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Abstract

Data can be collected in the form of counts in many situations. In other words,

the number of deaths from an accident, the number of days until a machine stops

working or the number of annual visitors to a city may all be considered as in-

teresting variables for study.

This study is motivated by two facts; first, the vital role of the continuous Weibull

distribution in survival analyses and failure time studies. Hence, the discrete

Weibull (DW) is introduced analogously to the continuous Weibull distribution,

(see, Nakagawa and Osaki (1975) and Kulasekera (1994)). Second, researchers

usually focus on modeling count data, which take only non-negative integer val-

ues as a function of other variables.

Therefore, the DW, introduced by Nakagawa and Osaki (1975), is considered to

investigate the relationship between count data and a set of covariates. Particu-

larly, this DW is generalised by allowing one of its parameters to be a function of

covariates. Although the Poisson regression can be considered as the most com-

mon model for count data, it is constrained by its equi-dispersion (the assumption

of equal mean and variance). Thus, the negative binomial (NB) regression has

become the most widely used method for count data regression. However, even

though the NB can be suitable for the over-dispersion cases, it cannot be con-

sidered as the best choice for modeling the under-dispersed data. Hence, it is re-

quired to have some models that deal with the problem of under-dispersion, such

as the generalized Poisson regression model (Efron (1986) and Famoye (1993))

and COM-Poisson regression (Sellers and Shmueli (2010) and Sáez-Castillo and

Conde-Sánchez (2013)). Generally, all of these models can be considered as mod-

ifications and developments of Poisson models. However, this thesis develops a

model based on a simple distribution with no modification. Thus, if the data

are not following the dispersion system of Poisson or NB, the true structure gen-

erating this data should be detected. Applying a model that has the ability to

handle different dispersions would be of great interest. Thus, in this study, the

DW regression model is introduced.

Besides the flexibility of the DW to model under- and over-dispersion, it is a
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good model for inhomogeneous and highly skewed data, such as those with ex-

cessive zero counts, which are more disperse than Poisson. Although these data

can be fitted well using some developed models, namely, the zero-inflated and

hurdle models, the DW demonstrates a good fit and has less complexity than

these modified models.

However, there could be some cases when a special model that separates the prob-

ability of zeros from that of the other positive counts must be applied. Then,

to cope with the problem of too many observed zeros, two modifications of the

DW regression are developed, namely, zero-inflated discrete Weibull (ZIDW) and

hurdle discrete Weibull (HDW) models.

Furthermore, this thesis considers another type of data, where the response count

variable is censored from the right, which is observed in many experiments. Ap-

plying the standard models for these types of data without considering the cen-

soring may yield misleading results. Thus, the censored discrete Weibull (CDW)

model is employed for this case.

On the other hand, this thesis introduces the median discrete Weibull (MDW)

regression model for investigating the effect of covariates on the count response

through the median which are more appropriate for the skewed nature of count

data. In other words, the likelihood of the DW model is re-parameterized to

explain the effect of the predictors directly on the median. Thus, in comparison

with the generalized linear models (GLMs), MDW and GLMs both investigate

the relations to a set of covariates via certain location measurements; however,

GLMs consider the means, which is not the best way to represent skewed data.

These DW regression models are investigated through simulation studies to illus-

trate their performance. In addition, they are applied to some real data sets and

compared with the related count models, mainly Poisson and NB models.

Overall, the DW models provide a good fit to the count data as an alternative to

the NB models in the over-dispersion case and are much better fitting than the

Poisson models. Additionally, contrary to the NB model, the DW can be applied

for the under-dispersion case.
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Chapter 1

Introduction

Count data, which refers to the number of times an item or an event occurs

within a fixed period of time, is essential in many fields. Indeed, examples of

count data include the number of heart attacks or hospitalisation days in medical

studies, the number of students absence during a period of time in education re-

search or the number of times parents perpetrate domestic violence against their

child(ren) in social science investigations. Count data can be found in many

practical lifetime studies, such as the number of days before death in certain dis-

eases or the number of cycles (runs) until a machine stops working and so on.

Hence, a number of statistical distributions has been applied to model the case

of a random variable (RV) with a non-negative integer value. A good overview

of these distributions can be found in Johnson et al. (2005).

On the other hand, there is now a great deal of interest in the literature in investi-

gating the relationship between a count response variable and other variables. In

other words, count data is explained in terms of a set of covariates, for instance,

how the education level of parents can affect the incidence of domestic violence

against their children. Methods for addressing these questions fall into the gen-

eral area of regression analysis for count data. Since these data are not normally

distributed, ordinary least squares regression models are not appropriate and may

yield misleading estimates for the impact of covariates.

Some statistical distributions, such as Poisson, geometric and NB are usually ap-

plied to model these count data. However, in some cases, these models cannot

1
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be considered as the best for fitting these RVs. Therefore, this thesis focuses on

finding an appropriate model for the analysis of count data. DW, which is an

analogue of the standard (continuous) Weibull distribution, is considered due to

the vital role of its corresponding continuous Weibull distribution in modeling

lifetime data and non-negative integers.

This chapter discusses an overview of some previous research and topics on

the knowledge that related to our study.

1.1 Regression

According to Montgomery and Peck (1982), regression analysis can be simply

defined as a statistical process that attempts to describe the relationship between

a dependent variable and one or more corresponding value(s) of other RVs. That

is, the process of building a statistical model represents the mathematical expla-

nation of a RV based on other variables. Hence, the main objective of regression

analysis is to find a function to forecast the change of the response variable on the

basis of change in one or more predictors. This function involves the following

variables:

1. Dependent variable (Y ): it is the variable whose value is affected by

and conditional upon other variables. This variable can also be called a

response, measured, explained, outcome, experimental or output variable.

2. Independent variable (X): this value is not affected or dependent on

other variables. It may also be known as the regressor or the controlled,

concomitant, manipulated, explanatory or input variable.

3. Unknown parameters (α): any regression function is defined in terms of

a finite number of unknown parameters, then the objective of the regression

analysis is to estimate these parameters, based on the observed pairs of Y

and X, to form the regression equation that measures the covariate effects

on the data.
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Specifically, the regression model relates a response variable Y to the function of

XXX and ααα, as:

Y ≈ f(XXX,ααα).

1.1.1 Linear Model

This is a traditional regression model, depending on the normal distribution,

and can be considered as the most familiar and widely used class of statistical

models, relating the response variable Y to a linear combination of predictors.

This model can be formulated for a sample, (yi, xi1, xi2, . . . , xiP ; i = 1, 2, . . . , n),

in a mathematical equation as:

yi = α0 +
P∑

p=1

xipαp + εi

For simplification, it can be written as:

yi = xxx′
iααα + εi

where, yi is the response variable, that is, the variable that is to be predicted or

explored, xxx′
i is the vector of P predictors, ααα refers to the P vector of regression

parameters, which will be estimated and εi is a random error term or residual

term, which reflects that this relationship between yi and xxxi is deterministic and

not exact.

This linear regression model has a normally distributed random error ε and thus

the outcome observations have normal distribution. That is, yi can be distributed

as N(E(yi), σ
2), where:

E(yi|xi) = α0 +
P∑

p=1

xipαp



CHAPTER 1. INTRODUCTION 4

On the other hand, real-life data are often not expected to be normally dis-

tributed. For instance, the general linear model is inadequate for count data

for multiple reasons. First, this regression may result in the prediction of some

non-positive counts. Additionally, the count data are usually highly skewed or

have many zero counts, thus conflicting with the the variance assumption for the

normal regression model (Gardner et al. (1995)). For instance, Hutchinson and

Holtman (2005) compared the use of linear model, Poisson and NB regressions for

analyzing the number of pregnancies experienced by sexually experienced ado-

lescent females from some schools recorded by the National Longitudinal Survey

of Adolescent Health. Their experiment showed the inappropriate use of normal

linear regression, whereas Poisson and NB provided a better fit.

1.1.2 Generalized linear models

The normal linear regression is extended to a general class of statistical mod-

els, called GLMs, for relating a response variable Y to a linear combination

of explanatory variable(s) XXX. In other words, the normal distribution for the

response variable Y is generalized to be any distribution from the exponential

family. Generally, theses models consist of three components:

• A distribution that must be a member of the exponential family of distri-

butions.

• The linear function of covariates, called linear predictors

ηi = α0 +
P∑

p=1

xipαp

• A link function, g, relates the predictor with the expected value µ of the

response variable Y as:

g(µi) = ηi = x
′

iαx
′

iαx
′

iα

These approaches model only the conditional mean (µ) of the response
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variable, as a function of the explanatory variable, via the link function, as:

µi = g−1(ηi)

This class includes many of the statistical models from which the data in many

applications may arise. For example, the normal linear model, which could be a

good model for analyzing continuous data, usually equates the expected value of

the response variable to a linear combination of the covariates and the regression

parameters, that is, the link function here is the identity.

In addition, the Poisson regression for modeling discrete count data can be con-

sidered as a special case of GLMs, in which log(mean) is modeled as a linear

function of the covariates. For more details, see Nelder and Wedderburn (1972).

1.1.3 Generalized additive models for location, scale and

shape

Rigby and Stasinopoulos (2005) introduced this general class of statistical

models to be more general than the GLM, in which the distribution of the re-

sponse variable Y is not limited to the exponential family. Additionally, it can

model not only the mean (location) but also any other parameter (θ) of the

distribution of Y . The fully parametric class of this model could be described as:

g(θi) = x′
iαx′
iαx′
iα

where θ could be any parameter of the population distribution, such as shape,

location or scale parameter.

1.2 Maximum likelihood estimation method

Maximum likelihood is a very general technique for parameter estimation and

inference in statistics. Suppose we have a density function f(y; θ), characterized

by some unknown but fixed parameters θ, which could be a parameter θ or a

vector of parameters θ = (θ1, θ2, . . . , θP ), where P is the number of parameters to

be estimated. Then, the maximum likelihood method estimates these parameters
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by finding the values of θ that maximize the likelihood of Y and θ.

Due to the fact that the likelihoods are all positive and the logarithm is an in-

creasing function, the log-likelihood is equivalent to the likelihood, and they have

their maximum at the same point. Therefore, it would be easier to maximize

the log-likelihood instead of the likelihood since the summation is easier than

the product. In other words, this method of estimation can be briefly applied

according to the following three steps:

1. Likelihood Function: the likelihood function for an observed sample

(y1, y2, . . . , yn) of size n, which is identically independent distributed (iid)

as f(y; θ) and regarded as a function of θ given the sample data, can be

defined to be the joint probability function, as follows:

L(θ; y) =
n∏

i=1

f(yi; θ)

2. Log-Likelihood Function: the log-likelihood function is the natural log-

arithm of the likelihood function which is defined as follows:

`(θ; y) = log(L(θ; y)) =
n∑

i=1

log(f(yi; θ))

3. Maximum Likelihood Estimator: an MLE θ̂ML of θ maximizes the

likelihood, L(θ; y), or typically, the log-likelihood `(θ; y):

θ̂ML = argmax
θ

`(θ; y)

Optimizing the likelihood (or equivalently log-likelihood) functions can be

found analytically by differentiating the log-likelihood function `(θ; y) with

respect to the parameter θ and setting the results equal to zero. How-

ever, for some complicated cases this may result in non-linear equations,

which might require the application of numerical solutions using several

algorithms. The complexity of the MLEs depends on the form of the prob-

ability function f(y; θ). In other words, the MLEs for the parameters of a
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normal distribution can be simply obtained by setting these derivatives of

`(θ; y) and solving for µ and σ2. On the other hand, there is another cases

where it is more difficult to find such explicit solutions, and thus numerical

techniques are required.

The maximum likelihood method is the most commonly applied method of clas-

sical inference. This is due to its useful standard large sample properties, such as

consistency and asymptotic normality.

Numerous studies have applied this technique to estimate parameters, especially

for coefficient regression. In other words, the maximum likelihood approach can

be applied to the traditional normal linear regression to estimate its parameters.

Moreover, the maximum likelihood approach is used to fit most of the GLMs and

Generalized additive models for location, scale and shape.

1.3 Count data modeling

The word count is generally used as a verb denoting the enumeration of some

units or events that occurred within a period of time or in a specific place. Ex-

amples include the number of people that died in a disaster last year, how many

items were purchased in the last week from a shop, the number of patients that

were cured and left the hospital within the last three days, the number of days

that a student was absent in the last year and so on. Then, count data is referring

to the number of such enumerated items or events. Therefore, mathematically,

this count data is represented by an RV that takes on only positive integer values

because events cannot occur in negative numbers of times. The number of events

taking place can take any positive number up to positive infinity; thus, there is

no upper limits for counts. Additionally, there is a chance of having zero counts

when the event is not experienced. That is, for any count RV, the range can

be from zero to infinity (usually to some inferior distinct number, which is the

maximum number that occurred in this dataset).
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1.3.1 Dispersion for count data

It is important to clearly define the context of dispersion due to its essential

role in modeling count data, and distributions for modeling these data should take

into account the data’s dispersion. Generally, the dispersion for any data can be

described as the variability or spread of the data. In other words, dispersion refers

to the stretch or the squeeze of a data’s distribution. Specifically, dispersion in

count data is formally defined in relation to a specified model being fitted to

the data (Cameron and Trivedi (2013) and Hilbe (2014)). In this context, the

variance ratio (VR) can be defined as the ratio between the observed variance

from the data and the theoretical variance from the model fit, as:

VR =
observed variance

theoretical variance
(1.1)

Accordingly, modeling any count data might exhibit three types of dispersion;

namely, over-dispersion, under-dispersion and equi-dispersion. Over-dispersion

refers to the case when the observed variance of the count data is greater than

the expected variance specified by the fitted model. Under-dispersion describes

the opposite case, where the observed variance is less than that theorized by the

model. Equi-dispersion refers to the case of equal variances. Then, a model that

fails to capture the over- or under-dispersion in the data and shows different vari-

ance than that observed is called an over- or under-dispersed model. Therefore,

the definition of dispersion through the VR can be helpful in studying the dis-

persion of a model.

Moreover, the dispersion of count data can be defined in relation to the Poisson

model. Hence, it is common with these data to refer to the dispersion as being

relative to Poisson. In such a case, the variance of the model is estimated by the

sample mean. Thus, over-, equi- or under- dispersion relative to Poisson refers to

cases where the sample variance (observed variance) is greater, equal or smaller

than the sample mean (theoretical variance), respectively. Therefore, the disper-

sion of a dataset, under this definition, can be identified with regard to the Dip,

or the dispersion coefficient, which is defined as the ratio of the variance to the
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mean (variance-to-mean relation):

Dip =
σ2

µ
(1.2)

Then, data is over-, equi- or under-dispersion relative to Poisson if Dip > 1,

Dip = 1 or Dip < 1, respectively. Dispersion has been commonly defined in the

literature using the variance-to-mean ratio, namely, Dip. Specifically, the over- or

under-dispersion relative to Poisson can be found in the data when the variance

is greater or less than the mean (Cameron and Trivedi (2013), Hilbe (2014)).

Accounting for over-dispersion and under-dispersion in modeling count data is

essential because failing to cope with these cases can cause biased parameter es-

timates and thus lead to false conclusions and decisions.

A considerable amount of literature has been published on the regression

analysis of the count response variable. For such data, Poisson and NB are the

most popular and the most widely applied models for investigating the relation-

ship between the outcome count variable and a set of covariates. Additionally,

zero-inflated and hurdle models are applicable in the case where many zeros are

counted in the data.

1.3.2 Poisson model

Generally, the GLM with the Poisson distribution is the classical and first

choice to model any count data (Cameron and Trivedi (2013)). This regression

model can be obtained based on the Poisson distribution with pmf as:

f(y) =
λye−λ

y!
, y = 0, 1, 2, . . . (1.3)

The parameter λ(> 0), is the mean (and also the variance) of this Poisson distri-

bution. Then, for a sample yi; i = 1, 2, ..., n, and within the framework of GLM

discussed previously, this distribution is generalized by allowing λ to be related

to a set of covariates xxxi = (xi1 , xi2 , . . . , xiP ) with corresponding parameters ααα,
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through the log link function, as:

λi = exxx
′
iααα (1.4)

The exponential of xxx′
iααα, which makes the Poisson regression into a non-linear

regression model, was chosen to ensure that λi remains positive and to guaran-

tee that its predicted values will always be positive. Thus, the response variable

Y represents the frequencies of an event of interest and ααα is the vector of lin-

early independent predictors that are supposed to affect Y . In this regression

model, P + 1 parameters need to be estimated, that is, the regression coefficient

ααα = α0, α1, . . . , αP .

Although the Poisson model is widely considered to be the most basic model for

analyzing count data in many disciplines, the reliance of this model on a single

parameter often restricts its use on real data. This is due to the violated feature

of Poisson distribution, which is the identical mean and variance, called “equi-

dispersed” (Hilbe (2014)).

One common way to handle the issue of over-dispersion is to fit a parametric

model that is more dispersed than the Poisson. A reasonable choice could be the

NB model.

1.3.3 Negative binomial model

The NB model belongs to the GLM and relaxes the assumption of the equi-

dispersion of Poisson regression by adding a dispersion parameter (heterogeneity

or ancillary parameter) for considering the variability and allowing the variance

to exceed the mean. In particular, this makes it possible to cope with the over-

dispersion and the unobserved heterogeneity that might result from not consid-

ering some predictors for the count data. For the regression’s purposes, the NB

distribution can be derived as:

f(y) =
Γ(y + k)

Γ(k)y!

( k

k + µ

)k( µ

k + µ

)y
(1.5)
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where µ > 0 is the mean for the NB, k is a scale or dispersion parameter and the

variance of this model is:

σ2 = µ
(k + µ

k

)
which can be re-written as:

σ2 = µ+
1

k
µ2 (1.6)

Since the theoretical variance of an NB is always greater than its mean, this

regression model is the most commonly used for count data with over-dispersion

relative to the Poisson. In other words, if the observed outcome is supposed to

have a larger variance than the mean, then the NB regression is more appropriate.

For the NB regression model, µ is associated with a set of covariatesXXX with some

corresponding parameters ααα through the log-linear link function. That is, for a

sample (yi, xi1, xi2, . . . , xiP ; i = 1, 2, . . . , n), µi is defined as :

µi = exxx
′
iααα (1.7)

Again, the exponential of xxx′
iααα was chosen to ensure that µi is positive. For more

details, see for example, Lawless (1987) and Hilbe (2011).

A considerable amount of literature has been published on the NB. For example,

Abdel-Aty and Radwan (2000) used it to fit the accident frequency in Central

Florida. Additionally, Byers et al. (2003) applied an NB model in aging research

for a clinical trial designed to assess the performance of a medical program for

elderly people. In this study, the variance was much greater than mean, hence

NB present better fit than Poisson regression model.

Even though the NB model is mainly suitable for over-dispersion relative to the

Poisson situations, it is not appropriate for modeling the under-dispersion data

relative to the Poisson (see for example Sellers and Shmueli (2010)). Hence, it

is necessary to have some models to cope with the cases of under-dispersed data

relative to the Poisson.
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1.3.4 Censored count models

The censoring from below or above commonly occurs for count data. A pop-

ular example includes data that come from answering a question regarding a

specific event, with possible responses of 0, 1, 2, 3 or 4+, which means four or

more. This structure of censoring results from the pattern of the experiment. In

addition, the censoring might be required in some cases, where the response takes

large values or outliers affecting its mean and variance, causing over-dispersion

relative to Poisson. Thus, cutting the large values of this response can control

this over-dispersion.

The most common type of censoring associated with count data is right censor-

ing, where a point is considered to cut the observed counts from the right. That

is, for some values of the response variable Y that are greater than a fixed value

C, it is recorded as greater than or equal to C, with no knowledge regarding the

exact value of Y . This case can be found in many applications, for example, if a

study is interested in investigating the relationship between heavy smokers and

their income. Such a study may define a person as being a heavy smoker if he or

she smokes 10 cigarettes or more per a day. Then, the response variable, which

is the number of daily cigarettes consumed, can be recorded as, 0, 1, 2, . . . , 10 or

more, even for individuals who smoke 11 or more cigarettes. Thus, the response

variable here is censored at C = 10. However, the independent variable, which

is the income, is exactly recorded for the whole sample, even for the censored

respondents who smoke more than 10 cigarettes daily. A considerable amount of

literature has been published on censored count data. For example, Terza (1985)

analyzed censored data on the number of times individuals shopped in an area in

a given period of time. The observed number of times in this experiment were 0,

1, 2 and 3 or more. Thus, even if there were people who shopped four or more

times, they would be listed under the category of 3 or more. Another example is

in fertility, where Caudill and Mixon Jr (1995) considered the censoring case for

their dependent variable, that is, the number of children in the family.

For the case of censored count data, it is necessary to have special models that

account for this restriction. Otherwise, if the regular count models (full or un-
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censored models) are applied without considering this censoring, the resulting

inferences might be inappropriate. Thus, a variety of studies have applied re-

gression models for such censored count data. The Poisson regression model,

which is typically used for count data, was applied by Terza (1985) and Brännäs

(1992). However, the Poisson model has the disadvantage of its equi-dispersion

assumption, which is the identical mean and variance of the data, as mentioned

previously. Thus, Caudill and Mixon Jr (1995) applied the censored negative

binomial (CNB) model, which is more capable for modeling over-dispersion with

censored data, and it provided better fit than the censored Poissin (CP) regres-

sion model. Additionally, a number of studies have modeled censored data using

models that can handle both cases for over- and under-dispersion. For example,

Famoye and Wang (2004) and Mahmoud and Alderiny (2010) used generalized

Poisson regression for censored data, and Sellers and Shmueli (2010) applied

COM-Poisson regression for censored data.

Generally, for regular uncensored count data, the type of underlying dispersion

can be noted from the relation between the sample mean and the sample vari-

ance for the response. However, for the censored data this relationship is not

completely known. That is, for the right censored data the observed mean will

be smaller than the true mean, and the observed variance could be less than the

true one. However, if the observed variance is greater than the observed mean,

the true variance could be less than or greater than the true mean. Then, the

dispersion type will not be clear for the censored data. Consequently, mislead-

ing inferences may result if the underlying dispersion is not taken into account.

Hence, it would be very useful to utilize a model that can handle a variety of

dispersion types for this censored data where the type of dispersion is unknown.

The concept of censoring for count data can be summarized into the case when

the data (Y,XXX) are available for some range of Y , but all the values of XXX are

observed. Thus, censoring should be taken into account, as it includes some loss

of information, which might result in misleading estimates. Thus, for a count

variable Y ∗ and some fixed positive integer C, the censoring count model can be
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defined as follows:

• Right censoring

C is the biggest observed value in the model. Then, any response in the

data greater than C is considered to be greater than or equal to C.

• Left censoring

C is the smallest value in the model. Hence, any y∗ less than C is considered

as less than or equal to C.

However, the most common censoring type, as mentioned earlier, is right cen-

soring at C; hence, this type is considered in this study. Subsequently, some

values for y∗ are incompletely observed, as they will be recorded as greater than

or equal to C, and their real values are unspecified. In other words, under the

right censoring scheme, the observed response variable yi can be defined as:

yi =

y∗i if y∗i < C

C if y∗i ≥ C

Therefore, if Y ∗ has a pmf f(Y ∗|x) and cumulative distribution function (cdf)

F (Y ∗|x), we have:

• For Y ∗ < C, y is the observed and the pmf of y will be the usual f(y|x)

• For Y ∗ ≥ C, C is observed with a probability Pr(Y ∗ ≥ C), where

Pr(y∗ ≥ C) =
∞∑

j=C

f(y = j|x) = 1−
C−1∑
j=0

f(y = j|x) = 1−F (C−1|x) (1.8)

Thus, a binary indicator for the censoring can be defined to combine these two

terms as:

δci =

0 if y∗i < C

1 if y∗i ≥ C

(1.9)
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Then, the likelihood function can be defined as:

L =
n∏

i=1

[f(yi|xi)]
1−δci [Pr(y∗i ≥ C|xi)]

δci (1.10)

Hence, the log-likelihood function is:

` =
n∑

i=1

(1− δci) log [f(yi|xi)] +
n∑

i=1

δci log [Pr(y∗i ≥ C|xi))]

Then, from Equation 1.8:

` =
n∑

i=1

(1− δci) log [f(yi|xi)] +
n∑

i=1

δci log [1− F (C − 1|xi)]

where f(.) and F (.) are, respectively, the pmf and cdf for y∗. For more details,

see, for example, Cameron and Trivedi (2013) and Hilbe (2014).

