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Abstract

During the past 60 years fluid-structure interaction in a wide range of three dimensional

circular cylinder problems have been studied. Initial problems considered a rigid wall

structure which were solved using impedance model comparisons. Soon after, further

solution techniques were used, such as computer simulation, transfer matrix methods

and finite element techniques. However such problems were only valid for low frequencies

when compared with experiments, this was because that did not include higher order

modes. The importance of higher order modes was then established and studies have since

included these modes. More recently, mode matching methods have been used to find

the amplitudes of waves in structures comprising two or more ducts. This has been done

with using an orthogonality relation to find integrals which occur from the application

this method. This methodology is demonstrated in as background information and is

applied to prototype problems formed of rigid ducts.

The rigid duct theory led to the consideration of elastic shells, of which several shell

modelling equations were available from the vibration theory. In this thesis, the Donnell-

Mustari equations of motion are used to model thin, elastic, fluid-loaded shells of circular

cross-section. It is demonstrated that generalised orthogonality relations exist for such

shells. Two such relations are found: one for shells subject to axisymmetric motion

and one for shells subject to non-axisymmetric motion. These generalised orthogonality

relations are new to the field of acoustics and are specific to shells modelled with the

Donnell-Mustari equations of motion. The mode matching method is used to find the

amplitudes of waves propagating in prototype problems and the generalised orthogonal-

ity relations are used to find integrals which occur through this method. Expressions for

energy for all considered structure types are used to find the resulting energy for each

prototype problem and results for equivalent problems are compared. In addition, verifi-

cation of the resulting amplitudes is done by ensuring that the matching conditions are

suitably satisfied.

It is anticipated that the method will have application to the understanding and

control of the vibration of cylindrical casings such as those enclosing turbo-machinery.

Another application of the method would be the tuning of cylindrical casings, such as

those featured on car exhaust systems or HVAC (heating, ventilation and air conditioning)

systems.
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Chapter 1

Literature Review

In modern society the reduction of noise pollution is important as it has been proved to

be detrimental to the health of humans and animals. A major source of outdoor noise

pollution comes from the exhaust systems of motor vehicles. This motivates the study

and design of systems which minimise the vibration of the structures and acoustic noise

passing through them. Most exhaust systems are fitted with a silencer, which is typically a

section with perforations that allow the emissions to dissipate into a surrounding chamber

before exiting the system. Unwanted indoor noise can occur in heating, ventilation and

air conditioning (HVAC) systems. These are systems that use waveguides to transport air

in order to heat, ventilate or cool a room. The air is moved by a fan which can generate

unwanted noise and additional noise can enter the waveguide from outside and propagate

within. These waveguides often have rectangular cross sections but it is not uncommon

for them to be circular. Consequently the study of the vibration and acoustic propagation

in circular cylindrical shells is of continued interest to the field of engineering and applied

mathematics. In particular the effects of discontinuities on propagating waves.

The simplest circular cylindrical structure is one with a rigid wall, which means it does

not support vibrations and it does not absorb acoustic waves. One of the first studies

involving acoustic scattering in a rigid, cylindrical duct was presented by Miles [1]. The

research considered a plane wave propagating in an infinite, rigid, cylindrical duct and

investigated the effect of evanescent modes formed by an abrupt change in radius. The

radiation of the plane wave at the junction was determined by solving the boundary

value problem for an analogous electrical system. The research derived the fundamental

governing equations for acoustic propagation near a discontinuity and found a systematic

method to derive expressions for the reflected and transmitted coefficients.

At much the same time, Levine and Schwinger [2] obtained an explicit solution for

the reflection coefficient in a semi-infinite, rigid, cylindrical duct. The solution was found

through an integral formulation using the Wiener-Hopf technique and the resulting re-

flection coefficient was evaluated numerically. The magnitude of reflection was compared

against the dimensional radius of the duct and it was found that the amount of reflected
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energy was increased for smaller duct radii. The results were valid for the range of the

first dominant mode as the analysis was restricted to plane wave propagation.

The sound radiating due to a plane piston located at one end of a finite, rigid, open,

cylindrical duct was investigated by Ingard [3]. The problem was solved by considering

the effects on the acoustic pressure field at the open end of the duct. Higher order

modes were included in the analysis. The radiation impedance and pressure distribution

were presented together with an element analysis for equivalent impedance circuits. The

calculations were verified by comparing results of those obtained from a cylinder closed

by a rigid plate.

Karal [4] considered a zeroth order mode propagating in an infinite, rigid, cylindrical

system and examined the analogous impedance introduced by an abrupt change of radius

and by a constriction between two ducts. The impedance was found solving the boundary

value problem for the analogous electrical systems and was plotted for different ratios of

duct radii. The results showed that the constriction impedance was equivalent to the

sum of the impedance for each discontinuity considered separately. The analysis was

restricted to the use of volume flow (the amount of fluid that passes through the junction

area per unit time) and therefore this research was valid only for very low frequencies.

The sound transmission at the sudden area of expansion formed by two semi-infinite

sections of rigid, cylindrical duct was studied by Cummings [5]. The purpose of this

work was to determine which of two velocity profiles was more suitable for predicting the

reflection coefficient. The actual velocity profile was compared with a profile introduced

by Ronneberger [6] which fills the entire cross-section of the larger duct and also compared

with a velocity profile which maintains a cross section equal to the smaller duct. The

results showed that of these two profiles, the reflection coefficient at an area expansion is

predicted best when the velocity profile has a cross section equal to the smaller duct.

A method for evaluating elements of rigid, cylindrical, exhaust silencers with mean

flow was studied by Munjal [7]. The aim was to develop an expression for the attenu-

ation of the silencer. The work was formulated in terms of the convective pressure and

convective mass velocity. Transfer matrices for seven geometric elements of a silencer

were derived, these included a uniform duct (for which the transfer matrix is the identity

matrix) and a sudden expansion/contraction of the duct radius. The transfer matrices

were formed from basic relations of energy, mass and momentum. It was observed that

some of the transfer matrices were similar to the ones obtained from zero mean flow with

stationary variables.

The four poles of a transfer matrix for a rigid, cylindrical silencer were found by

Peat [8]. The poles are essentially elements of a matrix which represent measured values

before and after the silencer. This work required the solution to three duct geometries: a

sudden decrease in radius, an expansion chamber and an intake duct. The poles for each

geometry were determined by using the finite element method with two sets of boundary
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conditions that identified the required region of the duct. It was shown that there was a

good agreement with the results for the sudden decrease in radius and for the expansion

chamber.

The transfer matrix method was used by Munjal and Prasad [9] to study the propa-

gation of a plane wave in the presence of hot mean flow inside an infinite, rigid, uniform

duct. The variation of temperature inside the duct was described by a decreasing linear

gradient. A four-pole transfer matrix was formed by matching acoustic pressure and

acoustic volume velocity and was solved by use of Green’s function. The transfer matrix

was shown to yield the known transfer matrices for the following simple cases: no mean

flow and no temperature gradient, mean flow and no temperature gradient and linear

temperature gradient with no mean flow. For the special case of linear temperature gra-

dient with no mean flow it was noted that it did not match the matrix obtained by Young

[10]. Investigation into Young’s work found that the wave equation used was the basic

equation with only sound speed as a variable, which implicity assumed that the medium

density would remain constant with temperature.

The transfer matrix method was used by Peat [11] for a rigid, cylindrical, uniform

duct with a linear temperature gradient. This paper identified that the four-pole transfer

matrices presented by Munjal and Prasad [9] had wrongly omitted terms involving the

gradient of mean density and velocity along the duct. The formation of the four-pole

transfer matrix by Peat was done by analysis into the mean flow of the fluid and the

resulting matrix differed to those in earlier literature by the first order terms of the

temperature gradient. The method required the solution to the governing equation and

it was shown to be simpler than the Green’s function approach. The results were validated

against experimental measurements and it was found that there was little practical benefit

to modelling temperature variations in further detail.

Expressions for the four-pole matrix for a rigid, circular cylindrical duct of mean

temperature gradient was presented by Sujith [12]. These expressions were valid for large

temperature gradients, whereas transfer matrices in earlier literature were valid only for

small temperature gradients. The expressions were derived for both a linear and an

exponential temperature profile. The paper serves as a useful benchmark for checking

program results, however its noted that this paper contains errors in the signs used in

the method.

Cargill [13] considered a cylindrical duct with a wall property changing from rigid to

vortex sheet and investigated its effect on a propagating plane wave. This work used the

Wiener-Hopf technique to include identified higher order modes and it gave an explicit

formula for the far field radiation and the reflected sound. It was shown how the presence

of a mean flow causes a reduction in the reflection coefficient near the duct axis. The

results were valid to the second order in the ratio of duct diameter to wavelength and were

shown to be in excellent agreement with the numerical computations stated by Munt [14].
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It was noted that to proceed beyond the second order approximation would be of little

benefit to the physical understanding and would also produce very complicated formulae.

The effect of higher order modes produced by a rigid-walled expansion chamber was

studied by Ih and Lee [15]. This work developed an analytical solution to the problem by

modelling it as a lossless, piston-driven rigid duct. The pressure at the inlet was expressed

as a combination of the inlet volume velocity and the impedance of the chamber. A

general expression for the output pressure was found for the whole chamber by using a

Fourier-Bessel expansion. The characteristics of the chamber were described using four

pole-parameters to show the plane wave interaction with transverse waves at different

points. The results of the study were found to be in good agreement to those found

using the four-pole parameters and also with the results found by previous authors. In

addition, the four-pole parameters were also used to estimate the transmission loss for an

expansion chamber with common centres and with an offset inlet and outlet, the results

were found to be in good agreement with past experiments.

Noise attenuation in a rigid, expansion chamber with a side inlet and end outlet was

studied by Yi and Lee [16]. The influences of higher order modes were investigated using a

theoretical method in which the chamber is considered as a piston driven circular cylinder.

Also the characteristics of the chamber where investigated with respect to the location of

the inlet or outlet and the length of the chamber. The theory was verified with various

experiments and it was found that the theoretical method agrees with the experimental

results for the low frequency range, but not for the case where the end outlet was offset.

The transmission loss was estimated by using the derived four pole parameters which

used the same method as [15].

The higher order modes generated at a discontinuity between two sections of rigid,

cylindrical duct were investigated by Peat [17]. An equivalent impedance circuit was used

to identify an evanescent mode and assess whether to include it. This work considered

the effects of superimposed mean flow and the effects of high frequencies up to the cut off.

The results found that mean flow effects were negligible but the variation of impedance

with frequency was necessary.

Lawrie and Abrahams [18] discussed the radiation of sound waves formed between

two rigid, coaxial, cylindrical ducts. The ducts were semi-infinite with the left-hand duct

having a radius less than the right-hand one and an arbitrary gap was formed between

them. Forcing was by a wave incident towards the gap and the resulting reflected and

transmitted wave fields were calculated. Two approximate solutions were presented,

one valid for small gaps or a large diameter ratio and the other valid for when the

dimensionless gap is much less than 1. The first method introduced a new type of entire

function, this was expanded to give solutions valid for small gaps between cylinders or for

large ratio diameters. The second approximate solution method involving a modified

Wiener-Hopf technique which assumed a matrix form. It was found that these two
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methods were only suitable for a small minority of cases as the integral representation

of the factors presented numerical difficulties due to singularities. The final solution of

the Wiener-Hopf problem was represented as a double integral which made numerical

computation extremely slow.

Evanescent modes in rigid, cylindrical ducts with a sudden expansion and with a sud-

den contraction were analysed by Sahasrabudhe and Munjal [19]. This research derived

a simple, accurate and comprehensive expression for the Karal correction factor. This

was found by using three-dimensional finite element analysis and the resulting correction

factor became a function of radius ratio, frequency and offset distance. The finite element

analysis was also used to verify the results of earlier researchers such as Ingard [3], Karal

[4] and Peat [17]. It was found that for smaller ducts, the results obtained by the finite

element method were of similar order to those obtained by analytical methods. From this

it was concluded that it is acceptable to model only plane wave motion in small ducts.

The revised Karal correction factor was found to be useful in indicating the accuracy

of plane wave analysis for frequencies up to the cut-on for the first higher order mode.

However it was noted that for such analysis to be performed on an expansion chamber,

the model was required to have chambers of sufficient length.

An appropriate method of modelling automotive dissipative silencers was identified by

Kirby [20]. This work looked at the computational efficiently of two numerical methods

compared with equivalent analytic methods. The numerical methods considered were a

mode matching method and a hybrid finite element method. The system comprised a

perforated cylindrical shell contained within an expansion chamber lined with a porous

material. The walls of the inlet and outlet ducts and the expansion chamber were assumed

to be rigid. It was found that there was an excellent agreement between the results of the

analytic and numerical method provided a sufficient number of propagating modes were

retained. The numerical mode matching method was proved to be the fastest method,

significantly outperforming the equivalent analytic technique. In addition, it was found

that the hybrid finite element method was as fast as the equivalent analytic technique.

This research showed that both numerical techniques deliver fast and accurate predictions

and are capable of outperforming equivalent analytic methods for a dissipative silencer.

The re-expansion method was used by Homentcovschi and Miles [21] to analyse wave

scattering at discontinuities of rigid cylindrical ducts. This was done by expanding the

velocity in the plane of the discontinuities in terms of functions which accounted for sin-

gularities at the edges. The research investigated two types of configuration: a cylindrical

duct with an abrupt change of radius and a cylindrical expansion chamber. The effect

of changing the radius of the duct and the obstacles were investigate and the resulting

reflection and transmission amplitudes for the first mode were presented. In addition, an

explicit formula for the transmission loss coefficient was formed.

A method for finding the reflection and transmission amplitudes for plane waves in
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discontinuous piping systems was presented by Föller and Polifke [22]. This method

considers a large eddy simulation (a mathematical model used for turbulence [23]) with

a single change of radius in a cylindrical duct. The simulation externally excites acoustic

waves at either end of the discontinuity simultaneously. The interactions between acoustic

waves are captured in detail and the problem is solved to find the amplitudes of the

waves scattered at the discontinuity. The results of the simulation are compared to many

analytic methods and show good agreement with the experimental data.

Perrey-Debain et al [24] dealt with strategies for efficiently computing the propagation

of sound waves in ducts containing acoustic cavities. A numerical technique was devised

that exploits the benefit of the finite element and boundary element method in order

to predict the sound transmission through such systems. This was done by creating a

numerical impedance matrix to compute a set of eigenmodes within the cavity. The

matrix connects the pressure and the acoustic velocity at the duct wall interface. The

acoustic pressure in the main duct could then be expressed as its integral representation.

An appropriate Green’s function was used to restrict the integration to the duct-cavity

interface alone. This allowed for the accurate computation of the scattering matrix for a

system that has a complexity that increases slightly with frequency.

For flexible shells, the motion of the shell has an effect on waves that are internally

propagating. Therefore appropriate equations of motion which describe the flexible wall

should be used. There are several proposed theories for describing cylindrical shell vibra-

tion, many of which are compared by Leissa [25].

Burroughs [26] derived an equation for the acoustic radiation from a point-driven

cylindrical shell reinforced with doubly periodic ring supports. The motion of the shell

was based on the thin shell equations provided by Kennard [27] and the fluid loading

interactions between the ring supports were analysed. The predictions were compared

with measured data collected from a finite experimental model with similar properties

and the results showed good agreement.

A semi-infinite flexible shell rigidly bonded to a hollow cylindrical shell surrounded by

an inviscid, compressible fluid with plane wave forcing was investigated by Lawrie [28].

A mixed-boundary value problem was formed to described the coupled motion between

the fluid and the flexible shell. An exact solution was formulated in terms of contour

integrals by using the Wiener-Hopf technique. The limit of heavy fluid loading and long

waves reduced the kernel to that of a semi-infinite rigid duct obtained by Levine and

Schwinger [2].

Lawrie [29] considered an infinite flexible cylindrical shell where the shell had a fi-

nite number of ring constraints and the system was totally surrounded by an inviscid

compressible fluid. The vibrations of the flexible shell were modelled using the Donnell-

Mushtari equations of motion as stated by Junger and Feit [30]. A single ring constraint

was considered first and the exact solution was found by forming the boundary value
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problem and solving the resulting linear system. For two ring constraints the problem

was expressed as a symmetric and antisymmetric problem, which led to the uncoupling of

terms, the exact solution could then be found by solving the two resulting linear systems.

The time-dependant pressure for a fluid filled, finite, open ended, cylindrical shell was

investigated by Stepanishen and Tougas [31]. A piston source located at the inner closed

end of the shell was used to force the fluid in the system. The piston was considered to

have a gated sine wave acceleration which followed a spatial profile. The solution was

found by using a time-space Green’s function to form a boundary value problem. The

solution of the boundary value problem produced a transfer function that described the

duct. This transfer function was then used in another transfer function that described

the duct outlet in order to determine the resulting output sound field.

A modified Wiener-Hopf technique was used by Zhang and Abrahams [32] to examine

the sound radiated from a finite fluid-loaded finite cylindrical shell. The shell was freely

submerged in a compressible stationary fluid and its vibrations were modelled using the

Donnell-Mushtari equations of motion for a thin, cylindrical shell. Fluid forcing was

formed by an axisymmetric ring force located between the open ends of the shell.

An infinite flexible cylindrical shell immersed in a compressible fluid was considered

by Skelton [33]. The shell displacement was found as the sum of circumferential modes

evaluated by considering the asymptotic limit of heavy exterior fluid-loading. The asymp-

totic expression were trigonometric functions of the shell and fluid parameters and they

showed excellent agreement to numerical results for a wide frequency range.

The Donnell-Mushtari equations of motions were used by Skelton [34] to model a finite

cylindrical shell, reinforced by two internal rigid plates. Circumferential mode expansion

was used to obtain numerical results of the scattering caused by the reaction force of

the internal plates. The internal rigid plates were firstly considered to intersect at the

longitudinal axis and then to lie parallel to the longitudinal axis and each other. The

predictions showed good agreement with the results obtained by numerical evaluation of

the infinite sums for the reaction forces. They also showed that the presence of internal

rigid plates in an flexible shell have a significant effect on the scattered sound field due

to the additional constraints.

Brambley and Peake [35] considered the scattering of waves formed by a sudden change

of shell boundary, from a rigid cylindrical duct to an flexible cylindrical shell. The flexible

cylindrical shell was modelled using Flügge’s equations and forcing was by an inbound

acoustic wave in the rigid duct. The solution was given analytically as a sum of shell

modes.

The low frequency behaviour and radiated sound of a submarine hull vibrating ax-

isymmetrically was considered by Caresta and Kessissoglou [36]. The hull was modelled

as a finite flexible cylindrical shell closed at each end by a rigid plate, the shell was re-

inforced with internal bulkheads and ring-stiffeners. The vibrational behaviour of the
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cylindrical shell was defined by Flügges equations as they were seen to be more accurate

for low frequency vibrations and a smeared approach was used to model the ring-stiffeners.

Because of the reinforcements the pressure of the system was reduced to that due to the

radial displacement of the cylindrical shell. The results from the analytic model were

compared to computational results from finite element and boundary element models.

The effects of a viscoelastic coating applied to a cylindrical shell with a defect was

investigated by Kirby et al [37]. The shell walls were considered to be coated in bitumen

and the wall properties were considered to be thick and flexible. This led to the use of

Navier’s equation for the governing equation for the propagation of flexible waves in the

pipe. Many axisymmetric defects were considered and the resulting reflection coefficients

for each were compared.

An impedance mobility approach was used by Xie et al [38] to predict the response

of a fluid filled cylindrical shell. The vibrations of the underlying shell were modelled

using the equations of motion provided by Cao [39]. The method coupled the stiffness of

the structure to the velocity of the fluid and was solved to find the amplitude of pressure

and radial velocity. The method was compared to a finite element analysis approach

which found the pressure for each segment. The results showed good agreement between

the methods and the impedance mobility approach was considerable faster to carry out.

In addition the transmission loss was shown for both a water filled and an air filled

cylindrical shell.

The Donnell-Mushtari equations were used by Lee and Kwak [40] to find the natural

frequencies for an flexible cylindrical shell. This was done by creating a dynamic model

using the Raleigh-Ritz method to approximate the eigenvalues and eigenvectors. The

strain displacements from Donnell-Mushtari theory were then altered in order to apply

the method to other shell theories. In all cases the axisymmetric circumferential mode

was neglected as those natural frequencies were deemed to be too high. The results

showed that the Donnell-Mushtari theory for non-axisymmetric vibrations did not yield

sufficiently accurate natural shell frequencies. It was stated that this was due to a lack of

terms in the circumferential and shear strains. However, the Donnell-Mushtari equations

used in this study do not match those used by Leissa [25] and Junger and Feit [30].

The aim of this thesis is to find and analyse the energy radiated due to a piston or wave

at the junction of flexible circular cylindrical shells. Results of these problems are already

available in the literature, but the approach considered herein is novel in that it uses

mode matching method based on a generalised orthogonality relation. The generalised

orthogonality relations derived here are new to the research area and are specific to flexible

shells modelled using the Donnell-Mushtari equations of motion. This research builds on

the mode matching method, the orthogonality relations simplify equations which occur

in the method thus reducing computation time.

To achieve this aim the equations which govern the fluid and describe the motion of
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the waveguide are to be found and used to derive a dispersion relation. This relation will

in turn describe the form of the velocity potential and identify the associated wavenum-

bers for each section of waveguide. Also the dispersion relation will be used to derive an

appropriate orthogonality relation/ generalised orthogonality relation. The mode match-

ing method is applied through continuity of the normal component of velocity at the

junction and where necessary the continuity of pressure. Those integrals which occur

through the application of these conditions will be evaluated with the orthogonality rela-

tion/ generalised orthogonality relation or reduced to the appropriate limit. For problems

which involve a flexible waveguide it is necessary to include edge conditions to describe

the connection of the finite end. These edge conditions are to be found in literature and

are required to determine constants which will arise from evaluating with the generalised

orthogonality relation. This method will provide the amplitudes of the waves present in

the velocity potential that are required for determining the radiated energy. The energy

equations are to be formed from the equation of power (which will be the same as energy

as harmonic time dependance will be assumed).

Chapter two will serve as background information which focuses on wave propagation

in rigid waveguides. The research in this chapter is already available in the literature, but

it is presented here as it serves as suitable foundation for the work which follows in later

chapters. The governing equation and motion equation, dispersion relation and orthogo-

nality relation for a rigid shell are all known (see for example Miles [1] and Ambramowitz

and Stegun [41]). However, the separation method used to derive the velocity potential

and a method for deriving the orthogonality relation shall be presented as a guide for

deriving these for the flexible waveguide. Prototype problems are introduced to show the

application of the mode matching method to problems featuring a piston and a change of

radius. Also to show how a problem comprising an expansion chamber between two equal

radius waveguides can be broken into subproblems. A transfer matrix method will be

applied to this problem to obtain a low frequency estimate for the radiated power in order

to ensure there is a good agreement with the results from the mode matching method.

The amplitudes obtained from the mode-matching method will be used to determine the

energy radiated at the waveguide junction. The results are presented and analysed for

comparison to later equivalent problems with flexible shells.

The research in Chapter three will consider wave propagation in flexible walled shells

and will proceed on the assumption of axisymmetric motion. As seen in the work of Leissa

[25] there are several proposed theories for describing the vibrations of a cylindrical shell.

Donnell-Mushtari theory of motion will be considered as it uses the simplest differential

equations. However as Lee [40] found this theory to be inaccurate due to insufficient

terms, the Donnell-Mushtari theory presented in Junger and Feit [30] will be used as it

includes additional terms. The velocity potential in the fluid will be governed by the same

equation for a rigid duct and hence will have the same form. The form of the velocity

12



potential with the equations of motion will be used to derive dispersion relation for

flexible shells which vibrate axisymmetrically. The method used for deriving the rigid wall

orthogonality relation will be employed in this chapter to find a generalised orthogonality

relation for velocity potentials propagating in flexible shells with axisymmetric motion.

The mode matching method with continuity of the normal component of velocity will be

used to solve some semi-infinite problems which feature a rigid end plate or a piston plane.

The energy radiated at the junction shall be presented compared with the equivalent

problems in chapter two.

Flexible walled problems with axisymmetric motion and a change of radius are con-

sidered in chapter four. The mode matching method is applied through matching the

continuity of the normal component of velocity and the continuity of pressure at the

change of radius. Problems comprising an expansion chamber between two shells of

equal radius are to be considered and it is hoped they can be broken down into two sub-

problems similarly to the rigid expansion problem of Chapter two. The energy radiated

at the junction shall be presented and compared with the equivalent problems in Chapter

two.

The governing equations and a generalised orthogonality relation for a flexible shell

with non-axisymmetric motion are to be derived in Chapter five. Problems involving a

rigid end plate and an abrupt increase in radius will be considered. Again the energy

radiated at the junction of these problems are to be compared with the results obtained

from rigid and axisymmetric equivalent problems in Chapters two, three and four.

The purpose of Chapter six is to discuss the results from the solved problems and

compare the orthogonality relation for propagation in rigid ducts to the generalised or-

thogonality relations for propagation in flexible shells.

Finally two additional problems are presented in Chapter seven as recommended

further work which would both build on the research presented in this thesis.

This research should serve useful to engineers looking to simulate the energy radiated

in flexible cylindrical shells featuring a piston or abrupt change of radius. Of key interest

are the cut-on modes and their behaviour, which would be useful towards the design of

systems aimed at minimising or maximising transmitted or reflected noise.

13



Chapter 2

Background Information

2.1 Introduction

The work presented in this chapter focuses on acoustic propagation in rigid cylindrical

ducts. This research is already available in the literature, but it serves as a suitable

foundation for the work which follows in later chapters. The governing equations are

presented and some prototype problems are solved. This introduces the notation and

demonstrates the methodology for applying the mode matching technique that will be

used to solve problems in later chapters. Also, the results of these problems will be useful

to compare with those results obtained from later problems. Four prototype problems

are presented in this chapter: acoustic response due to a plane piston; acoustic response

due to a plane piston and forcing wave; the energy radiated due to a forcing wave at

an abrupt increase in radius and the energy transmitted through an expansion chamber

situated between two ducts. Forcing is introduced in the form of plane piston and/or a

wave and the resulting energy is analysed for each problem.

2.1.1 Governing equation and dispersion relation

The problems in this chapter consider a circular, cylindrical duct described in cylindrical

polar co-ordinates (r̄, θ̄, z̄) (where the overbar here and henceforth indicates a dimensional

quantity). The wall of the duct has the rigid property, which results in an axisymmetric

system (with axisymmetric wave forcing assumed), therefore the θ̄ co-ordinate is dropped.

The interior region contains a compressible fluid of sound speed c and density ρ. A

harmonic time factor, e−iωt, is assumed throughout where t is time and ω = ck, with k

being the fluid wavenumber. The governing equation for the interior region is given by

the Helmholtz equation (see Crighton et al [42]){
∂2

∂r̄2
+

1

r̄

∂

∂r̄
+

∂2

∂z̄2
+ k2

}
ϕ̄ = 0, (2.1)
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where ϕ̄ is the dimensional fluid velocity potential. This velocity potential is a scalar

function which had a gradient equal to the velocity of the fluid. It can be used to express

the pressure in terms of the potential as:

p̄ = iωρϕ̄, (2.2)

where p̄ is the dimensional pressure. It is useful to non-dimensionalise the dimensional

variables with respect to ω−1 and k−1 as typical time and length scales. The dimensional

variables in terms of their non-dimensionalised counterparts are thus

kr̄ = r, kz̄ = z, k2ϕ̄ = ωϕ. (2.3)

Hence the non-dimensionalised governing equation is{
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+ 1

}
ϕ = 0, (2.4)

where ϕ is the non-dimensional fluid velocity potential. The method of separation of

variables is used to find the velocity potential, which is dependant on r and z and thus

assumes the form

ϕ = R(r)Z(z). (2.5)

This form of ϕ is substituted into (2.4) which is divided through by RZ to give the

separated equation {
1

R

d2R

dr2
+

1

rR

dR

dr
+ 1

}
= − 1

Z

d2Z

dz2
. (2.6)

The right-hand side of (2.6) must have a negative separation constant as waves should

oscillate in the z direction, which gives

− 1

Z

d2Z

dz2
= s2, (2.7)

where s is the separation constant. This has the solution

Z(z) = Ceisz +De−isz, (2.8)

where C and D are arbitrary constants. However on selecting C = 1 and D = 0,

the velocity potential comprises only waves propagating in the positive direction. The

solution

Z(z) = eisz (2.9)
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is substituted into (2.6) and the resulting expression is multiplied through by r2R to give

r2
d2R

dr2
+ r

dR

dr
+ r2(1− s2)R = 0. (2.10)

The above expression is recognised as Bessel’s differential equation (see Abramowitz and

Stegun [41]) which is known to have a solution in the form

R(r) = AJ0(κr) +BY0(κr), (2.11)

where J0(·) and Y0(·) are Bessel functions of the first and second kind respectively, κ2 =

(1− s2)1/2 and A, B are constants. There is a singularity in Y0(κnr) as r → 0, therefore

B is selected as zero and A now denotes the wave amplitude. Thus the velocity potential

is given as

ϕ =
∞∑
n=0

AnJ0(κnr)e
isnz, (2.12)

where An is the amplitude of the nth wave, sn is the wavenumber of the mode and satisfies

the dispersion relation K(s) = 0 which is presented below and κn = (1 − s2n)
1/2. It is

assumed that the velocity potential is formed of an infinite number of discrete waves.

The velocity potential in (2.12) must also satisfy the rigid wall condition which is

∂ϕ

∂r
(a, 0) = 0, (2.13)

where a is the dimensionless radius of the duct (with a = āk). From this condition the

characteristic equation, K(s), can be formed by substituting in a single mode of (2.12),

which gives

K(s) =
∂

∂r
J0(κr)|r=a = −κJ1(κa) = 0, (2.14)

the roots of which give the wavenumbers sn. The wavenumbers are ordered sequentially

with the largest real value first, then by increasing imaginary part. There will always be

one fundamental root s0 = 1, κ0 = 0 as J1(0) = 0. The remaining roots are evanescent

and these become real when they cut-on. These roots are approximated by identifying

the large approximation formula for Bessel functions given in [41] as

Jν(z) ≈
√

2

πz
cos
(
z − νπ

2
− π

4

)
, (2.15)

where ν here is the order of the Bessel function (in this problem ν = 1). Thus the

evanescent roots are approximately located at sn = [1−π2/a2(n+1/4)2]1/2, n = 0, 1, 2, . . ..
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2.1.2 Orthogonality relation

In any given problem the aim will be to determine the amplitude of the radiated waves

through the application of the mode matching method. This method creates systems

of equations involving summations with infinite modes. These are integrated and the

orthogonality relation gives the solution to these integrals. The orthogonality relation for

rigid ducts is the orthogonality relation for Bessel functions, which is already available

in the literature, see for example Brown and Churchill [47]. The orthogonality relation is

derived by considering the difference relation

K(sn)J0(κma)−K(sm)J0(κna) = 0, (2.16)

where sn and sm are the aforementioned wavenumbers for a duct of radius a and κn =

(1− s2n)
1/2. This relation can be expressed as follows

[{κnJ ′
0(κnr)J0(κmr)− κmJ

′
0(κmr)J0(κnr)} r]

a
r=0 = 0, (2.17)

where the left-hand side is an integrand evaluated at r = 0 and r = a. This is expressed

as an integral by differentiating it with respect to r to give∫ a

0

[
d

dr
{κnJ1(κnr)} J0(κmr) + κnJ1(κnr)

d

dr
J0(κmr)

− d

dr
{κmJ1(κmr)} J0(κnr) + κmJ1(κmr)

d

dr
J0(κnr)

]
dr = 0. (2.18)

The derivative formula for Bessel functions of order ν is given in Abramowitz and Stegun

[41] as (
1

z

d

dz

)k

{zνJν(z)} = zν−kJν−k(z), k = 0, 1, 2, . . . . (2.19)

This formula is used to simplify (2.18) to∫ a

0

{
κ2nJ0(κnr)J0(κmr)r − κ2mJ0(κmr)J0(κnr)r

}
dr = 0. (2.20)

It follows that

(s2n − s2m)
1

a

∫ a

0

J0(κnr)J0(κmr)r dr = K(sn)J0(κma)−K(sm)J0(κna). (2.21)

Provided the roots κn and κm are not equal, the results of the orthogonality relation is

zero. For the case of equal roots (i.e. κn = κm) the value of the integral is found by
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considering the limit∫ a

0

J2
0 (κnr)r dr = lim

sm→sn

a{J0(κma)K(sn)− J0(κna)K(sm)}
s2m − s2n

. (2.22)

If κn = κm the fraction gives the indeterminate form. This is bypassed using l’Hôpital’s

rule by computing the limit of the derivatives of both the numerator and denominator,

that is ∫ a

0

J2
0 (κnr)r dr = lim

s→sn

a
{

d
ds
[J0(κa)]K(sn)− J0(κna)K

′(s)
}

2s
. (2.23)

Given that K(sn) = 0, the limit is found to be∫ a

0

J2
0 (κnr)r dr = −aJ0(κna)K

′(sn)

2sn
. (2.24)

Thus the orthogonality relation is∫ a

0

J0(κnr)J0(κmr)r dr = δnmCn, (2.25)

where δ is the Kronecker delta and

Cn = −aJ0(κna)K
′(sn)

2sn
=
a2J2

0 (κna)

2
. (2.26)

Similarly, the orthogonality relation for a rigid duct of radius b is given by∫ b

0

J0(γnr)J0(γmr)r dr = δnmDn, (2.27)

where γn and γm are the wavenumbers for a duct of radius b, ηn = (1− γ2n)
1/2 and

Dn = −bJ0(γnb)K
′(ηn)

2ηn
=
b2J2

0 (γnb)

2
. (2.28)

Note that although the method of derivation is unorthodox, it is performed in this way

such that it can later be used to derive those generalised orthogonality relations for flexible

walled shells.

2.2 Energy in a cylindrical waveguide

To determine how the energy is reflected and/or transmitted at a discontinuity, an ex-

pression for the energy propagating in a rigid duct is required. As rigid walls cannot

carry energy, only the energy in the fluid is considered. The dimensional power Ē is given

by integrating the pressure multiplied by the complex conjugate of the velocity over the
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cross section, thus

Ē = 2πωρReal

[∫ ā

0

iϕ̄

(
∂ϕ̄

∂z̄

)∗

r̄ dr̄

]
, (2.29)

where the super-script asterisk identifies a complex conjugate. The equation for energy

in this case is the same as that for power due to the assumption of harmonic time.

The equivalent non-dimensional variables in (2.3) are used to non-dimensionalise this

equation, which gives

Ē =
2πc3ρ

k2
Real

[∫ a

0

iϕ

(
∂ϕ

∂z

)∗

r dr

]
. (2.30)

Thus the non-dimensionalised energy, may be defined as

Ē =
2πc3ρ

k2
E . (2.31)

It follows that

E = Real

[∫ a

0

iϕ

(
∂ϕ

∂z

)∗

r dr

]
. (2.32)

On using (2.32) the energy carried by an individual propagating mode of (2.12) can be

determined. Consider

ϕn = AnJ0(κnr)e
isnz, (2.33)

where sn is real. On substituting this into (2.32) it is found that

En = Real

[∫ a

0

iAnJ0(κnr)e
isnz
{
isnAnJ0(κnr)e

isnz
}∗
r dr

]
, (2.34)

which can be expressed as

En = Real

[
sn|An|2

∫ a

0

J2
0 (κnr)r dr

]
, (2.35)

as κn is real for sn real. The energy carried for an individual propagating mode is then

found by evaluating the integral using the orthogonality relation in (2.25) to give

En = |An|2snCn, (2.36)

where Cn is given in (2.26). This expression can be used to find the energy contribution

from the input forcing wave, which is composed of the first mode of (2.12). For all rigid

problems κ0 = 0 and s0 = 1, thus the forcing mode is

ϕF = Feiz, (2.37)
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where F is the amplitude of the forcing wave and will be chosen such that the energy

carried by this mode is unity. The forcing wave is substituted into (2.32) and it follows

from (2.36) that

EF =
a2

2
|F |2, (2.38)

as C0 = a2/2. Thus, in order for the forcing energy to be unity the amplitude is chosen

as

F =

√
2

a
. (2.39)

A field of waves propagating in the positive z-direction in a duct of radius a is given in

(2.12). The direction of travel is changed by using a negative exponent thus representing

a field of reflected waves, that is

ϕ =
∞∑
n=0

AnJ0(κnr)e
−isnz, (2.40)

where An are the amplitudes of the reflected field. On using (2.32) the energy contribution

for a field of reflected waves is given by

EA = Real

[
M∑

m=0

|Am|2smCm

]
, (2.41)

where M +1 is the number of considered modes. Note that Cm is given in (2.26) and by

definition is related to the derivative of the dispersion relation K(s) in (2.14). Expression

(2.41) is a standard result that has been derived for various different waveguides. It holds

both for rigid ducts and ducts comprising membrane or plate walls see Warren et al [43],

Lawrie [44] and Nawaz and Lawrie [45]. In the former case the energy is transmitted only

in the fluid, but in the latter case the energy can also be carried in the flexible wall. Thus

the result in (2.41) is valid for both situations. An analogous expression is found for the

energy contribution for a field of transmitted waves propagating in a duct of radius b

EB = Real

[
M∑

m=0

|Bm|2ηmDm

]
, (2.42)

where Bm are the amplitudes of the transmitted waves, ηm are the wavenumbers, γm =

(1− η2m)
1/2 and Dm is given in (2.28).

2.3 Acoustic response due to a plane piston

The purpose of this section is to find the reflected energy and the impedance radiated

by an oscillating plane piston into a semi-infinite duct (see Figure 2.1). This is to pave
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1

Figure 2.1: Physical configuration of the semi-infinite duct with piston problem.

the way for later problems which involve area expansion. The duct is located in the

region z ≤ 0, 0 ≤ r ≤ a and is closed at one end by a rigid annular disc with a plane

piston of radius r = b in its centre with a ≥ b. The annular disc is located in the region

z = 0, b ≤ r ≤ a and the plane piston is located at z = 0, 0 ≤ r ≤ b. The piston is

the sound source for the system and it forces in the negative z direction. This problem

configuration is essentially the same as the first problem considered in Ingard [3].

The velocity potential for this system comprises the waves radiated by the sound

source

ϕ =
∞∑
n=0

AnJ0(κnr)e
−isnz, 0 ≤ r ≤ a, z ≤ 0, (2.43)

where An is the amplitude of the nth radiated wave, sn is the nth wavenumber and

κ2n = (1− s2n)
1/2. The piston is assumed to have a symmetrical axial velocity distribution

u = u(r), with

u(r) =

{
U0, 0 ≤ r ≤ b

0, b ≤ r ≤ a
, (2.44)

where U0 is a constant.

The normal component of velocity is matched with the velocity distribution for the

sound source at the closed end. That is at z = 0

∂ϕ

∂z
(r, 0) = u(r), 0 ≤ r ≤ a. (2.45)

The velocity potential in (2.43) is substituted into (2.45) to give

−i
∞∑
n=0

AnsnJ0(κnr) = u(r), 0 ≤ r ≤ a. (2.46)

On multiplying (2.46) by J0(κmr)r and integrating with respect to r, 0 ≤ r ≤ a, it is

found that

−i
∞∑
n=0

Ansn

∫ a

0

J0(κnr)J0(κmr)r dr =

∫ a

0

u(r)J0(κmr)r dr. (2.47)
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The orthogonality relation in (2.25) is used to evaluate the integral on the left-hand side

and (2.44) is substituted into the right-hand side to give

−i
∞∑
n=0

AnsnδnmCm = U0

∫ b

0

J0(κmr)r dr. (2.48)

It follows that

Am =
iU0bJ1(κmb)

κmsmCm

. (2.49)

The dimensional radiation impedance of the piston given in Ingard [3] is

Z̄ =
P̄ /A

Ū
, (2.50)

where P̄ /A is the dimensional force on the piston, with A being the area of the piston

A = πb̄2 and Ū is the dimensional velocity of the piston given by

Ū = cU0. (2.51)

The definition for the dimensional pressure over the piston surface given in Ingard [3] is

P̄ = 2π

∫ b̄

0

p̄(r̄, 0)r̄ dr̄, (2.52)

where p̄ is the dimensional pressure

p̄ = iωρϕ̄. (2.53)

The dimensional variables in (2.52) are replaced with the non-dimensional equivalent

variables in (2.3) to obtain

P̄ = 2πi
ω2ρ

k4

∫ b

0

ϕ(r, 0)r dr. (2.54)

The dimensional impedance is then

Z̄ =
2icρ

b2U0

∫ b

0

ϕ(r, 0)r dr. (2.55)

The non-dimensional radiation impedance Z is chosen as

Z̄ = cρZ. (2.56)
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It follows that

Z =
2i

b2U0

∫ b

0

ϕ(r, 0)r dr. (2.57)

The velocity potential in (2.43) is substituted into (2.57), with U0 = 1, to express the

impedance in terms of the radiated amplitude

Z =
2i

b2

∞∑
n=0

An

∫ b

0

J0(κnr)r dr, (2.58)

which gives

Z =
2i

b2

∞∑
n=0

AnbJ1(κnb)

κn
. (2.59)

The amplitude of the radiated wave in (2.49) is substituted into the above impedance

equation, with U0 = 1, to express the impedance as

Z = −2
∞∑
n=0

J2
1 (κnb)

snCnκ2n
. (2.60)

The results show the energy radiated by the piston given in equation (2.41) and the

radiation impedance given in equation (2.60). These are both plotted against frequency

from 5− 4000Hz with the energy plot presented in a) and the impedance plot presented

in b). The energies are found in Matlab with the code presented in Appendix A, where

the radius of the duct is ā = 0.2m throughout. Note that this code is not perfect as the

root finder does not give an accurate value for one of the identified roots in the 300Hz to

600Hz range. As a result, the energy plots presented in this chapter may show some noise

in this range. The roots are checked by checking that they satisfy the dispersion relation.

Also the number of obtained roots is checked through the application of the argument

principle theorem which counts the number of zeros that occur in the half circle.

In the first configuration it is considered that the radius of the plane piston is equal to

that of the rigid duct, where ā = b̄ = 0.2m. The resulting radiated energy and radiation

impedance are shown in Figure 2.2. The reflected energy increases with frequency due

to the constant energy input of the piston. The absolute impedance is seen to be one

throughout, this can be derived from equation (2.60), as all but the n = 0 terms vanish

when a = b . The impedance for this configuration becomes

Z = −2
J2
1 (κ0a)

s0C0κ20
, (2.61)

where s0 = 1, κ0 = 0 and C0 = a2J2
0 (κ0a)/2. Thus the impedance can be obtained by

finding the limit

Z = − lim
κ→0

4J2
1 (κa)

a2κ2J2
0 (κa)

. (2.62)
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Figure 2.2: At the closed end of a piston forced semi-infinite duct with ā = 0.2m and b̄ = 0.2m:
a) Radiated energy, b) Radiation impedance.

It follows from l’Hôpital’s rule that

Z = − lim
κ→0

{
2J1(κa)

aJ0(κa)κ

}2

= − aJ0(κa)

aJ0(κa)− a2J1(κa)κ
= −1, (2.63)

which confirms the results of Figure 2.2b.

The second considered configuration assumes the plane piston to be half the radius of

the duct, where ā = 0.2m and b̄ = 0.1m. The resulting radiated energy and impedance are

shown in Figure 2.3. Again the constant energy input of the piston causes the reflected

energy to increase with frequency. The reflected energy is roughly a quarter of that

found in the previous configuration owing to the radius of the piston. By having the

piston radius less than the duct radius the reflected energy (and absolute impedance)

spike up at specific frequencies. This phenomena is known as a cut-on, which is where

an evanescent mode becomes real valued, thus contributing to the energy. For a shell

of radius ā = 0.2m, these occur when κ < 1, thus yielding a real valued s. The cut-on

frequencies can be approximated by f > (n + 0.25)c/a n = 0, 1, . . ., where n are mode

numbers, this formula gives 1073Hz, 1932Hz, 2791Hz, 3650Hz. For comparison, the true

cut-on frequencies shown in Figure 2.3 (and 2.4 below) are 1048Hz, 1918Hz, 2781Hz and

3643Hz. For verification, note that the impedance plot shown here is essentially the

same as Figure 6a) produced by Ingard [3]. However, in that article the non-dimensional

impedance is plotted against fā/c as opposed to f .

Lastly, the radius of the piston is considered as being significantly smaller compared

to the radius of the duct, where ā = 0.2m and b̄ = 0.06m. The resulting radiated

energy and impedance are shown in Figure 2.4. This time the radiated energy is half

of the previous configuration (ā = 0.2m and b̄ = 0.1m). Again the cut-ons are present

here as the radius of the piston is less than that of the duct radius (which allows for

evanescent mode excitation). These cut-ons occur at the exact same frequencies as the
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Figure 2.3: At the closed end of a piston forced semi-infinite duct with ā = 0.2m and b̄ = 0.1m:
a) Radiated energy, b) Radiation impedance.
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Figure 2.4: At the closed end of a piston forced semi-infinite duct with ā = 0.2m and b̄ =
0.06m: a) Radiated energy, b) Radiation impedance.

previous configuration as they are dependant on the radius of the duct (the piston has

no influence on when a cut-on occurs).

2.4 Acoustic response due to a plane piston and wave

forcing

The purpose of this section is to find the energy radiation by an oscillating plane piston

and wave forcing into a semi-infinite shell. The problem is essentially the same as consid-

ered in Section 2.3, but with the inclusion of a forcing wave incident towards the piston

as shown in Figure 2.5.

The velocity potential now incorporates the wave forcing as well as waves radiated by
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Figure 2.5: Physical configuration of the semi-infinite duct with piston and wave forcing.

the plane piston

ϕ = Feiz +
∞∑
n=0

AnJ0(κnr)e
−isnz, 0 ≤ r ≤ a, z ≤ 0, (2.64)

where F is the amplitude for the forcing wave which is given by (2.39), An is the amplitude

of the nth radiated wave, sn is the nth wavenumber and κ2n = (1− s2n)
1/2. The piston is

assumed to have a symmetrical axial velocity distribution u = u(r), with

u(r) =

{
U0 0 ≤ r ≤ b

0 b ≤ r ≤ a
, (2.65)

where U0 is a constant.

The normal component of velocity is matched with the velocity distribution of the

piston at the closed end. That is at z = 0

∂ϕz

∂z
(r, 0) = u(r), 0 ≤ r ≤ a. (2.66)

The velocity potential in (2.64) is substituted into (2.66) to give

iF − i
∞∑
n=0

AnsnJ0(κnr) = u(r), 0 ≤ r ≤ a. (2.67)

On multiplying (2.67) by J0(κmr)r and integrating with respect to r, 0 ≤ r ≤ a, it is

obtained that

iF

∫ a

0

J0(κmr)r dr − i
∞∑
n=0

Ansn

∫ a

0

J0(κnr)J0(κmr)r dr =

∫ a

0

u(r)J0(κmr)r dr. (2.68)

The orthogonality relation in (2.25) is used to find the integrals on the left-hand side and

(2.65) is used such that the right-hand side can be integrated. It follows that

Am = Fδ0m +
iU0bJ1(κmb)

κmsmCm

. (2.69)
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The velocity potential in (2.64) is used in the impedance formula given in (2.57) with

U0 = 1, to yield

Z =
2i

b2

{
FbJ1(κ0b)

κ0
+

∞∑
n=0

AnbJ1(κnb)

κn

}
. (2.70)

The amplitude for the radiated waves in (2.69) is substituted into the above equation to

give

Z =
2i

b2

{
2FbJ1(κ0b)

κ0
+ i

∞∑
n=0

b2J2
1 (κnb)

κ2nsnCn

}
. (2.71)

It follows that

Z =
4iFJ1(κ0b)

bκ0
− 2

∞∑
n=0

J2
1 (κnb)

κ2nsnCn

. (2.72)

The results comprise of the energy radiated by the piston given by the formula in (2.41)

and the radiation impedance given in (2.72). These are both plotted against frequency

from 5 − 4000Hz with the energy presented in plot a) and the impedance presented in

plot b). The energy and impedance are created in Matlab with the code presented in

Appendix A, where the radius of the duct is ā = 0.2m throughout. The cut-ons in a

duct of radius ā = 0.2m are as given in Section 2.3 and are stated again for convenience:

1041Hz, 1918Hz, 2781Hz and 3643Hz.

The first configuration considered assumes the radius of the plane piston to be equal to

that of the rigid duct, where ā = b̄ = 0.2m. The resulting radiated energy and radiation

impedance are shown in Figure 2.6. As with the equivalent no wave forcing problem, the

constant energy from the piston causes the reflected energy to increase over frequency.

The radius of the piston being the same as the duct only allows for the fundamental mode

to propagate, therefore no evanescent mode cut-ons occur. The impedance shown here

is different to the equivalent no forcing wave impedance in that it is not constant one.

This is due to the inclusion of the wave forcing, which increases the absolute impedance

for low frequencies. However, as the frequency increases, the forcing wave has less of an

impact on the absolute impedance and so it converges towards one.

The second considered configuration assumes the radius of the piston to be half the

radius of the duct, where ā = 0.2m and b̄ = 0.1m. The resulting radiated energy and

impedance are shown in Figure 2.7. The reflected energy appears to be the same as the

equivalent no wave forcing problem, but it is actually one non-dimensional Joule higher

due to the unit energy of the forcing wave. This is roughly half the radiated energy

shown in the previous configuration. The absolute impedance begins high, due to the

wave forcing and it then converges towards one, while sharply peaking at the cut-on

frequencies.

Lastly, the radius of the piston is assumed to be significantly smaller compared to

the radius of the duct, where ā = 0.2m and b̄ = 0.06m. The resulting radiated energy
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Figure 2.6: At the closed end of a semi-infinite duct with piston and wave forcing ā = 0.2m,
b̄ = 0.2m: a) Radiated energy, b) Radiation impedance.
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Figure 2.7: At the closed end of a semi-infinite duct with piston and wave forcing ā = 0.2m,b̄ =
0.1m: a) Radiated energy, b) Radiation impedance.

and impedance are shown in Figure 2.8. The radiated energy is half of the previous

configuration (ā = 0.2m and b̄ = 0.1m). Also the cut-ons are present here because the

radius of the piston a allows for evanescent mode excitation. These cut-ons occur at the

exact same frequencies as the previous configuration as they are dependant on the radius

of the duct.

2.5 Energy radiated due to a forcing wave at an

abrupt increase in radius

The aim of this section is to determine the energy reflected and transmitted due to a

forcing wave at an abrupt increase in radius. The problem comprises two semi-infinite

ducts: the left-hand duct occupies 0 ≤ r ≤ a, z ≤ 0 and the right-hand duct occupies

0 ≤ r ≤ b, z ≥ 0, where a ≤ b as shown in Figure 2.9. The waveguide is closed by a rigid
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Figure 2.8: At the closed end of a semi-infinite duct with piston and wave forcing ā = 0.2m,
b̄ = 0.06m: a) Radiated energy, b) Radiation impedance.
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Figure 2.9: Physical configuration of the abrupt increase in radius problem.

annular disc occupying a ≤ r ≤ b, z = 0 and forcing is by a wave propagating in the

positive z direction towards the abrupt increase in radius. This problem has been studied

numerous times in literature, see for example Homentcovschi and Miles [21]. However

this section demonstrates how the orthogonality relation is used to simplify the mode

matching method applied to problems with an abrupt change in radius.

The velocity potential for the left-hand duct ϕ1 comprises the forcing wave and the

reflected sound field, which leads to

ϕ1 = Feiz +
∞∑
n=0

AnJ0(κnr)e
−isnz, 0 ≤ r ≤ a, z ≤ 0, (2.73)

where F is the amplitude of the forcing wave given in (2.39), An is the amplitude of the

nth reflected wave, sn are the wavenumbers and κn = (1− s2n)
1/2. The velocity potential
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ϕ2 for the right-hand duct is comprised of the transmitted sound field

ϕ2 =
∞∑
n=0

BnJ0(γnr)e
iηnz, 0 ≤ r ≤ b, z ≥ 0, (2.74)

where Bn is the nth amplitude of the transmitted wave, ηn are the wavenumbers and

γn = (1 − η2n)
1/2. The amplitudes of the reflected and transmitted fields are found by

matching the fluid pressure and the normal component of velocity between the ducts. At

the junction, the fluid pressure and normal component of velocity are continuous within

the fluid, while the latter vanishes on the rigid annular disc. That is at z = 0

ϕ1(r, 0) = ϕ2(r, 0), 0 ≤ r ≤ a, (2.75)

∂ϕ2

∂z
(r, 0) =

{
∂ϕ1

∂z
(r, 0), 0 ≤ r ≤ a

0, a ≤ r ≤ b
. (2.76)

The velocity potentials (2.73) and (2.74) are substituted into (2.75) to give

F +
∞∑
n=0

AnJ0(κnr) =
∞∑
n=0

BnJ0(γnr), 0 ≤ r ≤ a. (2.77)

On multiplying (2.77) by J0(κmr)r and integrating with respect to r, 0 ≤ r ≤ a it is

found that

F

∫ a

0

J0(κmr)r dr +
∞∑
n=0

An

∫ a

0

J0(κnr)J0(κmr)r dr =
∞∑
n=0

Bn

∫ a

0

J0(γnr)J0(κmr)r dr.

