The EMAT impedance was 

measured when the transducer was attached onto 316L stainless steel and mild steel plate with the 

lift-off being increased from 0 mm up to 1.5mm with 0.5mm step. Table 5.2 and 5.3 outline the  

Table 5.1 Preliminary EMAT impedance analysis at room temperature  

Case 

Impedance Resistance Inductance Capacitance 

(Ω) (Ω) (μH) (pF) 

Copper Coil 61 ∠90.9 0.014 37.3 41.7 

Constantan Coil 70.7 ∠60.2 19.8 35.3 94 

Magnets & 

Constantan Coil 

36.4 ∠45.9 25.4 13.6 40 

EMAT (Air) 35.1 ∠51.78 21.5 15.4 26.2 
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Table 5.2 EMAT impedance against material properties of specimen at room temperature  

Material 

Impedance Resistance Inductance Capacitance 

(Ω) (Ω) (μH) (pF) 

Air 35.1 ∠51.78 21.5 15.4 26.2 

Mild Steel 32.72 ∠43.29 24.2 11.3 93.2 

316L Stainless 

Steel 

28.29 ∠41.5 21.4 10.4 51.4 

Table 5.3 EMAT impedance against lift-off at 256 kHz at room temperature  

Material 

Lift-off Impedance Resistance Inductance Capacitance 

(mm) (Ω) (Ω) (μH) (pF) 

Mild Steel 

0 32.72 ∠43.29 24.2 11.3 93.2 

0.5 32.9 ∠44.6 23.6 12 66 

1 33 ∠45.79 23.3 12.5 54.19 

1.5 33.3 ∠46.8 22.9 13 45.15 

Stainless 

Steel 

0 28.29 ∠41.5 21.4 10.4 51.4 

0.5 29.4 ∠43.9 21.3 11.4 39.8 

1 30.33 ∠45.6 21.2 12.14 34.65 

1.5 31 ∠46.8 21.3 12.7 32 

 

results obtained from this part of the impedance analysis. As it was expected, the EMAT 

impedance and inductance decreased with the presence of electrically conductive materials and 

especially with paramagnetic material. The eddy current losses occurred due to the presence of 

specimen resulted in inductance drop, whilst in ferromagnetic materials, this drop was 

counterbalanced by the relatively large mutual inductance between the EMAT and the specimen. 
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Nevertheless, the capacitance was greater when the EMAT was attached onto mild steel compared 

to stainless steel. Consequently, the EMAT should perform more efficiently when it is attached to 

mild steel, as literature also confirms [242]. However, the noise level can be also higher due to 

larger parasitic capacitance. Moreover, lift-off increase led to impedance and inductance increase 

and parasitic capacitance drop. As the distance between the EMAT and specimen increased the 

mutual inductance between them dropped and the EMAT tended to operate as an inductor instead 

of a transformer. Thus, the EMAT impedance converged to EMAT self-inductance as lift-off 

increased. Capacitance is a critical quantity that greatly affects the EMAT performance, since it 

contributes to losses. The above measurements shed light on the effect of various parameters on the 

overall EMAT impedance, including its total capacitance. Additional measurements were taken 

regarding the parasitic capacitance between the EMAT and the specimen for both mild steel and 

stainless steel as the lift-off increased. The parasitic capacitance was larger when the EMAT was 

attached onto mild steel compared to stainless steel and it lessened with lift-off increase, as it is 

shown in Table 5.4.   

The EMAT impedance was also measured at high temperatures. The analysis was performed from  

Table 5.4 Parasitic capacitance between EMAT and specimen (room temperature) 

Material 

Lift-off Parasitic Capacitance 

(mm) (pF) 

Mild Steel 

0 50 

0.5 45.4 

1 42.25 

1.5 40 

Stainless Steel 

0 46.49 

0.5 41.98 

1 38.48 

1.5 36.25 
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ambient temperature up to 250
o
C with 50

o
C step on stainless steel and mild steel at 0 mm and 1mm 

lift-off. The experiments were conducted three times. Figure 5.10, 5.11 and 5.12 show how the 

normalized EMAT resistance, inductance and capacitance altered respectively with temperature 

rise for stainless steel and mild steel at 0mm and 1mm lift-off. As it was expected, resistance 

increased linearly with temperature and it was larger when the EMAT was employed on mild steel 

compared to stainless steel. Similarly, inductance increased with temperature in a linear fashion. 

Although no universal formula linking the magnetic permeability of either stainless steel or mild 

steel and temperature is available, all four inductance quantities followed the same trend. EMAT 

inductance increased when the transducer was employed on mild steel due to the stronger 

electromagnetic coupling between them. However, as the temperature rose the electromagnetic 

coupling between the EMAT and the sample lessened and their mutual inductance decreased. A 

Large part of the electromagnetic energy produced by the EMAT was not transferred to the 

specimen and their transformer connection weakened with temperature rise. Consequently, the 

EMAT coil tended to operate as a mere inductor as temperature increased, instead of the primary 

winding of a transformer, and its inductance converged to its self-inductance value, as it is shown 

in Figure 5.11. EMAT capacitance also increased with temperature rise and altered with material 

properties of the specimen. As Table 5.3 also confirms, EMAT capacitance doubled when the 

transducer was attached with no lift-off on mild steel compared to stainless steel and remained 

larger at 1mm lift-off as well. From all the above, the overall EMAT impedance increased with 

temperature rise and could result in deterioration of the ultrasonic performance of EMAT at high 

temperatures and drop of the SNR of the signal received. Nevertheless, in all cases the percentage 

of increase of all these electric values did not exceed 15%, indicating that although the amplitude 

of the signal received will be noticeably reduced as temperature rises, still the EMAT will manage 

to operate at least up to 250
o
C.   

The wave purity characterization of the new PPM EMAT is equally important to its impedance 

analysis. Thus, its detailed vibrometry evaluation was performed and analyzed in the following 

section.  
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5.3.3 Wave Mode Purity Characterization 

In Chapter 4 a theoretical analysis regarding guided wave propagation and wave mode purity 

properties of PPM EMAT was presented. Based on this, PPM EMATs are suitable for excitation of 

SH0, however, their wave mode purity characteristics are poor. S0 and A0 wave modes can also be 

Figure 5.10. Resistance against temperature rise 

Figure 5.11. Inductance against temperature rise 

Figure 5.12. Capacitance against temperature rise 
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excited and propagate in several angles. The transducers designed for GWT should desirably 

exhibit high wave mode purity characteristics so that the signal interpretation will be simpler and 

result in accurate and reliable conclusions. Hence, a wave mode purity experimental 

characterization of PPM EMAT was required prior to its ultrasonic evaluation.    

Laser Doppler Vibrometry (LDV) is an NDT technique that allows the accurate measurement of 

vibrations occurring on samples whose surface is highly reflective and can be scanned by lasers. It 

is an optical technique whose function relies on Doppler effect as most of the optical techniques 

also do, like interferometry. A laser beam is split into two, reference and test beam, where the latter 

directs to the specimen. The test beam scatters and a portion of it reflects back to the vibrometer. 

Both beams are finally collected by a photo-detector and analyzed regarding their phase difference 

which can result in the estimation of the velocity of any vibration or wave propagating in the 

specimen. LDV has been utilized in several scientific fields and industries, like medical, 

automotive and acoustics [249-254]. In the current study, LDV was used for the wave purity 

characterization of the water cooled, PPM EMAT.  

Based on the FEA results presented in Chapter 4, PPM EMAT can generate in–plane and out–of–

plane displacement propagating in several angles, with S0, A0 and SH0 velocity. Especially, in a 

3mm thick stainless steel plate, it is relatively perplexing to clearly discriminate SH0 and A0 even at 

0
o
 where only SH0 is expected to propagate, due to the small difference between SH0 and A0 group 

velocity. However, dispersion curves alter with plate thickness and more particularly they shift to 

the right with thickness decrease as Figure 5.13 confirms. As a result, the difference in SH0 and A0 

group velocity increases with plate thickness decrease. Hence, the wave mode purity 

characterization of the EMAT was performed for stainless steel plates of variant thickness. 

Moreover, the FEA model introduced in the previous Chapter, took into consideration only Lorentz 

force while in ferromagnetic materials, like mild steel, magnetostriction also occurs and can alter 

the wave mode purity profile of the transducer. Thus, the EMAT was characterized regarding its 

wave mode purity against the material properties of the specimen as well. Any divergence between 

the results obtained from stainless steel and mild steel and between the experimental and theoretical 

values derived from the contribution of magnetostriction in wave generation.         
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A 3D scanning laser vibrometer manufactured by Polytec [255] was utilized for the measurement 

of the wave displacement generated by the water cooled, PPM EMAT. This type of vibrometer can 

estimate the velocity of the wave propagating in all three coordinates and it can automatically scan 

entire areas of single target – points. The EMAT was evaluated regarding its wave purity 

characteristics on both stainless steel and mild steel. Three square, 316L stainless steel plates of 1m 

length and thickness of 3mm, 1.5mm and 0.5mm respectively and a square, mild steel plate of 1m 

length and 3mm thickness were inspected. Figure 5.14 shows the experimental setup used. The 

EMAT was employed in the middle of the plate and was driven by Ritec RAM 5000 SNAP with 10 

cycle, 256 kHz AC current pulse of 30A. As the EMAT was designed specifically for a 3mm thick, 

316L stainless steel plate, a full wave mode purity profile was obtained when the transducer was 

employed on this plate. Therefore, the vibrometer scanned a circular area of 65 reception points 

evenly distributed in 30cm distance from the center of EMAT with 5
o
 angle between the points. As 

it is obvious in the figure, seven points are missing in the bottom arc of the circular scanning area, 

due to the vertical EMAT holder. Therefore, no information about the wave propagation at this area 

could be retrieved from the experimental results and it should be assumed that the EMAT 

Phase Velocity 

1.5mm thick Stainless Steel Plate 

0.5mm thick Stainless Steel Plate 

Group Velocity  

Phase Velocity Group Velocity  

a b 

d c 

Figure 5.13. Dispersion curves (a) phase velocity of 1.5 mm thick stainless steel plate (b) group velocity of 1.5 mm 

thick stainless steel plate (c) phase velocity of 0.5 mm thick stainless steel plate (d) group velocity of 0.5 mm thick 

stainless steel plate 
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performance was approximately symmetrical. Based on this assumption, in the rest of experiments, 

the area of interest that the lasers scanned was only the top right quarter of the circle. This 

simplification allowed reduction of time required for the completion of the experimental procedure, 

while still cogent comparisons and conclusions could be made out of this analysis with no 

resolution decrement.   