1.3.4.1 Censored Poisson regression model

From the pmf of the Poisson regression in Equation 1.3 with λ as in Equa-

tion 1.4, then, from Equation 1.10, the likelihood for the right CP regression

model can be obtained as:

L =
n∏

i=1

[
λyi
i e

−λi

yi!

]1−δci
[
1− e−λi

C−1∑
j=0

λj

j!

]δci
(1.11)

where C is the censored point.

1.3.4.2 Censored negative binomial regression model

For the NB regression with the pmf defined as Equation 1.5 and µ in Equa-

tion 1.7, the likelihood for the right CNB regression model can be obtained from

Equation 1.10 as:

L =
n∏

i=1

[
Γ(yi + k)

Γ(k)yi!

( k

k + µi

)k( µi

k + µi

)yi]1−δci

×

[
1− 1

Γk

(
k

k + µi

)k C−1∑
j=0

Γ (j + k)

j!

(
µi

k + µi

)j
]δci (1.12)
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where C is the censored point.

For more details on these models see, for example, Terza (1985), Caudill and

Mixon Jr (1995), Cheol Jung et al. (2006) and Raciborski et al. (2011), among

others.
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Count data may possess a huge amount of zeros in many experiments. The

excess number of observed zeros results when many individuals fail to experience

the event of interest. To illustrate, in a study investigating smoking, the count

variable for the number of cigarettes smoked during the last two hours could have

excess zeros because the zeros from the population could be recorded from two

cases: first, from participants who are smokers but chose not to smoke during the

last two hours, and second, from non-smoking individuals.

Hence, in these cases, the zero counts can be categorized as having two different

origins:

• The first observed zeros (sampling zeros or false zero), obtained by chance

in the sample, are due to the usual Poisson or NB. Thus, in the smoking

study above, the smokers who did not smoke during the last two hours are

supposed to be modeled as Poisson or NB, which include both zero counts

(sampling zeros) and non-zero counts.

• The second zeros (structural zeros or true zero) are caused by some structure

in the data when the event cannot be exhibited for some reasons. That is,

in the smoking example, the zeros observed for non-smokers are structural

zeros because they cannot exhibit a non-smoking condition in any period

of time. This arises from a binary process: smoking.

The over-dispersion in the count data can arise for the dataset with too many

response zero counts, which the Poisson and NB regressions cannot predict cor-

rectly. In other words, the zero count is greater than that predicted by the Poisson

or NB models.

Therefore, a modified method should be applied to address this issue of many

zeros in the count dataset. Particularly, the zero-inflated and hurdle models were

suggested for this condition of zero inflation. Generally, these modified models

can be described as having two parts, one procedure for zero counts and a dif-

ferent one for positive counts. In other words, the first part defines a binary

process, commonly logistic models, for having zero or count values. The second

part considers a discrete distribution, called the parent count model, conditional
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on a count value, such as the Poisson or NB for zero-inflated models or their

zero-truncated formulas for the hurdle models. For more details, see Cameron

and Trivedi (2013) and Hilbe (2014).

1.3.5 Zero-inflated models

Two structures for generating the observations can be considered for these

models: the first group generates only zero counts and the other one a positive

integer outcome (including the zero counts). Some Bernoulli trials can be used

to direct which process is observed. Then,

Y ∼

0 with probability π

g(y; θ) with probability (1− π)

According to Cameron and Trivedi (2013), the zero-inflated models can be derived

as a two-component mixture models, that is, mixing a point mass at zero and a

count distribution, fp(y), such as Poisson or NB; namely, parent count model.

Consequently, the zero count could be observed due to two different origins: from

the point mass and from the count component. Thus, the zero-inflated regression

models have pmf, as follows:

f(yi) =

πi + (1− πi)fp(0) for y=0

(1− πi)fp(yi) for y=1, 2, 3, . . .

(1.13)

where y is the count variable, 0 < π < 1 is a zero-inflation parameter (the proba-

bility or proportion of a structural zero) and fp(.) is the pmf of the parent count

model with some vector of parameters θ.

In the zero-inflated regression model, the proportion parameter, π, and some

parameter in the vector θ, can be related to some sets of covariates zi and xi,

respectively, in which these predictors could be the same, zi = xi, or different

predictors could affect the data, zi 6= xi.

To obtain the likelihood of the zero-inflated models, a binary indicator needs to
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be defined, as follows:

δzi =

1 if yi = 0

0 if yi > 0

(1.14)

Then, based on the regression structure, the likelihood can be described as:

L =
n∏

i=1

{
π(zi) + (1− π(zi))fp(0|xi)

}δzi{(1− π(zi))fp(yi|xi)
}1−δzi (1.15)

Although the proportion π can take any link function that transforms π from

the probability scale to the interval [−∞,+∞], this study assumes the logit link

function for π as it is the most common link for similar models. Hence, π can be

related to a set of covariates, as follows:

logit(π(zi)) = log

(
π(zi)

1− π(zi)

)
= zzz′iγγγ

Then, this proportion can be rewritten as:

πi ≡ π(zzzi) =
(
e−zzz′iγγγ + 1

)−1

(1.16)

For more details, see Cameron and Trivedi (2013) and Staub and Winkelmann

(2013).

1.3.5.1 Zero-inflated Poisson model

The ZIP regression model was introduced by Lambert (1992) for analyzing

manufacturing data and investigating the number of defects in equipment. Pois-

son models are mixed with zeros to allow for the excessive zeros in the data,

which is commonly encountered in real life. Let the parent distribution fp(.) in

Equation 1.13 be the Poisson with pmf in Equation 1.3; then, the ZIP can be
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derived as follows:

f(yi|xi, zi) =


πi +

(
1− πi

)
e−λi for yi = 0

(1− πi)
λyi
i e

−λi

yi!
for yi = 1, 2, 3,. . .

(1.17)

where λi is defined in Equation 1.4, πi is defined in Equation 1.16.

The xxx and zzz are the set of covariates with ααα and γγγ as regression coefficients,

respectively.

1.3.5.2 Zero-inflated negative binomial model

The ZINB regression model has more flexibility in its variance due to the

additional parameter, compared to ZIP. Let the parent distribution fp(.) in

Equation 1.13 be NB with pmf in Equation 1.5; then, the ZINB can be defined

as follows:

f(yi|xi, zi) =


πi +

(
1− πi

)( k

k + µi

)k
for yi = 0

(1− πi)
Γ(yi+k)
Γ(k)yi!

( k

k + µi

)k( µi

k + µi

)yi
for yi = 1, 2, 3, . . .

(1.18)

where, µi is defined in Equation 1.7, and πi is defined in Equation 1.16. The xxx

and zzz are the set of covariates with ααα and γγγ as regression coefficients, respectively.

A considerable amount of literature has been published on zero-inflated mod-

els in different fields. For example, Kong et al. (2015) used some modifications of

the ZINB to analyze the dental caries of children in Iowa. In public health, Lam

et al. (2006) applied ZIP for medical research.

1.3.6 Hurdle models

The hurdle model was proposed by Mullahy (1986) for count data modeling,

but the term was first used by Cragg (1971). These models were developed to

cope with response variables that have excessive zero outcomes, alternatively with

the zero-inflated models. The idea behind the hurdle model is to separate the

statistical process that governs zero and non-zero counts and divides the model
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into two parts: first, a binary process for generating the zero counts only, using

a binary model, for example, the logit, probit or complementary log-log models;

and second, a process that generates positive non-zero counts only, using a trun-

cated count model such as the truncated Poisson or NB.

Therefore, compared to the zero-inflated models, hurdle models and zero-inflated

models both are used in the case of zero inflation; however, they are different

in how they analyze the zeros. In other words, unlike zero-inflated models, hur-

dle models assume that all zero counts arise from the structural zeros or true

zero. The positive non-zero counts come from the sampling structure, that is,

the truncated Poisson or NB. Therefore, in the hurdle model, zero counts are not

allowed in the second step, whereas zero count could arise in either part in the

zero-inflated models.

Hence, in the study on smoking, for example, if the count number of the cigarettes

smoked during the last three months, is considered. Then, the zeros would be

observed only as a structural origin for the non-smoking individuals. Thus, it

would be better to choose the hurdle model for this analysis.

Suppose a count RV Y takes the values from zero to some positive number.

Then, assume the zero counts are generated by some binary process, π, and the

non-zero positive counts are observed with a probability based on a truncated

parent count model fptr(y) =
fp(y)

1− fp(0)
. The hurdle regression model can then

be described as:

f(yi) =


πi for y=0

(1− πi)
fp(yi)

1− fp(0|xi)
for y=1, 2, 3, . . .

(1.19)

The truncated part is multiplied by 1 − π to ensure that the summation of the

probabilities is one. Then, for example, in the smoking study mentioned earlier,

the π(0) includes both zeros, those that come from non-smokers and those that

come from smokers who chose not to smoke during that period. Conversely, fp(0)

is for smokers who choose not to smoke in the last two hours. Subsequently, the

truncated function
fp(y)

1− fp(0)
corresponds only to smokers who smoked y (at least
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one) cigarettes in the last two hours.

The parent count model fp(.) in Equation 1.19, depending on the parameter(s) θ,

is the pmf of the positive non-zero response count variable Y . This function can

be Poisson or NB, with some parameters in θ depending on some covariates XXX

with regression parameter α. In addition, the logit transformation is considered

in this study for π to model the binary outcome Y = 0 versus Y > 0 conditioning

in ZZZ, as in Equation 1.16.

Thus, the regression parameter can be different for θ than π, and the covariates

XXX and ZZZ might be the same or different.

Then, using the indicater variable δzi in Equation 1.14, the likelihood function

can be written as follows:

L =
n∏

i=1

[
π(zi)

]δzi[(1− π(zi))
fp(yi|xi)

1− fp(0|xi)

]1−δzi

which can be rewritten as:

L = L1 × L2 (1.20)

where

L1 =
n∏

i=1

[
π(zi)

]δzi[(1− π(zi))
]1−δzi

and

L2 =
n∏

i=1

[ fp(yi|xi)

1− fp(0|xi)

]1−δzi

Thus, theses two likelihoods could be maximized separately with regard to π and

θ, respectively.

1.3.6.1 Hurdle Poisson model

The hurdle Poisson (HP) can be defined using Equation 1.19 as follow:

f(yi|xi, zi) =


πi for yi = 0

(1− πi)
λyi

(eλi − 1)yi!
for yi = 1, 2, 3, . . .
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where λi and πi are defined in Equation 1.4 and Equation 1.16, respectively.

1.3.6.2 Hurdle negative binomial model

According to Equation 1.19, the hurdle negative binomial (HNB) model can

be written as:

f(yi|xi, zi) =


πi for yi = 0

(1− πi)
Γ(yi + k)

Γ(k)Γ(yi + 1)

( µi

k + µi

)yi 1(k + µi

k

)k
− 1

for yi = 1, 2, 3, . . .

where µi and πi are defined in Equation 1.7 and Equation 1.16, respectively.

A number of researchers have applied hurdle models. For example, Silva and

Covas (2000) applied a modification of hurdle models to a fertility study. Addi-

tionally, Bilgic and Florkowski (2007) used an HNB model to analyze the demand

for a bass fishing trip in the southeastern United States.

For more details about the zero-inflated and hurdle models, one can refer to

Hilbe (2014), Cameron and Trivedi (2013), Zorn (1996) and Hu et al. (2011).

Generally, all the above models can be applied in many standard statistical pack-

ages, such as, R, Zeileis et al. (2007). For more details about the regression

analysis of count data, see Cameron and Trivedi (2013).
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The type of data considered in the following sections is a combination of the

previous two types, that is, censored count responses with excessive zero counts.

The motivation behind introducing these models is based on two objectives. The

first objective is to handle data that show excessive zero counts together with

censoring, as mentioned previously. Second, censoring some values from the right

might overcome the over-dispersion in the count data caused by including too

many zeros (Saffari et al. (2012)). The models for censored count responses with

excessive zero counts can be described as follows:

1.3.7 Censored zero-inflated models

From Equation 1.10 and Equation 1.13, the likelihood of the zero-inflated

models with right censored data can be defined as:

L =
n∏

i=1

{[
π(zi) + (1− π(zi))fp(0|xi)

]δzi[(1− π(zi))fp(yi|xi)
]1−δzi

}1−δci

{
1−

[
π(zi) + (1− π(zi))fp(0|xi) + (1− π(zi))

C−1∑
j=1

fp(y = j|xi)
]}δci

which can be rewritten, using the cdf of the parent count model, Fp(.) as:

L =
n∏

i=1

{
[π(zi) + (1− π(zi))fp(0|xi)]

δzi [(1− π(zi))fp(yi|xi)]
1−δzi

}1−δci

{1− [π(zi) + (1− π(zi))Fp(C − 1|xi)]}δci
(1.21)

Then, the log-likelihood would be as follows:

` =
n∑

i=1

(1− δci)δzi log [π(zi) + (1− π(zi))fp(0|xi)] +

n∑
i=1

(1− δci)(1− δzi) log
(
1− π(zi)

)
+

n∑
i=1

(1− δci)(1− δzi) log (fp(y|xi))+

n∑
i=1

δci log {1− [π(zi) + (1− π(zi))Fp(C − 1)]}

(1.22)
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1.3.7.1 Censored zero-inflated Poisson

As discussed in Saffari and Adnan (2011) and Saffari et al. (2013), the like-

lihood of the censored zero-inflated Poisson (CZIP) model can be defined, using

Equation 1.3 and Equation 1.21, as:

L =
n∏

i=1

{[
πi + (1− πi)e

−λi
]δzi [(1− πi)

(
λyi
i e

−λi

yi!

)]1−δzi
}1−δci

×

{
1−

[
πi + (1− πi)e

−λi

C−1∑
j=0

λj
i

j!

]}δci
(1.23)

where C is a censored point and λi and πi, are defined in Equation 1.4 and

Equation 1.16, respectively.

1.3.7.2 Censored zero-inflated negative binomial

The censored zero-inflated negative binomial (CZINB) has been considered in

Saffari and Adnan (2011), then the likelihood of this model can be defined, using

Equation 1.5 and Equation 1.21, as:

L =
n∏

i=1


[
πi + (1− πi)

(
k

k + µ

)k
]δzi [

(1− πi)
Γ(yi + k)

Γ(k)yi!

(
k

k + µi

)k (
µi

k + µi

)yi
]1−δzi


1−δci

×

{
1−

[
πi + (1− πi)

1

Γ(k)

(
k

k + µi

)k C−1∑
j=0

Γ(j + k)

j!

(
µi

k + µi

)j
]}δci

(1.24)

where C is a censored point and µi and πi, are defined in Equation 1.7 and

Equation 1.16, respectively.
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1.3.8 Censored hurdle models

From Equation 1.10 and Equation 1.20, the likelihood of the hurdle models

with right censoring can be defined as:

L =
n∏

i=1

{
[π(zi)]

δzi [1− π(zi)]
1−δzi

[
fp(yi|xi)

1− fp(0|xi)

]1−δzi
}1−δci

{
1−

[
π(zi) +

(
1− π(zi)

)
1− fp(0|xi)

C−1∑
j=1

fp(y = j|xi)

]}δci

which can be rewritten, using the cdf of the parent count model, Fp(.), as:

L =
n∏

i=1

{
[π(zi)]

δzi [1− π(zi)]
1−δzi

[
fp(yi|xi)

1− fp(0|xi)

]1−δzi
}1−δci

{
1−

[
π(zi) +

(1− π(zi))

1− fp(0|xi)
(Fp(C − 1|xi)− fp(0|xi))

]}δci

(1.25)

Then, the log-likelihood would be as follows:

` =
n∑

i=1

(1− δci)δzi log (π(zi)) +
n∑

i=1

(1− δci)(1− δzi) log (1− π(zi))+

n∑
i=1

(1− δci)(1− δzi) log (fp(yi|xi))−
n∑

i=1

(1− δci)(1− δzi) log (1− fp(0|xi))+

n∑
i=1

δci log

{
1−

[
π(zi) +

(1− π(zi))

1− fp(0|xi)
(Fp(C − 1|xi)− fp(0|xi))

]}
(1.26)

1.3.8.1 Censored hurdle Poisson

The censored hurdle Poisson (CHP) has been studied previously in SAFFAR

et al. (2012).The likelihood of this model can be defined, using Equation 1.3 and

Equation 1.25, as:
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L =
n∏

i=1

{
[πi]

δzi [1− πi]
1−δzi

[
λyi
i e

−λi

yi! (1− e−λi)

]1−δzi
}1−δci

{
1−

[
πi + (1− πi)

e−λi

1− e−λi

(
C−1∑
j=0

λj

j!
− 1

)]}δci
(1.27)

where C is a censored point and λi and πi, are defined in Equation 1.4 and

Equation 1.16, respectively.

1.3.8.2 Censored hurdle negative binomial

According to Saffari et al. (2012), the likelihood of the censored hurdle neg-

ative binomial (CHNB) model can be defined, using Equation 1.5 and Equa-

tion 1.25, as:

L =
n∏

i=1

[πi]
δzi [1− πi]

1−δzi

 Γ(yi + k)

Γ(k)yi!

[
1−

(
k

k + µi

)k
] ( k

k + µi

)k (
µi

k + µi

)yi


1−δzi



1−δci

1−

πi + (1− π)

(
k

k + µi

)k

1−
(

k

k + µi

)k

(
1

Γ(k)

C−1∑
j=0

Γ(j + k)

j!

(
µi

k + µi

)j

− 1

)


δci

(1.28)

where C is a censored point and µi and πi, are defined in Equation 1.7 and

Equation 1.16, respectively.

1.4 Programming language and software for com-

putations

All the analyses and computations in this thesis have been carried out using

the R programming language (R Core Team (2014)); some of the applied packages
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and functions are as follows:

• “optim” function with the derivative-free optimization routine, Nelder-

Mead, to optimize the log-likelihood function and obtain the MLEs nu-

merically.

• glm function to fit the Poisson model.

• “glm.nb” function in the MASS package to fit the NB model.

• DiscreteWeibull package (Barbiero (2015)) to sample from and fit by DW

distribution.

• pscl package for the zero-inflated and hurdle models.

• Ecdat (Croissant (2015)) and COUNT (Hilbe (2014)), for data on which to

apply the method

1.5 Motivations and contributions

Due to the essential role of the continuous Weibull distribution in modeling

lifetime data, the DW distribution is introduced analogously by Nakagawa and

Osaki (1975) for the positive discrete RVs. Although there is some previous stud-

ies have examined this distribution for count data with over-dispersion case, no

research has been found that investigated the DW for an under-dispersion situ-

ation. Moreover, so far this distribution has only been applied to the univariate

count data analysis and no previous research considered this model to a response

count data in a regression structure.

Hence, the overall aim of this thesis is to introduce the DW regression model as

a unified model for capturing different levels of dispersion in count data. In ad-

dition, some modifications for this DW model have been discussed in this study.

In other words, the CDW model is suggested for the censored count data, where

the type of dispersion is not easily identified and a model that has the ability to

model different type of dispersion is highly recommended to apply. Furthermore,

ZIDW and HDW are proposed for the zero-inflation count data, in which the
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existence of excessive zeros may increase the over-dispersion of the data and hide

the under-dispersion within the sub-groups of this data. Thus, it could be better

to consider a model that can handle a variety dispersion levels for this type of

count data.

Even though some research has been carried out on finding some appropriate

models that can cope with different type of dispersion, most of them are based

on some extensions from the Poisson model and no simple model exists for these

different type of count data. For instance, some modifications from the sim-

ple Poisson model included; quasi-Ppoisson, generalized Poisson, double Poisson,

COM-Poisson and hyper-Poisson are all has the ability to handle the under-

dispersion case for count data. These models have some limitations such as, the

lack of a likelihood, complexity and the intensive computations. However, this

thesis considers a simple and basic DW regression model for the analysis of count

data.

1.6 Thesis outline

This thesis is divided into chapters as follows: chapter 2 discusses the DW dis-

tribution, its properties and its ability to handle different type of data dispersions.

Then, chapter 3 introduces the DW regression model, one of the parameters of

which is considered to be a function of explanatory variables. After that, the DW

regression model is modified for a different type of count data, that is, censored, in

chapter 4. Additionally, two different types of count data are considered in chap-

ter 5: those with excessive zero counts and those with excessive zero counts and

right censoring. Two modifications of the DW model are developed to cope with

the excessive zero counts in the dataset, namely, the ZIDW and the HDW. Con-

sequently, CZIDW and CHDW are considered for the excessive zero counts with

right censoring. chapter 6 re-parameterizes the DW regression model through

its median to obtain a likelihood, where the direct effect of the covariates on a

location measurement is of interest.

For each chapter, from chapter 2 to chapter 6, the models are fitted using max-

imum likelihood estimation. Then, the performance of these MLEs is evaluated
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via Monte Carlo simulation studies, and the models are applied to real data sets

and compared to their corresponding related Poisson and NB regression models.

Finally, chapter 7 concludes this thesis by discussing and summarizing the main

results of the research. Additionally, some recommendations for possible future

research directions are suggested.



Chapter 2

Discrete Weibull distribution

2.1 Introduction

This chapter discusses the DW distribution, presented by Nakagawa and Os-

aki (1975), and some of its properties. The motivation behind considering the

DW distribution, stems from the vital role played by the continuous Weibull dis-

tribution in the survival analysis and failure time studies. The estimation and

inference for parameters of a DW distribution have been investigated in a small

number of studies. Khan et al. (1989) proposed the method of proportion whereas

Kulasekera (1994) suggested MLEs of the DW parameters based on type I cen-

sored samples. The count data application examples of DW include Englehardt

and Li (2011) and Englehardt et al. (2012), who showed that the counts of living

microbes (pathogen) in water are highly skewed and can be efficiently modeled

using a DW distribution.

2.2 Discrete Weibull distribution

The DW introduced with relation to the continuous Weibull distribution for

lifetime data, in three different types in the literature namely; type I, typeII and

type III. Type I and type II have been obtained by starting from the continuous

Weibull distribution; in which type I retains the form of the continuous cdf while

type II retains the form of the continuous hazard rate. However, type II defined

31
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only for a limited range for the RV, which is not very applicable since it is not

really known when the end of a lifetime RV would be. Type III dose not start

from the continuous Weibull distribution but tries to generalize the notions of

hazard rate and mean residual life to the discrete case. For more details see

Bracquemond and Gaudoin (2003) and Rinne (2008).

The type II DW (c, β) introduced by Stein and Dattero (1984) with a hazard

rate:

h(y) =

cyβ−1 for y = 1, 2, 3, . . . ,m

0 otherwise

where β > 0 and 0 < c ≤ 1 and

m =

int{c−[1/(β−1)]} if β > 1

+∞ if β ≤ 1

Furthermore, type III DW was proposed by Padgett and Spurrier (1985) with

pmf, as follows:

f(y) = e−c
∑y

i=1 iβ(1− e−c(y+1)β) , y = 0, 1, 2, . . .

where, c > 0 and −∞ < β < +∞.

This study focuses on the most common type in the literature, which is the

first type of DW distribution, that will simply be denoted as DW distribution.

This type has been defined by Nakagawa and Osaki (1975), as follows:

If Y follows a type I DW distribution, then the cdf of Y is giving by:

F (y) =

1− q(y+1)β for y = 0, 1, 2, 3, . . .

0 otherwise

(2.1)
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and its pmf by

f(y) =

qy
β − q(y+1)β for y = 0, 1, 2, 3, . . .

0 otherwise

(2.2)

with the parameters 0 < q < 1 and β > 0.

The parameter β is the shape parameter, and it affects the pmf, as shown in

Figure 2.1.

Figure 2.1: The effect of β on the pmf of the DW.
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Furthermore, β can be considered as controlling the range of values of the DW

RV. In other words, this parameter controls the skewness of the DW distribution.

To investigate, Figure 2.2 plots the frequency distributions for some samples of

DW with a fixed parameter q = 0.6 and some different values of β. From this

plot, it can be seen that the DW distribution is more skewed: β −→ 0. The range

of the DW counts would be smaller: β −→ ∞.
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Figure 2.2: The effect of β on the frequency distribution for DW samples with q = 0.6.