(2.78)

This is done so that the orthogonality relation in (2.25) can be used to evaluate the

integrals on the left-hand side. Similarly, (2.77) could have been multiplied by J0(γmr)r

and integrated and the orthogonality relation in (2.27) would instead be used. It follows

from evaluating the left-hand integrals that

Am = −Fδ0m +
1

Cm

∞∑
n=0

BnRmn, (2.79)

where Cm is given in (2.26) and

Rmn =

∫ a

0

J0(κmr)J0(γnr)r dr. (2.80)

For κm ̸= γn, Rmn simplifies to

Rmn =
a {κmJ1(κma)J0(γna)− γmJ1(γma)J0(κma)}

κ2m − γ2n
. (2.81)
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When κm = γn expression (2.80) is (2.26) with m = n. It follows

Rmm =
a2J2

0 (κma)

2
. (2.82)

A second expression is obtained by multiplying (2.76) by J0(γmr)r and integrating with

respect to r, 0 ≤ r ≤ b. As the right-hand side is zero on (a, b), it follows that∫ b

0

∂ϕ2

∂z
(r, 0)J0(γmr)r dr =

∫ a

0

∂ϕ1

∂z
(r, 0)J0(γmr)r dr. (2.83)

Note that as with the pressure condition, multiplying by J0(κmr)r and integrating would

also be possible. However, this would require a new integral (similar to Rmn) to be defined

and this would increase the complexity of the problem. The velocity potentials (2.73)

and (2.74) are substituted into the above equation to give

iBnηn

∫ b

0

J0(γnr)J0(γmr)r dr = F

∫ a

0

J0(γmr)r dr − i
∞∑
n=0

Ansn

∫ a

0

J0(κnr)J0(γmr)r dr.

(2.84)

The orthogonality relation in (2.27) is used to evaluate the integral on the left-hand side.

It follows that

Bm =
FR0m

ηmDm

− 1

ηmDm

∞∑
n=0

AnsnRnm. (2.85)

The amplitudes for the reflected and transmitted fields are thus found by truncating and

solving the coupled equations (2.79) and (2.85). The respective energies are calculated

by using these amplitudes in the energy equations (2.41) and (2.42). These are stated

below for convenience: The energy for the reflected field is given by

EA = Real

[
M∑

m=0

|Am|2smCm

]
, (2.86)

where Am are the amplitudes of the reflected waves and the energy for the transmitted

field is

EB = Real

[
M∑

m=0

|Bm|2ηmDm

]
, (2.87)

where Bm are the amplitudes of the transmitted waves. The amplitudes and energies are

calculated in Matlab with the code presented in Appendix B and the plots are presented

below. This has been done using 100 modes to calculate the amplitudes of the propagating

waves. It is shown in the next subsection that this is more than sufficient for calculating

accurate results. The frequency range used is 5Hz-1200Hz, it is possible to plot the

energy beyond this frequency but 1200Hz is selected as the upper range as later equivalent

problems are limited to this maximum frequency.
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Figure 2.10: Energy reflected and transmitted at an abrupt increase in radius with a) ā =
0.2m, b̄ = 0.28m; b) ā = 0.06m, b̄ = 0.28m.

The first considered configuration has the radius of the left-hand duct to be equal to

the radius of the right-hand duct, which reduces the problem to an infinite duct. The

left-hand radius is ā = 0.2m and the right-hand radius is b̄ = 0.2m. For a duct of radius

ā = 0.2m the first cut-on occurs at 1041Hz (while other cut-ons occur outside the chosen

frequency range). For this problem the energy is totally transmitted and the cut-ons

present in both ducts have no impact on the energy. This is because there is no junction

to disrupt the energy from being transferred from the left-hand to the right-hand duct.

The next considered configuration has the radius of the right-hand shell to be increase

to b̄ = 0.28m while the radius of the left-hand duct is maintained at ā = 0.2m. For a

duct of radius b̄ = 0.28m the first cut-on occurs at 744Hz (while other cut-ons occur

outside the chosen frequency range). The energies are plotted in against frequency for

5 − 1200Hz and presented in Figure 2.10a. It is seen that the majority of energy is

transmitted. A large dip in transmitted energy occurs at 744Hz, this is a result of the

mode cut-on occurring in the larger duct. A second drop in transmitted energy occurs

at 1041Hz which is when the cut-on in the smaller duct occurs. Note that the noise

mentioned in the piston problem is more evident here.

The final configuration considers the radius of the left-hand duct to be significantly

smaller compared to the right-hand duct. The radius of the left-hand duct is reduced to

ā = 0.06m and the radius of the right-hand duct is kept at b̄ = 0.28m. For a duct of

radius 0.06m there are no cut-ons which occur in the considered range of frequencies. The

resulting plot of energy is shown in Figure 2.10b. For frequencies below the first cut-on

at 744Hz it is seen that the majority of energy is reflected. This is in keeping with the

well known result (see for example Levine and Schwinger [2]) that the energy is totally

reflected as kā = a → 0. After the first cut-on there is a sharp inversion of the energies

and the majority of energy is then transmitted.
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Figure 2.11: The two sides of the pressure matching condition for 10 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.
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Figure 2.12: The two sides of the normal component of velocity matching condition for 10
modes with ā = 0.2m, b̄ = 0.28m a) Real; b) Imaginary.

2.5.1 Verification of results

To verify the results, the matching conditions are plotted in order to ensure that they

converge and to check that sufficient modes have been included. This is done for a

configuration with ā = 0.2m, b̄ = 0.28m at 780Hz. The matching condition for pressure

is (2.78) which is presented against the non-dimensional radius of the duct in Figure 2.11

for 10 modes. The results show that there is a good agreement on the two sides of the

pressure condition, but it drifts apart in the center and at the edges of the duct. The

matching condition for the normal component of velocity is (2.84) which is presented

against the non-dimensional radius of the duct for the real and imaginary parts for 10

modes in Figure 2.12. The results show a agreement between the normal component of

velocity from the two sides of the junction. This is due to a singularity at which the

normal component of velocity jumps from continuity in the fluid to zero on the rigid
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Figure 2.13: The two sides of the pressure matching condition for 60 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.
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Figure 2.14: The two sides of the normal component of velocity matching condition for 60
modes with ā = 0.2m, b̄ = 0.28m (dashed line: left side of the condition, solid line: right side
of the condition) a) Real; b) Imaginary.

annulus. From these results it is seen that the amplitudes obtained with 10 modes are

not sufficiently accurate, thus additional modes are required. The real and imaginary

results of the matching condition for pressure is now found for 60 modes and are shown

in Figure 2.13. There is an improvement in the match in the pressure from each side

of the junction and they do not drift at the center or towards the edge of the duct.

Therefore 60 modes finds sufficiently accurate amplitudes for satisfying the condition for

matched pressure. The amplitudes used to find energy results were formed using 100

modes, which is more than enough modes to satisfy the matched pressure condition. The

normal component of velocity condition is now presented for each side with 60 modes

and is presented in Figure 2.14. There is a much closer match between the two normal

components of velocity for r̄ ≤ 0.2m, however it is not one-to-one due to the oscillatory

behaviour. These plots better demonstrate the behaviours occurring from the abrupt

34



0 200 400 600 800 1000 1200
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Frequency

R
e[

V
el

oc
ity

 fl
ux

]

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

Frequency

Im
[V

el
oc

ity
 fl

ux
]

a) b)

Figure 2.15: The two sides of the velocity flux for 10 modes with ā = 0.2m, b̄ = 0.28m (dashed
line: left side of the condition, solid line: right side of the condition) a) Real; b) Imaginary.
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Figure 2.16: The two sides of the velocity flux for 60 modes with ā = 0.2m, b̄ = 0.28m (dashed
line: left side of the condition, solid line: right side of the condition) a) Real; b) Imaginary.

change in the normal component of velocity (known as Gibb’s phenomenon). These

plots show that with 60 modes the amplitudes have a better agreement with the normal

component of velocity condition, but is not perfect due to its piecewise nature. A better

validation for this matching condition would be to show the matched velocity flux. The

velocity flux is the average velocity over the region, achieved through integration, thus

the matched velocity flux is

ia2(F − A0)

2
− i

∞∑
n=1

An

∫ a

0

J0(κnr)r dr =
ib2

2
+ i

∞∑
n=1

Bn

∫ b

0

J0(γnr)r dr. (2.88)

Note that the modes involving A0 and B0 have been integrated separate to the remainder

of the summation as s0 = η0 = 1 and κ0 = γ0 = 0. The two sides of (2.88) (real and

imaginary) are presented in Figure 2.15 with 10 modes and Figure 2.16 with 60 modes.

It is seen that there is a one-to-one agreement between the two sides of (2.88) with 100
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modes used to form the amplitudes. There is a dip in both the real and imaginary parts

at 745Hz which is in keeping with the first cut-on in the larger duct. Also there is a peak

in the real part (with a slight increase in the imaginary part) at 1045Hz which is due to

the first cut-on in the smaller duct. The plots in this subsection show that 10 modes is

more than sufficient to formulate the amplitudes with and they validate that the method

has been applied correctly.
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Figure 2.17: Physical configuration of the rigid expansion chamber problem.

2.6 Energy transmitted through a rigid expansion

chamber situated between two ducts

This section considers the energy leaving an expansion chamber situated between two

ducts. The problem comprises two semi-infinite ducts with a finite chamber of non-

dimensional half-length L between them (where L = L̄k) as shown in Figure 2.17. The

inlet duct is located in the region 0 ≤ r ≤ a, z ≤ −L, the outlet duct is located in the

region 0 ≤ r ≤ a, z ≥ L, and the expansion chamber occupies the space between them,

0 ≤ r ≤ b, −L ≤ z ≤ L. The waveguide is closed by rigid annular discs located at

a ≤ r ≤ b, z = ±L.
The velocity potential for the left-hand duct ϕ1 comprises the incident wave and the

field reflected at the first junction, which leads to

ϕ1 = FJ0(κ0r)e
is0(z+L) +

∞∑
n=0

AnJ0(κnr)e
−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (2.89)

where F is the amplitude of the forcing wave given in (2.39), An is the amplitude of the

nth mode, sn are the wavenumbers for the inlet and outlet ducts and κn = (1 − s2n)
1/2.

Note that the arguments of the exponentials have been manipulated such that they will

later simplify. The velocity potential for the expansion chamber is made of the waves

reflected by the second junction and those which pass through the first junction. This

gives the velocity potential ϕ2 as

ϕ2 =
∞∑
n=0

{
Pne

−iηnz +Qne
iηnz
}
J0(γmr), 0 ≤ r ≤ b, −L ≤ z ≤ L, (2.90)

where Pn and Qn are the amplitudes of the nth reflected and transmitted modes respec-

tively, ηn are the wavenumbers for the expansion chamber and γn = (1 − η2n)
1/2. The

velocity potential for the right-hand duct ϕ3 contains those waves transmitted through
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Figure 2.18: The symmetric subproblem.
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Figure 2.19: The antisymmetric subproblem.

the second junction, that is

ϕ3 =
∞∑
n=0

BnJ0(κnr)e
isn(z−L), 0 ≤ r ≤ a, z ≥ L, (2.91)

where Bn amplitude of the nth transmitted mode.

The problem can be broken down into a symmetric and an antisymmetric subproblem.

This is done by introducing a second forcing wave located in the right-hand duct. This

travels in the negative z direction for both problems. For the antisymmetric subproblem

the additional forcing wave has a phase shift of π, which by Euler’s identity results in a

negative forcing amplitude. These subproblems are illustrated in Figure 2.18 and Figure

2.19.

These subproblems are simpler to solve as they have a line of symmetry/antisymmetry

allowing them to be reduced to a problem with an abrupt increase in radius. The reflected

amplitudes from these systems can then be used to find the reflected and transmitted

amplitudes for the full problem.
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Figure 2.20: Physical configuration of the symmetric subproblem.

2.6.1 Symmetric subproblem

The nature of the symmetric subproblem enables it to be reduced to an equivalent semi-

infinite problem with an abrupt increase in radius and a rigid end plate as shown in

Figure 2.20. The purpose of this subsection is to determine the acoustic field reflected

due to a forcing wave at an abrupt increase in radius. The problem comprises one semi-

infinite duct and one finite duct. The semi-infinite duct is on the left-hand side and

occupies 0 ≤ r ≤ a, z ≤ −L and the finite duct is on the right-hand side and occupies

0 ≤ r ≤ b, −L ≤ z ≤ 0. The waveguide is closed by a rigid annular disc occupying

a ≤ r ≤ b, z = −L and a rigid plate occupying 0 ≤ r ≤ b, z = 0. Forcing is by a wave

propagating in the positive z direction towards the abrupt increase in radius.

The velocity potential for the left-hand duct ϕs
1 comprises the plane wave and the

reflected field, which is

ϕs
1 = Fei(z+L) +

∞∑
n=0

As
nJ0(κnr)e

−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (2.92)

where the superscript denotes the symmetric subsystem and As
n, n = 0, 1, 2, . . . are the

amplitudes of the reflected modes for the symmetric system. The velocity potential for

the right-hand duct ϕs
2 comprises the field reflected by the rigid disc and the field which

passes through the junction, thus

ϕs
2 =

∞∑
n=0

{
P s
ne

−iηnz +Qs
ne

iηnz
}
J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0, (2.93)

where P s
n and Qs

n are the amplitudes of the nth reflected and transmitted modes respec-
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tively. The property of the rigid end plate is

ϕs
2

∂z
(r, 0) = i

∞∑
n=0

{−P s
n +Qs

n} ηnJ0(γnr) = 0, 0 ≤ r ≤ b. (2.94)

From the large argument approximation for Bessel functions it is seen that in order for

J0(γnr) = 0 the roots γnr = (m + 1)π/2 ,m = 0, 1, 2, . . .. However, as the roots are

defined as γna = (m + 1/4)π/2 ,m = 0, 1, 2, . . . (from the characteristic equation) the

above equation is only satisfied when P s
n = Qs

n. It follows that ϕ
s
2 reduces to

ϕs
2 = 2

∞∑
n=0

P s
n cos(ηnz)J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0. (2.95)

The system is solved by matching the fluid pressure and the normal component of

velocity at the junction. These are continuous in the fluid, while the normal component

of velocity vanishes on the rigid annular disc. That is at z = −L

ϕs
1(r,−L) = ϕs

2(r,−L), 0 ≤ r ≤ a, (2.96)

∂ϕs
2

∂z
(r,−L) =

{
∂ϕs

1

∂z
(r,−L), 0 ≤ r ≤ a

0, a ≤ r ≤ b
. (2.97)

From (2.96) it is found that

F +
∞∑
n=0

As
nJ0(κnr) = 2

∞∑
n=0

P s
n cos(ηnL)J0(γnr). (2.98)

Equation (2.98) is multiplied by J0(κmr)r and integrated with respect to r, 0 ≤ r ≤ a,

to give

F

∫ a

0

J0(κmr)r dr +
∞∑
n=0

As
n

∫ a

0

J0(κnr)J0(κmr)r dr

= 2
∞∑
n=0

P s
n cos(ηnL)

∫ a

0

J0(γnr)J0(κmr)r dr. (2.99)

The orthogonality relation in (2.25) is used to evaluate those integrals on the left-hand

side. It follows that

As
m = −Fδℓm +

2

Cm

∞∑
n=0

P s
n cos(ηnL)Rmn. (2.100)

where Rmn is as given in (2.80) and Cm is as given in (2.26). A second expression is

found by multiplying (2.97) by J0(γmr)r and integrating with respect to r, 0 ≤ r ≤ b. It
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Figure 2.21: Physical configuration of the antisymmetric subproblem.

is noted that the right-hand side is zero on (a, b) and the orthogonality relation in (2.27)

is used to evaluate the left-hand side to give

P s
m =

iFsℓRℓm

4Dmηm sin(ηmL)
− i

2Dmηm sin(ηmL)

∞∑
n=0

As
nsnRnm, (2.101)

where Rmn is given in (2.80) and Dm is given in (2.28). The reflected and transmitted

amplitudes of the symmetric system are thus found by solving the coupled equations

(2.98) and (2.101), where the number of modes in each summation is truncated to 100

modes.

2.6.2 Antisymmetric subproblem

The nature of the antisymmetric subproblem enables it to be reduced to a semi-infinite

system with an abrupt increase in radius and an acoustically soft end plate (see Figure

2.21). The system comprises two sections of duct: the left-hand duct occupies 0 ≤ r ≤
a, z ≤ −L and the right-hand duct occupies 0 ≤ r ≤ b, −L ≤ z ≤ 0. It is closed

by a rigid annular disc occupying a ≤ r ≤ b, z = −L and an acoustically soft end

plate occupying 0 ≤ r ≤ b, z = 0. Forcing is by a wave located in the left-hand duct

propagating in the positive z direction towards the abrupt increase in radius.

The velocity potential for the left-hand duct ϕa
1 comprises the incident wave and the

reflected field

ϕa
1 = Fei(z+L) +

∞∑
n=0

Aa
nJ0(κnr)e

−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (2.102)

where the superscript denotes an antisymmetric subsystem and Aa
n, n = 0, 1, 2, . . . are

the amplitudes for the reflected field. The velocity potential for the right-hand duct

ϕa
2 comprises the field reflected by the acoustically soft disc and the field which passes
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through the junction

ϕa
2 =

∞∑
n=0

{
P a
ne

−iηnz +Qa
ne

iηnz
}
J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0, (2.103)

where P a
n and Qa

n are the amplitudes of the nth reflected and transmitted modes respec-

tively. The property of the acoustically soft end plate is

ϕa
2(r, 0) =

∞∑
n=0

{P s
n +Qs

n} J0(γnr) = 0, 0 ≤ r ≤ b, (2.104)

which implies that P a
n = −Qa

n, which reduces ϕa
2 to

ϕa
2 = 2

∞∑
n=0

P a
n sin(ηnz)J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0, (2.105)

The method of solution is analogous to that of the symmetric subproblem. The first

expression is found by applying the pressure condition, which on completing the steps

described above, gives

Aa
n = −Fℓδℓm − 2

aCm

∞∑
n=0

P a
n sin(ηnL)Rnm, (2.106)

where Rnm is given in (2.80) and Cm is given in (2.26). The second expression is found

by applying the condition for the normal component of velocity condition, which leads to

P a
m =

iFℓsℓRℓm

2bDmηm cos(ηmL)
− i

2bDmηm cos(ηmL)

∞∑
n=0

Aa
nsnRnm, (2.107)

where Rnm is as in (2.80) andDm is as in (2.28). The reflected and transmitted amplitudes

are found by truncating and solving the coupled equations (2.106) and (2.107).

With the reflected amplitudes of the symmetric and antisymmetric subproblems, the

amplitudes for the full expansion chamber problem can be found. These are given by

Am =
As

m + Aa
m

2
, Bm =

As
m − Aa

m

2
, (2.108)

where Am are the amplitudes of the reflected field and Bm are the amplitudes of the

transmitted field. Energy balance is achieved when the total energy input is equal to the

total energy output. For this problem there is one source of energy entering the system

EF and two sources of energy leaving the system. Those sources leaving the system are

the reflected EA and transmitted energy EB. Therefore the energy balance for the problem

is given by EF = EA + EB.
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The amplitudes Am and Bm are used in the (2.41) and (2.42) to give the reflected and

transmitted energies respectively. These are stated below for convenience: The energy

for the reflected field is given by

EA = Real

[
M∑

m=0

|Am|2smCm

]
, (2.109)

where Am are the amplitudes of the reflected waves and the energy for the transmitted

field is

EB = Real

[
M∑

m=0

|Bm|2ηmDm

]
, (2.110)

where Bm are the amplitudes of the transmitted waves. The amplitudes and energies are

calculated in Matlab with the code presented in Appendix C and the plots are presented

below. This has been done using 100 modes to calculate the amplitudes of the propagating

waves. It is shown in the next subsection that this is more than sufficient for calculating

accurate results.

The radius of the inlet and outlet ducts are firstly considered to be equal to the radius

of the expansion chamber, thus forming an infinite duct. The radius of the inlet and outlet

ducts are ā = 0.2m and the radius of the expansion chamber is b̄ = 0.2m. For a duct

of radius ā = 0.2m the first cut-on occurs at 1041Hz (and further modes cut-on outside

the frequency range). In both case of ℓ = 0 and ℓ = 1 forcing modes it is seen that the

energy is totally transmitted, this is due to there being no discontinuity to scatter the

incident wave.

The next configuration considers the radii of the inlet and outlet ducts to be kept

at ā = 0.2m while the radius of the expansion chamber is increased to b̄ = 0.28m. An

expansion chamber of half length L̄ = 0.25m is considered in Figure 2.22a and the results

show that the expansion chamber causes the energies to oscillate over frequency. This

behaviour is due to the trigonometric factor present in both the reflected and transmitted

amplitudes. The troughs of the reflected energy (and likewise peaks of the transmitted

energy) can be predicted while the energy is carried by the fundamental mode. As η0 = 1

the drops occur when sin(ηL) = 0, which is when kL̄ = nπ, n = 0, 1, 2, . . ., which is

when f = nc/(4L̄), n = 0, 1, 2, . . . (as k = f2π/c). This accounts for the troughs in

the reflected energy at 0Hz, 343.5Hz and 687Hz. At 744Hz the cut-on mode from the

expansion chamber causes the reflected energy to peak sharply. After this cut-on the

energy is mostly reflected and it drops again at the cut-on at from the inlet and outlets

ducts at 1041Hz. Note the noise mentioned in the piston problem is more evident in this

plot.

Increasing the length of the expansion chamber to 2L̄ = 1m the energies are found

as shown in Figure 2.22b. The oscillations now occur twice as often due to the increase
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Figure 2.22: Energy output from an expansion chamber with: a) ā = 0.2m, b̄ = 0.28m,
L̄ = 0.25m; b) ā = 0.2m, b̄ = 0.28m, L̄ = 0.5m.

chamber length. The predicted dips in reflected energy are at 0Hz, 171.75Hz, 343.5Hz,

515Hz and 687Hz. At 744Hz the cut-on mode from the expansion chamber causes the

reflected energy to peak sharply. Between 800Hz and 900Hz the energy is mostly reflected,

after which the transmitted energy dominates again. The cut-on from the inlet and

outlets ducts at 1041Hz cause a minor disturbance in the transmitted energy, which then

proceeds to decrease.

The radius of the inlet and outlets ducts are now reduced to ā = 0.06m while keeping

the radius of the expansion chamber at b̄ = 0.28m. The energies for an expansion chamber

of length 2L̄ = 0.5m are shown in Figure 2.23a). It is seen that the reflected energy

drops in reflected energy occur at the same frequencies approximated for the previous

configuration, however the dips here are much sharper with the reflected energy being

zero at these frequencies. The cut-on from the expansion chamber at 744Hz causes an

inversion in the energies and after this frequency the transmitted energy is dominant up

until approximately 880Hz.

Increasing the length of the expansion chamber to 2L̄ = 1m produces results seen in

Figure 2.23b. It is again seen that with a chamber twice as long, the energy oscillations

occur twice as frequent. The energy is mostly reflected below the first cut-on, however

beyond here the energy flips between mostly reflected and mostly transmitted.

2.6.3 Transfer matrix method

The transfer matrix method used in Munjal and Prasad [7] and Peat [8] can be applied to

the rigid expansion chamber system. This is a low frequency approach using only plane

waves. Thus the normal component of velocity is not an appropriate matching condition

because it contains no information about the change in radius. Therefore the transfer

matrix will instead be formed by matching the fluid pressure and velocity flux.
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Figure 2.23: Energy output from an expansion chamber with: a) ā = 0.06m, b̄ = 0.28m,
L̄ = 0.25m; b) ā = 0.06m, b̄ = 0.28m, L̄ = 0.5m.

As mentioned above, this method uses only the first mode of each velocity potential

and thus the potentials are approximated as

ϕ̃1(z) = Fei(z+L) + A0e
−i(z+L), (2.111)

ϕ̃2(z) = P0e
−iz +Q0e

iz, (2.112)

ϕ̃3(z) = B0e
i(z−L). (2.113)

Equations which relate the velocity potentials at the first junction are found by matching

the fluid pressure and the velocity flux. These conditions are applied at z = −L and are

given by

ϕ̃1(−L) = ϕ2(r,−L), 0 ≤ r ≤ a, (2.114)∫ 2π

0

∫ a

0

∂ϕ̃1

∂z
(−L)r drdθ =

∫ 2π

0

∫ b

0

∂ϕ̃2

∂z
(−L)r drdθ. (2.115)

The velocity potentials in (2.111) and (2.112 are substituted into the above conditions

and expressed in matrix form as:[
ϕ̃1(−L)
∂ϕ̃1

∂z
(−L)

]
=

[
eiL e−iL

−ib2eiL/a2 ib2e−iL/a2

][
P0

Q0

]
. (2.116)

The matrix which relates pressures and velocity across the first junction is

M1 =

[
eiL e−iL

−ib2eiL/a2 ib2e−iL/a2

]
. (2.117)

A second matrix is found by matching the pressure and velocity flux at the second junc-
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tion. That is, at z = L

ϕ̃3(L) = ϕ̃2(L), 0 ≤ r ≤ a, (2.118)∫ 2π

0

∫ a

0

∂ϕ̃3

∂z
(L)r drdθ =

∫ 2π

0

∫ b

0

∂ϕ̃2

∂z
(L)r drdθ. (2.119)

The velocity potentials in (2.113) and (2.111 are substituted into the above conditions

and they are expressed in matrix form as:[
ϕ̃3(L)
∂ϕ̃3

∂z
(L)

]
=

[
e−iL eiL

−ib2e−iL/a2 ib2eiL/a2

][
P0

Q0

]
. (2.120)

The matrix at the second junction is thus given by

M2 =

[
e−iL eiL

−ib2e−iη0L/a2 ib2eiL/a2

]
. (2.121)

In order to form the transfer matrix for the expansion chamber, the expressions for each

junction must be combined. This is done by eliminating [P0 Q0] between (2.116) and

(2.120) to give [
ϕ̃1(−L)
∂ϕ̃1

∂z
(−L)

]
=M1M

−1
2

[
ϕ̃3(L)
∂ϕ̃3

∂z
(L)

]
, (2.122)

where the inverse of M2 is

M−1
2 =

1

2ib2

[
ib2eiL/a2 −eiL

ib2e−iL/a2 e−iL

]
. (2.123)

The matrix multiplication of matrix M1 with the inverse of the transfer matrix M2 lead

to the equations for the entire system as[
ϕ̃1(−L)
∂ϕ̃1

∂z
(−L)

]
=

1

2

[
e2iL + e−2iL ia2(e2iL − e−2iL)/b2

−ib2(e2iL − e−2iL)/a2 e2iL + e−2iL

][
ϕ̃3(L)
∂ϕ̃3

∂z
(L)

]
. (2.124)

From here it can be seen that the transfer matrix for the entire system is[
cos(2L) −a2 sin(2L)/b2

b2 sin(2L)/a2 cos(2L)

]
(2.125)

Now the transfer matrix has been obtained, it is left to solve the following equations to
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obtain the reflected and transmitted coefficients

F + A0 = B0

{
cos(2L)− ia2 sin(2L)

b2

}
, (2.126)

i(F − A0) = B0

{
b2 sin(2L)

a2
+ i cos(2L)

}
. (2.127)

With the transfer matrix method the approximations for the first mode amplitudes of

the reflected and transmitted waves are

A0 =
F (a4 − b4) sin(2L)

2ia2b2 cos(2L) + (a4 + b4) sin(2L)
, (2.128)

B0 =
2iFa2b2

2ia2b2 cos(2L) + (a4 + b4) sin(2L)
. (2.129)

The amplitudes Am and Bm are used in the (2.41) and (2.42) to give the reflected and

transmitted energies respectively. These are stated below for convenience: The energy

for the reflected field is given by

EA = Real

[
M∑

m=0

|Am|2smCm

]
, (2.130)

where Am are the amplitudes of the reflected waves and the energy for the transmitted

field is

EB = Real

[
M∑

m=0

|Bm|2ηmDm

]
, (2.131)

where Bm are the amplitudes of the transmitted waves. The amplitudes and energies

are calculated in Matlab with the code presented in Appendix C and they are compared

with those obtained from the mode matching method in the results that follow. This has

been done using 100 modes to calculate the amplitudes of the propagating waves. The

thinner solid line is the approximated transmitted energy and the thinner dashed line is

the approximated reflected energy. Note that the transfer matrix is only valid up until

the first cut-on as only the fundamental mode is considered in the velocity potentials.

Expansion chambers with outer radius ā = 0.2m and chamber radius b̄ = 0.28m are

firstly considered. With an expansion chamber of half length L̄ = 0.25m (see Figure

2.24a), it is seen that up until 200Hz the transfer matrix method provides a very good

approximation for the reflected and transmitted energy. From this point the approxi-

mated energies begin to drift increasingly further away from those found from the mode

matching method.

The radius of the outer ducts are now considered to be equal to the radius of the

expansion chamber with ā = 0.2m and b̄ = 0.2m. With an expansion chamber half

length of L̄ = 0.25m, the transfer matrix energies are in full agreement with the energies
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Figure 2.24: Energy output from an expansion chamber with: a) ā = 0.2m, b̄ = 0.28m,
L̄ = 0.25m; b) ā = 0.2m, b̄ = 0.28m, L̄ = 0.5m.

obtained from the mode matching method for the entire valid frequency range as the

energy is totally transmitted.

With a longer chamber half length of L̄ = 0.5m (see Figure 2.24b), the transfer matrix

approximation is valid for a wider frequency range. It is not until around 300Hz that the

approximation begins to drift away from the energies obtained from the mode matching

method. In addition, the error difference does not appear to be as big as it is with the

shorter length chamber.

The second set of results are for the case when the radius of the outer ducts are reduced

to ā = 0.6m while keeping the radius of the expansion chamber at b̄ = 0.28m. When

the half length of the expansion chamber is L̄ = 0.25m (see 2.25a), the approximated

energies form the transfer matrix method almost entirely agree with those obtained from

the mode matching method. The approximated energies do begin to drift away after

600Hz, but the error difference is not as significant in this region when compared with

the wider outer duct radius results.

Increasing the half of the expansion chamber to L̄ = 0.5m (see Figure 2.25b), shows

an even better agreement between the energies from the transfer and the mode matching

energies. The energies do still drift from the mode matching energies a tiny amount after

600Hz, but the error difference is not as large.

From these results it is seen that the transfer matrix method provides a good approx-

imation for to the energy output for low frequencies. The frequency range of accurate

approximations is wider for problems where the outer radius is significantly smaller com-

pared to the radius of the expansion chamber.
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Figure 2.25: Energy output from an expansion chamber with: a) ā = 0.06m, b̄ = 0.28m,
L̄ = 0.25m; b) ā = 0.06m, b̄ = 0.28m, L̄ = 0.5m.
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Chapter 3

Energy radiated in shells subject to

axisymmetric motion

This chapter focuses on acoustic propagation in thin, circular, cylindrical shells with

flexible walls. Equations are found for the flexible shell with axisymmetric motion and

used to find the energy radiated in some simple problems involving propagation in a semi-

infinite shell. A generalised orthogonality relation for the flexible shell with axisymmetric

motion is derived and used with the mode-matching method to find the amplitudes. The

generalised orthogonality relation is new to the research area. The results produced in

this chapter are compared with those obtained from equivalent problems in Chapter two.

Three problems are presented: Energy reflected due to a rigid plate, acoustic response

due to a plane piston and acoustic response due to a plane piston and forcing wave.

3.1 Governing equations and dispersion relation

A thin, flexible-walled cylindrical shell described in cylindrical polar co-ordinates (r̄ θ̄, z̄)

is now considered. The interior region of the shell contains a compressible fluid of sound

speed c and density ρ whilst the exterior region is in-vacuo. A harmonic time factor, e−iωt,

is assumed throughout where t is time and ω = ck, with k being the fluid wavenumber.

For this chapter and Chapter four, the flexible shells are subject to axisymmetric motion.

Non-axisymmetric motion is considered later in Chapter five. These two types of motion

are illustrated in Figure 3.1, where the dotted circles shows the maximum position of

motion and the dashed circles represent the minimum position of motion. The value n

shown in this figure relates to the order of the Bessel function used which creates this

motion. This may not be evident in this Chapter as n = 0, but it will be more apparent

in Chapter five when n = 1.

The fluid has the same properties as the fluid considered in Chapter two. Hence it is

governed by the same Helmholtz equation stated in (2.4) which gives the solution for the
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n = 0 n = 1

1

Figure 3.1: Illustration of axisymmetric (n=0) and non-axisymmetric vibrations (n=1).

velocity potential as

ϕn = AnJ0(κnr)e
isnz, (3.1)

where An is the amplitude of the nth wave, sn is the wavenumber of the mode and

satisfies the flexible-walled characteristic equation K(s) = 0 which is presented below

and κ2n = (1− s2n)
1/2.

There are several different sets of equations which describe the motion of a flexible

shell, many of which have been analysed in Leissa [25]. In this chapter (and in those

chapters that follow), the Donnell-Mushtari equations of motion stated by Junger and Feit

[30] will be used. This theory assumes that the displacements are small when compared

to the thickness of the shell. Furthermore, that the thickness of the shell is small when

compared to the radius of the shell. For a shell of thickness h, radius ā and density ρs these

assumptions translate to the limitations hk ≪ 1 and h/ā ≪ 1. The Donnell-Mushtari

equations of motion for a cylindrical shell are:

∂2ū

∂z̄2
+

1− ν

2ā2
∂2ū

∂θ2
+

1 + ν

2ā

∂2v̄

∂z̄∂θ
+
ν

ā

∂w̄

∂z̄
+
ω2ū

cs2
= 0, r̄ = ā, (3.2)

1 + ν

2ā

∂2ū

∂z̄∂θ
+

1− ν

2

∂2v̄

∂z̄2
+

1

ā2
∂2v̄

∂θ2
+

1

ā2
∂w̄

∂θ
+
ω2v̄

c2s
= 0, at r̄ = ā, (3.3)

ν

ā

∂ū

∂z̄
+

1

ā2
∂v̄

∂θ
+
w̄

ā2
+
h2

12

∂4w̄

∂z̄4
+

2h2

12ā2
∂4w̄

∂z̄2∂θ2
+

h2

12ā4
∂4w̄

∂θ4
− ω2w̄

cs2
− p̄(ā, z̄)

cs2ρsh
= 0, r̄ = ā, (3.4)

where ū, v̄ and w̄ are the longitudinal, circumferential and radial shell displacements,

respectively, ν is Poisson’s ratio, p̄(ā, z̄) is the internal fluid pressure acting on the shell

and cs is the in-vacuo sound speed in the shell given by

cs =

√
E

(1− ν2)ρs
, (3.5)

where E is Young’s modulus. Note that the region exterior to the cylinder is in-vacuo.

The pressure p̄ and the circumferential shell displacement w̄ can be expressed in terms
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of the velocity potential ϕ̄ as follows:

p̄ = iωρϕ̄, (3.6)

w̄ =
i

ω

∂ϕ̄

∂r̄
. (3.7)

The non-dimensional variables given in (2.3) are used to non-dimensionalise the Donnell-

Mushtari equations of motion as follows:

∂2u

∂z2
+

1− ν

2a2
∂2u

∂θ2
+

1 + ν

2a

∂2v

∂z∂θ
+
iν

a

∂2ϕ

∂r∂z
+ β2u = 0, at r = a, (3.8)

1 + ν

2a

∂2u

∂z∂θ
+

1− ν

2

∂2v

∂z2
+

1

a2
∂2v

∂θ2
+

i

a2
∂2ϕ

∂r∂θ
+ β2v = 0, at r = a, (3.9)

− iνa
∂u

∂z
− i

∂v

∂θ
+
∂ϕ

∂r
+

1

τ1

∂5ϕ

∂r∂z4
+

2

τ1a2
∂5ϕ

∂r∂z2∂θ2
+

1

τ1a4
∂5ϕ

∂r∂θ4
− a2β2∂ϕ

∂r

− a2β2ρ

ρshk
ϕ = 0, at r = a, (3.10)

where β = ω/(csk) and τ1 = 12/(k2h2a2). For axisymmetric motion all θ- dependant

displacements can be neglected, which reduces the equations of motion to

∂2u

∂z2
+
iν

a

∂2ϕ

∂r∂z
+ β2u = 0, at r = a, (3.11)

−iνa∂u
∂z

+
∂ϕ

∂r
+

1

τ1

∂5ϕ

∂r∂z4
− a2β2∂ϕ

∂r
− a2β2ρ

ρshk
ϕ = 0, at r = a. (3.12)

On substituting the form of the velocity potential (3.1) into (3.11) the function for the

longitudinal displacement is found as

un(a, z) =
νsnκnJ1(κna)

a(s2n − β2)
eisnz. (3.13)

Similarly the form of the velocity potential (3.1) is substituted into w̄ in (3.7) and non-

dimensionalised to give

wn(a, z) = κnJ1(κna)e
isnz. (3.14)

The functional form for the longitudinal displacement is used in (3.12) to obtain the

characteristic equation

K(s, a) = τ1ν
2s2 − (s2 − β2)

{
s4 − µ4 + α

J0(κa)

κJ1(κa)

}
= 0, (3.15)

where µ4 = τ1(a
2β2−1) and α = 12β2ρ/(ρsh

3k3). This function defines the wavenumbers

52



0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1000

s

L(
s,

a)

0 2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2
x 10

7

s

L(
is

,a
)

a) b)

Figure 3.2: Plot of the characteristic function for ā = 0.2m, f = 500Hz: a) Real valued input;
b) Imaginary valued input.

of the fluid-coupled propagating waves travelling within the shell. Note that as a → ∞,

τ1 → 0 the characteristic equation reduces to that for a thin plate.

For simplicity the characteristic function in (3.15) is multiplied through by −κJ1(κa) to
give the dispersion function

L(s, a) = −τ1ν2s2κJ1(κa)+
(
s2 − β2

) (
s4 − µ4

)
κJ1(κa)+

(
s2 − β2

)
αJ0(κa) = 0. (3.16)

For the problems presented herein the shells are to be representative of ductwork which

appears in HVAC systems. However, these are commonly made of steel, which is not

the best material to represent a flexible shell. Instead an aluminium shell, of thickness

h = 0.002m and of density ρs = 2700kg m−3 is considered. In addition, the required

values of Young’s modulus and Poisson’s ratio are E = 7.2 × 1010Nm−2 and ν = 0.34;

whilst the fluid is air with sound speed c = 343.5ms−1 and density ρ = 1.2kg m−3.

A plot of the characteristic function L(s, a) is shown in Figure 3.1 for a radius of

ā = 0.2m, where plot a) shows a real valued input and plot b) shows an imaginary valued

input. It is seen that as s → ∞, the imaginary part of the function oscillates more

frequently, meaning the imaginary roots form closer together. It is the roots sn, n =

0, 1, 2, . . . of this function that are required for the wavenumbers for the velocity potential.

Those that are either positive real or have a positive imaginary part are required as these

correspond to a waves that propagate in the positive z direction or decay as z → ∞.

To find these roots the Newton-Raphson method is used, this is an iterative technique

for root finding in continuous functions. It requires a starting value z0 that is close

to the wanted root and iterates the equation until the desired accuracy is found. The
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Newton-Raphson equation is

zn+1 = zn −
L(zn, a)

L′(zn, a)
, (3.17)

where zn+1 is the improved root value. This method has quadratic convergence and so

within a few iterations the desired accuracy can be achieved. There are some limitations

of this method which will be mentioned later. Starting root approximations for each of the

roots need to be found, this is done by firstly approximating the characteristic function

by its dominant term. For |s| > 1, the characteristic equation can be approximated to

the dominant term

L(s, a) ≈
(
s2 − β2

) (
s4 − µ4

)
κJ1(κa) = 0. (3.18)

With this approximation, it can be seen that there are three possible ways that a root can

develop. Thus the first root approximations are given by s ≈ ±β, s ≈ ±µ and s ≈ ±iµ.
It is left to solve J1(κa) = 0, which is done by approximating the Bessel function as

follows

J1(κa) ≈
√

2

πκa
cos

(
κa− 3π

4

)
= 0. (3.19)

The roots of this function give the remaining approximations for the initial values as

s ≈

[
1−

{
π

a

(
m+

5

4

)}2
]1/2

, m = 0, 1, 2 . . . , (3.20)

which suggests that there are an infinite number of evanescent modes. Note that for each

m such that a ≥ π(m+5/4), m = 0, 1, 2 . . . an imaginary root becomes real, this is when

an evanescent mode starts to propagate, this phenomena is known as a cut-on. These

roots are ordered sequentially with real roots first and then by increasing imaginary part.

Hence, s0 is always the largest real root and remaining roots are ordered accordingly.

There are two fundamental real roots. The first root is s0 ≈ 1, this corresponds to a

fluid-borne mode as ϕ0 = J0(0)e
iz is a plane wave. The second root is s1 ≈ β, this is a

solution of the equation created by considering a→ ∞ in (3.8) which leads to

∂2u

∂z2
+ β2u = 0. (3.21)

Thus, s1 corresponds to a structure-borne mode as it is the mode propagating in this

direction for large a. It is possible for a pair of complex roots to exist for certain ranges

of frequency, these are found at s ≈ ±iµ. A plot of the first 13 roots of the characteristic

equation for a shell of radius 0.2m at a frequency of 500Hz is shown in Figure 3.3.

Appendix D shows Matlab code which finds the roots of the characteristic equation with
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Figure 3.3: The first 13 roots of the characteristic equation at 500Hz with ā = 0.2m.

the approximations discussed above as initial values. This has been done using 100 modes

to calculate the amplitudes of the propagating waves. However there are some limitations

to using this method, firstly it fails around each cut-on due to the jump in continuity

from the approximated imaginary to the real axis. This is avoided by instead using the

range (0, 1) with intervals of 0.1 and then use filtering techniques to identify unique roots

that satisfy the dispersion function. The other limitation is that the starting values for

the Newton-Raphson method have to be suitably close to desired root, this becomes

a problem with higher frequencies as the roots become closer together. To avoid this,

attention is restricted to the case of three or fewer real roots, which means that for each

shell the non-dimensional radius should be a ≤ 13.34. In order to ensure that all roots

have been found the Cauchy integral theorem is used. This theorem states that if a

function f is analytic and is non zero on an within a circle C, then the number of zeros

N0(·) (counting multiplicities) inside C is given by

N0(f) =
1

2πi

∮
C

f ′(z)

f(z)
dz. (3.22)

The roots of the characteristic equation where Re(sn) > 0 and/or Im(sn) > 0 are required.

In order to perform the integration a change of variables g(θ) = reiθ is used, which gives

N0(L) =
1

4πi

∫ 2π

0

L′(g(θ), a)

L(g(θ), a)
g′(θ) dθ, (3.23)
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Figure 3.4: The phase speeds of the characteristic equation for ā = 0.2m.

where the r is the radius of the circle.

The phase velocities vn = c/sn , n = 0, 1, 2, 3, 4 for a shell of radius ā = 0.2m with

frequencies 5− 3000Hz are illustrated in Figure 3.4. It is seen that for each root cut-on,

the phase velocity of the previously leading root drops towards the sound speed of the

fluid (c = 343.5ms−1).

3.2 Edge conditions

For a shell of finite length it is necessary to specify edge conditions to describe the

behaviour at each edge of the shell. Two sets of edge conditions for a shell of length

2L̄ (where L = L̄k) are found in Junger and Feit [30]. For a shell that is clamped, the

conditions are

ū = v̄ = w̄ =
∂w̄

∂z̄
= 0, at z̄ = ±L̄, r̄ = ā, (3.24)

where v̄ is the torsional direction, retained here for later non-axisymmetric problems. As

the name suggests, the edge is clamped in place and no displacement can occur in any

direction. For a shell that is pin-jointed, the conditions are

w̄ =
∂2w̄

∂z̄2
= v̄ =

∂ū

∂z̄
= 0, at z̄ = ±L̄, r̄ = ā. (3.25)

This creates a hinge-like joint, where the shell can pivot on the fixing point. These edge

conditions are non-dimensionalised using the non-dimensional counterparts given in (2.3)
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to find the clamped edge conditions

u = v =
∂ϕ

∂r
=

∂2ϕ

∂r∂z
= 0, at z = ±L, r = a, (3.26)

and the pin-jointed conditions

∂ϕ

∂r
=

∂3ϕ

∂r∂z2
= v =

∂u

∂z
= 0, at z = ±L, r = a, (3.27)

where (3.7) has been used to express w in terms of ϕ.

3.3 The generalised orthogonality relation

To form the generalised orthogonality relation, the following equation involving L(s, a)

in (3.16) is considered:

L(sn, a)κmJ1(κma)

s2n − β2
− L(sm, a)κnJ1(κna)

s2m − β2
= 0, (3.28)

where sn, n = 0, 1, 2, . . . are the aforementioned roots and κn = (1 − s2n)
1/2. It is

easily seen that this relation holds true for all roots and sn ̸= β for n = 0, 1, 2, . . .. On

substituting the characteristic function (3.16) into this relation, it is obtained that{
−τ1ν2β2(s2n − s2m)

(s2n − β2)(s2m − β2)
− s4n + s4m

}
κnJ1(κna)κmJ1(κma)

+
α

a

[{
J0(κnr)κmJ

′
0(κmr)− J0(κmr)κnJ

′
0(κnr)

}
r
]a
r=0

= 0. (3.29)

The term in the square brackets is differentiated and expressed in integral form

α

a

∫ a

0

J0(κmr)
{
κ2nJ

′′
0 (κnr)r + κnJ

′
0(κmr)

}
− J0(κnr)

{
κ2mJ

′′
0 (κmr)r + κmJ

′
0(κmr)

}
dr

−
{

−τ1ν2β2(s2n − s2m)

(s2n − β2)(s2m − β2)
− s4n + s4m

}
κnJ1(κna)κmJ1(κna). (3.30)

On using Bessel’s equation, it is found that

(
s2m − s2n

)α
a

∫ a

0

J0(κmr)J0(κnr)r dr

= −(s2m − s2n)

{
τ1ν

2β2

(s2n − β2)(s2m − β2)
+ s2n + s2m

}
κnJ1(κna)κmJ1(κma).
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The above equation was generated from the relation in (3.28); therefore it is correct to

state

α

a

∫ a

0

J0(κmr)J0(κnr)r dr =
L(sn, a)κmJ1(κma)(
s2m − s2n

)
(s2n − β2)

− L(sm, a)κnJ1(κna)(
s2m − s2n

)
(s2m − β2)

−
{

τ1ν
2β2

(s2n − β2)(s2m − β2)
+ 2− κ2n − κ2m

}
κnJ1(κna)κmJ1(κma). (3.31)

The case of equal (κn = κm) and unequal (κn ̸= κm) roots are considered separately. For

n = m this reduces to

α

a

∫ a

0

J2
0 (κnr)r dr = Cn −

{
τ1ν

2β2

(s2n − β2)2
+ 2− 2κ2n

}
κ2nJ

2
1 (κna), (3.32)

where Cn is a non-zero constant, given by

Cn =
κnJ1(κna)

β2 − s2n
lim
s→sn

L(sn, a)− L(s, a)

s2 − s2n
. (3.33)

From l’Hôpital’s rule it follows that

Cn =
L′(sn, a)κnJ1(κna)

2sn(s2n − β2)
, (3.34)

where the prime denotes differentiation with respect to s. For n ̸= m the value of Cn is

zero due to the relation in (3.28). Hence the generalised orthogonality relation is

α

a

∫ a

0

J0(κmr)J0(κnr)r dr = δnmCn

−
{

τ1ν
2β2

(s2n − β2)(s2m − β2)
+ 2− κ2n − κ2m

}
κnJ1(κna)κmJ1(κma). (3.35)

where δ is the Kronecker delta. This generalised orthogonality relation is new to the

research area and is specific to shells with axisymmetric motion modelled on the Donnell-

Mushtari equations of motion. Similarly, for a shell of radius b, the equivalent generalised

orthogonality relation is

α

b

∫ b

0

J0(γnr)J0(γmr)rdr

= δmnDn −
{

τ2ν
2β2

(η2n − β2)(η2m − β2)
+ 2− γ2m − γ2n

}
γnJ1(γnb)γmJ1(γmb), (3.36)

where τ2 = 12/(h2k2b2), ηn are the equivalent wavenumbers, γn = (1− η2n)
1/2 and

Dn =
L′(ηn, b)γnJ1(γnb)

2ηn(η2n − β2)
. (3.37)
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Figure 3.5: The path of integration used for Cauchy’s residue theorem.

These generalised orthogonality relations will be used in the following chapters to find

integrals which arise from the application of the mode matching method. The non-zero

constant Cn (or equivalently Dn) is a useful parameter arising in various identities which

involve the characteristic equation.

3.3.1 Properties of the eigensystem

The eigensystem comprising (2.4), (3.11) and (3.12) has many interesting properties.

In particular, it can be shown that the eigenfunctions are linearly dependent. This is

demonstrated through the existence of a number of identities comprising summations of

the eigenfunctions. It is shown in Lawrie [46] that the number of such identities depends

on the order of the boundary conditions. This number is the same as the number of

edge conditions required (or alternatively half the order of the characteristic equation).

In this case there are three such identities and these are given by I1(r), I2(r) and I3(r).

These identities are constructed by considering contour integrals with odd integrands. On

applying Cauchy’s residue theorem an identity is obtained. The first identity is derived

by considering the integral

I1(r) =
1

2πi

∫ ∞

−∞

2s(s2 − β2)J0(κr)

L(s, a)
ds, 0 ≤ r ≤ a, (3.38)

where the path of integration is indented above any poles on the negative real axis and

below any poles on the positive real axis as shown in Figure 3.5. Contour integration can

be used to express the integral as a sum of residues and thus obtain an identity. Cauchy’s

residue theorem gives

I1(r) +
1

2πi

∫
Γc

2s(s2 − β2)J0(κr)

L(s, a)
ds =

∞∑
n=0

ϱn, 0 ≤ r ≤ a, (3.39)
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where ϱn are the residues at s = sn. That is

ϱn = lim
s→sn

2s(s− sn)(s
2 − β2)J0(κr)

L(s, a)
=

2sn(s
2
n − β2)J0(κnr)

L′(sn, a)
, 0 ≤ r ≤ a, (3.40)

where l’Hôpital’s rule has been applied. Note that as |s| → ∞ the integrand can be

approximated by
2s(s2 − β2)J0(κnr)

L(s, a)
≈ 2J0(isr)

is4J1(isa)
. (3.41)

Hence, as R → ∞ ∫
Γc

2s(s2 − β2)J0(κr)

L(s, a)
ds→ 0, 0 ≤ r ≤ a. (3.42)

The first identity is now obtained using (3.34). That is

∞∑
n=0

κnJ1(κna)J0(κnr)

Cn

= 0, 0 ≤ r ≤ a. (3.43)

A further two identities can be found by following the same process with the integrals

I2(r) =
1

2πi

∫ ∞

−∞

2sJ0(κr)

L(s, a)
ds, 0 ≤ r ≤ a, (3.44)

I3(r) =
1

2πi

∫ ∞

−∞

2sκ2J0(κr)

L(s, a)
ds, 0 ≤ r ≤ a. (3.45)

In both cases the integrands are odd functions, therefore I2(r) and I3(r) are zero. The

same procedure is used to obtain identities two and three as

∞∑
n=0

2snJ0(κnr)

L′(sn, a)
=

∞∑
n=0

κnJ1(κna)J0(κnr)

(s2n − β2)Cn

= 0, 0 ≤ r ≤ a, (3.46)

∞∑
n=0

2snJ0(κnr)

L′(sn, a)
=

∞∑
n=0

κ3nJ1(κna)J0(κnr)

(s2n − β2)Cn

= 0, 0 ≤ r ≤ a. (3.47)

Some additional identities can be found by using the Bessel function J1(κa) in the inte-

grand. To obtain further identities, the following integrals are considered:

I4 =
1

2πi

∫ ∞

−∞

2s(s2 − β2)κJ1(κa)

L(s, a)
ds, (3.48)

I5 =
1

2πi

∫ ∞

−∞

2sκJ1(κa)

L(s, a)
ds, (3.49)

I6 =
1

2πi

∫ ∞

−∞

2s3(s2 − β2)κJ1(κa)

L(s, a)
ds, (3.50)
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These integrals were chosen such that the integrand is an odd function of s, thereby

ensuring that the result is zero. From using the same procedure implemented for I1(r),

it follows that the identities given by I4 and I5 are

∞∑
n=0

2sn(s
2
n − β2)κnJ1(κna)

L′(sn, a)
=

∞∑
n=0

{κnJ1(κna)}2

Cn

= 0, (3.51)

∞∑
n=0

2snκnJ1(κna)

L′(sn, a)
=

∞∑
n=0

{κnJ1(κna)}2

(s2n − β2)Cn

= 0. (3.52)

For integral I6 it is seen that as R → ∞ the contribution from CR+ is non-zero. In order

to find this contribution the integrand is approximated for large |s| by:

2s3(s2 − β2)κJ1(κa)

L(s, a)
≈ 2s3(s2 − β2)κJ1(κa)

s4(s2 − β2)κJ1(κa)
=

2

s
. (3.53)

With the parameterisations s = Reiθ and ds/dθ = iReiθ, the integral over the arc is found

as
1

2πi

∫
CR+

2s3(s2 − β2)κJ1(κa)

L(s, a)
ds ≈ 1

2πi

∫ π

0

−2i dθ = −1. (3.54)

Cauchy’s residue theorem is used to obtain

1

2πi

∫
CR+

2s3(s2 − β2)κJ1(κa)

L(s, a)
ds+

1

2πi

∫ R

−R

2s3(s2 − β2)κJ1(κa)

L(s, a)
ds

=
∞∑
n=0

s2n {κnJ1(κna)}
2

Cn

. (3.55)

It follows that
∞∑
n=0

κ2n {κnJ1(κna)}
2

Cn

= −1. (3.56)

A final identity can be found by multiplying the characteristic equation L(sn, a) by

κnJ1(κna)/ {(s2n − β2)Cn} and summing to give

− τ1ν
2

∞∑
n=0

{κnJ1(κna)}2

Cn

− τ1ν
2β2

∞∑
n=0

{κnJ1(κna)}2

(s2n − β2)Cn

+
∞∑
n=0

(s4n − µ4){κnJ1(κna)}2

Cn

+ α
∞∑
n=0

κnJ1(κna)J0(κna)

Cn

= 0. (3.57)

With the identities obtained from I1(a), I4, I5 and I6 in the above equation, it is found

that
∞∑
n=0

κ4n{κnJ1(κna)}2

Cn

= −2. (3.58)
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Figure 3.6: Identities one and two.