The polar plots shown in Figure 5.15 a-c represent how the x, y and z displacement generated by 

PPM EMAT in 3mm thick stainless steel plate altered respectively all around the transducer, as 

they were received at 59 μsec and the polar plots in Figure 5.15 d-f show the same quantities 

measured at 97 μsec. Although the trend in all polar plots did not fully match with that the 

theoretical values followed (Figure 4.6 and 4.7), still the results matched overall. The largest 

portion of the energy introduced to the plate yielded in-plane displacement whose amplitude 

maximized at 180
o
 and 0

o
 in y-axis when it was gated at 97 μsec, as Figure 5.15 e shows. This 

indicates that the transducer mostly generated in-plane displacement propagating with SH0 velocity 

at the same angle SH0 was expected to propagate. However, EMAT response was not fully 

symmetrical, since the amplitude of y displacement was not the same at 0
o
 and 180

o
. As it was 

expected any imperfections attributed to the coil during its manufacturing resulted in the non-

symmetrical ultrasonic signal performance of the EMAT. However, a considerable y displacement 

y 
x 

z 

Plate  

(Stainless Steel, 

Mild Steel) 

Ritec 

Pulser/Receiver 

EMAT Laser 

Vibrometer 

EMAT 

Scanning 

Points 

a 

b 

Figure 5.14. (a) Experimental setup of vibrometry tests (b) zoom in to EMAT and scanning area 
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was detected at 90
o
 at 59 μsec as well and is shown in Figure 5.15 b, denoting that S0 wave mode 

was also generated. In all cases, the z component of displacement maximized at 90
o
 (Figure 5.15 c 

and f) as the FEA results also show and its amplitude was comparable to that of y component. As a 

result, both S0 and A0 were propagating simultaneously with SH0. By contrast with the y and z 

displacement components, no clear conclusions were retrieved from the x component in Figure 

5.15 a and f. Although its maximum was noticed approximately between 30
o
 and 60

o
, partially 

matching with the FEA results, no information was obtained regarding the discrimination of A0 

from SH0. In all cases, the experimental values agreed with the theoretical results, apart from the z 

component of the S0 displacement whose measured amplitude was approximately double the value 

obtained from FEA in section 4.2.3.   

Figure 5.16 a-d depict the x, y and z displacement received at 180
o
 plotted all together and each one 

individually. Although the noise level was relatively high at x and z-axis, there were still two 

reflections coming at 59 μsec and 97 μsec in both cases, denoting S0 and A0 propagation, whose 

amplitude, though, was considerably lower than that of the y displacement gated at 97 μsec and 

corresponding to SH0. Despite the reflection gated at 97 μsec in z-axis, that could correspond to A0 

a b 

d f e 

c 

Figure 5.15. Wave mode purity plots for 3mm stainless steel plate. Displacement in (a) x axis (b) y axis (c) 

z axis at 59 μsec (d) x axis (e) y axis (f) z axis at 97 μsec 
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wave mode, still no cogent conclusions could be made regarding A0 propagation. Consequently, the 

EMAT mainly generated SH0 [25, 27], as it is also stated in the literature. However, out–of–plane 

displacement was also excited and propagated with S0 velocity and possibly A0 velocity as well, 

resulting in the poor wave mode purity characteristics of this EMAT configuration. Further 

experimental investigation was conducted for final quantification of the possibility of this EMAT 

to excite A0 wave mode as well. The following results show the wave mode purity properties of the 

same EMAT as it was attached onto thinner stainless steel plates of 1.5mm and 0.5mm thickness. 

As it has been already mentioned, dispersion curves shift to the right with thickness decrease 

resulting in larger difference in the group velocity between SH0 and A0. As their velocity difference 

increases, it becomes more likely for A0 to be distinctly received and distinguished from SH0. Table 

5.5 summarizes the phase and group velocity of SH0, S0 and A0 against plate thickness at 256 kHz. 

Figure 5.17 a-c, d-f and g-i show how the x, y and z displacement received at 58 μsec, 97 μsec and 

111 μsec respectively changed from 0
o
 to 90

o
 when the EMAT was attached to 1.5 mm thick 

stainless steel plate. Similarly, Figure 5.18 a-c, d-f and g-i depict the same quantities when the 

EMAT was employed on 0.5 mm thick stainless steel plate and were measured in time accordingly. 

In both cases, the transducer operated in a similar manner and the results matched with both the 

theoretical and experimental values obtained from the 3mm thick stainless steel. The largest portion  

a b 

c d 

S0 
SH0    

A0 

S0 
A0 

Figure 5.16. Displacement at 180o in 3mm thick stainless steel plate in (a) all axes (b) x axis (c) y axis d) 

z axis 

S0 
SH0    

A0 
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Table 5.5 Phase and group velocity against plate thickness at 256 kHz  

of the energy transferred to the specimen led to the appearance of in–plane displacement 

propagating at the same angle and velocity with SH0. On contrary to the experimental results 

obtained from 3mm thick stainless steel plate, all three wave modes were clearly distinguished and 

no overlapping occurred as the plate thickness decreased, as Figure 5.19 and 5.20 also show. The 

displacement corresponding to S0 presented the same spatial characteristics regardless of the 

thickness of the plate and the amplitude of its y and z component maximized at 90
o
 whilst x 

component was mainly present between 30
o
 and 70

o
. Although, the y component of SH0 

displacement maximized at 0
o
 and considerable displacement was also observed at x-axis as well at 

the same angle, oscillations were noticed at x and y-axis from 30
o
 to 60

o
. Despite the clear 

distinction of all three wave modes, still A0 must have affected SH0 propagation, due to its 

dispersive nature. A portion of A0 energy interfered with SH0, resulting in vibrations in all three 

directions propagating with SH0 velocity but at a different angle from that SH0 was expected to 

propagate. Nevertheless, the out–of–plane displacement remained significantly lower compared to 

y displacement and thus it can be neglected. Moreover, the y and z component of A0 reflection 

followed the same trend with S0 and maximized at 90
o
, while its x displacement appeared within 

30
o
 and 70

o
. Especially when the EMAT was attached on the 0.5 mm thick plate, x and y 

displacement corresponding to A0 was noticed below 30
o
 as well. However, both S0 and A0 

displacement exhibited greatly smaller amplitude compared to SH0 in all three coordinates (at least 

one order of magnitude), when the EMAT was attached on the thinner plate. Therefore, the wave 

Thickness Phase Velocity Group Velocity 

 SH0 S0 A0 SH0 S0 A0 

(mm) (m/s) (m/s) 

0.5 3080 5041 1100 3080 5147 1900 

1.5 3080 5145 1648 3080 5128 2680 

3 3080 5118 2110 3080 5047 3013 
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d e f 

g h i 

a 

Figure 5.17. Displacement generated in 1.5 mm thick stainless steel plate in (a) x axis (b) y axis (c) z axis 

received at 58 μsec (d) x axis (e) y axis (f) z axis received at 97 μsec (g) x axis (h) y axis (i) z axis received at 

111 μsec. 
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Figure 5.18. Displacement generated in 0.5 mm thick stainless steel plate in (a) x axis (b) y axis (c) z axis 

received at 58 μsec (d) x axis (e) y axis (f) z axis received at 97 μsec (g) x axis (h) y axis (i) z axis received at 

158 μsec. 
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Figure 5.19. Displacement at 0o in 1.5 mm thick stainless steel plate in (a) all axes (b) x axis (c) y axis (d) z axis 
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c d 

S0 SH0    

A0 

S0 A0 

SH0 

A0 
S0 

Figure 5.20. Displacement at 0o in 0.5 mm thick stainless steel plate in (a) all axes (b) x axis (c) y axis (d) z axis 
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mode purity properties of EMAT did not alter significantly with plate thickness decrease and it was 

proved that most of the energy introduced to the sample resulted in SH0. Still the ratio of in–plane 

to out–of–plane displacement, the amplitude of all displacements and the SNR became greater with 

thickness decrease and resulted in slightly higher and more refined wave mode purity 

characteristics as the thickness of the plate decreased. Finally, the experimental values agreed with 

FEA results and confirmed that firstly, Lorentz force is the dominant excitation mechanism in 

stainless steel. PPM EMAT generates a certain pattern of Lorentz force that causes the excitation of 

SH0 at 0
o
 and unavoidably S0 and A0 at 90

o
 due to guided wave physics and their dispersive nature.   

The experimental results demonstrated previously shed light on the wave purity characteristics of 

PPM EMAT when it is employed on paramagnetic materials, like stainless steel, where the 

dominant transduction mechanism is Lorentz force. However, in ferromagnetic materials, like mild 

steel, magnetostriction also occurs and dominates after a certain frequency. Magnetostriction is not 

related to eddy current and magnetic field density in a linear function. On the contrary, the 

magnetic state of the specimen also affects it. Therefore, FEA models are usually developed for 

calculating its amplitude and spatial distribution. However, the current study does not focus on 

magnetostriction and therefore it was not taken into consideration in the theoretical analysis 

presented in Chapter 4. 