In addition, q is the probability of Y being greater than zero. To illustrate,

from Equation 2.2,

p(0) = 1− q

Additionally, the parameter q can be considered as another shape parameter for

the DW distribution, and it affects the shape of the pmf, as shown in Figure 2.3.

Figure 2.3: The effect of q on the pmf of the DW.
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In comparison to the continuous Weibull distribution whose cdf can be ob-

tained as:

F (y) = 1− e−λyβ , y ≥ 0

the parameter β from the DW is analogous to the shape parameter β in the

continuous Weibull distribution. On the other hand, q from the DW is equivalent

to e−λ, where λ is the scale parameter in the continuous Weibull distribution.

2.3 Properties of the discrete Weibull distribu-

tion

2.3.1 Mean and variance

The mean of the DW in Equation 2.2 can be derived as follows:

E(Y ) = µ =
∞∑
y=0

yf(y)

=
∞∑
y=1

qy
β

(2.3)

Additionally, the variance, can be calculated as follows:

σ2 = E(Y 2)− (E(Y ))2

Then,

E(Y 2) =
∞∑
y=0

y2f(y)

=
∞∑
y=1

(2y − 1) qy
β

= 2
∞∑
y=1

yqy
β − E(Y )
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Therefore, the variance of the DW can be derived as:

σ2 = 2
∞∑
y=1

yqy
β − µ− µ2 (2.4)

These can be calculated numerically by the approximated moments of the DW

using the truncated support in Barbiero (2015).

2.3.2 Quantile function

The τ−quantile function for any RV is the value Q(τ) that satisfies:

P (Y ≤ Q(τ)) ≥ τ and P (Y ≥ Q(τ)) ≤ 1− τ

Or, specifically, the quantile can be

Q(τ) = F−1(τ) = inf {y : F (y) ≥ τ} (2.5)

Then, from Equation 2.1, the quantile Q(τ) for a DW RV can be obtained as

follows:

1− q(Q(τ)+1)β ≥ τ

which is equivalent to

(Q(τ) + 1)β log(q) ≤ log(1− τ)

divided both sides by log(q), which is a negative value,

(Q(τ) + 1)β ≥ log(1− τ)

log(q)

Then,

Q(τ) ≥
(
log(1− τ)

log(q)

) 1

β − 1

Thus, the DW distribution has a nice property of being its τ th (0 < τ < 1)

quantile has a closed form. That is, the smallest value of y for which F (y) ≥ τ
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has the following expression:

Q(τ) =
⌈( log(1− τ)

log(q)

) 1
β

− 1
⌉

(2.6)

These definitions are derived from defining the quantiles or distribution func-

tions for the continuous RVs, which have been previously discussed extensively

in the literature. However, limited work exists in the literature in the area of

quantile functions for discrete RVs. This might be due to the non-uniqueness of

a specific quantile of a discrete distribution, which can be noted from the above

definitions. Consequently, a few studies on this topic limit the quantiles to only

integer values. Nevertheless, similar to the mean of a discrete RV, quantiles of

discrete distributions could be non-integer values, which will not only satisfy the

general definition of quantile function but also make the research more convenient.

Hence, the quantile for a discrete RV can be defined as follows:

Q(τ) = F−1(τ) = {y : F (y) = τ} (2.7)

Then, the quantile of DW would not be limited to integers, and a closed form for

this quantile could take the following form:

Q(τ) =

(
log(1− τ)

log(q)

) 1
β

− 1 (2.8)

However, since Y ≥ 0, this definition is valid only for τ ≥ 1− q.

2.4 Special cases of a discrete Weibull distribu-

tion

• It can be seen from Equation 2.2 that:

f(0) = 1− q
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Thus, when q is small, an excessive zero case occurs.

• The discrete Rayleigh distribution in Roy (2004) is a special case of a DW

with β = 2 and q = θ.

• The geometric distribution is a special case of a DW, with β = 1 and

q = 1− p. It can be noted that for the geometric distribution, the variance

is always greater than its mean. Therefore, a DW with β = 1 is a case of

over-dispersion relative to Poisson, regardless of the value of q.

• When β = 1 and q = e−λ, the distribution is the discrete exponential

distribution introduced by Sato et al. (1999).

• As β → ∞, the DW approaches a Bernoulli distribution with probability q.

Some of the above special cases can be seen clearly in Figure 2.2.

In the next section, we discuss a property of DW that is particularly advan-

tageous as a model for count data.

2.5 Discrete Weibull accounts for different types

of dispersion

The Poisson and NB models are capable for data that are equi- and over-

dispersed relative to the Poisson, as mentioned previously. In contrast, an ex-

tensive study has been done in this section to show how a DW distribution can

handle data that are both over- and under- dispersed relative to Poisson, in dif-

ferent ways. The first method considers the dispersion of the DW model itself,

whereas the reminder are for investigating the data generating from DW, as fol-

lows:

2.5.1 Using the variance ratio

Figure 2.4 shows the VR values in Equation 1.1 for data simulated by DW

with a sequence of values for β and a small value of q = 0.3 on the left side and
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a large value of q = 0.7 on the right, and fitted by Poisson and NB distributions.

The VRs from Poisson fitting show values greater than one and less than one,

indicating cases of over- and under-dispersed data, respectively, relative to the

Poisson. That is, the Poisson is over- and under-dispersed model to fit this data.

While NB can fit well to data that are over-dispersed relative to the Poisson (i.e.

VR close to 1), this does not happen for under-dispersed data where both the

Poisson and NB are inappropriate and they consider as under-dispersed model

fitting this case of data. Thus, it can be seen how DW, a single distribution with

as many parameters as NB, can capture both cases of under- and over- dispersion

relative to the Poisson.
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Figure 2.4: Ratio of the observed and theoretical variance of data simulated by DW
distribution and fitted by the Poisson, NB and DW distributions.

2.5.2 Using the index of dispersion numerically

Figure 2.5 considers more closely the case of dispersion relative to the Poisson

and shows how DW can produce both cases of under- and over- dispersed data

relative to the Poisson. In other words, a simulation study is conducted for

samples from DW with a sequence of values for β and q. For each sample, the

Dip from Equation 1.2, is calculated. This represents the ratio of the observed

variance from the data to the observed mean. Figure 2.5 examines the Dips with

values less than, equal to or greater than one, implying that DW samples can
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include under-, equi- and over-dispersed data relative to the Poisson distribution.

In other words, the white area corresponds to data under-dispersed relative to

the Poisson, whereas the grey shaded area corresponds to over-dispersion.
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Figure 2.5: Level and contour plots for the ratios of the observed and theoretical variance
of data simulated by DW distribution and fitted by the Poisson.

2.5.3 Using the index of dispersion theoretically

The mean and variance of the DW can be computed using the moments

approximation by Barbiero (2015). Thus, Figure 2.6 shows the ratio between

these means and variances, Dip, for a range of values for parameters q and β.

The under- and over-dispersion can be captured, with the Dip < 1 and Dip > 1,

respectively.

Figure 2.6 is very similar to Figure 2.5, except the latter is based on a sample

descriptive while the former is based on the model quantity.
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Figure 2.6: Level and contour plots for the Dips for data simulated by DW distribution
based on its numerical moments.

2.5.4 Using the index of dispersion for an approximation

of the mean and variance

This depends on approximating the means and variances for the DW distri-

bution and was found in Englehardt et al. (2009), Englehardt and Li (2011) and

Englehardt et al. (2012). They reported that the approximation for the mean

and variance can be obtained by the integral for large y > L, as follows:

∞∑
y=1

qy
β '

L∑
y=1

qy
β

+

∫ ∞

L+1

qy
β

dy (2.9)

Here we use L = 1000, as it has shown a convergent value for the mean

in previous studies, see Englehardt et al. (2009), Englehardt and Li (2011) and

Englehardt et al. (2012) for details regarding the accuracy for this approximation.

Additionally, we can approximate the following:

∞∑
y=1

yqy
β '

L∑
y=1

yqy
β

+

∫ ∞

L+1

yqy
β

dy (2.10)
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Then, the integrals can be found as follows:∫ ∞

L+1

qy
β

dy =

∫ ∞

L+1

e−yβ
(
−log(q)

)
dy

using the transformation, z = yβ
(
− log(q)

)
for y = L+ 1, z =

(
L+ 1

)β(− log(q)
)
,

for y = ∞, z = ∞ ,∫ ∞

L+1

qy
β

dy =
1

β
(
− log(q)

) 1
β

∫ ∞(
L+1
)β(

−log(q)
) z 1

β
−1e−zdz

Then, the integral can be solved using the incomplete gamma, where:

Γ(s, x) =

∫ ∞

x

ts−1e−tdt

Therefore: ∫ ∞

L+1

qy
β

dy =
Γ
(

1
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 1
β

Similarly: ∫ ∞

L+1

yqy
β

dy =
1

β
(
− log(q)

) 2
β

∫ ∞(
L+1
)β(

−log(q)
) z 2

β
−1e−zdz

=
Γ
(

2
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 2
β

Then, from Equation 2.9:

µ = E(y) '
L∑

y=1

qy
β

+
Γ
(

1
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 1
β

=
β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 1
β
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From Equation 2.10:

2
∞∑
y=1

yqy
β ' 2

[ L∑
y=1

yqy
β

+
Γ
(

2
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 2
β

]

=
2β
(
− log(q)

) 2
β
∑L

y=1 yq
yβ + 2Γ

(
2
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 2
β

Then, to study the dispersion relatively to the Poisson, the Dip, following Equa-

tion 1.2, for the DW can be found as follows:

σ2

µ
= 2

∞∑
y=1

yqy
β 1

µ
− 1− µ

=
2β
(
− log(q)

) 2
β
∑L

y=1 yq
yβ + 2Γ

(
2
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 2
β

β
(
− log(q)

) 1
β

β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
)) − 1

−
β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 1
β

=
1(

− log(q)
) 1

β

[
2β
(
− log(q)

) 2
β
∑L

y=1 yq
yβ + 2Γ

(
2
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
))

−
β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
))

β

]
− 1

Let

A =
1(

− log(q)
) 1

β

[
2β
(
− log(q)

) 2
β
∑L

y=1 yq
yβ + 2Γ

(
2
β
,
(
L+ 1

)β(− log(q)
))

β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
))

−
β
(
− log(q)

) 1
β
∑L

y=1 q
yβ + Γ

(
1
β
,
(
L+ 1

)β(− log(q)
))

β

]

Hence,
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• Data might be over-dispersed relative to the Poisson for A > 2,

• Data might be under-dispersed relative to the Poisson for A < 2,

• Data might be equi-dispersed relative to the Poisson for A = 2,

To demonstrate, A has been calculated based on a sequence of values for β

and q in order to investigate the Dip through this A. Figure 2.7 examines these

values of A, which take values of less than, equal to or greater than two, implying

that DW can show under-, equi- and over-dispersed data relative to the Poisson

distribution.
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Figure 2.7: Level and contour plots for the Dips for data simulated by DW distribution
based on its approximated mean and variance.

2.5.5 Using a dispersion parameter

There are some models, such as the COM-Poisson and quasi-Poisson which

have a dispersion parameter that can define the dispersion for the data, depending

on the Dip. In this simulation study, the dispersion parameter of the quasi-

Poisson has been considered. This approach is based on the quasi-likelihood,

where the variance is adjusted to be smaller or larger than the mean as, σ2 = φµ,
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where φ is a scale or dispersion parameter and can be defined as:

φ


> 1 for over-dispersion

= 1 for equi-dispersion

< 1 for under-dispersion

To implement this approach in R Core Team (2014), glm can be used with specify-

ing family=quasipoisson. Then, using simulated samples from DW with different

values for β and q, Figure 2.8 shows the level and contour plot for the quasi-

Poisson dispersion parameter with values less than or greater than one. That

is, the white area corresponds to under-dispersed data whereas the grey shaded

area corresponds to over-dispersion. Thus, these DW data can display under-

and over-dispersion.

Figure 2.8: Level and contour plots for the dispersion parameter φ of data simulated by
DW distribution and fitted by the quasi-Poisson.
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In particular, these numerical analyses have approximately shown that:

• 0 < β ≤ 1 is a case of over-dispersion, regardless of the value of q.

• β ≥ 2 is a case of under-dispersion, regardless of the value of q. In fact, DW

approaches the Bernoulli distribution with mean p and variance p(1−p) for

β → ∞.
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• 1 < β < 2 leads to both cases of over and under-dispersion depending on

the value of q.

2.6 Parameter estimation

Given y1, y2, . . . , yn, from a DW distribution in Equation 2.2, the log-likelihood

can be written as:

` =
n∑

i=1

log
(
qy

β
i − q(yi+1)β

)
(2.11)

from which the MLEs of q and β can be easily obtained by directly maximiz-

ing this log-likelihood using any non-linear optimization tool. Additionally, this

can be obtained using the estdweibull function with (method = “ML”) in the

DiscreteWeibull package (Barbiero (2015)).

2.7 Model selection

Based on the maximum likelihood approach, numerous studies have suggested

the use of information measures, such as the AIC, as good criteria for measuring a

models fit and selecting the best fitting model for nested and non-nested models,

for example, Posada and Buckley (2004), Dayton (2003) and Kuha (2004) among

others.

These criteria can be calculated as follows:

AIC = −2`+ 2P (2.12)

where, ` is the log-likelihood and P is the number of parameters to be estimated

in the model. This computation measures how faraway the fitted model is from

the observed data. Then, the better fit is the one with the smaller AIC.

There is another measurements can be used for model selection based on the

maximum likelihood approach, such as, Bayesian information criterion (BIC). In

this study this BIC has been calculated and its results show similar conclusions

to those results from the AIC. However, several studies have used the AIC to
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compare the model fit for count data, for instance, Chipeta et al. (2014), Aa and

Naing (2012), Loeys et al. (2012), Sellers and Shmueli (2010) and Sáez-Castillo

and Conde-Sánchez (2013), among others. Then, the results from BIC have not

been included in this study and here the results for the AIC only have been

considered.

2.8 Numerical examples

In order to investigate the flexibility and adequacy of the DW distribution,

it is applied to fit some real count data sets. In addition, theses models are

compared to some related models, particularly the Poisson and NB. Thus, after

considering these models to fit the data, the AIC is computed and the model with

the smallest values of this indicator can be chosen as the best fit for this dataset.

Additionally, the expected frequency is compared with the observed frequency

via the histogram, as it is the best visual descriptive for count data.

2.8.1 Under-dispersed data relative to the Poisson

In linguistics studies, the number of words in some texts is commonly consid-

ered as being under-dispersed data relative to the Poisson. The following example

is for two data sets count the number of articles (“the”, “a” and “an”) in groups

of words in literary essays (Bailey (1990)) and available in data number “486” in

Hand et al. (1993), also in http://www.statsci.org/data/oz/wdcount.html.

The first dataset is for five-word samples with Dip = 0.5926, indicating to under-

dispersion case, while the second under-dispersed dataset is for ten-word samples

with Dip = 0.6229.

Table 2.1: AIC from the Poisson, NB and DW distributions fitted to the word count
data sets.

Data Poisson NB DW
Articles count in 5-word samples 192.6219 194.6232 179.7142
Articles count in 10-word samples 248.5483 250.5496 239.6654

http://www.statsci.org/data/oz/wdcount.html
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Figure 2.9: Observed and expected frequencies for the word count data sets fitted by the
Poisson, NB and DW distributions.

2.8.2 Over-dispersed data relative to the Poisson

The number of visits count variable can be found in many fields. For example,

in tourism studies, researchers seek to analyze the number of visitors to a country

in a given year. In addition, in health studies, the number of patients who visit

a hospital is studied as a health measurement (e.g. health demand).

Data representing the number of visits have been considered here. This data, from

Hosmer Jr and Lemeshow (2004) and available under the “COUNT” package in

R, includes the number of visits to a doctor by pregnant women in the first three

months of their pregnancies, ranging from 0 to 6, with Dip = 1.4138, indicating

to an over-dispersion case. This variable is modeled by the MLE for the Poisson,

NB and DW.
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Figure 2.10: Observed and expected frequencies for the doctor visits by pregnant women
dataset fitted by the Poisson, NB and DW distribution.

Table 2.2: AIC from the Poisson, NB and DW distributions fitted to the doctor visits
by pregnant women dataset.

Poisson NB DW
476.5899 466.8534 466.8447

2.8.3 Excessive zero counts

Besides the flexibility of the DW to handle under- and over-dispersed data

relative to the Poisson, it can also be considered as a good model for skewed data

with an excessive number of observations with zero counts. This is because β

controls the range of Y and q can be defined as the probability of 0; then, for

β −→ 0 and q −→ 0, skewed data and too many zeros might be obtained from

this DW distribution, as mentioned previously in section 2.4 and Figure 2.2. The

data with too many zeros can be described as being more dispersed than the Poi-

son and cannot be fitted properly by it. Hence, a modified from Poisson model

has been developed to cope with the problem of over-dispersion due to the many

zeros, that is, ZIP. In this adjusted model, the probability of zeros is considered

separately of the other positive counts. However, the DW model, alternatively

with NB, demonstrates a better fit for such data than this developed model, which
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is more complicated, harder to interpret and contains more parameters that need

to be estimated than in the conventional NB and DW.

If there are data with too many zero counts generated by the same system, then

a single distribution model should be applied. Then, it might be sensible to con-

sider one part model, NB or DW for these cases, when there is no need to apply

the modified models.

Generally count data with small means can be fitted well using the basic Poisson

model, and for count data with more over-dispersion, that is, small means but

large variances, then the DW or NB can provide a good fit. Therefore, these

simple and one-part models with fewer parameters should be considered before

attempting to use the more complex zero-inflated models (Englehardt and Li

(2011), Allison (2012) and Xie et al. (2013)).

For example, Englehardt and Li (2011) and Englehardt et al. (2012) suggested

the DW for excessive zeros and highly skewed data in pathogen counts of treated

water over time. Additionally, the following example demonstrates the ability

of DW to handle this type of data. This dataset includes the number of doctor

visits for 5190 patients from the Australian Health Survey in 1977− 1988, as an-

alyzed by Cameron and Trivedi (1986) and cited in Cameron and Trivedi (2013).

Additionally, the Dip of this RV is 2.1112 indicating to an over-dispersion case.

Table 2.3: AIC from the Poisson, NB and DW distributions fitted to the doctor visits
from the Australian health dataset.

Poisson NB DW ZIP
7968.389 7175.983 7164.983 7432.471
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Figure 2.11: Observed and expected frequencies for the doctor visits from the Australian
health dataset fitted by the Poisson, NB, DW and ZIP distribution.

As can be seen from Table 2.1, Table 2.2 and Table 2.3, the lowest AIC is

for the DW and the expected frequencies from DW are close to the observed

frequencies. Therefore, DW can be considered as the best model to fit these data

among the Poisson and NB.

2.9 Concluding remarks

This chapter discussed some of the properties of the DW, focusing on the

dispersion characteristics. Using a variety of methods, the capability of this

distribution to handle different types of data dispersion was investigated. Thus,

in contrast to the Poisson and NB models that can respectively capture equi-

and over-dispersed data relative to Poisson, DW has the ability to handle over-

and under-dispersed data relative to the Poisson. Additionally, it works well

alternatively with NB for modeling excessive zero counts, instead of using the ZIP,

which is more complicated. To illustrate, some real data examples representing

different type of dispersion have been applied, and the results suggested that the

DW can be considered as the best model to fit these data among the Poisson and

NB.



Chapter 3

Discrete Weibull Regression

Model

3.1 Introduction

On the one hand, estimations and inferences for the unknown parameters

for the DW distribution have been discussed in previous studies, as mentioned

earlier. On the other hand, researchers often seek to investigate the effect of other

variables on the frequency of events and explore these counts as a function of

covariates, that is, to consider a regression analysis for count data. The response

variable in this analysis is considered to be discrete with a pmf for non-negative

integer RVs. Hence, this study suggests DW for this kind of analysis.

3.2 Discrete Weibull regression model

As discussed in chapter 2, the parameter q affects the shape of the pmf of

the DW, as shown in Figure 2.3. This study introduces a count regression model

for the discrete response RV, Y based on the DW distribution, by relating this

parameter q to some covariates. Some different points with regard to this relation,

which develops the regression for Yi|Xi, for i = 1, 2, . . . , n, can be considered:

52



CHAPTER 3. DISCRETE WEIBULL REGRESSION MODEL 53

3.2.1 Introducing the regression in relation to the contin-

uous Weibull model

It has been stated that q is equivalent to e−λ, where λ is the scale parameter

in the continuous Weibull distribution. Then, to develop a regression model for

the continuous Weibull regression, it is often assumed that this parameter λ is

related to predictors (Lee and Wang (2003) and Da Silva et al. (2008)) as follows:

log(λi) = xxx′
iααα

Analogously with this continuous Weibull regression, the covariates can be in-

corporated for the DW regression model. Assume that the response variable Y ,

has a DW conditional distribution f(yi, q(xxxi), β), where q(xxxi) is related to the

explanatory variables XXX via the link function:

log (− log(qi)) = xxx′
iααα , xxx′

iααα = α0 + xi1α1 + . . .+ xiPαP (3.1)

This transforms q from the probability scale (i.e. the interval [0, 1]) to the interval

[−∞,+∞] and ensures that the parameter q remains in [0, 1]. Indeed, from

Equation 3.1, qi can be expressed as:

qi ≡ q(xxxi) = e−exxx
′
iααα (3.2)

from which the pmf of yi conditional on xixixi and β can be obtained as follows:

f(yi|xi) =
(
e−exxx

′
iααα
)yβi

−
(
e−exxx

′
iααα
)(yi+1)β

(3.3)

3.2.2 Introducing the regression in relation to the geo-

metric model

The geometric regression can be defined as:

f(yi|xi) = pi (1− pi)
yi (3.4)
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with the expected value:

µi =
1− pi
pi

Then, analogously with the GLMs, the regression structure for the geometric

regression can be built as:
1− pi
pi

= exxx
′
iααα

in which the parameter pi can be defined as:

pi =
(
1 + exxx

′
iααα
)−1

(3.5)

Note that the geometric model is a special case from the NB model, with k = 1

in Equation 1.5; see, for example, Zeileis et al. (2008).

As a result of being the geometric model is a special case of the DW with q = 1−p,

as mentioned previously then, the DW regression might be introduced analogously

with the geometric regression in Equation 3.4, by assuming q is a function of

covariates with the logit link function:

qi =
(
1 + e−xxx′

iααα
)−1

(3.6)

Thus, the conditional pmf of the response variable Yi given Xi can be derived as:

f(yi|xi) =
(
1 + e−xxx′

iααα
)−yβi −

(
1 + e−xxx′

iααα
)−(yi+1)β

(3.7)

Alternatively, one can choose different transformations to link q with a set of

covariates, for example, probit. This study has utilized the logit link function,

and it provides similar results to the link function in Equation 3.2. Then, the

results reported in this thesis are based on the link function in Equation 3.1.

Commonly, the type of dispersion should be taken into account when the co-
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variatesXXX are considered. Thus, the different types of dispersion are investigated

for the regression structure for the DW model.

3.3 Maximum likelihood estimation

Estimation of the unknown parameters is performed using the maximum like-

lihood approach. Thus, given a sample of n independent observations, (xi, yi),

i = 1, 2, . . . , n from Equation 3.3, the likelihood function based on this observed

sample, is given by:

L = f(y1, y2, . . . , yn|xxx) =
n∏

i=1

[(
e−exxx

′
iααα
)yβi

−
(
e−exxx

′
iααα
)(yi+1)β

]

Then, the corresponding log-likelihood function can be obtained as:

` =
n∑

i=1

log
[
wi(β,ααα)

]
(3.8)

where

wi(β,ααα) =
(
e−exxx

′
iααα
)yβi

−
(
e−exxx

′
iααα
)(yi+1)β

Then, to obtain the MLEs, the first partial derivatives with respect to each un-

known parameter in θ are obtained and set equal to zero. The first partial deriva-

tive of ` with respect to parameter β is obtained as follows:

∂`

∂β
= −

n∑
i=1

exxx
′
iααα

wi(β,ααα)

[(
e−exxx

′
iααα
)yβi

yβi log(yi)−

(
e−exxx

′
iααα
)(yi+1)β

(yi + 1)β log(yi + 1)

]

The first partial derivative of ` with respect to parameter αp, (p = 1, . . . , P ) is

obtained as follows:

∂`

∂αp

= −
n∑

i=1

xipe
xipαp−exipαp

wi(β, αp)

[
yβi

(
e−exipαp

)yβi −1

− (yi + 1)β
(
e−exipαp

)(yi+1)β−1
]

As can be seen, the system of these likelihood equations cannot be solved



CHAPTER 3. DISCRETE WEIBULL REGRESSION MODEL 56

simultaneously, and hence they do not have an analytic solution. Thus, the com-

mon problem of the maximum likelihood approach, where no closed form solution

exists, has been experienced here. Therefore, the MLEs of ααα and β can be found

by directly maximizing the log-likelihood function in Equation 3.8 numerically.