Incident

Reflected

a

z = 0

r

z

φ
φz

1

Figure 3.7: Physical configuration of the semi-infinite system closed by a rigid plate.

The roots of the characteristic equation (3.16) from a shell of radius ā = 0.2m at 500Hz

were used to plot the value of each identity against the number of considered modes.

The results of identities 1 and 2 in Figure 3.6 show that the identities are satisfied to 5

decimal places from 10 modes and continue to converge to zero. The results of identities

3, 4 and 5 are all zero to at least 6 decimal places when 10 modes are considered.

3.4 Energy reflected by a rigid plate

The aim of this section is to find the energy reflected by a rigid plate at the end of a semi-

infinite shell. The system comprises a single shell located in the region 0 ≤ r ≤ a, z ≤ 0

closed by a rigid plate occupying 0 ≤ r ≤ a, z = 0 (see Figure 3.7). Forcing wave

propagating in the positive z direction towards the end plate, this will be done for both a

fluid-borne and a structure-borne wave. The velocity potential ϕ comprises the incident

wave and the reflected field

ϕ(r, z) = FℓJ0(κℓr)e
isℓz +

∞∑
n=0

AnJ0(κnr)e
−isnz, z ≤ 0, (3.59)
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where ℓ indicates the chosen fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the

amplitude of the forcing wave, An is the amplitude of the nth reflected wave, sn is the

wavenumber and κn = (1 − s2n)
1/2. In order for the forcing wave to have unit energy, it

follows from (2.36) that

Fℓ =

√
α

asℓCℓ

. (3.60)

The eigenfunction expansion forms of the longitudinal and radial displacements given in

(3.13) and (3.14) are

u(a, z) =
νFℓsℓκℓJ1(κℓa)

a(s2ℓ − β2)
eisℓz − ν

a

∞∑
n=0

AnsnκnJ1(κna)

s2n − β2
e−isnz, z < 0, (3.61)

w(a, z) = −FℓκℓJ1(κℓa)e
isℓz −

∞∑
n=0

AnκnJ1(κna)e
−isnz, z < 0. (3.62)

At the end plate, the normal component of velocity vanishes. That is at z = 0

∂ϕ

∂z
(r, 0) = 0, 0 ≤ r ≤ a. (3.63)

From (3.63) it is found that

FℓsℓJ0(κℓr)−
∞∑
n=0

AnsnJ0(κnr) = 0, 0 ≤ r ≤ a. (3.64)

On multiplying (3.64) by J0(κmr)r/a, integrating with respect to r, 0 ≤ r ≤ a, and using

(3.35), it is found that

Am = Fℓδmℓ +
κmJ1(κma)

smCm(s2m − β2)
E0 +

(2− κ2m)κmJ1(κma)

smCm

E1 −
κmJ1(κma)

smCm

E2, (3.65)

where

E0 = τ1ν
2β2

{
∞∑
n=0

AnκnsnJ1(κna)

s2n − β2
− FℓκℓsℓJ1(κℓa)

s2ℓ − β2

}
, (3.66)

E1 =
∞∑
n=0

AnκnsnJ1(κna)− FℓκℓsℓJ1(κℓa), (3.67)

E2 =
∞∑
n=0

Anκ
3
nsnJ1(κna)− Fℓκ

3
ℓsℓJ1(κℓa). (3.68)

The constants E0 − E2 are found by applying edge conditions which describe how the

shell edge is connected to the end plate.
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The reflected energy

EA =
a

α
Real

[
M∑
n=0

|An|2Cnsn

]
, (3.69)

is plotted against frequency. Note: as discussed in Chapter two, expression (3.69) incor-

porates both the fluid and structure borne components of energy. The results are created

in Matlab with the code presented in Appendix E. This has been done using 100 modes

to calculate the amplitudes of the propagating waves.

3.4.1 Clamped edge

The displacements given in (3.62) are used with the clamped edge conditions given in

(3.26) to find the eigenfunction expansions of the edge conditions as

∞∑
m=0

AmκmsmJ1(κma)

s2m − β2
− FℓκℓsℓJ1(κℓa)

s2ℓ − β2
= 0, (3.70)

∞∑
m=0

AmκmJ1(κma) + FℓκℓJ1(κℓa) = 0, (3.71)

∞∑
m=0

AmκmsmJ1(κma)− FℓκℓsℓJ1(κℓa) = 0. (3.72)

From edge conditions (3.70) and (3.72) it is seen that for a clamped edge E0 = E1 = 0.

Hence equation (3.65) reduces to

Am = Fℓδmℓ −
κmJ1(κma)

smCm

E2, (3.73)

Edge condition (3.71) is applied by multiplying (3.73) by κmJ1(κma) and summing over

m, to give

E2 = 2FℓκℓJ1(κℓa)/
∞∑

m=0

κ2mJ
2
1 (κma)

smCm

. (3.74)

The method of edge condition application can be generalised by recognising that the

edge conditions take the form:

∞∑
m=0

Amψ
(a)
mn + Fℓψ

(f)
n = 0, for n = 0, 1, 2, (3.75)

where ψ
(a)
mn are the terms in the edge condition which multiply Am, ψ

(f)
n are the constants

corresponding to Fℓ and n identifies which of the three edge conditions to apply. For
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clamped edge conditions, the definitions for these come from (3.70)-(3.72), to give

ψ
(a)
m0 = smκmJ1(κma)/(s

2
m − β2), ψ

(f)
0 = −sℓκℓJ1(κℓa)/(s2ℓ − β2),

ψ
(a)
m1 = κmJ1(κma), ψ

(f)
1 = κℓJ1(κℓa),

ψ
(a)
m2 = smκmJ1(κma), ψ

(f)
2 = −sℓκℓJ1(κℓa). (3.76)

The results for a shell of radius ā = 0.2m, the edge of which is clamped to the rigid disc

are found. Both for a fluid-borne forcing mode and a structure-borne forcing mode, the

output energy EA is totally reflected. This is because it is a closed system and the energy

can only be reflected.

3.4.2 Pin-jointed edge

The pin-jointed edge conditions given in (3.27) can be expressed as

∞∑
m=0

Amκms
2
mJ1(κma)

s2m − β2
− Fℓκℓs

2
ℓJ1(κℓa)

s2ℓ − β2
= 0, (3.77)

∞∑
m=0

AmκmJ1(κma) + FℓκℓJ1(κℓa) = 0, (3.78)

∞∑
m=0

Amκms
2
mJ1(κma)− Fℓκℓs

2
ℓJ1(κℓa) = 0. (3.79)

These conditions give the values of ψ as

ψ
(a)
m0 = s2mκmJ1(κma)/(s

2
m − β2), ψ

(f)
0 = s2ℓκℓJ1(κℓa)/(s

2
ℓ − β2),

ψ
(a)
m1 = κmJ1(κma), ψ

(f)
1 = κℓJ1(κℓa),

ψ
(a)
m2 = s2mκmJ1(κma), ψ

(f)
2 = s2ℓκℓJ1(κℓa). (3.80)

The edge conditions are applied by multiplying (3.65) by ψ
(a)
mn, and on summing over m

it is found that

∞∑
m=0

Fℓδmℓψ
(a)
mn +

∞∑
m=0

κmJ1(κma)ψ
(a)
mn

smCm(s2m − β2)
E0 +

∞∑
m=0

(2− κ2m)κmJ1(κma)ψ
(a)
mn

smCm

E1

−
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

smCm

E2 = −Fℓψ
(f)
n , for n = 0, 1, 2, (3.81)

where constants E0 − E2 are found by truncating and solving (3.81). The amplitudes of

the reflected field are then found by using the found constants in (3.65) and truncating

the sums.

The edges which connect the shell to the rigid disc are considered to be pin-jointed.
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Figure 3.8: Physical configuration of the semi-infinite shell problem with a forcing piston.

Again, both with a fluid-borne forcing mode and a structure-borne forcing mode, the

output energy is totally reflected.

3.5 Acoustic response due to a plane piston

The purpose of this section is to find the energy radiation by an oscillating plane piston

into a semi-infinite shell (see Figure 3.8). The shell is located in the region z ≤ 0, 0 ≤
r ≤ a and is closed by a rigid annular disc with a plane piston of radius r = b in its

centre. The annular disc is located in the region z = 0, b ≤ r ≤ a and the plane piston

is located at z = 0, 0 ≤ r ≤ b. The direction of forcing for the plane piston is in the

negative z direction.

The sound source in this system is the piston which is assumed to have symmetrical

axial velocity distribution u = u(r). The velocity potential for this system comprises the

waves radiated by the sound source

ϕ(r, z) =
∞∑
n=0

AnJ0(κnr)e
−isnz, (3.82)

where An is the amplitude of the nth radiated wave, sn is the wavenumber and κn =

(1− s2n)
1/2. The longitudinal and radial displacements (3.13) and (3.14) for the velocity

potential are as follows:

u(z) = −ν
a

∞∑
n=0

AnsnκnJ1(κna)

s2n − β2
e−isℓz, z < 0, (3.83)

w(z) = −i
∞∑
n=0

AnκnJ1(κna)e
−isnz, z < 0. (3.84)

The piston is assumed to have a symmetrical axial velocity distribution u = u(r), with

u(r) =

{
U0, 0 ≤ r ≤ b

0, b ≤ r ≤ a
, (3.85)
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where U0 is a constant.

The normal component of velocity is matched with the velocity distribution of the

piston. That is at z = 0
∂ϕ

∂z
(r, 0) = u(r), 0 ≤ r ≤ a. (3.86)

The velocity potential in (3.82) is substituted into (3.86) to give

−i
∞∑
n=0

AnsnJ0(κnr) = u(r), 0 ≤ r ≤ a. (3.87)

On multiplying (3.87) by αJ0(κmr)r/a and integrating with respect to r, 0 ≤ r ≤ a, it is

found that

−iα
a

∞∑
n=0

Ansn

∫ a

0

J0(κnr)J0(κmr)r dr =
α

a

∫ a

0

u(r)J0(κmr)r dr. (3.88)

The orthogonality relation in (3.35) is used to evaluate the integral on the left-hand side

and (3.85) is considered so the integral on the right-hand side can be evaluated. It follows

that

Am =
κmJ1(κma)

(s2m − β2)smCm

E0 +
(2− κ2m)κmJ1(κma)

smCm

E1 −
κmJ1(κma)

smCm

E2 +
iαU0bJ1(κmb)

aκmsmCm

,

(3.89)

where

E0 = τν2β2

{
∞∑
n=0

AnκnsnJ1(κna)

s2n − β2

}
, (3.90)

E1 =
∞∑
n=0

AnκnsnJ1(κna), (3.91)

E2 =
∞∑
n=0

Anκ
3
nsnJ1(κna). (3.92)

The formula for impedance is the same as that given for the rigid piston system in

(2.57), which is

Z =
2i

b2U0

∫ b

0

ϕ(r, 0)r dr. (3.93)

The velocity potential in (2.43) is substituted into (3.93), with U0 = 1, to express the

impedance in terms of the radiated amplitude

Z =
2i

b2

∞∑
n=0

An

∫ b

0

J0(κnr)r dr, (3.94)

67



which reduces to

Z =
2i

b2

∞∑
n=0

AnbJ1(κnb)

κn
. (3.95)

The amplitude of the radiated waves in (3.89) are substituted into the above impedance

equation, with U0 = 1, to express the impedance as

Z =
2i

b

∞∑
n=0

{
J1(κna)J1(κnb)

(s2n − β2)snCn

E0 +
(2− κ2n)J1(κna)J1(κnb)

snCn

E1 −
J1(κna)J1(κnb)

snCn

E2

+
iαbJ2

1 (κnb)

aκ2nsnCn

}
. (3.96)

The same method of edge condition application used in the previous section can be

used here, but with the form of the edge conditions as

∞∑
m=0

Amψ
(a)
mn = 0, for n = 0, 1, 2, (3.97)

The edge conditions are applied by multiplying (3.89) by ψ
(a)
mn, and on summing over m

it is found that

∞∑
m=0

κmJ1(κma)ψ
(a)
mn

(s2m − β2)smCm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)ψ
(a)
mn

smCm

E1 −
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

smCm

E2

+
iαb

a

∞∑
m=0

J1(κmb)ψ
(a)
mn

κmsmCm

for n = 0, 1, 2. (3.98)

The constants E0 −E2 are thus found by truncating and solving (3.98). These constants

are then used in (3.89) and (3.96) which are truncated to find the radiated amplitudes

and the radiated impedance. The radiated energy is given in (3.69) and the impedance

are plotted against frequency. The energy and impedance are calculated in Matlab with

the code presented in Appendix F and the plots from this are shown below. This has

been done using 100 modes to calculate the amplitudes of the propagating waves.

3.5.1 Clamped edge

The displacements in (3.83) and (3.84) are used to find the values of ψ for a clamped

edge as

ψ
(a)
m0 = smκmJ1(κma)/(s

2
m − β2),

ψ
(a)
m1 = κmJ1(κma),

ψ
(a)
m2 = smκmJ1(κma). (3.99)
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Figure 3.9: At the closed end of a semi-infinite shell forced by a piston with a clamped edge,
ā = 0.2m and b̄ = 0.2m: a) Radiated energy, b) Radiation impedance.
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Figure 3.10: At the closed end of a semi-infinite shell forced by a piston with a clamped edge,
ā = 0.2m and b̄ = 0.1m: a) Radiated energy, b) Radiation impedance.

The above values of ψ are used in (3.98) in order to find the values of E0 − E2. The

radius of the shell is ā = 0.2m throughout where the first cut-on is at 1048Hz (the second

cut-on occurs outside the considered frequency range).

The simplest case of a plane piston plane being equal to the radius of the shell is

considered first, where ā = b̄ = 0.2m. The resulting radiated energy and radiation

impedance are shown in Figure 3.9. It can be seen that these results are identical to

those obtained from the rigid equivalent problem in Figure 2.2.

The radius of the piston is now reduce so that it is equal to half the radius of the

shell, that is b̄ = 0.1m. The resulting radiated energy and impedance are shown in Figure

3.10. It is seen that the radiated energy in the shell increase abruptly at the first cut-on

at 1048Hz, this is also reflected in the impedance.

In the last configuration the radius of the piston is assumed to be significantly smaller
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Figure 3.11: At the closed end of a semi-infinite shell forced by a piston with a clamped edge,
ā = 0.2m and b̄ = 0.06m: a) Radiated energy, b) Radiation impedance.

than the radius of the shell with a piston radius of b̄ = 0.06m. The resulting radiated

energy and impedance are shown in Figure 3.11. Again the cut-ons in the shell cause the

radiated energy and thus impedance to suddenly spike up and drop down.

3.5.2 Pin-jointed edge

The displacements in (3.83) and (3.84) are used to find the values of ψ for a pin-jointed

edge as

ψ
(a)
m0 = s2mκmJ1(κma)/(s

2
m − β2),

ψ
(a)
m1 = κmJ1(κma),

ψ
(a)
m2 = s2mκmJ1(κma). (3.100)

The above values of ψ are used in (3.98) in order to find the values of E0 − E2. The

radius of the shell is ā = 0.2m throughout where the first cut-on is at 1048Hz (the second

cut-on occurs outside the considered frequency range).

Those configurations that were considered in the previous subsection with clamped

edges were considered for pin-jointed edges also. It was found that the results obtained

using pin-jointed edges were identical to those obtained from the clamped edge equivalent

problems.
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Figure 3.12: Physical configuration of the semi-infinite shell forced by a piston and a wave.

3.6 Acoustic response due to a plane piston and forc-

ing wave

The purpose of this section is to find the energy radiation by an oscillating plane piston

and a forcing wave into a semi-infinite shell. The system setup is the same as considered

in Section 3.5, but with the inclusion of a forcing wave incident towards the piston (see

Figure 3.12).

The velocity potential now includes the forcing wave as well as those wave radiate by

the place piston, this gives

ϕ1(r, z) = FℓJ0(κℓr)e
isℓz +

∞∑
n=0

AnJ0(κnr)e
−isnz, 0 ≤ r ≤ a, z ≤ 0, (3.101)

where ℓ indicates the chosen fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the

amplitude of the forcing wave given by (3.60), An is the amplitude of the nth radiated

wave, sn is the nth wavenumber and κ2n = (1 − s2n)
1/2. The piston is assumed to have a

symmetrical axial velocity distribution u = u(r), with

u(r) =

{
U0, 0 ≤ r ≤ b

0, b ≤ r ≤ a
, (3.102)

where U0 is a constant.

The normal component of velocity is matched with the velocity distribution of the

piston at the closed end. That is, at z = 0

isℓFℓJ0(κℓr)− i
∞∑
n=

AnsnJ0(κnr) = u(r), 0 ≤ r ≤ a. (3.103)

On multiplying (3.103) by αJ0(κmr)r/a, integrating with respect to r, 0 ≤ r ≤ a, and
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on using the generalised orthogonality relation in (3.35), it is found that

Am = Fℓδℓm +
κmJ1(κma)

(s2m − β2)smCm

E0 +
(2− κ2m)κmJ1(κma)

smCm

E1 −
κmJ1(κma)

smCm

E2

+
iαbJ1(κmb)

aκmsmCm

, (3.104)

where

E0 = τν2β2

{
∞∑
n=0

AnκnsnJ1(κna)

s2n − β2
− FℓκℓsℓJ1(κℓa)

s2ℓ − β2

}
, (3.105)

E1 =
∞∑
n=0

AnκnsnJ1(κna)− FℓκℓsℓJ1(κℓa), (3.106)

E2 =
∞∑
n=0

Anκ
3
nsnJ1(κna)− Fℓκ

3
ℓsℓJ1(κℓa). (3.107)

The velocity potential in (3.101) is substituted into (3.93), with U0 = 1, to find the

radiation impedance in terms of the radiated amplitude as

Z =
2i

b2

{
FℓbJ1(κℓb)

κℓ
+

∞∑
n=0

AnbJ1(κnb)

κn

}
. (3.108)

The amplitude for the radiated waves in (3.104) is substituted into the above equation

to give

Z =
2iFℓJ1(κℓb)

bκℓ
+

2i

b

∞∑
n=0

{
J1(κna)J1(κnb)

(s2n − β2)snCn

E0 +
(2− κ2n)J1(κna)J1(κnb)

snCn

E1

− J1(κna)J1(κnb)

snCn

E2 +
iαbJ2

1 (κnb)

aκ2nsnCn

}
. (3.109)

The results are created in Matlab with the code presented in Appendix F. This has

been done using 100 modes to calculate the amplitudes of the propagating waves. The

edge conditions for a clamped edge are as given in (3.70)-(3.72) and the edge conditions

for a pin-jointed edge are as given in (3.77)-(3.79). These edge conditions are applied by

multiplying (3.104) by ψ
(a)
mn, and on summing over m it is found that

∞∑
m=0

Fℓδℓmψ
(a)
mn +

∞∑
m=0

κmJ1(κma)ψ
(a)
mn

(s2m − β2)smCm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)ψ
(a)
mn

smCm

E1

−
∞∑

m=0

κmJ1(κma)

smCm

E2 =
iαb

a

∞∑
m=0

J1(κmb)ψ
(a)
mn

κmsmCm

− Fℓψ
(f)
n , for n = 0, 1, 2, (3.110)

where ψ
(a)
mn and ψ

(f)
n are as given in (3.76) for a clamped edge and as given in (3.80) for
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Figure 3.13: At the closed end of a semi-infinite shell forced by a piston and a wave with a
clamped edge, ā = 0.2m, b̄ = 0.2m and ℓ = 0: a) Radiated energy, b) Radiation impedance.

a pin-jointed edge. The constants E0 − E2 are found by truncating and solving (3.110).

These constants are then used in (3.104) which is truncated to give the amplitudes of the

reflected field.

3.6.1 Clamped edge

The displacements in (3.83) and (3.84) are used to find the values of ψ for a clamped

edge as

ψ
(a)
m0 = smκmJ1(κma)/(s

2
m − β2),

ψ
(a)
m1 = κmJ1(κma),

ψ
(a)
m2 = smκmJ1(κma). (3.111)

The above values of ψ are used in (3.104) in order to find the values of E0 − E2. The

radius of the shell is ā = 0.2m throughout where the first cut-on is at 1048Hz (the second

cut-on occurs outside the considered frequency range).

The first considered configuration assumes the radius of the plane piston to be equal

to that of the shell, where ā = b̄ = 0.2m. The resulting radiated energy and radiation

impedance with fluid-borne forcing (ℓ = 0) are shown in Figure 3.13 and for structure-

borne forcing (ℓ = 1) in Figure 3.14. It is seen that the cut-on has no effect on the

radiated energy or impedance.

The next configuration considers the radius of the shell to be ā = 0.2m with the

radius of the plane piston equal to half the radius of the shell as b̄ = 0.1m. The resulting

radiated energy and impedance with fluid-borne forcing (ℓ = 0) are shown in Figure 3.15

and for structure-borne forcing (ℓ = 1) in Figure 3.16.

The final configuration considers the radius of the shell to be ā = 0.2m with the
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Figure 3.14: At the closed end of a semi-infinite shell forced by a piston and a wave with a
clamped edge, ā = 0.2m, b̄ = 0.2m and ℓ = 1: a) Radiated energy, b) Radiation impedance.
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Figure 3.15: At the closed end of a semi-infinite shell forced by a piston and a wave with a
clamped edge, ā = 0.2m, b̄ = 0.1m and ℓ = 0: a) Radiated energy, b) Radiation impedance.

radius of the plane piston significantly smaller with b̄ = 0.06m. The resulting radiated

energy and impedance with fluid-borne forcing (ℓ = 0) are shown in Figure 3.17 and for

structure-borne forcing (ℓ = 1) in Figure 3.18.

3.6.2 Pin-jointed edge

The values of ψ for a pin-jointed edge are

ψ
(a)
m0 = s2mκmJ1(κma)/(s

2
m − β2),

ψ
(a)
m1 = κmJ1(κma),

ψ
(a)
m2 = s2mκmJ1(κma). (3.112)
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Figure 3.16: At the closed end of a semi-infinite shell forced by a piston and a wave with a
clamped edge, ā = 0.2m, b̄ = 0.1m and ℓ = 1: a) Radiated energy, b) Radiation impedance.
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Figure 3.17: At the closed end of a semi-infinite shell forced by a piston and a wave with a
clamped edge, ā = 0.2m, b̄ = 0.06m and ℓ = 0: a) Radiated energy, b) Radiation impedance.

The above values of ψ are used in (3.104) in order to find the values of E0 − E2. The

radius of the shell is ā = 0.2m throughout where the first cut-on is at 1048Hz (the second

cut-on occurs outside the considered frequency range).

Those configurations that were considered in the previous subsection with clamped

edges were considered for pin-jointed edges also. It was found that the results obtained

using pin-jointed edges were identical to those obtained from the clamped edge equivalent

problems.
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Figure 3.18: At the closed end of a semi-infinite shell forced by a piston and a wave with a
clamped edge, ā = 0.2m, b̄ = 0.06m and ℓ = 1: a) Radiated energy, b) Radiation impedance.
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Chapter 4

Energy radiated due to a change of

radius in shells subject to

axisymmetric motion

This chapter focuses on acoustic propagation in thin circular cylindrical shells with flexible

walls. The purpose of each problem is to find the reflected and transmitted energy

which scatters at an abrupt change of radius due to a forcing wave. The generalised

orthogonality relation derived in Chapter three is used with the mode-matching method

to find the resulting amplitudes. The generalised orthogonality relation is new to the

research area and therefore so is the method and results that follow. The results produced

in this chapter are compared with those obtained from equivalent problems in Chapter

two. Three problems are presented in this chapter: Energy radiated due to a forcing

wave at an abrupt increase in radius, energy leaving a rigid expansion chamber situated

between two shells and energy leaving a flexible expansion chamber situated between two

shells.

4.1 Energy radiated due to a forcing wave at an

abrupt increase in radius

The aim of this section is to determine the energy reflected and transmitted due to a

forcing wave incident toward an abrupt increase in radius. The system comprises two

semi-infinite shells, the left-hand shell occupies 0 ≤ r ≤ a, z ≤ 0 and the right-hand shell

occupies 0 ≤ r ≤ b, z ≥ 0, where a ≤ b (see Figure 4.1). It is closed by a rigid annular

disc occupying a ≤ r ≤ b, z = 0. Forcing is by a wave propagating in the positive z

direction towards the abrupt increase in radius. The velocity potential for the left-hand
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Figure 4.1: Physical configuration of the abrupt increase in radius problem.

shell ϕ1 comprises the incident wave and the reflected sound field

ϕ1(r, z) = FℓJ0(κℓr)e
isℓz +

∞∑
n=0

AnJ0(κnr)e
−isnz, 0 ≤ r ≤ a, z ≤ 0, (4.1)

where ℓ indicates the chosen fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the

amplitude of the forcing wave given in (3.60), An is the amplitude of the nth reflected

wave, sn, n = 0, 1, 2, . . . are the wavenumbers for the left-hand shell and κn = (1−s2n)1/2.
The eigenfunction expansion forms of the longitudinal and radial displacements given in

(3.13) and (3.14) are

u1(z) =
νFℓsℓκℓJ1(κℓa)

a(s2ℓ − β2)
eisℓz − ν

a

∞∑
n=0

AnsnκnJ1(κna)

s2n − β2
e−isnz, z ≤ 0,

w1(z) = −FℓκℓJ1(κℓa)e
isℓz −

∞∑
n=0

AnκnJ1(κna)e
−isnz, z ≤ 0, (4.2)

where again ℓ = 0 and ℓ = 1 and Fℓ is thus known. The velocity potential for the

right-hand shell is comprised of the transmitted sound field, that is

ϕ2(r, z) =
∞∑
n=0

BnJ0(γnr)e
iηnz, 0 ≤ r ≤ b, z ≥ 0, (4.3)

where Bn is the amplitude of the nth transmitted wave, ηn, n = 0, 1, 2, . . . are the

wavenumbers for the right-hand shell and γn = (1 − η2n)
1/2. For the right-hand section,
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the longitudinal and radial displacements are given by

u2(z) =
ν

b

∞∑
n=0

BnηnγnJ1(γnb)

η2n − β2
eiηnz, z ≥ 0,

w2(z) = −
∞∑
n=0

BnγnJ1(γnb)e
iηnz, z ≥ 0. (4.4)

The problem is solved by matching the fluid pressure and the normal component of

velocity at the interface. At the matching interface, the pressure and normal component

of velocity are continuous in the fluid, while the latter vanishes on the rigid annulus.

That is at z = 0

ϕ1(r, 0) = ϕ2(r, 0), 0 ≤ r ≤ a, (4.5)

∂ϕ2

∂z
(r, 0) =

{
∂ϕ1

∂z
(r, 0), 0 ≤ r ≤ a

0, a ≤ r ≤ b
. (4.6)

On substituting (4.1) and (4.3) into (4.5), it is found that

FℓJ0(κℓr) +
∞∑
n=0

AnJ0(κnr) =
∞∑
n=0

BnJ0(γnr), 0 ≤ r ≤ a. (4.7)

On multiplying (4.7) by αJ0(κmr)r/a and integrating with respect to r, 0 ≤ r ≤ a, it is

found that

αFℓ

a

∫ a

0

J0(κℓr)J0(κmr)r dr +
α

a

∞∑
n=0

An

∫ a

0

J0(κnr)J0(κmr)r dr

=
α

a

∞∑
n=0

Bn

∫ a

0

J0(γnr)J0(κmr)r dr. (4.8)

The integrals on the left-hand side are evaluated using the generalised orthogonality

relation in (3.35). It follows that

Am = −Fℓδℓm +
κmJ1(κma)

(s2m − β2)Cm

E0 +
(2− κ2m)κmJ1(κma)

Cm

E1 −
κmJ1(κma)

Cm

E2

+
α

a

∞∑
n=0

BnRmn

Cm

, (4.9)
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where

E0 = τ1ν
2β2

{
∞∑
n=0

AnκnJ1(κna)

s2n − β2
+
FℓκℓJ1(κℓa)

s2ℓ − β2

}
, (4.10)

E1 =
∞∑
n=0

AnκnJ1(κna) + FℓκℓJ1(κℓa), (4.11)

E2 =
∞∑
n=0

Anκ
3
nJ1(κna) + Fℓκ

3
ℓJ1(κℓa), (4.12)

and

Rmn =

∫ a

0

J0(κmr)J0(γnr)r dr. (4.13)

For κm ̸= γn, Rmn simplifies to

Rmn =
a {κmJ0(γna)J1(κna)− γmJ0(κma)J1(γma)}

κ2m − γ2n
, (4.14)

and for κm = γn, Rmm simplifies to

Rmm =
a2 {J2

0 (κma) + J2
1 (κma)}

2
. (4.15)

A similar expression to (4.9) can be obtained for Bn, n = 0, 1, 2, . . . by multiplying (4.6)

by αJ0(γmr)r/b. The left-hand side is integrated with respect to r, 0 ≤ r ≤ b and the

right-hand side is integrated with respect to r, 0 ≤ r ≤ a. The generalised orthogonality

relation in (3.36) is used to evaluate those integrals on the right-hand side to give

Bm =
γmJ1(γmb)

(η2m − β2)ηmDm

E3 +
(2− γ2m)γmJ1(γmb)

ηmDm

E4 −
γmJ1(γmb)

ηmDm

E5 +
αFℓsℓRℓm

bηmDm

− α

b

∞∑
n=0

AnsnRnm

ηmDm

, (4.16)

where

E3 = τ2ν
2β2

∞∑
n=0

BnηnγnJ1(γnb)

η2n − β2
, (4.17)

E4 =
∞∑
n=0

BnηnγnJ1(γnb), (4.18)

E5 =
∞∑
n=0

Bnηnγ
3
nJ1(γnb), (4.19)

and Rnm is as given in (4.13). The constants E0 − E5 in (4.9) and (4.16) are found by

applying edge conditions which describe how the shells are connected to the rigid annulus
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at the matching interface. These conditions can be written in the form

∞∑
m=0

Amψ
(a)
mn +

∞∑
m=0

Bmψ
(b)
mn + Fℓψ

(f)
n = 0, for n = 0, 1, 2, . . . 5, (4.20)

where n = 0, 1, 2 refer to conditions applied to the left-hand shell edge and n = 3, 4, 5

refer to conditions applied at the right-hand shell edge. In order to apply the left-hand

edge conditions (4.9) is multiplied by ψ
(a)
mn, and on summing over m it is found that

−
∞∑

m=0

Fℓδℓmψ
(a)
mn +

∞∑
m=0

κmJ1(κma)ψ
(a)
mn

(s2m − β2)Cm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)ψ
(a)
mn

Cm

E1

−
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

Cm

E2 +
α

a

∞∑
m=0

∞∑
n=0

BnRmnψ
(a)
mn

Cm

= −
∞∑

m=0

Bmψ
(b)
mn − Fℓψ

(f)
n , n = 0, 1, 2.

(4.21)

Similarly for the right-hand edge conditions (4.16) is multiplied by ψ
(b)
mn, and on summing

over m, it is found that

∞∑
m=0

γmJ1(γmb)ψ
(b)
mn

(η2m − β2)ηmDm

E3 +
∞∑

m=0

(2− γ2m)γmJ1(γmb)ψ
(b)
mn

ηmDm

E4

−
∞∑

m=0

γmJ1(γmb)ψ
(b)
mn

ηmDm

E5 +
∞∑

m=0

αFℓsℓRℓmψ
(b)
mn

bηmDm

− α

b

∞∑
m=0

∞∑
n=0

AnsnRnmψ
(b)
mn

ηmDm

= −
∞∑

m=0

Amψ
(a)
mn − Fℓψ

(f)
n , n = 3, 4, 5. (4.22)

The expressions for ψ
(a)
mn, ψ

(b)
mn and ψ

(f)
n are found from eigenfunction expansions of the

edge conditions.

4.1.1 Clamped edges

On using the displacements given in (4.4) and (4.2), the clamped edge conditions given

in (3.26) lead to

ψ
(a)
m0 = smκmJ1(κma)/(s

2
m − β2), ψ

(b)
m0 = 0, ψ

(f)
0 = −sℓκℓJ1(κℓa)/(s2ℓ − β2),

ψ
(a)
m1 = κmJ1(κma), ψ

(b)
m1 = 0, ψ

(f)
1 = κℓJ1(κℓa),

ψ
(a)
m2 = smκmJ1(κma), ψ

(b)
m2 = 0, ψ

(f)
2 = −sℓκℓJ1(κℓa)

ψ
(b)
m3 = ηmγmJ1(γmb)/(η

2
m − β2), ψ

(a)
m3 = 0, ψ

(f)
3 = 0,

ψ
(b)
m4 = γmJ1(γmb), ψ

(a)
m4 = 0, ψ

(f)
4 = 0,

ψ
(b)
m5 = ηmγmJ1(γmb), ψ

(a)
m5 = 0, ψ

(f)
5 = 0. (4.23)
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The values of E0 − E5 are found by truncating and solving equations (4.21) and (4.22)

using the above values of ψ, it can be seen that E1 = 0. Coupled equations are obtained

by using E0 − E2 in equation (4.9) and E3 − E5 in (4.16). These equations are then

truncated and solved to give the mth amplitude Am of the reflected field and the mth

amplitude Bm of the transmitted field. The energy entering the system EF is due to the

wave incident in the z direction, which has unit energy. The energy leaving the system

comprises the energy of the reflected field EA and the energy of the transmitted field EB.
The energy associated with the reflected and transmitted fields are as given in (2.41) and

(2.42) which are stated below:

EA =
a

α
Real

[
M∑

m=0

|Am|2smCm

]
, (4.24)

where Am are the amplitudes of the reflected waves and

EB =
b

α
Real

[
M∑

m=0

|Bm|2ηmDm

]
, (4.25)

where Bm are the amplitudes of the transmitted waves. The results are created in Matlab

with the code presented in Appendix G. The amplitudes have been formed using 100

modes, which is shown to be more than sufficient in the section that follows.

The first considered configuration assumes the radius of the two shells to be equal,

where ā = 0.2m and b̄ = 0.2m. This forms a infinite shell which has no change in radius,

however it remains clamped at z = 0. As stated in Section 3.1 there are two fundamental

modes (s0 being fluid-borne and s1 being structure-borne), this gives two possible modes

for the energy to propagate along in each shell. For a shell of radius ā = 0.2m the

first cut-on mode occurs at 1048Hz (the second cut-on mode occurs outside the chosen

frequency range). Thus introducing a third potential mode for the energy to propagate

along. The resulting energy outputs are shown for 5− 1200Hz in Figure 4.2.

Figure 4.2a corresponds to the forcing wave being formed of the fluid-borne mode

(ℓ = 0). The results show that the energy is totally transmitted for the chosen frequency

range. The clamped joint and the cut-on occurring at 1048Hz appear to have no effect

on the energy. This is because the energy is propagating in the fluid (as ℓ = 0 indicates

a fluid-borne mode) which means it cannot be reflected by the junction. It is possible for

the energy to move from the fluid into the shell (and still be transmitted), this is known

as a structural mode. However, such a mode would occur at a much larger frequency (or

equivalently a larger shell radius) which is outside the range considered here.

Figure 4.2b corresponds to the forcing wave being formed of the structure-borne mode

(ℓ = 1). It can be seen that the energy is totally reflected for frequencies below the cut-on

1048Hz (the first cut-on which occurs). This is because the compressional wave in the
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Figure 4.2: Energy output for no change in radius with clamped edges: a) ā = 0.2m, b̄ = 0.2m,
ℓ = 0; b) ā = 0.2m, b̄ = 0.2m, ℓ = 1.

structure is unable to travel through the clamped edge and therefore is mostly reflected

until the cut-on occurs. The cut-on causes a sudden inversion in the energies as it is

transmitted for the remainder of the frequency range. This is because the cut-on allows

for the energy to move into the fluid and be carried by this mode. This shift of energy

from the shell into the fluid is a common occurrence at a cut-on and is useful for the

design of HVAC systems. From this configuration, to prevent unwanted reflected noise

the frequency of the forcing wave should be above 1048Hz. Similarly, to prevent unwanted

reflected noise the frequency of the forcing wave should be below 1048Hz.

The energy propagating in each of the individual modes for this configuration is shown

Figure 4.3, where the index indicates the direction (reflected A or transmitted B) and the

mode number (0 , 1, 2). It is seen that the energy is initially reflected, being carried by

the structure-borne mode in the left-hand shell until the cut-on occurs at 1048Hz. From

this frequency onwards, the energy is transmitted, carried by the mode which cut-on at

1048Hz (essentially a fluid mode). This supports the statement about the energy being

carried by the cut-on mode.

The second considered configuration assumes the radius of the right-hand shell to be

larger than the left-hand shell, where ā = 0.2m and b̄ = 0.28m. The resulting energy

outputs are shown for 5− 1200Hz in Figure 4.4. For a shell of radius b̄ = 0.28m the first

cut-on occurs at 744Hz (the second cut-on mode occurs outside the chosen frequency

range). This introduces a third mode for the energy to propagate in the right-hand shell

while the third mode in the left-hand shell is introduced at 1048Hz. The resulting energy

outputs are shown for 5− 1200Hz in Figure 4.4.

Figure 4.4a corresponds to the forcing wave being formed of the fluid-borne mode

(ℓ = 0). This result is similar to that obtained for the equivalent rigid duct in Figure

2.10a. The majority of energy is transmitted throughout the frequency range and it drops

at the cut-on from the right-hand shell at 744Hz and also at the cut-on from the left-
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Figure 4.3: Mode energy output for no change in radius with clamped edges for ā = 0.2m,
b̄ = 0.2m, ℓ = 1.

hand shell at 1048Hz. From a design point of view, to minimise the amount of unwanted

transmitted noise the frequency of the fluid-borne forcing wave should be near the first

cut-on in the right-hand shell at 744Hz. Similarly, to minimise the amount of unwanted

reflected noise the frequency of the fluid-borne forcing wave should be just before the first

cut-on in the left-hand shell at 1048Hz.

Figure 4.4b corresponds to forcing using the second mode in the amplitude of the

forcing wave (ℓ = 1). It is seen that the energy is totally reflected up until the cut-on

from the left-hand shell at 1048Hz. The cut-on at 744Hz from the right-hand shell has

no impact on the energy. The reflected energy then continues to fall for the remainder of

the chosen frequency range, thus providing an ideal frequency for minimising the amount

of reflected noise from a structure-borne forcing wave. The energy propagating in each

of the individual modes is shown in Figure 4.5. It can be seen that the energy is initially

reflected, being carried by structure-borne mode in the left-hand shell. At the cut-on

from the left-hand shell at 1048Hz the energy is no longer carried by the structure-borne

mode. After 1048Hz the energy is divided between the left-hand and right-hand shells.

In the left-hand shell the energy is carried by the fundamental fluid-borne mode (EA0)

and the mode which cut-on mode at 1048Hz (EA2). In the right-hand shell the energy

travels a long the fluid-borne mode (EB0) and the mode which had cut-on at 744Hz (EB2).

The final considered configuration assumes the radius of the left-hand shell being

significantly smaller than the radius of the right-hand shell. The resulting energy outputs

for a left-hand shell radius of ā = 0.06m and right-hand radius b̄ = 0.28m are shown for

5− 1200Hz in Figure 4.6. The first cut-on mode for a shell of ā = 0.06m occurs outside
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Figure 4.4: Energy output for the abrupt increase in radius with clamped edges: a) ā = 0.2m,
b̄ = 0.28m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, ℓ = 1.

the specified frequency range.

In Figure 4.6a the amplitude of the forcing wave comprises the fluid-borne mode

(ℓ = 0). This result is similar to that obtained with rigid ducts in Figure 2.10b. The

majority of energy is reflected below the frequency for the cut-on in the right-hand shell

at 748Hz. After this cut-on the energies are inverted and the transmitted energy slowly

decreases for the remaining of the frequency range. This is in keeping with well known

result (see for example Levine and Schwinger [2]) that the energy is totally reflected as

kā = a→ 0.

For the structure-borne mode in the amplitude of the forcing wave (ℓ = 1) the system

demonstrates total reflection for the whole frequency range (see Figure 4.6b). This is

analogous to a slinky connected to a fixed point in that the compressional wave cannot

progress through the clamped edge and so is completely reflected.

4.1.2 Pin-jointed edges

On using the displacements given in (4.2) and (4.4), the pin-jointed edge conditions given

in (3.27) give

ψ
(a)
m0 = s2mκmJ1(κma)/(s

2
m − β2), ψ

(b)
m0 = 0, ψ

(f)
0 = s2ℓκℓJ1(κℓa)/(s

2
ℓ − β2),

ψ
(a)
m1 = κmJ1(κma), ψ

(b)
m1 = 0, ψ

(f)
1 = κℓJ1(κℓa),

ψ
(a)
m2 = s2mκmJ1(κma), ψ

(b)
m2 = 0, ψ

(f)
2 = s2ℓκℓJ1(κℓa)

ψ
(b)
m3 = η2mγmJ1(γmb)/(η

2
m − β2), ψ

(a)
m3 = 0, ψ

(f)
3 = 0,

ψ
(b)
m4 = γmJ1(γmb), ψ

(a)
m4 = 0, ψ

(f)
4 = 0,

ψ
(b)
m5 = η2mγmJ1(γmb), ψ

(a)
m5 = 0, ψ

(f)
5 = 0. (4.26)
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Figure 4.5: Mode energy output for the abrupt increase in radius with clamped edges ā = 0.2m,
b̄ = 0.28m, ℓ = 1.

The method of solving to find the amplitudes of the reflected and transmitted fields is

analogous to that used for the clamped edges, but replacing values of ψ with those stated

above and it is seen that E1 = 0. The energy equations are given by (2.41) and (2.42),

these are stated below for convenience:

EA =
a

α
Real

[
M∑

m=0

|Am|2smCm

]
, (4.27)

where Am are the amplitudes of the reflected waves and

EB =
b

α
Real

[
M∑

m=0

|Bm|2ηmDm

]
, (4.28)

where Bm are the amplitudes of the transmitted waves. The results are found in Matlab

by using the code in Appendix G. This has been done using 100 modes to calculate the

amplitudes of the propagating waves.

Those configurations that were considered in the previous subsection with clamped

edges were considered for pin-jointed edges also. It was found that the results obtained

using pin-jointed edges were identical to those obtained from the clamped edge equivalent

problems.
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Figure 4.6: Energy output for the abrupt increase in radius with clamped edges: a) ā = 0.06m,
b̄ = 0.28m, ℓ = 0; b) ā = 0.06m, b̄ = 0.28m, ℓ = 1.
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Figure 4.7: The two sides of the pressure matching condition for 10 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.

4.1.3 Verification of results

It is necessary to verify the resulting amplitudes in order to ensure that the mode matching

method has been correctly applied. Also this will show that a suitable number of modes

have been selected. For this it is sufficient to verify one of the considered configuration,

in this case the ā = 0.2m, b̄ = 0.28m with first mode forcing and clamped edges has

been selected, which correspond to the results of Figure 4.4a. The matching condition

for pressure is (4.7) which is presented against the non-dimensional radius of the shell

for 10 modes at 780Hz in Figure 4.7. It is seen that with 10 modes used to formulate

the amplitudes, the matching of the pressure condition drifts both in the center of the

shell and towards the inner edge at r̄ = a. This in turn shows that the amplitudes

have been generated with an insufficient number of modes. The number of modes used

to calculate the amplitudes is now increased to 60 modes and the matching pressure
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Figure 4.8: The two sides of the pressure matching condition for 60 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.
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Figure 4.9: The two sides of the velocity condition for 10 modes with ā = 0.2m, b̄ = 0.28m
(dashed line: left side of the condition, solid line: right side of the condition) a) Real; b)
Imaginary.

condition is presented against the non-dimensional radius of the shell at 780Hz in Figure

4.8. With 60 modes to form the amplitudes, the match for the pressure conditions is

greatly improved as it matches for each region of the radius. This suggests that 60 modes

finds suitably accurate amplitudes for fulfilling the pressure matching condition. The

other matching condition to verify is the matching of the normal component of velocity,

shown in Figures 4.9 and 4.10. As found in the rigid equivalent problem the piecewise

nature of this condition is not suitable for the verification. A better verification would

be to show matching of the velocity flux, which is given by

iF0s0

∫ a

0

J0(κ0r)r dr − i

∞∑
n=0

Ansn

∫ a

0

J0(κnr)r dr = i

∞∑
n=0

Bn

∫ b

0

J0(γnr)r dr. (4.29)
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Figure 4.10: The two sides of the velocity condition for 60 modes with ā = 0.2m, b̄ = 0.28m
(dashed line: left side of the condition, solid line: right side of the condition) a) Real; b)
Imaginary.
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Figure 4.11: The two sides of the velocity flux condition for 10 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.

The two sides of (4.29) are found for 5 − 1200Hz and the real and imaginary parts

are presented in Figure 4.11 for 10 modes and Figure 4.12 60 modes. This shows an

excellent agreement between the two sides of (4.29) when 100 modes are used to find the

wave amplitudes. There is a dip in both the real and imaginary parts at 748Hz which

is in keeping with the first cut-on in the larger duct. Also there is a peak in the real

part (with a slight increase in the imaginary part) at 1048Hz which is due to the first

cut-on in the smaller duct. The plots in this subsection show that 10 modes is more than

sufficient to formulate the amplitudes with and they validate that the method has been

applied correctly.
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Figure 4.12: The two sides of the velocity flux condition for 60 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.
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Figure 4.13: Physical configuration of the rigid expansion chamber between two shells prob-
lem.

4.2 Energy transmitted through a rigid expansion

chamber situated between two shells

This section considers the energy leaving a rigid expansion chamber situated between two

shells. The problem comprises two semi-infinite shells with a finite rigid-walled expansion

chamber of dimensional length 2L between them (where L = kL̄) as shown in Figure 4.13.

The inlet shell is located in the region 0 ≤ r ≤ a, z ≤ −L, the outlet shell is located in

the region 0 ≤ r ≤ a, z ≥ −L and the expansion chamber occupies the space between

them, 0 ≤ r ≤ b, −L ≤ z ≤ L, thus having a length 2L. The system is closed by rigid

annular discs located at a ≤ r ≤ b, z = ±L.
The velocity potential for the inlet shell ϕ1 comprises the incident forcing wave and

the field reflected at the first junctions, which is

ϕ1 = FℓJ0(κℓr)e
isℓ(z+L) +

∞∑
n=0

AnJ0(κnr)e
−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (4.30)

where ℓ indicates the chosen fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the

amplitude of the forcing wave given in (3.60), An is the amplitude of the nth reflected

mode, sn are the wavenumbers for a flexible shell and κn = (1 − s2n)
1/2. Note that the

argument in the exponential is chosen such that the problem can later be reduced. The

velocity potential for the rigid expansion chamber ϕ2 is made of the waves reflected by the

second junction and those which pass through the first junction. This gives the velocity

potential ϕ2 as

ϕ2 =
∞∑
n=0

(
Pne

−iηnz +Qne
iηnz
)
J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ L, (4.31)

where Pn is the amplitude of the nth reflected wave, Qn is the amplitude of the nth

transmitted wave and ηn, n = 0, 1, 2, . . . are the wavenumbers given by the roots of the
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Figure 4.14: Physical configuration of the symmetric subproblem.
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Figure 4.15: Physical configuration of the antisymmetric subproblem.

characteristic equation for a rigid duct in (2.14). The velocity potential for the outlet

shell ϕ3 is composed of those waves which are transmitted through the chamber, which

is

ϕ3 =
∞∑
n=0

BnJ0(κnr)e
isℓ(z−L), 0 ≤ r ≤ a, z ≥ L, (4.32)

where Bn is the amplitude of the nth transmitted wave. In order to find the amplitudes

of the reflected and transmitted fields, the problem is broken down into symmetric and

antisymmetric subproblems. This is done by introducing a second forcing wave located in

the outlet shell. This forcing wave travels in the negative z direction for both problems,

where for the antisymmetric system this wave has a horizontal shift of iπ, which by

Euler’s identity results in a negative forcing amplitude.

The symmetric subproblem is so called because it has a line of symmetry down through

the centre of the expansion chamber at z = 0 (as shown in Figure 4.14). It represents

an expansion chamber with two incident waves. One located in the left section z ≤
−L heading towards the first junction and the second located in the right-most section

z ≥ L heading in the negative z direction towards the second junction. Similarly, the

antisymmetric problem has a line of antisymmetry through the centre expansion chamber
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Figure 4.16: Physical configuration of the abrupt increase in radius symmetric subproblem.

at z = 0 (as shown in Figure 4.15). It represents an expansion chamber with two incident

waves in the same locations as the symmetric subproblem, heading in the same direction ,

but with the incident wave in the right-most section having a negative amplitude (causing

it to shift horizontally).

The line of symmetry/antisymmetric in these subproblems allows them to be reduced

to a simpler system featuring an abrupt increase in radius. The coefficients of the re-

flected field from these systems can be used to determine the reflected and transmitted

coefficients for the full problem of a rigid expansion chamber between two shells.

4.2.1 Symmetric subproblem

The symmetric nature of the symmetric subproblem enables it to be reduced to an equiv-

alent system with an abrupt increase in radius and a rigid end plate (see Figure 4.16).

The purpose of this subsection is to determine the energy radiated due to a forcing wave

at an abrupt increase in radius. The system comprises a semi-infinite shell located at

0 ≤ r ≤ a, z ≤ −L and a finite rigid duct located at 0 ≤ r ≤ b, −L ≤ z ≤ 0. It is

closed by a rigid annular disc occupying a ≤ r ≤ b, z = −L and a rigid plate occupying

0 ≤ r ≤ b, z = 0. Forcing is by a wave located in the left-hand shell propagating in the

positive z direction towards the abrupt increase in radius.

The velocity potential for the left-hand shell ϕs
1 comprises the plane wave and the

reflected field, which is

ϕs
1 = FℓJ0(κℓr)e

isℓ(z+L) +
∞∑
n=0

As
nJ0(κnr)e

−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (4.33)

where the superscript denotes the symmetric subsystem, ℓ indicates the chosen funda-

mental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the amplitude of the forcing wave given

in (3.60) and As
n, n = 0, 1, 2, . . . are the amplitudes of the reflected field for the symmetric
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subsystem. The eigenfunction expansions of the longitudinal and radial displacements

given in (3.13) and (3.14) are

us1(z) =
νFℓsℓκℓJ1(κℓa)e

isℓ(z+L)

a(s2ℓ − β2)
− ν

a

∞∑
n=0

As
nsnκnJ1(κna)

s2n − β2
e−isn(z+L), z ≤ −L, (4.34)

ws
1(z) = −FℓκℓJ1(κℓa)e

isℓ(z+L) −
∞∑
n=0

As
nκnJ1(κna)e

−isn(z+L), z ≤ −L. (4.35)

The velocity potential for the finite section ϕs
2 comprises those waves which are trans-

mitted through the first junction and those wave which are reflected at z = 0, which

gives

ϕs
2 =

∞∑
n=0

(
P s
ne

−iηnz +Qs
ne

iηnz
)
J0(γnr), 0 ≤ r ≤ b, z ≥ −L. (4.36)

The velocity potential ϕs
2 can be simplified by considering the property of the end plate.