Given the fact that the magnetostriction effect could not be predicted by the FEA models presented 

in Chapter 4, the analysis of the experimental results obtained from the wave mode purity 

characterization of the EMAT on mild steel could not be fully performed based on the FEA 

models. On the contrary, the experimental analysis had to rely on the differences between the 

experimental results from stainless steel and mild steel. Provided that the results yielded by the 

coupled electromagnetic/mechanical and the wave propagation FEA matched and were also 

experimentally validated, the FEA model developed in Abaqus could be utilized again for the 

estimation of wave propagation in mild steel. Any divergence between the FEA results and the 

experimental characterisation of the EMAT on mild steel would be due to magnetostriction and it 

could be used for the qualitative quantification of the latter.   
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This FEA analysis was expected to yield similar results to those obtained from the wave 

propagation analysis on stainless steel, since material properties of mild steel do not differ greatly 

from those of stainless steel. The polar plots shown in Figure 5.21 a-c and d-f represent how the x, 

y and z displacement received at 56 μsec and 93 μsec respectively altered from 0
o
 to 90

o
. As it was 

expected, no significant differences were noticed between the two theoretical case studies. The 

trend all displacements followed in mild steel did not differ from that in stainless steel. Hence, the 

experimental values retrieved from the EMAT characterisation on mild steel should match with 

those corresponding to stainless steel and any discrepancies between them would be caused due to 

magnetostriction effect.   

Again, the group velocity of SH0 and A0 are almost equal, not permitting the direct measurement of 

A0 displacement from the experimental results and thus impeding the signal interpretation. 

Nevertheless, the signals presented in Figure 5.22 provide more information about the wave purity 

profile of EMAT on mild steel, as it depicts the displacement generated at 0
o
 in all coordinates 

b c 

d e f 

a 

Figure 5.21. FEA results for wave propagation in 3mm thick mild steel plate in (a) x axis (b) y axis (c) z axis 

received at 56 μsec (d) x axis (e) y axis (f) z axis received at 93 μsec 
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together and in each one separately. Although in the y-axis there was clearly only one reflection 

propagating with SH0 velocity and confirming the suitability of this configuration for SH0 

excitation, still in the x-axis there were two reflections overlapping and exhibiting a stretched 

profile that is due to dispersion. This indicates the presence of A0 and it is reinforced by the 

existence of out–of–plane displacement propagating with both S0 and A0 velocity, as Figure 5.22 d 

shows. However, these observations could not be used for the measurement of A0 amplitude, since 

the signal interpretation became more complex as the angle increased and therefore only two 

groups of displacements were measured through the experimental results.  

Figure 5.23 a-c and d-f show how the x, y and z displacement received at 56 μsec and 93 μsec 

respectively changed from 0
o
 to 90

o
 when the EMAT was attached to the 3 mm thick mild steel 

plate. The experimental results presented many similarities with FEA results. The largest in 

oscillation amplitude was noticed at 0
o
 in the y-axis propagating with SH0 velocity, whilst y 

displacement was also observed at 90
o
 with almost 80% smaller amplitude than SH0 and 

propagating with S0 velocity. Out–of–plane displacement was detected at both 56 μsec and 93μsec 

in several angles with its maxima being at approximately 90
o
. In both cases the out–of–plane 

amplitude was significantly smaller than the in–plane displacement (two orders of magnitude) and  

a b 

c d 

SH0     

A0 S0 

A0 
SH0     A0 

Figure 5.22. Vibrometry results. Displacement at 0o in 3 mm thick mild steel plate in (a) all axis (b) x axis (c) y axis 

d) z axis 
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it can be negligible. However, its spatial distribution differed from one case to the other. Although 

the out–of–plane displacement of S0 maximised at 90
o
 as FEA and stainless steel results showed, 

the z displacement received at 93 μsec and potentially corresponding to A0, presented a 

considerable spatial distribution from 0
o
 to 30

o
 that did not match with the theoretical results or the 

wave mode purity profile of EMAT on stainless steel. Nevertheless, the main discrepancy between 

the theoretical and experimental results could be found in x displacement which was not detected 

only within 30
o
 and 60

o
 as the FEA model had estimated but also around 80

o
 where its amplitude 

was also maximum. The same observation was made when the experimental results from mild steel 

were compared with those from stainless steel. Both divergences are related to A0 wave 

propagation. The overlapping occurred between SH0 and A0 complicated the amplitude 

measurements and caused uncertainties to the results shown. Despite this discrepancy, the wave 

mode purity profile of PPM EMAT did not alter greatly in regards to the material properties of the 

specimen. In both stainless steel and mild steel, the EMAT excited SH0, but also S0 and A0 in 

different angles. Hence, special care should be taken when EMAT transmitters are combined with 

other transducer technologies that can detect multiple wave modes. On the contrary, 

instrumentation systems based on EMAT transduction and reception should not suffer from low 

b c 

d e f 

a 

Figure 5.23. Vibrometry results. Displacement generated in 3 mm thick mild steel plate in (a) x 

axis (b) y axis (c) z axis received at 56 μsec (d) in x axis (e) y axis (f) z axis received at 93 μsec.  
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wave mode purity characteristics, since the EMAT receivers are not particularly sensitive to 

unwanted wave modes. Hence, the experimental evaluation of the ultrasonic potential of the water 

cooled EMAT at room temperature was accomplished and presented in the following section.  

5.3.4 Room Temperature Ultrasonic Evaluation 

As it has been outlined in the previous sections, the design of the water cooled PPM EMAT was 

optimized in terms of thermal properties against ultrasonic limitations. Although a careful material 

selection and design were performed allowing the above, still the ultrasonic signal response of the 

new EMAT will differ from that of a typical room temperature EMAT. Based on the impedance 

analysis presented already, the ultrasonic performance of the new EMAT is expected to be lower 

compared to that of the existing EMAT technology for room temperature. Nevertheless, any 

divergence between the two EMAT designs should be noticed within a small range of 

temperatures. The new EMAT was designed so that its performance will be compensated with 

temperature increase and also withstand higher temperatures than the MOT of existing EMAT 

transducers, 100
o
C. Hence, a comparison between the room temperature and water cooled EMATs 

had to be firstly conducted at ambient temperature. 

Two pairs of each EMAT design, with Nd-Fe-B magnets, were employed on a 3mm thick stainless 

steel plate at a defect-free area in a pitch-catch configuration. In both cases, the distance between 

the transmitter and the receiver was 30cm. An eight cycle, 256kHz, Hanning modulated, AC 

current pulse of 30A was driven to both transmitters via Ritec, whilst the signal received was 

amplified with 80 dB gain, filtered with a low and high pass filter of 20MHz and 10kHz cut off 

frequencies respectively (averaged of 1024 signals). Figure 5.24 a, b shows the signal received 

from the room temperature (commercial) and the water cooled EMAT respectively at ambient 

temperature. As it was expected the amplitude of the signal received by the new EMAT system was 

significantly smaller compared to the room temperature EMATs. The amplitude of the signal 

transmitted dropped ten times when the water cooled EMATs were employed on stainless steel. 

The electromagnetic losses due to the impedance mismatch between the new EMATs and the 

power generator and the large resistance of constantan coil resulted in its relatively low ultrasonic 
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response. Yet, the new EMAT system managed to detect all first four reflections, indicating that it 

can transmit enough energy to the specimen for the inspection of at least two meters. The SNR of 

the signal received in both cases did not alter and remained large (50dB) permitting the detection of 

reflections propagating up to two-meter distance.   

Additionally, the new EMAT system was evaluated regarding its response to the material 

properties of the specimen. The new transducers were employed upon a 3mm thick mild steel plate 

in a pitch-catch configuration with 30cm distance between them. The signal received is shown in 

Figure 5.24 c. Although the amplitude of the signal received doubled when the EMATs were 

employed on mild steel compared to stainless steel, still their response was lower than that of the 

room temperature EMATs. Figure 5.24 d shows how the amplitude of the signal transmitted altered 

in all three cases. Similarly to stainless steel, the SNR of the signal received from mild steel was 

high, enhancing the ultrasonic potential of the new EMAT system. Nevertheless, its relatively low 

ultrasonic signal response rises questions regarding its lift-off limitations and power requirements.  

The EMATs were tested against lift-off increase. Figure 5.25 shows that the amplitude of the signal 

transmitted dropped almost exponentially with lift-off increase, likewise room temperature 

b 

d e 

a 

Figure 5.24. Signal received from (a) room temperature EMAT on stainless steel (b) water cooled EMAT on 

stainless steel (c) water cooled EMAT on mild steel (d) amplitude difference 
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EMATs. However, its decrease rate was larger. At 1mm lift-off, the amplitude dropped by 80%, 

whilst the amplitude of the signal transmitted by the room temperature EMATs at the same lift-off 

was more than 20% of its maximum. Despite the slightly larger lift-off limitations the new EMATs 

exhibited compared to the existing technology, they can still be efficiently utilized up to 1mm lift 

off. These results are encouraging, since lift-off increase directly enhances the thermal response of 

the transducer and subsequently can beneficially affect its ultrasonic properties at high 

temperatures as well. Although, the ultrasonic performance of the new EMAT was relatively weak 

against lift-off at ambient temperature, at high temperatures lift-off increase will result in an 

increase of the time needed for the maximum thermal energy to be transferred to the EMAT. This 

can assist in the compensation of ultrasonic signal response of the EMAT against temperature rise.  