This can be performed easily using any iterative numerical optimization tool,

such as the optim function in R.

Given that the parameter inferences are performed using the maximum likeli-

hood method, then under some regularity conditions (Serfling (1980) or Greene

(2003)) these estimators enjoy standard asymptotic properties. In other words,

the MLEs; β̂ML and α̂ααML have certain characteristics, as follows:

• They are asymptoticly consistent (unbiased)

• They asymptotically have an variance-covariance matrix obtained from the

inverse of the expected Fisher information matrix:

Iexp =

Iαα Iαβ

Iβα Iββ


where

Iθiθj = −E

(
∂2`

∂θiθj

)
i, j = 1, 2 (3.9)

• The MLEs β̂ML, α̂ααML are asymptotically normal distributed:

√
n

β̂ML − β

α̂ααML −ααα

 ∼ N

0

0

 , I−1

 (3.10)

where β and ααα are the true values of β and ααα, respectively, and I is the Fisher

information matrix.

Hence, this expected Fisher information matrix is obtained in the following steps.

Note that, for a sample of n independent observations, the log-likelihood sample

in Equation 3.8 can be re-written as follows:

`(ααα, β) =
n∑

i=1

`(qi, β) (3.11)
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where

`(qi, β) = log
[
qyi

β

i − q
(yi+1)β

i

]
, qi ≡ q(xxxi)

Then, for p = 1, 2, . . . , P , the score functions
∂`(ααα, β)

∂αp

and
∂`(ααα, β)

∂β
can be re-

obtained as follows:

∂`(ααα, β)

∂αp

=
∂

∂αp

[
n∑

i=1

`(qi, β)

]

=
n∑

i=1

∂`(qi, β)

∂qi

∂qi
∂ηi

∂ηi
∂αp

(3.12)

where

∂`(qi, β)

∂qi
=

yβi q
yβi −1
i − (yi + 1)βq

(yi+1)β−1
i

q
yβi
i − q

(yi+1)β

i

(3.13)

and

η = xxx′ααα ⇒ ∂qi
∂ηi

= −eηie−eηi ,
∂ηi
∂αp

= xip

Hence, back to Equation 3.12, the score function for ααα is given by

∂`(ααα, β)

∂αp

=
yβi q

yβi −1
i − (yi + 1)βq

(yi+1)β−1
i

q
yβi
i − q

(yi+1)β

i

∂qi
∂ηi

xip (3.14)

and similarly, the score function for β is obtained as follows:

∂`(ααα, β)

∂β
=

n∑
i=1

∂`(qi, β)

∂β

=
n∑

i=1

log(qi)

qyβii yβi log(yi)− q
(yi+1)β

i (yi + 1)β log(yi + 1)

q
yβi
i − q

(yi+1)β

i

 (3.15)

After that, the elements for the Fisher information matrix are obtained.

From Equation 3.12, the second derivative of `(ααα, β) with respect to αs, for

l = 1, 2, . . . , P , is given by:
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∂2`(ααα, β)

∂αp∂αl

=
∂

∂αl

[
n∑

i=1

∂`(qi, β)

∂qi

∂qi
∂ηi

∂ηi
∂αp

]
n∑

i=1

∂

∂qi

[
∂`(qi, β)

∂qi

∂qi
∂ηi

]
∂qi
∂ηi

xip
∂ηi
∂αl

=
n∑

i=1

[
∂2`(qi, β)

∂q2i

∂qi
∂ηi

+
∂

∂qi

∂qi
∂ηi

∂`(qi, β)

∂qi

]
∂qi
∂ηi

xipxil

Next, we will take the expectation and note that, under regularity condition,

E

(
∂`(qi, β)

∂qi

)
= 0, then:

E

(
∂2`(ααα, β)

∂αp∂αl

)
=

n∑
i=1

[
E

(
∂2`(qi, β)

∂q2i

)
∂qi
∂ηi

+ 0

]
∂qi
∂ηi

xipxil

=
n∑

i=1

E

(
∂2`(qi, β)

∂q2i

)(
∂qi
∂ηi

)2

xipxil

where
∂2`(qi, β)

∂q2i
is given in the Appendix. Therefore, for the Fisher information

matrix, we have the following:

Iαα = −E

(
∂2`(ααα, β)

∂αp∂αl

)
= −XTDX (3.16)

where D = diag(d1, d2, . . . , dn) with di =
∂2`(qi, β)

∂q2i

(
∂qi
∂ηi

)2

Similarly, from Equation 3.12, the second derivative of `(ααα, β) with respect to

αp and β is:

∂2`(ααα, β)

∂αp∂β
=

∂

∂β

[
∂`(ααα, β)

∂αp

]
=

n∑
i=1

∂

∂β

[
∂`(qi, β)

∂qi

]
∂qi
∂ηi

∂ηi
∂αp

n∑
i=1

∂2`(qi, β)

∂qi∂β

∂qi
∂ηi

xip

(3.17)
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The expectation can be taken as follows:

E

(
∂2`(ααα, β)

∂αp∂β

)
=

n∑
i=1

E

(
∂2`(qi, β)

∂qi∂β

)
∂qi
∂ηi

xip

where
∂2`(qi, β)

∂qi∂β
is provided in the Appendix. Then, for the Fisher information

matrix

Iαβ = −E

(
∂2`(ααα, β)

∂αp∂β

)
= −XTS (3.18)

where S = diag(s1, s2, . . . , sn) with si =
∂2`(qi, β)

∂qi∂β

∂qi
∂ηi

Finally,
∂2`(ααα, β)

∂β2
can be derived by differentiating Equation 3.15 with respect to

β. Then, we have the following:

∂2`(ααα, β)

∂β2
=

n∑
i=1

∂

∂β

[
∂`(ααα, β)

∂β

]
=

n∑
i=1

∂2`(ααα, β)

∂β2

and after taking the expectation, we get

E

(
∂2`(ααα, β)

∂β2

)
=

n∑
i=1

E

(
∂2`(ααα, β)

∂β2

)

where
∂2`(ααα, β)

∂β2
is given in the Appendix. Thus, for the Fisher information matrix

Iββ = −E

(
∂2`(ααα, β)

∂β2

)
= −Tr(V ) (3.19)

where V = diag(v1, v2, . . . , vn) with vi =
∂2`(ααα, β)

∂β2
.

Consequently, the Fisher information matrix is structured by combining the ele-

ments in Equation 3.16, Equation 3.18 and Equation 3.19 with Iαβ = ITβα.

For many cases calculating these expectations in Equation 3.9 is impractical.

Hence, the expected Fisher information matrix might be replaced by the ob-

served Fisher information matrix, which is composed of the negative second par-

tial derivatives of the log-likelihood function `(θ; t) evaluated at θ = θ̂ML. That
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is, each element in this matrix would be as follows:

Iθiθj = − ∂2`

∂θiθj
i, j = 1, 2 (3.20)

Then, the asymptotic confidence intervals (CIs) based on the asymptotic normal

distribution of MLEs, as mentioned earlier, can be obtained by inverting the

Fisher information matrix, to obtain the asymptotic variance-covariance matrix,

given by:

∑
= I−1 =

 − ∂2`
∂β2 − ∂2`

∂β∂ααα

− ∂2`
∂β∂ααα

− ∂2`
∂ααα2

−1

=

 AV ar(β̂ML) ACov(β̂MLα̂ααML)

ACov(β̂MLα̂ααML) AV ar(α̂ααML)


This matrix can be easily obtained by inverting the Hessian matrix from the optim

function in R. The Hessian is the second derivative of the objective function (log-

likelihood), that is, the Hessian matrix is the observed Fisher information matrix.

Then, the two-sided approximate CI for the parameters can be conducted as

[
ˆβML ± Z τ

2

√
AV ar(β̂ML)

]
,

[
α̂ααML ± Z τ

2

√
AV ar(α̂ααML)

]
(3.21)

3.4 Fitted values

After a DW regression model has been applied, the following can be obtained:

• The fitted values for the central trend of the conditional distribution can

be obtained using one of two methods:

– Fitted mean: Equation 2.3, as mentioned earlier, can be calculated

numerically using the approximated moments of the DW (Barbiero,

2015).

– Fitted median: commonly, count data are skewed and include some

outliers, and hence the median is more appropriate than the mean for
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these situations. Then, the quantile formula provided in Equation 2.6

can be applied and the fitted conditional median can be obtained easily

from the closed form expression of quantiles for the DW, as follows:

M =
⌈(

− log(2)

log(q̂(xxx))

) 1

β̂

− 1
⌉

(3.22)

• The conditional quantile for any τ can be obtained from Equation 2.6.

3.5 Coefficient interpretation

In the regression analysis for count data, it is common to consider the effect

of the covariates on the mean of the response variable, such as the Poisson and

NB models. In this study, however, there is no closed form for the expected value

of the response, and hence the effect of the covariates can be examined in two

ways:

• Investigate the effect of these predictors on the parameter q based on the

applied link function in Equation 3.2 or Equation 3.6. Then, examine the

relationship between the fitted values and the set of covariates. Therefore,

in comparison to the related regression models from the Poisson and NB,

the regression coefficients for the DW model are on a different scale for

this case, and hence they are not directly comparable. Regardless this

difference, it might be expected to obtain regression coefficients from DW

with opposite signs compared to those from GLMs.

• The relationship between certain explanatory variables and the median can

also be obtained. As mentioned before, the median is more appropriate

for count data. Additionally, from Equation 2.8, the median has a closed

form for the DW model. To illustrate, as previously stated in Equation 2.5,

the median for discrete distributions can be defined as any value of y that

satisfies F (y) ≥ 0.5. Then, although this median is un-uniquely defined, a
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special case for this median’s definition will be considered here to be

{
y : F (y) =

1

2

}
⊆

{
y : F (y) ≥ 1

2

}
(3.23)

Then, the median would not be limited to being an integer and can be

defined to have a closed form:

M =

(
− log(2)

log(q̂(x))

) 1

β̂

− 1

However, this form is valid only for q ≥ 1

2
and M = 0 can be considered

∀ q <
1

2
. Thus, M + 1 might be examined for this case:

M + 1 =

(
− log(2)

log(q̂(x))

) 1

β̂

(3.24)

Then, by substituting Equation 3.2 in Equation 3.24 and taking the log, we

have the following:

log (M + 1) =
1

β
log
(
log(2)

)
− 1

β
xxx′ααα. (3.25)

Thus, the regression parameter ααα can be interpreted in relation to the log

of the median. This is analogous with the Poisson and NB models, where

the parameters are linked to the mean as follows:

log(µ) = xxx′ααα (3.26)

In particular, the part
log (log(2))− α0

β
can be relatively equivalent to the

intercept part for the Poisson and NB. Additionally, it is related to the

conditional median when all covariates are set to zero, while the parts −αp

β
,

p = 1, . . . , P , are comparable with the log of the change in Y relative to

a one unit change in X. In other words, these parts can be related to the

change in the median of the response corresponding to a one unit change

of xxxp, keeping all other covariates constant.
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In this work, the first approach is consider to investigate the regression co-

efficients related directly to the parameter q through the link function in Equa-

tion 3.2.

3.6 Measurements for model checking

Throughout this study, different regression models were fitted and compared.

Then, to check the adequacy of the models, some measurements have been con-

sidered.

3.6.1 Model selection

For the model selection, the AIC in Equation 2.12 is calculated. The model

with the minimum AIC is the best.

3.6.2 Mean-to-Variance plot

This plot investigates the relation between mean and variance with regards

to the covariates’ effect. It considers the relation between the observed mean and

observed variance, in addition to the theoretical mean and theoretical variance

based on some models. Some note is required here on the calculation of the

observed mean and observed variance since they cannot be computed for each

individual covariate vector XXX. To illustrate, these calculations divide the data

into groups based on the percentiles of the linear predictors ηi =XXX ′ααα. Although

using the linear predictor of any fitting, such as NB or DW, would provide ap-

proximately the same groups, the groups here are created based on the DW linear

predictor. Thus, ηi from DW is split into 10 groups of similar size. Then, the

observed mean and the observed variance are obtained for each group. Subse-

quently, the theoretical mean and variance based on each model are also computed

for the same groups. Accordingly, the relation between Mean-to-Variance ratios

is plotted. The points with greater observed variance than observed mean are

considered as over-dispersed relative to the Poisson case, while the points with

observed variance less than observed mean are considered to be under-dispersed
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relative to the Poisson case.

Then, to asses which model might be more appropriate, their variance functions

are plotted to check which is closer to the observed relation. For example, the

NB and DW models demonstrate different variance functions, that is, different

Mean-to-Variance relations. The NB variance can only handle the over-dispersed

data relative to the Poisson, as mentioned earlier.

3.6.3 Variances ratio plot

As mentioned before, the data can be over-or under-dispersed relative to some

model; if its VR in Equation 1.1, less or greater than one. Hence, it is informative

to check whether the data shows any under- or over-dispersion relative to the

specified model. Therefore, the same some note, mentioned previously in the

Mean-to-Variance plot, is required here for the calculation of this VR. Thus,

based on the percentiles of the linear predictors ηi =XXX ′ααα from DW, the observed

variance and the theoretical variances based on each model are computed for each

group. Subsequently, the box-plots for these VR are plotted, in which the well

specified model is the one whose VR is closest to one. In other words, in the case

of good fitting, we would expect the VR in Equation 1.1 to be close to one for

each X.

The points for the observed means and variances in the Mean-to-Variance plot

are approximately equivalent to the box-plot for the VR from Poisson fitting.

3.6.4 Expected frequencies

The coefficients of the DW regression model and the corresponding GLMs

coefficients cannot be directly compared since these regression parameters are

scaled in different ways, as mentioned earlier. Additionally, it might be irrelevant

to investigate the error that measure the differences between the true means and

estimated means for count data. This is because the main concern may focus

on counts rather than on estimated means. Then, it would be more interesting

to consider the performance of a model in regard to its ability to predict the

frequency of each count, in other words, the number of zeros, the number of ones,
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etc.

The expected frequencies for the counts, from a model with pmf f , with a regres-

sion structure can be obtained for a count h as follows:

n∑
i=1

f(Yi = h|θi)

where θ are the parameters need to be estimated for the applied model and n is

the sample size. Thus, a plot for the observed frequencies for the response variable

against its expected (predicted) frequencies from each model can be used to assess

the model performance. The best fitting is the one that is closest to the observed

frequencies.

3.6.5 Model diagnostics

Following a data fitted using any regression model, it is essential to consider

a diagnostics analysis to investigate the appropriateness of the model. Therefore,

a residual analysis has been considered to detect the departure from a supposed

model and outlying observations. Given that the response is discrete, it is advised

to perform a residual analysis based on the randomized quantile residuals, as

developed by Dunn and Smyth (1996) and used in many other studies, e.g. ?,

Ospina and Ferrari (2012), Vanegas et al. (2013), Schmidt and Hurling (2014)

and Spyroglou et al. (2015), among others. In particular, for the DW regression

model, let:

ri = Φ−1(ui) , i = 1, . . . , n (3.27)

where Φ(.) is the standard normal distribution function and ui is a uniform RV

on the interval:

(ai, bi] =

(
lim
y↑yi

F (y; q̂, β̂), F (y; q̂, β̂)

]
≈
[
F (yi − 1; q̂i, β̂), F (yi; q̂i, β̂)

]
These residuals follow the standard normal distribution apart from sampling vari-

ability in q̂i and β̂. Hence, the validity of a DW model can be assessed using some
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goodness-of-fit investigations of the normality of the residuals, as follows:

• The histogram or the normal Q-Q plot can be used to visually check the

normality of these residuals. Another advantage of the Q-Q plot is its ability

to detect the outliers in the dataset.

• A normality test, such as Kolmogorov-Smirnov test, can be considered for

testing the null hypothesis that these residuals follow a standard normal

distribution (N(0, 1)).

• A simulated envelope can be added to the Q-Q plot, providing a helpful

diagnostic tool (Atkinson, 1985), as in Ferrari and Cribari-Neto (2004),

Garay et al. (2011) and Sáez-Castillo and Conde-Sánchez (2013). In these

plots, few points fall beyond the envelope’s bounds, indicating a good model

fit.

The simulated envelope graphical tool can be simply described by adding a simu-

lated envelope that assess whether the observed residuals are consistent with the

fitted model. Then, the 95% simulated envelope for the residuals, which is mainly

an empirical probability plot for the ordered residuals with their sampling distri-

bution quantiles, against the corresponding quantiles from the standard normal

distribution, is proposed using the following steps, assuming the DW is correct:

1. After fitting the DW regression model for the observed data YYY 0 and obtain-

ing the estimated parameters, β̂ML and α̂ααML , their randomized quantile

residuals are calculated, called the observed residuals, rrr0.

2. It has been suggested in Atkinson (1985) that 19 samples be simulated,

and thus the probability of a given residual falling beyond the bounds of

the envelope will be approximately be
1

20
= 0.05. For this number of

iteration, h = 1, 2, . . . , H = 19, the following steps are conducted:

(i) Generate a sample with size n from DW with the fitted parameters

β̂ML and α̂ααML

(ii) Fit this simulated data using the DW regression model



CHAPTER 3. DISCRETE WEIBULL REGRESSION MODEL 67

(iii) Compute and store the ordered residuals for these simulated samples,

denoted by rrrh, as columns in a matrix. Thus, we have a matrix rep-

resents the Monte Carlo sampling distribution of the residuals, with

a dimension of (n × H) and each column is the rrrh
th

residuals for a

sample with size n

3. The 2.5th and 97.5th quantiles, are denoted by, r2.5i and r97.5i are calculated

for each row.

4. Plot the ordered observed residuals rrr0 against the normal scores,

Φ−1 (i/(n+ 1)) , i = 1, . . . , n.

5. Add a 95% simulated envelope to the plot by drawing the rrr2.5 and rrr97.5 for

the lower and upper bounds, respectively.

3.7 Discrete Weibull regression naturally han-

dles covariate-specific dispersion

It has been shown in chapter 2 how DW can model data that are under- and

over-dispersed relative to the Poisson. In this section, we would like to investi-

gate this further within a regression context. Here, it is also possible that the

conditional variance is larger than the conditional mean for a specific covariate

pattern (over-dispersion), but the conditional variance is smaller than the condi-

tional mean for another covariate pattern (under-dispersion). In the literature,

regression models for count data that can capture under-dispersion or both types

of over- and under-dispersion simultaneously take the form of Poisson regres-

sion, such as the quasi-Poisson, COM-Poisson or hyper-Poisson (Sáez-Castillo

and Conde-Sánchez, 2013). In the case of mixed types of dispersion, the dis-

persion parameter can be assumed to be linked to the covariates. However,

a covariate-dependent dispersion increases the complexity of the model signifi-

cantly and reduces its interpretability. So, in practice, most implementations fix

the dispersion parameter and assume that only the mean is linked to the covari-

ates. As the DW distribution naturally accounts for over- and under-dispersion,



CHAPTER 3. DISCRETE WEIBULL REGRESSION MODEL 68

a DW regression model becomes a simple and attractive alternative to existing

regression models for count data.

This point is emphasized by a simple simulation study. A multiple regression

with two predictors, X1 ∼ N(0, 1) and X2 ∼ Uniform(0, 10), is examined.

The true value of the regression parameter is assumed to be ααα = (α0, α1, α2) =

(0.5, 0.4,−.3). In addition, the parameter β of the DW is assumed to be β = 1.6.

Then, a sample with size n = 300 from DW (qi, β) is considered, where qi is cal-

culated as in Equation 3.2, for i = 1, . . . , n.

Figure 3.1 displays the Mean-to-Variance relations for the observed variance and

observed mean indicating under-dispersion for some cases, and over-dispersion

for other. Then, among the theoretical relations from NB and DW fittings, the

DW relations are the closest to the observed.

Figure 3.2 shows the VR plot of the dispersions in Equation 1.1 in the case of

the Poisson, NB and DW fitting, which is the model used in the simulation. The

Poisson and NB both show under-dispersion in most cases and over-dispersion

in two cases. Thus, this simulation shows a simple scenario of a mixed level of

dispersion, which cannot be captured well by standard Poisson and NB models.
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Figure 3.1: The Mean-to-Variance
plot for mixed-dispersed simulated data
from the DW regression model, with the
theoretical Mean-to-Variance fitted by
NB and DW.
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Figure 3.2: Distribution of the ratios of
the observed and theoretical conditional
variance on mixed-dispersed simulated
data from the DW regression model, fit-
ted by the Poisson, NB and DW.

On the other hand, to assess the performance of the estimation under the DW

model, this simulation study is carried out for 1000 iterations. Table 3.1 reports



CHAPTER 3. DISCRETE WEIBULL REGRESSION MODEL 69

the MLEs of the parameters, together with some accuracy measurements that

would be explained more in the next section, over 1000 iterations.

Table 3.1: MLEs based on the simulation study for the DW regression model with true
parameters ααα = (0.5, 0.4,−.3) and β = 1.6, for the mixed-dispersed case.

MLE Bias MSE Length
α0 0.5106 0.0106 0.0184 0.5191
α1 0.4104 0.0104 0.0046 0.2556
α2 -0.3038 -0.0038 0.0008 0.1074
β 1.6185 0.0185 0.0091 0.3585

3.8 Simulation study

A simulation study was performed to assess and evaluate the performance

of the MLEs for the DW with a regression structure. These estimators can be

evaluated using certain accuracy measures.

Different sample sizes n1 = 50, n2 = 100, n3 = 250, n4 = 500 and n5 = 1000

are considered. Additionally, different dispersion types are considered, that is,

under-, over-dispersion and zero inflation cases. A multiple regression with three

predictors is examined. All the results are based on an average over 1000 repeti-

tions. In each iteration, MLEs and their asymptotic two-sided CIs are computed

according to Steenberger (2006), through the following steps:

• Step 1: Simulate three random samples with size n to present the covariates

from the following distributions:

– regressor 1: normal distribution N(0, 1).

– regressor 2: uniform distribution with parameters (−0.3, 0.3).

– regressor 3: Bernoulli distribution with parameter (0.4).

• Step 2: The true values of the parameters are chosen to be:

– Since the P (0) depends on q, the regression parameters that are as-
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sumed to generate some excessive zero data are as follows:

ααα = (α0, α1, α2, α3) = (0.1,−0.2, 1.6, 0.2)

with β = 0.9.

Additionally, the regression parameters, for the under- and over-dispersion

case, are assumed to be:

ααα = (α0, α1, α2, α3) = (−2.8, 0.01, 0.4,−0.2)

– The shape parameter β of DW has been selected to represent the two

cases of under- and over-dispersion. Thus, as mentioned in chapter 2,

for the under-dispersed case β = 2.5 has been selected, while β = 0.9

for the over-dispersion case.

– Then, q can be calculated for each XXX using Equation 3.2.

• Step 3: The data fitted by the Poisson regression, in order to obtain some

initial values then, minus the regression coefficient from this Poisson fitting

is considered for the unknown parameters ααα. In addition, the estimate of

β by fitting the DW distribution for the response variable Y is considered

for β. Then, for each sample size n, the replications are conducted, where

for each iteration (1 : 1000):

– Generate random samples with sample size n from a population whose

pmf is given by Equation 3.3, using the package found in Barbiero

(2015). That is, for each xixixi and qi there is a corresponding yi, where

i = 1, 2, . . . , n.

– Based on this sample and using the above initials, the MLEsitr of

the parameters ααα and β, which is denoted as θ̂itr, are computed by

maximizing the log-likelihood function in Equation 3.8, using “optim”

in R.

– In addition to the MLEsitr, the lower-limit (LLitr) and upper-limit

(ULitr) levels of the 95% CIs for each MLE are conducted.
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• Step 4: The three steps above are repeated 1000 times.