The condition at the plate is ϕs
2z = 0, which is only satisfied when P s

n = Qs
n, therefore

ϕs
2 = 2

∞∑
n=0

P s
n cos(ηnL)J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0. (4.37)

The amplitudes are found by matching the fluid pressure and the normal component of

velocity at the abrupt increase in radius. The fluid pressure and normal component of

velocity are constant in the fluid, while the latter vanishes on the rigid annular disc. That

is at z = −L
ϕs
1(r,−L) = ϕs

2(r,−L), 0 ≤ r ≤ a, (4.38)

∂ϕs
2

∂z
(r,−L) =

{
∂ϕs

1

∂z
(r,−L), 0 ≤ r ≤ a

0, a ≤ r ≤ b
. (4.39)

The first equation is found by multiplying (4.76) through by J0(γmb)r and integrating

with respect to r, 0 ≤ r ≤ b to give∫ b

0

∂ϕs
2

∂z
J0(γmr)r dr =

∫ a

0

∂ϕs
1

∂z
J0(γmr)r dr, at z = −L. (4.40)

The above equation is expressed in eigenfunction form by substituting in the velocity

potentials from (4.33) and (4.37) which leads to

2
∞∑
n=0

P s
n sin(ηnL)ηn

∫ b

0

J0(γnr)J0(γnr)r dr = iFℓsℓRℓm − i
∞∑
n=0

As
nsnRnm, (4.41)

where Rnm is as given in (4.13). The rigid wall orthogonality relation in (2.27) is now
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applied to the integral on the left side of the equation to give

2
∞∑
n=0

P s
n sin(ηnL)ηnδnmDn = iFℓsℓRℓm − i

∞∑
n=0

As
nsnRnm, (4.42)

where Dn is as given in (2.28). It follows that

P s
m =

iFℓsℓRℓm

2ηm sin(ηmL)Dm

− i

2

∞∑
n=0

As
nsnRnm

ηm sin(ηmL)Dm

. (4.43)

The velocity potentials in (4.33) and (4.37) are substituted into (4.38) to obtain the

pressure condition in its eigenfunction form

FℓJ0(κℓr) +
∞∑
n=0

As
nJ0(κnr) = 2

∞∑
n=0

P s
n cos(ηnL)J0(γnr). (4.44)

On multiplying (4.44) by αJ0(κmr)r/a and integrating with respect to r, 0 ≤ r ≤ a it is

found that

αFℓ

a

∫ a

0

J0(κℓr)J0(κmr)r dr +
α

a

∞∑
n=0

As
n

∫ a

0

J0(κnr)J0(κmr)r dr

=
2α

a

∞∑
n=0

P s
n cos(ηnL)Rmn, (4.45)

where Rmn is as given in (4.13) and Cn is as given in (3.34). The generalised orthogonality

relation in (3.35) is now applied to both integrals on the left side of the equation to give

Fℓ

[
δmℓCℓ −

{
τ1ν

2β2

(s2ℓ − β2)(s2m − β2)
+ 2− κ2m − κ2ℓ

}
κℓJ1(κℓa)κmJ1(κma)

]
+

∞∑
n=0

As
n

[
δmnCn −

{
τ1ν

2β2

(s2n − β2)(s2m − β2)
+ 2− κ2m − κ2n

}
κℓJ1(κna)κmJ1(κma)

]
=

2α

a

∞∑
n=0

P s
n cos(ηnL)Rmn. (4.46)

It follows that

As
m = −Fℓδmℓ +

τ1ν
2β2κmJ1(κma)

(s2m − β2)Cm

E0 +
(2− κ2m)κmJ1(κma)

Cm

E1 −
κmJ1(κma)

Cm

E2

+
2α

a

∞∑
n=0

P s
n cos(ηnL)Rmn

Cm

, (4.47)
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where

E0 =
∞∑
n=0

As
nκnJ1(κna)

s2n − β2
+
FℓκℓJ1(κℓa)

s2ℓ − β2
, (4.48)

E1 =
∞∑
n=0

As
nκnJ1(κna) + FℓκℓJ1(κℓa), (4.49)

E2 =
∞∑
n=0

As
nκ

3
nJ1(κna) + Fℓκ

3
ℓJ1(κℓa), (4.50)

and Rmn is as given in (4.13). The constants E0 − E2 in (4.47) are found by applying

conditions which describe the shell edge at the matching interface. These conditions can

be written in the form

∞∑
m=0

Amψ
(a)
mn +

∞∑
m=0

Pmψ
(p)
mn + Fℓψ

(f)
n = 0, for n = 0, 1, 2, (4.51)

In order to apply these conditions (4.47) is multiplied by ψ
(a)
mn, and on summing over m

it is found that

−
∞∑

m=0

Fℓδℓmψ
(a)
mn +

∞∑
m=0

τ1ν
2β2κmJ1(κma)ψ

(a)
mn

(s2m − β2)Cm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)

Cm

E1

−
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

Cm

E2 +
∞∑

m=0

2α

a

∞∑
n=0

P s
n cos(ηnL)Rmnψ

(a)
mn

Cm

= −
∞∑

m=0

Pmψ
(p)
mn

− Fℓψ
(f)
n , n = 0, 1, 2. (4.52)

The expressions for ψ
(a)
mn, ψ

(p)
mn and ψ

(f)
n are found from eigenfunction expansions of the

edge conditions. For a clamped edge these are as defined in (4.23) and it is immediately

seen that E1 = 0. For a pin-jointed edge these values of ψ are as defined in (4.26) and

again it is seen that E1 = 0. The remaining constant values E0 and E2 for both the

clamped and the pin-jointed edge conditions are found by solving the coupled equations

generated by (4.52). With all constants found, the coupled equations (4.43) and (4.47)

can be solved to find the amplitudes of the reflected waves for the symmetric problem

(note that the amplitudes of the transmitted waves for the symmetric subproblem are

not required).

4.2.2 Antisymmetric subproblem

The nature of the antisymmetric subproblem enables it to be reduced to an equivalent

system with an abrupt increase in radius and an acoustically soft end plate (see Figure

4.17). The purpose of this subsection is to determine the energy radiated due to a forcing

wave at the abrupt increase in radius. The system comprises a semi-infinite shell located
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Figure 4.17: Physical configuration of the abrupt increase in radius antisymmetric subproblem.

at 0 ≤ r ≤ a, z ≤ −L and a finite rigid duct located at 0 ≤ r ≤ b, −L ≤ z ≤ 0. It is

closed by a rigid annular disc occupying a ≤ r ≤ b, z = −L and an acoustically soft end

plate occupying 0 ≤ r ≤ b, z = 0. Forcing is by a wave located in the left-hand shell

propagating in the positive z direction towards the abrupt increase in radius.

The velocity potential for the left-hand shell ϕa
1 comprises the incident forcing wave

and the reflected field

ϕa
1 = FℓJ0(κℓr)e

isℓ(z+L) +
∞∑
n=0

Aa
nJ0(κnr)e

−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (4.53)

where the superscript denotes the antisymmetric subsystem,where ℓ indicates the chosen

fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the amplitude of the forcing wave

given in (3.60) and Aa
n is the amplitudes of nth reflected wave for the antisymmetric

subsystem. The eigenfunction expansions of the longitudinal and radial displacements

given in (3.13) and (3.14) are

ua1(z) =
νFℓsℓκℓJ1(κℓa)e

isℓ(z+L)

a(s2ℓ − β2)
− ν

a

∞∑
n=0

Aa
nsnκnJ1(κna)

s2n − β2
e−isn(z+L), z ≤ −L, (4.54)

wa
1(z) = −FℓκℓJ1(κℓa)e

isℓ(z+L) −
∞∑
n=0

Aa
nκnJ1(κna)e

−isn(z+L), z ≤ −L. (4.55)

The velocity potential for finite section is analogous to that of the symmetric problem

but with cos(·) replaced by sin(·)

ϕa
2 = 2

∞∑
n=0

P a
n sin(ηnz)J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0. (4.56)

Note that this satisfies the acoustically soft wall condition ϕa
2 = 0 at z = 0. The method of

solving is analogous to that of the symmetric subproblem and thus matching the normal
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component of velocity gives

P a
m =

iFℓsℓRℓm

2bηm cos(ηmL)Dm

− i

2b

∞∑
n=0

Aa
nsnRnm

ηm cos(ηmL)Dm

, (4.57)

where Dm is as given in (3.37). Likewise, matching the pressure gives the second coupled

equation as

Aa
m = −Fℓδℓm +

τ1ν
2β2κmJ1(κma)

(s2m − β2)Cm

E0 +
(2− κ2m)κmJ1(κma)

Cm

E1

− κmJ1(κma)

Cm

E2 +
2α

a

∞∑
n=0

P a
n sin(ηnL)Rmn

Cm

, (4.58)

where

E0 =
∞∑
n=0

Aa
nκnJ1(κna)

s2n − β2
+
FℓκℓJ1(κℓa)

s2ℓ − β2
, (4.59)

E1 =
∞∑
n=0

Aa
nκnJ1(κna) + FℓκℓJ1(κℓa), (4.60)

E2 =
∞∑
n=0

Aa
nκ

3
nJ1(κna) + Fℓκ

3
ℓJ1(κℓa), (4.61)

and Rmn is as given in (4.13). The constants E0 − E2 of (4.58) are found by applying

edge conditions which describe the shell edge at the matching interface. The conditions

can be written in the form given in (4.51). In order to apply these conditions (4.58) is

multiplied by ψ
(a)
mn, and on summing over m it is found that

−
∞∑

m=0

Fℓδℓmψ
(a)
mn +

∞∑
m=0

τ1ν
2β2κmJ1(κma)ψ

(a)
mn

(s2m − β2)Cm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)

Cm

E1

−
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

Cm

E2 +
∞∑

m=0

2α

a

∞∑
n=0

P a
n sin(ηnL)Rmnψ

(a)
mn

Cm

= −
∞∑

m=0

Pmψ
(p)
mn

− Fℓψ
(f)
n , n = 0, 1, 2. (4.62)

The expressions for ψ
(a)
mn, ψ

(p)
mn and ψ

(f)
n are found from eigenfunction expansions of the

edge conditions. For a clamped edge these are as defined in (4.23) and it is immediately

seen that E1 = 0. For a pin-jointed edge these values of ψ are as defined in (4.26) and

again it is seen that E1 = 0. The remaining constant values E0 and E2 for both the

clamped and the pin-jointed edge conditions are found by solving the coupled equations

created by (4.62). With all constants found, the coupled equations (4.57) and (4.58) can

be solved to find the amplitudes of the reflected waves for the symmetric problem (note

that the amplitudes of the transmitted waves for the antisymmetric subproblem are not
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required).

The reflected and transmitted amplitudes for the whole expansion chamber system are

found by using the amplitudes of the reflected field in the symmetric and antisymmetric

subsystems. That is:

Am =
As

m + Aa
m

2
, Bm =

As
m − Aa

m

2
, (4.63)

where As
m are the reflected amplitudes from the symmetric subsystem, Aa

m are the re-

flected amplitudes from the antisymmetric subsystem, Am are the reflected amplitudes for

the expansion chamber system and Bm are the transmitted amplitudes for the expansion

chamber system. The results are created in Matlab with the code presented in Appendix

H. This has been done using 100 modes to calculate the amplitudes of the propagating

waves. Note that this code is not perfect as the root finder does not give an accurate

value for one of the identified roots in the 300Hz to 600Hz range. As a result, the energy

plots presented in this chapter may show some noise in this range.

4.2.3 Clamped edge

The introduction of an expansion chamber causes the energies to oscillate over frequency.

This is due to the trigonometric factors cos(ηnL) and sin(ηnL) present in the symmetric

and antisymmetric amplitudes respectively. As stated in Section 3.1 the first fundamental

mode s0 ≈ 1. From this it is assumed that when the fluid-borne mode is used, the reflected

energy will drop when kL̄ = nπ, n = 0, 1, 2, . . . (as Pm corresponds to the mth amplitude

of waves reflected inside the expansion chamber). This is when f = cn/(4L̄), n =

0, 1, 2, . . . (as k = f2π/c). For plots which consider L̄ = 0.25m with a fluid-borne mode

in the amplitude (ℓ = 0), the reflected energy is expected to drop at 0Hz, 343.5Hz, 687Hz

and 1030.5Hz (that is as long as it is traveling along this mode). Likewise, for L̄ = 0.5m

the reflected energy is expected to drop at 0Hz, 171.75Hz, 343.5Hz, 515.25Hz, 687Hz,

858.75Hz and 1030.5Hz.

The first configuration considers the radii of the inlet and outlet shells to be equal

to the radius of the rigid expansion chamber. This reduces the system to a rigid duct

clamped between two flexible shells. The radii of the inlet and outlets shells is ā = 0.2m

and the radius of the rigid shell is b̄ = 0.2m. The energies exiting the rigid duct (by being

reflected at the first junction or transmitted at the second) for 5− 1200Hz are shown in

Figure 4.18. For a duct of radius b̄ = 0.2m the first cut-on occurs at 1041Hz whereas for

a shell of radius ā = 0.2m the first cut-on occurs at 1048Hz.

Figure 4.18a considers the amplitude of the forcing mode to use the fluid-borne mode

(ℓ = 0). It is seen that the energy is totally transmitted throughout the considered

frequency range. This shows that the clamped edges have no impacts on the energy

travelling in the fluid.

The structure-borne mode (ℓ = 1) is used in the amplitude of the forcing wave to
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Figure 4.18: Energy output for a rigid section between two shells with clamped edges: a)
ā = 0.2m, b̄ = 0.2m, L̄ = 0.25m, ℓ = 0; b) ā = 0.2m, b̄ = 0.2m, L̄ = 0.25m, ℓ = 1.

generate Figure 4.18b. the energy was totally reflected for frequencies below the first real

cut-on at 1048Hz. After the second cut-on at 1048Hz the transmitted energy takes over

and the energy is totally transmitted for the remainder of the considered frequency range.

This result is similar to that obtained by the no change of configuration considered in

Figure 4.2b.

The next configuration considers the radii of the inlet and outlet shells to be smaller

than the radius of the expansion chamber. The radii of the inlet and outlet shells are

kept at ā = 0.2m, while the radius of the expansion chamber is increased to b̄ = 0.28m

with a length of 2L̄ = 0.5m. The energies exiting the rigid duct (by being reflected at

the first junction or transmitted at the second) for 5− 1200Hz are shown in Figure 4.19.

For a rigid duct of radius b̄ = 0.28m the first cut-on occurs at 744Hz and all over cut-ons

occur outside the considered frequency range.

The amplitude of the forcing wave is considered to comprise the fluid-borne mode

(ℓ = 0) in Figure 4.19a. The results show that the majority of energy is transmitted

up until the cut-on from the expansion chamber at 744Hz. The reflected energy in this

region drops at 343.5Hz and 687Hz which is as expected due to the trigonometric terms

appearing in the amplitude equations. After the first cut-on the transmitted energy

suddenly drops at 760Hz, before recovering as the dominant energy. It later falls again

at 845Hz where is carries less than 10% of the total energy up until the cut-on from the

inlet and outlet chambers at 1048Hz

The same configuration is considered but with the structure-borne mode in the ampli-

tude of the forcing wave (ℓ = 1). Figure 4.19b shows that the energy in this configuration

is totally reflected up until the cut-on from the inlet and outlet shells at 1048Hz. After

this frequency the reflected energy steadily drops until it is outside the considered fre-

quency range. This result is similar to the result shown in Figure 4.4, except here the

drop in reflected energy is not as smooth.
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Figure 4.19: Energy output for the rigid expansion chamber between two shells with clamped
edges: a) ā = 0.2m, b̄ = 0.28m, L̄ = 0.25m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, L̄ = 0.25m, ℓ = 1.

The next system considers the length of the expansion chamber to be increased to

2L̄ = 1m. The radius of the outer shells is kept at ā = 0.2m and the radius of the

expansion chamber is kept at b̄ = 0.28m. The reflected and transmitted energy exiting

the expansion chamber is shown in Figure 4.20.

With fluid-borne forcing (see Figure 4.20a) it is seen that the oscillations of the two

energies are more frequent with the longer chamber. These are expected to occur at

0Hz 171.75Hz, 343.5Hz, 515.25Hz, 687Hz, 858.75Hz and 1030.5Hz (provided the energy

is travelling along the fluid-borne mode), due to the trigonometric functions occurring in

the expression for the amplitudes. After the first cut-on from the expansion chamber at

744Hz the transmitted energy suddenly drops at 760Hz and again at 900Hz. There is a

slight drop in transmitted energy at 1048Hz where the cut-on from the inlet and outlet

shells occurs. The transmitted drops again, with its lowest point at 1170Hz where it then

increases for the remainder of the frequency range. Note that the noise mentioned at the

end of the previous subsection is more evident in this plot.

The amplitude of the forcing wave is considered to comprise the structure-borne mode

(see Figure 4.20b). The energy is seen to be totally reflected up until the second cut-on

at 1041Hz. After the second cut-on the reflected energy drops until it reaches 1170Hz,

where it then recovers. Again this result is vaguely similar to the result shown in Figure

4.4, except here the drop in reflected energy is not as smooth and there is a peak at

1170Hz.

The next configuration considers the radii of the inlet and outlet shells to be signif-

icantly smaller than the radius of the expansion chamber. The radii of the inlet and

outlets shell is reduced to ā = 0.06m, while the expansion chamber is kept at b̄ = 0.28m

and its length is changed back to 2L̄ = 0.5m. The resulting energies are presented in 4.21

for 5− 1200Hz. For a shell of radius ā = 0.06m the cut-ons do not occur in the frequency

range considered.
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Figure 4.20: Energy output for the rigid expansion chamber between two shells with clamped
edges a) ā = 0.2m, b̄ = 0.28m, L̄ = 0.5m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, L̄ = 0.5m, ℓ = 1.
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Figure 4.21: Energy output for the rigid expansion chamber between two shells with clamped
edges: a) ā = 0.06m, b̄ = 0.28m, L̄ = 0.25m, ℓ = 0; b) ā = 0.06m, b̄ = 0.28m, L̄ = 0.25m, ℓ = 1.

Figure 4.21a shows the results of with the fluid-borne mode in the forcing wave ampli-

tude (ℓ = 0). The reflected energy is dominant below the first cut-on from the expansion

chamber at 744Hz apart from where it drops suddenly at 0Hz, 343.5Hz and 687Hz. These

drops are due to the trigonometric term present in both the reflected and transmitted

amplitudes. After the first cut-on the reflected energy drops and the transmitted energy

takes over, until 838Hz where the reflected energy then takes over for the remainder of

the considered frequencies. The reflected energy spikes at 1030.5Hz, which coincides with

f = 3c.

The amplitude of the forcing wave is considered to have a structure-borne mode (ℓ = 1)

is Figure 4.21b. It is seen that the energy is totally reflected for all of the considered

frequency range. This result matches the result obtained in the equivalent increase in

radius problem in Figure (4.6b).

The length of the expansion chamber is now increased to 2L̄ = 1m, the radius of the

inlet and outlet shells is kept at ā = 0.2m and the radius of the expansion chamber is
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Figure 4.22: Energy output for the rigid expansion chamber between two shells with clamped
edges: a) ā = 0.06m, b̄ = 0.28m, L̄ = 0.5m, ℓ = 0; b) ā = 0.06m, b̄ = 0.28m, L̄ = 0.5m, ℓ = 1.

kept at b̄ = 0.28m. The reflected and transmitted energy exiting the expansion chamber

is shown in Figure 4.22.

With the fluid-borne mode in the forcing amplitude (see Figure 4.22a) the majority

of energy is reflected below the first cut-on at 748Hz apart from when f = cn/2, for

n = 0, 1, 2, . . .. After this frequency the energy is transmitted, with a spike of reflected

energy at 864Hz. The reflected energy drops at 1030.5Hz, which coincides with f = 3c

and at 1149Hz.

With the structure-borne mode used in the amplitude of the forcing wave (see Figure

4.22b) the energy is totally reflected for the considered range of frequencies. This result

matches the result obtained in the equivalent increase in radius problem in Figure 4.6b.

4.2.4 Pin-jointed edge

Results were obtained for systems analogous to those considered in Figure 4.18 to Figure

4.22, but with a pin-jointed edge connecting the left shell to the annular disc. It was

found that the results obtained using pin-jointed edges were identical to those obtained

from the clamped edge equivalent problems.

4.3 Energy transmitted through a flexible expansion

chamber situated between two shells

This section considers the energy leaving a flexible expansion chamber situated between

two shells. The system comprises two semi-infinite shells with a finite chamber of di-

mensional length 2L between them (where L = kL̄). The inlet shell is located in the

region 0 ≤ r ≤ a, z ≤ −L, the outlet shell is located in the region 0 ≤ r ≤ a, z ≥ L

and the expansion chamber occupies the space between them, −L ≤ z ≤ L, 0 ≤ r ≤ b,
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Figure 4.23: Physical configuration of the expansion chamber between two shells system.

thus the chamber has a length 2L. The system is closed by rigid annular discs located at

a ≤ r ≤ b, z = ±L.
The velocity potential for the inlet shell ϕ1 comprises the plane wave and the field

reflected at the first junction, which leads to

ϕ1 = FℓJ0(κℓr)e
isℓ(z+L) +

∞∑
n=0

AnJ0(κnr)e
−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (4.64)

where ℓ indicates the chosen fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ

is the amplitude of the forcing wave given in (3.60), An is the amplitude of the nth

reflected mode, sn are the wavenumbers and κn = (1− s2n)
1/2. The velocity potential for

the expansion chamber consists of the waves reflected by the second junction and those

which pass through the first junction. This gives the velocity potential ϕ2 as

ϕ2 =
∞∑
n=0

(
Pne

−iηnz +Qne
iηnz
)
J0(γmr), 0 ≤ r ≤ b, −L ≤ z ≤ L, (4.65)

where Pn is the amplitude of the nth reflected sound wave and Qn is the amplitude of

the nth transmitted sound wave. The velocity potential for the right shell is composed

of those waves which are transmitted through the chamber, which is

ϕ3 =
∞∑
n=0

BnJ0(κnr)e
isn(z−L), 0 ≤ r ≤ a, z ≥ L, (4.66)

where Bn is the amplitude of the nth transmitted wave.

This system can be broken down into two subproblems: the symmetric expansion

chamber and the antisymmetric expansions chamber. These are created by introducing

a forcing wave in the right-hand shell propagating in the negative z direction. For the

antisymmetric subproblem this forcing wave has a horizontal shift of iπ, which by Euler’s

identity results in a negative wave amplitude.

The symmetric subproblem problem is so called because it has a line of symmetry

104



Feiz Fe−iz

Reflected
Reflected

a

b

a

b

Line of symmetry

z

z = −L z = L
φ2z = 0

1

Figure 4.24: Physical configuration of the symmetric subproblem.
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Figure 4.25: Physical configuration of the antisymmetric subproblem.

down through the centre of the expansion chamber at z = 0 (as shown in Figure 4.24). It

represents an expansion chamber with two incident waves. One located in the left section

z ≤ −L heading towards the first junction and the second located in the right-most

section z ≥ L heading in the negative z direction towards the second junction. Similarly,

the antisymmetric problem has a line of antisymmetry through the centre expansion

chamber at z = 0 (as shown in Figure 4.25). It represents an expansion chamber with

two incident waves in the same location, heading in the same direction, but the incident

wave in the right-most section has a negative amplitude (causing it to shift horizontally).

These subproblems are simpler to solve as they have a line of symmetric/antisymmetry

allowing them to be reduced to a change of radius system. The coefficients found for the

reflected field in both of these subproblems can then be used to find the coefficients of

the reflected and transmitted fields for the overall chamber problem.

4.3.1 Symmetric subproblem

The symmetric nature of the symmetric subproblem enables it to be reduced to an equiv-

alent system with an abrupt increase in radius and a rigid end plate (see Figure 4.26).

The purpose of this subsection is to determine the energy radiated due to a forcing
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Figure 4.26: Physical configuration of the reduced symmetric subproblem.

wave at the abrupt increase in radius. The system comprises two semi-infinite shells,

the left-hand shell occupies 0 ≤ r ≤ a, z ≤ −L and the right-hand shell occupies

0 ≤ r ≤ b, −L ≤ z ≤ 0. It is closed by a rigid annular disc occupying a ≤ r ≤ b, z = −L
and a rigid plate occupying 0 ≤ r ≤ b, z = 0. Forcing is by a wave located in the left-hand

shell propagating in the positive z direction towards the abrupt increase in radius.

The velocity potential for the left-hand shell contains the incident wave and the re-

flected field. This gives

ϕs
1 = FℓJ0(κℓr)e

isℓ(z+L) +
∞∑
n=0

As
nJ0(κnr)e

isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (4.67)

where the superscript indicates that this is the symmetric subsystem, ℓ indicates the

chosen fundamental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the amplitude of the

forcing wave given in (3.60) and As
n is the amplitude of the nth reflected wave. The

longitudinal and radial displacements in the left-hand shell are

us1(z) =
νFℓsℓκℓJ1(κℓa)

a(s2ℓ − β2)
eisℓ(z+L) − ν

a

∞∑
n=0

As
nsnκnJ1(κna)

s2n − β2
e−isn(z+L), z ≤ −L, (4.68)

ws
1(z) = −FℓκℓJ1(κℓa)e

isℓ(z+L) −
∞∑
n=0

As
nκnJ1(κna)e

−isn(z+L), z ≤ −L. (4.69)

The velocity potential ϕs
2 for the finite section comprises those waves transmitted through

the junction and those reflected from the plate at z = 0, which gives

ϕs
2 =

∞∑
n=0

(
P s
ne

−iηnz +Qs
ne

iηnz
)
J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0, (4.70)

where P s
n are the amplitudes for the reflected waves and Qs

n are the amplitudes for the

transmitted waves. The velocity potential ϕs
2 can be simplified by considering the property
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of the plate. The condition at the plate is ϕs
2z = 0, which leads to

ϕs
2

∂z
= i

∞∑
n=0

(−P s
n +Qs

n) ηnJ0(γnr) = 0, 0 ≤ r ≤ b, −L ≤ z ≤ 0. (4.71)

From this condition it is seen that it is only satisfied when Pn = Qn therefore the velocity

potential ϕs
2 can be simplified to

ϕs
2 = 2

∞∑
n=0

P s
n cos(ηnz)J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0. (4.72)

For the right-hand section, the longitudinal and radial displacements are given by

us2(z) =
2ν

b

∞∑
n=0

P s
n sin(ηnz)ηnγnJ1(γnb)

η2n − β2
, −L ≤ z ≤ 0, (4.73)

ws
2(z) = 2

∞∑
n=0

P s
n cos(ηnz)γnJ1(γnb), −L ≤ z ≤ 0. (4.74)

The pressure and the normal component of velocity are constant in the fluid, while the

latter vanishes on the rigid annular disc. That is at z = −L

ϕs
1(r,−L) = ϕs

2(r,−L), 0 ≤ r ≤ a, (4.75)

∂ϕ2

∂z
(r,−L) =

{
∂ϕ1

∂z
(r,−L), 0 ≤ r ≤ a

0, a ≤ r ≤ b
. (4.76)

The velocity potentials ϕs
1 and ϕs

2 are substituted into (4.75) to obtain the pressure

condition in its eigenfunction form

FℓJ0(κℓr) +
∞∑
n=0

As
nJ0(κnr) = 2

∞∑
n=0

P s
n cos(ηnL)J0(γnr), 0 ≤ r ≤ a. (4.77)

The above expression is multiplied by αJ0(κmr)r/a and integrated with respect to r, 0 ≤
r ≤ a to give

αFℓ

a

∫ a

0

J0(κℓr)J0(κmr)r dr +
α

a

∞∑
n=0

As
n

∫ a

0

J0(κnr)J0(κmr)r dr

=
2α

a

∞∑
n=0

P s
n cos(ηnL)Rmn, (4.78)

where Rmn is as given in (4.13) and Cn is as given in (3.34). The generalised orthogonality
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relation in (3.35) is now applied to both integrals on the left side of the equation to give

Fℓ

[
δmℓCℓ −

{
τ1ν

2β2

(s2ℓ − β2)(s2m − β2)
+ 2− κ2m − κ2ℓ

}
κℓJ1(κℓa)κmJ1(κma)

]
+

∞∑
n=0

As
n

[
δmnCn −

{
τ1ν

2β2

(s2n − β2)(s2m − β2)
+ 2− κ2m − κ2n

}
κℓJ1(κna)κmJ1(κma)

]
=

2α

a

∞∑
n=0

P s
n cos(ηnL)Rmn. (4.79)

It follows that

As
m = −Fℓδmℓ +

τ1ν
2β2κmJ1(κma)

(s2m − β2)Cm

E0 +
(2− κ2m)κmJ1(κma)

Cm

E1 −
κmJ1(κma)

Cm

E2

+
2α

a

∞∑
n=0

P s
n cos(ηnL)Rmn

Cm

, (4.80)

where

E0 =
∞∑
n=0

As
nκnJ1(κna)

s2n − β2
+
FℓκℓJ1(κℓa)

s2ℓ − β2
, (4.81)

E1 =
∞∑
n=0

As
nκnJ1(κna) + FℓκℓJ1(κℓa), (4.82)

E2 =
∞∑
n=0

As
nκ

3
nJ1(κna) + Fℓκ

3
ℓJ1(κℓa), (4.83)

and Rmn is as given in (4.13). A second equation is found by multiplying (4.76) through

by αJ0(γmb)r/b and integrating with respect to r, 0 ≤ r ≤ b to give

α

b

∫ b

0

∂ϕs
2

∂z
J0(γmr)r dr =

α

b

∫ a

0

∂ϕs
1

∂z
J0(γmr)r dr, at z = −L. (4.84)

The above equation in eigenfunction form is then

2α

b

∞∑
n=0

P s
n sin(ηnL)ηn

∫ b

0

J0(γnr)J0(γnr)r dr =
iαFℓsℓRℓm

b
− iα

b

∞∑
n=0

As
nsnRnm, (4.85)

where Rnm is as given in (4.13). The generalised orthogonality relation in (3.36) is now

applied to the integral on the left side of the equation to give

2
∞∑
n=0

P s
n sin(ηnL)ηn

[
δnmDn −

{
τ2ν

2β2

(η2n − β2)(η2n − β2)
+ 2− γ2m − γ2n

}
γnJ1(γnb)γmJ1(γmb)

]
=
iαFℓsℓRℓm

b
− iα

b

∞∑
n=0

As
nsnRnm, (4.86)
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where Dn is as given in (3.37). It follows that

P s
m =

τ2ν
2β2γmJ1(γmb)

(η2m − β2) sin(ηmL)ηmDm

E3 +
(2− γ2m)γmJ1(γmb)

sin(ηmL)ηmDm

E4 −
γmJ1(γmb)

sin(ηmL)ηmDm

E5

+
iαFℓsℓRℓm

2b sin(ηmL)ηmDm

− iα

2b

∞∑
n=0

As
nsnRnm

sin(ηmL)ηmDm

, (4.87)

where

E3 =
∞∑
n=0

P s
n sin(ηnL)ηnJ1(γnb)

η2n − β2
, (4.88)

E4 =
∞∑
n=0

P s
n sin(ηnL)ηnγnJ1(γnb), (4.89)

E5 =
∞∑
n=0

P s
n sin(ηnL)γ

3
nJ1(γnb). (4.90)

The constants E0−E2 are found by applying edge conditions which describe the left-hand

shell edge at the matching interface and E3 − E5 are found by applying edge conditions

which describe the right-hand shell edge at the matching interface. In order to apply the

left-hand edge conditions (4.80) is multiplied by ψ
(a)
mn, and on summing over m it is found

that

−
∞∑

m=0

Fℓδℓmψ
(a)
mn +

∞∑
m=0

τ1ν
2β2κmJ1(κma)ψ

(a)
mn

(s2m − β2)Cm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)

Cm

E1

−
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

Cm

E2 +
2α

a

∞∑
m=0

∞∑
n=0

P s
n cos(ηnL)Rmnψ

(a)
mn

Cm

= −
∞∑

m=0

Pmψ
(p)
mn

− Fℓψ
(f)
n , n = 0, 1, 2. (4.91)

Similarly for the right-hand edge conditions (4.87) is multiplied by ψp
mn, and on summing

over m, it is found that

∞∑
m=0

τ2ν
2β2γmJ1(γmb)ψ

(p)
mn

(η2m − β2) sin(ηmL)ηmDm

E3 +
∞∑

m=0

(2− γ2m)γmJ1(γmb)ψ
(p)
mn

sin(ηmL)ηmDm

E4

−
∞∑

m=0

γmJ1(γmb)ψ
(p)
mn

sin(ηmL)ηmDm

E5 +
iα

2b

∞∑
m=0

FℓsℓRℓmψ
(p)
mn

sin(ηmL)ηmDm

− iα

2b

∞∑
m=0

∞∑
n=0

As
nsnRnmψ

(p)
mn

sin(ηmL)ηmDm

= −
∞∑

m=0

As
mψ

(a)
mn − Fℓψ

(f)
n , n = 3, 4, 5. (4.92)

For clamped edges the values of ψ in (4.91) and (4.92) are substituted with those in

(4.23). It is found from the equation resulting from (4.91) that E1 = 0 and the remaining

coupled equations are solved to find E0 and E2. Likewise, the triadic equations resulting
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Figure 4.27: Physical configuration of the reduced antisymmetric subproblem.

from (4.92) are solved to find E3−E5. With these constants, equations (4.80) and (4.87)

can be truncated and solved to find the mth amplitude As
m of the reflected field and the

mth amplitude Bs
m of the transmitted field.

For pin-jointed edges the values of ψ (4.91) and (4.92) are substituted with those in

(4.26). It is found from the equation resulting from (4.91) that E1 = 0 and the remaining

coupled equations are solved to find E0 and E2. Likewise, the triadic equations resulting

from (4.92) are solved to find E3−E5. With these constants, equations (4.80) and (4.87)

can be truncated and solved to find the mth amplitude As
m of the reflected field and the

mth amplitude Bs
m of the transmitted field.

4.3.2 Antisymmetric subproblem

The symmetric nature of the symmetric subproblem enables it to be reduced to an equiv-

alent system with an abrupt increase in radius and an acoustically soft end plate (see

Figure 4.17). The purpose of this subsection is to determine the energy radiated due to

a forcing wave at an abrupt increase in radius. The system comprises two semi-infinite

shells, the left-hand shell occupies 0 ≤ r ≤ a, z ≤ −L and the right-hand rigid duct

occupies 0 ≤ r ≤ b, −L ≤ z ≤ 0. It is closed by a rigid annular disc occupying

a ≤ r ≤ b, z = −L and an acoustically soft end plate occupying 0 ≤ r ≤ b, z = 0.

Forcing is by a wave located in the left-hand shell propagating in the positive z direction

towards the abrupt increase in radius.

The velocity potential for the left-hand shell is

ϕa
1 = FℓJ0(κℓr)e

isℓ(z+L) +
∞∑
n=0

Aa
nJ0(κnr)e

−isn(z+L), 0 ≤ r ≤ a, z ≤ −L, (4.93)

where the superscript denotes the antisymmetric subsystem, ℓ indicates the chosen fun-

damental mode to force with (ℓ = 0 or ℓ = 1), Fℓ is the amplitude of the forcing wave

given in (3.60) and Aa
n is the amplitude of the nth reflected wave for the symmetric sub-
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system. The velocity potential for the finite section is analogous to that of the symmetric

problem but with cos(ηnz) replaced by sin(ηnz):

ϕa
2 = 2

∞∑
n=0

P a
n sin(ηnz)J0(γnr), 0 ≤ r ≤ b, −L ≤ z ≤ 0. (4.94)

Note that this satisfies the acoustically soft wall condition ϕa
2 = 0 at z = 0. In terms of

the velocity potential ϕa
2 the displacements for the right section are

ua2(z) = −2ν

b

∞∑
n=0

P a
n cos(ηnz)ηnγnJ1(γnb)

η2n − β2
, −L ≤ z ≤ 0, (4.95)

wa
2(z) = −2

∞∑
n=0

P a
n sin(ηnz)γnJ1(γnb), −L ≤ z ≤ 0. (4.96)

The steps for solving this problem are analogous to those of the symmetric problem.

Following these steps for the pressure condition gives the equation for the amplitude of

the reflected wave as

Aa
m = −Fℓδmℓ +

τ1ν
2β2κmJ1(κma)

(s2m − β2)Cm

E0 +
(2− κ2m)κmJ1(κma)

Cm

E1

− κmJ1(κma)

Cm

E2 −
2α

a

∞∑
n=0

P a
n sin(ηnL)Rmn

Cm

. (4.97)

E0 =
∞∑
n=0

Aa
nκnJ1(κna)

s2n − β2
+
FℓκℓJ1(κℓa)

s2ℓ − β2
, (4.98)

E1 =
∞∑
n=0

Aa
nκnJ1(κna) + FℓκℓJ1(κℓa), (4.99)

E2 =
∞∑
n=0

Aa
nκ

3
nJ1(κna) + Fℓκ

3
ℓJ1(κℓa), (4.100)

Likewise, for the normal component of velocity condition, it is found that

P a
m =

τ2ν
2β2γmJ1(γmb)

(η2m − β2) cos(ηmL)ηmDm

∞∑
n=0

P a
n cos(ηnL)ηnγnJ1(γnb)

η2n − β2

+
(2− γ2m)γmJ1(γmb)

cos(ηmL)ηmDm

∞∑
n=0

P a
n cos(ηnL)ηnγnJ1(γnb)

− γmJ1(γmb)

cos(ηmL)ηmDm

∞∑
n=0

P a
n cos(ηnL)ηnγ

3
nJ1(γnb) +

iαFℓsℓRℓm

2b cos(ηmL)ηmDm

− iα

2b

∞∑
n=0

Aa
nsnRnm

cos(ηmL)ηmDm

, (4.101)
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which reduces to

P a
m =

τ2ν
2β2γmJ1(γmb)

(η2m − β2) cos(ηmL)ηmDm

E3 +
(2− γ2m)γmJ1(γmb)

cos(ηmL)ηmDm

E4 −
γmJ1(γmb)

cos(ηmL)ηmDm

E5

+
iαFℓsℓRℓm

2b cos(ηmL)ηmDm

− iα

2b

∞∑
n=0

Aa
nsnRnm

cos(ηmL)ηmDm

, (4.102)

where

E3 =
∞∑
n=0

P a
n sin(ηnL)ηnJ1(γnb)

η2n − β2
, (4.103)

E4 =
∞∑
n=0

P a
n sin(ηnL)ηnγnJ1(γnb), (4.104)

E5 =
∞∑
n=0

P a
n sin(ηnL)γ

3
nJ1(γnb). (4.105)

The constants E0 − E2 are found by applying edge conditions which describe the

left-hand shell edge at the matching interface and E3 − E5 are found by applying edge

conditions which describe the right-hand shell edge at the matching interface. In order

to apply the left-hand edge conditions (4.97) is multiplied by ψ
(a)
mn, and on summing over

m it is found that

−
∞∑

m=0

Fℓδℓmψ
(a)
mn +

∞∑
m=0

τ1ν
2β2κmJ1(κma)ψ

(a)
mn

(s2m − β2)Cm

E0 +
∞∑

m=0

(2− κ2m)κmJ1(κma)

Cm

E1

−
∞∑

m=0

κmJ1(κma)ψ
(a)
mn

Cm

E2 +
2α

a

∞∑
m=0

∞∑
n=0

P s
n sin(ηnL)Rmnψ

(a)
mn

Cm

= −
∞∑

m=0

Pmψ
(p)
mn

− Fℓψ
(f)
n , n = 0, 1, 2. (4.106)

Similarly for the right-hand edge conditions (4.102) is multiplied by ψp
mn, and on summing

over m, it is found that

∞∑
m=0

τ2ν
2β2γmJ1(γmb)ψ

(p)
mn

(η2m − β2) cos(ηmL)ηmDm

E3 +
∞∑

m=0

(2− γ2m)γmJ1(γmb)ψ
(p)
mn

cos(ηmL)ηmDm

E4

−
∞∑

m=0

γmJ1(γmb)ψ
(p)
mn

cos(ηmL)ηmDm

E5 +
iα

2b

∞∑
m=0

FℓsℓRℓmψ
(p)
mn

cos(ηmL)ηmDm

− iα

2b

∞∑
m=0

∞∑
n=0

As
nsnRnmψ

(p)
mn

cos(ηmL)ηmDm

= −
∞∑

m=0

As
mψ

(a)
mn − Fℓψ

(f)
n , n = 3, 4, 5. (4.107)

For clamped edges the values of ψ in (4.106) and (4.107) are substituted with those in

(4.23). It is found from the equation resulting from (4.106) that E1 = 0 and the remaining

coupled equations are solved to find E0 and E2. Likewise, the triadic equations resulting
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from (4.107) are solved to find E3 − E5. With these constants, equations (4.97) and

(4.102) can be truncated and solved to find the mth amplitude Aa
m of the reflected field

and the mth amplitude Ba
m of the transmitted field.

For pin-jointed edges the values of ψ (4.106) and (4.107) are substituted with those in

(4.26). It is found from the equation resulting from (4.106) that E1 = 0 and the remaining

coupled equations are solved to find E0 and E2. Likewise, the triadic equations resulting

from (4.107) are solved to find E3 − E5. With these constants, equations (4.97) and

(4.102) can be truncated and solved to find the mth amplitude Aa
m of the reflected field

and the mth amplitude Ba
m of the transmitted field. The results are created in Matlab

with the code presented in Appendix I. This has been done using 100 modes to calculate

the amplitudes of the propagating waves.

4.3.3 Clamped edges

The expansion chamber causes the energies to oscillate over frequency. This is due to

the trigonometric factors present in the reflected and transmitted amplitudes. It is as-

sumed that when a fluid-borne mode is used, the reflected energy will drop at the same

frequencies stated in Section 4.2.3.

The first results consider the radii of the inlet and outlet shells to be equal to the

radius of the centre shell. This reduces the problem to a finite shell clamped between

two semi-infinite shells. The radii of the inlet and outlet shells are ā = 0.2m, the radius

of the centre shell is b̄ = 0.2m with a length of 2L̄ = 0.5m. The resulting reflected and

transmitted energies are shown in Figure 4.28 for a frequency range 5− 1200Hz.

Figure 4.28a considers the amplitude of the forcing mode to use the fluid-borne mode

(ℓ = 0). It is seen that the energy is totally transmitted throughout the considered

frequency range. This shows that the clamped edges have no impacts on the energy

travelling in the fluid.

The structure-borne mode (ℓ = 1) is used in the amplitude of the forcing wave to

generate Figure 4.28b. the energy was totally reflected for frequencies below the first

real cut-on at 1048Hz. After the second cut-on at 1048Hz the transmitted energy takes

over and the energy is totally transmitted for the remainder of the considered frequency

range. This result is similar to that obtained by the no change of radius configuration

considered in Figure 4.18b and by extension Figure 4.2b.

Figure 4.29 shows the output energies for the expansion chamber problem with the

outer radii ā = 0.2m, the expansion chamber radius b̄ = 0.28m and length 2L̄ = 0.5m.

Plot a) shows the energy with fluid-borne mode used in the amplitude of the forcing wave

(ℓ = 0). Below the cut-on from the expansion chamber at 748Hz, the vast majority of

the energy is transmitted with very little being reflected. The transmitted energy has a

sudden drop at the first cut-on from the expansion chamber section at 748Hz after which
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Figure 4.28: Energy output for a flexible section between two shells with clamped edges: a)
ā = 0.2m, b̄ = 0.2m, L̄ = 0.25m, ℓ = 0; b) ā = 0.2m, b̄ = 0.2m, L̄ = 0.25m, ℓ = 1.
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Figure 4.29: Energy output for a finite flexible shell between two semi-infinite shells with
clamped edges: a) ā = 0.2m, b̄ = 0.28m, L̄ = 0.25m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, L̄ = 0.25m,
ℓ = 1.

it quickly recovers. The transmitted drops again at 860Hz where it carries less than 10%

of the total energy for the remainder of the frequency range considered.

Plot b) shows forcing with a structure-borne mode used in the amplitude of the forcing

wave (ℓ = 1). This plot shows that the energy is totally reflected for all frequencies below

the cut-on from the outer sections at 1048Hz. After this frequency the reflected energy

quickly drops. On comparing Figure 4.29 with Figure 4.4, it is clear that the two graphs

are qualitatively similar and that the finite length of radius broadens the range of the

near total reflection at the first cut-on.

The next system considers the length of the expansion chamber to be increased to

2L̄ = 1m. The radius of the outer shells is kept at ā = 0.2m and the radius of the

expansion chamber is kept at b̄ = 0.28m. The reflected and transmitted energy exiting

the expansion chamber is shown in Figure 4.30.

With fluid-borne forcing (see Figure 4.30a) it is seen that the oscillations of the two
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Figure 4.30: Energy output for the flexible expansion chamber between two shells with
clamped edges: a) ā = 0.2m, b̄ = 0.28m, L̄ = 0.5m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, L̄ = 0.5m,
ℓ = 1.

energies are more frequent with the longer chamber. These are expected to occur at

0Hz 171.75Hz, 343.5Hz, 515.25Hz, 687Hz, 858.75Hz and 1030.5Hz (provided the energy

is travelling along the fluid-borne mode), due to the trigonometric functions occurring in

the expression for the amplitudes. After the first cut-on from the expansion chamber at

744Hz the transmitted energy suddenly drops at 760Hz and again at 900Hz. There is a

slight drop in transmitted energy at 1048Hz where the cut-on from the inlet and outlet

shells occurs. The transmitted drops again, with its lowest point at 1170Hz where it then

increases for the remainder of the frequency range.

The amplitude of the forcing wave is considered to comprise the structure-borne mode

(see Figure 4.30b). The energy is seen to be totally reflected up until the second cut-on

at 1048Hz. After the second cut-on the reflected energy drops until it reaches 1170Hz,

where it then recovers. This result is similar to the result shown in 4.20b and by extension

vaguely similar to Figure 4.4, except here the drop in reflected energy is not as smooth

and there is a peak at 1170Hz.

In the next configuration the radii of the inlet and outlet shells is considered to be

significantly smaller than the radius of the expansion chamber. The radii of the inlet and

outlets shell is reduced to ā = 0.06m, while the expansion chamber is kept at b̄ = 0.28m

and its length is changed back to 2L̄ = 0.5m. The resulting energies are presented in 4.31

for 5− 1200Hz. For a shell of radius ā = 0.06m the cut-ons do not occur in the frequency

range considered.

Figure 4.31a shows the results of with the fluid-borne mode in the forcing wave ampli-

tude (ℓ = 0). The reflected energy is dominant below the first cut-on from the expansion

chamber at 748Hz apart from where it drops suddenly at 0Hz, 343.5Hz and 687Hz. These

drops are due to the trigonometric term present in both the reflected and transmitted

amplitudes. After the first cut-on the reflected energy drops and the transmitted energy
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Figure 4.31: Energy output for the flexible expansion chamber between two shells with
clamped edges: a) ā = 0.06m, b̄ = 0.28m, L̄ = 0.25m, ℓ = 0; b) ā = 0.06m, b̄ = 0.28m,
L̄ = 0.25m, ℓ = 1.

takes over, until 838Hz where the reflected energy then takes over for the remainder of

the considered frequencies. The reflected energy spikes at 1030.5Hz, which coincides with

f = 3c.

The amplitude of the forcing wave is considered to have a structure-borne mode (ℓ = 1)

is Figure 4.31b. It is seen that the energy is totally reflected for all of the considered

frequency range. This result matches the result obtained in the equivalent increase in

radius problem in Figure 4.21 and by extension Figure 4.6b.

The final plots again considers the greatly reduced radii of the inlet and outlet shells,

but this time with the length of the expansion chamber increased to 2L̄ = 1m. The

reflected and transmitted energy exiting the expansion chamber is shown in Figure 4.32.

With the fluid-borne mode in the forcing amplitude (see Figure 4.32a) the majority

of energy is reflected below the first cut-on at 748Hz apart from when f = cn/2, for

n = 0, 1, 2, . . .. After this frequency the energy is transmitted, with a spike of reflected

energy at 864Hz. The reflected energy drops at 1030.5Hz, which coincides with f = 3c

and at 1149Hz.

With the structure-borne mode used in the amplitude of the forcing wave (see Figure

4.32b) the energy is totally reflected for the considered range of frequencies. This result

matches the result obtained in the equivalent increase in radius problem in Figure 4.22

and by extension Figure 4.6b.

4.3.4 Pin-jointed edges

Results were obtained for systems analogous to those considered in (Figures 4.28-4.32),

but with a pin-jointed edge connecting the left shell to the annular disc. It was found

that the results obtained using pin-jointed edges were identical to those obtained from

the clamped edge equivalent problems.
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Figure 4.32: Energy output for the flexible expansion chamber between two shells with
clamped edges: a) ā = 0.06m, b̄ = 0.28m, L̄ = 0.5m, ℓ = 0; b) ā = 0.06m, b̄ = 0.28m,
L̄ = 0.5m, ℓ = 1.
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Chapter 5

Energy radiated in shells subject to

non-axisymmetric motion

The work in this chapter focuses on propagation in thin, circular, cylindrical shells with

flexible walls and non-axisymmetric motion. The dispersion relation is derived from the

wave equation and the Donnell-Mushtari equations of motion for a flexible shell. A

generalised orthogonality relation for the eigenfunctions corresponding to a flexible shell

with non-axisymmetric motion is derived from the dispersion relation and used with

the mode matching method to find the amplitudes for some prototype problems. The

generalised orthogonality relation in this chapter is new to the research area and is specific

to flexible shells based on the Donnell-Mushtari equations of motion. Where possible,

the results produced in this chapter are compared with those obtained from equivalent

problems in Chapter two, three and four. Two problems are presented in this chapter:

Energy reflected due to a rigid plate and energy radiated due to an abrupt increase in

radius.

5.1 Governing equations

A thin, flexible-walled cylindrical shell described in cylindrical polar co-ordinates (r̄, θ̄, z̄)

is considered. The interior region of the shell contains a compressible fluid of sound speed

c and density ρ whilst the exterior region is in-vacuo. A harmonic time factor, e−iωt, is

assumed throughout where t is time and ω = ck, with k being the fluid wavenumber.

The internal fluid is governed by Helmholtz equation, which in its non-dimensional

form is {
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
+ 1

}
ϕ = 0, (5.1)

where ϕ is the fluid velocity potential. The method of separation of variables is used

to find the velocity potential, which is dependant on r, θ and z and thus the velocity
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potential assumes the form:

ϕ = R(r)Θ(θ)Z(z). (5.2)

This form of ϕ is substituted into (5.1) and is multiplied by r2/(RΘZ) to give the sepa-

rated equation (
r2

R

d2R

dr2
+
r

R

dR

dr

)
+

1

Θ

d2Θ

dθ2
+
r2

Z

d2Z

dz2
+ r2 = 0. (5.3)

The terms in (5.3) involving Θ must have a negative separation constant as the solution

should be periodic in θ, which leads to

1

Θ

d2Θ

dθ2
= −m2, (5.4)

where m is the separation constant. This has solution

Θ(θ) = C cos(mθ) +D sin(mθ), (5.5)

where C and D are arbitrary constants. These constants are selected as C = 1 and

D = 0, such that the modes are symmetric in θ, which gives the solution

Θ(θ) = cos(mθ). (5.6)

Note by selecting C = 0 and D = 1 antisymmetric modes could instead be considered.

The differential equation in (5.3) is divided by r2 and the separation constant is intro-

duced, to give (
1

R

d2R

dr2
+

1

rR

dR

dr

)
+ 1−m2 = − 1

Z

d2Z

dz2
= s2 (5.7)

where s is the separation constant for the differential equation involving Z(z). Thus

1

Z

d2Z

dz2
= −s2, (5.8)

which has the solution

Z(z) = Eeisz + Fe−isz, (5.9)

where E and F are constants. These constants are selected as E = 1 and F = 0, such

that the velocity potential comprises only waves travelling in the positive z direction.

Equation (5.3) is multiplied though by R and can now be written as

R′′ +
1

r
R′ +

(
1− s2 − m2

r2

)
R = 0. (5.10)

Let x = κr, then
d2R′′

dx2
+

1

x

dR′

dx
+

(
κ2 − m2

x2

)
R = 0, (5.11)
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where κ2 = (1−s2)1/2. The above expression is recognised as Bessel’s differential equation

of order m found in Abramowitz and Stegun [41] which is known to have a solution of

the form

R = AJ±m(x) +BYm(x), (5.12)

where J±m(·) and Ym(·) are Bessel functions of the first and second kind and A, B are

constants. These is a singularity in Ym(x) as x → 0, therefore B is selected as zero and

A now denotes the wave amplitude. Also as only non-axisymmetric motion is considered

m ≥ 1. It follows that a single mode of the velocity potential is given by

ϕmp = AmpJm(κmpr) cos(mθ)e
ismpz, (5.13)

where Amp is the amplitude and κ2mp = (1 − s2mp)
1/2. For this chapter eigensystems for

flexible shells subject to non-axisymmetric motion are considered with m ≥ 1. However,

the prototype problems will be solved for m = 1 (this motion is illustrated in Figure 3.1).