An experimental comparison between the new EMAT design and the existing technology regarding 

their power requirements was also accomplished. The power generated by RITEC was 

incrementally decreased with a step of 5% of its maximum, as the new EMATs were attached on a 

3mm thick stainless steel plate. The maximum magnitude of AC current generated by Ritec at its 

50 Ω output impedance was 30 A. The EMAT transmitter was connected to the power generator 

without any impedance matching between them leading to voltage drop and lessening of the 

ultrasonic response of the EMAT system. Nevertheless, the trend the normalized amplitude of the 

signal transmitted followed is related to power change and not to the absolute value of power. The 

results obtained corresponded to the severest operating conditions of EMATs in terms of power 

supply and also matched with the experimental setup followed when the room temperature EMATs 

were tested. Figure 5.26 demonstrates that both EMAT systems were similarly dependent on power 

Figure 5.25. Water cooled EMAT - Amplitude against lift-off 
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input. The amplitude of the signal transmitted dropped almost linearly in both cases, while the 

water cooled EMAT was approximately 5% more power demanding than copper coil EMAT. The 

difference in their power requirements is strongly related to their impedance difference and more 

particularly to their coil resistance. Based on impedance analysis, the constantan coil possessed 

larger electrical resistance than copper and therefore was further incompatible with the power 

generator and experienced larger electromagnetic losses. However, its temperature coefficient of 

resistivity was significantly smaller than that of copper resulting in its enhanced ultrasonic signal 

performance at high temperatures, as it will be outlined in the following Chapter.                               

5.3.5 Summary 

This Chapter presents the results obtained from the experimental evaluation of the existing EMAT 

technology designed for room temperature GWT as it was tested at high temperatures. It was found 

that copper coil PPM EMAT cannot operate efficiently at temperatures higher than 100
o
C and 

therefore an alternative EMAT was designed to successfully withstand at elevated. A water cooled 

EMAT was developed based on the thermal and CFD analysis outlined in the previous Chapter. All 

the technical details concerning its design and manufacturing challenges were summarized. The 

new EMAT was characterized regarding its impedance against the material properties of the 

specimen, lift-off and temperature rise. As it was expected, the new EMAT possessed larger 

impedance and resistance compared to copper coil EMAT that can limit its ultrasonic response at 

ambient temperature but also stabilize it at higher temperatures. The theoretical analysis about the 

wave mode purity profile of PPM EMAT on stainless steel was experimentally validated. 

Figure 5.26. Water cooled EMAT - Amplitude against power 
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Vibrometry tests conducted on stainless steel plates of variant thickness and mild steel and revealed 

that this configuration is suitable for SH0 wave mode excitation. However, a considerable 

displacement corresponding to both S0 and A0 was also detected resulting in the poor wave mode 

purity characteristics of PPM EMAT. Finally, the new EMAT was evaluated regarding its 

ultrasonic signal potential and limitations at room temperature. Its ultrasonic response was lower 

than that of a room temperature EMAT, however, its lift-off limitations and power requirements 

matched with those of the copper coil EMAT.  

The new EMAT is expected to exhibit greater thermal and ultrasonic properties at high 

temperatures in comparison to the currently available EMAT technology designed for room 

temperature GWT. Thus, its experimental evaluation against material properties of the specimen, 

lift-off and power input and temperature rise was also conducted. The results collected from this 

experimental procedure are summarized in the following Chapter.     
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Chapter 6 

High Temperature Experiments 

6.1 Introduction 

The water cooled EMAT was finally evaluated regarding its high-temperature performance against 

various operating conditions. Both Nd-Fe-B and SmCo magnets were utilized and compared in 

terms of their impact on the ultrasonic signal performance of the EMAT at both room and high 

temperatures. Specimen material properties, lift-off, power input, temperature rise and operational 

time at high temperatures are the parameters the EMATs were tested against. The EMATs were 

evaluated on both ferromagnetic and paramagnetic materials up to 500
o
C for short period of time 

(<1min) and 250
o
C over time. The results obtained from this experimental procedure are presented 

and analyzed in this Chapter as well as the final conclusions about the high-temperature 

performance of the water cooled PPM EMAT.  

6.2 High-Temperature Experiments – Short Term Exposure 

Both Nd-Fe-B and SmCo water cooled EMAT systems were tested regarding their GWT potential 

and limitations up to 500
o
C for short period of heat exposure. Both systems were composed of 

separate EMAT transmitter and receiver. Stainless steel and mild steel were the materials the two 

EMAT systems were evaluated on against lift-off and power input at high temperatures. Their 

ultrasonic and thermal response was analyzed and compared with the theoretical values obtained 

from FEA analysis and thus an experimental validation of the theoretical study presented in 

Chapter 4 was also accomplished.   

6.2.1 Experimental Set-up 
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The experimental setup shown in Figure 6.1 was developed for the high-temperature evaluation of 

the high-temperature EMAT systems. They were employed in a pitch-catch configuration with 30 

cm between the transmitter and receiver on a defect-free area with no lift-off. A square, 316 Ti 

stainless steel plate of 1.25 m edge length and 3 mm thickness and a square mild steel plate of 1 m 

edge length and 3 mm thickness were used as specimens. The EMAT transmitter was driven by 

Ritec RAM 5000 SNAP with a 5 cycle pulse of 256 kHz on stainless steel and a 10 cycle pulse of 

the same frequency on mild steel. The excitation pulse was Hanning windowed when the EMATs 

were attached to stainless steel, while no Hanning window was applied on the excitation pulse 

when steel was tested. The EMAT receiver was also connected to Ritec so that the raw signal could 

be amplified with 80 dB gain and filtered with high and low-pass filters of 10 kHz and 20 MHz 

cut-off frequencies respectively. The filtered signal was collected, averaged and recorded with a 2-

channel Agilent oscilloscope. A pump (D5 Photon 170 Pump Combo) was used for circulating the 

water in the two EMATs with a flow velocity of 3 m/s while the temperature of the cold water was 

10 °C. The specimen was heated up by a heat treatment module manufactured by STORK. The 

module was connected to four ceramic pads, which were composed of high grade sintered alumina 

ceramic beads and nickel chrome core wires. The pads were driven with high current by the 

module and the thermal energy generated via the nickel chrome wires was transmitted to the 

specimen. The temperature of the specimen, the EMAT coil, the magnets and the water outlet of 

Figure 6.1. Experimental setup for high temperature experiments 
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the cooling chamber were monitored by a 4-channel thermo-logger. The thermocouples attached to 

the coil and the magnets were placed on the area underneath the cooling chamber where the 

temperature would minimize based on the simulations presented in section 4.4.1. 

The thermal conductivities of both stainless steel and steel are low (16 and 50 W/m·K respectively 

at room temperature) and thermal energy introduced to a certain area of the plates cannot readily 

diffuse throughout the entire specimen volume. Figure 6.2 depicts the thermal image of the 

specimen as it was heating up via the heating modules. Only the area underneath the heating pads 

was heated up efficiently since luminance maximized only in those areas. Bending of the specimen 

also occurred due to the temperature variation on the specimen volume. Thus, divergences were 

expected in the time shift of reflections traveling in areas of different temperature. As soon as the 

heating pads were removed from the plates, the temperature of the area of inspection decreased 

quickly. Testing done at high temperatures for only short times (less than a minute for each target 

temperature) and the experiments were conducted three times for each EMAT system. The 

temperature of the heating pads was increased from ambient to 700 °C and the maximum 

temperature of the area below the pads was 600 °C. With the pads removed and the EMATs placed 

with zero lift-off on the defect-free, heated area, the specimen temperature was 500 °C. The 

ultrasonic signal response and the temperature of the coil and magnets were recorded from 500 °C 

down to ambient temperature in steps of 50 °C.  

6.2.2 EMAT Performance against Material of Specimen 

Specimen 

Heating Pads 

Figure 6.2. Thermal picture of the experimental setup used for the heating up of the 

specimen (500oC) 
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The signals received from the above experimental procedure when both EMAT systems were 

tested on stainless steel and mild steel with no lift-off are shown in the following figures. In each 

graph, the blue signal corresponds to the Nd-F-B EMAT system and the red signal to SmCo 

system. All figures present the signal transmitted and the three reflections coming from the edges 

of the plate. Figure 6.3 a-c illustrate the ultrasonic signals recorded when the EMAT was tested on 

a steel plate at room temperature, 250 °C, and 500 °C, respectively, and Figure 6.3 d shows how 

the amplitude of the signal transmitted decreased with temperature for all the three experimental 

sets. Figure 6.4 shows the results obtained when the EMATs were attached to stainless steel. Figure 

6.4 a–c show the ultrasonic signal at room temperature, 250 °C and 500 °C and Figure 6.4 d 

presents how the amplitude of the signal transmitted decreased with temperature on stainless steel.  

As expected the EMATs performed better on steel than on stainless steel due to the stronger 

electromagnetic coupling. The amplitude of the signal received for steel was an order of magnitude 

larger than stainless steel. Nevertheless, both EMAT systems managed to perform efficiently up to 

500
o
C on both materials. Compared to the high-temperature ultrasonic response of a conventional, 

room temperature PPM EMAT system as it was studied in detail in Chapter 5, the new EMAT 

systems operated up to 500 °C, while the conventional could hardly be employed up to 100 °C. In 

all cases, the amplitude transmitted at 500
o
C was more than 20% of its maximum as well as all four 

reflections were noticeable. These encouraging observations lead to the conclusion that both water 

cooled EMAT systems can successfully be employed for GWT inspection up to 500
o
C.   