Subsequently, 1000 values are found for the MLEs and CIs bounds. The average

of these values is computed to obtain the MLEs, that is, α̂ααML and β̂ML. In other

words, for each parameter, the following average is computed:

θ̂ML =

∑1000
itr=1 θ̂itr
1000

(3.28)

In addition, the average of each lower bound and upper bound for the CI is

calculated, respectively, as follows:

LL =

∑1000
itr=1 LLitr

1000

UL =

∑1000
itr=1 ULitr

1000

(3.29)

Consequently, the length of the asymptotic CIs are found. Then, the estimators

are evaluated using the following measures:

• Bias, which is the difference between the average estimate and true value,

and should ideally be close to zero:

Bias(θ̂ML) = θ̂ML − θtr (3.30)

• mean squared error (MSE), which measures the average squared distance

between the estimate and true value, which also should ideally be close to

zero:

MSE(θ̂ML) =

∑1000
itr=1(θ̂itr − θtr)

2

1000
(3.31)

where θtr is the true value of the parameter θ, θ̂itr is the MLE of the pa-

rameter θ for each iteration and θ̂ML is the MLE of θ.

To show a description for each case, a histogram for a sample in one of the

iterations for n = 500 is conducted. Moreover, to investigate the dispersion of

this simulated sample, the VR plot is considered. For the over-dispersion case,

the VR for Poisson fit is not included, to make a reasonable scale of the figure,

as it gives values very far from one.
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Figure 3.3: Histogram for the under-dispersed simulated data from the DW regression
model.
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Table 3.2: MLEs based on the simulation study for the DW regression model with true
parameters ααα = (−2.8, 0.01, 0.4,−0.2) and β = 2.5, for the under-dispersion case.

n parameter MLE Bias MSE Length

50

α0 -3.0046 -0.2046 0.2844 1.8095
α1 0 .0009 -0.0091 0.0333 0.6578
α2 0.4576 0.0576 0.9142 3.4338
α3 -0.2259 -0.0259 0.1119 1.1909
β 2.7062 0.2062 0.1734 1.2862

100

α0 -2.9028 -0.1028 0.1149 1.2179
α1 0.003 -0.007 0.014 0.4463
α2 0.4639 0.0639 0.427 2.4777
α3 -0.2136 -0.0136 0.0518 0.8395
β 2.6031 0.1031 0.0621 0.8638

250

α0 -2.855 -0.055 0.0425 0.7526
α1 0.0114 0.0014 0.0053 0.2749
α2 0.4184 0.0184 0.1553 1.4951
α3 -0.1914 0.0086 0.0183 0.5358
β 2.5471 0.0471 0.0222 0.5305

500

α0 -2.8252 -0.0252 0.0207 0.5325
α1 0.0114 0.0014 0.0023 0.1877
α2 0.4017 0.0017 0.0733 1.0813
α3 -0.201 -0.001 0.0081 0.3653
β 2.5238 0.0238 0.0103 0.3704

1000

α0 -2.8131 -0.0131 0.0097 0.3724
α1 0.0111 0.0011 0.0012 0.1334
α2 0.4064 0.0064 0.037 0.7259
α3 -0.2012 -0.0012 0.0044 0.2613
β 2.5125 0.0125 0.0046 0.2605
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Figure 3.4: The Mean-to-Variance
plot for under-dispersed simulated data
from the DW regression model, with the
theoretical Mean-to-Variance fitted by
NB and DW.
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Figure 3.5: Distribution of the ratios of
the observed and theoretical conditional
variance on simulated data from the
DW regression model, for the under-
dispersion case, fitted by the Poisson,
NB and DW.
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Figure 3.6: Histogram for the over-dispersion simulated data from the DW regression
model.



CHAPTER 3. DISCRETE WEIBULL REGRESSION MODEL 75

Table 3.3: MLEs based on the simulation study for the DW regression model with true
parameters ααα = (−2.8, 0.01, 0.4,−0.2) and β = 0.9, for the over-dispersion case.

n parameter MLE Bias MSE Length

50

α0 -2.9859 -0.1859 0.2481 1.72
α1 0.0023 -0.0077 0.0306 0.6349
α2 0.4448 0.0448 0.8482 3.3255
α3 -0.2213 -0.0213 0.1049 1.1511
β 0.9674 0.0674 0.0189 0.4341

100

α0 -2.8988 -0.0988 0.1069 1.1652
α1 0.0033 -0.0067 0.0131 0.4326
α2 0.4434 0.0434 0.4004 2.4021
α3 -0.2124 -0.0124 0.0483 0.8142
β 0.9354 0.0354 0.0072 0.2946

250

α0 -2.852 -0.052 0.038 0.7208
α1 0.0104 0.0004 0.0049 0.2672
α2 0.412 0.012 0.1437 1.4512
α3 -0.1915 0.0085 0.017 0.5208
β 0.916 0.016 0.0026 0.1813

500

α0 -2.8252 -0.0252 0.0188 0.5111
α1 0.0115 0.0015 0.0022 0.1824
α2 0.3996 -0.0004 0.0699 1.0504
α3 -0.2001 -0.0001 0.0076 0.3551
β 0.9083 0.0083 0.0012 0.1269

1000

α0 -2.813 -0.013 0.0087 0.3575
α1 0.0115 0.0015 0.0011 0.1297
α2 0.4064 0.0064 0.0336 0.7057
α3 -0.2017 -0.0017 0.004 0.2542
β 0.9045 0.0045 0.0005 0.0893
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Figure 3.7: The Mean-to-Variance plot
for over-dispersed simulated data from
the DW regression model, with the the-
oretical Mean-to-Variance fitted by NB
and DW.
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Figure 3.8: Distribution of the ratios
of the observed and theoretical condi-
tional variance on simulated data from
the DW regression model, for the over-
dispersion case, fitted by NB and DW.
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Figure 3.9: Histogram for the excessive zero simulated data from the DW regression
model, in which 70.2% of the data is comprised of zeros.
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Table 3.4: MLEs based on the simulation study for the DW regression model with true
parameters ααα = (0.1,−0.2, 1.6, 0.2) and β = 0.9, for the excessive zero case.

n parameter MLE Bias MSE Length

50

α0 0.1134 0.0134 0.0789 1.0068
α1 -0.2515 -0.0515 0.0548 0.778
α2 1.902 0.302 1.4137 4.0165
α3 0.2179 0.0179 0.1442 1.3091
β 1.0555 0.1555 0.08 0.8759

100

α0 0.0985 -0.0015 0.0271 0.64
α1 -0.2224 -0.0224 0.0167 0.4859
α2 1.7541 0.1541 0.5848 2.7492
α3 0.2088 0.0088 0.0591 0.8904
β 0.9776 0.0776 0.0252 0.5408

250

α0 0.0922 -0.0078 0.0105 0.3894
α1 -0.2058 -0.0058 0.0060 0.2939
α2 1.643 0.043 0.1765 1.6191
α3 0.2192 0.0192 0.0222 0.5648
β 0.9304 0.0304 0.0078 0.323

500

α0 0.0974 -0.0026 0.0052 0.2866
α1 -0.2012 -0.0012 0.0027 0.202
α2 1.6232 0.0232 0.0889 1.1696
α3 0.2052 0.0052 0.0093 0.3841
β 0.9168 0.0168 0.0038 0.2292

1000

α0 0.0976 -0.0024 0.0027 0.196
α1 -0.2006 0 .0006 0.0013 0.1425
α2 1.6208 0.0208 0.0462 0.7839
α3 0.2014 0.0014 0.0052 0.2744
β 0.9105 0.0105 0.0017 0.1579
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Figure 3.10: The Mean-to-Variance
plot for excessive zero simulated data
from the DW regression model, with the
theoretical Mean-to-Variance fitted by
ZIP, ZINB, NB and DW.
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Figure 3.11: Distribution of the ratios
of the observed and theoretical condi-
tional variance on simulated data from
the DW regression model, for the ex-
cessive zero case, fitted by the Poisson,
ZIP, ZINB, NB and DW.

It may noted from Table 3.2, Table 3.3 and Table 3.4 that the measurements

of accuracy, bias, MSE associated with the MLEs of ααα, and β as well as the length

of the CIs are all close to zero, and they decrease as the sample size n increases.

Thus, the properties of the MLE are achieved. Additionally, Figure 3.4, Figure 3.7

and Figure 3.10 show that the Mean-to-Variance relations from the DW fitting

is the most close to the observed Mean-to-Variance relations. Also, Figure 3.5,

Figure 3.8 and Figure 3.11 show that the VR of DW is the closest to one.

3.9 Numerical examples

To demonstrate the ability of the DW regression model to handle over- and

under-dispersion automatically, in this section DW regression is applied to dif-

ferent data sets that show various types of dispersions relative to the Poisson.

The first part includes an under-dispersed dataset, while the second includes an

over-dispersed case. The third subsection focuses on a zero-inflated dataset. Fi-

nally, an illustrative example for the mixed level of dispersion is provided. The

purpose here is just to demonstrate the DW model and not to test the signifi-

cance of each covariates. Various popular count data regression models, namely

Poisson regression, NB regression, zero-inflated and hurdle models, are applied
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and compared with DW regression by means of the classical AIC criterion. The

model with the smallest values for this criterion is then chosen as the best fitting

for this dataset. Additionally, their expected frequencies are compared with the

observed frequencies in which the model that provides close expected frequencies

to the observed is the best.

3.9.1 The case of under-dispersion: inhaler usage data

For this example, a data from Grunwald et al. (2011) and Canale and Dunson

(2012) is used, consisting of 5209 observations and report the daily count of using

(albuterol) asthma inhalers for 48 children suffering from asthma, aged between 6

and 13 years, during the school day, for a period of time at the Kunsberg School

at the National Jewish Health in Denver, Colorado. The main objective of this

analysis is to investigate the relationship between the inhaler use (representing

the asthma symptoms) and air pollution, which is recorded by four covariates, as

follows:

• The percentage of humidity,

• The barometric pressure (in mmHG/1000),

• The average daily temperature (in Fahrenheit degree/100),

• The morning levels of PM25, which are small air particles less than 25mm

in diameter.

The response variable, which is the inhaler use count, has a sample mean of 1.2705

and a variance of 0.8433, thus pointing to a case of under-dispersion relative to

the Poisson.
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Figure 3.12: The Mean-to-Variance
plot for the inhaler use dataset, with
the theoretical Mean-to-Variance fitted
by NB and DW.
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Figure 3.13: Distribution of the ra-
tios of the observed and theoretical con-
ditional variance on the inhaler use
dataset, fitted by the Poisson, NB and
DW.

Table 3.5: MLEs, SEs (in parentheses) and AIC from the Poisson, NB and DW re-
gression models fitted to the inhaler use dataset.

intercept humidity pressure temperature particles other AIC

Poisson
-2.2132
(1.7115)

-0.1125
(0.0840)

4.0950
(2.7230)

-0.2035
(0.1293)

0.0225
(0.0129)

- 13915.47

NB
-2.2132
(1.7115)

-0.1125
(0.0840)

4.0950
(2.7230)

-0.2035
(0.1293)

0.0225
(0.0129)

k̂=31905.28
(65588.91)

13917.54

DW
1.8112
(1.9731)

0.2233
(0.1013)

-5.6120
(3.1357)

0.3691
(0.1563)

-0.0289
(0.0156)

β̂=2.1277
(0.0259)

13484.36
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Figure 3.14: Histogram for the observed frequencies and expected frequencies from the
Poisson, NB and DW regression models for the inhaler use dataset.
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Figure 3.15: Histogram of the random-
ized quantile residuals from the DW re-
gression model fitted to the inhaler use
dataset with superimposed N(0,1) den-
sity.

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Standard normal quantiles

R
a

n
d

o
m

is
e

d
 q

u
a

n
ti
le

 r
e

s
id

u
a

ls

Figure 3.16: Simulated envelope for the
randomized quantile residuals from the
DW regression model fitted to the in-
haler use dataset.

The results in Table 3.5 suggest that DW regression provides better fitting

than both the Poisson and NB models, according to the AIC. Figure 3.12 and

Figure 3.13 indicate under-dispersion relative to the Poisson and NB across the

full range of covariates, and a good fit of DW compared to the other models

(theoretical Mean-to-Variance relations close to the observed relations and VR

values close to 1). Figure 3.14 compares the observed and expected frequencies

for the three models and shows again a good fit for DW. Finally, Figure 3.15

plots the randomized quantile residuals from the DW regression model, which

are only moderately departing from normality (p-value of Kolmogorov-Smirnov

test: 0.026). Additionally, Figure 3.16 plots the simulated envelopes for theses

residuals and no much points falling outside the bounds.

3.9.2 The case of over-dispersion: strikes data

This dataset is available in the Ecdat R package (Croissant (2015)), under

the name of StrikeNb. The response variable is the number of contract strikes

in U.S. manufacturing observed monthly from January 1968 to December 1976.

The predictor is the level of economic activity, which is measured as the cyclical

departure of aggregate production from its trend level. The response variable has

a sample mean of 5.2407 and a variance of 14.0723, suggesting over-dispersion
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relative to the Poisson. Indeed, a comparison of Poisson and NB distributions

solely on the response variable using a likelihood ration test (LRT) (lmtest R

package, Zeileis and Hothorn (2002)) shows evidence of over-dispersion, with a

chi-square test statistic of 63.372 and a p-value of < 0.001.
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Figure 3.17: The Mean-to-Variance
plot for the strikes dataset, with the the-
oretical Mean-to-Variance fitted by NB
and DW.
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Figure 3.18: Distribution of the ratios
of the observed and theoretical condi-
tional variance on the strikes dataset,
fitted by the Poisson, NB and DW.

Table 3.6: MLEs, SEs (in parentheses) and AIC from the Poisson, NB and DW re-
gression models fitted to the strikes dataset.

intercept economic activity other AIC

Poisson
1.6539
(0.0422)

3.1342
(0.8032)

- 627.9689

NB
1.6538
(0.0686)

3.2250
(1.2841)

k̂=3.1849
(0.739)

566.5969

DW
-3.0706
(0.2910)

-5.2956
(1.9096)

β̂=1.6527
(0.1302)

564.157
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Figure 3.19: Histogram for the observed frequencies and expected frequencies from the
Poisson, NB and DW regression models for the strikes dataset.
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Figure 3.20: Q-Q plot of the random-
ized quantile residuals from the DW
regression model fitted to the strikes
dataset.
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Figure 3.21: Simulated envelope for
the randomized quantile residuals from
the DW regression model fitted to the
strikes dataset.

After fitting three regression models and comparing them via AIC, Table 3.6

shows that the DW model is only marginally superior to NB, but both DW and

NB give much better fit to the data than the Poisson regression model. Fig-

ure 3.17 and Figure 3.18 indicate a case of over-dispersion relative to the Poisson

across the whole range of covariates. Additionally, they indicate good fitting

by NB and DW. Figure 3.19 confirms the good fit of NB and DW. Finally,

Figure 3.20 and Figure 3.21 show that the residuals closely follow a normal dis-

tribution (Kolmogorov-Smirnov p-value 0.951), with few points falling outside

the simulated 95% envelope bounds.
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3.9.3 The case of excessive zeros: doctor visits from the

German health survey data

The following dataset illustrates the case of excessive zero counts. Thus, be-

sides the Poisson, NB, and DW regressions, we will also include zero-inflated and

hurdle models in the comparison. For these, we consider the logit link function

for the binomial distribution representing the probability of the extra zeros, using

R package pscl ((Zeileis et al., 2008)).

This dataset is available from the COUNT R package (Hilbe, 2014) name of bad-

health, comes from the German health survey and contains 1127 observations for

the number of visits to certain doctors during 1998. In addition, the data includes

two other variables: an indicator variable representing patients claiming to be in

bad health (1) or good health (0) and the age of the patient. The response vari-

able (number of visits) ranges from 0 to 40 visits to doctors throughout 1998,

with approximately 32% zeros, and thus it can be considered as a case of exces-

sive zeros. Indeed, the response has a sample mean of 2.3532 and a variance of

11.9818, suggesting over-dispersion. Also, the LRT between the NB and Poisson

returns a test statistic of 1165.3 and a p-value of < 0.001.
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Figure 3.22: The Mean-to-Variance
plot for the doctor visits from the Ger-
man health dataset, with the theoretical
Mean-to-Variance fitted by ZIP, ZINB,
NB and DW.
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Figure 3.23: Distribution of the ra-
tios of the observed and theoretical con-
ditional variance on the doctor visits
from the German health dataset, fitted
by the Poisson, ZIP, ZINB, NB and
DW.
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Table 3.7: MLEs, SEs (in parentheses) and AIC from the Poisson, NB and DW re-
gression models fitted to the doctor visits from the German health dataset.

intercept bad health age other AIC

Poisson
0.4470
(0.0714)

1.1083
(0.0462)

0.0058
(0.0018)

- 5638.552

NB
0.4041
(0.1308)

1.1073
(0.1116)

0.0070
(0.0034)

k̂=0.9975
(0.0693)

4475.285

Zero-inflated Models
Poisson

count model
0.6852
(0.0767)

0.8767
(0.0480)

0.0089
(0.0019)

-
5110.096

logit model
-1.4029
(0.2770)

-1.0996
(0.2947)

0.0142
(0.0070)

-

NB

count model
0.3482
(0.1322)

1.0415
(0.1142)

0.0100
(0.0036)

log(k̂)=0.1214
(0.1101) 4477.748

logit model
-5.5259
(1.7889)

-2.5277
(5.1685)

0.0658
(0.0321)

-

Hurdle Models

logit model
0.9678
(0.2324)

1.2629
(0.2889)

-0.0083
(0.0060)

- -

Poisson count model
0.6794
(0.0771)

0.8764
(0.0479)

0.0090
(0.0019)

- 5109.505

NB count model
0.1375
(0.1704)

1.0710
(0.1247)

0.0137
(0.0041)

log(k̂)=-0.0422
(0.1580)

4472.075

DW
-0.8999
(0.1088)

-0.8481
(0.1036)

-0.0004
(0.0028)

β̂=0.9887
(0.0265)

4474.974
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Figure 3.24: Histogram for the observed frequencies and expected frequencies from the
Poisson, NB, DW, ZIP and ZINB regression models for the doctor visits from the
German health dataset.
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Figure 3.25: Histogram of the random-
ized quantile residuals from the DW re-
gression model fitted to the doctor vis-
its from the German health dataset with
superimposed N(0,1) density.
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Figure 3.26: Simulated envelope for
the randomized quantile residuals from
the DW regression model fitted to the
doctor visits from the German health
dataset.

Table 3.7 shows the best fit for the DW and HNB regression models in terms of

their minimum AIC. For the figures, the results from the hurdle regression models

are not included, as they provide almost identical results to their corresponding

from zero-inflated models. Figure 3.22 and Figure 3.23 show a case of over-

dispersion relative to the Poisson across the full range of covariates and a good fit

for ZINB, NB and DW. We exclude the Poisson from the plot for visualization

purposes, as the VR values are large in this case. Additionally, Figure 3.24 shows

that the expected frequencies for ZINB, NB and DW are the closest to those

observed, while the Poisson and ZIP are a bit far away. This again confirms the

good fit of DW. For visualization purposes, the small number of observations

larger than 16 are grouped together in this plot.

As in the previous example, Figure 3.25 shows that the residuals of the DW

model are approximated by a normal distribution (Kolmogorov-Smirnov p-value

0.05927). In addition, in the simulated envelope in Figure 3.26, there are few

points that fall beyond the envelope bounds. Hence, this example shows how

DW can also model cases of excessive zeros, without the need for additional

parameters as in the zero-inflated models.
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3.9.4 The case of a mixed level of dispersion: bids data

In this section, we report the analysis of a dataset where a mixed level of

dispersion was observed, that is, the conditional distribution is over-dispersed

relative to the Poisson for some covariate pattern but is under-dispersed for an-

other covariate pattern. The data are taken from Cameron and Johansson (1997)

and are available in the Ecdat R package under the name of Bids. This dataset

records the number of bids received by 126 US firms that were targets of tender

offers during a certain period of time. The dependent variable here is the number

of bids, with a mean of 1.7381 and a variance of 2.0509. The objective of the

study is to investigate the effect of particular variables on the number of bids.

For this analysis, we consider the following covariates:

• bid price, taken as the price at a particular week divided by the price 14

working days before the bid,

• size, that is, the total book value of assets measured in billions of dollars,

• regulator, a dummy variable that is equal to 1 if there was an intervention

by federal regulators and 0 otherwise.
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Figure 3.27: The Mean-to-Variance
plot for the bids dataset, with the the-
oretical Mean-to-Variance fitted by NB
and DW.
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Figure 3.28: Distribution of the ratios
of the observed and theoretical condi-
tional variance on the bids dataset, fit-
ted by the Poisson, ZIP, ZINB, NB and
DW.
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Table 3.8: MLEs, SEs (in parentheses) and AIC from the Poisson, NB and DW re-
gression models fitted to the bids dataset.

intercept price size regulator other AIC

Poisson
1.5318
(0.5043)

-0.7849
(0.3775)

0.0362
(0.0175)

0.0547
(0.1567)

- 402.2602

NB
1.5276
(0.5174)

-0.7824
(0.3870)

0.0369
(0.0183)

0.0544
(0.1610)

k̂=33.3289
(63.3334)

403.9481

DW
-3.3933
(0.7257)

1.3119
(0.5006)

-0.1070
(0.0404)

-0.0568
(0.2216)

β̂=1.9403
(0.1365)

395.1214
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Figure 3.29: Histogram for the observed frequencies and expected frequencies from the
Poisson, NB and DW regression models for the bids dataset.
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Figure 3.30: Q-Q plot of the random-
ized quantile residuals from the DW re-
gression model fitted to the bids dataset.
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Figure 3.31: Simulated envelope for the
randomized quantile residuals from the
DW regression model fitted to the bids
dataset.
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Figure 3.27 and Figure 3.28 show a mixed level of dispersion relative to the

Poisson and NB, with most covariate patterns leading to under-dispersion, but

with a small number of over-dispersed cases. The DW model has a clearer dis-

tribution of VR values around 1. Figure 3.27, Figure 3.28 and Table 3.8 once

again show a very good fit of the DW regression model to these data, compared

to the Poisson and NB. Finally, from the Q-Q plot of the randomized residuals in

Figure 3.30, it can be seen that DW also fits the data well, with a Kolmogorov-

Smirnov p-value of 0.137 for the randomized quantile residuals. Additionally, few

points fall beyond the envelope bounds in Figure 3.31. However, the expected

frequencies in Figure 3.29 for the three different models are not the best for zero

and one. Hence, this example will be analyzed further in the following chapters,

based on modifications to the DW.

3.10 Concluding remarks

In this chapter a regression model based on a DW distribution is introduced

to directly model the count data that is affected by some explanatory variable.

Specifically, the pmf of the DW is generalized by allowing its parameter to be a

function of covariates through a link function. Thus, compared to the GLMs, in

which the conditional mean is central to inference and interpretation, the pro-

posed DW regression model has the advantage of modeling the whole conditional

density, including all conditional quantiles and any other properties that can be

easily extracted from the fitted model. In other words, for predicting some ob-

servation based on the DW regression model fitting, the full conditional fitted

distribution is considered instead of relying only on the conditional mean. This

is particularly useful since most count data have highly skewed distributions.

Within this regression context, DW model can be seen as a simple and unified

model for capturing different levels of dispersion in the data conditional on some

covariates, namely, under-dispersion and over-dispersion relative to the Poisson,

including the common case of excessive zeros.

A popular model for under-dispersion is the COM-Poisson regression model.

However, its pmf is not in a closed form and contains an infinite sum, which
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requires an approximate computation. In fact, its implementation, which was

used for some of the examples in this study, required more computational time

than the DW regression model, which uses a straightforward maximum likelihood

estimation procedure on a closed form pmf. This is particularly beneficial in the

case of large sample sizes.

While NB is the most applied model for over-dispersion, the DW regression model

is shown to be an attractive alternative for over-dispersion. In particular, several

examples in this study show that DW regression provides the best fitting model,

both in cases of over- and under-dispersion, and it is also able to capture situ-

ations with a mixed level of dispersion. In addition, the DW regression model

can be applied to data with an excessive number of zero counts without requiring

additional parameters, as in the case of zero-inflated or hurdle models.