For a shell of thickness h, radius ā and density ρs, the non-dimensional equations of

motion are given (3.8)-(3.10) which are stated below for convenience:

∂2u

∂z2
+

1− ν

2a2
∂2u

∂θ2
+

1 + ν

2a

∂2v

∂z∂θ
+
iν

a

∂2ϕ

∂r∂z
+ β2u = 0, at r = a, (5.14)

1 + ν

2a

∂2u

∂z∂θ
+

1− ν

2

∂2v

∂z2
+

1

a2
∂2v

∂θ2
+

i

a2
∂2ϕ

∂r∂θ
+ β2v = 0, at r = a, (5.15)

− iνa
∂u

∂z
− i

∂v

∂θ
+
∂ϕ

∂r
+

1

τ1

∂5ϕ

∂r∂z4
+

2

τ1a2
∂5ϕ

∂r∂z2∂θ2
+

1

τ1a4
∂5ϕ

∂r∂θ4
− a2β2∂ϕ

∂r

− a2β2ρ

ρshk
ϕ = 0, at r = a, (5.16)

where β = ω/(csk) and τ1 = 12/(k2h2a2). From (5.14) and (5.15) it is seen that expres-

sions for the longitudinal and circumferential displacement must take the form

um(r, θ, z) = Um cos(mθ)eisz, (5.17)

vm(r, θ, z) = Vm sin(mθ)eisz, (5.18)

where Um and Vm are the respective longitudinal and circumferential displacement ampli-

tudes of Bessel order m. These are substituted with (5.13) into (5.14) to give the coupled

equation {
β2 − s2 − m2(1− ν)

2a2

}
Um +

ims(1 + ν)

2a
Vm =

νs

a
κJ ′

m(κa). (5.19)

A second equation is found by substituting the forms of displacement and velocity po-
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tential into (5.15):

− ims(1 + ν)

2a
Um +

{
β2 − s2(1− ν)

2
− m2

a2

}
Vm =

im

a2
κJ ′

m(κa). (5.20)

These coupled equations are to be solved in order to find the displacement amplitudes,

these are expressed in matrix form as[
m2(1−ν)

2
− a2β2 + a2s2 − iam(1+ν)s

2

−iam(1 + ν)s 2a2β2 − 2m2 − a2(1− ν)s2

][
Um

Vm

]
=

[
−aνs
2im

]
κJ ′

n(κa). (5.21)

It follows that[
Um

Vm

]
=
κJ ′

m(κa)

Qm(s)

[
2a2β2 − 2m2 − a2(1− ν)s2 iam(1+ν)s

2

iam(1 + ν)s m2(1−ν)
2

− a2β2 + a2s2

][
−aνs
2im

]
,

(5.22)

where Qm(s) is the determinant given by

Qm(s) =

{
m2(1− ν)

2
− a2β2 + a2s2

}{
2a2β2 − 2m2 − a2(1− ν)s2

}
+
a2m2(1 + ν)2s2

2
.

(5.23)

The expression for the longitudinal displacement is thus

um = a
[{
m2(ν − 1)− 2a2β2ν

}
s+ a2(ν − ν2)s3

] κJ ′
m(κa)

Qm(s)
cos(mθ)eisz. (5.24)

Similarly, the expression for the circumferential displacement is

vm = i
[
m3(1− ν)− 2a2β2m+ a2

{
2m−m(ν + ν2)

}
s2
] κJ ′

m(κa)

Qm(s)
sin(mθ)eisz. (5.25)

The expressions for displacement (5.24) and (5.25) are used in the third equation of

motion (5.16) to obtain the characteristic equation

Km(s) = (aνsUm − imVm)τ1 +

{
s4 +

2m2s2

a2
− µ4

m

}
κJ ′

m(κa)− αJm(κa) = 0, (5.26)

where τ1 = 12/(k2h2a2), µ4
m = (a2β2 − 1)τ1 − m4/a4 and α = 12β2ρ/(h3k3ρs). The

roots smp of the characteristic equation define the wavenumbers of the waves propagating

within the shell. These are ordered sequentially with the largest real root first, then by

increasing imaginary part. The numerical results presented herein are obtained using 100

modes with m = 1. The shells are taken to be aluminium, of thickness h = 0.002 m and

of density ρs = 2700 kg m−3. In addition, the values of Young’s modulus and Poisson’s

ratio are taken to be E = 7.2 × 1010 Nm−2 and ν = 0.34; whilst c = 343.5ms−1 and
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ρ = 1.2 kg m−3 respectively. The roots of the characteristic equation are found in Matlab

with the code presented in Appendix J.

5.1.1 The generalised orthogonality relation

The characteristic function (5.26) can be expressed in the following form

Km(s) = Pm(s)κJ
′
m(κa)− αQm(s)Jm(κa), (5.27)

where the functions Pm(s) and Qm(s) are the characteristic polynomials

Pm(s) = P
(a)
8 s8 + P

(a)
6 s6 + P

(a)
4 s4 + P

(a)
2 s2 + P

(a)
0 , (5.28)

with

P
(a)
8 = a4(ν − 1), (5.29)

P
(a)
6 = a2

{
a2β2(3− ν) + 4m2(ν − 1)

}
, (5.30)

P
(a)
4 = 5m4(ν − 1) + 3a2β2m2(3− ν) + a4

{
(1− ν)µ4

m − τ(ν3 − ν2)− 2β4
}
, (5.31)

P
(a)
2 = a4β2τ

{
a2β2(ν − 3)− 2ν2 − ν + 3

}
− 2a2m2β2

{
2β2 + a2τ(ν − 1)

}
− 3m4β2(ν − 3) + 4m6(ν − 1)/a2, (5.32)

P
(a)
0 =

{
2a2β2 +m2(ν − 1)

}{
m2(−µ4

m − τ1) + a2β2µ4
m

}
. (5.33)

and

Qm(sn) = Q
(a)
4 s4 +Q

(a)
2 s2 +Q

(a)
0 , (5.34)

with

Q
(a)
4 = a4(ν − 1), (5.35)

Q
(a)
2 = a2

{
a2β2(3− ν) + 2m2(ν − 1)

}
, (5.36)

Q
(a)
0 = (m2 − a2β2)

{
2a2β2 +m2(ν − 1)

}
. (5.37)

Clearly there is an infinite set of roots to Km(s) = 0 for each integer value of m as

indicated in (5.13). However it is convenient to use sp rather than smp in the remainder

of this section and. Let sp, p = 0, 1, 2, . . . and sq, q = 0, 1, 2, . . . be the roots of the

characteristic function, then the following relation must hold

Km(sp)Qm(sq)κnJ
′
m(κqa)−Km(sq)Qm(sp)κnJ

′
m(κpa) = 0, (5.38)
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where Pm(s) is given in (5.28) and Qm(s) is given in (5.34). The characteristic function

Km(s) in (5.26) is substituted into (5.38) to give

{Pm(sp)Qm(sq)− Pm(sq)Qm(sp)}κpJ ′
m(κpa)κqJ

′
m(κqa)

+Qm(sp)Qm(sq)
α

a
[{Jm(κpr)κqJ ′

m(κqr)− Jm(κqr)κpJ
′
m(κpr)} r]

a

r=0 = 0. (5.39)

The term in square brackets is differentiated and expressed in integral form and on

collecting like terms

(s2q − s2p)Qm(sp)Qm(sq)
α

a

∫ a

0

[
Jm(κqr)

{
κ2pJ

′′
m(κpr)r + κpJ

′
m(κpr)

}
− Jm(κpr)

{
κ2qJ

′′
m(κqr)r + κqJ

′
m(κqr)

} ]
dr

= −{Pm(sp)Qm(sq)− Pm(sq)Qm(sp)}κpJ ′
m(κpa)κqJ

′
m(κqa). (5.40)

It follows from Bessel’s equation that

(s2q − s2p)Qm(sp)Qm(sq)
α

a

∫ a

0

Jm(κpr)Jm(κqr)r dr

= −{Pm(sp)Qm(sq)− Pm(sq)Qm(sp)}κpJ ′
m(κpa)κqJ

′
m(κqa). (5.41)

Hence

α

a

∫ a

0

Jm(κpr)Jm(κqr)r dr

+
Km(sq)Qm(sp)κpJ

′
mn(κpa)

(s2q − snp2)Qm(sp)Qm(sq)
− Km(sp)Qm(sq)κqJ

′
m(κnqa)

(s2q − s2p)Qm(sp)Qm(sq)

= −{Pm(sp)Qm(sq)− Pm(sq)Qm(sp)}κpJ ′
m(κpa)κqJ

′
m(κqa)

(s2q − s2p)Qm(sp)Qm(sq)
. (5.42)

The non-zero constant Cmp is given by,

Cmp =
κpJ

′
m(κpa)

Qm(sp)
lim
s→sp

Km(sn)−Km(s)

s2 − s2p
. (5.43)

The nature of the above equation allows for l’Hôpital’s rule to be applied,

Cmp =
K ′

m(sp)κpJ
′
m(κpa)

2spQm(sp)
. (5.44)

The generalised orthogonality relation is thus,

α

a

∫ a

0

Jm(κpr)Jm(κqr)rdr = δpqCmp −
Gm(sp, sq)κpJ

′
m(κpa)κqJ

′
m(κqa)

Qm(sp)Qm(sq)
, (5.45)
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where δ is the Kronecker delta and

Gm(sp, sq) = P
(a)
8 Qm(sp)s

6
q +

{
P

(a)
8 Qm(sp)s

2
p + P

(a)
6 Qm(sp)

}
s4q +

{
P

(a)
8 Q

(a)
2 s6p

+
(
P

(a)
8 Q

(a)
0 + P

(a)
6 Q

(a)
2

)
s4p +

(
P

(a)
6 Q

(a)
0 + P

(a)
4 Q

(a)
2 − P

(a)
2 Q

(a)
4

)
s2p + P

(a)
4 Q

(a)
0

− P
(a)
0 Q

(a)
4

}
s2q + P

(a)
8 Q

(a)
0 s6n + P

(a)
6 Q

(a)
0 s4p +

(
P

(a)
4 Q

(a)
0 − P

(a)
0 Q

(a)
4

)
s2p + P

(a)
2 Q

(a)
0

− P
(a)
0 Q

(a)
2 . (5.46)

That is

Gm(sp, sq) = G(6)
m s6q +G(4)

m s4q +G(3)
m s2q +G(0)

m , (5.47)

where

G(6)
m = P

(a)
8 Qm(sp), (5.48)

G(4)
m = P

(a)
8 Qm(sp)s

2
p + P

(a)
6 Qm(sp), (5.49)

G(2)
m = P

(a)
8 Q

(a)
2 s6p +

(
P

(a)
8 Q

(a)
0 + P

(a)
6 Q

(a)
2

)
s4p +

(
P

(a)
6 Q

(a)
0 + P

(a)
4 Q

(a)
2 − P

(a)
2 Q

(a)
4

)
s2p

+ P
(a)
4 Q

(a)
0 − P

(a)
0 Q

(a)
4 , (5.50)

G(0)
m = P

(a)
8 Q

(a)
0 s6n + P

(a)
6 Q

(a)
0 s4p +

(
P

(a)
4 Q

(a)
0 − P

(a)
0 Q

(a)
4

)
s2p + P

(a)
2 Q

(a)
0 − P

(a)
0 Q

(a)
2 .

(5.51)

Similarly, for a shell of radius b, the equivalent generalised orthogonality relation is

α

b

∫ b

0

Jm(γpr)Jm(γqr)rdr = δpqDp −
Gm(ηp, ηq)γpJ

′
m(γpb)γqJ

′
m(γqb)

Qm(ηp)Qm(ηq)
, (5.52)

where P
(a)
n and Q

(a)
n are replaced by P

(b)
n and Q

(b)
n , τ2 = 12/(k2h2b2), ηq are the equivalent

wavenumbers, γq = (1− η2q )
1/2 and

Dmp =
K ′

m(ηp)γpJ
′
m(γpb)

2ηpQm(ηp)
. (5.53)

The non-zero constant Cmp (or equivalently Dmp) is a useful parameter arising in various

identities which involve the characteristic equation.

5.1.2 Properties of the eigensystem

Analogous to the axisymmetric case, a number of identities can be developed to demon-

strate that the eigenfunctions are linearly dependent. It is shown in Lawrie [46] that the

number of such identities depends on the order of the boundary conditions. This number

is the same as the number of edge conditions required (or alternatively half the order

of the characteristic equation). In this case there are four such identities and these are
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Figure 5.1: The path of integration used for Cauchy’s residue theorem.

given by I1(r), I2(r), I3(r) and I4(r). These identities are constructed by considering

contour integrals with odd integrands. On applying Cauchy’s residue theorem an identity

is obtained. The first identity is created considering the following integral

I1(r) =
1

2πi

∫ ∞

−∞

2sQm(s)Jm(κr)

Km(s)
ds, 0 ≤ r ≤ a, (5.54)

where the path of integration is indented above any poles on the negative real axis and

below any poles on the positive real axis as shown in Figure 5.1. Note the p on sp and

κp is dropped for the workings for the first identity. The integrand of I1(r) is an odd

function, which means it evaluates to 0. Contour integration can be used to express the

integral as a sum of residues and thus obtain an identity. Cauchy’s residue theorem gives

I1(r) +
1

2πi

∫ ∞

−∞

2sQm(s)Jm(κr)

Km(s)
ds =

∞∑
p=0

ϱmp, 0 ≤ r ≤ a, (5.55)

where ϱmp are the residues at s = smp. That is

ϱmp = lim
s→smp

(s− smp)2sQm(s)Jm(κr)

Km(s)
=

2sQm(smp)Jm(κmpr)

K ′
m(smp)

, 0 ≤ r ≤ a, (5.56)

where l’Hôpital’s rule has been applied. Note that as |s| → ∞ the integrand can be

approximated by
2sQm(s)Jm(κr)

Km(s)
≈ 2Jm(isr)

is4Jm+1(isa)
. (5.57)

Hence, as R → ∞ ∫
Γc

2sQm(s)Jm(κr)

Km(s)
ds→ 0, 0 ≤ r ≤ a. (5.58)
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This integral can be evaluated by use of contour integration, firstly the path of integration

is deformed to a half circle in the upper half plane (denoted ΓR) with radius R

I1(r) =
1

2πi

∮
ΓR

2sQm(s)Jm(κr)

Km(s)
ds, 0 ≤ r ≤ a. (5.59)

The half circle ΓR can be separated into two separate contours, the arc in the upper half

plane in the anti-clockwise sense (denoted CR+) and the interval [−R,R]. This allows for
the integral to be considered as

I1(r) =
1

2πi

{∫
CR+

2sQm(s)Jm(κr)

Km(s)
ds+

∫ R

−R

2sQa(s)Jm(κr)

Km(s)
ds

}
, 0 ≤ r ≤ a. (5.60)

Considering the radius R tending to infinite allows for the use of Cauchy’s Residue The-

orem. The contribution due to CR+ tends to 0 as R → ∞, this is due to the denominator

having larger magnitude than the numerator. For the remaining integral, the integrand

is analytic, except for an infinite family of poles when L(sp, a) = 0. These poles are given

when s = snp, therefore the integral becomes the infinite sum of residues

I1(r) =
∞∑
p=0

Res

{
2sQm(s)Jm(κr)

Km(s, a)
, smp

}
=

∞∑
p=0

lim
s→smp

(s− smp)2sQm(s)Jm(κr)

Km(s)
. (5.61)

As the both the numerator and denominator of the limit tend to zero, l’Hôpital’s rule

can be applied in order to obtain the first identity as

I1(r) =
∞∑
p=0

2smpQm(smp)Jm(κmpr)

K ′
m(smp)

=
∞∑
p=0

κmpJ
′
m(κmpa)Jm(κmpr)

Cmp

= 0, 0 ≤ r ≤ a.

(5.62)

Further identities can be found in the same way by considering the integrals,

I2(r) =
1

2πi

∫ ∞

−∞

2sJm(κr)

Km(s)
ds, 0 ≤ r ≤ a, (5.63)

I3(r) =
1

2πi

∫ ∞

−∞

2sκ2Jm(κr)

Km(s)
ds, 0 ≤ r ≤ a, (5.64)

I4(r) =
1

2πi

∫ ∞

−∞

2sκ4Jm(κr)

Km(s)
ds, 0 ≤ r ≤ a. (5.65)

The integrand in these cases are odd functions, therefore they evaluate to zero. The

second, third and fourth identities are obtained as,

I2(r) =
∞∑
p=0

2smpJm(κmpr)

K ′
m(smp)

=
∞∑
p=0

κmpJ
′
m(κmpa)Jm(κmpr)

Qm(smp)Cmp

= 0, 0 ≤ r ≤ a, (5.66)
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I3(r) =
∞∑
p=0

2smpκ
2
mpJm(κmpr)

K ′
m(smp)

=
∞∑
p=0

κ3mpJ
′
m(κmpa)Jm(κmpr)

Qm(smp)Cmp

= 0, 0 ≤ r ≤ a, (5.67)

I4(r) =
∞∑
p=0

2smpκ
4
mpJm(κmpr)

K ′
m(smp)

=
∞∑
p=0

κ5mpJ
′
m(κmpa)Jm(κmpr)

Qm(smp)Cmp

= 0, 0 ≤ r ≤ a. (5.68)

Further identities can be found by considering the integrals

I5 =
1

2πi

∫ ∞

−∞

2sQm(s)κJ
′
m(κa)

Km(s)
ds, (5.69)

I6 =
1

2πi

∫ ∞

−∞

2s3Qm(s)κJ
′
m(κa)

Km(s)
ds. (5.70)

The above integrals were chosen such that the integrand is odd, therefore ensuring that

they evaluate to zero. It follows that the identity given by I5 is,

I5 =
∞∑
p=0

2smpQm(smp)κmpJ
′
m(κmpa)

K ′
m(smp)

=
∞∑
p=0

{κmpJ
′
m(κmpa)}2

Cmp

= 0. (5.71)

For integral I6 it is seen that as R → ∞ the contribution from CR+ is non zero. In order

to find this contribution the integrand is approximated for evaluation:

2s3Qm(s)κJ
′
m(κa)

Km(s)
≈ 2s7a4(ν − 1)κJ ′

m(κa)

s8a4(ν − 1)κJ ′
m(κa)

=
2

s
. (5.72)

With the parameterisations s = Reiθ and ds/dθ = iReiθ, the integral over the arc is

1

2πi

∫
CR+

2s3Qm(s)κJ
′
m(κa)

Km(s)
ds ≈ 1

2πi

∫ π

0

2i dθ = 1. (5.73)

Cauchy’s residue theorem is used to evaluate the integral over the straight line [−R,R]
to give an infinite sum of residues

1

2πi

∫ R

−R

2sQm(s)κ
3J ′

m(κa)

Km(s)
ds =

∞∑
p=0

s2mp {κmpJ
′
m(κmpa)}2

Cmp

. (5.74)

The identity obtained from I6 is thus

∞∑
p=0

κ2mp {κmpJ
′
m(κmpa)}2

Cmp

= −1. (5.75)
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Figure 5.2: Identities one and four.

A final identity can be obtained by multiplying the characteristic equation through by

κ3mpJ
′
m(κmpa)/{Pm(smp)Cmp} and summing to give

α
∞∑
p=0

Qm(smp)κ
3
mpJ

′
m(κmpa)Jm(κmpa)

Pm(smp)Cmp

= −1. (5.76)

The roots of the characteristic equation (5.26) from a shell of radius ā = 0.2m at 500Hz

were used to plot the value of each identity against the number of considered modes.

The number of considered modes increases from 10 to 50, which is representative of the

radius of the circle in which roots are sought. The results of identities 1 and 3 (shown

in Figure 5.2) show that these identities are satisfied to 5 decimal places from 10 modes

and continue to converge to zero. The results of identities 2, 3, 4, 5, 6, 7 and 8 are all

zero to at least 6 decimal places when 10 modes are considered.

5.2 Energy reflected by a rigid end plate

The aim of this section is to find the energy reflected by a rigid end plate in a semi-infinite

shell. The system comprises a semi-infinite shell located in the region 0 ≤ r ≤ a, z ≤ 0

and is closed by a rigid end plate occupying 0 ≤ r ≤ a, z = 0 (see Figure 5.3). Forcing

is by a wave located in the shell propagating in the positive z direction towards the end

plate. The velocity potential in the region z ≤ 0, 0 ≤ r ≤ a is

ϕ(r, θ, z) = F1ℓJ1(κ1ℓr) cos(θ)e
is1ℓz +

∞∑
n=0

∞∑
q=0

AnqJn(κnqr) cos(nθ)e
−isnqz, 0 ≤ r ≤ a,

(5.77)

where ℓ indicates the chosen mode to force with (ℓ = 0 or ℓ = 1), F1ℓ is the amplitude of

the forcing wave, Anq is the amplitude of the qth reflected mode, s1q are the wavenumbers
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Figure 5.3: Physical configuration of the semi-infinite shell with a rigid end plate.

and κ1q = (1− s21q)
1/2. There is only one real mode s10 at low frequencies which occur for

m = 1, for this mode s10 is close to 1. A second mode cuts on later in the frequency range

and shall be used in the amplitude of the forcing wave where possible. The amplitude of

the forcing wave is chosen such that the incident energy is unity and is formed by using

(2.36). It follows that

F1ℓ = {1/(s1ℓC1ℓ)}1/2 . (5.78)

At the rigid wall, the normal component of velocity is zero, which gives the condition

∂ϕ

∂z
= 0, at z = 0, 0 ≤ r ≤ a. (5.79)

The velocity potential (5.77) is substituted into the above condition to give

F1ℓs1ℓJ1(κ1ℓr) cos(θ)−
∞∑
n=0

∞∑
q=0

AnqsnqJn(κnqr) cos(nθ) = 0, 0 ≤ r ≤ a. (5.80)

The above equation is multiplied through by cos(mθ) and integrated with respect to

θ, 0 ≤ θ ≤ 2π, to give

F1ℓs1ℓJ1(κ1ℓr)

∫ 2π

0

cos(θ) cos(mθ) dθ −
∞∑
n=0

∞∑
q=0

AnqsnqJn(κnqr)

∫ 2π

0

cos(nθ) cos(mθ) dθ

= 0. (5.81)

The orthogonality property of cos(·) can be used to reduce the above equation. From

Brown and Churchill [47] this is given as

1

π

∫ 2π

0

cos(nθ) cos(mθ) dθ = δnm, (5.82)

where δnm is the Kroneckor delta. It follows from (5.81) that

F1ℓs1ℓJ1(κ1ℓr)δ1ℓ =
∞∑
q=0

AmqsmqJm(κmqr). (5.83)

129



For this equation to be satisfied, either m = 1 or

∞∑
q=0

AmqsmqJm(κmqr) = 0. (5.84)

There are four ways in which (5.83) can be satisfied and these solutions come from

the identities which demonstrate linear dependence of the eigenfunctions. From (5.62),

(5.66)-(5.68) it is implied that the following can hold true

Amqsmq =
κmqJ

′
m(κmqa)

Cmq

, (5.85)

Amqsmq =
κmqJ

′
m(κmqa)

Qm(smq)Cmq

, (5.86)

Amqsmq =
κ3mqJ

′
m(κmqa)

Qm(smq)Cmq

, (5.87)

Amqsmq =
κ5mqJ

′
m(κmqa)

Qm(smq)Cmq

. (5.88)

Hence this could potentially introduce four eigensolutions Tj, j = 0, 1, 2, 3 to the velocity

potential defined as.

T0(r, θ, z) =
∞∑

m=0

∞∑
q=0

κmqJ
′
m(κmqa)

Cmqsmq

Jm(κmqr) cos(mθ)e
−ismqz, (5.89)

T1(r, θ, z) =
∞∑

m=0

∞∑
q=0

κmqJ
′
m(κmqa)

Qm(smq)Cmqsmq

Jm(κmqr) cos(mθ)e
−ismqz, (5.90)

T2(r, θ, z) =
∞∑

m=0

∞∑
q=0

κ3mqJ
′
m(κmqa)

Qm(smq)Cmqsmq

Jm(κmqr) cos(mθ)e
−ismqz, (5.91)

T3(r, θ, z) =
∞∑

m=0

∞∑
q=0

κ5mqJ
′
m(κmqa)

Qm(smq)Cmqsmq

Jm(κmqr) cos(mθ)e
−ismqz. (5.92)

It follows that

ϕ(r, θ, z) = F1ℓJ1(κ1ℓr) cos(θ)e
is1ℓz +

∞∑
q=0

A1qJ1(κ1qr) cos(mθ)e
−is1qz +BT0(r, θ, z)

+ CT1(r, θ, z) +DT2(r, θ, z) + ET3(r, θ, z), (5.93)

where each Tj(r, θ, z), j = 0, 1, 2, 3, satisfies the end plate condition and B, C, D, E are

constants. Henceforth it is assumed that B = C = D = E = 0.

The velocity potential (5.77) is substituted into the normal component of velocity

130



matching condition to give

F1ℓs1ℓJ1(κ1ℓr) cos(θ)−
∞∑
q=0

A1qs1qJ1(κ1qr) cos(θ) = 0, 0 ≤ r ≤ a. (5.94)

The above equation is multiplied through by αJ1(κ1pr)r/a and integrated to give

F1ℓs1ℓ
α

a

∫ a

0

J1(κ1ℓr)J1(κ1pr)r dr −
∞∑
q=0

A1qs1q
α

a

∫ a

0

J1(κ1qr)J1(κ1pr)r dr = 0. (5.95)

The generalised orthogonality relation in (5.45) is used to reduce this equation to

A1p = F1ℓδℓp +
G

(6)
1 (s1p)κ1pJ

′
1(κ1pa)

s1pC1pQ1(s1p)
E0 +

G
(4)
1 (s1p)κ1pJ

′
1(κ1pa)

s1pC1pQ1(s1p)
E1

+
G

(2)
1 (s1p)κ1pJ

′
1(κ1pa)

s1pC1pQ1(s1p)
E2 +

G
(0)
1 (s1p)κ1pJ

′
1(κ1pa)

s1pC1pQ1(s1p)
E3. (5.96)

The method of edge condition application is generalised by recognising that the edge

conditions take the form:

∞∑
p=0

A1pψ
(a)
pn + F1ℓψ

(f)
n , n = 0, 1, 2, 3, (5.97)

The edge conditions are applied by multiplying (5.96) by ψ
(a)
pn (which is defined in (5.99)

and (5.101)), and on summing over p it is found that

∞∑
p=0

F1ℓδℓpψ
(a)
pn +

∞∑
p=0

G
(6)
1 (s1p)κ1pJ

′
1(κ1pa)ψ

(a)
pn

s1pC1pQ1(s1p)
E0 +

∞∑
p=0

G
(4)
1 (s1p)κ1pJ

′
1(κ1pa)ψ

(a)
pn

s1pC1pQ1(s1p)
E1

+
∞∑
p=0

G
(2)
1 (s1p)κ1pJ

′
1(κ1pa)ψ

(a)
pn

s1pC1pQ1(s1p)
E2 +

∞∑
p=0

G
(0)
1 (s1p)κ1pJ

′
1(κ1pa)ψ

(a)
pn

s1pC1pQ1(s1p)
E3 = −F1ℓψ

(f)
n . (5.98)

The results presented for this problem were created in Matlab with the code presented

in Appendix K. This has been done using 100 modes to calculate the amplitudes of the

propagating waves.
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Figure 5.4: Energy radiated due to a forcing wave at a rigid plate in a semi-finite shell with
a clamped edge, ā = 0.2m: a) first mode forcing ℓ = 0; b) second mode forcing ℓ = 1.

5.2.1 Clamped edge

With clamped edge conditions the values of ψ in (5.96) are:

ψ
(a)
p0 = U(s1p)κ1pJ

′
1(κ1pa), ψ

(f)
0 = −U(s1ℓ)κ1ℓJ ′

1(κ1ℓa),

ψ
(a)
p1 = V (s1p)κ1pJ

′
1(κ1pa), ψ

(f)
1 = V (s1ℓ)κ1ℓJ

′
1(κ1ℓa),

ψ
(a)
p2 = κ1pJ

′
1(κ1pa), ψ

(f)
2 = −κ1ℓJ ′

1(κ1ℓa),

ψ
(a)
p3 = s1pκ1pJ

′
1(κ1pa), ψ

(f)
3 = −s1ℓκ1ℓJ ′

1(κ1ℓa), (5.99)

The values of E0−E3 are found by truncating equations (5.98) using the above values of

ψ. These values can then be used in (5.96) which is truncated to give the pth amplitude

of the reflected wave. The energy associated with the reflected field is given in (2.41)

which is stated below:

EA =
a

α
Real

[
P∑

p=0

|A1p|2s1pC1p

]
, (5.100)

where A1p are the amplitudes of the reflected waves.

Figure 5.4 shows the energy output for shell of radius ā = 0.2m clamped to the rigid

plate for 5− 1200Hz.

Figure 5.4a assumes forcing with the first-mode in the amplitude and Figure 5.4b

assumes forcing with the second-mode. The results for both plots show that the energy

is totally transmitted for the entire considered frequency range.
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Figure 5.5: Energy radiated due to a forcing wave at a rigid plate in a semi-finite shell with
a pin-jointed edge, ā = 0.2m: a) first mode forcing ℓ = 0; b) second mode forcing ℓ = 1.

5.2.2 Pin-jointed edge

With pin-jointed edge conditions the values of ψ in (5.96) are:

ψ
(a)
p0 = U(s1p)s1pκ1pJ

′
1(κ1pa)), ψ

(f)
0 = U(s1ℓ)s1ℓκ1ℓJ

′
1(κ1ℓa),

ψ
(a)
p1 = V (s1p)κ1pJ

′
1(κ1pa), ψ

(f)
1 = V (s1ℓ)κ1ℓJ

′
1(κ1ℓa),

ψ
(a)
p2 = κ1pJ

′
1(κ1pa), ψ

(f)
2 = −κ1ℓJ ′

1(κ1ℓa),

ψ
(a)
p3 = s21pκ1pJ

′
1(κ1pa), ψ

(f)
3 = −s21ℓκ1ℓJ ′

1(κ1ℓa). (5.101)

Figure 5.5 shows the energy output for shell of radius ā = 0.2m pin-jointed to the

rigid plate for 5− 1200Hz.

Figure 5.5a assumes forcing with the first-mode in the amplitude and Figure 5.5b

assumes forcing with the second-mode. Both plots show that the energy is totally trans-

mitted for the chosen frequency range.

5.3 Energy radiated due to a forcing wave at an

abrupt increase in radius

The purpose of this section is to find the energy reflected and transmitted due to an

incident wave at an abrupt increase in radius. The system comprises two semi-infinite

shells, the left-hand shell occupies 0 ≤ r ≤ a, z ≤ 0 and the right-hand shell occupies

0 ≤ r ≤ b, z ≥ 0, where a ≤ b (see Figure 5.6). The waveguide is closed by a rigid

annular disc occupying a ≤ r ≤ b, z = 0. Forcing is introduced by a wave propagating

in the positive z direction towards the abrupt increase in radius. Only the m = 1 case of

non-axisymmetric motion will be considered in this problem. The velocity potential ϕ1
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Figure 5.6: Physical configuration of the abrupt increase in radius problem.

in the region z ≤ 0, 0 ≤ r ≤ a comprises the forcing wave and the wave reflected at the

junction, which is

ϕ1(r, θ, z) = F1ℓJ1(κ1ℓr) cos(θ)e
is1ℓz +

∞∑
q=0

A1qJ1(κ1qr) cos(θ)e
−is1qz, 0 ≤ r ≤ a, z ≤ 0,

(5.102)

where ℓ indicates the chosen mode to force with (ℓ = 0 for the initial real mode or ℓ = 1

for the first cut-on mode in the left-hand shell), F1ℓ is the amplitude of the forcing wave

given in (5.78), A1q is the amplitude of the qth reflected mode, s1q are the wavenumbers

and κ1q = (1−s21q)1/2. The longitudinal, circumferential and radial shell displacements in

eigenfunction form for the left-hand shell are found by substituting the velocity potential

(5.102) into (5.24), (5.25) and using w = iϕr. It follows that

u1(θ, z) = U(s1ℓ)F1ℓJ1(κ1ℓa) cos(θ)e
is1ℓz −

∞∑
q=0

U(s1q)A1qJ1(κ1qa) cos(θ)e
−is1qz,

v1(θ, z) = V (s1ℓ)F1ℓJ1(κ1ℓa) sin(θ)e
is1ℓz +

∞∑
q=0

V (s1q)A1qJ1(κ1qa) sin(θ)e
−is1qz,

w1(θ, z) = −F1ℓκ1ℓJ1(κ1ℓa) cos(θ)e
is1ℓz −

∞∑
q=0

A1qκ1qJ1(κ1qa) cos(θ)e
−is1qz. (5.103)

The velocity potential in the region z ≥ 0, 0 ≤ r ≤ b contains those waves which are

transmitted through the junction, that is

ϕ2(r, θ, z) =
∞∑
q=0

B1qJ1(γ1qr) cos(θ)e
iη1qz, 0 ≤ r ≤ b, z ≥ 0, (5.104)

where B1q is the amplitude of the qth transmitted mode, η1q are the roots of the dispersion

function in the right-hand shell and γ1q = (1− η21q)
1/2. The longitudinal, circumferential
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and radial shell displacements in eigenfunction form for the left-hand shell are found by

substituting the velocity potential (5.104) into (5.24), (5.25) and using w = iϕr. It follows

that

u2(θ, z) =
∞∑
q=0

U(η1q)B1qJ1(γ1qb) cos(θ)e
iη1qz,

v2(θ, z) =
∞∑
q=0

V (η1q)B1qJ1(γ1qb) sin(θ)e
iη1qz,

w2(θ, z) =
∞∑
q=0

B1qγ1qJ1(γ1qb) cos(θ)e
iη1qz. (5.105)

In the region z = 0, 0 ≤ r ≤ a the pressure is continuous, this leads to the expression

ϕ1(r, θ, z) = ϕ2(r, θ, z), z = 0, 0 ≤ r ≤ a. (5.106)

The velocity potentials (5.102) and (5.104) are substituted into the above equation to

give

F1ℓJ1(κ1ℓr) +
∞∑
q=0

A1qJ1(κ1qr) =
∞∑
q=0

B1qJ1(γ1qr), 0 ≤ r ≤ a. (5.107)

The above equation is multiplied through by αJ1(κ1pr)/a and integrated with respect to

r, 0 ≤ r ≤ a, to find

αF1ℓ

a

∫ a

0

J1(κ1pr)J1(κ1ℓr)rdr +
α

a

∞∑
q=0

A1q

∫ a

0

J1(κ1pr)J1(κ1qr)rdr =
∞∑
q=0

αB1qRpq

a
,

(5.108)

where

Rpq =

∫ a

0

J1(κ1pr)J1(γ1qr)rdr. (5.109)

The generalised orthogonality relation in (5.45) is used to reduce the integrals on the

left-hand side of (5.108) and on rearranging, the first coupled equation is found as

A1p = −F1ℓδℓp +
G

(6)
1 (s1p)J

′
1(κ1pa)

C1pQ1(s1p)
E0 +

G
(4)
1 (s1p)J

′
1(κ1pa)

C1pQ1(s1p)
E1 +

G
(2)
1 (s1p)J

′
1(κ1pa)

C1pQ1(s1p)
E2

+
G

(0)
1 (s1p)J

′
1(κ1pa)

C1pQ1(s1p)
E3 +

∞∑
q=0

αB1qRpq

aC1p

, (5.110)

where G
(n)
1 (s1p), n = 0, 2, 4, 6 are the corresponding coefficients for the nth degree of

G1(s1p, ·) given in (5.51) and E0 − E3 are constants which are determined by applying

the edge conditions that describe how the left-hand shell connects to the annular disc.

The normal component of velocity should be continuous in the region z = 0, 0 ≤ r ≤ a
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and zero on the annular disc in the region z = 0, a ≤ r ≤ b, which leads to

∂ϕ2

∂z
(r, 0) =

{
∂ϕ1

∂z
(r, 0), z = 0, 0 ≤ r ≤ a

0, z = 0, a ≤ r ≤ b
. (5.111)

The velocity potentials (5.102) and (5.104) are substituted into the above equation to

give

∞∑
q=0

B1qη1qJ1(γ1qr) = F1ℓs1ℓJ1(κ1ℓr)−
∞∑
q=0

A1qs1qJ1(κ1qr), 0 ≤ r ≤ a. (5.112)

The above expression is multiplied through by αJ1(γ1pr)r/b and integrated with respect

to r, 0 ≤ r ≤ b to find

∞∑
q=0

B1qη1q
α

b

∫ b

0

J1(γ1pr)J1(γ1qr)rdr =
αF1ℓs1ℓRℓp

b
−

∞∑
q=0

αA1qs1qRqp

b
. (5.113)

The orthogonality relation in (5.52) is used to find the left-hand side of the expression in

(5.113) and after rearranging, the second coupled equation is found as

B1p =
G

(6)
1 (η1p)J

′
1(γ1pb)

η1pD1pQ1(η1p)
E4 +

G
(4)
1 (η1p)J

′
1(γ1pb)

η1pD1pQ1(η1p)
E5 +

G
(2)
1 (η1p)J

′
1(γ1pb)

η1pD1pQ1(η1p)
E6

+
G

(0)
1 (η1p)J

′
1(γ1pb)

η1pD1pQ1(η1p)
E7 +

αF1ℓs1ℓRℓp

bη1pD1p

−
∞∑
q=0

A1qs1qRqp

bη1pD1p

, (5.114)

where G
(n)
1 (η1p), n = 0, 2, 4, 6 are the corresponding coefficients for the nth degree of

G1(η1p, ·) given in (5.51) and E4−E7 are constants which are determined by applying the

edge conditions that describe how the right section of the shell connects to the annular

disc.

The constants E0 − E7 in equations (5.110) and (5.114) are found by applying edge

conditions which describe how the shells are connected to the rigid annulus at the match-

ing interface. These conditions can be written in the form

∞∑
p=0

A1pψ
(a)
pn +

∞∑
p=0

B1pψ
(b)
pn + F1ℓψ

(f)
n = 0, for n = 0, 1, 2, . . . , 7, (5.115)

where n = 0, 1, 2, 3 refer to conditions applied to the left-hand shell edge and n = 4, 5, 6, 7

refer to conditions applied at the right-hand shell edge. To apply the left-hand conditions,
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(5.110) is multiplied by ψ
(a)
pn , and on summing over p it is found that

−
∞∑
p=0

F1ℓδℓpψ
(a)
pn +

∞∑
p=0

G
(6)
1 (s1p)J

′
1(κ1pa)ψ

(a)
pn

C1pQ1(s1p)
E0 +

G
(4)
1 (s1p)J

′
1(κ1pa)ψ

(a)
pn

C1pQ1(s1p)
E1

+
∞∑
p=0

G
(2)
1 (s1p)J

′
1(κ1pa)ψ

(a)
pn

C1pQ1(s1p)
E2 +

∞∑
p=0

G
(0)
1 (s1p)J

′
1(κ1pa)ψ

(a)
pn

C1pQ1(s1p)
E3

+
∞∑
p=0

∞∑
q=0

αB1qRpqψ
(a)
pn

aC1p

= −
∞∑
p=0

B1pψ
(b)
pn − F1ℓψ

(f)
n , n = 0, 1, 2, 3. (5.116)

Similarly for the right-hand edge conditions (5.114) is multiplied by ψ
(b)
pn , and on summing

over p it is found that

∞∑
p=0

G
(6)
1 (η1p)J

′
1(γ1pb)ψ

(b)
pn

η1pD1pQ1(η1p)
E4 +

∞∑
p=0

G
(4)
1 (η1p)J

′
1(γ1pb)ψ

(b)
pn

η1pD1pQ1(η1p)
E5 +

∞∑
p=0

G
(2)
1 (η1p)J

′
1(γ1pb)ψ

(b)
pn

η1pD1pQ1(η1p)
E6

+
∞∑
p=0

G
(0)
1 (η1p)J

′
1(γ1pb)ψ

(b)
pn

η1pD1pQ1(η1p)
E7 +

∞∑
p=0

αF1ℓs1ℓRℓpψ
(b)
pn

bη1pD1p

−
∞∑
p=0

∞∑
q=0

A1qs1qRqpψ
(b)
pn

bη1pD1p

= −
∞∑
p=0

A1pψ
(a)
pn − F1ℓψ

(f)
n , n = 4, 5, 6, 7. (5.117)

The expressions for ψ
(a)
pn , ψ

(b)
pn and ψ

(f)
p are found from eigenfunction expansions of the

edge conditions for clamped edges these are as given in (5.118) and for pin-jointed edges

these are as given in (5.121). The results presented for this problem are created in Matlab

with the code presented in Appendix L. This has been done using 100 modes to calculate

the amplitudes of the propagating waves. This is shown to be more than sufficient in the

verification subsection that follows.
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5.3.1 Clamped edges

On using the displacements given in (5.103) and (5.105), the clamped edge conditions

given (3.26) lead to

ψ
(a)
p0 = U(s1p)κ1pJ

′
1(κ1pa), ψ

(b)
p0 = 0, ψ

(f)
0 = −U(s1ℓ)κ1ℓJ ′

1(κ1ℓa),

ψ
(a)
p1 = V (s1p)κ1pJ

′
1(κ1pa), ψ

(b)
p1 = 0, ψ

(f)
1 = V (s1ℓ)κ1ℓJ

′
1(κ1ℓa),

ψ
(a)
p2 = κ1pJ

′
1(κ1pa), ψ

(b)
p2 = 0, ψ

(f)
2 = −κ1ℓJ ′

1(κ1ℓa),

ψ
(a)
p3 = s1pκ1pJ

′
1(κ1pa), ψ

(b)
p3 = 0, ψ

(f)
3 = −s1ℓκ1ℓJ ′

1(κ1ℓa),

ψ
(b)
p4 = U(η1p)γ1pJ

′
1(γ1pb), ψ

(a)
p4 = 0, ψ

(f)
4 = 0,

ψ
(b)
p5 = V (η1p)γ1pJ

′
1(γ1pb), ψ

(a)
p5 = 0, ψ

(f)
5 = 0,

ψ
(b)
p6 = γ1pJ

′
1(γ1pb), ψ

(a)
p6 = 0, ψ

(f)
6 = 0,

ψ
(b)
p7 = η1pγ1pJ

′
1(γ1pb), ψ

(a)
p7 = 0, ψ

(f)
7 = 0. (5.118)

The values of E0 −E7 are found by truncating and solving equations (5.116) and (5.117)

using the above values of ψ. Coupled equations are obtained by using E0−E3 in equation

(5.110) and E4 −E7 in equation (5.114). These equations are then truncated and solved

to give the pth amplitude Ap of the reflected field and the pth amplitude Bp of the

transmitted field. The energy entering the system EF is due to the wave incident in the z

direction, which has unit energy. The energy leaving the system comprises the energy of

the reflected field EA and the energy of the transmitted field EB. The energy associated

with the reflected and transmitted fields are as given in (2.41) and (2.42) which are stated

below:

EA =
a

α
Real

[
P∑

p=0

|A1p|2s1pC1p

]
, (5.119)

where A1p are the amplitudes of the reflected waves and

EB =
b

α
Real

[
P∑

m=0

|B1p|2η1pD1p

]
, (5.120)

where B1p are the amplitudes of the transmitted waves.

The first configuration considers the radius of the left-hand shell to be equal to that

of the right-hand shell. The energy radiated at the edge, with no change of radius, ie.

for ā = 0.2m and b̄ = 0.2m is shown in Figure 5.7. For a shell of radius ā = 0.2m the

first cut-on occurs at 508Hz and further cut-ons occur outside the considered frequency

range. When forcing with the second-mode, the resulting energy will be considered from

508Hz as evanescent modes do not carry energy before they cut-on.

Figure 5.7a shows the energy radiated when the first mode is used in the forcing waved

(ℓ = 0). Below the first cut-on the energy is totally reflected. After which the energies
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Figure 5.7: Energy output for no change in radius with clamped edges m = 1: a) ā = 0.2m,
b̄ = 0.2m, ℓ = 0; b) ā = 0.2m, b̄ = 0.2m, ℓ = 1.

are inverted and the energy is totally reflected for remaining frequencies.

The energy radiated when forcing with the second mode (ℓ = 1) in the amplitude

of the forcing wave is shown in Figure 5.7b. The reflected energy increases from 40%

until total reflection is achieved at 630Hz and it continues to be totally reflected for the

remaining frequency range.

The next configuration considers the radius of the right-hand shell to be increased.

The left-hand shell is kept at ā = 0.2m while the right-hand shell is increased to b̄ =

0.28m. The energy radiated at the abrupt increase in radius is shown in Figure 5.8. For a

shell of radius b̄ = 0.28m the cut-ons in the frequency range occur at 365Hz and 1043Hz.

The first mode is used in the amplitude of the forcing wave (ℓ = 0) and the energy

radiated at the abrupt increase in radius is shown in Figure 5.8a. The energy is total

reflected below the first cut-on from the larger shell at 365Hz. After the cut-on, the

reflected energy slowly falls away until reaching the cut-on from the smaller shell at

508Hz. The reflected energy then drops suddenly and hovers around 30% before suddenly

increasing at the frequency for the second cut-on from the larger shell at 1043Hz. The

reflected energy finally drops away for the remainder of the frequency range.

The energy radiated at the abrupt increase in radius when the second mode is used

in the forcing wave (ℓ = 1) is shown in Figure 5.8b. The results are only valid after the

mode has cut-on at 508Hz. The reflected energy begins by dipping and increasing until

total reflected energy is achieved at 630Hz. The energy continues to be totally reflected

for the remaining frequency range.

The final configuration considers the radius of the left-hand shell to be significantly

smaller than the radius of the right-hand shell. The radius of the left-hand shell is reduced

to ā = 0.06m while the radius of the right-hand shell is maintained at b̄ = 0.28m. The

energy radiated at the abrupt increase in radius is shown in Figure (5.9) where the first

mode is used in the amplitude of the forcing wave (ℓ = 0). It is seen that the energy is
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Figure 5.8: Energy output for the abrupt increase in radius with clamped edges m = 1: a)
ā = 0.2m, b̄ = 0.28m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, ℓ = 1.

completely reflected for the entire frequency range and is unaffected by the cut-ons from

the larger shell at 365Hz and 1043Hz. This is in keeping with the result that the energy

is totally reflected as kā = a→ 0.

The amplitude of the forcing wave comprising the first cut-on mode (ℓ = 1) does not

exist in the considered frequency range and so results using this mode are not possible.

5.3.2 Pin-jointed edges

On using the displacements given in (5.103) and (5.105), the clamped edge conditions

given (3.27) lead to

ψ
(a)
p0 = U(s1p)s1pκ1pJ

′
1(κ1pa), ψ

(b)
p0 = 0, ψ

(f)
0 = U(s1ℓ)s1ℓκ1ℓJ

′
1(κ1ℓa),

ψ
(a)
p1 = V (s1p)κ1pJ

′
1(κ1pa), ψ

(b)
p1 = 0, ψ

(f)
1 = V (s1ℓ)κ1ℓJ

′
1(κ1ℓa),

ψ
(a)
p2 = κ1pJ

′
1(κ1pa), ψ

(b)
p2 = 0, ψ

(f)
2 = −κ1ℓJ ′

1(κ1ℓa),

ψ
(a)
p3 = s21pκ1pJ

′
1(κ1pa), ψ

(b)
p3 = 0, ψ

(f)
3 = −s21ℓκ1ℓJ ′

1(κ1ℓa),

ψ
(b)
p4 = U(η1p)γ1pJ

′
1(γ1pb), ψ

(a)
p4 = 0, ψ

(f)
4 = 0,

ψ
(b)
p5 = V (η1p)γ1pJ

′
1(γ1pb), ψ

(a)
p5 = 0, ψ

(f)
5 = 0,

ψ
(b)
p6 = γ1pJ

′
1(γ1pb), ψ

(a)
p6 = 0, ψ

(f)
6 = 0,

ψ
(b)
p7 = η21pγ1pJ

′
1(γ1pb), ψ

(a)
p7 = 0, ψ

(f)
7 = 0. (5.121)

The method of solving to find the amplitudes of the reflected and transmitted fields is

analogous to that used for the clamped edges, but replacing values of ψ with those stated

above. The energy equations are then as given by (2.41) and (2.42), these are stated

below for convenience:

EA =
a

α
Real

[
P∑

p=0

|A1p|2s1pC1p

]
, (5.122)
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Figure 5.9: Energy output for the abrupt increase in radius with clamped edges m = 1,
ā = 0.06m, b̄ = 0.28m, ℓ = 0.

where A1p are the amplitudes of the reflected waves and

EB =
b

α
Real

[
P∑

p=0

|B1p|2η1pD1p

]
, (5.123)

where B1p are the amplitudes of the transmitted waves.

The first configuration considers the radius of the left-hand shell to be equal to that

of the right-hand shell. The energy radiated at the no change of radius for ā = 0.2m and

b̄ = 0.2m is shown in Figure 5.10. For a shell of radius ā = 0.2m the first cut-on occurs at

508Hz and further cut-ons occur outside the considered frequency range. When forcing

with the second-mode, the resulting energy will be considered from 508Hz.

Figure 5.10a shows the energy radiated when the first mode is used in the forcing

waved (ℓ = 0). Below the first cut-on the energy is totally reflected. After which there is

an inversion of the energies it is totally reflected for remaining frequencies.

The energy radiated when forcing with the second mode in the amplitude of the

forcing wave is shown in Figure 5.10b. The reflected energy increases from 40% until total

reflection is achieved at 630Hz and it continues to be totally reflected for the remaining

frequency range.

The next configuration considers the radius of the right-hand shell to be increased.

The left-hand shell is maintained at ā = 0.2m while the right-hand shell is increased to

b̄ = 0.28m. The energy radiated at the abrupt increase in radius is shown in Figure 5.11.

For a shell of radius b̄ = 0.28m the cut-ons in the frequency range occur at 365Hz and

1043Hz.
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Figure 5.10: Energy output for no change in radius with pin-jointed edgesm = 1: a) ā = 0.2m,
b̄ = 0.2m, ℓ = 0; b) ā = 0.2m, b̄ = 0.2m, ℓ = 1.
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Figure 5.11: Energy output for the abrupt increase in radius with pin-jointed edges m = 1:
a) ā = 0.2m, b̄ = 0.28m, ℓ = 0; b) ā = 0.2m, b̄ = 0.28m, ℓ = 1.

The first mode is used in the amplitude of the forcing wave (ℓ = 0) and the energy

radiated at the abrupt increase in radius is shown in Figure 5.11a. The energy is total

reflected below the first cut-on from the larger shell at 365Hz. After this cut-on, the

reflected energy slowly falls away until the cut-on frequency from the smaller shell at

508Hz is reached. The reflected energy then drops suddenly and hovers around 30%

before suddenly increasing at the frequency for the second cut-on from the larger shell

at 1043Hz. The reflected energy finally drops away for the remainder of the frequency

range.

The energy radiated at the abrupt increase in radius when the second mode is used

in the forcing wave (ℓ = 1) is shown in Figure 5.11b. The results are only valid after the

mode has cut-on at 508Hz. The reflected energy begins by dipping and increasing until

total reflected energy is achieved at 630Hz. The energy continues to be totally reflected

for the remaining frequency range.

The final configuration considers the radius of the left-hand shell to be significantly
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Figure 5.12: Energy output for the abrupt increase in radius with pin-jointed edges m = 1,
ā = 0.06m, b̄ = 0.28m, ℓ = 0.

smaller than the radius of the right-hand shell. The radius of the left-hand shell is reduced

to ā = 0.06m while the radius of the right-hand shell is maintained at b̄ = 0.28m. The

energy radiated at the abrupt increase in radius is shown in Figure (5.12) where the first

mode is used in the amplitude of the forcing wave (ℓ = 0). It is seen that the energy is

completely reflected for the entire frequency range and is unaffected by the cut-ons from

the larger shell at 365Hz and 1043Hz.

5.3.3 Verification of results

It is necessary to check the matching conditions are satisfied, this will ensure that the

results are correct and that the amplitudes have been formed with a sufficient amount

of modes. This will be done for the configuration which has ā = 0.2m, b̄ = 0.28m with

first mode forcing and clamped edges, which correspond to the results of Figure 5.8a.

