
	
How	to	manage	a	conference	special	issue	

	
STVR	publishes	a	small	number	of	special	issues	each	year	and	has	associated	policies.	
However,	simply	following	these	policies/requirements	does	not	ensure	that	all	will	run	
smoothly.	In	this	editorial,	I	will	focus	on	a	very	particular	type	of	special	issue:	those	that	
contain	extended	versions	of	conference	papers.	
	
The	editors	of	a	special	issue	have	many	responsibilities.	The	first	is	to	determine	which	
authors	should	be	invited	to	submit	extended	papers.	This	is	not	as	simple	as	looking	at	the	
review	scores	from	the	conference	and	choosing	the	top	few	papers.	For	example,	I	have	
seen	strong	papers	that	have	excellent	reviews	but	that	also	are	‘complete’	and	so	there	is	
little	scope	to	extend	the	work.	Editors	also	have	to	consider	the	quality	of	the	reviews,	the	
contents	of	the	reviewer	comments,	and	also	read	the	paper.	Only	then	are	they	able	to	
make	a	good	assessment.	
	
The	next	stage	of	the	process	involves	inviting	authors	and	then	advising	those	who	accept	
the	invitation.	An	extended	paper	should	have	significant	additional	content	and	not,	for	
example,	be	the	union	of	conference	papers.	It	is	also	normal	for	an	extended	paper	to	have	
a	different	abstract	and	to	carefully	explain	how	the	paper	extends	the	original	conference	
paper;	I	find	that	it	is	often	best	to	place	such	an	explanation	in	the	introduction.	Reviewers	
will	be	expected	to	comment	on	whether	the	extension	is	sufficient	and	authors	should	be	
encouraged	to	make	it	easy	for	the	reviewers	to	make	this	assessment.	
	
The	editors	also	have	to	choose	reviewers.	Ideally,	this	is	done	well	in	advance	of	the	papers	
being	received,	thus	limiting	the	scope	for	delays.	We	normally	advise	that,	where	possible,	
each	paper	should	have	one	of	the	original	reviewers	and	at	least	one	reviewer	who	did	not	
review	the	conference	paper.	In	choosing	one	of	the	original	reviewers	it	is	good	to	look	at	
the	quality	of	the	reviews	and	the	confidence	scores.	I	would	also	recommend	that	the	
initial	list	of	possible	reviewers	includes	more	than	the	minimum	(three	reviewers	per	
paper);	in	reality,	not	all	those	invited	to	review	papers	will	accept.		
	
Once	the	reviews	are	in,	the	editors	make	recommendations	(accept,	minor	revisions,	major	
revisions,	or	reject).	The	recommendation	should	normally	be	made	as	soon	as	possible	-	
there	is	usually	no	reason	to	make	the	authors	wait	longer	than	necessary.	Making	prompt	
recommendations	can	help	speed	up	the	overall	process	since,	for	example,	reviews	for	one	
paper	might	arrive	quite	early	but	the	authors	might	take	longer	to	revise	the	paper.	I	
certainly	would	advise	against	waiting	for	all	of	the	reviews	of	all	of	the	papers.	The	
recommendations/decisions	should	be	independent	-	we	might	have	an	expected	number	
of	papers	for	a	special	issue	but	a	paper	will	not	be	rejected	because	there	is	‘no	room’.	
	
As	we	have	seen,	there	are	many	things	to	consider	when	organising	a	special	issue	-	the	
above	simply	describes	a	few	of	these.	However,	there	should	be	real	satisfaction	in	seeing	
the	final	issue	and	hopefully	this	makes	the	work	worthwhile	for	the	editors	as	well	as	the	
authors	and	readers.	
	



Now	to	this	issue	of	STVR,	which	contains	two	papers.	Both	take	a	general	area	(testing,	
model	checking)	and	explore	this	within	a	particular	context.	The	first	paper	is	"Pattern-
Based	GUI	Testing:	Bridging	the	Gap	Between	Design	&	Quality	Assurance"	by	Moreira,	
Rodrigo;	Paiva,	Ana;	Nabuco,	Miguel;	Memon,	Atif	(recommended	by	Le	Traon).	The	aim	of	
the	paper	is	to	develop	new	testing	techniques,	for	graphical	user	interfaces,	that	take	
advantage	of	classic	generic	solutions	(patterns).	The	authors	thus	develop	a	specialised	
testing	technique	that	takes	advantage	of	such	generic	solutions	having	been	used.	
Essentially,	this	is	a	model	based	testing	technique	that	incorporates	reuse	around	the	test	
patterns	identified.	The	work	was	evaluated	through	a	case	study	with	real	faults	and	a	
second	study	that	used	seeded	faults.	
	
The	second	paper	is	"Bounded	Model	Checking	of	C++	Programs	based	on	the	Qt	Cross-
Platform	Framework"	by	Rodrigues	Monteiro	Sousa,	Felipe;	Praia	Garcia,	Mário	Angel;	
Cordeiro,	Lucas;	Batista	de	Lima	Filho,	Eddie	(recommended	by	Müller).	This	looks	at	the	
problem	of	verifying	embedded	systems	where	the	software	has	been	developed	using	a	
cross-platform	software	development	framework	(Qt)	and	the	C++	programming	language.	
Essentially,	the	authors	modelled	the	Qt	libraries.	The	approach	was	evaluated	using	a	
benchmark	with	711	C++/Qt	programs	(many	extracted	from	Qt	documentation)	plus	two	
real	applications.		
	
Robert	M.	Hierons	
	