Figure 6.3. Signal received from both EMATs on mild steel at (a) room temperature (b) 250oC (c) 500oC (d) 

amplitude against temperature 
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On both materials, SmCo EMATs were more efficient in terms of amplitude decrease against 

temperature rise, compared to Nd-F-B. At room temperature, the amplitude of the Nd-F-B EMATs 

was approximately 20% larger than that received by the SmCo. Regardless of the material tested, 

the performance of the Nd-F-B EMATs fluctuated slightly from 200 °C to 350 °C, indicating that 

over this range the temperature of the magnets must have reached the MOT of Nd-F-B. The 

amplitude drop with Nd-F-B was slightly larger (less than 10%) when stainless steel was inspected 

due to weaker electromagnetic coupling with the specimen. The amplitude of the signal received 

with SmCo EMATs dropped at a constant rate as temperature rose, especially on stainless steel, 

and its amplitude drop over the entire temperature range was smaller than with Nd-F-B. All this 

indicates that the temperature of the magnets was close to the MOT of Nd-F-B, especially from 200 

°C to 500 °C, resulting in the stable performance of the SmCo EMATs and the fluctuating 

performance of the Nd-F-B EMATs. The cooling system appeared efficient for both types of 

magnet, since ultrasonic signals were obtained over the entire temperature range and the SNR did 

not deteriorate with temperature rise. Nevertheless, SmCo EMAT managed to withstand better high 

temperatures and its amplitude was larger at high temperatures compared to Nd-F-B. 

Based on the dispersion curves of stainless steel and steel plate, the velocity of SH0 equals 3080 and 

3203 m/s, respectively. Thus, ToF of the reflections shown in the graphs matched the velocity of 

SH0; ToF of all four reflections was increased by 30 μs pulse duration. As a result, it is 

experimentally demonstrated that although PPM EMAT transmitter generated multiple wave 

Figure 6.4. Signal received from both EMATs on stainless steel at (a) room temperature (b) 250oC (c) 500oC (d) 

amplitude against temperature 
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modes including SH0, the EMAT receiver detected only SH0 at both room and high temperatures, 

as it was expected. An EMAT system does not suffer from poor wave mode purity, however, a 

system composed of an EMAT transmitter and a receiver sensitive to multiple wave modes is likely 

to detect more wave modes than only SH0 at both room and high temperatures. In addition, all four 

reflections shifted in time as temperature increased, as expected. No differences in time shift of 

four reflections were noticed.    

Figure 6.5 shows how the temperature of the EMAT coil and magnets changed with the 

temperature of the specimen. The red dashed and blue dotted curves denote the calculated 

minimum temperature of the coil and the magnets from the CFD simulations presented in  

Chapter 4 and shown in Figure 4.16 b. The red circles and blue stars are the measured temperature 

of the coil and the magnets and the error bars depict the temperature variation in the three 

experimental sets. The experimental values agreed with theory, excepting the measured 

temperature of the magnets at 100 °C, which was approximately twice the theoretical value. During 

the experiments, the specimen temperature decreased gradually after reaching 500 °C, while in the 

simulations the temperature was held at a certain target value (varying from 100
o
C to 500

o
C). 

Therefore, it is likely the EMAT and its housing maintained a portion of the thermal energy 

absorbed at 500 °C until it was dissipated by the cooling system. The time needed for the 

maximum energy to be dissipated was larger than the time needed for the temperature of the 

specimen to decrease to 100 °C (15 mins). Therefore, the temperature of the EMAT did not drop 

with the calculated rate and the largest discrepancy between theoretical and experimental values 

was observed at 100 °C. Nevertheless, the thermal model can be used for the analysis of EMATs 

when the temperature of the specimen remains constant; during online inspection/monitoring the 

temperature of the specimen usually stays constant or changes only slightly (maximum 10
o
C 

change [2]). 

The cooling system, the material selection (constantan coil, SmCo magnets) and the optimum 

operating conditions can significantly improve the EMAT ultrasonic signal response at high 

temperatures. The new EMAT can efficiently be employed for GWT up to 500 
o
C for short 

operational time (< 1 min) and can be potentially utilized for inspection of absorber tubes and other 
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conducting, paramagnetic, high-temperature objects. Further experimental investigation of the 

limitations and potential of the EMAT against lift-off and power input was also conducted at high 

temperatures.  

6.2.3 Lift-off Limitations 

The effect of lift-off on the ultrasonic performance of EMATs at high temperatures was 

experimentally studied. As it was cited in previous Chapters, EMATs are significantly sensitive to 

lift-off and both the room and high-temperature PPM EMAT exhibited exponential amplitude drop 

with lift-off increase at room temperature. Nevertheless, any increase in the distance between the 

EMAT and the specimen enhances the thermal properties of the former and can prolong its 

operational time at elevated temperatures. Hence, both water cooled EMAT systems were 

evaluated regarding their GWT potential against lift-off on both stainless steel and mild steel up to 

500
o
C.  

The experimental procedure remained the same and so the specimen was firstly heated up to 600
o
C 

when the heating pads were removed and the EMATs were attached on it with 0.5mm and 1mm 

lift-off sequentially. Signals were recorded from 500
o
C down to ambient temperature with 50

o
C 

steps. Figure 6.6 demonstrates how the amplitude of the signal transmitted by Nd-Fe-B EMATs 

dropped with temperature rise for 0mm, 0.5mm and 1mm lift-off on mild steel and stainless steel. 

Figure 6.5. Temperature of EMAT components: measured and estimated values 
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The solid blue, green and red lines correspond to amplitude drop on mild steel at 0 mm, 0.5 mm 

and 1mm lift-off respectively, whilst the dashed lines refer to amplitude drop on stainless steel for  

the same lift-off values. As expected, the EMATs operated more efficiently on mild steel than 

stainless steel regardless of lift-off or temperature. The largest discrepancy in EMAT ultrasonic 

response between the two materials was noticed at 0.5 mm lift-off. The amplitude dropped with a 

higher rate on stainless steel after 350
o
C and it decreased greatly (less than 5%) at 400

o
C. With 

mild steel, the amplitude decreased at constant rate till 500
o
C, where its value was relatively high 

(10%) according to the operating conditions. The MOT varied with lift-off as well. In all cases 

MOT was larger than 200
o
C, which is the MOT of Nd-Fe-B magnets, indicating that cooling 

system kept magnets temperature below their MOT. Nevertheless, lift-off affected significantly the 

electromagnetic coupling between the EMAT and the specimen as temperature rose and limited 

their efficiency and MOT. As the electromagnetic coupling was weak and amplitude was relatively 

low at room temperature when there was lift-off, any thermal energy transferred to the EMATs had 

a greater impact on their ultrasonic response compared to no lift-off, regardless of the performance 

of the cooling system. Thus their efficiency was more limited. Although the rate of amplitude drop 

was smaller as lift-off increased due to more efficient heat dissipation via the cooling system, the 

ultrasonic signal degradation was more noticeable with lift-off increase due to originally low 

electromagnetic coupling. In all cases, the EMATs operated efficiently, with amplitude more than 

10%, up to 300
o
C and their response was essentially stable up to this temperature for 0.5 mm and 

1mm lift-off. As a result, MOT decreased as lift-off increased, but it still remained larger than 

200
o
C. Their stable ultrasonic performance against lift-off up to 300

o
C is also encouraging 

Figure 6.6. Nd-Fe-B EMAT: Amplitude against lift-off at high temperatures 
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regarding the potential of the Nd-Fe-B EMAT system for long-term inspection up to 250
o
C.  In 

addition, the range of error increased with temperature rise and lift-off. As the EMATs were 

directly exposed to heat with no distance from the specimen, their thermal and subsequently 

ultrasonic properties changed quickly and thus variations in the amplitude of the signal received 

were greater compared to those with lift-off. The ultrasonic performance of EMAT system varied 

with temperature rise when non-contact measurements were taken and the error range became 

greater after 300
o
C. Hence, Nd-Fe-B EMAT system can be successfully utilized up to 500

o
C 

(depending on specimen material) and 300
o
C with lift-off. Both ferromagnetic and paramagnetic 

materials can be inspected successfully, with greater success on ferromagnetic.               

Figure 6.7 shows how the amplitude of the signal transmitted by SmCo water cooled EMAT 

system dropped with temperature for varying lift-off. Again, the solid blue, green and red line 

correspond to amplitude drop on mild steel at 0 mm, 0.5 mm and 1 mm lift-off, while the dashed 

lines refer to stainless steel. Similarly to Nd-Fe-B EMATs, the amplitude of the signal received by 

SmCo system from mild steel was 5-10% larger than that of stainless steel. The amplitude 

decreased with the same rate with both systems when non-contact measurements were taken. 

However, MOT of SmCo EMAT against lift-off was larger, although it decreased as the lift-off 

distance increased. The amplitude at 500
o
C at 0 mm and 0.5 mm lift-off was larger than that of Nd-

Fe-B EMATs at the same temperature. The ultrasonic performance of SmCo EMATs was less than 

10% after 400
o
C and equaled to zero at 500

o
C when lift-off maximized. Again, no amplitude 

variations were noticed within a large temperature range, from ambient temperature up to 400
o
C, 

reassuring further the long-term inspection potential of this system design. The error range was 

Figure 6.7. SmCo EMAT: Amplitude against lift-off at high temperatures 
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greater when no distance existed between the transducers and the test piece due to the greater effect 

of temperature rise on EMATs performance as well as when temperature increased and lift-off 

measurements were taken. Consequently, this system can withstand up to 500
o
C at 0 mm and 0.5 

mm lift-off and 400
o
C for 1 mm lift-off.  

Both EMAT systems can operate at least up to 300
o
C regardless of lift-off. The cooling system 

managed to extend their MOT by at least 100
o
C under the severest conditions in terms of lift-off 

for both mild and stainless steel. The ultrasonic signal response of both EMAT systems was stable 

for a large range of temperature on both materials indicating their long-term inspection capabilities 

up to 250
o
C.    