The maximum likelihood approach has been used for the inference of the model.

Then, a simulation study was implemented for different cases of dispersion within

the regression context, to assess the performance of this model. The results of

the study show that the measurements of accuracy, bias and MSE, as well as

the length of the CI, are relatively close to zero and they decrease as the sample

size n increases. In addition, this model has been applied for different data sets

with varying ranges of dispersion. These applications show the well fitting and

performance of the DW regression models to these different types of data.



Chapter 4

Discrete Weibull Model for

Censored Data

4.1 Introduction

Censored count data can emerge in many applications where recording the

response variable is restricted. In other words, the dependent variable is available

for a limited range, but the covariate values are always observed. Then, applying

the full (standard) regression models discussed in the previous chapter, to this

type of data might result in inefficient inferences (see for example Brännäs (1992)).

Hence, this chapter is concerned with this case of censored data and develops

a CDW regression model for these situations. Particularly, right censoring is

considered to cut the observed count data to the right. Then, as a result, some

large response values are recorded as small, consequently affecting its distribution.

As mentioned before, the exact relation between the mean and variance for the

censored data case might be unknown. Hence, it would be useful to consider a

model with the ability to handle different levels of dispersion. Consequently, the

DW model is adjusted in this chapter for examining the censored data.

91
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4.2 Discrete Weibull regression model with right

censoring

The response variable Yi; (i = 1, . . . , n) might be censored from the right at a

value C for some observations in a sample. Then, the likelihood function of the

CDW regression model is given by:

L =
n∏

i=1

[(
e−exxx

′
iααα
)yβi

−
(
e−exxx

′
iααα
)(yi+1)β

]1−δci [(
e−exxx

′
iααα
)Cβ]δci

(4.1)

The log-likelihood can be written as follows:

` =
n∑

i=1

(1− δci) log
[(

e−yβi e
xxx′iααα
)
−
(
e−(yi+1)βexxx

′
iααα
)]

− Cβ

n∑
i=1

δcie
xxx′
iααα (4.2)

4.3 Maximum likelihood estimation

The parameters of the CDW are estimated in this section using the maximum

likelihood approach. Thus, the partial derivatives of the log-likelihood in Equa-

tion 4.2 with respect to each unknown parameter are found and then set to zero.

Hence, we obtain the following non-linear equations,

The first partial derivative of ` with respect to parameter β is obtained as follows:

∂`

∂β
=

n∑
i=1

−exxx
′
iααα(1− δci)

wci(β,ααα)

[
yβi e

−yβi e
xxx′iααα log(yi)− (yi + 1)βe−(yi+1)βexxx

′
iααα log(yi + 1)

]
−

Cβ log(C)
n∑

i=1

δcie
xxx′
iααα

The first partial derivative of ` with respect to parameter αp is obtained as follows:

∂`

∂αp

=
n∑

i=1

−xipe
xipαp(1− δci)

wci(β, αp)

[
yβi e

−yβi e
xipαp−(yi+1)βe−(yi+1)βexipαp

]
−Cβ

n∑
i=1

δcixipe
xipαp

where

wci(β,ααα) = e−yβi e
xxx′iααα − e−(yi+1)βexxx

′
iααα

As can be seen, the equations are not in closed form, that is, the system
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of these likelihood equations does not have an analytic solution. Therefore, an

iterative numerical method is required to find the numerical solutions of these

equations to yield the MLEs β̂ML, α̂ααML.

Then, the MLEs for the unknown parameters ααα and β can be obtained by max-

imizing the log-likelihood (Equation 4.2) numerically using any standard opti-

mization tool, such as optim in (R Core Team (2014)).

4.4 Simulation study

A simulation study is conducted in order to compare the full model, DW

in Equation 3.3, with the CDW in Equation 4.1 for censored data. A multiple

regression with two covariates is considered. The parameters that need to be

investigated in this simulation include the set of regression coefficients (α0, α1, α2)

and β, the parameter for the DW.

In chapter 2, the following was reported:

• If 0 < β ≤ 1 ⇒ over-dispersion.

• If β ≥ 2 ⇒ under-dispersion.

Thus, two values for the parameter β are selected to represent cases of under-

dispersion and over-dispersion, respectively, as, β1 = 2 and β2 = 0.8. Addition-

ally, the regression parameters are fixed for both cases to be (α0 = −2, α1 =

0.5, α2 = 0.3). Furthermore, the covariates X1 and X2 are generated from

unif(0, 1.5) and N(0, 1), respectively.

In this simulation study, different sample sizes are considered, specifically, n1 =

370, n2 = 500 and n3 = 1200. Additionally, different censoring constants, C,

are assumed. Then, using the above parameter vector and the corresponding

independent variables, X1 and X2, the sample y1, y2, . . . , yn is generated from the

DW regression model in Equation 3.3, with the following parameterss (qi, β):

qi = e−e−2+0.5X1i+0.3X2i (4.3)

The results of this study were based on 1000 repetitions for the simulation, in
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which for each iteration, a new sample Y is simulated and the XXX and parameter

vector are fixed.

Three fittings are conducted, as follows:

• complete: in this fitting, the complete sample Y is considered and modeled

by the DW regression model in Equation 3.3, that is, equivalently to chap-

ter 3.

Then, to investigate the censoring on a sample, a censored point is con-

sidered to cut this simulated sample, in which all the values yi ≥ C are

re-valued to be equal to C. Then, two cases are examined as follows:

• truncated : in this case, the censored sample yi = 0, 1, . . . , C is assumed to

be the complete sample and fitted by the standard DW regression model in

Equation 3.3, without any consideration for the censoring.

• censored : here, the developed model CDW in Equation 4.1 is considered

for analyzing the new censored sample yi = 0, 1, . . . , C.

In each iteration and for each fitting, the parameters α0, α1, α2 and β are esti-

mated using the maximum likelihood method, maximizing the log-likelihood in

Equation 3.8 for the complete and truncated data and maximizing Equation 4.2

for the censored case. Subsequently, the length of the 95% CIs for these estimated

parameters are calculated. In addition, the goodness of fit measurement, AIC,

is computed for each fitting in each iteration. Furthermore, the percentage of

censored Y observations are found for each iteration.

Afterwards, the 1000 values of the MLEs, CIs, goodness-of-fit measurements and

censoring percentages are found. Consequently, these MLEs are averaged, their

bias and MSEs are computed, in addition to the length of the 95% CIs are cal-

culated, and all these results are reported in Table 4.1 and Table 4.2 for under-

and over-dispersion, respectively.

It is observed from Table 4.1 and Table 4.2 that fitting the complete data

using the standard DW regression model and modeling the censored data by the

CDW regression model, i.e. the censored and complete cases are the best in

terms of bias. However, if the censoring is not taken into account and modeled
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by the standard model in Equation 3.3, as in truncated cases, the estimates are

highly biased, as shown in Table 4.1 and Table 4.2. In regards to the lengths

of the CIs, again, the complete and censored fittings provide the shortest length

for most of the cases. In addition, the censored models provide the best fit

in comparison to other fittings, regarding its minimum AIC. Then, the MLEs

from the censored models are much closer than those from the truncated models

to their corresponding MLEs from the complete DW case. That is, analyzing

the truncated (censored) data with the standard models without considering the

censoring may result in misleading fittings.

4.5 Numerical examples

To demonstrate the application of the CDW regression model, it is applied

in this section to different data sets that show various types of dispersions. As-

sorted popular censored count data regression models, namely, CP and CNB, are

applied by maximizing the log of the likelihood functions in Equation 1.11 and

Equation 1.12, respectively, using “optim” in (R Core Team (2014)). The MLEs

of these models are compared with that of the CDW regression model by means

of the classical AIC criterion. Additionally, the expected frequencies from each

model are compared with the observed frequencies. The purpose here is just to

demonstrate the CDW model and not to study the significance of the covariates.

The results in the tables are for the regression coefficients affecting the parameter

q, in Equation 3.2. The results here from censored models can be compared with

their correspondents from the full (standard) models in chapter 3.

4.5.1 The case of under-dispersion: inhaler use data

The under-dispersed data relative to the Poisson model in subsection 3.9.1

are applied here. Some censored points are considered and the CDW is applied.

The histogram in Figure 3.14 for the observed frequencies of the inhaler use data

shows that about 9.33% of the count variables are greater than or equal 3, and

about 1.80% are greater than or equal 4. Thus, two cut points are considered in
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this example, C1 = 3 and C2 = 4, to see the effect of censoring on the dataset.

CP, CNB and CDW are applied, and the results are summarized in Table 4.3.

Table 4.4: Observed and expected frequencies for the full, censored and truncated: DW
models for the inhaler dataset.

y 0 1 2 3 4 5 6
observed 972 2447 1304 392 86 5 3
full DW 1086.2 2228.0 1425.5 420.6 61.9 4.7 0.2
C=3

censored 1033.4 2281.5 1448.4 445.6 - - -
truncated 986.3 2355.7 1477.2 354.6 - - -

C=4
censored 1060.5 2237.1 1430.7 416.6 64.1 - -
truncated 1052.7 2247.1 1436.2 411.9 57.1 - -

4.5.2 The case of over-dispersion: strikes data

The dataset applied in subsection 3.9.2 is used here to show a case of over-

dispersed data relative to the Poisson with censoring. It can be seen from the

observed frequencies in Figure 3.19, that about 6.48% of the response variables

are greater than or equal to 11, and about 2.78% more than or equal to 15. As

an example, two censoring points are considered, C1 = 11 and C2 = 15, and the

results are reported in Table 4.5.
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Table 4.5: MLEs, SEs (in parentheses) and AIC from the truncated and censored:
Poisson, NB and DW regression models fitted to the strikes dataset.

MLE
(SE) goodness of fit

C
% model intercept economic activity other AIC
11

6.4815 % CP truncated
1.6167
(0.0430)

2.5793
(0.8135) - 590.1407

censored
1.6256
(0.0431)

2.6785
(0.8151) - 582.1582

CNB truncated
1.6168
(0.0648)

2.6545
(1.2298)

k̂=3.9459
(1.0441) 553.2221

censored
1.6489
(0.0699)

3.0281
(1.3201)

k̂=3.2308
(0.8077) 535.3486

CDW truncated
-3.2544
(0.3105)

-4.4024
(1.9057)

β̂=1.7814

(0.1441) 549.501

censored
-3.0942
(0.3038)

-4.8661
(1.9471)

β̂=1.6735

(0.1419) 533.1672
15

2.7778 % CP truncated
1.6473
(0.0424)

3.0240
(0.8050) - 619.8564

censored
1.6500
(0.0424)

3.0635
(0.8058) - 617.151

CNB truncated
1.6473
(0.0679)

3.1111
(1.2882)

k̂=3.3127
(0.7871) 564.1837

censored
1.6607
(0.0701)

3.3393
(1.3301)

k̂=3.0453
(0.7097) 556.2384

CDW truncated
-3.1103
(0.2954)

-5.1258
(1.9109)

β̂=1.6787

(0.1331) 561.4044

censored
-3.0361
(0.2926)

-5.3884
(1.9246)

β̂=1.6310

(0.1324) 554.2749

Table 4.6: Observed and expected frequencies for the full, censored and truncated: DW
models for the strikes dataset.

y 0 1 2 3 4 5 6 7 8 9 10 11 13 15 16 18
observed 5 12 14 11 9 14 9 4 7 10 6 1 3 1 1 1
full DW 5.2 10.2 12.5 13.1 12.5 11.3 9.7 8.0 6.4 5.0 3.9 2.9 1.6 0.8 0.6 0.3
C=11

censored 5.0 10.2 12.6 13.3 12.7 11.5 9.8 8.1 6.5 5.0 3.8 9.5 - - - -
truncated 4.3 9.7 12.7 13.9 13.6 12.3 10.5 8.5 6.6 5.0 3.6 2.5 - - - -
C=15

censored 5.4 10.4 12.5 13.0 12.3 11.1 9.5 7.9 6.4 5.0 3.9 2.9 1.6 2.8 - -
truncated 5.0 10.1 12.5 13.2 12.7 11.5 9.8 8.1 6.5 5.0 3.8 2.8 1.5 0.7 - -

4.5.3 The case of excessive zeros: doctor visits from the

German health survey data

The dataset in subsection 3.9.3 is considered to investigate the CDW for the

too many zeros response case. It can be seen from Figure 3.24 that around 2.4%

of the doctor visit numbers were greater than or equal to 13; additionally, around

1.9% were greater than or equal to 15. Thus, these two points, C1 = 13 and

C2 = 15, are considered here as cut points to make the data censored from the
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right. These results are shown in Table 4.7.

Table 4.7: MLEs, SEs (in parentheses) and AIC from the truncated and censored:
Poisson, NB and DW regression models fitted to the doctor visits from the German
health dataset.

MLE
(SE) goodness of fit

C
% model intercept bad health age other AIC
13

2.3957% CP truncated
0.5042
(0.0728)

1.0138
(0.0486)

0.0037
(0.0019) - 5238.444

censored
0.5057
(0.0728)

1.0273
(0.0487)

0.0036
(0.0019) - 5221.056

CNB truncated
0.4701
(0.1256)

1.0109
(0.1074)

0.0046
(0.0033)

k̂=1.1085
(0.0818) 4411.506

censored
0.4670
(0.1302)

1.1380
(0.1171)

0.0050
(0.0034)

k̂=1.0218
(0.0743) 4330.218

CDW truncated
-0.7486
(0.1107)

-0.9063
(0.1030)

-0.0042
(0.0028)

β̂=1.0330
(0.0282) 4412.001

censored
-0.7108
(0.1117)

-1.0033
(0.1096)

-0.0043
(0.0028)

β̂=0.9995
(0.0281) 4330.194

15
1.8634% CP truncated

0.5060
(0.0722)

1.0439
(0.0478)

0.0039
(0.0019) - 5359.644

censored
0.5061
(0.0723)

1.0523
(0.0479)

0.0039
(0.0019) - 5347.35

CNB truncated
0.4657
(0.1270)

1.0406
(0.1087)

0.0049
(0.0033)

k̂=1.0651
(0.0768) 4435.997

censored
0.4584
(0.1307)

1.1429
(0.1165)

0.0054
(0.0034)

k̂=1.0001
(0.0714) 4370.781

CDW truncated
-0.7285
(0.1104)

-0.9232
(0.1031)

-0.0043
(0.0028)

β̂=1.0164
(0.0275) 4436.323

censored
-0.6948
(0.1112)

-0.9996
(0.1082)

-0.0045
(0.0028)

β̂=0.9898
(0.0275) 4370.528

4.6 Concluding remarks

The right censored scheme is applied for the DW regression model. This

modification explains a case where some censored point C is considered for all

values of response count y greater than or equal to this point. Then, for this

type of count data, the CDW regression model is developed in this study. Some

simulation studies and numerical examples with different levels of dispersion have

been studied to investigate the performance of the CDW.

This developed CDW regression model can be compared with the full DW model,
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in which the DW is applied to the complete data sets without censoring. Then,

some censored points are chosen to cut the data from the right. Consequently, the

full DW model has been considered to fit this censored dataset, without taking

the censoring into account, which is referred to as truncated. Next, the censored

data is modeled using the CDW regression model.

In the simulation study, the MLEs for the censored model are very similar to the

corresponding MLEs from the full model. Also, from the numerical applications,

the AIC from the CDW is smaller than that from the CP and CNB. In terms of

the expected frequencies, the CDW provides expected frequencies much closer to

the observed in comparison to the truncated fitting, especially for the censored

points. On the other hand, applying the full DW model for this case of censored

data provides a poor fitting. In other words, in the case with censored data,

ignoring the censoring and analyzing it with the standard (full) model may result

in misleading estimates. Thus, if there is censoring in the data, a censored model

should be applied in the analysis. In such cases, the CDW may provide better

results.



Chapter 5

Discrete Weibull Regression with

Excess Zero Counts

5.1 Introduction

In this chapter, the issues with the too many zeros response are investigated.

Some studies may be more interested in predicting the frequency of zeros, and

hence additional care is required to choose the applied model. It seems that the

counts in these experiments are generated by two different mechanisms for zeros

and non-zeros in the data. Although the DW model can be considered as a good

model to fit data with a zero-inflated count, a modified method should be ap-

plied when the aim is to distinguish between zero and non-zero data-generating

processes, which can be explained using mixture models, especially zero-inflated

and hurdle models.

Even though the ZIP, ZINB, HP and HNB are the most commonly applied mod-

els for this case of zero-inflation in the response variable, these models are not

ideal if the data presents under-dispersion. This is because the Poisson and NB

are mainly applied for equi- and over-dispersion cases. However, some data ap-

pear to be equi- or over-dispersed, but in fact this may be a mixture of different

levels of dispersion. This case is common with zero-inflated data; while this ex-

cess of zeros increase the over-dispersion for the data and could hide the fact

that in some cases the data are under-dispersed. In other words, the overall

104
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structure of the dispersion could be different than the dispersion pattern within

the subpopulations and non-zero counts (Tin (2008)). For instance, Sáez-Castillo

and Conde-Sánchez (2015) considered the zero-inflated hyper-Poisson, which can

handle the over- and under-dispersion within these subclasses. The case of zero

inflation with the potential of a mixed level of dispersion within the data is ex-

plained further in section 5.2. Then, if a one-part model would be applied for the

whole data, a model that can cope with the over-dispersion is suggested to apply.

Whereas, if the interest is to have a two-part model, which is one part for zeros

and the other for the non-zeros, it is important to apply a zero-inflation (two-

part) model with a count modeling process that has the ability to reflect different

cases of dispersion. Hence, the DW model is considered and two extensions for

this model, ZIDW and HDW, are presented for the case of excessive zeros.

Moreover, this chapter develops two modifications of this ZIDW and HDW,

namely, CZIDW and CHDW to consider a case of censored count response with

too many zeros. Additionally, censoring from the right might reduced the over-

dispersion in the data caused by containing too many zeros.

5.2 Zero-inflated discrete Weibull

Considering the DW distribution in Equation 2.2 as a parent model with a

probability of zero fp(0) = 1 − q, that from Equation 1.15 the likelihood of the

ZIDW can be found as follows:

L =
n∏

i=1

[πi + (1− πi) (1− qi)]
δzi

[
(1− πi)

(
q
yβi
i − q

(yi+1)β

i

)]1−δzi
(5.1)

Then, using πi ≡ π(zzzi) in Equation 1.16 and qi ≡ q(xxxi) in Equation 3.2, the

log-likelihood can be found as:

` =
n∑

i=1

δzi log

{(
e−zzz′iγγγ + 1

)−1

+

[
1−

(
e−zzz′iγγγ + 1

)−1
](

1− e−exxx
′
iααα
)}

+

n∑
i=1

(1− δzi) log

{[
1−

(
e−zzz′iγγγ + 1

)−1
](

e−yβi e
xxx′iααα − e−(yi+1)βexxx

′
iααα
)} (5.2)
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where δz is defined in Equation 1.14.

The set of covariatesXXX i = {xi1, xi2, . . . , xiP1} that affect q may or may not be the

same as the covariates ZZZi = {zi1, zi2, . . . , ziP2} that affect π, where P1 and P2 are

the number of covariates for q and π, respectively. However, in this study they

are assumed to be the same, that is, XXX = ZZZ with P1 = P2 = P .

5.2.1 Maximum likelihood estimation

The parameters (β,ααα,γγγ) can be estimated using the maximum likelihood

method. The partial derivatives of the log-likelihood in Equation 5.2 with re-

spect to each unknown parameter are found and then set to be equal to zero.

That is for p, l = 1, 2, . . . , P :

∂`

∂β
=

n∑
i=1

(δzi − 1) exxx
′
iααα
[
1−

(
e−zzz′iγγγ + 1

)−1
]

wz2i(β,ααα,γγγ)
×[

yβi e
−yβi e

xxx′iααα log (yi)− (yi + 1)β e−(yi+1)βexxx
′
iααα log (yi + 1)

] (5.3)

∂`

∂αp

=
n∑

i=1

δzi

[
1−

(
e−zzz′iγγγ + 1

)−1
]

wz1i(γγγ, αp)

[
xipe

xipαp−exipαp
]
+

n∑
i=1

(δzi − 1)xipe
xipαp

[
1−

(
e−zzz′iγγγ + 1

)−1
]

wz2i(β,γγγ, αp)

[
yβi e

−yβi e
xipαp − (yi + 1)β e−(yi+1)βexipαp

]
(5.4)

∂`

∂γl
=

n∑
i=1

δzizile
−zilγl (e−zilγl + 1)

−2

wz1(γl,ααα)
e−exxx

′
iααα+

n∑
i=1

(δzi − 1) zile
−zilγl (e−zilγl + 1)

−2

wz2i(β, γl,ααα)

[
e−yβi e

xxx′iααα − e−(yi+1)βexxx
′
iααα
] (5.5)

with

wz1i(γγγ,ααα) =
(
e−zzz′iγγγ + 1

)−1

+

[
1−

(
e−zzz′iγγγ + 1

)−1
](

1− e−exxx
′
iααα
)

wz2i(β,γγγ,ααα) =

[
1−

(
e−zzz′iγγγ + 1

)−1
](

e−yβi e
xxx′iααα − e−(yi+1)βexxx

′
iααα
) (5.6)



CHAPTER 5. DISCRETE WEIBULL REGRESSION WITH EXCESS ZERO
COUNTS 107

The above equations are not in closed form, and their system do not have an

analytic solution. Therefore, a numerical method is required to find the numer-

ical solution of the log-likelihood equation in Equation 5.2, to yield the MLEs,

β̂ML, α̂ααML and γ̂γγML.

5.2.2 Simulation study

There are two objectives in the following simulation study. First, it shows

that the excessive zero data might exhibit a different pattern in regard to data

dispersion. In addition, it evaluates the performance of the MLEs for the ZIDW

regression model.

Different sample sizes n1 = 70, n2 = 150 and n3 = 500 and n4 = 1000 are

considered. A single regression with one predictor is examined. As mentioned

before, this study assumes that a similar set of covariates affect both q and π, that

is, XXX is equivalent to ZZZ. All the results are based on an average over 1000 repe-

titions. In each iteration, MLEs and the asymptotic two-sided CIs are computed

using “optim” in R. The simulation follows these steps:

• Step 1: Generate random samples with size n to present the covariate from

the uniform distribution with parameters (0, 1.5).

• Step 2: The true values of the parameters are chosen to be:

– The regression parameters are assumed to be as follows:

ααα = (α0, α1) = (−2,−1.7)

γγγ = (γ0, γ1) = (1.5,−0.9)

– The shape parameter β of the DW is supposed to be β = 2.2.

– Then, q and π can be calculated for each XXX respectively, as in Equa-

tion 3.2 and Equation 1.16.

• Step 3: Use the following as initial values:



CHAPTER 5. DISCRETE WEIBULL REGRESSION WITH EXCESS ZERO
COUNTS 108

� (−α) from the Poisson regression fitting, for (α)

� (−α) from the Poisson regression fitting, for (γ)

� The MLE for (β) from fitting Y using the unconditional DW distribution,

for (β)

Then, for each sample size n, the simulations are conducted, in which for

each iteration (1 : 1000) the following is done:

– generate a random sample from the population whose pmf is given by

Equation 5.1, as follows:

∗ Simulate a random number U from uniform distribution U(0, 1).

Then,

∗ If U ≤ πi,

set yi = 0, otherwise

generate yi from DW with parameters qi and β.

– Fit this data by ZIP and ZINB using the “pscl” package in R (Jackman

(2008)), and find their AICs.

– Using the initial values discussed above, the MLEitr of the param-

eters ααα, γγγ and β, denoted as θ̂itr, is computed by maximizing the

log-likelihood function in Equation 5.2, using “optim” in R.

– In addition to the MLEsitr, the lower-limit LLitr and upper-limit ULitr

of the 95% CIs for each MLE are determined.

• Step 4: The above three steps are repeated 1000 times.

To investigate the possibility of the data experiencing different levels of dis-

persion, a sample from one of the iterations for n = 500 is considered. Then,

Figure 5.1 shows that for a simulated zero-inflated sample that the overall pat-

tern for the relation between the observed mean and variance can be different

than the pattern for its subgroup. In other words, the left figure shows the over-

all dispersion, that is, when all cases are considered, seems to be over-dispersed

relative to the Poisson. From the right plot, it can be seen that in the cases
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with at least one response, that is, where the zeros are not included, then the

dispersion structure would be different.