The matching condition for pressure is (5.112) which is presented for q = 1 against the

non-dimensional radius of the shell for 10 modes at 780Hz in Figure 5.13. It is seen

that although the real part of the pressure shows a good agreement between the two

sides, it does not match well at the edge of the shell. Also the imaginary part of the

pressure condition shows a poor agreement between the two sides. This shows that 10

modes does not find sufficiently accurate amplitudes, therefore additional modes must

be considered. The matching condition for pressure is now presented for 60 modes at

780Hz against the non-dimensional radius of the shell in Figure 5.14. With 60 it is seen

that there is an excellent match between the two sides of the pressure condition for both

real and imaginary parts. It is left to check that the matching condition for the normal

143



0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r

R
ea

l [
φ 

]

0 0.5 1 1.5 2 2.5

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

r

Im
 [φ

 ]

a) b)

Figure 5.13: The two sides of the pressure matching condition for 10 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.
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Figure 5.14: The two sides of the pressure matching condition for 60 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.

component of velocity is satisfied. Again this is done for 10 modes at 780Hz and the

results for the real and imaginary parts are presented in Figure 5.15. These results show

a poor match between the two sides of the matching condition and that 10 modes to form

the amplitudes is not sufficient. The number of modes is increased to 60 and the results

of the two sides of the matching condition are shown in Figure 5.16. There is a better

agreement between the two sides of the matching condition when 60 modes are used to

formulate the amplitudes, however it still not that great. This is because of a singularity

that occurs due to the piecewise definition of the normal component of velocity condition

i.e. it is continuous in the fluid, but zero of the rigid annular disc. The velocity flux should

be considered as the integration smooths out this singularity. The matching condition
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Figure 5.15: The two sides of the normal component of velocity matching condition for 10
modes with ā = 0.2m, b̄ = 0.28m (dashed line: left side of the condition, solid line: right side
of the condition) a) Real; b) Imaginary.
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Figure 5.16: The two sides of the normal component of velocity matching condition for 60
modes with ā = 0.2m, b̄ = 0.28m (dashed line: left side of the condition, solid line: right side
of the condition) a) Real; b) Imaginary.

for the velocity flux is

ia2F1ℓs1ℓJ2(κ1ℓa)

κ1ℓ
− ia2

∞∑
q=0

A1qs1qJ2(κ1qa)

κ1q
= ib2

∞∑
q=0

B1qη1qJ2(γ1qb)

γ1q
. (5.124)

The two sides of the above equation are presented in Figure 5.17 for 10 modes and in

Figure 5.18 for 60 modes. This shows an excellent agreement between the two sides of

the equation and it verifies that after smoothing at the singularity the normal component

of velocity matching condition is satisfied.
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Figure 5.17: The two sides of the velocity flux matching condition for 100 modes with ā =
0.2m, b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition)
a) Real; b) Imaginary.

0 200 400 600 800 1000 1200
−6

−5

−4

−3

−2

−1

0

1

Frequency

R
e[

V
el

oc
ity

 fl
ux

]

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Frequency

Im
[V

el
oc

ity
 fl

ux
]

a) b)

Figure 5.18: The two sides of the velocity flux matching condition for 60 modes with ā = 0.2m,
b̄ = 0.28m (dashed line: left side of the condition, solid line: right side of the condition) a) Real;
b) Imaginary.
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Chapter 6

Conclusions

The research in this thesis finds and analyses the energy radiated due to a piston or wave

at the junction of rigid and flexible circular, cylindrical problems. These were solved with

the mode matching method combined with a suitable orthogonality relation/ generalised

orthogonality relation.

The research in Chapter two used the wave equation to formulate the dispersion

relation for a rigid duct. This provided the wavenumbers for the velocity potential and

was used to provide a method for deriving the orthogonality relation. This methodology

and orthogonality relations is already available in the literature and serves as a foundation

for research on flexible shell walls. The definition of power was used to derive expressions

for the reflected and transmitted energy and to determine the amplitude of the forcing

wave (as unit energy input was assumed). Problems involving a piston sound source

and/or an incident wave were investigated and solved to find the radiated energy. The

work of Ingard [3] was used to derive an expression for the radiated impedance and to

verify the results of one of the considered duct configurations. The results showed that

the cut-ons caused the resulting energy and impedance to spike, which is due to the

excitation of the evanescent modes by the piston. However for a piston of radius equal

to the radius of the duct, the cut-ons had no effect as it is not able to excite further

modes. Two problems involving an abrupt change of radius were also considered: an

abrupt increase in radius and an expansion chamber situated between two ducts of the

same radius. The problem with the abrupt increase in radius was solved by matching the

pressure and normal component of velocity at the junction. It was found that with no

change in radius, the energy behaved as if it was in a duct of infinite length. When an

increase in radius was present it was found that the scattered energy was effected by the

cut-ons present in the ducts. When the radius of left-shell was significantly smaller than

the right, the energy supported the known result (see for example Levine and Schwinger

[2]) that the energy is totally reflect as kā→ 0. The problem with the expansion chamber

between two ducts was broken into two simpler problems featuring a single increase in

radius: that is a symmetric and an antisymmetric subproblem. The results showed that

147



the presence of an expansion chamber causes the energy to oscillate over frequency. This

is likely due to the waves bouncing off the internal annular discs present in the chamber.

The dips in the oscillations for the reflected power could be determined provided the

energy was carried by the fluid-borne mode as s0 = 1. Lastly, a transfer matrix method

was applied to the expansion chamber problem using only the first mode of the velocity

potentials. The result of this method provided a good estimation of the energies and

assisted in verifying the results obtained from the mode matching method.

In Chapter three the Donnell-Mushtari equations of motion were used to derive the

dispersion relation for waves propagating within a flexible cylindrical shell. This was used

to obtain the wavenumbers of the velocity potential and to derive a suitable generalised

orthogonality relation using the method of Chapter two. This generalised orthogonal-

ity relation is new to the research area and therefore the mode matching method (being

based on the generalised orthogonality relation) used is a novel approach to the problems.

Difficulties occurred due to the increasingly oscillatory nature of the dispersion relations;

the wavenumbers became increasingly harder to find for high frequencies (especially for

the smaller shell radius). Hence the results for the flexible shell were presented up to

1200Hz as beyond this frequency the searching range provided to the Newton-Raphson

method must be specified with increasing accuracy. The resulting generalised orthogo-

nality relation was found to comparable to that of rigid duct, but with additional terms.

These terms come from the equations of motion and therefore relate to felxible nature

of the shell. Analysis into the properties of the eigenfunctions was done by formulating

identities which demonstrated the linear dependance. It was found using the work in

Lawrie [44] that three such identities existed. These were derived using Cauchy’s Residue

theorem with an additional four identities and all were numerically demonstrated to be

satisfied. Semi-infinite problems forced by a piston and/or wave were considered with

both a clamped and pin-jointed edge. The results showed that the energies obtained

from pin-jointed edges were the same as those obtained with clamped edges. All plots

concerning fluid-borne forcing were found to be similar to the equivalent rigid problem

results. This may be due to the choice of material and waveguide values, however these

were selected so that there is a balance between a flexible shell that could be used in

HVAC ducting. The semi infinite problem with the rigid end plate served to verify the

method as in this case the energy could only be reflected. The results of this particular

problem serve no practical purpose as the result is commonly known is the research area.

In Chapter four, problems which incorporated a change of radius were considered.

These allowed for the generalised orthogonality relation to be used to simplify the equa-

tions of matched pressure and normal component of velocity. Again it was found that the

results obtained with clamped edges were identical to those obtained with a pin-jointed

edge. The results from the abrupt increase in radius problem and expansion chamber

problems when forced with the s0 mode were seen to be similar to those found in the
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equivalent rigid problems in Chapter two. A fundamental s1 mode does not exist in a

rigid duct (as the walls are rigid), hence comparisons using this mode could only be made

between the axisymmetric increase in radius and expansion chamber problems. The en-

ergy carried by individual modes when forcing with s1 mode was investigated and it was

seen that at the cut-on for the larger shell the transmitted energy was carried by the

cut-on mode. The results shown in this chapter could be useful towards the design of

HVAC ducting as the cut-ons are useful for tuning the frequencies of in-bound fluid and

structure borne waves to minimising or maximising the reflected or transmitted energy.

In Chapter five the Donnell-Mushtari equations of motion were used to derive the

dispersion relation for waves propagating within a flexible cylindrical shell subject to non-

axisymmetric motion. This was used to obtain the wavenumbers of the velocity potential

and to derive a suitable generalised orthogonality relation. This generalised orthogonality

relation is new to the research area and therefore the mode matching method which

was used is a novel approach to the problems. The research in Chapter five presented

some interesting results in the form of eigensolutions which could be generated for non-

axisymmetric motions. Such solutions were found by comparing the eigenmode form of

the matching condition with those identities which demonstrate the linear dependance of

the eigenfunctions. There is scope for future work here to understand the significance of

such solutions. Limitations were seen in Chapter five due to there being one real mode

occurring for low frequencies. The cut-on mode was used where possible, but it was not

possible for those frequencies for which a propagating wave had not been cut-on. The

results of the abrupt increase of radius problem with non-axisymmetric motion could not

be compared to those obtained from equivalent rigid and axisymmetric results as the

forcing mode was too different.

The results shown demonstrate that cut-on frequencies would be of key importance

for industrial applications. The results of the rigid problems serve as a good estimate for

the flexible wall problems, but they are limited to the use of s0 mode forcing. The results

of the flexible-walled problems for the relevant motion would be more accurate as they

consider energy being carried in the structure. The generalised orthogonality relations

presented are a useful tool for evaluating integrals which occur through the application

of the mode matching method. These generalised orthogonality relations could also be

used in other solving methods which relate to the motion of flexible walled cylindrical

shells (based on the Donnell-Mustari equations of motion).

6.1 Recommendations for future work

Presented in this Chapter are two problems which build on the research presented in

this thesis and are recommended for future work. The first problem considers the abrupt

increase in radius in Chapter four, but replaces the rigid annular disc with a membrane.
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Figure 6.1: Physical configuration of the abrupt increase in radius problem with an annular
membrane.

This changes the matching condition at the junction and uses the Galerkin method to

match the normal component of velocity to the membrane. This same replacement can

also be applied to the expansion chamber problems present in Chapter four. The method

for this problem is outlined below. The second problem builds on the non-axisymmetric

research presented in Chapter five, by considering expansion chamber situated between

two shells of the same radius. The solution method should follow in the same way as that

used to solve the rigid expansion chamber problem in Chapter two and the two expansion

chamber problems presented in Chapter four.

The analysis of the eigensolutions which arise in Section 5.2 are also left for future

work. These eigensolutions demonstrate that for non-axisymmetric motion of order m =

1 the solution is potentially coupled to all other orders. Further work is required to

understand if and when these eigensolutions are required.

6.1.1 Abrupt increase in radius closed by an annular membrane

The aim here is to determine the energy transmitted due to a forcing wave at an abrupt

increase of radius. The problem comprises two semi-infinite shells: the left-hand shell

occupies 0 ≤ r ≤ a, z ≤ 0 and the right-hand duct occupies 0 ≤ r ≤ b, z ≤ 0, where

a ≤ b as shown in Figure 6.1. The problem is closed by an annular membrane in the

region a ≤ r ≤ b, z = 0. Forcing is by a wave propagating in the positive z direction

towards the abrupt increase in radius. The velocity potential ϕ1 for the left-hand shell is

ϕ1(r, z) = FℓJ0(κℓr)e
isℓz +

∞∑
n=0

AnJ0(κnr)e
−isnz, z < 0, 0 ≤ r ≤ a, (6.1)

where F is the amplitude of the forcing wave, An is the amplitude of the nth reflected

wave, sn are the wavenumbers found using the characteristic equation in Chapter four
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and κn = (1− s2n)
1/2. The velocity potential for the right-hand shell ϕ2 is

ϕ2(r, z) =
∞∑
n=0

BnJ0(γnr)e
iηnz, z > 0, 0 ≤ r ≤ b, (6.2)

where Bn is the nth amplitude of the transmitted wave, ηn are the wavenumbers found

using the characteristic equation in Chapter four (with a shell of radius b) and γn =

(1− η2n)
1/2. At the junction between the two shell sections there is continuity of pressure

in the fluid region which is expressed as

ϕ1(r, 0) = ϕ2(r, 0), 0 ≤ r ≤ a. (6.3)

On substituting the velocity potentials (6.1) and (6.2) into the equation for continuity

of pressure (6.3) and using the OR to simplify the eigenfunctions in z < 0, it is obtained

that

Am = −Fℓδmℓ +
κmJ1(κm)

Cm

{
E0 +

E1

s2m − β2
+ (κ2m − 2)E2

}
+
α

a

∞∑
n=0

BnRnm

Cm

, (6.4)

where

Rnm =

∫ a

0

J0(γnr)J0(κmr)rdr. (6.5)

Constants E0 −E2 are found from the edge conditions that connect the left shell section

to the annular disc. Considering clamped edge conditions, w1 = w1z = u1 = 0, therefore

E0 = 0, Ej =
1

∆

{
2FℓΩjℓsℓκℓJ1(κℓa)−

α

a

∞∑
m=0

∞∑
n=0

BnΩjmRmnsmκmJ1(κma)

Cm

}
, j = 1, 2,

(6.6)

where ∆ = S2
1 + S0S2, Ωjm = Sj − Sj−1/(β

2 − s2m) and

Sj =
∞∑
n=0

smκ
2
mJ

2
1 (κma)

(β2 − s2m)
jCm

, j = 0, 1, 2. (6.7)

At the junction the normal component of velocity is continuous in the fluid region

and also needs to satisfy the vertical membrane condition

wrr + µ4w = αϕ2 = 0, z = 0, a ≤ r ≤ b, (6.8)

where w is the displacement in the radial direction, α = 12β2ρ/(ρsh
3k3) and µ = c/

√
T/m

with fluid sound speed c, tension T and mass per unit area m. Suppose that w(r) may
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be expressed as a Fourier series of the form:

w(r) =
∞∑
n=1

Gn sin

(
nπ(r − a)

b− a

)
. (6.9)

This form automatically satisfies the conditions of zero axial displacement at the edges

of the annular disc w(a) = w(b) = 0. On substituting the Fourier series expression for

the radial displacement of the membrane (6.9) and the eigenfunction expansion (6.2) into

the membrane condition (6.8), it is found that

∞∑
n=0

Gn

{
µ2 − n2π2

(b− a)2

}
sin

(
nπ(r − a)

b− a

)
= α

∞∑
n=0

BnJ0(γnr). (6.10)

This equation can be simplified by using the integral identity given in Brown and Churchill

[47] as ∫ b

a

sin

(
nπ(r − a)

b− a

)
sin

(
mπ(r − a)

b− a

)
dr (6.11)

=

∫ b−a

0

sin

(
nπv

b− a

)
sin

(
nπv

b− a

)
=
b− a

2
δmn. (6.12)

The integral identity (6.11) is applied by multiplying (6.10) by sin(mπ(r − a)/(b − a))

and on integrating with respect to r, a ≤ r ≤ b, it is found that

Gm

{
µ2 − m2π2

(b− a)2

}
=

2α

b− a

∞∑
n=0

BnPmn (6.13)

where

Pmn =

∫ b−a

0

J0(γnr) sin

(
mπ(r − a)

b− a

)
dr. (6.14)

The expression for Gm is found as

Gm =
2α

(b− a){µ2 −m2π2/(b− a)2}

∞∑
n=0

BnPmn. (6.15)

The condition for the normal component of velocity is given as

∂ϕ2

∂z
(r, 0) =


∞∑
j=1

Gj sin

{
jπ(r − a)

b− a

}
, a ≤ r ≤ b,

∂ϕ1

∂z
(r, 0), 0 ≤ r ≤ a.

(6.16)

The velocity potentials (6.1) and (6.2) are substituted into (6.16), multiplied through by
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αJ0(γm)r/b and integrated with respect to r, 0 ≤ r ≤ a to yield

iα

b

∑
n=0

Bnηn

∫ b

0

J0(γnr)J0(γmr)rdr =
α

b

∞∑
j=1

GjTjm +
α

b
FℓsℓRℓm − iα

b

∞∑
n=0

AnsnRnm,

(6.17)

where

Tjm =

∫ b

a

sin

(
jπ(r − a)

b− a

)
J0(γmr)rdr and Rnm =

∫ a

0

J0(κnr)J0(γmr)rdr (6.18)

The generalised OR is applied to the left side of this equation

∞∑
n=0

Bnηn

(
δmnDn +

(
2− γ2m − γ2n −

τbν
2β2

(η2n − β2)(η2m − β2)

)
γnJ1(γnb)γmJ1(γmb)

)
= −iα

b

∞∑
j=1

GjTjm +
α

b
FℓsℓRℓm − α

b

∞∑
n=0

AnsnRnm. (6.19)

It follows that

Bm =
γmJ1(γmb)

(η2m − β2)ηmDm

E3 + (γ3m − 2γm)
J1(γmb)

ηmDm

E4 +
γmJ1(γmb)

ηmDm

E5 −
iα

b

∞∑
j=1

GjTjm
ηmDm

+
αFℓsℓRℓm

bηmDm

− α

b

∞∑
n=0

AnsnRnm

ηmDm

. (6.20)

where for clamped edge conditions w2 = w2z = u2 = 0

E3 = E4 = 0, E5 =
α

bS3

∞∑
m=0

γmJ1(γmb)

ηmDm

(
i

∞∑
j=1

GjTjm − FsℓRℓm +
∞∑
n=0

AnsnRnm

)
,

(6.21)

where

S3 =
∞∑

m=0

γ2mJ
2
1 (γma)

ηmDm

. (6.22)

The amplitudes for the reflected and transmitted amplitudes are thus given by trun-

cating and solving (6.4) and (6.20).

6.1.2 Flexible expansion chamber with non-axisymmetric mo-

tion

The recommendation for further work builds on the problems presented in Chapter five,

by considering the energy transmitted through a flexible chamber situated between two

shells with non-axisymmetric motion. The system comprises two semi-finite shells with
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Figure 6.2: Physical configuration of the expansion chamber between two shells with non
axisymmetric motion.

a flexible expansion chamber of dimensional length 2L̄ between them (where L = kL̄).

The inlet shell is located in the region 0 ≤ r ≤ a, z ≤ −L, the outlet shell is located

in the region 0 ≤ r ≤ a, z ≥ L and the expansion chamber occupies the space between

them, −L ≤ z ≤ L, 0 ≤ r ≤ b, thus the chamber has a length 2L. The system is closed

by rigid annular discs located at a ≤ r ≤ b, z = ±L. The velocity potential for the inlet

shell ϕ1 comprises the plane wave and the field reflected at the first junction, which leads

to

ϕ1 = F1ℓJ1(κ1ℓr) cos(θ)e
is1ℓ(z+L) +

∞∑
q=0

A1qJ1(κ1qr) cos(θ)e
−is1q(z+L), 0 ≤ r ≤ a, z ≤ −L,

(6.23)

where ℓ indicates the chosen fundamental mode to use in the forcing amplitude (with

ℓ = 0 or ℓ = 1), F1ℓ is the amplitude of the forcing wave, A1q is the amplitude of the qth

reflected wave, s1q are the wavenumbers which satisfy the characteristic equation given

in Chapter four (with m = 1) and κ1q = (1 − s21q)
1/2. The velocity potential ϕ2 for the

expansion chamber is given by

ϕ2(r, θ, z) =
∞∑
q=0

(P1qe
−iη1qz +Q1qe

iη1qz)J1(γ1qr) cos(θ), (6.24)

where P1q is the amplitude of the qth reflected wave, Q1q is the amplitude of the qth

transmitted wave and η1q, q = 0, 1, 2, . . . are the roots of the characteristic equation

given in Chapter four (with m = 1 and radius b). The velocity potential ϕ3 for the

right-hand shell is given by

ϕ3(r, θ, z) =
∞∑
q=0

B1qJ1(γ1qr) cos(θ)e
iη1q(z−L), (6.25)

were B1q is the amplitude of the qth reflected wave.
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The same method applied to the expansion chamber problems presented in Chapter

two and four can be used to solve this problem. That is by noticing that it can be

decomposed into two simpler problems which include a second forcing wave leaving the

system. These subproblems then each reduce to an abrupt increase in radius and the

solving method with the mode matching technique should be analogous to that of Section

4.3.
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Appendix A

Matlab code relating to Section 2.3

and 2.4

function AppendixA() %Rigid pistons
clc; clear;
index=0;
for f=5:4000
% ---------- Input Variables ----------
a1=0.2; % Dimensional height a (m)
c1=0.2; % Dimensional height b (m)
Cair=343.5; % Sound speed of fluid (m/s)
terms=100; % Number of imaginary roots to seek
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional height a
c=c1*kno; % Nondimensional height b
% ------------------- sn -------------------
% Approximate root values
RGuess=0:0.01:1; IGuess=(1-(pi/a*((1:terms)+0.25)).ˆ2).ˆ0.5;
% Finding exact values
sn=NewtonRaphson(RGuess,IGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% ----------------- CC ------------------
CC=FunctionHH(kappa,a);
% ---------- Solver ------------
[AA AF]=Solver(c,sn.',CC.');
PowAA=2*real(sum(abs(AA).ˆ2.*CC.*sn)); PowAF=2*real(sum(abs(AF).ˆ2.*CC.*sn));
FF=sqrt(1/(sn(1)*CC(1)));
ZA=-2*sum(besselj(1,kappa*c).ˆ2./(kappa.ˆ2.*sn.*CC));
ZF=4i*FF*besselj(1,kappa(1)*c)/(c*kappa(1))-2*sum(besselj(1,kappa*c).ˆ2./...

(kappa.ˆ2.*sn.*CC));

index=index+1;
data(index,:)=[f,PowAA,PowAF,abs(ZA),abs(ZF)];
end
end

% The characteristic equation
function K=Characteristic(sn,a)
K=sqrt(1-sn.ˆ2).*besselj(1,sqrt(1-sn.ˆ2)*a);
end

% The Differentiated characteristic equation
function K=DCharacteristic(sn,a)
f1=@(x) Characteristic(x,a);
K=(f1(sn+1e-5)-f1(sn-1e-5))/2e-5;
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end

% Newton Raphson Method
function Roots=NewtonRaphson(RGuess,IGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,r); df1=@(x) DCharacteristic(x,r);
xold1=RGuess; xold2=IGuess;
for i=1:20

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>1e-2
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
Imaginary=sol2;
Imaginary=Imaginary(abs(f1(Imaginary))<1e-5);
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempImaginary(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempImaginary(TempIndex))>1e-4
TempIndex=TempIndex+1;
TempImaginary(TempIndex)=Imaginary(Index);

end
end
% Sort the complex roots in ascending order
[~,idx]=sort(imag(TempImaginary),'ascend');
TempImaginary=TempImaginary(idx);
Roots=[TempReal,TempImaginary];
end

function HH=FunctionHH(kappa,r)
HH=r.ˆ2.*(besselj(0,kappa.*r).ˆ2)/2;
end

function [AN AF]=Solver(c,sn,CC)
FF=sqrt(1/(sn(1)*CC(1)));
kappa=sqrt(1-sn.ˆ2);
U=1;
Fdelta=zeros(1,length(sn));
for n=1:length(sn)

Fdelta(n)=FF*kdelta(1,n);
end
AN=(1i*U*c*besselj(1,kappa*c)./(kappa.*sn.*CC)).';
AF=(Fdelta+1i*U*c*besselj(1,kappa*c)./(kappa.*sn.*CC)).';
end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix B

Matlab code relating to Section 2.5

function AppendixB() % Rigid radius increase
clc; clear; index=0;
for f=780
% ---------- Input Variables ----------
a1=0.2; % Dimensional height a (m)
b1=0.28; % Dimensional height b (m)
Cair=343.5; % Sound speed of fluid (m/s)
terms=10; % Number of imaginary roots to seek
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional height a
b=b1*kno; % Nondimensional height b
% ------------------- sn -------------------
RGuess=0:0.01:1; IGuess=(1-(pi/a*((1:terms)+0.25)).ˆ2).ˆ0.5;
sn=NewtonRaphson(RGuess,IGuess,a).';
sn=sn(abs(sn)<terms*pi/a); kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% ------------------- eta -------------------
RGuess=0:0.01:1; IGuess=(1-(pi/b*((1:terms)+0.25)).ˆ2).ˆ0.5;
eta=NewtonRaphson(RGuess,IGuess,b).';
eta=eta(abs(eta)<terms*pi/b); gamma=sqrt(1-eta.ˆ2); Tw2=length(gamma)
CC=FunctionHH(kappa,a); DD=FunctionHH(gamma,b);
RR=zeros(length(kappa),length(gamma));
for n=1:length(kappa)

for m=1:length(gamma)
RR(n,m)=IntegralRR(kappa(n),gamma(m),a);

end
end
% ---------- Solver -----------
F=sqrt(2)/a;
[AA BB]=Solver(sn.',eta.',F,CC.',DD.',RR);
PowA=real(sum(abs(AA).ˆ2.*CC.*sn));
PowB=real(sum(abs(BB).ˆ2.*DD.*eta));
index=index+1;
data(index,:)=[f,PowA,PowB];
end
end
function K=Characteristic(sn,a)
K=sqrt(1-sn.ˆ2).*besselj(1,sqrt(1-sn.ˆ2)*a);
end
function K=DCharacteristic(sn,a)
f1=@(x) Characteristic(x,a);
K=(f1(sn+1e-5)-f1(sn-1e-5))/2e-5;
end
function Roots=NewtonRaphson(RGuess,IGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,r);
df1=@(x) DCharacteristic(x,r);
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xold1=RGuess; xold2=IGuess;
for i=1:20

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-2);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>1e-1
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
Imaginary=sol2;
Imaginary=Imaginary(abs(f1(Imaginary))<1e-5);
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempImaginary(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempImaginary(TempIndex))>1e-4
TempIndex=TempIndex+1;
TempImaginary(TempIndex)=Imaginary(Index);

end
end
[~,idx]=sort(imag(TempImaginary),'ascend');
TempImaginary=TempImaginary(idx);
Roots=[TempReal,TempImaginary];
end
function HH=FunctionHH(kappa,r)
HH=rˆ2*besselj(0,r*kappa).ˆ2/2;
end
function RR=IntegralRR(gamma,kappa,a)
if abs(real(kappa)ˆ2-real(gamma)ˆ2)<1e-10 && abs(imag(kappa)ˆ2-imag(gamma)ˆ2)<1e-10

RR=aˆ2*(besselj(0,a*gamma)ˆ2+besselj(1,a*gamma)ˆ2)/2;
else

RR=a*(kappa*besselj(0,a*gamma)*besselj(1,a*kappa)-...
gamma*besselj(0,a*kappa)*besselj(1,a*gamma))/(gammaˆ2-kappaˆ2);

end
end
function [AN BM]=Solver(sn,eta,F,CC,DD,RR)
Nn=length(sn); Nm=length(eta); Fdelta=zeros(1,Nn);
for n=1:Nn

Fdelta(n)=F*kdelta(1,n);
end
V1=zeros(Nm,1); M1=zeros(Nn,Nm); M2=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M1(n,m)=RR(n,m)/CC(n); V1(m)=F*sn(1)*RR(1,m)/eta(m)/DD(m);
M2(m,n)=-sn(n)*RR(n,m)/eta(m)/DD(m);

end
end
AN=(eye(Nn)-M1*M2)\(-Fdelta.'+M1*V1);
BM=(eye(Nm)-M2*M1)\(V1+M2*-Fdelta.')
end
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix C

Matlab code relating to Section 2.6

function AppendixC() %Rigid expansion
clc; clear;
index=0;
for f=5:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional height a (m)
b1=0.28; % Dimensional height b (m)
L1=0.5; % Half dimensional length L
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
terms=100; % Number of imaginary roots to seek
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional height a
b=b1*kno; % Nondimensional height b
L=L1*kno; % Nondimensional half length
% ------------------- sn -------------------
% Approximate root values
RGuess=0:0.01:1; IGuess=(1-(pi/a*((1:terms)+0.25)).ˆ2).ˆ0.5;
% Finding exact values
sn=NewtonRaphson(RGuess,IGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% ------------------- eta -------------------
% Approximate root values
RGuess=0:0.01:1; IGuess=(1-(pi/b*((1:terms)+0.25)).ˆ2).ˆ0.5;
% Finding exact values
eta=NewtonRaphson(RGuess,IGuess,b).';
eta=eta(abs(eta)<terms*pi/b);
gamma=sqrt(1-eta.ˆ2); Tw2=length(gamma);
% ----------------- CC & DD ------------------
CC=FunctionHH(kappa,a); DD=FunctionHH(gamma,b);
% ---------- RR Integral -----------
RR=zeros(length(kappa),length(gamma));
for n=1:length(kappa)

for m=1:length(gamma)
RR(n,m)=IntegralRR(kappa(n),gamma(m),a);

end
end
% ---------- Solver -----------
F=sqrt(knoˆ2/(2*pi*Cairˆ3*Dair*CC(1)*sn(1)));
AAS=SSolver(sn.',eta.',F,CC.',DD.',RR,L);
AAA=ASolver(sn.',eta.',F,CC.',DD.',RR,L);
PowA=2*pi*Cairˆ3*Dair/knoˆ2*real(sum(abs((AAS+AAA)*0.5).ˆ2.*CC.*sn));
PowB=2*pi*Cairˆ3*Dair/knoˆ2*real(sum(abs((AAS-AAA)*0.5).ˆ2.*CC.*sn));
AA=F*(aˆ4-bˆ4)*sin(2*L)/...

(2i*aˆ2*bˆ2*cos(2*L)+(aˆ4+bˆ4)*sin(2*L));
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BB=2i*F*aˆ2*bˆ2/...
(2i*aˆ2*bˆ2*cos(2*L)+(aˆ4+bˆ4)*sin(2*L));

PowAT=2*pi*Cairˆ3*Dair/knoˆ2*real(abs(AA)ˆ2*CC(1)*sn(1));
PowBT=2*pi*Cairˆ3*Dair/knoˆ2*real(abs(BB)ˆ2*CC(1)*sn(1));
index=index+1;
data(index,:)=[f,PowA,PowB,PowAT,PowBT];
end
end

% The characteristic equation
function K=Characteristic(sn,a)
K=sqrt(1-sn.ˆ2).*besselj(1,sqrt(1-sn.ˆ2)*a);
end

% The Differentiated characteristic equation
function K=DCharacteristic(sn,a)
f1=@(x) Characteristic(x,a);
K=(f1(sn+1e-5)-f1(sn-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(RGuess,IGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,r); df1=@(x) DCharacteristic(x,r);
xold1=RGuess; xold2=IGuess;
for i=1:20

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-2);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>1e-1
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
Imaginary=sol2;
Imaginary=Imaginary(abs(f1(Imaginary))<1e-5);
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempImaginary(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempImaginary(TempIndex))>1e-4
TempIndex=TempIndex+1;
TempImaginary(TempIndex)=Imaginary(Index);

end
end
% Sort the complex roots in ascending order
[~,idx]=sort(imag(TempImaginary),'ascend');
TempImaginary=TempImaginary(idx);
Roots=[TempReal,TempImaginary];
end

function HH=FunctionHH(kappa,r)
HH=rˆ2*besselj(0,r*kappa).ˆ2/2;
end

function RR=IntegralRR(gamma,kappa,a)
if abs(real(kappa)ˆ2-real(gamma)ˆ2)<1e-10 && abs(imag(kappa)ˆ2-imag(gamma)ˆ2)<1e-10

RR=aˆ2*(besselj(0,a*gamma)ˆ2+besselj(1,a*gamma)ˆ2)/2;
else

RR=a*(kappa*besselj(0,a*gamma)*besselj(1,a*kappa)-...
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gamma*besselj(0,a*kappa)*besselj(1,a*gamma))/(kappaˆ2-gammaˆ2);
end
end

% --------- Symmetric Solver ----------%
function AN=SSolver(sn,eta,F,CC,DD,RR,L)
Nn=length(sn); Nm=length(eta);
Fdelta=zeros(1,Nn);
for n=1:Nn

Fdelta(n)=F*kdelta(1,n);
end
V1=zeros(Nm,1); M1=zeros(Nn,Nm); M2=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M1(n,m)=2*RR(n,m)*cos(eta(m)*L)/CC(n);
V1(m)=1i*F*sn(1)*RR(1,m)/2/eta(m)/DD(m)/sin(eta(m)*L);
M2(m,n)=-1i*sn(n)*RR(n,m)/2/eta(m)/DD(m)/sin(eta(m)*L);

end
end
AN=(eye(Nn)-M1*M2)\(-Fdelta.'+M1*V1);
end

% --------- Asymmetric Solver ----------%
function AN=ASolver(sn,eta,F,CC,DD,RR,L)
Nn=length(sn); Nm=length(eta);

Fdelta=zeros(1,Nn);
for n=1:Nn

Fdelta(n)=F*kdelta(1,n);
end
V1=zeros(Nm,1); M1=zeros(Nn,Nm); M2=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M1(n,m)=-2*RR(n,m)*sin(eta(m)*L)/CC(n);
V1(m)=1i*F*sn(1)*RR(1,m)/2/eta(m)/DD(m)/cos(eta(m)*L);
M2(m,n)=-1i*sn(n)*RR(n,m)/2/eta(m)/DD(m)/cos(eta(m)*L);

end
end
AN=(eye(Nn)-M1*M2)\(-Fdelta.'+M1*V1);
end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix D

Matlab code relating to Section 3.1

and 3.3

function AppendixD() %Axi characteristic
clc; clear;
index=0;
for terms=5:50 % Number of imaginary roots to seek
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
f=500; %Frequency (Hz)
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius
h=h1*kno; % Nondimensional shell thickness
r=a/2; % Used for identities
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno; tau=12/(hˆ2*aˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Starting Values
RGuess=0:0.01:1.1; IGuess=sqrt(1-(pi/a.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-aˆ2*betaˆ2)*tau)ˆ0.25 -conj((-(1-aˆ2*betaˆ2)*tau)ˆ0.25)];
sn=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
Characteristic(sn,alpha,beta,tau,nu,a)
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
CC=FunctionHH(alpha,beta,tau,nu,sn,kappa,a);
% Identities
I1=real(sum(kappa.*besselj(1,kappa*a).*besselj(0,kappa*r)./CC));
I2=real(sum(kappa.*besselj(1,kappa*a).*besselj(0,kappa*r)./CC./(sn.ˆ2-betaˆ2)));
I3=real(sum(kappa.ˆ3.*besselj(1,kappa*a).*besselj(0,kappa*r)./CC./(sn.ˆ2-betaˆ2)));
I4=real(sum((kappa.*besselj(1,kappa*a)).ˆ2./CC));
I5=real(sum((kappa.*besselj(1,kappa*a)).ˆ2./CC./(sn.ˆ2-betaˆ2)));
I6=real(sum(kappa.ˆ2.*(kappa.*besselj(1,kappa*a)).ˆ2./CC));
I7=real(sum(kappa.ˆ4.*(kappa.*besselj(1,kappa*a)).ˆ2./CC));
index=index+1;
data(index,:)=[terms,I1,I2,I3,I4,I5,I6,I7];
end
end

% The characteristic equation
function K=Characteristic(s,alpha,beta,tau,nu,a)
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K=((-tau*nuˆ2*s.ˆ2-(betaˆ2-s.ˆ2).*(s.ˆ4+(1-aˆ2*betaˆ2)*tau)).*sqrt(1-s.ˆ2)...
.*besselj(1,a*sqrt(1-s.ˆ2))-(betaˆ2-s.ˆ2).*alpha.*besselj(0,a*sqrt(1-s.ˆ2)));

end

% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);

xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:10

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)-1):end);
Imaginary=sol2; Complex=sol3;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Imaginary=[TempIm,Complex];
% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end

function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
HH=(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*gamma.*besselj(1,r*gamma)...

./(2*eta.*(eta.ˆ2-betaˆ2));
end
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Appendix E

Matlab code relating to Section 3.4

function AppendixE() %Semi Infinite Shell
clc; clear;
index=0;
for f=5:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius a (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; % Indicator for incident forcing mode
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius a
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno;
tau=12/(hˆ2*aˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Starting Values
RGuess=0:0.01:1.1;
IGuess=sqrt(1-(pi/a.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-aˆ2*betaˆ2)*tau)ˆ0.25 -conj((-(1-aˆ2*betaˆ2)*tau)ˆ0.25)];
sn=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% ---------- CC ----------
CC=FunctionHH(alpha,beta,tau,nu,sn,kappa,a);
% --------- Bessel function---------
JJa=besselj(1,a*kappa);
% ---------- Solver -----------
AA=AxiSolver(beta,tau,nu,sn.',kappa.',JJa.',CC.',ell);
PowA=real(sum(abs(AA).ˆ2.*CC.*sn));
index=index+1;
data(index,:)=[f,PowA];
end
end

% Characteristic equation
function K=Characteristic(s,alpha,beta,tau,nu,a)
K=((-tau*nuˆ2*s.ˆ2-(betaˆ2-s.ˆ2).*(s.ˆ4+(1-aˆ2*betaˆ2)*tau))...

.*sqrt(1-s.ˆ2).*besselj(1,a*sqrt(1-s.ˆ2))-(betaˆ2-s.ˆ2)...

.*alpha.*besselj(0,a*sqrt(1-s.ˆ2)));
end
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% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:100

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)-1):end);
Imaginary=sol2; Complex=sol3;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Imaginary=[TempIm,Complex];
% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end

function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
HH=(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*gamma.*besselj(1,r*gamma)...

./(2*eta.*(eta.ˆ2-betaˆ2));
end

function AA=AxiSolver(beta,tau,nu,sn,kappa,JJa,CC,ell)
Nn=length(sn);
F=sqrt(1/(abs(CC(ell))*sn(ell)));
%---------- The edge conditions ----------%
%---------- Sum Am E#A + E#F = 0;
%---------- Clamped ----------%
PsiA1=sn.*kappa.*JJa./(sn.ˆ2-betaˆ2);
PsiF1=-sn(ell)*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
PsiA2=kappa.*JJa; PsiF2=kappa(ell)*JJa(ell);
PsiA3=sn.*kappa.*JJa; PsiF3=-sn(ell)*kappa(ell)*JJa(ell);
%---------- Pin Jointed ----------%
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% PsiA1=kappa.*JJa; PsiF1=kappa(ell).*JJa(ell);
% PsiA2=sn.ˆ2.*kappa.*JJa; PsiF2=sn(ell).ˆ2.*kappa(ell).*JJa(ell);
% PsiA3=sn.ˆ2.*kappa.*JJa./(sn.ˆ2-betaˆ2);
% PsiF3=sn(ell)ˆ2*kappa(ell)*JJa(ell)./(sn(ell).ˆ2-betaˆ2);
%---------- The Summations ----------%
SA=0; SB=0; SC=0; SD=0; SE=0; SF=0; SG=0; SH=0; SI=0;
for n=1:Nn

SA=SA+tau*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA1(n)...
/(sn(n)ˆ2-betaˆ2)/(sn(n)*CC(n));

SB=SB+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA1(n)/(sn(n)*CC(n));
SC=SC+kappa(n)*JJa(n)*PsiA1(n)/(sn(n)*CC(n));
SD=SD+tau*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA2(n)...

/(sn(n)ˆ2-betaˆ2)/(sn(n)*CC(n));
SE=SE+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA2(n)/(sn(n)*CC(n));
SF=SF+kappa(n)*JJa(n)*PsiA2(n)/(sn(n)*CC(n));
SG=SG+tau*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA3(n)...

/(sn(n)ˆ2-betaˆ2)/(sn(n)*CC(n));
SH=SH+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA3(n)/(sn(n)*CC(n));
SI=SI+kappa(n)*JJa(n)*PsiA3(n)/(sn(n)*CC(n));

end
DA=SC*SE*SG-SB*SF*SG-SC*SD*SH+SA*SF*SH+SB*SD*SI-SA*SE*SI;
Fdelta=zeros(1,Nn); GE0a=0; GE1a=0; GE2a=0;
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n);
GE0a=GE0a+F*kdelta(ell,n)*PsiA1(n);
GE1a=GE1a+F*kdelta(ell,n)*PsiA2(n);
GE2a=GE2a+F*kdelta(ell,n)*PsiA3(n);

end
E0=((SF*SH-SE*SI)*(-F*PsiF1-GE0a)+(SB*SI-SC*SH)*(-F*PsiF2-GE1a)...

+(SC*SE-SB*SF)*(-F*PsiF3-GE2a))/DA;
E1=((SF*SG-SD*SI)*(-F*PsiF1-GE0a)+(SA*SI-SC*SG)*(-F*PsiF2-GE1a)...

+(SC*SD-SA*SF)*(-F*PsiF3-GE2a))/-DA;
E2=((SE*SG-SD*SH)*(-F*PsiF1-GE0a)+(SA*SH-SB*SG)*(-F*PsiF2-GE1a)...

+(SB*SD-SA*SE)*(-F*PsiF3-GE2a))/-DA;
AA=(Fdelta+tau*nuˆ2*betaˆ2*kappa.*JJa.*E0./(sn.ˆ2-betaˆ2)./sn./CC...

+(2-kappa.ˆ2).*kappa.*JJa.*E1./sn./CC-kappa.*JJa.*E2./sn./CC).';
end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix F

Matlab code relating to Section 3.5

and 3.6

function AppendixF() %Axi pistons
% clc; clear;
index=0;
for f=5:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius a (m)
c1=0.1; % Dimensional radius c of piston (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; % Indicator for incident forcing mode
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius a
h=h1*kno; % Nondimensional shell thickness
c=c1*kno; % Nondimensional piston radius c
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno; tau=12/(hˆ2*aˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Starting Values
RGuess=0:0.01:1.1; IGuess=sqrt(1-(pi/a.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-aˆ2*betaˆ2)*tau)ˆ0.25 -conj((-(1-aˆ2*betaˆ2)*tau)ˆ0.25)];
sn=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
CC=FunctionHH(alpha,beta,tau,nu,sn,kappa,a);
JJa=besselj(1,a*kappa); JJc=besselj(1,c*kappa);
% ---------- Solver -----------
[AA AF]=AxiSolver(a,c,alpha,beta,tau,nu,sn.',kappa.',JJa.',JJc.',CC.',ell);
PowA=real(sum(abs(AA).ˆ2.*CC.*sn)); PowAF=real(sum(abs(AF).ˆ2.*CC.*sn));
ZA=-2*1i/cˆ2*sum(AA.*besselj(1,kappa*c)./kappa.ˆ2);
ZF=-2*1i/cˆ2*sum(AA.*besselj(1,kappa*c)./kappa.ˆ2);
index=index+1;
data(index,:)=[f,PowA,PowAF,abs(ZA),abs(ZF)];
end
end
% Characteristic equation
function K=Characteristic(s,alpha,beta,tau,nu,a)
K=((-tau*nuˆ2*s.ˆ2-(betaˆ2-s.ˆ2).*(s.ˆ4+(1-aˆ2*betaˆ2)*tau))...

.*sqrt(1-s.ˆ2).*besselj(1,a*sqrt(1-s.ˆ2))-(betaˆ2-s.ˆ2)...
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.*alpha.*besselj(0,a*sqrt(1-s.ˆ2)));
end
% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end
% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:100

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)-1):end);
Imaginary=sol2; Complex=sol3;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Imaginary=[TempIm,Complex];
% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end
function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
HH=(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*gamma.*besselj(1,r*gamma)...

./(2*eta.*(eta.ˆ2-betaˆ2));
end
function [AA AF]=AxiSolver(a,c,alpha,beta,tau,nu,sn,kappa,JJa,JJc,CC,ell)
Nn=length(sn); F=sqrt(1/(abs(CC(ell))*sn(ell)));
%---------- The edge conditions ----------%
%---------- Clamped ----------%
PsiA1=sn.*kappa.*JJa./(sn.ˆ2-betaˆ2);
PsiF1=-sn(ell)*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
PsiA2=kappa.*JJa; PsiF2=kappa(ell)*JJa(ell);
PsiA3=sn.*kappa.*JJa; PsiF3=-sn(ell)*kappa(ell)*JJa(ell);
% %---------- Pin Jointed ----------%
% PsiA1=kappa.*JJa; PsiF1=kappa(ell).*JJa(ell);
% PsiA2=sn.ˆ2.*kappa.*JJa; PsiF2=sn(ell).ˆ2.*kappa(ell).*JJa(ell);
% PsiA3=sn.ˆ2.*kappa.*JJa./(sn.ˆ2-betaˆ2);
% PsiF3=sn(ell)ˆ2*kappa(ell)*JJa(ell)./(sn(ell).ˆ2-betaˆ2);
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%---------- The Summations ----------%
SA=0; SB=0; SC=0; SD=0; SE=0; SF=0; SG=0; SH=0; SI=0;
for n=1:Nn

SA=SA+tau*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA1(n)...
/(sn(n)ˆ2-betaˆ2)/(sn(n)*CC(n));

SB=SB+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA1(n)/(sn(n)*CC(n));
SC=SC+kappa(n)*JJa(n)*PsiA1(n)/(sn(n)*CC(n));
SD=SD+tau*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA2(n)...

/(sn(n)ˆ2-betaˆ2)/(sn(n)*CC(n));
SE=SE+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA2(n)/(sn(n)*CC(n));
SF=SF+kappa(n)*JJa(n)*PsiA2(n)/(sn(n)*CC(n));
SG=SG+tau*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA3(n)...

/(sn(n)ˆ2-betaˆ2)/(sn(n)*CC(n));
SH=SH+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA3(n)/(sn(n)*CC(n));
SI=SI+kappa(n)*JJa(n)*PsiA3(n)/(sn(n)*CC(n));

end
DA=SC*SE*SG-SB*SF*SG-SC*SD*SH+SA*SF*SH+SB*SD*SI-SA*SE*SI;
%---------- AN with incident wave ----------%
Fdelta=zeros(1,Nn); GE0a=0; GE1a=0; GE2a=0; PE0=0; PE1=0; PE2=0;
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n); GE0a=GE0a+F*kdelta(ell,n)*PsiA1(n);
GE1a=GE1a+F*kdelta(ell,n)*PsiA2(n); GE2a=GE2a+F*kdelta(ell,n)*PsiA3(n);
PE0=PE0+1i*alpha*c*JJc(n)/(a*kappa(n)*sn(n)*CC(n))*PsiA1(n);
PE1=PE1+1i*alpha*c*JJc(n)/(a*kappa(n)*sn(n)*CC(n))*PsiA2(n);
PE2=PE2+1i*alpha*c*JJc(n)/(a*kappa(n)*sn(n)*CC(n))*PsiA3(n);

end
E0=-((SF*SH-SE*SI)*(F*PsiF1+GE0a+PE0)+(SB*SI-SC*SH)*(F*PsiF2+GE1a+PE1)...

+(SC*SE-SB*SF)*(F*PsiF3+GE2a+PE2))/DA;
E1=-((SF*SG-SD*SI)*(F*PsiF1+GE0a+PE0)+(SA*SI-SC*SG)*(F*PsiF2+GE1a+PE1)...

+(SC*SD-SA*SF)*(F*PsiF3+GE2a+PE2))/-DA;
E2=-((SE*SG-SD*SH)*(F*PsiF1+GE0a+PE0)+(SA*SH-SB*SG)*(F*PsiF2+GE1a+PE1)...

+(SB*SD-SA*SE)*(F*PsiF3+GE2a+PE2))/-DA;
AF=(Fdelta+tau*nuˆ2*betaˆ2*kappa.*JJa.*E0./(sn.ˆ2-betaˆ2)./sn./CC...

+(2-kappa.ˆ2).*kappa.*JJa.*E1./sn./CC-kappa.*JJa.*E2./sn./CC...
+1i*alpha*c*JJc./(a*kappa.*sn.*CC)).';

%---------- AN without incident wave ----------%
F=0; Fdelta=zeros(1,Nn); GE0a=0; GE1a=0; GE2a=0; PE0=0; PE1=0; PE2=0;
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n); GE0a=GE0a+F*kdelta(ell,n)*PsiA1(n);
GE1a=GE1a+F*kdelta(ell,n)*PsiA2(n); GE2a=GE2a+F*kdelta(ell,n)*PsiA3(n);
PE0=PE0+1i*alpha*c*JJc(n)/(a*kappa(n)*sn(n)*CC(n))*PsiA1(n);
PE1=PE1+1i*alpha*c*JJc(n)/(a*kappa(n)*sn(n)*CC(n))*PsiA2(n);
PE2=PE2+1i*alpha*c*JJc(n)/(a*kappa(n)*sn(n)*CC(n))*PsiA3(n);

end
E0=-((SF*SH-SE*SI)*(F*PsiF1+GE0a+PE0)+(SB*SI-SC*SH)*(F*PsiF2+GE1a+PE1)...

+(SC*SE-SB*SF)*(F*PsiF3+GE2a+PE2))/DA;
E1=-((SF*SG-SD*SI)*(F*PsiF1+GE0a+PE0)+(SA*SI-SC*SG)*(F*PsiF2+GE1a+PE1)...

+(SC*SD-SA*SF)*(F*PsiF3+GE2a+PE2))/-DA;
E2=-((SE*SG-SD*SH)*(F*PsiF1+GE0a+PE0)+(SA*SH-SB*SG)*(F*PsiF2+GE1a+PE1)...

+(SB*SD-SA*SE)*(F*PsiF3+GE2a+PE2))/-DA;
AA=(tau*nuˆ2*betaˆ2*kappa.*JJa.*E0./(sn.ˆ2-betaˆ2)./sn./CC...

+(2-kappa.ˆ2).*kappa.*JJa.*E1./sn./CC-kappa.*JJa.*E2./sn./CC...
+1i*alpha*c*JJc./(a*kappa.*sn.*CC)).';

end
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix G

Matlab code relating to Section 4.1

function AppendixG() %Axi increase radius
clc; clear;
index=0;
for f=50
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius a (m)
b1=0.28; % Dimensional radius b (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; % Indicator for incident forcing mode
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius a
b=b1*kno; % Nondimensional radius b
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate);
% Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno;
tau1=12/(hˆ2*aˆ2); tau2=12/(hˆ2*bˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Number of cut on roots
RGuess=0:0.01:1.1;
IGuess=sqrt(1-(pi/a.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-aˆ2*betaˆ2)*tau1)ˆ0.25 -conj((-(1-aˆ2*betaˆ2)*tau1)ˆ0.25)];
sn=NewtonRaphson(alpha,beta,tau1,nu,RGuess,IGuess,CGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% Fundamental root values
RGuess=0:0.01:1.1;
IGuess=sqrt(1-(pi/b.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-bˆ2*betaˆ2)*tau2)ˆ0.25 -conj((-(1-bˆ2*betaˆ2)*tau2)ˆ0.25)];
eta=NewtonRaphson(alpha,beta,tau2,nu,RGuess,IGuess,CGuess,b).';
eta=eta(abs(eta)<terms*pi/b);
gamma=sqrt(1-eta.ˆ2); Tw2=length(gamma);
% ---------- CC & DD ----------
CC=FunctionHH(alpha,beta,tau1,nu,sn,kappa,a);
DD=FunctionHH(alpha,beta,tau2,nu,eta,gamma,b);
% ---------- RR Integral -----------
RR=zeros(length(kappa),length(gamma));
for n=1:length(kappa)

for m=1:length(gamma)
RR(n,m)=IntegralRR(kappa(n),gamma(m),a);
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end
end
% --------- Bessel function---------
JJa=besselj(1,a*kappa); JJb=besselj(1,b*gamma);
% ---------- Solver -----------
[AA BB]=AxiSolver(a,b,alpha,beta,tau1,tau2,nu,sn.',eta.',JJa.',JJb.'...

,CC.',DD.',RR,ell);
PowA=real(sum(abs(AA).ˆ2.*CC.*sn));
PowB=real(sum(abs(BB).ˆ2.*DD.*eta));
index=index+1;
data(index,:)=[f,PowA,PowB];
PowA+PowB
end
end

% Characteristic equation
function K=Characteristic(s,alpha,beta,tau,nu,a)
K=((-tau*nuˆ2*s.ˆ2-(betaˆ2-s.ˆ2).*(s.ˆ4+(1-aˆ2*betaˆ2)*tau))...

.*sqrt(1-s.ˆ2).*besselj(1,a*sqrt(1-s.ˆ2))-(betaˆ2-s.ˆ2)...

.*alpha.*besselj(0,a*sqrt(1-s.ˆ2)));
end

% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:10

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)-1):end);
Imaginary=sol2; Complex=sol3;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Imaginary=[TempIm,Complex];
% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
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Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end

function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
HH=(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*gamma.*besselj(1,r*gamma)...