6.2.4 Power Requirements 

The EMAT systems were also tested regarding their power requirements at high temperatures. Due 

to limitations of the experimental setup, simplification steps were taken. The temperature of 

specimen decreased from 500
o
C down to ambient at a high rate and therefore not enough time was 

given for the thorough investigation of their power requirements at high temperatures. The 

temperature effect on EMAT performance was studied only for four power levels, 100%, 75%, 

50% and 25% of maximum power Ritec can drive to the EMAT (5000 Watt on 50 Ω output 

resistance without load). The minimum power requirements of both EMAT systems were found in 

terms of temperature rise. The EMATs were tested on stainless and mild steel with no lift-off. 

Figure 6.8 a, b demonstrate how the normalized amplitude of the signal received by Nd-Fe-B 

EMAT dropped with temperature rise for all four power levels on mild and stainless steel 

respectively. The temperature effect was more noticeable on stainless steel, since the amplitude 

decreasing rate was higher compared to mild for all four power levels as well as no ultrasonic 

response was obtained at 500
o
C for power less than 100% of Ritec power. Likewise, lift-off 

limitations, although the cooling system maintained EMAT temperature below 200
o
C, nevertheless 

the amplitude on stainless steel was 15% smaller than that on mild steel at room temperature. As a 

result, the temperature effect was greater as the power input decreased. The Nd-Fe-B EMAT 
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system can successfully inspect mild steel up to 450
o
C and stainless steel up to 250

o
C with more 

than 50% power of Ritec. 

Figure 6.9 a, b shows the ultrasonic performance of SmCo EMAT system against power input 

variations up to 500
o
C on mild and stainless steel respectively. As with lift-off evaluation, SmCo 

EMATs suffered from low magnetic strength and ultrasonic signal properties at room temperature 

that degrade linearly with power decrease. However, their larger MOT and advanced performance 

at high temperatures compared to Nd-Fe-B magnets allowed the compensation of their large power 

requirements. SmCo EMATs managed to operate efficiently up to 500
o
C on mild steel and 300

o
C 

on stainless steel for power more than 50% (Ritec). As expected, their amplitude decreasing rate 

was smaller compared to Nd-Fe-B water cooled EMAT system against temperature rise regardless 

of their power input level, resulting in their superior high-temperature performance in terms of 

power requirements.  

Both designs operated satisfactorily up to 500
o
C for short period (less than 1 min) against lift-off 

and power input variations. The cooling system maintained EMAT temperature below 200
o
C, 

Figure 6.8. Nd-Fe-B EMAT: Amplitude against power input at high temperatures on (a) mild 

steel (b) stainless steel 

b 

a 
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meeting the design requirements and agreeing well with the theoretical results. Despite the room 

temperature limitations each design experienced, still was their MOT extended by at least 100
o
C 

under their severest operating conditions. SmCo EMATs exhibited better thermal and ultrasonic 

signal properties up to 500
o
C compared to Nd-Fe-B, confirming their suitability for this 

application.      

6.3 High-Temperature Experiments – Long Term Exposure 

In the previous section, the maximum time the transducers were exposed at elevated temperatures 

was relatively short. The EMATs were employed at each target temperature for less than a minute. 

Thus, they were further assessed regarding their operational time at high temperatures. Based on 

FEA analysis presented in Chapter 4, the water cooled EMAT could not operate up to 500
o
C for 

more than 5mins. On the contrary, the theoretical results show that long-term operation could be 

achieved at lower temperatures. Hence, both EMAT systems were tested regarding their long-term 

b 

a 

Figure 6.9. SmCo EMAT: Amplitude against power input at high temperatures on (a) mild 

steel (b) stainless steel 
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inspection capabilities up to 250
o
C and a comparison between the theoretical and experimental 

results was accomplished.     

The transducers were tested on both materials with maximum power input and no lift-off. The 

experimental setup remained the same, however, the procedure followed for the heating up of the 

plate and the stabilization of its thermal properties over time was slightly different from that 

described in the previous section. The EMAT system was employed in pitch catch on the plate and 

the heating pads were placed on their sides. A thermocouple monitored the temperature of the area 

between the transducers. Heating pads temperature kept on increasing till the specimen temperature 

reached 250
o
C. The distance between the pads and the EMATs varied over the duration of the 

experiments so that the temperature of inspected area was kept stable. Figure 6.10 shows the 

thermal photo of the experimental setup at 250
o
C. The low thermal conductivity of both materials 

resulted in the overheating of the area underneath the heating pads, as the figure depicts. The 

EMATs were exposed to heat for three hours. The experimental procedure was time restricted due 

Figure 6.11. Nd-Fe-B EMAT: Amplitude over time at 250oC 

Heating Pads 

EMATs 

Figure 6.10. Thermal photo of experimental setup for the EMAT evaluation about long term 

inspection at 250oC 
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to health and safety reasons.    

The ultrasonic response of the system was continuously recorded every five minutes. Figure 6.11 

shows how the normalized amplitude of the signal transmitted by Nd-Fe-B EMATs at 250
o
C for 

both mild and stainless steel changed over time for three hours. The blue line corresponds to 

amplitude change for mild and green line to stainless steel. Figure 6.12 demonstrates the impedance 

change over time at the same temperature, as it was measured (calculated) via an electric circuit 

measuring EMAT voltage and current (through a 0.1Ω resistor in series with EMAT). The solid 

blue and green line refer to impedance magnitude on mild and stainless steel respectively and 

dashed lines to phase. Both figures show that the ultrasonic signal and electrical properties of the 

EMAT system did not alter significantly over time. The Nd-Fe-B EMATs managed to operate at 

250
o
C continuously for three hours and the variations observed in the amplitude of the signal 

transmitted were due to small changes in the temperature of t  he specimen. The experimental results 

validated the FEA results and the operating time was larger than one hour. Figure 6.13 a, b show 

the signal obtained at 250
o
C at the first minute of operation (inspection purposes) and after three 

hours of uninterrupted operation respectively on stainless steel. Likewise, the amplitude of the 

signal transmitted, the SNR and the length of inspection did not deteriorate over time neither did 

time shift alter. The overall ultrasonic performance of Nd-Fe-B EMATs maintained stable for three 

hours and no indications were found about any potential break down of the system after three hours 

of operation at 250
o
C. Consequently, this EMAT design can be utilized for long-term inspection of 

structures operating up to 250
o
C. However, further experimental investigation is required regarding 

Figure 6.12. Nd-Fe-B EMAT: Impedance over time at 250oC (a) Magnitude (b) Phase 
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its ultrasonic and thermal performance over longer period of time (days) so that its monitoring 

potential and limitations are found.   

SmCo EMATs were also tested regarding their ultrasonic performance at 250
o
C over time. Figure 

6.14 demonstrates how the amplitude of the ultrasonic signal altered with time. Again, no 

significant variations were noticed and the system operated efficiently and continuously for three 

hours. However, SmCo possesses higher M  OT than 250
o
C and therefore the long-term inspection 

potential of the system could be also investigated at higher temperatures than 300
o
C. Hence, it was 

also tested at 350
o
C for three hours. Similarly, with 250

o
C, the transducers managed to operate 

efficiently, as shown in Figure 6.15, 6.16 and 6.17. Despite the excepted amplitude drop at 350
o
C, 

the ultrasonic performance of the EMATs remained stable for three hours on both materials. 

However, some amplitude variations were still noticed. The range of variation was large and they 

occurred more frequently compared to lower temperature performance. On the contrary, no  

Figure 6.14. SmCo EMAT: Amplitude over time at 250oC 

b a 

Figure 6.13. Nd-Fe-B EMAT: Signal received at 250oC after (a) 1 min (b) 3 hours operation 
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Figure 6.15. SmCo EMAT: Amplitude over time 250oC and 350oC 

Figure 6.16. SmCo EMAT: Impedance over time at 350oC 

b a 

Figure 6.17. SmCo EMAT: Signal received at 350oC after (a) 1 min (b) 3 hours operation 
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significant changes were observed in its impedance (see Figure 6.16). The ultrasonic signals 

presented in Figure 6.17 provided evidence that SmCo EMAT system managed to generate and 

detect SH0 without a drop in SNR or drop length of inspection at 350
o
C for three hours. The 

cooling system continuously dissipated adequate heat and maintained EMAT temperature below 

300
o
C, extending MOT and operational time of the system. As a result, SmCo EMATs can be 

deployed for long-term inspection of both ferromagnetic and paramagnetic materials at elevated 

temperatures (350
o
C).            

Both EMAT systems can successfully be employed for long-term inspection up to 250
o
C and 

especially SmCo can operate efficiently over time up to 350
o
C. Hence, SmCo EMATs exhibit 

superior high-temperature performance for both short and long term inspection compared to Nd-Fe-

B EMAT system. Consequently, they are more suitable for GWT at elevated temperatures. 

Nevertheless, Nd-Fe-B can be also utilized at high temperatures, since the cooling system can 

maintain its temperature below its MOT. The thermal and CFD analysis were experimentally 

validated and the experimental values agree with theoretical results. Thus, reliable FEA models for 

the accurate design and calculation of EMAT thermal response has been established.    

6.4 Summary 

This Chapter outlines the results obtained from the experimental evaluation of both Nd-Fe-B and 

SmCo water cooled EMATs at high temperatures. The EMAT systems were tested against various 

operating parameters including specimen material, lift-off, power input, temperature and 

operational time. They were employed on mild and stainless steel. Their ultrasonic signal and 

thermal properties were recorded, analyzed and compared with theoretical values obtained from 

FEA analysis presented in Chapter 4, hence an experimental validation of theoretical study was 

accomplished.  

Both EMAT systems were successfully employed up to 500
o
C for short period of time. SmCo 

EMAT system exhibited better high-temperature performance compared to Nd-Fe-B EMATs. Lift-

off increase and power input decrease limited their MOT. However, the cooling system managed to 
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dissipate adequate thermal energy so that MOT of both systems could be extended by at least 

100
o
C. The measured thermal properties of EMATs agreed with theoretical values calculated from 

the thermal and CFD study. In addition, they were evaluated regarding their operational time at 

high temperatures. Likewise, inspection at high temperatures, both designs operated efficiently up 

to 250
o
C for three hours continuously and especially SmCo performed successfully up to 350

o
C. As 

a result, the latter showed enhanced high-temperature performance compared to the former for both 

short and long term heat exposure, indicating SmCo’s suitability for high-temperature applications.  