Subsequently, 1000 values of the MLEs and their CIs bounds are found. The

average of these values is computed to obtain the MLEs of the unknown param-

eters. Furthermore, the average of each lower and upper bound for the CIs are

calculated. Consequently, the lengths of these asymptotic CIs are found. Addi-

tionally, the average of the AICs for each model is found. Then, the estimators

are evaluated using the bias and MSE, respectively. These measurements show a

good behavior for the MLEs for the ZIDW. In addition, the best fitting among

the ZIP, ZINB and ZIDW models can be regarded as the one with the minimum

AIC. These results are displayed in Table 5.1.
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Figure 5.1: The overall pattern for the relation between the observed mean and variance
for a sample simulated by ZIDW regression model (on the left), and the pattern for this
sample’s subgroup (on the right).
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Table 5.1: MLEs based on the simulation study for the ZIDW regression model with
true parameters ααα = (−2,−1.7), γγγ = (1.5,−0.9) and β = 2.2.

n parameter MLE Bias MSE Length

70

α0 -2.2017 0.2017 0.715 2.9911
α1 -1.8957 0.1957 0.5432 2.4727
γ0 1.1159 0.3841 0.2081 2.4272
γ1 -0.6466 -0.2534 0.1096 2.5337
β 2.4428 -0.2428 0.3275 1.8732

ZIP AIC=194.1823 ZINB AIC=195.099 ZIDW AIC=194.1542

150

α0 -2.0587 0.0587 0.3479 2.1623
α1 -1.8339 0.1339 0.2418 1.7536
γ0 1.6062 -0.1062 0.0317 1.673
γ1 -1.0257 0.1257 0.0303 1.7246
β 2.3176 -0.1176 0.1371 1.2905

ZIP AIC=372.9154 ZINB AIC=372.8397 ZIDW AIC=371.8752

500

α0 -2.0341 0.0341 0.1014 1.1975
α1 -1.739 0.039 0.0612 0.9662
γ0 1.6323 -0.1323 0.0234 0.9199
γ1 -0.9653 0.0653 0.0088 0.9666
β 2.244 -0.044 0.0346 0.7056

ZIP AIC=1177.069 ZINB AIC=1174.391 ZIDW AIC=1172.021

1000

α0 -2.0208 0.0208 0.0396 0.7827
α1 -1.7173 0.0173 0.0254 0.6288
γ0 1.4701 0.0299 0.0037 0.6095
γ1 -1.001 0.1014 0.0125 0.6568
β 2.2231 -0.0231 0.0148 0.4693

ZIP AIC=2528.186 ZINB AIC=2520.54 ZIDW AIC=2514.935

5.3 Hurdle discrete Weibull

From Equation 1.19 with fp(y) is the DW, and the probability of Y being zero

is fp(0) = 1− q, then, the zero truncated DW can be defined as
qy

β − q(y+1)β

q
.

Thus, from Equation 1.20, the response variable Y in the HDW has the following

likelihood:

L =
n∏

i=1

[πi]
δzi [1− πi]

1−δzi

n∏
i=1

qyβii − q
(yi+1)β

i

qi

1−δzi

(5.7)

where, qi ≡ q(xxxi) and πi ≡ π(zzzi) are related to some covariates, and these sets

may or may not be the same. For this study, we make the same assumptions

as for the ZIDW, where, XXX = ZZZ with a different regression parameter, as in
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Equation 3.2 and Equation 1.16.

Then, the log-likelihood can be found as follows:

` = `1(γ) + `2(β, α) (5.8)

where

`1(γ) =
n∑

i=1

(1− δzi) log

[
1−

(
e−zzz′iγγγ + 1

)−1
]
−

n∑
i=1

δzi log
(
e−zzz′iγγγ + 1

)
`2(β, α) =

n∑
i=1

(1− δzi) log
[
e−yβi e

xxx′iααα − e−(yi+1)βexxx
′
iααα
]
+

n∑
i=1

(1− δzi) e
xxx′
iααα

Thus, it can be seen that the log-likelihood for the binary process, `1(γ), can

be specified independently of the log-likelihood for the truncated count model,

`2(β, α).

5.3.1 Maximum likelihood estimation

The estimation of the parameters (β,ααα,γγγ) can be obtained using the maximum

likelihood method. Thus, the partial derivatives of the log-likelihood, following

Equation 5.8, are obtained for each parameter. The first partial derivative of `

with respect to parameter β is:

∂`

∂β
=

n∑
i=1

(δzi − 1) exxx
′
iααα

wh2(β,ααα)

[
yβi e

−yβi e
xxx′iααα log(yi)− (yi + 1)β e−(yi+1)βexxx

′
iααα log (yi + 1)

]
The first partial derivative of ` with respect to parameter ααα is:

∂`

∂αp

=
n∑

i=1

(δzi − 1)xipe
xipαp

wh2(β, αp)

[
yβi e

−yβi e
xipαp − (yi + 1)β e−(yi+1)βexipαp

]
+

n∑
i=1

(1− δzi)xipe
xipαp

The first partial derivative of ` with respect to parameter γγγ is:

∂`

∂γl
=

n∑
i=1

(δzi − 1) zile
−zilγl (wh1(γl))

−2

1− (wh1(γl))
−1 +

n∑
i=1

δzizile
−zilγl

wh1(γl)
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where

wh1i(γ) = e−zzz′iγγγ + 1

wh2i(β, α) = e−yβi e
xxx′iααα − e−(yi+1)βexxx

′
iααα

(5.9)

These derivatives cannot be obtained analytically, and a numerical tool is required

to obtain the MLEs of the unknown parameters. Optimizing the log-likelihood

in Equation 5.8 can be considered. Then, the joint log-likelihood, `, can be opti-

mized by maximizing its two parts separately. Hence, using any of the standard

optimization tools, the MLEs for the unknown parameters γγγ can be obtained

by numerically maximizing the log-likelihood `1(γ). Additionally, by numerically

maximizing the log-likelihood `2(β, α), the MLEs for ααα and β can be obtained.

5.3.2 Simulation study

A simulation study, is conducted to evaluate the performance of the MLEs of

the HDW regression model. The same assumptions as in the ZIDW simulation

study are considered here for HDW. Different sample sizes and a single regression

with one predictor are considered. In addition, XXX and ZZZ are the same. All the

results are based on an average over 1000 repetitions. In each iteration, MLEs

and the asymptotic two-sided CIs are computed using “optim” in R. Following

McDowell et al. (2003), the simulation is applied as follows:

• Step 1: Generate a random samples with size n to present the covariate

from the uniform distribution with parameters (0, 1.5).

• Step 2: The true values of the parameters are assumed to be as men-

tioned earlier for the ZIDW. Then, q and π can be calculated for each XXX

respectively, as in Equation 3.2 and Equation 1.16.

• Step 3: Using the true values in Step 2 and for each sample size n, the

simulation is conducted, and for each iteration (1 : 1000),

– generate random samples from the population whose pmf is given by

Equation 5.7, as follows:
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∗ Simulate a sample from the zero-truncated DW, called trunc, in

such a way that a sample from DW, with the parameters (qi, β),

is generated. Then, if a zero is simulated, drop it and re-sample

again until a non-zero sample is generated.

∗ Generate a random sample, called bern, from a Bernoulli, with

the parameter (1− π).

∗ Then, the sample from HDW, Y , can be repopulated, in which

y = 0 if bern = 0; otherwise, y = trunc.

– Fit this data by HP using the “pscl” package in R (Jackman (2008)).

– Minus the regression coefficients from the HP model are assumed to

be the initial values for ααα, γγγ, and the MLE for β from the uncondi-

tional DW distribution as initial value for β. Then, the MLEsitr of the

parameters ααα, γγγ and β, which are denoted as θ̂itr, are computed by

maximizing the two log-likelihood functions in Equation 5.8 separately,

using “optim” in R.

– In addition to the MLEsitr, the lower-limit LLitr and upper-limit ULitr

of the 95% CIs for each MLE are determined.

• Step 4: The three steps above are repeated 1000 times.

Subsequently, 1000 values of the MLEs and their CIs bounds are found. The av-

erage of these values is computed to obtain the MLEs of the unknown parameter.

Furthermore, the average of each lower and upper bound for the CI is calculated.

Consequently, the lengths of these asymptotic CIs are found.

Then, the estimators are evaluated using the bias and MSE, respectively. Addi-

tionally, the average of the AICs for HP, HNB and HNB are found. The best

fitting model is the one with the minimum AIC. The results are displayed in

Table 5.2, showing a good performance for the MLEs.
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Table 5.2: MLEs based on the simulation study for the HDW regression model with true
parameters ααα = (−2,−1.7), γγγ = (1.5,−0.9) and β = 2.2.

n parameter MLE Bias MSE Length

70

α0 -2.2086 0.2086 0.8831 3.2912
α1 -1.9114 0.2114 0.6963 2.7456
γ0 1.5634 -0.0634 0.4455 2.4837
γ1 -0.9573 0.0573 0.4871 2.6001
β 2.4654 -0.2654 0.3861 1.9701

HP AIC=184.2689 HNB AIC=185.2339 HDW AIC=184.3379

150

α0 -2.11 0.11 0.3138 2.0883
α1 -1.8074 0.1074 0.2032 1.6854
γ0 1.5256 -0.0256 0.1681 1.5455
γ1 -0.9199 0.0199 0.1896 1.6403
β 2.3333 -0.1333 0.1335 1.282

HP AIC=381.9166 HNB AIC=382.0269 HDW AIC=380.7658

500

α0 -2.0387 0.0387 0.0856 1.118
α1 -1.7318 0.0318 0.0571 0.8975
γ0 1.4993 0.0007 0.046 0.8403
γ1 -0.8981 -0.0019 0.0524 0.909
β 2.2424 -0.0424 0.0348 0.6768

HP AIC=1254.709 HNB AIC=1251.69 HDW AIC=1248.902

1000

α0 -2.0098 0.0098 0.0405 0.783
α1 -1.7128 0.0128 0.0259 0.6272
γ0 1.5004 -0.0004 0.021 0.5792
γ1 -0.8983 -0.0017 0.0258 0.6366
β 2.2151 -0.0151 0.016 0.4786

HP AIC=2471.745 HNB AIC=2464.401 HDW AIC=2458.939

5.4 Numerical examples

In this section, a data with a too many zeros response are analyzed using the

zero-inflated and hurdle models. For the Poisson and NB, their zero-inflated and

hurdle models are applied using the pscl package.

5.4.1 Fish data

This dataset was collected by state wildlife biologists, who were interested

in studying the number of fish caught by fisherman in a particular park. The

data is available at http://www.ats.ucla.edu/stat/r/dae/zipoisson.htm and have

been analyzed in some articles, including Saffari and Adnan (2011) and Saffari
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et al. (2012). In this study, 250 visitors were asked whether or not they brought

a camper on the visit (camper=1 or camper=0 ), how many persons took part

in the visit (persons), how many children took part in the visit (child) and how

many fish were caught (count).

The effect of the three predictors, camper, persons, and child, on the response

variable count is investigated using ZIP, ZINB, ZIDW, HP, HNB and HDW.

This is due to the excessive zeros in the count response variable since few visitors

caught any fish. The MLEs for the parameters are shown in Table 5.3 and

Table 5.4.
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Figure 5.2: Histogram for the observed frequencies for the fish dataset.

Table 5.3: MLEs, SEs (in parentheses) and AIC from the zero-inflated: Poisson, NB
and DW regression models for the fish dataset.

intercept camper persons child other AIC
logit-ZIDW

count model
0.5400
(0.2709)

-0.1426
(0.2158)

-0.6828
(0.1029)

0.8736
(0.1975)

β̂=0.8097
(0.0780) 814.2158

zero model
1.9025
(0.9813)

-2.4910
(1.1028)

-1.4571
(0.5662)

2.9433
(0.8568)

-

logit-ZIP

count model
-0.7983
(0.1708)

0.7243
(0.0931)

0.8290
(0.0440)

-1.1367
(0.0930)

-
1521.463

zero model
1.6636
(0.5155)

-0.8336
(0.3527)

-0.9228
(0.1992)

1.9046
(0.3261)

-

logit-ZINB

count model
-1.6177
(0.3202)

0.3856
(0.2461)

1.0901
(0.1117)

-1.2613
(0.2473)

log(k̂)=-0.5929
(0.1580) 809.0788

zero model
-11.9920
(64.4408)

-10.7704
(64.3725)

0.2902
(0.7314)

10.9517
(64.3569)

-
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Table 5.5: Observed and expected frequencies for the standard, zero-inflated and hurdle:
Poisson, NB and DW regression models for the fish dataset.

model observed DW Poisson NB ZIDW ZIP ZINB HDW HP HNB
0 142 144.8 94.6 139.5 146.0 142.1 141.6 142.0 142.0 142.0
1 31 33.4 56.1 38.1 26.5 16.2 33.9 34.6 16.8 33.2
2 20 17.2 28.7 18.6 16.2 15.9 18.2 17.8 16.0 17.7
3 12 10.7 15.9 11.1 11.0 13.0 11.2 11.0 12.8 11.1
4 6 7.3 9.9 7.3 8.0 9.9 7.6 7.5 9.7 7.7
5 10 5.3 6.7 5.2 6.0 7.5 5.4 5.5 7.4 5.6
6 4 4.0 4.9 3.9 4.7 5.9 4.1 4.1 5.7 4.3
7 3 3.2 3.9 3.0 3.8 4.7 3.2 3.3 4.7 3.4
8 2 2.6 3.3 2.4 3.1 4.0 2.6 2.6 3.9 2.7
9 2 2.1 2.9 2.0 2.6 3.5 2.1 2.2 3.5 2.2
10 1 1.8 2.6 1.7 2.2 3.1 1.8 1.8 3.1 1.9
11 1 1.5 2.2 1.4 1.9 2.8 1.5 1.6 2.8 1.6
13 1 1.1 1.3 1.1 1.4 2.0 1.2 1.2 2.0 1.2
14 1 1.0 0.9 0.9 1.2 1.6 1.0 1.0 1.6 1.1
15 2 0.9 0.6 0.8 1.1 1.2 0.9 0.9 1.3 0.9
16 1 0.8 0.5 0.7 1.0 1.0 0.8 0.8 1.0 0.8
21 2 0.5 0.5 0.5 0.6 0.8 0.5 0.5 0.8 0.5
22 1 0.4 0.6 0.4 0.5 0.8 0.5 0.4 0.8 0.5
29 1 0.3 0.9 0.2 0.3 0.7 0.3 0.3 0.8 0.3
30 1 0.2 0.8 0.2 0.3 0.6 0.3 0.2 0.6 0.2
31 1 0.2 0.8 0.2 0.3 0.5 0.2 0.2 0.5 0.2
32 2 0.2 0.6 0.2 0.2 0.4 0.2 0.2 0.4 0.2
38 1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2
65 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
149 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AIC - 805.6505 1682.145 820.444 814.2158 1521.463 809.0788 803.9418 1519.236 808.318

Table 5.4: MLEs, SEs (in parentheses) and AIC from the hurdle: Poisson, NB and
DW regression models for the fish dataset.

intercept camper persons child other AIC
hurdle models

binomial-logit model
2.3087
(0.4612)

-1.0179
(0.3246)

-1.1104
(0.1911)

2.1380
(0.3107)

- -

HDW
count model

1.1552
(0.3503)

-0.3201
(0.2100)

-0.6081
(0.1050)

0.7158
(0.2039)

β̂=0.6193
(0.1053) 803.9418

HP
count model

-0.8262
(0.1723)

0.7336
(0.0934)

0.8348
(0.0441)

-1.1390
(0.0929)

-
1519.236

HNB
count model

-1.6215
(0.5960)

0.3746
(0.3360)

1.0029
(0.1551)

-1.0945
(0.3198)

log(k̂)=-1.0530
(0.4974) 808.318

5.4.2 The case of a mixed level of dispersion: bids data

As mentioned earlier, the expected frequencies based on the DW model for the

data in subsection 3.9.4 were not perfectly acurate. Thus, this data is analyzed

again here using the zero-inflated and hurdle models.
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Table 5.6: Observed and expected frequencies for the zero-inflated and hurdle: Poisson,
NB and DW regression models for the bids dataset.

model observed ZIDW ZIP ZINB HDW HP HNB
0 9 20.78 23.4 24.4 9.0 9.0 9.0
1 63 40.8 38.3 38.1 64.1 55.9 64.7
2 31 33.7 32.3 31.5 28.4 35.2 28.0
3 12 18.3 18.8 18.4 12.8 16.3 12.5
4 6 7.6 8.5 8.5 5.9 6.3 5.8
5 1 2.7 3.2 3.4 2.8 2.2 2.8
6 2 1.0 1.1 1.2 1.4 0.7 1.4
7 1 0.4 0.3 0.4 0.7 0.2 0.7
8 0 0.2 0.1 0.1 0.4 0.1 0.4
9 0 0.2 0.0 0.0 0.2 0.0 0.2
10 1 0.1 0.0 0.0 0.1 0.0 0.1
AIC - 403.1906 410.2602 411.9481 373.4775 385.3196 373.9456

Hence, it can be seen from Table 5.6, that the HDW and HNB provide the

closest expected frequencies to those that are observed. This could be as a result

of the structure for these models that depends on mixture components.

5.5 Discrete Weibull excessive zero with right

censored count models

In this section, CZIDW and CHDW are investigated to cope with the censored

response with too many zero counts as follows:

5.5.1 Censored zero-inflated discrete Weibull model

From Equation 1.15, Equation 1.10 and Equation 2.2, the likelihood of the

ZIDW regression model with a right censored count data can be formed as follows:

L =
n∏

i=1

{
[πi + (1− πi) (1− qi)]

δzi

[
(1− πi)

(
q
yβi
i − q

(yi+1)β

i

)]1−δzi
}1−δci

{
1−

[
πi + (1− πi)

(
1− qC

β

i

)]}δci

(5.10)
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Then, using π in Equation 1.16 and q in Equation 3.2, the log-likelihood can be

found as:

` =
n∑

i=1

(1− δci) δzi log

{[(
e−zzz′iγγγ + 1

)−1
]
+

[
1−

(
e−zzz′iγγγ + 1

)−1 (
1− e−exxx

′
iααα
)]}

+

n∑
i=1

(1− δci) (1− δzi) log

[
1−

(
e−zzz′iγγγ + 1

)−1
]
+

n∑
i=1

(1− δci) (1− δzi) log
[
e−yβi e

xxx′iααα − e−(yi+1)βexxx
′
iααα
]
+

n∑
i=1

δci log

{
1−

[(
e−zzz′iγγγ + 1

)−1

+

[
1−

(
e−zzz′iγγγ + 1

)−1
](

1− e−Cβexxx
′
iααα
)]}

(5.11)

where δc and δz are defined in Equation 1.9 and Equation 1.14, respectively.

5.5.1.1 Maximum likelihood estimation

In order to estimate the unknown parameters (β,ααα,γγγ), the partial derivatives

of log-likelihood in Equation 5.11, for p, l = 1, 2, . . . , P , are found as follows:

∂`

∂β
=

n∑
i=1

(δci − 1) (1− δzi) e
xxx′
iααα

wh2(β,ααα)

{
yβi e

−yβi e
xxx′iααα log(yi)− (yi + 1)βe−(yi+1)βexxx

′
iααα log(yi + 1)

}
+

n∑
i=1

−δci
wcz4(β,ααα,γγγ)

Cβe−Cβexxx
′
iααα+xxx′

iααα log(C)

[
1−

(
e−zzz′iγγγ + 1

)−1
]

∂`

∂αp

=
n∑

i=1

(δci − 1) δzi
wz1(αp, γγγ)

[
xipe

−exipαp+xipαp

(
e−zzz′iγγγ + 1

)−1
]
+

n∑
i=1

(δci − 1) (1− δzi)xipe
xipαp

wh2(β, αp)

[
yβi e

−yβi e
xipαp − (yi + 1)βe−(yi+1)βexipαp

]
+

n∑
i=1

−δci
wcz4(β, αp, γγγ)

xipC
βe−Cβexipαp+xipαp

[
1−

(
e−zzz′iγγγ + 1

)−1
]
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∂`

∂γl
=

n∑
i=1

(1− δci) δzi
wz1(ααα, γl)

zil
(
e−zilγl + 1

)−2
e−exxx

′
iααα−zilγl+

n∑
i=1

(δci − 1) (1− δzi)

1− (wh1(γl))
−1 zile

−ziγl
(
e−zilγl + 1

)−2
+

n∑
i=1

−δci
wcz4(β,ααα, γl)

zil
(
e−zilγl + 1

)−2
e−Cβexxx

′
iααα−zilγl

where

wcz4(β,ααα,γγγ) = 1−[(
e−zzz′iγγγ + 1

)−1

+

[
1−

(
e−zzz′iγγγ + 1

)−1
](

1− e−cβexxx
′
iααα
)] (5.12)

wz1(α, γ), wh1(γ), wh2(β, α) can be found, respectively in, Equation 5.6 and

Equation 5.9. The above equations cannot be found in a closed form system,

which requires a numerical solution to find the MLEs of the unknown parameter

(β,ααα,γγγ).

5.5.1.2 Simulation study

A simulation study to evaluate the CZIDW regression model has been con-

ducted. Different sample sizes are considered, n1 = 370, n2 = 500, n3 = 1200,

with different censoring points. This study depends on the same algorithm as

in subsection 5.2.2, under the censoring scheme consideration.

The data are generated from a ZIDW, then a censored point will be considered to

cut this sample from the right, and this censored data is fitted by Equation 5.10.

That is, Equation 5.11 is optimized using the same initial values as in subsec-

tion 5.2.2 and the results are shown in Table 5.7.
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Table 5.7: MLEs based on the simulation study for the CZIDW regression model with
true parameters ααα = (−2,−1.7), γγγ = (1.5,−0.9) and β = 2.2.

n parameter MLE Bias MSE Length

370

α0 -2.0189 0.0189 0.2068 1.7711
α1 -1.7551 0.0551 0.0981 1.1482
γ0 1.4485 0.0515 0.0131 1.0385
γ1 -0.827 -0.073 0.0124 1.0936
β 2.2434 -0.0434 0.0849 1.1224

C=6 , (7.5959)%

500

α0 -2.0068 0.0068 0.1712 1.5887
α1 -1.7401 0.0401 0.0701 1.0331
γ0 1.6242 -0.1242 0.0227 0.9356
γ1 -0.96 0.06 0.0088 0.9743
β 2.2278 -0.0278 0.0682 0.9817

C=6 , (7.539)%

1200

α0 -2.0117 0.0117 0.0583 0.9482
α1 -1.7176 0.0176 0.0253 0.6139
γ0 1.3456 0.1544 0.0268 0.5618
γ1 -0.7398 -0.1602 0.0278 0.603
β 2.2185 -0.0185 0.0246 0.605

C=6 , (7.4863)%

5.5.2 Censored hurdle discrete Weibull model

The HDW regression model with right censoring can be formulated with like-

lihood as follows:

L =
n∏

i=1

[πi]
δzi [1− πi]

1−δzi

qyβii − q
(yi+1)β

i

qi

1−δzi


1−δci

{
1−

[
πi + (1− πi)

(
1− qC

β−1
i

)]}δci

(5.13)
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Then, using π in Equation 1.16 and q in Equation 3.2, the log-likelihood can be

found as follows:

` =
n∑

i=1

(δci − 1) δzi log
(
e−zzz′iγγγ + 1

)
+

n∑
i=1

(1− δci) (1− δzi) log

[
1−

(
e−zzz′iγγγ + 1

)−1
]
+

n∑
i=1

(1− δci) (1− δzi) log
[
e−yβi e

xxx′iααα − e−(yi+1)βexxx
′
iααα
]
+

n∑
i=1

(1− δci) (1− δzi) e
xxx′
iααα+

n∑
i=1

δci log

{
1−

[(
e−zzz′iγγγ + 1

)−1

+

[
1−

(
e−zzz′iγγγ + 1

)−1
](

1− e−(Cβ−1)exxx
′
iααα
)]}
(5.14)

where, δc and δz are the indicator variables in Equation 1.9 and Equation 1.14,

respectively.