./(2*eta.*(eta.ˆ2-betaˆ2));
end

function RR=IntegralRR(gamma,kappa,a)
if abs(kappaˆ2-gammaˆ2)<1e-5

RR=aˆ2*(besselj(0,a*kappa)ˆ2+besselj(1,a*kappa)ˆ2)/2;
else

RR=a*(kappa*besselj(0,a*gamma)*besselj(1,a*kappa)-...
gamma*besselj(0,a*kappa)*besselj(1,a*gamma))/(kappaˆ2-gammaˆ2);

end
end

function [AN BM]=AxiSolver(a,b,alpha,beta,tau1,tau2,nu,sn,eta,JJa,JJb,...
CC,DD,RR,ell)

Nn=length(sn); Nm=length(eta);
kappa=(1-sn.ˆ2).ˆ0.5; gamma=(1-eta.ˆ2).ˆ0.5;
F=sqrt(1/(abs(CC(ell))*sn(ell)));
%---------- The edge conditions ----------%
%---------- Sum Am E#A + Sum Bm E#B +E#F = 0;
%---------- Clamped ----------%
PsiA1=sn.*kappa.*JJa./(sn.ˆ2-betaˆ2); PsiB1=zeros(1,Nm);
PsiF1=-sn(ell)*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
PsiA2=kappa.*JJa; PsiB2=zeros(1,Nm); PsiF2=kappa(ell)*JJa(ell);
PsiA3=sn.*kappa.*JJa; PsiB3=zeros(1,Nm);
PsiF3=-sn(ell)*kappa(ell)*JJa(ell);
PsiA4=zeros(1,Nn); PsiB4=eta.*gamma.*JJb./(eta.ˆ2-betaˆ2); PsiF4=0;
PsiA5=zeros(1,Nn); PsiB5=eta.*gamma.*JJb; PsiF5=0;
PsiA6=zeros(1,Nn); PsiB6=gamma.*JJb; PsiF6=0;
%---------- Pin Jointed ----------%
% PsiA1=kappa.*JJa; PsiF1=kappa(ell).*JJa(ell); PsiB1=zeros(1,Nm);
% PsiA2=sn.ˆ2.*kappa.*JJa; PsiB2=zeros(1,Nm);
% PsiF2=sn(ell).ˆ2.*kappa(ell).*JJa(ell);
% PsiA3=sn.ˆ2.*kappa.*JJa./(sn.ˆ2-betaˆ2); PsiB3=zeros(1,Nm);
% PsiF3=sn(ell)ˆ2*kappa(ell)*JJa(ell)./(sn(ell).ˆ2-betaˆ2);
% PsiA4=zeros(1,Nn); PsiB4=gamma.*JJb./(eta.ˆ2-betaˆ2); PsiF4=0;
% PsiA5=zeros(1,Nn); PsiB5=eta.ˆ2.*gamma.*JJb; PsiF5=0;
% PsiA6=zeros(1,Nn); PsiB6=gamma.*JJb; PsiF6=0;
%---------- The Summations ----------%
SA0=0; SB0=0; SC0=0; SA1=0; SB1=0; SC1=0; SA2=0; SB2=0; SC2=0;
for n=1:Nn

SA0=SA0+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA1(n)...
/(sn(n)ˆ2-betaˆ2)/CC(n);

SB0=SB0+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA1(n)/CC(n);
SC0=SC0+kappa(n)*JJa(n)*PsiA1(n)/CC(n);
SA1=SA1+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA2(n)...

/(sn(n)ˆ2-betaˆ2)/CC(n);
SB1=SB1+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA2(n)/CC(n);
SC1=SC1+kappa(n)*JJa(n)*PsiA2(n)/CC(n);
SA2=SA2+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA3(n)...

/(sn(n)ˆ2-betaˆ2)/CC(n);
SB2=SB2+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA3(n)/CC(n);
SC2=SC2+kappa(n)*JJa(n)*PsiA3(n)/CC(n);

end
SD3=0; SE3=0; SF3=0; SD4=0; SE4=0; SF4=0; SD5=0; SE5=0; SF5=0;
for m=1:Nm

SD3=SD3+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB4(m)...
/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m);

SE3=SE3+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB4(m)/eta(m)/DD(m);
SF3=SF3+gamma(m)*JJb(m)*PsiB4(m)/eta(m)/DD(m);
SD4=SD4+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB5(m)...

/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m);
SE4=SE4+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB5(m)/eta(m)/DD(m);
SF4=SF4+gamma(m)*JJb(m)*PsiB5(m)/eta(m)/DD(m);
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SD5=SD5+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB6(m)...
/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m);

SE5=SE5+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB6(m)/eta(m)/DD(m);
SF5=SF5+gamma(m)*JJb(m)*PsiB6(m)/eta(m)/DD(m);

end
DA=-SA2*SB1*SC0+SA1*SB2*SC0+SA2*SB0*SC1-SA0*SB2*SC1...

-SA1*SB0*SC2+SA0*SB1*SC2;
DB=-SD5*SE4*SF3+SD4*SE5*SF3+SD5*SE3*SF4-SD3*SE5*SF4...

-SD4*SE3*SF5+SD3*SE4*SF5;
Fdelta=zeros(1,Nn); GE0=zeros(1,Nn); GE1=zeros(1,Nn); GE2=zeros(1,Nn);
GE0a=0; GE1a=0; GE2a=0;
for n=1:Nn

GE0a=GE0a+F*kdelta(ell,n)*PsiA1(n);
GE1a=GE1a+F*kdelta(ell,n)*PsiA2(n);
GE2a=GE2a+F*kdelta(ell,n)*PsiA3(n);

end
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n);
GE0(n)=((SB2*SC1-SB1*SC2)*(F*PsiF1-GE0a)+(SB0*SC2-SB2*SC0)*...

(F*PsiF2-GE1a)+(SB1*SC0-SB0*SC1)*(F*PsiF3-GE2a))/DA;
GE1(n)=((SA2*SC1-SA1*SC2)*(F*PsiF1-GE0a)+(SA0*SC2-SA2*SC0)*...

(F*PsiF2-GE1a)+(SA1*SC0-SA0*SC1)*(F*PsiF3-GE2a))/DA;
GE2(n)=((SA2*SB1-SA1*SB2)*(F*PsiF1-GE0a)+(SA0*SB2-SA2*SB0)*...

(F*PsiF2-GE1a)+(SA1*SB0-SA0*SB1)*(F*PsiF3-GE2a))/DA;
end
GE3b=0; GE4b=0; GE5b=0;
for m=1:Nm

GE3b=GE3b+F*sn(ell)*RR(ell,m)*PsiB4(m)/(eta(m)*DD(m));
GE4b=GE4b+F*sn(ell)*RR(ell,m)*PsiB5(m)/(eta(m)*DD(m));
GE5b=GE5b+F*sn(ell)*RR(ell,m)*PsiB6(m)/(eta(m)*DD(m));

end
GE3=zeros(1,Nm); GE4=zeros(1,Nm); GE5=zeros(1,Nm);
for m=1:Nm

GE3(m)=((SE5*SF4-SE4*SF5)*(GE3b+F*PsiF4)+(SE3*SF5-SE5*SF3)*...
(GE4b+F*PsiF5)+(SE4*SF3-SE3*SF4)*(GE5b+F*PsiF6))/DB;

GE4(m)=((SD5*SF4-SD4*SF5)*(GE3b+F*PsiF4)+(SD3*SF5-SD5*SF3)*...
(GE4b+F*PsiF5)+(SD4*SF3-SD3*SF4)*(GE5b+F*PsiF6))/DB;

GE5(m)=((SD5*SE4-SD4*SE5)*(GE3b+F*PsiF4)+(SD3*SE5-SD5*SE3)*...
(GE4b+F*PsiF5)+(SD4*SE3-SD3*SE4)*(GE5b+F*PsiF6))/DB;

end
V1=(-Fdelta+tau1*nuˆ2*betaˆ2*kappa.*JJa.*GE0./(sn.ˆ2-betaˆ2)...

./CC+(2-kappa.ˆ2).*kappa.*JJa.*GE1./CC-kappa.*JJa.*GE2./CC).';
V2=(tau1*nuˆ2*betaˆ2*kappa.*JJa./(sn.ˆ2-betaˆ2)./CC/DA).';
V3=-((2-kappa.ˆ2).*kappa.*JJa./CC/DA).';
V4=(kappa.*JJa./CC/DA).';
V5=(F*sn(ell).*RR(ell,:)./(eta.*DD)+tau2*nuˆ2*betaˆ2*...

gamma.*JJb.*GE3./(eta.ˆ2-betaˆ2)./eta./DD+(2-gamma.ˆ2).*...
gamma.*JJb.*GE4./eta./DD-gamma.*JJb.*GE5./eta./DD).';

V6=(tau2*nuˆ2*betaˆ2*gamma.*JJb./(eta.ˆ2-betaˆ2)./eta./DD/DB).';
V7=-((2-gamma.ˆ2).*gamma.*JJb./eta./DD/DB).';
V8=(gamma.*JJb./eta./DD/DB).';
M1=zeros(Nn,Nm); M2=zeros(Nn,Nm); M3=zeros(Nn,Nm); M4=zeros(Nn,Nm);
M5=zeros(Nn,Nm); M6=zeros(Nn,Nm); M7=zeros(Nn,Nm);
for n=1:Nn

for m=1:Nm
M1(end,m)=PsiB1(m);
M2(n,m)=alpha*RR(n,m)*PsiA1(n)/CC(n)/a;
M3(end,m)=PsiB2(m);
M4(n,m)=alpha*RR(n,m)*PsiA2(n)/CC(n)/a;
M5(end,m)=PsiB3(m);
M6(n,m)=alpha*RR(n,m)*PsiA3(n)/CC(n)/a;
M7(n,m)=alpha*RR(n,m)/CC(n)/a;

end
end
M8=zeros(Nm,Nn); M9=zeros(Nm,Nn); M10=zeros(Nm,Nn); M11=zeros(Nm,Nn);
M12=zeros(Nm,Nn); M13=zeros(Nm,Nn); M14=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M9(m,n)=-alpha*sn(n)*RR(n,m)*PsiB4(m)/(b*eta(m)*DD(m));
M11(m,n)=-alpha*sn(n)*RR(n,m)*PsiB5(m)/(b*eta(m)*DD(m));
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M13(m,n)=-alpha*sn(n)*RR(n,m)*PsiB6(m)/(b*eta(m)*DD(m));
M14(m,n)=alpha*sn(n)*RR(n,m)/(b*eta(m)*DD(m));

end
M8(end,n)=PsiA4(n);
M10(end,n)=PsiA5(n);
M12(end,n)=PsiA6(n);

end
em=ones(1,Nm); en=ones(1,Nn);
BM=(eye(Nm)-(...

+((SE5*SF4-SE4*SF5)*V6+(SD5*SF4-SD4*SF5)*V7+(SD5*SE4-SD4*SE5)*V8)...

*em*M8...
+((SE5*SF4-SE4*SF5)*V6+(SD5*SF4-SD4*SF5)*V7+(SD5*SE4-SD4*SE5)*V8)...

*em*M9...
+((SE3*SF5-SE5*SF3)*V6+(SD3*SF5-SD5*SF3)*V7+(SD3*SE5-SD5*SE3)*V8)...

*em*M10...
+((SE3*SF5-SE5*SF3)*V6+(SD3*SF5-SD5*SF3)*V7+(SD3*SE5-SD5*SE3)*V8)...

*em*M11...
+((SE4*SF3-SE3*SF4)*V6+(SD4*SF3-SD3*SF4)*V7+(SD4*SE3-SD3*SE4)*V8)...

*em*M12...
+((SE4*SF3-SE3*SF4)*V6+(SD4*SF3-SD3*SF4)*V7+(SD4*SE3-SD3*SE4)*V8)...

*em*M13-M14)*(...
+((SB2*SC1-SB1*SC2)*V2+(SA2*SC1-SA1*SC2)*V3+(SA2*SB1-SA1*SB2)*V4)...

*en*M1...
+((SB2*SC1-SB1*SC2)*V2+(SA2*SC1-SA1*SC2)*V3+(SA2*SB1-SA1*SB2)*V4)...

*en*M2...
+((SB0*SC2-SB2*SC0)*V2+(SA0*SC2-SA2*SC0)*V3+(SA0*SB2-SA2*SB0)*V4)...

*en*M3...
+((SB0*SC2-SB2*SC0)*V2+(SA0*SC2-SA2*SC0)*V3+(SA0*SB2-SA2*SB0)*V4)...

*en*M4...
+((SB1*SC0-SB0*SC1)*V2+(SA1*SC0-SA0*SC1)*V3+(SA1*SB0-SA0*SB1)*V4)...

*en*M5...
+((SB1*SC0-SB0*SC1)*V2+(SA1*SC0-SA0*SC1)*V3+(SA1*SB0-SA0*SB1)*V4)...

*en*M6+M7))\(V5+(...
+((SE5*SF4-SE4*SF5)*V6+(SD5*SF4-SD4*SF5)*V7+(SD5*SE4-SD4*SE5)*V8)...

*em*M8*V1...
+((SE5*SF4-SE4*SF5)*V6+(SD5*SF4-SD4*SF5)*V7+(SD5*SE4-SD4*SE5)*V8)...

*em*M9*V1...
+((SE3*SF5-SE5*SF3)*V6+(SD3*SF5-SD5*SF3)*V7+(SD3*SE5-SD5*SE3)*V8)...

*em*M10*V1...
+((SE3*SF5-SE5*SF3)*V6+(SD3*SF5-SD5*SF3)*V7+(SD3*SE5-SD5*SE3)*V8)...

*em*M11*V1...
+((SE4*SF3-SE3*SF4)*V6+(SD4*SF3-SD3*SF4)*V7+(SD4*SE3-SD3*SE4)*V8)...

*em*M12*V1...
+((SE4*SF3-SE3*SF4)*V6+(SD4*SF3-SD3*SF4)*V7+(SD4*SE3-SD3*SE4)*V8)...

*em*M13*V1-M14*V1));
AN=V1+...

(((SB2*SC1-SB1*SC2)*V2+(SA2*SC1-SA1*SC2)*V3+(SA2*SB1-SA1*SB2)*V4)...

*en*M1...
+((SB2*SC1-SB1*SC2)*V2+(SA2*SC1-SA1*SC2)*V3+(SA2*SB1-SA1*SB2)*V4)...

*en*M2...
+((SB0*SC2-SB2*SC0)*V2+(SA0*SC2-SA2*SC0)*V3+(SA0*SB2-SA2*SB0)*V4)...

*en*M3...
+((SB0*SC2-SB2*SC0)*V2+(SA0*SC2-SA2*SC0)*V3+(SA0*SB2-SA2*SB0)*V4)...

*en*M4...
+((SB1*SC0-SB0*SC1)*V2+(SA1*SC0-SA0*SC1)*V3+(SA1*SB0-SA0*SB1)*V4)...

*en*M5...
+((SB1*SC0-SB0*SC1)*V2+(SA1*SC0-SA0*SC1)*V3+(SA1*SB0-SA0*SB1)*V4)...

*en*M6+M7)*BM;
end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix H

Matlab code relating to Section 4.2

function AppendixH()% Rigid expansion two shells
clc; clear;
index=0;
for f=5:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius a (m)
b1=0.28; % Dimensional radius b (m)
L1=0.5; % Half the length of expansion chamber (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; % Indicator for fundamental root
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius a
b=b1*kno; % Nondimensional radius b
L=L1*kno; % Nondimensional length
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno; tau1=12/(hˆ2*aˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% ---------- sn ----------
RGuess=0:0.01:1.1;
IGuess=sqrt(1-(pi/a.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-aˆ2*betaˆ2)*tau1)ˆ0.25 -conj((-(1-aˆ2*betaˆ2)*tau1)ˆ0.25)];
sn=NewtonRaphson(alpha,beta,tau1,nu,RGuess,IGuess,CGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% ---------- eta ----------
RealGuess=0:0.01:1;
ImaginaryGuess=(1-(pi/b*((1:terms)+0.25)).ˆ2).ˆ0.5;
eta=NewtonRaphsonRigid(RealGuess,ImaginaryGuess,b).';
eta=eta(abs(eta)<terms*pi/b);
gamma=sqrt(1-eta.ˆ2); Tw2=length(gamma);
% ---------- CC & DD ----------
CC=FunctionCC(alpha,beta,tau1,nu,sn,kappa,a);
DD=FunctionDD(eta,gamma,b);
% ---------- RR Integral -----------
RR=zeros(length(kappa),length(gamma));
for n=1:length(kappa)

for m=1:length(gamma)
RR(n,m)=IntegralRR(kappa(n),gamma(m),a);

end
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end
% --------- Bessel function---------
JJa=besselj(1,a*kappa);
% ---------- Solver -----------
AAS=SSolver(alpha,beta,tau1,nu,a,b,eta.',sn.',CC.',DD.',JJa.',RR,ell,L);
AAA=ASolver(alpha,beta,tau1,nu,a,b,eta.',sn.',CC.',DD.',JJa.',RR,ell,L);
PowA=real(sum(abs((AAS+AAA)*0.5).ˆ2.*CC.*sn));
PowB=real(sum(abs((AAS-AAA)*0.5).ˆ2.*CC.*sn));
index=index+1;
data(index,:)=[f,PowA,PowB];
end
end

% Characteristic equation
function K=Characteristic(s,alpha,beta,tau,nu,a)
K=(-tau*nuˆ2*s.ˆ2-(betaˆ2-s.ˆ2).*(s.ˆ4+(1-aˆ2*betaˆ2)*tau))...

.*sqrt(1-s.ˆ2).*besselj(1,a*sqrt(1-s.ˆ2))-(betaˆ2-s.ˆ2)...

.*alpha.*besselj(0,a*sqrt(1-s.ˆ2));
end

% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Characteristic equation for rigid
function K=RigidDispersion(sn,r)
kappa=(1-sn.ˆ2).ˆ0.5;
K=kappa.*besselj(1,r*kappa);
end

% The Differentiated characteristic equation for rigid
function K=RigidDDispersion(s,r)
f1=@(x) RigidDispersion(x,r);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:10

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)-1):end);
Imaginary=sol2; Complex=sol3;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
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TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Imaginary=[TempIm,Complex];
% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end

function Roots=NewtonRaphsonRigid(RGuess,IGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) RigidDispersion(x,r); df1=@(x) RigidDDispersion(x,r);
xold1=RGuess; xold2=IGuess;
for i=1:20

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-2);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>1e-1
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
Imaginary=sol2;
Imaginary=Imaginary(abs(f1(Imaginary))<1e-5);
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempImaginary(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempImaginary(TempIndex))>1e-4
TempIndex=TempIndex+1;
TempImaginary(TempIndex)=Imaginary(Index);

end
end
% Sort the complex roots in ascending order
[~,idx]=sort(imag(TempImaginary),'ascend');
TempImaginary=TempImaginary(idx);
Roots=[TempReal,TempImaginary];
end

function CC=FunctionCC(alpha,beta,tau,nu,eta,gamma,r)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
CC=(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*gamma.*besselj(1,r*gamma)...

./(2*eta.*(eta.ˆ2-betaˆ2));
end

function DD=FunctionDD(eta,gamma,r)
f1=@(x) RigidDispersion(x,r);
DD=-(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*besselj(0,r*gamma)./(2*eta);
end

function RR=IntegralRR(gamma,kappa,a)
if abs(kappaˆ2-gammaˆ2)<1e-5

RR=aˆ2*(besselj(0,a*gamma)ˆ2+besselj(1,a*gamma)ˆ2)/2;
else

RR=a*(kappa*besselj(0,a*gamma)*besselj(1,a*kappa)-...
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gamma*besselj(0,a*kappa)*besselj(1,a*gamma))/(kappaˆ2-gammaˆ2);
end
end

function [AN PM]=SSolver(alpha,beta,tau1,nu,a,b,eta,s,CC,DD,JJa,RR,ell,L)
Nn=length(s); Nm=length(eta);
kappa=(1-s.ˆ2).ˆ0.5; F=sqrt(1/(abs(CC(ell))*s(ell)));
%---------- The edge conditions ----------%
%---------- Clamped ----------%
E0A=s.*kappa.*JJa; E0B=zeros(1,Nm); E0F=-s(ell)*kappa(ell)*JJa(ell);
E1A=kappa.*JJa; E1B=zeros(1,Nm); E1F=kappa(ell)*JJa(ell);
E2A=s.*kappa.*JJa./(s.ˆ2-betaˆ2); E2B=zeros(1,Nm);
E2F=s(ell)*kappa(ell)*JJa(ell)/(s(ell)ˆ2-betaˆ2);
%---------- Pin-Jointed ----------%
% E0A=s.ˆ2.*kappa.*JJa; E0B=zeros(1,Nm); E0F=-s(ell)ˆ2*kappa(ell)*JJa(ell);
% E1A=kappa.*JJa; E1B=zeros(1,Nm); E1F=kappa(ell)*JJa(ell);
% E2A=s.ˆ2.*kappa.*JJa./(s.ˆ2-betaˆ2); E2B=zeros(1,Nm);
% E2F=s(ell)ˆ2*kappa(ell)*JJa(ell)/(s(ell)ˆ2-betaˆ2);
%---------- The Summations ----------%
S0=0; S1=0; S2=0; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0;
for n=1:Nn

S0=S0+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*E0A(n)/(s(n)ˆ2-betaˆ2)/CC(n);
S1=S1+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*E0A(n)/CC(n);
S2=S2+kappa(n)*JJa(n)*E0A(n)/CC(n);
S3=S3+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*E1A(n)/(s(n)ˆ2-betaˆ2)/CC(n);
S4=S4+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*E1A(n)/CC(n);
S5=S5+kappa(n)*JJa(n)*E1A(n)/CC(n);
S6=S6+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*E2A(n)/(s(n)ˆ2-betaˆ2)/CC(n);
S7=S7+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*E2A(n)/CC(n);
S8=S8+kappa(n)*JJa(n)*E2A(n)/CC(n);

end
DEA=-S2*S4*S6+S1*S5*S6+S2*S3*S7-S0*S5*S7-S1*S3*S8+S0*S4*S8;
Fdelta=zeros(1,Nn); GE0=zeros(1,Nn); GE1=zeros(1,Nn); GE2=zeros(1,Nn);
GE0a=0; GE1a=0; GE2a=0;
for n=1:Nn

GE0a=GE0a+F*kdelta(ell,n)*E0A(n);
GE1a=GE1a+F*kdelta(ell,n)*E1A(n);
GE2a=GE2a+F*kdelta(ell,n)*E2A(n);

end
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n);
GE0(n)=((S5*S7-S4*S8)*(F*E0F-GE0a)+(S1*S8-S2*S7)*(F*E1F-GE1a)+...

(S2*S4-S1*S5)*(F*E2F-GE2a))/DEA;
GE1(n)=((S5*S6-S3*S8)*(F*E0F-GE0a)+(S0*S8-S2*S6)*(F*E1F-GE1a)+...

(S2*S3-S0*S5)*(F*E2F-GE2a))/-DEA;
GE2(n)=((S4*S6-S3*S7)*(F*E0F-GE0a)+(S0*S7-S1*S6)*(F*E1F-GE1a)+...

(S1*S3-S0*S4)*(F*E2F-GE2a))/-DEA;
end
VFA=(-Fdelta+tau1*nuˆ2*betaˆ2*kappa.*JJa.*GE0./(s.ˆ2-betaˆ2)./CC+...

(2-kappa.ˆ2).*kappa.*JJa.*GE1./CC-kappa.*JJa.*GE2./CC).';
V0=(tau1*nuˆ2*betaˆ2*kappa.*JJa./(s.ˆ2-betaˆ2)./CC/DEA).';
V1=((2-kappa.ˆ2).*kappa.*JJa./CC/-DEA).';
V2=-(kappa.*JJa./CC/-DEA).';
VFP=(1i*F*s(ell).*RR(ell,:)./(2*b*eta.*DD)./sin(eta*L)).';
M0=zeros(Nn,Nm); M1=zeros(Nn,Nm); M2=zeros(Nn,Nm); M3=zeros(Nn,Nm);
M4=zeros(Nn,Nm); M5=zeros(Nn,Nm); M6=zeros(Nn,Nm);
for n=1:Nn

for m=1:Nm
M0(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)*E0A(n)/CC(n)/a;
M1(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)*E1A(n)/CC(n)/a;
M2(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)*E2A(n)/CC(n)/a;
M3(end,m)=E0B(m);
M4(end,m)=E1B(m);
M5(end,m)=E2B(m);
M6(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)/CC(n)/a;

end
end
M13=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
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M13(m,n)=-1i*s(n)*RR(n,m)/(2*b*eta(m)*DD(m)*sin(eta(m)*L));
end

end
en=ones(1,Nn);
AN=(eye(Nn)-(...

+((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M0+...
((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M3...
+((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M1+...
((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M4...
+((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M2+...
((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M5+M6)...

*M13)\...
(VFA+(...
+((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M0*VFP+...
((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M3*VFP...
+((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M1*VFP+...
((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M4*VFP...
+((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M2*VFP+...
((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M5*VFP+M6*VFP));

PM=VFP+M13*AN;
end

function [AN PM]=ASolver(alpha,beta,tau1,nu,a,b,eta,s,CC,DD,JJa,RR,ell,L)
Nn=length(s); Nm=length(eta);
kappa=(1-s.ˆ2).ˆ0.5; F=sqrt(1/(abs(CC(ell))*s(ell)));
%---------- The edge conditions ----------%
%---------- Clamped ----------%
E0A=s.*kappa.*JJa; E0B=zeros(1,Nm); E0F=-s(ell)*kappa(ell)*JJa(ell);
E1A=kappa.*JJa; E1B=zeros(1,Nm); E1F=kappa(ell)*JJa(ell);
E2A=s.*kappa.*JJa./(s.ˆ2-betaˆ2); E2B=zeros(1,Nm);
E2F=s(ell)*kappa(ell)*JJa(ell)/(s(ell)ˆ2-betaˆ2);
%---------- Pin Jointed ----------%
% E0A=gamma.*JJa; E0B=zeros(1,Nm); E0F=gamma(ell)*JJa(ell);
% E1A=eta.*gamma.*JJa; E1B=zeros(1,Nm); E1F=-eta(ell)*gamma(ell)*JJa(ell);
% E2A=eta.ˆ2.*gamma.*JJa./(eta.ˆ2-betaˆ2); E2B=zeros(1,Nm);
% E2F=eta(ell)ˆ2*gamma(ell)*JJa(ell)/(eta(ell)ˆ2-betaˆ2);
S0=0; S1=0; S2=0; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0;
for n=1:Nn

S0=S0+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*E0A(n)/(s(n)ˆ2-betaˆ2)/CC(n);
S1=S1+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*E0A(n)/CC(n);
S2=S2+kappa(n)*JJa(n)*E0A(n)/CC(n);
S3=S3+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*E1A(n)/(s(n)ˆ2-betaˆ2)/CC(n);
S4=S4+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*E1A(n)/CC(n);
S5=S5+kappa(n)*JJa(n)*E1A(n)/CC(n);
S6=S6+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*E2A(n)/(s(n)ˆ2-betaˆ2)/CC(n);
S7=S7+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*E2A(n)/CC(n);
S8=S8+kappa(n)*JJa(n)*E2A(n)/CC(n);

end
DEA=-S2*S4*S6+S1*S5*S6+S2*S3*S7-S0*S5*S7-S1*S3*S8+S0*S4*S8;
Fdelta=zeros(1,Nn); GE0=zeros(1,Nn); GE1=zeros(1,Nn); GE2=zeros(1,Nn);
GE0a=0; GE1a=0; GE2a=0;
for n=1:Nn

GE0a=GE0a+F*kdelta(ell,n)*E0A(n);
GE1a=GE1a+F*kdelta(ell,n)*E1A(n);
GE2a=GE2a+F*kdelta(ell,n)*E2A(n);

end
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n);
GE0(n)=((S5*S7-S4*S8)*(F*E0F-GE0a)+(S1*S8-S2*S7)*(F*E1F-GE1a)+...

(S2*S4-S1*S5)*(F*E2F-GE2a))/DEA;
GE1(n)=((S5*S6-S3*S8)*(F*E0F-GE0a)+(S0*S8-S2*S6)*(F*E1F-GE1a)+...

(S2*S3-S0*S5)*(F*E2F-GE2a))/-DEA;
GE2(n)=((S4*S6-S3*S7)*(F*E0F-GE0a)+(S0*S7-S1*S6)*(F*E1F-GE1a)+...

(S1*S3-S0*S4)*(F*E2F-GE2a))/-DEA;
end
VFA=(-Fdelta+tau1*nuˆ2*betaˆ2*kappa.*JJa.*GE0./(s.ˆ2-betaˆ2)./CC+...

(2-kappa.ˆ2).*kappa.*JJa.*GE1./CC-kappa.*JJa.*GE2./CC).';
V0=(tau1*nuˆ2*betaˆ2*kappa.*JJa./(s.ˆ2-betaˆ2)./CC/DEA).';
V1=((2-kappa.ˆ2).*kappa.*JJa./CC/-DEA).';
V2=-(kappa.*JJa./CC/-DEA).';
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VFP=(1i*F*s(ell).*RR(ell,:)./(2*b*eta.*DD)./cos(eta*L)).';
M0=zeros(Nn,Nm); M1=zeros(Nn,Nm); M2=zeros(Nn,Nm); M3=zeros(Nn,Nm);
M4=zeros(Nn,Nm); M5=zeros(Nn,Nm); M6=zeros(Nn,Nm);
for n=1:Nn

for m=1:Nm
M0(n,m)=2*alpha*RR(n,m)*sin(-eta(m)*L)*E0A(n)/CC(n)/a;
M1(n,m)=2*alpha*RR(n,m)*sin(-eta(m)*L)*E1A(n)/CC(n)/a;
M2(n,m)=2*alpha*RR(n,m)*sin(-eta(m)*L)*E2A(n)/CC(n)/a;
M3(end,m)=E0B(m);
M4(end,m)=E1B(m);
M5(end,m)=E2B(m);
M6(n,m)=2*alpha*RR(n,m)*sin(-eta(m)*L)/CC(n)/a;

end
end
M13=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M13(m,n)=-1i*s(n)*RR(n,m)/(2*b*eta(m)*DD(m)*cos(eta(m)*L));

end
end
en=ones(1,Nn);
AN=(eye(Nn)-(...

+((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M0+...
((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M3...
+((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M1+...
((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M4...
+((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M2+...
((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M5+M6)...

*M13)\...
(VFA+(...
+((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M0*VFP+...
((S5*S7-S4*S8)*V0+(S5*S6-S3*S8)*V1+(S4*S6-S3*S7)*V2)*en*M3*VFP...
+((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M1*VFP+...
((S1*S8-S2*S7)*V0+(S0*S8-S2*S6)*V1+(S0*S7-S1*S6)*V2)*en*M4*VFP...
+((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M2*VFP+...
((S2*S4-S1*S5)*V0+(S2*S3-S0*S5)*V1+(S1*S3-S0*S4)*V2)*en*M5*VFP+M6*VFP));

PM=VFP+M13*AN;
end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix I

Matlab code relating to Section 4.3

function AppendixI() % Flexible expansion
clc; clear;
index=0;
for f=5:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius a (m)
b1=0.28; % Dimensional radius b (m)
L1=0.25; % Half the length of expansion chamber (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; % Indicator for fundamental root
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius a
b=b1*kno; % Nondimensional radius b
L=L1*kno; % Nondimensional length
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno;
tau1=12/(hˆ2*aˆ2); tau2=12/(hˆ2*bˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Number of cut on roots
RGuess=0:0.01:1.1;
IGuess=sqrt(1-(pi/a.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-aˆ2*betaˆ2)*tau1)ˆ0.25 -conj((-(1-aˆ2*betaˆ2)*tau1)ˆ0.25)];
sn=NewtonRaphson(alpha,beta,tau1,nu,RGuess,IGuess,CGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2); Tw1=length(kappa);
% Fundemental root values
RGuess=0:0.01:1.1;
IGuess=sqrt(1-(pi/b.*((0:1:terms)+5/4)).ˆ2);
CGuess=[(-(1-bˆ2*betaˆ2)*tau2)ˆ0.25 -conj((-(1-bˆ2*betaˆ2)*tau2)ˆ0.25)];
eta=NewtonRaphson(alpha,beta,tau2,nu,RGuess,IGuess,CGuess,b).';
eta=eta(abs(eta)<terms*pi/b);
gamma=sqrt(1-eta.ˆ2);
Tw2=length(gamma);
% ---------- CC & DD ----------
CC=FunctionHH(alpha,beta,tau1,nu,sn,kappa,a);
DD=FunctionHH(alpha,beta,tau2,nu,eta,gamma,b);
% ---------- RR Integral -----------
RR=zeros(length(kappa),length(gamma));
for n=1:length(kappa)
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for m=1:length(gamma)
RR(n,m)=IntegralRR(kappa(n),gamma(m),a);

end
end
% --------- Bessel function---------
JJa=besselj(1,a*kappa); JJb=besselj(1,b*gamma);
% ---------- Solver -----------
AAS=SSolver(a,b,alpha,beta,tau1,tau2,nu,sn.',eta.'...

,JJa.',JJb.',CC.',DD.',RR,ell,L);
AAA=ASolver(a,b,alpha,beta,tau1,tau2,nu,sn.',eta.'...

,JJa.',JJb.',CC.',DD.',RR,ell,L);
PowA=real(sum(abs((AAS+AAA)*0.5).ˆ2.*CC.*sn));
PowB=real(sum(abs((AAS-AAA)*0.5).ˆ2.*CC.*sn));
index=index+1;
data(index,:)=[f,PowA,PowB];
end
end
% Characteristic equation
function K=Characteristic(s,alpha,beta,tau,nu,a)
K=(-tau*nuˆ2*s.ˆ2-(betaˆ2-s.ˆ2).*(s.ˆ4+(1-aˆ2*betaˆ2)*tau))...

.*sqrt(1-s.ˆ2).*besselj(1,a*sqrt(1-s.ˆ2))-(betaˆ2-s.ˆ2)...

.*alpha.*besselj(0,a*sqrt(1-s.ˆ2));
end

% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:100

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)-1):end);
Imaginary=sol2; Complex=sol3;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Imaginary=[TempIm,Complex];
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% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end

function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
HH=(f1(eta+1e-5)-f1(eta-1e-5))./(2e-5).*gamma.*besselj(1,r*gamma)...

./(2*eta.*(eta.ˆ2-betaˆ2));
end

function RR=IntegralRR(gamma,kappa,a)
if abs(kappaˆ2-gammaˆ2)<1e-5

RR=aˆ2*(besselj(0,a*gamma)ˆ2+besselj(1,a*gamma)ˆ2)/2;
else

RR=a*(kappa*besselj(0,a*gamma)*besselj(1,a*kappa)-...
gamma*besselj(0,a*kappa)*besselj(1,a*gamma))/(kappaˆ2-gammaˆ2);

end
end

function AN=SSolver(a,b,alpha,beta,tau1,tau2,nu,sn,eta...
,JJa,JJb,CC,DD,RR,ell,L)

Nn=length(sn); Nm=length(eta);
kappa=(1-sn.ˆ2).ˆ0.5; gamma=(1-eta.ˆ2).ˆ0.5;
F=sqrt(1/(abs(CC(ell))*sn(ell)));
%---------- The edge conditions ----------%
%---------- Clamped ----------%
% PsiA1=sn.*kappa.*JJa; PsiB1=zeros(1,Nm);
% PsiF1=-sn(ell)*kappa(ell)*JJa(ell);
% PsiA2=kappa.*JJa; PsiB2=zeros(1,Nm); PsiF2=kappa(ell)*JJa(ell);
% PsiA3=sn.*kappa.*JJa./(sn.ˆ2-betaˆ2); PsiB3=zeros(1,Nm);
% PsiF3=sn(ell)*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
% PsiA4=zeros(1,Nn); PsiB4=cos(eta*L).*eta.*gamma.*JJb./(eta.ˆ2-betaˆ2);
% PsiF4=0;
% PsiA5=zeros(1,Nn); PsiB5=cos(eta*L).*gamma.*JJb; PsiF5=0;
% PsiA6=zeros(1,Nn); PsiB6=-sin(eta*L).*eta.*gamma.*JJb; PsiF6=0;
%---------- Pin-Jointed ----------%
PsiA1=sn.ˆ2.*kappa.*JJa; PsiB1=zeros(1,Nm);
PsiF1=-sn(ell)ˆ2*kappa(ell)*JJa(ell);
PsiA2=kappa.*JJa; PsiB2=zeros(1,Nm); PsiF2=kappa(ell)*JJa(ell);
PsiA3=sn.ˆ2.*kappa.*JJa./(sn.ˆ2-betaˆ2); PsiB3=zeros(1,Nm);
PsiF3=sn(ell)ˆ2*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
PsiA4=zeros(1,Nn); PsiB4=-sin(eta*L).*eta.ˆ2.*gamma.*JJb./(eta.ˆ2-betaˆ2);
PsiF4=0;
PsiA5=zeros(1,Nn); PsiB5=-sin(eta*L).*gamma.*JJb; PsiF5=0;
PsiA6=zeros(1,Nn); PsiB6=-cos(eta*L).*eta.ˆ2.*gamma.*JJb; PsiF6=0;
SA0=0; SB0=0; SC0=0; SA1=0; SB1=0; SC1=0; SA2=0; SB2=0; SC2=0;
for n=1:Nn

SA0=SA0+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA1(n)/(sn(n)ˆ2-betaˆ2)/CC(n);
SB0=SB0+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA1(n)/CC(n);
SC0=SC0+kappa(n)*JJa(n)*PsiA1(n)/CC(n);
SA1=SA1+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA2(n)/(sn(n)ˆ2-betaˆ2)/CC(n);
SB1=SB1+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA2(n)/CC(n);
SC1=SC1+kappa(n)*JJa(n)*PsiA2(n)/CC(n);
SA2=SA2+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA3(n)/(sn(n)ˆ2-betaˆ2)/CC(n);
SB2=SB2+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA3(n)/CC(n);
SC2=SC2+kappa(n)*JJa(n)*PsiA3(n)/CC(n);

end
SD3=0; SE3=0; SF3=0; SD4=0; SE4=0; SF4=0; SD5=0; SE5=0; SF5=0;
for m=1:Nm

SD3=SD3+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB4(m)...
/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m)/sin(-eta(m)*L);

SE3=SE3+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB4(m)...
/eta(m)/DD(m)/sin(-eta(m)*L);

SF3=SF3+gamma(m)*JJb(m)*PsiB4(m)/eta(m)/DD(m)/sin(-eta(m)*L);
SD4=SD4+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB5(m)...

/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m)/sin(-eta(m)*L);
SE4=SE4+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB5(m)...

/eta(m)/DD(m)/sin(-eta(m)*L);
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SF4=SF4+gamma(m)*JJb(m)*PsiB5(m)/eta(m)/DD(m)/sin(-eta(m)*L);
SD5=SD5+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB6(m)...

/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m)/sin(-eta(m)*L);
SE5=SE5+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB6(m)...

/eta(m)/DD(m)/sin(-eta(m)*L);
SF5=SF5+gamma(m)*JJb(m)*PsiB6(m)/eta(m)/DD(m)/sin(-eta(m)*L);

end
DA=-SC0*SB1*SA2+SB0*SC1*SA2+SC0*SA1*SB2-SA0*SC1*SB2...

-SB0*SA1*SC2+SA0*SB1*SC2;
DP=-(SF3*SE4*SD5-SE3*SF4*SD5-SF3*SD4*SE5+SE3*SD4*SF5...

+SF4*SE5*SD3-SE4*SF5*SD3);
Fdelta=zeros(1,Nn); GE0=zeros(1,Nn); GE1=zeros(1,Nn); GE2=zeros(1,Nn);
GE0a=0; GE1a=0; GE2a=0;
for n=1:Nn

GE0a=GE0a+F*kdelta(ell,n)*PsiA1(n);
GE1a=GE1a+F*kdelta(ell,n)*PsiA2(n);
GE2a=GE2a+F*kdelta(ell,n)*PsiA3(n);

end
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n);
GE0(n)=((SC1*SB2-SB1*SC2)*(F*PsiF1-GE0a)+(SB0*SC2-SC0*SB2)...

*(F*PsiF2-GE1a)+(SC0*SB1-SB0*SC1)*(F*PsiF3-GE2a))/DA;
GE1(n)=((SC1*SA2-SA1*SC2)*(F*PsiF1-GE0a)+(SA0*SC2-SC0*SA2)...

*(F*PsiF2-GE1a)+(SC0*SA1-SA0*SC1)*(F*PsiF3-GE2a))/-DA;
GE2(n)=((SB1*SA2-SA1*SB2)*(F*PsiF1-GE0a)+(SA0*SB2-SB0*SA2)...

*(F*PsiF2-GE1a)+(SB0*SA1-SA0*SB1)*(F*PsiF3-GE2a))/-DA;
end
GE3b=0; GE4b=0; GE5b=0;
for m=1:Nm

GE3b=GE3b+1i*F*alpha*sn(ell)*RR(ell,m)*PsiB4(m)...
/(2*b*sin(-eta(m)*L)*eta(m)*DD(m));

GE4b=GE4b+1i*F*alpha*sn(ell)*RR(ell,m)*PsiB5(m)...
/(2*b*sin(-eta(m)*L)*eta(m)*DD(m));

GE5b=GE5b+1i*F*alpha*sn(ell)*RR(ell,m)*PsiB6(m)...
/(2*b*sin(-eta(m)*L)*eta(m)*DD(m));

end
GE3=zeros(1,Nm); GE4=zeros(1,Nm); GE5=zeros(1,Nm);
for m=1:Nm

GE3(m)=((SF4*SE5-SE4*SF5)*(-GE3b+F*PsiF4)+(SE3*SF5-SF3*SE5)...

*(-GE4b+F*PsiF5)+(SF3*SE4-SE3*SF4)*(-GE5b+F*PsiF6))/DP;
GE4(m)=((SF4*SD5-SD4*SF5)*(-GE3b+F*PsiF4)+(SF5*SD3-SF3*SD5)...

*(-GE4b+F*PsiF5)+(SF3*SD4-SF4*SD3)*(-GE5b+F*PsiF6))/-DP;
GE5(m)=((SE4*SD5-SD4*SE5)*(-GE3b+F*PsiF4)+(SE5*SD3-SE3*SD5)...

*(-GE4b+F*PsiF5)+(SE3*SD4-SE4*SD3)*(-GE5b+F*PsiF6))/-DP;
end
VFA=(-Fdelta+tau1*nuˆ2*betaˆ2*kappa.*JJa.*GE0./(sn.ˆ2-betaˆ2)./CC...

+(2-kappa.ˆ2).*kappa.*JJa.*GE1./CC-kappa.*JJa.*GE2./CC).';
V0=(tau1*nuˆ2*betaˆ2*kappa.*JJa./(sn.ˆ2-betaˆ2)./CC/DA).';
V1=((2-kappa.ˆ2).*kappa.*JJa./CC/-DA).';
V2=-(kappa.*JJa./CC/-DA).';
VFP=(-1i*F*alpha*sn(ell).*RR(ell,:)./(2*b*eta.*DD)./sin(-eta*L)...

+tau2*nuˆ2*betaˆ2*gamma.*JJb.*GE3...
./(eta.ˆ2-betaˆ2)./eta./DD./sin(-eta*L)...
+(2-gamma.ˆ2).*gamma.*JJb.*GE4./eta./DD./sin(-eta*L)...
-gamma.*JJb.*GE5./eta./DD./sin(-eta*L)).';

V3=(tau2*nuˆ2*betaˆ2*gamma.*JJb./(eta.ˆ2-betaˆ2)...
./eta./DD/DP./sin(-eta*L)).';

V4=((2-gamma.ˆ2).*gamma.*JJb./eta./DD/-DP./sin(-eta*L)).';
V5=-(gamma.*JJb./eta./DD/-DP./sin(-eta*L)).';
M0=zeros(Nn,Nm); M1=zeros(Nn,Nm); M2=zeros(Nn,Nm); M3=zeros(Nn,Nm);
M4=zeros(Nn,Nm); M5=zeros(Nn,Nm); M6=zeros(Nn,Nm);
for n=1:Nn

for m=1:Nm
M0(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)*PsiA1(n)/CC(n)/a;
M1(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)*PsiA2(n)/CC(n)/a;
M2(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)*PsiA3(n)/CC(n)/a;
M3(end,m)=PsiB1(m);
M4(end,m)=PsiB2(m);
M5(end,m)=PsiB3(m);
M6(n,m)=2*alpha*RR(n,m)*cos(eta(m)*L)/CC(n)/a;
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end
end
M7=zeros(Nm,Nn); M8=zeros(Nm,Nn); M9=zeros(Nm,Nn); M10=zeros(Nm,Nn);
M11=zeros(Nm,Nn); M12=zeros(Nm,Nn); M13=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M7(m,n)=-1i*alpha*sn(n)*RR(n,m)*PsiB4(m)...

/(2*b*eta(m)*DD(m)*sin(eta(m)*L));
M8(m,n)=-1i*alpha*sn(n)*RR(n,m)*PsiB5(m)...

/(2*b*eta(m)*DD(m)*sin(eta(m)*L));
M9(m,n)=-1i*alpha*sn(n)*RR(n,m)*PsiB6(m)...

/(2*b*eta(m)*DD(m)*sin(eta(m)*L));
M13(m,n)=-1i*alpha*sn(n)*RR(n,m)...

/(2*b*eta(m)*DD(m)*sin(eta(m)*L));
end
M10(end,n)=PsiA4(n);
M11(end,n)=PsiA5(n);
M12(end,n)=PsiA6(n);

end
em=ones(1,Nm); en=ones(1,Nn);
AN=(eye(Nn)-(...

+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M0...
+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M3...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M1...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M4...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M2...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M5+M6)...

*(...
+((SF4*SE5-SE4*SF5)*V3+(SF4*SD5-SD4*SF5)*V4+(SE4*SD5-SD4*SE5)*V5)...

*em*M7+...
((SF4*SE5-SE4*SF5)*V3+(SF4*SD5-SD4*SF5)*V4+(SE4*SD5-SD4*SE5)*V5)...

*em*M10...
+((SE3*SF5-SF3*SE5)*V3+(SF5*SD3-SF3*SD5)*V4+(SE5*SD3-SE3*SD5)*V5)...

*em*M8...
+((SE3*SF5-SF3*SE5)*V3+(SF5*SD3-SF3*SD5)*V4+(SE5*SD3-SE3*SD5)*V5)...

*em*M11...
+((SF3*SE4-SE3*SF4)*V3+(SF3*SD4-SF4*SD3)*V4+(SE3*SD4-SD3*SE4)*V5)...

*em*M9...
+((SF3*SE4-SE3*SF4)*V3+(SF3*SD4-SF4*SD3)*V4+(SE3*SD4-SD3*SE4)*V5)...

*em*M12+M13))\(VFA+(...
+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M0*VFP...
+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M3*VFP...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M1*VFP...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M4*VFP...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M2*VFP...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M5*VFP+M6*VFP));
end

function AN=ASolver(a,b,alpha,beta,tau1,tau2,nu,sn,eta...
,JJa,JJb,CC,DD,RR,ell,L)

Nn=length(sn); Nm=length(eta);
kappa=(1-sn.ˆ2).ˆ0.5; gamma=(1-eta.ˆ2).ˆ0.5;
F=sqrt(1/(abs(CC(ell))*sn(ell)));
%---------- The edge conditions ----------%
%---------- Clamped ----------%
PsiA1=sn.*kappa.*JJa; PsiB1=zeros(1,Nm);
PsiF1=-sn(ell)*kappa(ell)*JJa(ell);
PsiA2=kappa.*JJa; PsiB2=zeros(1,Nm); PsiF2=kappa(ell)*JJa(ell);
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PsiA3=sn.*kappa.*JJa./(sn.ˆ2-betaˆ2); PsiB3=zeros(1,Nm);
PsiF3=sn(ell)*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
PsiA4=zeros(1,Nn); PsiB4=-sin(eta*L).*eta.*gamma.*JJb./(eta.ˆ2-betaˆ2);
PsiF4=0;
PsiA5=zeros(1,Nn); PsiB5=-sin(eta*L).*gamma.*JJb; PsiF5=0;
PsiA6=zeros(1,Nn); PsiB6=-cos(eta*L).*eta.*gamma.*JJb; PsiF6=0;
%---------- Pin-Jointed ----------%
% PsiA1=sn.ˆ2.*kappa.*JJa; PsiB1=zeros(1,Nm);
% PsiF1=-sn(ell)ˆ2*kappa(ell)*JJa(ell);
% PsiA2=kappa.*JJa; PsiB2=zeros(1,Nm); PsiF2=kappa(ell)*JJa(ell);
% PsiA3=sn.ˆ2.*kappa.*JJa./(sn.ˆ2-betaˆ2); PsiB3=zeros(1,Nm);
% PsiF3=sn(ell)ˆ2*kappa(ell)*JJa(ell)/(sn(ell)ˆ2-betaˆ2);
% PsiA4=zeros(1,Nn); PsiB4=-sin(eta*L).*eta.ˆ2.*gamma.*JJb./(eta.ˆ2-betaˆ2);
% PsiF4=0;
% PsiA5=zeros(1,Nn); PsiB5=-sin(eta*L).*gamma.*JJb; PsiF5=0;
% PsiA6=zeros(1,Nn); PsiB6=-cos(eta*L).*eta.ˆ2.*gamma.*JJb; PsiF6=0;
SA0=0; SB0=0; SC0=0; SA1=0; SB1=0; SC1=0; SA2=0; SB2=0; SC2=0;
for n=1:Nn

SA0=SA0+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA1(n)...
/(sn(n)ˆ2-betaˆ2)/CC(n);

SB0=SB0+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA1(n)/CC(n);
SC0=SC0+kappa(n)*JJa(n)*PsiA1(n)/CC(n);
SA1=SA1+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA2(n)...

/(sn(n)ˆ2-betaˆ2)/CC(n);
SB1=SB1+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA2(n)/CC(n);
SC1=SC1+kappa(n)*JJa(n)*PsiA2(n)/CC(n);
SA2=SA2+tau1*nuˆ2*betaˆ2*kappa(n)*JJa(n)*PsiA3(n)...

/(sn(n)ˆ2-betaˆ2)/CC(n);
SB2=SB2+(2-kappa(n)ˆ2)*kappa(n)*JJa(n)*PsiA3(n)/CC(n);
SC2=SC2+kappa(n)*JJa(n)*PsiA3(n)/CC(n);

end
SD3=0; SE3=0; SF3=0; SD4=0; SE4=0; SF4=0; SD5=0; SE5=0; SF5=0;
for m=1:Nm

SD3=SD3+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB4(m)...
/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m)/cos(eta(m)*L);

SE3=SE3+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB4(m)...
/eta(m)/DD(m)/cos(eta(m)*L);

SF3=SF3+gamma(m)*JJb(m)*PsiB4(m)/eta(m)/DD(m)/cos(eta(m)*L);
SD4=SD4+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB5(m)...

/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m)/cos(eta(m)*L);
SE4=SE4+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB5(m)...

/eta(m)/DD(m)/cos(eta(m)*L);
SF4=SF4+gamma(m)*JJb(m)*PsiB5(m)/eta(m)/DD(m)/cos(eta(m)*L);
SD5=SD5+tau2*nuˆ2*betaˆ2*gamma(m)*JJb(m)*PsiB6(m)...

/(eta(m)ˆ2-betaˆ2)/eta(m)/DD(m)/cos(eta(m)*L);
SE5=SE5+(2-gamma(m)ˆ2)*gamma(m)*JJb(m)*PsiB6(m)...

/eta(m)/DD(m)/cos(eta(m)*L);
SF5=SF5+gamma(m)*JJb(m)*PsiB6(m)/eta(m)/DD(m)/cos(eta(m)*L);

end
DA=-SC0*SB1*SA2+SB0*SC1*SA2+SC0*SA1*SB2-SA0*SC1*SB2...

-SB0*SA1*SC2+SA0*SB1*SC2;
DP=-(SF3*SE4*SD5-SE3*SF4*SD5-SF3*SD4*SE5+SE3*SD4*SF5...

+SF4*SE5*SD3-SE4*SF5*SD3);
Fdelta=zeros(1,Nn); GE0=zeros(1,Nn); GE1=zeros(1,Nn); GE2=zeros(1,Nn);
GE0a=0; GE1a=0; GE2a=0;
for n=1:Nn

GE0a=GE0a+F*kdelta(ell,n)*PsiA1(n);
GE1a=GE1a+F*kdelta(ell,n)*PsiA2(n);
GE2a=GE2a+F*kdelta(ell,n)*PsiA3(n);

end
for n=1:Nn

Fdelta(n)=F*kdelta(ell,n);
GE0(n)=((SC1*SB2-SB1*SC2)*(F*PsiF1-GE0a)+(SB0*SC2-SC0*SB2)...

*(F*PsiF2-GE1a)+(SC0*SB1-SB0*SC1)*(F*PsiF3-GE2a))/DA;
GE1(n)=((SC1*SA2-SA1*SC2)*(F*PsiF1-GE0a)+(SA0*SC2-SC0*SA2)...

*(F*PsiF2-GE1a)+(SC0*SA1-SA0*SC1)*(F*PsiF3-GE2a))/-DA;
GE2(n)=((SB1*SA2-SA1*SB2)*(F*PsiF1-GE0a)+(SA0*SB2-SB0*SA2)...