Two water cooled EMAT systems were thoroughly evaluated regarding their high-temperature 

capabilities and limitations. Both performed efficiently up to 500
o
C for short heat exposure and 

250
o
C for continuous operation, also validating the thermal and CFD FEA models presented in 

Chapter 4.    
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Chapter 7 

Conclusions and Recommendation for Future Work 

7.1 Thesis Review 

A new high-temperature Electromagnetic Acoustic Transducer (EMAT) for guided wave 

inspection of plates has been designed, developed and experimentally evaluated.  

Based on the literature review presented in Chapter 2, various Non-Destructive Testing techniques, 

including Acoustic Emission, Eddy Current, Thermography, Optical techniques, laser and 

conventional Ultrasonic Testing, have been successfully applied at least up to 300
o
C with 

shortcomings, though, like qualitative results, sensitivity to noise and laboratory use. Guided Wave 

Testing is an emerging NDT method that has been widely employed for the structural assessment 

of large structures in oil/gas, nuclear and solar thermal industry. Its efficiency at elevated 

temperatures is directly associated with the high-temperature performance of the transducers 

utilized. Although the dominant technology of transducers for GWT is piezoelectric, EMAT is an 

attractive candidate for applications where non-contact measurements are needed. Despite the 

numerous theoretical and experimental studies about EMATs since 1972, only recently did 

researchers develop and test EMATs for high temperatures. Still, in some of these cases, EMATs 

are employed in conjunction with laser generators at high temperatures and in all of them only wall 

thickness measurements were monitored. It is, therefore, desirable to develop an EMAT system 

suitable for high-temperature GWT of plates. The work described in this thesis demonstrated the 

systematic approach taken to develop and test of a water-cooled EMAT for GWT of plates up to 

500
o
C.  

The theoretical basis that was required for the implementation of the FEA models and analysis of 

both theoretical and experimental results was described in Chapter 3. The three mechanisms of 

ultrasound transduction and detection that EMAT operation relies on were outlined and emphasis 



Conclusions and Recommendation for Future Work  150 

 

 

was given to Lorentz force, as it dominates in paramagnetic materials. The main EMAT designs for 

both conventional UT and GWT and their ultrasonic properties were presented and emphasis was 

given to Period Permanent Magnet configuration and its suitability for SH0 excitation/detection. It 

was also stressed that various operating parameters like skin effect, impedance mismatch and lift-

off can cause electromagnetic losses and limit EMATs efficiency. Likewise, temperature also 

degrades EMAT performance and thus detailed study was conducted regarding the thermal 

limitations and potential of the water-cooled EMAT and their relationship with the rest of the 

operating parameters.  

This led to the development of a Finite Element Analysis model for the prediction of the ultrasonic 

response of a room temperature PPM EMAT on stainless steel plate at both room and high 

temperatures. The steps and simplifications followed for the successful and meaningful execution 

of the model were described in Chapter 4. The wave mode purity characteristics of this EMAT 

were calculated as well as the temperature effect on them and the overall EMAT performance. This 

3D analysis intended to investigate the limitations of the existing EMAT technology at high 

temperatures and perform as a benchmark for the design of the high-temperature EMAT. Thermal 

and Computational Fluid Dynamics FEA simulations were also accomplished for the material 

selection, EMAT design optimization and estimation of the optimum operating conditions. The 

EMAT was designed so that its thermal properties were maximized and its electromagnetic losses 

were minimized. The optimum flow velocity, temperature inlet and material properties of coolant 

were calculated via CFD analysis for short and long term heat exposure, as well as the operational 

time of EMAT at elevated temperatures.  

An experimental evaluation of the limitations of the existing PPM EMAT technology was also 

carried out and summarized in Chapter 5. Room temperature EMATs were tested regarding their 

defect detection capabilities, lift-off limitations, power requirements and high-temperature 

performance. An empirical method for the enhancement of SNR of signal received was also 

established. The water-cooled EMAT was designed, manufactured and evaluated its operating 

characteristics. Its impedance analysis against various parameters, including lift-off, specimen 

material and temperature, was performed. Thorough experimental validation of the FEA study 
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about the wave mode purity profile of PPM EMAT was carried out via vibrometry tests; the EMAT 

transmitter was characterized in terms of its wave mode profile against plate thickness and material 

properties. Therefore, the effect of magnetostriction on EMAT wave mode properties was also 

studied. Finally, the EMAT was tested regarding its ultrasonic response at room temperature and 

compared to existing technology. Its performance on both paramagnetic and ferromagnetic 

materials was obtained as well as its lift-off limitations and power requirements at room 

temperature.  

The final experimental validation of the theoretical study and evaluation of high-temperature 

response of the water-cooled EMAT were portrayed in Chapter 6. Two water-cooled EMATs were 

tested up to 500
o
C for short and long term operation. In both cases, ultrasonic signals were 

successfully obtained at all target temperatures and the thermal properties of both transmitter and 

receiver matched with the theoretical values calculated by FEA study. The effect of lift-off increase 

and power input decrease on the thermal and subsequently, ultrasonic properties of both EMAT 

types was also investigated. All the above was conducted on both mild and stainless steel. Finally, 

the EMATs were assessed regarding their long term operation at lower temperatures. They were 

exposed for three hours at 250
o
C and they both managed to operate efficiently for the entire 

duration of the experimental procedure.             

7.2 Thesis Findings 

Main findings from Chapter 4 related to the theoretical study of EMAT technology at room and 

high temperatures in terms of its ultrasonic and thermal properties are listed below. 

7.2.1 EMAT model for room and high temperatures 

A 3D FEA model for the prediction of the ultrasonic performance of room temperature PPM 

EMAT at room and high temperatures (500
o
C) was implemented in commercial software. 

Simplifications were performed regarding the temperature effect on the EMAT/specimen system. 

Only the impact of temperature rise on the material and electrical properties of specimen were 
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simulated, thus addressing the problem where the EMAT is employed only for inspection purposes 

on already heated areas.  

The results obtained were encouraging, revealing that the amplitude drop of a room temperature 

EMAT ensued by the material and electrical variations due to temperature rise up to 500
o
C is not 

dramatically large. Weak signals can be obtained up to 500
o
C. However, the results obtained to 

give a qualitative idea of the ultrasonic response of room temperature EMAT, since critical 

information linked to temperature effect could not be obtained and imported into the model. Thus, 

further deterioration of the signal amplitude and quality is expected, Still, can it be used as a 

benchmark for the design of high-temperature EMATs for GWT, since any further deterioration of 

EMAT performance can be counterbalanced by power input increase till the latter meets the 

maximum power values that are currently available.  

Moreover, the model shed light to the wave mode characteristics of PPM EMAT. Despite SH0, it 

was found that out – of – plane displacement propagating with both S0 and A0 velocity can be also 

detected in a different angle than SH0. Temperature effect did not alter the results and thus both the 

ratio of in – plane to out – of – plane displacement and directivity remained the same. This finding 

is of significant importance, since transducers designed for GWT should preferably exhibit high 

wave mode purity. Excitation of multiple wave modes leads to complicating signal interpretation 

and potentially invalid conclusions regarding the structural integrity of the test object. 

Nevertheless, the above requires a system that both excites and detects multiple wave modes. 

Based on an ultrasonic model implemented for the study of the wave propagation in stainless steel 

plate regardless of the excitation means, which is usually used for the estimation of the ultrasonic 

response of piezoelectric transducers, it was found that guided wave physics cause the above 

problem. Consequently, EMATs, likewise piezoelectrics, generate a force of particular spatial 

distribution that unavoidably results in the excitation of multiple wave modes due to guided wave 

physics. However, EMAT receivers are still sensitive to one particle displacement pattern, 

determined by their design, and therefore to a single wave mode. An EMAT transmitter/receiver 

system does not suffer from low wave mode characteristics, however, systems composed of EMAT 

transmitter and detector sensitive to multiple wave modes is very likely to collect complicating 
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signals whose analysis cannot provide meaningful information about the structural state of 

specimen. 

7.2.2 EMAT thermal and CFD model 

A transient thermal model for the calculation of thermal properties of EMAT up to 500
o
C without 

active cooling was developed. Due to limited space all around EMAT coil, no active cooling can be 

designed for the efficient temperature control of coil. Instead, a detailed study regarding its thermal 

insulation was performed, as any material added to coil structure for impeding heat transfer would 

increase lift-off and limit the electromagnetic coupling between EMAT and specimen. Thus, a 

careful material selection that would eliminate thermal energy transferred to coil per time unit and 

also would not affect the electromagnetic properties of EMAT was accomplished. The optimum 

thickness of each material that would permit the maximization of thermal properties of EMAT and 

elimination of its electromagnetic losses was calculated. A constantan coil encapsulated in 0.75mm 

thick alumina envelope inside two Kapton layers of 1mm thickness each presented the best thermal 

response over time. The maximum operational time of this EMAT design without active cooling up 

to 500
o
C under the severest operating conditions is equal to one minute. Therefore, CFD analysis 

was also carried out for the calculation of the appropriate operating parameters of the cooling 

system for the thermal stabilization of EMAT at high temperatures over time.  