5.5.2.1 Maximum likelihood estimation

The MLEs of the unknown parameters (β,ααα,γγγ) can be found by equating

the partial derivatives of the log-likelihood in Equation 5.14 to zeros. Hence, for

p, l = 1, 2, . . . , P , we have

The partial derivative of ` with respect to β is as follows:

∂`

∂β
=

n∑
i=1

(δci − 1) (1− δzi) e
xxx′
iααα

wh2(β,ααα)

{
yβi e

−yβi e
xxx′iααα log(yi)− (yi + 1)βe−(yi+1)βexxx

′
iααα log(yi + 1)

}
+

n∑
i=1

−δci
wch4(β,ααα,γγγ)

{[
1−

(
e−zzz′iγγγ + 1

)−1
](

Cβe−(Cβ−1)exxx
′
iααα+xxx′

iααα
)
log(C)

}

The partial derivative of ` with respect to ααα is as follows:

∂`

∂αp

=
n∑

i=1

(δci − 1) (1− δzi)xipe
xipα

wh2(β, αp)

{
yβi e

−yβi e
xipαp − (yi + 1)βe−(yi+1)βexipαp

}
+

n∑
i=1

(1− δci) (1− δzi)xipe
xipαp+

n∑
i=1

−δci
wch4(β, αp, γγγ)

{[
1−

(
e−zzz′iγγγ + 1

)−1
](

xip(C
β − 1)e−(Cβ−1)exipαp+xipαp

)}
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The partial derivative of ` with respect to γγγ is as follows:

∂`

∂γl
=

n∑
i=1

(1− δci) δzi
wh1(γl)

zile
−zilγl +

n∑
i=1

(δci − 1) (1− δzi)

1− (wh1(γl))
−1

[
zile

−zilγl
(
e−zilγl + 1

)−2
]
+

n∑
i=1

−δci
wch4(β,ααα, γl)

zil
(
e−zilγl + 1

)−2
e−(Cβ−1)exxx

′
iααα−zilγl

where

wch4(β,ααα,γγγ) = 1−[(
e−zzz′iγγγ + 1

)−1

+

[
1−

(
e−zzz′iγγγ + 1

)−1
](

1− e−(cβ−1)exxx
′
iααα
)] (5.15)

wh1(γ) and wh2(β, α) can be found in Equation 5.9.

5.5.2.2 Simulation study

To examine the behavior of the MLEs under the CHDW model, a simulation

study is performed. This study considers some censoring schemes and follows the

same algorithm as in subsection 5.3.2.

In other words, data from HDW is generated, subsequently censored at some point

C and fitted using Equation 5.13. That is, the log-likelihood in Equation 5.14 is

maximized, using the same initial points as in subsection 5.3.2. These results are

reported in Table 5.8.
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Table 5.8: MLEs based on the simulation study for the CHDW regression model with
true parameters ααα = (−2,−1.7), γγγ = (1.5,−0.9) and β = 2.2.

n Parameter MLE Bias MSE Length

370

α0 -2.0117 0.0117 0.2141 1.713
α1 -1.7335 0.0335 0.084 1.1056
γ0 1.512 -0.012 0.0631 1.713
γ1 -0.912 0.012 0.0741 1.1056
β 2.2333 -0.0333 0.0892 0.9618

C=6 , (7.8984)%

500

α0 -2.0262 0.0262 0.1455 1.4783
α1 -1.7363 0.0363 0.0645 0.9569
γ0 1.4993 0.0007 0.046 1.4783
γ1 -0.898 -0.002 0.0523 0.9569
β 2.2379 -0.0379 0.065 0.8403

C=6 , (8.022)%

1200

α0 -2.0154 0.0154 0.061 0.9465
α1 -1.7122 0.0122 0.0243 0.612
γ0 1.507 -0.007 0.0188 0.9465
γ1 -0.9058 0.0058 0.0235 0.612
β 2.2177 -0.0177 0.0247 0.5337

C=6 , (7.7508)%

5.6 Numerical example: unwanted pursuit be-

havior perpetrations data

In this section, a data with a too many zeros response are analyzed using the

zero-inflated, hurdle, and their corresponding from censored models. Regarding

the Poisson and NB, their censored zero-inflated and censored hurdle are fitted

by optimizing the logarithm of their likelihood in Equation 1.11, Equation 1.24,

Equation 1.27 and Equation 1.28.

A dataset from Loeys et al. (2012), assessing the extent of UPB committed after

couples have broken up, is considered. In this study, to explain the perpetra-

tion, 28 questions representing UPBs (ranging from “leaving unwanted gifts” to

“threatening to hurt yourself”), each measured using a five-point Likert scale

(from 0=never to 4=over five times) were applied. Then, the higher scores point-

ing out higher levels of perpetrations.
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A zero count is occurs for the individuals who answer “never” to all 28 questions.

Additionally, for those who choose “over five times” to “leaving unwanted gifts”

and “never” to all other questions, for example, will have an UPB count equal to

4, and so on.

As in Loeys et al. (2012), two covariates are considered in this study to examine

their effect on the UPB: education and anxious attachment levels. The educa-

tion level is a binary predictor, where 0 = lower than bachelor degree, or 1 =

at least bachelor degree. While the anxious attachment level is represented by a

continuous variable. For more details on this experiment, see Loeys et al. (2012).

This dataset contains 387 observations with 246 zero counts; thus, a zero-inflated

case is considered. Therefore, ZIP, ZINB, ZIDW, HP, HNB and HDW can be ap-

plied. In addition, the observed frequencies are shown in Figure 5.3 and as can be

seen from this histogram, around 4.6512% of the count variable are greater than

or equal to 12. Thus, C = 12 is considered as a cut point in this example, to see

the effect of censoring on the zero-inflation dataset. The results of the MLEs and

their SEs are shown in Table 5.9 for the zero-inflated and their censored models,

while Table 5.10 shows the results for the hurdle and their censored models.
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Figure 5.3: Histogram for the observed frequencies for the UPB data.
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Table 5.9: MLEs, SEs (in parentheses) and AIC from the zero-inflated and censored
zero-inflted: Poisson, NB and DW regression models for the UPB dataset.

intercept education anxiety other AIC
logit-ZIDW

count model
-1.4857
(0.3010)

0.3744
(0.1761)

-0.1931
(0.0910)

β̂=0.8783
(0.0996) 1266.334

zero model
0.3124
(0.2026)

-0.4241
(0.3001)

-0.4652
(0.1455)

-

logit-ZIP

count model
1.9208
(0.0445)

-0.3502
(0.0713)

0.1334
(0.0345)

-
1616.901

zero model
0.6729
(0.1419)

-0.2321
(0.2219)

-0.4831
(0.1112)

-

logit-ZINB

count model
1.7234
(0.1495)

-0.4897
(0.2062)

0.2048
(0.1078)

log(k̂)=-0.1975
(0.2752) 1266.282

zero model
0.3398
(0.2101)

-0.4589
(0.2969)

-0.5200
(0.1467)

-

logit-CZIDW

count model
-1.7381
(0.3604)

0.3532
(0.1857)

-0.2704
(0.1018)

β̂=0.9988
(0.1417) 1153.82

zero model
0.3881
(0.1917)

-0.3968
(0.2815)

-0.4665
(0.1368)

-

logit-CZIP

count model
1.6885
(0.0511)

-0.1867
(0.0763)

0.1850
(0.0384)

-
1298.707

zero model
0.6664
(0.1421)

-0.2312
(0.2223)

-0.4778
(0.1115)

-

logit-CZINB

count model
1.6437
(0.1411)

-0.3661
(0.2062)

0.2872
(0.1115)

k̂=0.9974
(0.3116) 1154.096

zero model
0.3880
(0.1979)

-0.3862
(0.2783)

-0.4747
(0.1370)

-
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Table 5.10: MLEs, SEs (in parentheses) and AIC from the hurdle and censored hurdle:
Poisson, NB and DW regression models for the UPB dataset.

intercept education anxiety other AIC
hurdle models

binomial-logit model
0.6751
(0.1418)

-0.2203
(0.2211)

-0.4863
(0.1109)

-

HDW
count model

-1.6219
(0.3132)

0.4129
(0.1780)

-0.1897
(0.0911)

β̂=0.9175
(0.1045) 1266.209

HP
count model

1.9209
(0.0445)

-0.3501
(0.0713)

0.1331
(0.0345)

-
1616.921

HNB
count model

1.7252
(0.1484)

-0.4871
(0.2055)

0.2070
(0.1066)

log(k̂)=-0.1871
(0.2727) 1266.526

censored hurdle models
logit-CHDW

count model
-1.8294
(0.3573)

0.4029
(0.1862)

-0.2695
(0.1011)

β̂=1.0239
(0.1407) 1154.129

zero model
0.6814
(0.1420)

-0.2266
(0.2213)

-0.4891
(0.1110)

-

logit-CHP

count model
1.6889
(0.0511)

-0.1868
(0.0763)

0.1847
(0.0383)

-
1298.756

zero model
0.6755
(0.1418)

-0.2203
(0.2211)

-0.4867
(0.1109)

-

logit-CHNB

count model
1.6470
(0.1404)

-0.3713
(0.2057)

0.2876
(0.1102)

k̂=1.006
(0.3117) 1154.257

zero model
0.6747
(0.1418)

-0.2196
(0.2211)

-0.4861
(0.1109)

-

The results from Table 5.3, Table 5.4, Table 5.9 and Table 5.10 show that the

DW regression models are only marginally superior to the NB models, but both

the DW and NB models fit the data much better than the Poisson regression

models. Additionally, Table 5.5 and Table 5.11 confirm that the DW and NB

models work alternatively, better than Poisson, and yield expected frequencies

that are close to those that are observed.

5.7 Concluding remarks

This chapter is concerned with types of data that experience a lot of zero

counts, a case known as zero inflation. Some popular models for this condition

of excessive zeros are ZIP, ZINB, HP and HNB. However, these models are not

the best to apply when the data show under-dispersion within subgroups. This is
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because the Poisson and NB models can cope with equi- and over-dispersion count

data. Therefore, it would be better to apply a model with the flexibility to handle

different levels of dispersion. Here, the DW regression model is modified for these

situations with excessive zero counts. Two modifications of the DW regression

model for the case of zero inflation have been developed, namely, ZIDW and

HDW. These models can handle data with excessive zero counts with different

infra-dispersion.

On the other hand, the censoring mechanism has been applied to such excessive

zeros data. Some simulation studies and numerical examples have been discussed

in this chapter. The simulation studies show good behavior for the MLEs for

the ZIDW, HDW, CZIDW and CHDW. Thus, it could be noted from these

studies that the measurements of accuracy, bias and MSE, as well as the length

of the CI are close to zero and generally decrease as the sample size n increases,

showing the consistency of these MLEs. Additionally, the applications show that

the modifications of the DW regression models work well in comparison to their

corresponding from Poisson and NB regression models.



Chapter 6

Median Discrete Weibull

Regression Model

6.1 Introduction

The DW regression model introduced so far relies on the parameter q, that is,

it is on a different scale than the common models for discrete response variables,

where the regression is introduced through the mean, such as GLMs, including the

Poisson and NB regression models. Thus, to achieve an interpretation equivalent

to the regression models from GLMs, where the effect of the covariates is investi-

gated on a central tendency measurement, specific approach might be employed.

First, as mentioned in chapter 3, the interpretation approach in Equation 3.25,

based on the median, can be applied. Alternatively, this chapter develops a new

regression structure for DW through its median. Another reason for considering

the median rather than the mean is the common skewed nature of count data,

hence the median is more representative than the mean as a measurement for

location in most discrete data analyses (see for example, Steinberg (2010) and

Sellers and Shmueli (2010)).
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6.2 Median discrete Weibull regression model

The form of the median in Equation 3.24, that is given by

M + 1 =

(
− log(2)

log(q̂(x))

) 1

β̂

will be considered in this chapter. Then, the MDW regression model is developed

by first re-parameterizing the DW in Equation 2.2 in terms of the median of Y

and then introducing a regression-based functional form. Therefore, q can be

obtained as follows:

q = exp

(
− log(2)

(M + 1)β

)
where 0 < q < 1. Hence, it follows from Equation 2.2 that

f(y) = e
− log(2)

( y

M + 1

)β

− e
− log(2)

 y + 1

M + 1

β

where, M + 1 > 0 and β > 0.

Consequently, the regression structure for DW could be started by assuming the

median is directly related to a set of predictors, as follows:

g(Mi) = xxx′
iααα , xxx′

iααα = α0 + xi1α1 + . . .+ xiPαP

For a link function g and regression coefficient α0, α1 . . . , αP . This link func-

tion g can take a number of possible choices; however, in the context of DW, it

is convenient to assume that g(M) = log(M + 1). Then, the MDW regression

model is introduced with the link function, which defines the median of yi as:

M + 1 = exxx
′ααα (6.1)

Then, substituting Equation 6.1, q can be obtained as:

q = exp

(
− log(2)

eβxxx′ααα

)
(6.2)
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For a sample of n independent observations (xi, yi), i = 1, . . . , n, the likelihood

for the MDW can be defined as:

L =
n∏

i=1

e
− log(2)

( yi

exxx
′
iααα

)β

− e
− log(2)

yi + 1

exxx
′
iααα

β
 (6.3)

6.3 Maximum likelihood estimation

To obtain the MLEs for the unknown parameters, the logarithm of the likeli-

hood function in Equation 6.3 is required:

` =
n∑

i=1

log {wmi(β,ααα)} (6.4)

where

wmi(β,ααα) = e
− log(2)

( y

exxx
′
iααα

)β

− e
− log(2)

y + 1

exxx
′
iααα

β

Consequently, the partial derivatives with respect to each parameter are obtained

as follows:

∂`

∂β
=

n∑
i=1

− log(2)

wmi(β,ααα)

{( yi

exxx
′
iααα

)β
e
− log(2)

( yi

exxx
′
iααα

)β

[log(yi)− xxx′
iααα]−

(
yi + 1

exxx
′
iααα

)β

e
− log(2)

yi + 1

exxx
′
iααα

β

[log(yi + 1)− xxx′
iααα]

}

∂`

∂αp

=
n∑

i=1

log(2)βxipe
−xipαp

wmi(β, αp)

{
yi

( yi
exipαp

)β−1

e
− log(2)

( yi
exipαp

)β

−

(yi + 1)

(
yi + 1

exipαp

)β−1

e
− log(2)

yi + 1

exipαp

β}

The common maximum likelihood problem is experienced again here, for which

there is no closed form solution for the above non-linear equations. Therefore, a

numerical optimization method is required to directly maximize the log-likelihood
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function in Equation 6.4 and find the MLEs.

6.4 Simulation study

A simulation study is conducted in order to evaluate the MDW regression

model described in this chapter. A multiple regression with three covariates is

considered. The parameters in this simulation includes the set of regression co-

efficients (α0 = 1.5, α1 = 0.4, α2 = −0.2, α3 = 0.8) and β = 1.6.

Then, the covariates XXX1, XXX2 and XXX3 are chosen to be generated from N(0, 1),

unif(0, 10) and binomial(1, 0.6), respectively. In this simulation study, samples

of size n1 = 50, n2 = 100, n3 = 250, n4 = 500 and n5 = 1000 are generated from

the DW regression model with the parameters β and q defined in Equation 6.2.

The simulation study is carried out over 1000 iterations, following the same

method as in section 3.8, and the results are shown in Table 6.1. However,

the initial values for the regression coefficient ααα are selected using the Poisson

regression fit without the minus sign. This is due to the regression structure of

the MDW, which links some covariates to the median with the log link function,

similar to the Poisson model.
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Table 6.1: MLEs based on the simulation study for the MDW regression model with
true parameters ααα = (1.5, 0.4,−0.2, 0.8) and β = 1.6.

n parameter MLE Bias MSE Length

50

α0 1.5051 0.0051 0.0471 0.7947
α1 0.4068 0.0068 0.0117 0.3907
α2 -0.2011 -0.0011 0.0011 0.1223
α3 0.7954 -0.0046 0.0371 0.6955
β 1.7385 0.1385 0.078 0.6955

100

α0 1.5063 0.0063 0.0216 0.5731
α1 0.4038 0.0038 0.0049 0.267
α2 -0.2013 -0.0013 0.0006 0.0896
α3 0.7996 -0.0004 0.0187 0.502
β 1.6715 0.0715 0.0287 0.502

250

α0 1.498 -0.002 0.0087 0.372
α1 0.3995 -0.0005 0.002 0.1691
α2 -0.2003 -0.0003 0.0002 0.0552
α3 0.8075 0.0075 0.0068 0.3298
β 1.6313 0.0313 0.0101 0.3298

500

α0 1.4988 -0.0012 0.0046 0.2713
α1 0.3993 -0.0007 0.0009 0.1186
α2 -0.2 0 0.0001 0.0405
α3 0.8024 0.0024 0.0032 0.227
β 1.617 0.017 0.0049 0.227

1000

α0 1.5016 0.0016 0.0023 0.1871
α1 0.3991 -0.0009 0.0004 0.0841
α2 -0.2002 -0.0002 0.0001 0.0273
α3 0.7996 -0.0004 0.0017 0.1635
β 1.6086 0.0086 0.002 0.1635

6.5 Numerical examples

In this section some of the examples in chapter 3 are applied to investigate

the MDW regression model and compare its results with the results obtained

previously.

6.5.1 The case of under-dispersion: inhaler use data

The data in subsection 3.9.1 is applied to represent the under-dispersion case

relative to the Poisson. The data is fitted by the MDW regression model, and

the results are summarized in Table 6.2.
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Table 6.2: MLEs, SEs (in parentheses) and AIC from MDW fitted to the inhaler use
data.

intercept humidity pressure temperature particles other AIC

-1.8612
(0.9226)

-0.0991
(0.0474)

3.9766
(1.4658)

-0.1597
(0.0731)

0.0125
(0.0073)

β̂=2.1405
(0.0260)

13486.14

6.5.2 The case of over-dispersion: strikes data

To show the case of over-dispersed data relative to the Poisson, the data in

subsection 3.9.2 is applied. This data is fitted using the MDW regression model,

and the results are summarized in Table 6.3.

Table 6.3: MLEs, SEs (in parentheses) and AIC from MDW fitted to the strikes data.

intercept economic activity other AIC

1.6362
(0.0694)

3.2028
(1.1192)

β̂=1.6525
(0.1302)

564.157

6.5.3 The case of excessive zeros: doctor visits from the

German health survey data

The example in subsection 3.9.3 is fitted in Table 6.4 using the MDW regres-

sion model, representing a case of excessive zero count.

Table 6.4: MLEs, SEs (in parentheses) and AIC from MDW fitted to the doctor visits
from the German health dataset.

intercept bad health age other AIC

0.2875
(0.1086)

0.9770
(0.1023)

0.0058
(0.0028)

β̂=0.9887
(0.0265)

4474.974

From the above examples, it can be seen that the results for the regression

coefficients from the MDW fitting are similar to the corresponding results form

the Poisson and NB provided in chapter 3.

6.6 Concluding remarks

This chapter develops a different methodology for structuring the regres-

sion based on DW distribution. In other words, the DW distribution is re-
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parameterized in term of the median. Thus, compared to the GLMs, including

the Poisson and NB regression models, both models are investigating the central

tendency of the data explained by some covariates, through the log link function;

however, the MDW is more appropriate for count data due to the common skewed

nature of count data. Additionally, the DW model has the ability to handle dif-

ferent types of data dispersion.

The simulation study shows good behavior for the MLEs for the MDW, where the

measurements of accuracy generally are close to zero and decrease as the sample

size n increases, showing the consistency of the MLEs. In addition, the numeri-

cal examples for different types of data exhibit similar results to those from the

DW model in chapter 3, which introduces the regression via the parameter q but

interprets it through the median. Additionally, these estimators are similar to

those in the Poisson and NB regression models.



Chapter 7

Conclusions and Future Research

Count data can be found in several disciplines, representing the number of

times an event occurs. The type of dispersion of the data is central to the modeling

of count data and plays an essential role in their analysis. Hence, they have

been attracting great interest, and it has become a challenge for practitioners to

select a proper model that takes into account the varying levels of dispersion that

typically occur in count data sets. It would be highly desirable to have a unified

model that can automatically adapt to the underlying dispersion and be easily

implemented in practice.

Count data regression is widely performed by models such as the Poisson, NB and

zero-inflated regression models. This thesis focuses on introducing the DW as a

simple regression model for count data and shows how this model can capture

different levels of dispersion adaptively. A summary of this thesis and some future

research topics are discussed below.

7.1 Summary

DW distribution is investigated in chapter 2 as a unified model for capturing

different levels of dispersion in count data, namely, under-dispersion and over-

dispersion relative to the Poisson, in addition to the common case of excessive

zeros. This is an attractive feature of DW, in addition to its simplicity with a

closed form pmf with two parameters.

Then, the DW regression model is introduced in chapter 3, by generalizing the

136
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DW distribution and allowing its parameter to be related to a set of covariates.

Unlike the GLMs, in which the conditional mean is central to the interpretation,

the DW regression model proposed in this chapter has the advantage of modeling

the whole conditional density, including all the conditional quantiles that can be

easily extracted from the fitted model. This is particularly useful as most count

data have a highly skewed distribution. To assess the performance of the DW

regression model, the different levels of dispersion have been explained through

simulation studies and real data applications for each level of dispersion. The

simulation studies show a good behavior for the MLEs under the fitting of the

DW regression model. Additionally, the goodness of fit for this model shows a

very good performance compared to the related models from the Poisson and NB

that could be applied for the same situations.

In chapter 4, the DW regression model is modified to model the right censored

data, that commonly arise in count data. In other words, the CDW regression

model is developed to analyze the dependent variable, which is available for a

limited range although the covariate values are always observed. These right cen-

sored count data are modeled in simulations and numerical examples for all the

types of dispersion using two different fittings. The first is the truncated case,

where the censoring has been ignored and the data are considered to be complete

and modeled using the standard DW regression model presented in chapter 3.

The second is the censored case, where the data are analyzed using the proposed

CDW regression model. A comparison of the results shows that if the experiment

is based on censored data, then ignoring this censoring and applying the standard

DW regression model will yield misleading results. Hence, for this case the CDW

is recommended for censored data.

Although the DW regression model shows good performance for the count data

with too many zero responses, there are some experiments where there is an in-

terest in distinguishing between the generating processes for the zero and the

non-zero counts, which can be explained using the mixture models. Hence, chap-

ter 5 introduces two modifications for the case of excessive zero counts: namely,

the ZIDW and HDW regression models. Some simulation studies and real data

applications have been carried out to evaluate the behavior of these proposed
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models and compare them to the corresponding zero-inflated and hurdle models

from the Poisson and NB. The ZIDW and HDW show a well fitting for these

situations.

Altogether, the DW regression models introduced so far are based on investigat-

ing the effect of covariates through one of its parameter. Thus, this model is

on a different scale compared to the GLMs, which study the effect on the mean.

Therefore, to achieve an equivalent scale, chapter 6 suggests structuring the re-

gression model through the median. The median is considered rather than the

mean due to the common skewness nature of count data. Hence, the median is

more representative than the mean as a measure for location for most discrete

data analyses. The result for the simulation and numerical examples from MDW

are promising compared to the Poisson and NB regression models.

7.2 Recommendations for future research

Although this thesis has covered many important and interesting aspects of

the DW model, there are points worthy of further study. Some of the ideas that

deserve further attention are listed below.

• The maximum likelihood approach has been applied for the inferences in

this thesis. However, the Expectation-Maximization (EM) algorithm, which

is commonly applied for mixture models, can be considered for estimating

the parameters of the DW models. This is due to the similarity between

the mixture and DW models both of which are based on a summation of

the log in their log-likelihood (Equation 2.11).

• It might be useful and more general to consider both parameters q and β

of the DW as functions of the covariates.

• The data in subsection 3.9.4 motivates us to try a mixture of DW compo-

nents.

• Different sets of covariate might be considered to affect q and π in chapter 5,

that is, XXX 6= ZZZ.
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• Although chapter 6 concerns with the MDW regression based on the stan-

dard DW likelihood, censored and zero-inflation likelihood might be con-

sidered for the median regression.

• Further extensions of this study, which has applied with most of the common

regression models, might be considered. For example, the DW regression

models could be considered for bivariate counts, where an experiment results

in two joint responses. Another topic for consideration might be the variable

selection. Also, the DW model could be considered for the time series of

counts.
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Appendix
In this appendix we obtain the following,
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• From Equation 3.13,
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