Given that EMATs for GWT should introduce strong electromagnetic waves to the test object, their 

magnetic strength must be as large as possible. Nd-Fe-B is the strongest type of magnets, however, 

their MOT is only 200
o
C. Alternatively, SmCo possesses MOT of 300

o
C, but its magnetic strength 

is lower than that of the former. Hence, the cooling system should dissipate adequate thermal 

energy to maintain the temperature of magnets below 200
o
C. The optimum flow velocity and inlet 

temperature of a water cooled EMAT employed up to 500
o
C for 5 minutes were estimated. The 

thermal potential of an oil-cooled EMAT was also investigated, however, the current design cannot 

benefit from the low freezing point and high thermal conductivity of oil and results in its low 

thermal response compared to water. On the contrary, the water – cooled EMAT was proved that it 

can be also utilized for long term operation up to 250
o
C under appropriate operating conditions.  
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Both the thermal and CFD model implemented for the estimation of EMAT thermal properties at 

high temperatures over time can provide crucial information for the design of a high-temperature 

EMAT. Scrupulous research on the parameters, including materials and fluid dynamics, that affect 

the thermal response of EMATs can be performed and lead to the design of transducers that can 

successfully withstand high temperatures and also meet their operational requirements. 

The findings from Chapter 5 are related to the evaluation of the existing EMAT technology at high 

temperatures and the room temperature characterization of the water-cooled EMAT and are 

reported below. 

7.2.3 Limitations of existing GWT EMATs - Mechanism for SNR enhancement 

As no EMAT for GWT at high temperatures was designed before, the limitations of the existing 

EMAT technology for GWT had to be explored firstly. Two copper coil PPM EMATs with Nd-Fe-

B magnets and no active cooling were assessed regarding their defect detection capabilities, lift-off 

limitations and power requirements at room temperature and also tested up to 180
o
C. Their defect 

detection potential on stainless steel plate was relatively low due to their weak electromagnetic 

coupling with specimen and high noise level. However, an empirical method for the enhancement 

of SNR of signal received was established. Based on the operating principles of EMAT as they 

were outlined in Chapter 3, the interface of EMAT and specimen performs as a two winding 

transformer. If EMATs are attached on specimen in an autotransformer configuration, the noise 

level drops and SNR of the signal received increases. The experimental evaluation of the above 

revealed that room temperature EMATs employed on stainless steel plate without 

shielding/autotransformer connection exhibit 8dB SNR, whilst with shielding it rises to 52dB. This 

remarkable SNR enhancement agrees with the theory presented in Chapter 3 and increased 

significantly the defect detection capabilities of the existing EMAT technology.  

Therefore, the high-temperature experiments were conducted with the EMATs being shielded. Yet, 

did their performance degrade significantly after 100
o
C, since their length of inspection was limited 

from meters to centimeters, resulting in their questionable industrial applicability at high-
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temperature environments. Consequently, the development of the water – cooled EMAT was a 

necessity.  

7.2.4 Experimental validation of model - Wave mode purity of PPM EMAT 

The coupled electromagnetic/mechanical FEA model showed that PPM EMAT transmitter excited 

multiple waves, SH0, A0 and S0. The experimental assessment of validity of the model was 

accomplished via vibrometry tests. The water cooled PPM EMAT transmitter was tested regarding 

its wave mode purity on stainless and mild steel. A circular area of 30cm radius from the center of 

EMAT was scanned. It was found that most of the energy introduced to specimen resulted in- plane 

displacement propagating with SH0 velocity at right angle. However, noticeable out-of-plane 

vibration was also detected whose amplitude maximized in 90
o
 angle from SH0 direction. Out-of-

plane displacement was observed at times that correspond to both S0 and A0.  

As a result, the experimental results are aligned with the theoretical values and confirm the low 

wave mode purity characteristics of PPM EMAT. As it was also highlighted previously, PPM 

EMAT transmitters can excite multiple wave modes, however, when they operate as a receiver, 

they are sensitive to one wave mode.  

7.2.5 Water cooled PPM EMAT – Room temperature characterization 

Apart from its wave mode purity, the water cooled EMAT was tested against its lift-off limitations 

and power requirements and compared to that of a room temperature EMAT. As it was expected, 

its performance at room temperature is inferior to that of existing technology. Its special design 

gives it the advantage to show advanced performance at high temperatures compared to room 

temperature designs. As a result, its thermal insulation and material selection cause electromagnetic 

losses that are noticeable at room temperature and render it less efficient at ambient temperature in 

comparison with a room temperature EMAT. Again, its efficiency depends on the material 

properties of the specimen, since it is greater on mild steel than stainless steel. 

Its impedance analysis also confirms all the above, as it was measured against various operating 

conditions. The large resistivity constantan possesses resulted in larger resistance of water cooled 
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EMAT and its efficiency drop compared to copper coil, room temperature EMAT. Also, its 

impedance varied with material properties of specimen, lift-off and temperature. Especially with 

temperature rise, EMAT impedance increased, since the electromagnetic coupling between the 

EMAT and the specimen lessens and the EMAT tends to perform as a real inductor instead of a 

transformer. The results retrieved from impedance analysis were fully aligned to the theory that 

describes EMAT and specimen interaction as a two winding transformer.   

The findings presented in Chapter 6 are related to the high-temperature performance of water 

cooled EMAT and are listed below. 

7.2.6 Water cooled PPM EMAT – High-temperature performance 

Two types of water cooled EMATs were tested at high temperatures. Both Nd-Fe-B and SmCo 

EMATs were employed in a pitch-catch configuration on stainless and mild steel plate. They were 

assessed regarding their inspection capabilities up to 500
o
C. Both their ultrasonic and thermal 

properties were recorded and revealed that both EMATs can operate efficiently up to 500
o
C short 

period of time (less than a minute). Nd-Fe-B shows rapid amplitude drop after 200
o
C and it keeps 

on fluctuating up to 500
o
C. On the other hand, SmCo exhibits stable performance over the entire 

temperature range and its amplitude decreasing rate is smaller compared to that of Nd-Fe-B. As a 

result, SmCo appears more suitable for high-temperature GWT, although both can be employed up 

to 500
o
C. The temperature of EMAT components was also monitored and agrees with the values 

calculated from the FEA model, confirming the validity of the thermal and CFD analysis. 

Despite the destructive effect lift-off has on the ultrasonic performance of EMAT, it can enhance 

the thermal properties of the transducer, since it increases the time required for the maximum heat 

to be transferred to the probe. The experimental investigation of the impact of lift-off on EMAT 

performance up to 500
o
C was carried out. MOT of EMAT decreased with lift-off increase. 

However, both EMAT systems managed to operate at least up to 300
o
C regardless of lift-off and 

specimen material. Again, SmCo showed superior performance, since its response was satisfactory 

and stable up to 400
o
C for all lift-off values. Likewise, power input decrease resulted in MOT 



Conclusions and Recommendation for Future Work  157 

 

 

dwindling. Nevertheless, Nd-Fe-B EMAT withstood up to 450
o
C and 250

o
C on mild and stainless 

steel respectively under the lowest power input, while SmCo operated up to 500
o
C and 300

o
C.  

The EMATs were also assessed in regard to their long-term inspection potential at high 

temperatures. Based on FEA results, the EMAT can operate at 250
o
C for at least one hour. Hence, 

the EMAT systems were exposed at 250
o
C for three hours. Again, both EMATs managed to 

operate continuously up to that temperature for the entire duration of the experimental procedure. 

Nevertheless, MOT of SmCo EMAT is larger than 250
o
C and thus its response was expected. 

Hence, it was evaluated again for its operational time at 350
o
C. Similarly, with before, the EMAT 

performed satisfactorily at this temperature as well. The cooling system successfully maintained 

the temperature of both EMATs below their MOT, ensuring their stable performance for at least 

three hours. Apart from the ultrasonic response of the system, the EMAT impedance was also 

recorded. No fluctuations were observed during the experimental procedure and thus no indications 

of potential break down of the system after three hours of continuous operation can be found. The 

experimental results match with the FEA values and actually they are even more encouraging, 

since the operating time is larger than one hour.                        

7.3 Suggestions for Future Work 

The successful validation of all three FEA models implies the substantial validity of the theoretical 

basis they rely on and the importance of their results. However, any discrepancy observed between 

the theoretical and experimental values can be sheared further, if additional critical information is 

imported in the models. The ultrasonic response of EMAT at high temperatures can be simulated in 

more detail, if the temperature effect on all material, electrical and magnetic properties of EMAT 

and specimen is taken into account. Further information regarding the relationship between 

temperature rise and magnetic properties of the specimen are required for the enhancement of 

accuracy of the model. Moreover, a more scrupulous research about the potential and constraints of 

an oil-cooled EMAT at high temperatures should be conducted. The thermal and CFD models can 

be utilized for this research. However, the EMAT should be re-designed, so that it will benefit from 

the low freezing point and high thermal conductivity of oil and also counterbalance the higher 
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viscosity and life hazard risk oil possesses compared to water. The same tools can be used for the 

investigation of the maximum operating time the current EMAT design or any future high-

temperature EMAT up to 250
o
C. Amendments on the current EMAT design and more especially its 

cooling system may be required for the extension of its operational time and thus its monitoring 

potential at high temperatures. Attention must be also paid on the impedance variations of EMAT 

at high temperatures and the need for an impedance matching network for the stabilization of its 

performance at temperature changes. Impedance matching and filtering of signals received are also 

required for the further enhancement of EMAT performance. A more in-depth study about PPM 

EMAT design and its wave mode purity profile is necessary to be performed. A novel EMAT 

configuration that will allow the elimination of the unwanted wave modes as soon as they are 

generated is required. This study can be further validated with EMATs for other wave modes, like 

S0 and A0. Experimental research of the potential and limitations of the current study for pipe 

inspection/monitoring should also be investigated in near future. Finally, an EMAT that will be 

theoretically and experimentally validated regarding its long-term inspection potential (over days 

of continuous operation) at high temperatures and its industrial applicability for monitoring of 

high-temperature structures is needed. 
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