*(F*PsiF2-GE1a)+(SB0*SA1-SA0*SB1)*(F*PsiF3-GE2a))/-DA;
end
GE3b=0; GE4b=0; GE5b=0;
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for m=1:Nm
GE3b=GE3b+1i*F*alpha*sn(ell)*RR(ell,m)*PsiB4(m)...

/(2*b*cos(-eta(m)*L)*eta(m)*DD(m));
GE4b=GE4b+1i*F*alpha*sn(ell)*RR(ell,m)*PsiB5(m)...

/(2*b*cos(-eta(m)*L)*eta(m)*DD(m));
GE5b=GE5b+1i*F*alpha*sn(ell)*RR(ell,m)*PsiB6(m)...

/(2*b*cos(-eta(m)*L)*eta(m)*DD(m));
end
GE3=zeros(1,Nm); GE4=zeros(1,Nm); GE5=zeros(1,Nm);
for m=1:Nm

GE3(m)=((SF4*SE5-SE4*SF5)*(GE3b+F*PsiF4)+(SE3*SF5-SF3*SE5)...

*(GE4b+F*PsiF5)+(SF3*SE4-SE3*SF4)*(GE5b+F*PsiF6))/DP;
GE4(m)=((SF4*SD5-SD4*SF5)*(GE3b+F*PsiF4)+(SF5*SD3-SF3*SD5)...

*(GE4b+F*PsiF5)+(SF3*SD4-SF4*SD3)*(GE5b+F*PsiF6))/-DP;
GE5(m)=((SE4*SD5-SD4*SE5)*(GE3b+F*PsiF4)+(SE5*SD3-SE3*SD5)...

*(GE4b+F*PsiF5)+(SE3*SD4-SE4*SD3)*(GE5b+F*PsiF6))/-DP;
end
VFA=(-Fdelta+tau1*nuˆ2*betaˆ2*kappa.*JJa.*GE0./(sn.ˆ2-betaˆ2)./CC...

+(2-kappa.ˆ2).*kappa.*JJa.*GE1./CC-kappa.*JJa.*GE2./CC).';
V0=(tau1*nuˆ2*betaˆ2*kappa.*JJa./(sn.ˆ2-betaˆ2)./CC/DA).';
V1=((2-kappa.ˆ2).*kappa.*JJa./CC/-DA).';
V2=-(kappa.*JJa./CC/-DA).';
VFP=(1i*F*alpha*sn(ell).*RR(ell,:)./(2*b*eta.*DD)./cos(eta*L)...

+tau2*nuˆ2*betaˆ2*gamma.*JJb.*GE3./(eta.ˆ2-betaˆ2)...
./eta./DD./cos(eta*L)+(2-gamma.ˆ2).*gamma.*JJb.*GE4...
./eta./DD./cos(eta*L)-gamma.*JJb.*GE5./eta./DD./cos(eta*L)).';

V3=(tau2*nuˆ2*betaˆ2*gamma.*JJb./(eta.ˆ2-betaˆ2)...
./eta./DD/DP./cos(eta*L)).';

V4=((2-gamma.ˆ2).*gamma.*JJb./eta./DD/-DP./cos(eta*L)).';
V5=-(gamma.*JJb./eta./DD/-DP./cos(eta*L)).';
M0=zeros(Nn,Nm); M1=zeros(Nn,Nm); M2=zeros(Nn,Nm); M3=zeros(Nn,Nm);
M4=zeros(Nn,Nm); M5=zeros(Nn,Nm); M6=zeros(Nn,Nm);
for n=1:Nn

for m=1:Nm
M0(n,m)=-4*alpha*RR(n,m)*sin(eta(m)*L)*PsiA1(n)/CC(n)/a;
M1(n,m)=-4*alpha*RR(n,m)*sin(eta(m)*L)*PsiA2(n)/CC(n)/a;
M2(n,m)=-4*alpha*RR(n,m)*sin(eta(m)*L)*PsiA3(n)/CC(n)/a;
M3(end,m)=PsiB1(m);
M4(end,m)=PsiB2(m);
M5(end,m)=PsiB3(m);
M6(n,m)=-4*alpha*RR(n,m)*sin(eta(m)*L)/CC(n)/a;

end
end
M7=zeros(Nm,Nn); M8=zeros(Nm,Nn); M9=zeros(Nm,Nn); M10=zeros(Nm,Nn);
M11=zeros(Nm,Nn); M12=zeros(Nm,Nn); M13=zeros(Nm,Nn);
for n=1:Nn

for m=1:Nm
M7(m,n)=-1i*alpha*sn(n)*RR(n,m)*PsiB4(m)...

/(4*b*eta(m)*DD(m)*cos(eta(m)*L));
M8(m,n)=-1i*alpha*sn(n)*RR(n,m)*PsiB5(m)...

/(4*b*eta(m)*DD(m)*cos(eta(m)*L));
M9(m,n)=-1i*alpha*sn(n)*RR(n,m)*PsiB6(m)...

/(4*b*eta(m)*DD(m)*cos(eta(m)*L));
M13(m,n)=-1i*alpha*sn(n)*RR(n,m)...

/(4*b*eta(m)*DD(m)*cos(eta(m)*L));
end
M10(end,n)=PsiA4(n);
M11(end,n)=PsiA5(n);
M12(end,n)=PsiA6(n);

end
em=ones(1,Nm); en=ones(1,Nn);
AN=(eye(Nn)-(...

+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M0...
+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M3...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M1...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M4...
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+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M2...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M5+M6)...

*(...
+((SF4*SE5-SE4*SF5)*V3+(SF4*SD5-SD4*SF5)*V4+(SE4*SD5-SD4*SE5)*V5)...

*em*M7...
+((SF4*SE5-SE4*SF5)*V3+(SF4*SD5-SD4*SF5)*V4+(SE4*SD5-SD4*SE5)*V5)...

*em*M10...
+((SE3*SF5-SF3*SE5)*V3+(SF5*SD3-SF3*SD5)*V4+(SE5*SD3-SE3*SD5)*V5)...

*em*M8...
+((SE3*SF5-SF3*SE5)*V3+(SF5*SD3-SF3*SD5)*V4+(SE5*SD3-SE3*SD5)*V5)...

*em*M11...
+((SF3*SE4-SE3*SF4)*V3+(SF3*SD4-SF4*SD3)*V4+(SE3*SD4-SD3*SE4)*V5)...

*em*M9...
+((SF3*SE4-SE3*SF4)*V3+(SF3*SD4-SF4*SD3)*V4+(SE3*SD4-SD3*SE4)*V5)...

*em*M12+M13))\(VFA+(...
+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M0*VFP...
+((SC1*SB2-SB1*SC2)*V0+(SC1*SA2-SA1*SC2)*V1+(SB1*SA2-SA1*SB2)*V2)...

*en*M3*VFP...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M1*VFP...
+((SB0*SC2-SC0*SB2)*V0+(SA0*SC2-SC0*SA2)*V1+(SA0*SB2-SB0*SA2)*V2)...

*en*M4*VFP...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M2*VFP...
+((SC0*SB1-SB0*SC1)*V0+(SC0*SA1-SA0*SC1)*V1+(SB0*SA1-SA0*SB1)*V2)...

*en*M5*VFP+M6*VFP));
end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix J

Matlab code relating to Section 5.1

function AppendixJ() % Nonaxi characteristic
clc; clear;
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
f=500; %Frequency (Hz)
terms=100; % Number of imaginary roots to seek
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno; tau1=12/(hˆ2*aˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Starting Values
if a1==0.28

RealGuess=0.1:0.01:0.98;
ComplexGuess=(35:0.1:98)+(35:0.1:98)*1i;
ImaginaryGuess=[(0.4:0.1:0.8)*1i (3/4+(0:1:terms))*pi*1i/a];
if f>80

ComplexGuess=(35:0.1:40)+(35:0.1:40)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>90
ComplexGuess=(9:0.1:35)+(9:0.1:35)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>290
ComplexGuess=(9:0.1:10)+(9:0.1:10)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>340
ComplexGuess=(0:0.1:9)+(0:0.1:9)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>700
ComplexGuess=(2:0.1:5)+(2:0.1:5)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>850
ComplexGuess=(2:0.1:4)+(2:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>1030
ComplexGuess=(0:0.1:4)+(0:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/a];

end
end
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end
end
end
end
end

elseif a1==0.2
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:120)+(50:1:120)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/a];
if f>70

ComplexGuess=(10:1:50)+(10:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>350
ComplexGuess=(8:0.1:11)+(8:0.1:11)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>450
ComplexGuess=(0:0.1:8)+(0:0.1:8)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

if f>750
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>950
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>1000
ComplexGuess=(1:0.1:3.4)+(1:0.1:3.4)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

end
end
end
end
end
end

elseif a1==0.06
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:70)+(50:1:70)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/a];
if f>150

ComplexGuess=(18:1:50)+(18:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>350
ComplexGuess=(12:0.1:18)+(12:0.1:18)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>650
ComplexGuess=(1:0.1:10)+(1:0.1:10)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>1000
ComplexGuess=(1:0.1:7)+(1:0.1:7)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

end
end
end
end

end
sn=NewtonRaphson(alpha,beta,tau1,nu,RealGuess,ImaginaryGuess,ComplexGuess,a).';
sn=sn(abs(sn)<terms*pi/a);
kappa=sqrt(1-sn.ˆ2-1/aˆ2); Tw1=length(kappa)
end

function KK=Characteristic(s,alpha,beta,tau,nu,a)
n=1;
U=a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*s+aˆ3*(nu-nuˆ2)*s.ˆ3;
V=1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*s.ˆ2);
QQ=(nˆ2*(1-nu)/2-aˆ2*betaˆ2+aˆ2*s.ˆ2).*(2*aˆ2*betaˆ2-2*nˆ2-aˆ2*(1-nu)*s.ˆ2)+...

aˆ2*nˆ2*(1+nu)ˆ2*s.ˆ2/2;
PP=(a*nu*s.*U-1i*n*V)*tau+QQ.*(s.ˆ4+2*nˆ2*s.ˆ2/aˆ2+(1-aˆ2*betaˆ2)*tau+nˆ4/aˆ4);
KK=(PP.*sqrt(1-s.ˆ2).*(besselj(n-1,sqrt(1-s.ˆ2)*a)-besselj(n+1,sqrt(1-s.ˆ2)*a))/2-...

alpha*QQ.*besselj(n,sqrt(1-s.ˆ2)*a));
end
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% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:100

jac1=df1(xold1);
sol1=xold1-f1(xold1)./jac1;
xold1=sol1;
jac2=df1(xold2);
sol2=xold2-f1(xold2)./jac2;
xold2=sol2;
jac3=df1(xold3);
sol3=xold3-f1(xold3)./jac3;
xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=Real(Real<1);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)):end);
Imaginary=sol2;
Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Complex=sol3(abs(imag(sol3))>1e-5);
Complex=sort(Complex(real(Complex)>1e-5),'descend');
TempIndex=1;
TempComplex(TempIndex)=Complex(1);
for Index=2:length(Complex)

if abs(Complex(Index)-TempComplex(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempComplex(TempIndex)=Complex(Index);

end
end
TempComplex=[TempComplex -conj(TempComplex)];
Imaginary=[TempIm,TempComplex];
% Sort the complex roots in ascending order
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end
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Appendix K

Matlab code relating to Section 5.2

function AppendixK() %Nonaxi Semi infinte
clc; clear;
index=0;
for f=30:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; % Indicator for incident forcing mode
n=1;
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno; tau1=12/(hˆ2*aˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% Starting Values
if a1==0.28

RealGuess=0.1:0.01:0.98;
ComplexGuess=(35:0.1:98)+(35:0.1:98)*1i;
ImaginaryGuess=[(0.4:0.1:0.8)*1i (3/4+(0:1:terms))*pi*1i/a];
if f>80

ComplexGuess=(35:0.1:40)+(35:0.1:40)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>90
ComplexGuess=(9:0.1:35)+(9:0.1:35)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>290
ComplexGuess=(9:0.1:10)+(9:0.1:10)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>340
ComplexGuess=(0:0.1:9)+(0:0.1:9)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>700
ComplexGuess=(2:0.1:5)+(2:0.1:5)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>850
ComplexGuess=(2:0.1:4)+(2:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>1030
ComplexGuess=(0:0.1:4)+(0:0.1:4)*1i;
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ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/a];
end
end
end
end
end
end
end

elseif a1==0.2
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:120)+(50:1:120)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/a];
if f>70

ComplexGuess=(10:1:50)+(10:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>350
ComplexGuess=(8:0.1:11)+(8:0.1:11)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>450
ComplexGuess=(0:0.1:8)+(0:0.1:8)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

if f>750
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>950
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>1000
ComplexGuess=(1:0.1:3.4)+(1:0.1:3.4)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

end
end
end
end
end
end

elseif a1==0.06
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:70)+(50:1:70)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/a];
if f>150

ComplexGuess=(18:1:50)+(18:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>350
ComplexGuess=(12:0.1:18)+(12:0.1:18)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>650
ComplexGuess=(1:0.1:10)+(1:0.1:10)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>1000
ComplexGuess=(1:0.1:7)+(1:0.1:7)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

end
end
end
end

end
eta=NewtonRaphson(alpha,beta,tau1,nu,RealGuess,ImaginaryGuess,ComplexGuess,a,n).';
eta=eta(abs(eta)<terms*pi/a);
gamma=sqrt(1-eta.ˆ2-1/aˆ2); Tw1=length(gamma)
% ---------- CC & DD ----------
CC=FunctionHH(alpha,beta,tau1,nu,eta,gamma,a);
AP=NonAxiSolver(a,nu,alpha,beta,tau1,eta,CC,ell,n);
PowA=real(sum(abs(AP.').ˆ2.*CC.*eta));
index=index+1;
data(index,:)=[f,PowA];
end
end

function KK=Characteristic(eta,alpha,beta,tau,nu,a)
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n=1;
U=a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*eta+aˆ3*(nu-nuˆ2)*eta.ˆ3;
V=1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*eta.ˆ2);
QQ=(nˆ2*(1-nu)/2-aˆ2*betaˆ2+aˆ2*eta.ˆ2).*(2*aˆ2*betaˆ2-2*nˆ2-...

aˆ2*(1-nu)*eta.ˆ2)+aˆ2*nˆ2*(1+nu)ˆ2*eta.ˆ2/2;
PP=(a*nu*eta.*U-1i*n*V)*tau+QQ.*(eta.ˆ4+2*nˆ2*eta.ˆ2/aˆ2+...

(1-aˆ2*betaˆ2)*tau+nˆ4/aˆ4);
KK=(PP.*sqrt(1-eta.ˆ2).*(besselj(n-1,sqrt(1-eta.ˆ2)*a)-...

besselj(n+1,sqrt(1-eta.ˆ2)*a))/2-alpha*QQ.*besselj(n,sqrt(1-eta.ˆ2)*a));
end

% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end

% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r,n)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold=[RGuess,CGuess,IGuess];
for i=1:110

jac=df1(xold);
sol=xold-f1(xold)./jac;
xold=sol;

end
Real=sol(1:length(RGuess));
Complex=sol(length(RGuess)+(1:length(CGuess)));
Imaginary=sol(length(CGuess)+1:end);
Real=Real(abs(f1(Real))<1e-5);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>2e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
Complex=Complex(angle(Complex)>40/360*2*pi);
Complex=Complex(angle(Complex)<88.5/360*2*pi);
Complex=sort(Complex,'descend');
TempIndex=1;
if numel(Complex)>0
TempComplex(TempIndex)=Complex(1);
TempIndex=TempIndex+1;
TempComplex(TempIndex)=-conj(TempComplex(TempIndex-1));
for Index=2:length(Complex)

if abs(abs(Complex(Index))-abs(TempComplex(TempIndex)))>1e-2
TempIndex=TempIndex+1;
TempComplex(TempIndex)=Complex(Index);
TempIndex=TempIndex+1;
TempComplex(TempIndex)=-conj(TempComplex(TempIndex-1));

end
end
else

TempComplex=1e+500i;
end
Imaginary=Imaginary(imag(Imaginary)>1e-5);
Imaginary=Imaginary(abs(real(Imaginary))<1e-5);
Imaginary=sort(Imaginary,'descend');
TempIndex=1;
TempImaginary(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(imag(Imaginary(Index))-imag(TempImaginary(TempIndex)))>1e-5
TempIndex=TempIndex+1;
TempImaginary(TempIndex)=Imaginary(Index);
if real(TempImaginary(TempIndex))>1e-5
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TempIndex=TempIndex+1;
TempImaginary(TempIndex)=-conj(TempImaginary(TempIndex-1));

end
end

end
TempImaginary=[TempImaginary,TempComplex];
[~,idx]=sort(imag(TempImaginary),'ascend');
TempImaginary=TempImaginary(idx);
Roots=[TempReal,TempImaginary];
end

function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
n=1;
a=r;
QQ=@(s) (nˆ2*(1-nu)/2-aˆ2*betaˆ2+aˆ2*s.ˆ2).*(2*aˆ2*betaˆ2-2*nˆ2-...

aˆ2*(1-nu)*s.ˆ2)+aˆ2*nˆ2*(1+nu)ˆ2/2*s.ˆ2;
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);

HH=(f1(eta+1e-5)-f1(eta-1e-5))/(2e-5).*gamma.*(besselj(n-1,r*gamma)-...
besselj(n+1,r*gamma))./(2*2*eta.*QQ(eta));

end

function [P8 P6 P4 P2 P0]=FunctionPP(beta,tau,nu,a,n)
P8=aˆ4*(nu-1);
P6=aˆ2*(aˆ2*betaˆ2*(3-nu)+4*nˆ2*(nu-1));
P4=(-4*nˆ4+6*aˆ2*nˆ2*betaˆ2-2*aˆ4*betaˆ4-2*nˆ4*(1-nu)+...

3*aˆ2*nˆ2*betaˆ2*(1-nu)-nˆ4*(1-nu)ˆ2+nˆ4*(1+nu)ˆ2-...
aˆ4*(1-aˆ2*betaˆ2)*(1-nu)*tau+aˆ4*nu*(nu-nuˆ2)*tau);

P2=aˆ4*betaˆ2*tau*(aˆ2*betaˆ2*(nu-3)-2*nuˆ2-nu+3)-...
2*aˆ2*nˆ2*betaˆ2*(2*betaˆ2+aˆ2*tau*(nu-1))-3*nˆ4*betaˆ2*(nu-3)+4*nˆ6*(nu-1)/aˆ2;

P0=-2*aˆ2*nˆ2*betaˆ2*tau+2*aˆ2*nˆ2*betaˆ2*(1-aˆ2*betaˆ2)*tau-...
2*aˆ4*betaˆ4*(1-aˆ2*betaˆ2)*tau+nˆ4*(1-nu)*tau-...
nˆ4*(1-aˆ2*betaˆ2)*(1-nu)*tau+aˆ2*nˆ2*betaˆ2*(1-aˆ2*betaˆ2)*(1-nu)*tau+...
(2*nˆ6*betaˆ2)/aˆ2-2*nˆ4*betaˆ4-(nˆ8*(1-nu))/aˆ4+(nˆ6*betaˆ2*(1-nu))/aˆ2;

end

function [Q4 Q2 Q0]=FunctionQQ(beta,nu,a,n)
Q4=aˆ4*(nu-1);
Q2=aˆ2*(aˆ2*betaˆ2*(3-nu)+2*nˆ2*(nu-1));
Q0=(nˆ2-aˆ2*betaˆ2)*(2*aˆ2*betaˆ2+nˆ2*(nu-1));
end

function AP=NonAxiSolver(a,nu,alpha,beta,tau1,eta,CC,ell,n)
Np=length(eta);
gamma=(1-eta.ˆ2).ˆ0.5;
FF=sqrt(alpha/(a*CC(ell)*eta(ell)));
[P8a P6a P4a P2a P0a]=FunctionPP(beta,tau1,nu,a,n);
[Q4a Q2a Q0a]=FunctionQQ(beta,nu,a,n);
s=eta;
U=a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*s+aˆ3*(nu-nuˆ2)*s.ˆ3;
V=1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*s.ˆ2);
QQa=(nˆ2*(1-nu)/2-aˆ2*betaˆ2+aˆ2*s.ˆ2).*(2*aˆ2*betaˆ2-2*nˆ2-aˆ2*(1-nu)*s.ˆ2)+...

aˆ2*nˆ2*(1+nu)ˆ2/2*s.ˆ2;
G6a=P8a*(Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a);
G4a=P8a*(Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a).*eta.ˆ2+P6a*(Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a);
G2a=P8a*Q2a*eta.ˆ6+(P8a*Q0a+P6a*Q2a).*eta.ˆ4+(P6a*Q0a+P4a*Q2a-P2a*Q4a).*eta.ˆ2+...

P4a*Q0a-P0a*Q4a;
G0a=P8a*Q0a.*eta.ˆ6+P6a*Q0a*eta.ˆ4+(P4a*Q0a-P0a*Q4a)*eta.ˆ2+P2a*Q0a-P0a*Q2a;
%---------- Clamped ----------%
U=@(s) a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*s+aˆ3*(nu-nuˆ2)*s.ˆ3;
V=@(s) 1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*s.ˆ2);
E0A=-U(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
E0F=U(eta(ell)).*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...

besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
E1A=V(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
E1F=V(eta(ell))*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...
besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
E2A=gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2;
E2F=gamma(ell)*(besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/2;
E3A=-eta.*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2;
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E3F=eta(ell)*gamma(ell)*(besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/2;
%---------- Pin-Jointed ----------%
% U=@(s) a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*s+aˆ3*(nu-nuˆ2)*s.ˆ3;
% V=@(s) 1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*s.ˆ2);
% E0A=eta.*U(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
% E0F=eta(ell)*U(eta(ell)).*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...
% besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
% E1A=V(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
% E1F=V(eta(ell))*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...
% besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
% E2A=gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2;
% E2F=gamma(ell)*(besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/2;
% E3A=eta.ˆ2.*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2;
% E3F=eta(ell)ˆ2*gamma(ell)*(besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/2;
%---------- The Summations ----------%
SA0=0; SA1=0; SA2=0; SA3=0; SB0=0; SB1=0; SB2=0; SB3=0;
SC0=0; SC1=0; SC2=0; SC3=0; SD0=0; SD1=0; SD2=0; SD3=0;
for p=1:Np

SA0=SA0+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/eta(p)/CC(p)/QQa(p);

SA1=SA1+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/eta(p)/CC(p)/QQa(p);

SA2=SA2+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/eta(p)/CC(p)/QQa(p);

SA3=SA3+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/eta(p)/CC(p)/QQa(p);

SB0=SB0+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/eta(p)/CC(p)/QQa(p);

SB1=SB1+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/eta(p)/CC(p)/QQa(p);

SB2=SB2+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/eta(p)/CC(p)/QQa(p);

SB3=SB3+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/eta(p)/CC(p)/QQa(p);

SC0=SC0+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/eta(p)/CC(p)/QQa(p);

SC1=SC1+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/eta(p)/CC(p)/QQa(p);

SC2=SC2+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/eta(p)/CC(p)/QQa(p);

SC3=SC3+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/eta(p)/CC(p)/QQa(p);

SD0=SD0+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/eta(p)/CC(p)/QQa(p);

SD1=SD1+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/eta(p)/CC(p)/QQa(p);

SD2=SD2+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/eta(p)/CC(p)/QQa(p);

SD3=SD3+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/eta(p)/CC(p)/QQa(p);

end
DA=(-SA3*SB2*SC1*SD0+SA2*SB3*SC1*SD0+SA3*SB1*SC2*SD0-SA1*SB3*SC2*SD0-...

SA2*SB1*SC3*SD0+SA1*SB2*SC3*SD0+...
SA3*SB2*SC0*SD1-SA2*SB3*SC0*SD1-SA3*SB0*SC2*SD1+SA0*SB3*SC2*SD1+...
SA2*SB0*SC3*SD1-SA0*SB2*SC3*SD1-...
SA3*SB1*SC0*SD2+SA1*SB3*SC0*SD2+SA3*SB0*SC1*SD2-SA0*SB3*SC1*SD2-...
SA1*SB0*SC3*SD2+SA0*SB1*SC3*SD2+...
SA2*SB1*SC0*SD3-SA1*SB2*SC0*SD3-SA2*SB0*SC1*SD3+SA0*SB2*SC1*SD3+...
SA1*SB0*SC2*SD3-SA0*SB1*SC2*SD3);

Fdelta=zeros(Np,1); GE0a=0; GE1a=0; GE2a=0; GE3a=0;
for p=1:Np

Fdelta(p)=FF*kdelta(ell,p);
GE0a=GE0a+FF*kdelta(ell,p)*E0A(p);
GE1a=GE1a+FF*kdelta(ell,p)*E1A(p);
GE2a=GE2a+FF*kdelta(ell,p)*E2A(p);
GE3a=GE3a+FF*kdelta(ell,p)*E3A(p);

end
GE0=((FF*E0F+GE0a)*(-SB3*SC2*SD1+SB2*SC3*SD1+SB3*SC1*SD2-...

SB1*SC3*SD2-SB2*SC1*SD3+SB1*SC2*SD3)+(FF*E1F+GE1a)*(SB3*SC2*SD0-...
SB2*SC3*SD0-SB3*SC0*SD2+SB0*SC3*SD2+SB2*SC0*SD3-SB0*SC2*SD3)+...
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(FF*E2F+GE2a)*(-SB3*SC1*SD0+SB1*SC3*SD0+SB3*SC0*SD1-SB0*SC3*SD1-...
SB1*SC0*SD3+SB0*SC1*SD3)+(FF*E3F+GE3a)*(SB2*SC1*SD0-SB1*SC2*SD0-...
SB2*SC0*SD1+SB0*SC2*SD1+SB1*SC0*SD2-SB0*SC1*SD2))/DA;

GE1=-((FF*E0F+GE0a)*(-SA3*SC2*SD1+SA2*SC3*SD1+SA3*SC1*SD2-SA1*SC3*SD2-...
SA2*SC1*SD3+SA1*SC2*SD3)+(FF*E1F+GE1a)*(SA3*SC2*SD0-SA2*SC3*SD0-...
SA3*SC0*SD2+SA0*SC3*SD2+SA2*SC0*SD3-SA0*SC2*SD3)+...
(FF*E2F+GE2a)*(-SA3*SC1*SD0+SA1*SC3*SD0+SA3*SC0*SD1-SA0*SC3*SD1-...
SA1*SC0*SD3+SA0*SC1*SD3)+(FF*E3F+GE3a)*(SA2*SC1*SD0-SA1*SC2*SD0-...
SA2*SC0*SD1+SA0*SC2*SD1+SA1*SC0*SD2-SA0*SC1*SD2))/DA;

GE2=((FF*E0F+GE0a)*(-SA3*SB2*SD1+SA2*SB3*SD1+SA3*SB1*SD2-SA1*SB3*SD2-...
SA2*SB1*SD3+SA1*SB2*SD3)+(FF*E1F+GE1a)*(SA3*SB2*SD0-SA2*SB3*SD0-...
SA3*SB0*SD2+SA0*SB3*SD2+SA2*SB0*SD3-SA0*SB2*SD3)+...
(FF*E2F+GE2a)*(-SA3*SB1*SD0+SA1*SB3*SD0+SA3*SB0*SD1-SA0*SB3*SD1-...
SA1*SB0*SD3+SA0*SB1*SD3)+(FF*E3F+GE3a)*(SA2*SB1*SD0-SA1*SB2*SD0-...
SA2*SB0*SD1+SA0*SB2*SD1+SA1*SB0*SD2-SA0*SB1*SD2))/DA;

GE3=-((FF*E0F+GE0a)*(-SA3*SB2*SC1+SA2*SB3*SC1+SA3*SB1*SC2-SA1*SB3*SC2-...
SA2*SB1*SC3+SA1*SB2*SC3)+(FF*E1F+GE1a)*(SA3*SB2*SC0-SA2*SB3*SC0-...
SA3*SB0*SC2+SA0*SB3*SC2+SA2*SB0*SC3-SA0*SB2*SC3)+...
(FF*E2F+GE2a)*(-SA3*SB1*SC0+SA1*SB3*SC0+SA3*SB0*SC1-SA0*SB3*SC1-...
SA1*SB0*SC3+SA0*SB1*SC3)+(FF*E3F+GE3a)*(SA2*SB1*SC0-SA1*SB2*SC0-...
SA2*SB0*SC1+SA0*SB2*SC1+SA1*SB0*SC2-SA0*SB1*SC2))/DA;

AP=(Fdelta+GE0*G6a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./eta./CC./QQa/2+...
GE1*G4a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./eta./CC./QQa/2+...
GE2*G2a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./eta./CC./QQa/2+...
GE3*G0a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./eta./CC./QQa/2).';

end

%---------- Kronecker delta ----------%
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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Appendix L

Matlab code relating to Section 5.3

function AppendixL() %Nonaxi increase radius
clc; clear;
index=0;
for f=30:1200
% ---------- Input Variables ----------
a1=0.2; % Dimensional radius (m)
b1=0.28; % Dimensional radius (m)
Cair=343.5; % Sound speed of fluid (m/s)
Dair=1.2; % Density of fluid (kg/mˆ3)
EE=7.2*10ˆ10; % Youngs Modulus (N/mˆ2)
h1=0.002; % Dimensional shell thickness (m)
Dplate=2700; % Density of shell (kg/mˆ3)
nu=0.34; % Poisson's ratio for shell
terms=100; % Number of imaginary roots to seek
ell=1; n=1;
% ---------- Calculated Variables ----------
kno=2*pi*f/Cair; % Fluid wave number
a=a1*kno; % Nondimensional radius
b=b1*kno; % Nondimensional radius
h=h1*kno; % Nondimensional shell thickness
cp1=sqrt(EE/(1-nuˆ2)/Dplate); % Sound speed of the shell
beta=Cair/cp1; omega=Cair*kno; tau1=12/(hˆ2*aˆ2); tau2=12/(hˆ2*bˆ2);
alpha=12*omegaˆ2*Dair/(hˆ3*cp1ˆ2*knoˆ2*Dplate);
% ---------- Root Finder ---------
% ---------- eta ----------
if a1==0.28

RealGuess=0.1:0.01:0.98;
ComplexGuess=(35:0.1:98)+(35:0.1:98)*1i;
ImaginaryGuess=[(0.4:0.1:0.8)*1i (3/4+(0:1:terms))*pi*1i/a];
if f>80

ComplexGuess=(35:0.1:40)+(35:0.1:40)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>90
ComplexGuess=(9:0.1:35)+(9:0.1:35)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>290
ComplexGuess=(9:0.1:10)+(9:0.1:10)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>340
ComplexGuess=(0:0.1:9)+(0:0.1:9)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>700
ComplexGuess=(2:0.1:5)+(2:0.1:5)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>850
ComplexGuess=(2:0.1:4)+(2:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/a];
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if f>1030
ComplexGuess=(0:0.1:4)+(0:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/a];

end
end
end
end
end
end
end

elseif a1==0.2
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:120)+(50:1:120)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/a];
if f>70

ComplexGuess=(10:1:50)+(10:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>350
ComplexGuess=(8:0.1:11)+(8:0.1:11)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>450
ComplexGuess=(0:0.1:8)+(0:0.1:8)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

if f>750
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>950
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>1000
ComplexGuess=(1:0.1:3.4)+(1:0.1:3.4)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

end
end
end
end
end
end

elseif a1==0.06
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:70)+(50:1:70)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/a];
if f>150

ComplexGuess=(18:1:50)+(18:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>350
ComplexGuess=(12:0.1:18)+(12:0.1:18)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/a];

if f>650
ComplexGuess=(1:0.1:10)+(1:0.1:10)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/a];

if f>1000
ComplexGuess=(1:0.1:7)+(1:0.1:7)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/a;

end
end
end
end

end
eta=NewtonRaphson(alpha,beta,tau1,nu,RealGuess,ImaginaryGuess,ComplexGuess,a).';
eta=eta(abs(eta)<terms*pi/a); gamma=sqrt(1-eta.ˆ2-1/aˆ2); Tw1=length(gamma);
% ---------- sn ----------
if b1==0.28

RealGuess=0.1:0.01:0.98;
ComplexGuess=(35:0.1:98)+(35:0.1:98)*1i;
ImaginaryGuess=[(0.4:0.1:0.8)*1i (3/4+(0:1:terms))*pi*1i/b];
if f>80

ComplexGuess=(35:0.1:40)+(35:0.1:40)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>90
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ComplexGuess=(9:0.1:35)+(9:0.1:35)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>290
ComplexGuess=(9:0.1:10)+(9:0.1:10)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>340
ComplexGuess=(0:0.1:9)+(0:0.1:9)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>700
ComplexGuess=(2:0.1:5)+(2:0.1:5)*1i;
ImaginaryGuess=[(0.2:0.1:0.4)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>850
ComplexGuess=(2:0.1:4)+(2:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>1030
ComplexGuess=(0:0.1:4)+(0:0.1:4)*1i;
ImaginaryGuess=[(0.1:0.1:1.5)*1i (3/4+(0:1:terms))*pi*1i/b];

end
end
end
end
end
end
end

elseif b1==0.2
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:120)+(50:1:120)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/b];
if f>70

ComplexGuess=(10:1:50)+(10:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>350
ComplexGuess=(8:0.1:11)+(8:0.1:11)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>450
ComplexGuess=(0:0.1:8)+(0:0.1:8)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/b;

if f>750
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/b];

if f>950
ComplexGuess=(1:0.1:5)+(1:0.1:5)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/b];

if f>1000
ComplexGuess=(1:0.1:3.4)+(1:0.1:3.4)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/b;

end
end
end
end
end
end

elseif b1==0.06
RealGuess=0:0.01:1.1;
ComplexGuess=(50:1:70)+(50:1:70)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(1:1:terms))*pi*1i/b];
if f>150

ComplexGuess=(18:1:50)+(18:1:50)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>350
ComplexGuess=(12:0.1:18)+(12:0.1:18)*1i;
ImaginaryGuess=[(0.2:0.01:1)*1i (3/4+(0:1:terms))*pi*1i/b];

if f>650
ComplexGuess=(1:0.1:10)+(1:0.1:10)*1i;
ImaginaryGuess=[(1)*1i (3/4+(1:1:terms))*pi*1i/b];

if f>1000
ComplexGuess=(1:0.1:7)+(1:0.1:7)*1i;
ImaginaryGuess=(3/4+(1:1:terms))*pi*1i/b;

end
end
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end
end

end
sn=NewtonRaphson(alpha,beta,tau2,nu,RealGuess,ImaginaryGuess,ComplexGuess,b).';
sn=sn(abs(sn)<terms*pi/b); kappa=sqrt(1-sn.ˆ2-1/bˆ2); Tw2=length(kappa);
% ---------- CC & DD ----------
CC=FunctionHH(alpha,beta,tau1,nu,eta,gamma,a);
DD=FunctionHH(alpha,beta,tau2,nu,sn,kappa,b);
% ---------- RR Integral -----------
RR=zeros(length(gamma),length(kappa));
for p=1:length(gamma)

for q=1:length(kappa)
RR(p,q)=IntegralRR(gamma(p),kappa(q),a,n);

end
end
[AN BM]=NonAxiSolver(a,b,nu,alpha,beta,tau1,tau2,eta.',sn.',CC.',DD.',RR,n,ell);
index=index+1;
PowA=a*real(sum(abs(AN).ˆ2.*CC.*eta))/alpha;
PowB=b*real(sum(abs(BM).ˆ2.*DD.*sn))/alpha;
data(index,:)=[f,PowA,PowB,PowA+PowB];
end
plot(data(:,1),data(:,2),'--k','LineWidth',2);hold on;
plot(data(:,1),data(:,3),'k','LineWidth',2);hold off;
axis([0 1200 0 1.2])
xlabel('Frequency')
ylabel('Energy')
legend('Reflected','Transmitted','Location','northwest')
end
function KK=Characteristic(eta,alpha,beta,tau,nu,a)
n=1;
U=a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*eta+aˆ3*(nu-nuˆ2)*eta.ˆ3;
V=1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*eta.ˆ2);
QQ=(nˆ2*(1-nu)/2-aˆ2*betaˆ2+aˆ2*eta.ˆ2).*(2*aˆ2*betaˆ2-2*nˆ2-...

aˆ2*(1-nu)*eta.ˆ2)+aˆ2*nˆ2*(1+nu)ˆ2*eta.ˆ2/2;
PP=(a*nu*eta.*U-1i*n*V)*tau+QQ.*(eta.ˆ4+2*nˆ2*eta.ˆ2/aˆ2+...

(1-aˆ2*betaˆ2)*tau+nˆ4/aˆ4);
KK=(PP.*sqrt(1-eta.ˆ2).*(besselj(n-1,sqrt(1-eta.ˆ2)*a)-...

besselj(n+1,sqrt(1-eta.ˆ2)*a))/2-...
alpha*QQ.*besselj(n,sqrt(1-eta.ˆ2)*a));

end
% The Differentiated characteristic equation
function K=DCharacteristic(s,alpha,beta,tau,nu,a)
f1=@(x) Characteristic(x,alpha,beta,tau,nu,a);
K=(f1(s+1e-5)-f1(s-1e-5))/2e-5;
end
% Newton Raphson Method
function Roots=NewtonRaphson(alpha,beta,tau,nu,RGuess,IGuess,CGuess,r)
warning('off','MATLAB:rankDeficientMatrix')
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
df1=@(x) DCharacteristic(x,alpha,beta,tau,nu,r);
xold1=RGuess; xold2=IGuess; xold3=CGuess;
for i=1:100

jac1=df1(xold1); sol1=xold1-f1(xold1)./jac1; xold1=sol1;
jac2=df1(xold2); sol2=xold2-f1(xold2)./jac2; xold2=sol2;
jac3=df1(xold3); sol3=xold3-f1(xold3)./jac3; xold3=sol3;

end
Real=sol1;
Real=Real(abs(f1(Real))<1e-5);
Real=Real(Real<1);
Real=sort(Real(Real>0),'descend');
TempIndex=1;
TempReal(TempIndex)=Real(1);
for Index=2:length(Real)

if abs(Real(Index)-TempReal(TempIndex))>3e-5
TempIndex=TempIndex+1;
TempReal(TempIndex)=Real(Index);

end
end
sol2=sol2((length(TempReal)):end);
Imaginary=sol2;
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Imaginary=sort(Imaginary(imag(Imaginary)>0),'descend');
TempIndex=1;
TempIm(TempIndex)=Imaginary(1);
for Index=2:length(Imaginary)

if abs(Imaginary(Index)-TempIm(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempIm(TempIndex)=Imaginary(Index);

end
end
Complex=sol3(abs(imag(sol3))>1e-5);
Complex=sort(Complex(real(Complex)>1e-5),'descend');
TempIndex=1;
TempComplex(TempIndex)=Complex(1);
for Index=2:length(Complex)

if abs(Complex(Index)-TempComplex(TempIndex))>1e-5
TempIndex=TempIndex+1;
TempComplex(TempIndex)=Complex(Index);

end
end
TempComplex=[TempComplex -conj(TempComplex)];
Imaginary=[TempIm,TempComplex];
[~,idx]=sort(imag(Imaginary),'ascend');
Imaginary=Imaginary(idx);
Roots=[TempReal,Imaginary];
end
function HH=FunctionHH(alpha,beta,tau,nu,eta,gamma,r)
n=1; a=r;
QQ=@(s) (nˆ2*(1-nu)/2-aˆ2*betaˆ2+aˆ2*s.ˆ2).*(2*aˆ2*betaˆ2-2*nˆ2-...

aˆ2*(1-nu)*s.ˆ2)+aˆ2*nˆ2*(1+nu)ˆ2/2*s.ˆ2;
f1=@(x) Characteristic(x,alpha,beta,tau,nu,r);
HH=(f1(eta+1e-5)-f1(eta-1e-5))/(2e-5).*gamma.*(besselj(n-1,r*gamma)-...

besselj(n+1,r*gamma))./...
(2*2*eta.*QQ(eta));

end
function [P8 P6 P4 P2 P0]=FunctionPP(beta,tau,nu,a,n)
P8=aˆ4*(nu-1);
P6=aˆ2*(aˆ2*betaˆ2*(3-nu)+4*nˆ2*(nu-1));
P4=(-4*nˆ4+6*aˆ2*nˆ2*betaˆ2-2*aˆ4*betaˆ4-2*nˆ4*(1-nu)+...

3*aˆ2*nˆ2*betaˆ2*(1-nu)-nˆ4*(1-nu)ˆ2+nˆ4*(1+nu)ˆ2-...
aˆ4*(1-aˆ2*betaˆ2)*(1-nu)*tau+aˆ4*nu*(nu-nuˆ2)*tau);

P2=aˆ4*betaˆ2*tau*(aˆ2*betaˆ2*(nu-3)-2*nuˆ2-nu+3)-...
2*aˆ2*nˆ2*betaˆ2*(2*betaˆ2+aˆ2*tau*(nu-1))-3*nˆ4*betaˆ2*(nu-3)+4*nˆ6*(nu-1)/aˆ2;

P0=-2*aˆ2*nˆ2*betaˆ2*tau+2*aˆ2*nˆ2*betaˆ2*(1-aˆ2*betaˆ2)*tau-...
2*aˆ4*betaˆ4*(1-aˆ2*betaˆ2)*tau+nˆ4*(1-nu)*tau-...
nˆ4*(1-aˆ2*betaˆ2)*(1-nu)*tau+aˆ2*nˆ2*betaˆ2*(1-aˆ2*betaˆ2)*(1-nu)*tau+...
(2*nˆ6*betaˆ2)/aˆ2-2*nˆ4*betaˆ4-(nˆ8*(1-nu))/aˆ4+(nˆ6*betaˆ2*(1-nu))/aˆ2;

end
function [Q4 Q2 Q0]=FunctionQQ(beta,nu,a,n)
Q4=aˆ4*(nu-1); Q2=aˆ2*(aˆ2*betaˆ2*(3-nu)+2*nˆ2*(nu-1));
Q0=(nˆ2-aˆ2*betaˆ2)*(2*aˆ2*betaˆ2+nˆ2*(nu-1));
end
function RR=IntegralRR(gamma,kappa,a,n)
if abs(kappaˆ2-gammaˆ2)<1e-10

if abs(gamma)<1e-10
RR=0;

else
RR=a*(a*gamma*besselj(n-1,gamma*a)ˆ2-2*n*besselj(n-1,gamma*a)*...

besselj(n,gamma*a)+a*gamma*besselj(n,gamma*a)ˆ2)/(2*gamma);
end

else
RR=a*(kappa*besselj(n-1,a*kappa)*besselj(n,a*gamma)-...

gamma*besselj(n-1,a*gamma)*besselj(n,a*kappa))/(gammaˆ2-kappaˆ2);
end
end
function [Ap Bq]=NonAxiSolver(a,b,nu,alpha,beta,tau1,tau2,eta,s,CC,DD,RR,n,ell)
Np=length(eta); Nq=length(s);
gamma=(1-eta.ˆ2-1/aˆ2).ˆ0.5; kappa=(1-s.ˆ2-1/bˆ2).ˆ0.5;
FF=sqrt(1/(CC(ell)*eta(ell)));
[P8a P6a P4a P2a P0a]=FunctionPP(beta,tau1,nu,a,n);
[Q4a Q2a Q0a]=FunctionQQ(beta,nu,a,n);
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QQa=Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a;
[P8b P6b P4b P2b P0b]=FunctionPP(beta,tau2,nu,b,n);
[Q4b Q2b Q0b]=FunctionQQ(beta,nu,b,n);
QQb=Q4b*s.ˆ4+Q2b*s.ˆ2+Q0b;
G6a=P8a*(Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a);
G4a=P8a*(Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a).*eta.ˆ2+P6a*(Q4a*eta.ˆ4+Q2a*eta.ˆ2+Q0a);
G2a=P8a*Q2a*eta.ˆ6+(P8a*Q0a+P6a*Q2a).*eta.ˆ4+(P6a*Q0a+P4a*Q2a-...

P2a*Q4a).*eta.ˆ2+P4a*Q0a-P0a*Q4a;
G0a=P8a*Q0a.*eta.ˆ6+P6a*Q0a*eta.ˆ4+(P4a*Q0a-P0a*Q4a)*eta.ˆ2+P2a*Q0a-P0a*Q2a;
G6b=P8b*(Q4b*s.ˆ4+Q2b*s.ˆ2+Q0b);
G4b=P8b*(Q4b*s.ˆ4+Q2b*s.ˆ2+Q0b).*s.ˆ2+P6b*(Q4b*s.ˆ4+Q2b*s.ˆ2+Q0b);
G2b=P8b*Q2b*s.ˆ6+(P8b*Q0b+P6b*Q2b).*s.ˆ4+(P6b*Q0b+P4b*Q2b-P2b*Q4b).*s.ˆ2+...

P4b*Q0b-P0b*Q4b;
G0b=P8b*Q0b*s.ˆ6+P6b*Q0b*s.ˆ4+(P4b*Q0b-P0b*Q4b)*s.ˆ2+P2b*Q0b-P0b*Q2b;
U=@(s) a*(nˆ2*(nu-1)-2*aˆ2*betaˆ2*nu)*s+aˆ3*(nu-nuˆ2)*s.ˆ3;
V=@(s) 1i*(nˆ3*(1-nu)-2*aˆ2*betaˆ2*n+aˆ2*(2*n-n*(nu+nuˆ2))*s.ˆ2);
%---------- The edge conditions ----------%
%---------- Clamped ----------%
E0A=-U(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
E0B=zeros(1,Nq); E0F=U(eta(ell)).*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...

besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
E4A=zeros(1,Np); E4B=U(s).*kappa.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b))./QQb/2;
E4F=0; E1A=V(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
E1B=zeros(1,Nq); E1F=V(eta(ell))*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...

besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
E5A=zeros(1,Np); E5B=V(s).*kappa.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b))./QQb/2;
E5F=0; E2A=gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2; E2B=zeros(1,Nq);
E2F=gamma(ell)*(besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/2;
E6A=zeros(1,Np); E6B=kappa.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b))/2;
E6F=0; E3A=-eta.*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2;
E3B=zeros(1,Nq); E3F=eta(ell)*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...

besselj(n+1,gamma(ell)*a))/2; E7F=0;
E7A=zeros(1,Np); E7B=s.*kappa.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b))/2;
% %---------- Pin-Jointed ----------%
% E0A=eta.*U(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
% E0B=zeros(1,Nq); E0F=eta(ell)*U(eta(ell)).*gamma(ell)*...
% (besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
% E4A=zeros(1,Np); E4B=s.*U(s).*kappa.*(besselj(n-1,kappa*b)-...
% besselj(n+1,kappa*b))./QQb/2; E4F=0;
% E1A=V(eta).*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))./QQa/2;
% E1B=zeros(1,Nq); E1F=V(eta(ell))*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...
% besselj(n+1,gamma(ell)*a))/QQa(ell)/2;
% E5A=zeros(1,Np); E5B=V(s).*kappa.*(besselj(n-1,kappa*b)-...
% besselj(n+1,kappa*b))./QQb/2; E5F=0;
% E2A=gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2; E2B=zeros(1,Nq);
% E2F=gamma(ell)*(besselj(n-1,gamma(ell)*a)-besselj(n+1,gamma(ell)*a))/2;
% E6A=zeros(1,Np); E6B=kappa.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b))/2;
% E6F=0; E3A=eta.ˆ2.*gamma.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a))/2;
% E3B=zeros(1,Nq); E3F=eta(ell)ˆ2*gamma(ell)*(besselj(n-1,gamma(ell)*a)-...
% besselj(n+1,gamma(ell)*a))/2; E7F=0;
% E7A=zeros(1,Np); E7B=s.ˆ2.*kappa.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b))/2;
SA0=0; SA1=0; SA2=0; SA3=0; SB0=0; SB1=0; SB2=0; SB3=0;
SC0=0; SC1=0; SC2=0; SC3=0; SD0=0; SD1=0; SD2=0; SD3=0;
for p=1:Np

SA0=SA0+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/CC(p)/QQa(p);

SA1=SA1+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/CC(p)/QQa(p);

SA2=SA2+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/CC(p)/QQa(p);

SA3=SA3+G6a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/CC(p)/QQa(p);

SB0=SB0+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/CC(p);

SB1=SB1+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/CC(p)/QQa(p);

SB2=SB2+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/CC(p)/QQa(p);

SB3=SB3+G4a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/CC(p)/QQa(p);
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SC0=SC0+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/CC(p)/QQa(p);

SC1=SC1+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/CC(p)/QQa(p);

SC2=SC2+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/CC(p)/QQa(p);

SC3=SC3+G2a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/CC(p)/QQa(p);

SD0=SD0+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E0A(p)/2/CC(p)/QQa(p);

SD1=SD1+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E1A(p)/2/CC(p)/QQa(p);

SD2=SD2+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E2A(p)/2/CC(p)/QQa(p);

SD3=SD3+G0a(p)*(besselj(n-1,gamma(p)*a)-...
besselj(n+1,gamma(p)*a))*gamma(p)*E3A(p)/2/CC(p)/QQa(p);

end
SE4=0; SE5=0; SE6=0; SE7=0; SF4=0; SF5=0; SF6=0; SF7=0;
SG4=0; SG5=0; SG6=0; SG7=0; SH4=0; SH5=0; SH6=0; SH7=0;
for q=1:Nq

SE4=SE4+G6b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E4B(q)/2/s(q)/DD(q)/QQb(q);

SE5=SE5+G6b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E5B(q)/2/s(q)/DD(q)/QQb(q);

SE6=SE6+G6b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E6B(q)/2/s(q)/DD(q)/QQb(q);

SE7=SE7+G6b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E7B(q)/2/s(q)/DD(q)/QQb(q);

SF4=SF4+G4b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E4B(q)/2/s(q)/DD(q)/QQb(q);

SF5=SF5+G4b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E5B(q)/2/s(q)/DD(q)/QQb(q);

SF6=SF6+G4b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E6B(q)/2/s(q)/DD(q)/QQb(q);

SF7=SF7+G4b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E7B(q)/2/s(q)/DD(q)/QQb(q);

SG4=SG4+G2b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E4B(q)/2/s(q)/DD(q)/QQb(q);

SG5=SG5+G2b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E5B(q)/2/s(q)/DD(q)/QQb(q);

SG6=SG6+G2b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E6B(q)/2/s(q)/DD(q)/QQb(q);

SG7=SG7+G2b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E7B(q)/2/s(q)/DD(q)/QQb(q);

SH4=SH4+G0b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E4B(q)/2/s(q)/DD(q)/QQb(q);

SH5=SH5+G0b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E5B(q)/2/s(q)/DD(q)/QQb(q);

SH6=SH6+G0b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E6B(q)/2/s(q)/DD(q)/QQb(q);

SH7=SH7+G0b(q)*(besselj(n-1,kappa(q)*b)-...
besselj(n+1,kappa(q)*b))*gamma(p)*E7B(q)/2/s(q)/DD(q)/QQb(q);

end
DA=(-SA3*SB2*SC1*SD0+SA2*SB3*SC1*SD0+SA3*SB1*SC2*SD0-SA1*SB3*SC2*SD0-...

SA2*SB1*SC3*SD0+SA1*SB2*SC3*SD0+...
SA3*SB2*SC0*SD1-SA2*SB3*SC0*SD1-SA3*SB0*SC2*SD1+SA0*SB3*SC2*SD1+...
SA2*SB0*SC3*SD1-SA0*SB2*SC3*SD1-...
SA3*SB1*SC0*SD2+SA1*SB3*SC0*SD2+SA3*SB0*SC1*SD2-SA0*SB3*SC1*SD2-...
SA1*SB0*SC3*SD2+SA0*SB1*SC3*SD2+...
SA2*SB1*SC0*SD3-SA1*SB2*SC0*SD3-SA2*SB0*SC1*SD3+SA0*SB2*SC1*SD3+...
SA1*SB0*SC2*SD3-SA0*SB1*SC2*SD3);

DB=(SE7*SF6*SG5*SH4-SE6*SF7*SG5*SH4-SE7*SF5*SG6*SH4+SE5*SF7*SG6*SH4+...
SE6*SF5*SG7*SH4-SE5*SF6*SG7*SH4-...
SE7*SF6*SG4*SH5+SE6*SF7*SG4*SH5+SE7*SF4*SG6*SH5-SE4*SF7*SG6*SH5-...
SE6*SF4*SG7*SH5+SE4*SF6*SG7*SH5+...
SE7*SF5*SG4*SH6-SE5*SF7*SG4*SH6-SE7*SF4*SG5*SH6+SE4*SF7*SG5*SH6+...
SE5*SF4*SG7*SH6-SE4*SF5*SG7*SH6-...
SE6*SF5*SG4*SH7+SE5*SF6*SG4*SH7+SE6*SF4*SG5*SH7-SE4*SF6*SG5*SH7-...
SE5*SF4*SG6*SH7+SE4*SF5*SG6*SH7);

Fdelta=zeros(1,Np); GE0a=0; GE1a=0; GE2a=0; GE3a=0;
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for p=1:Np
Fdelta(p)=FF*kdelta(ell,p);
GE0a=GE0a+FF*kdelta(ell,p)*E0A(p); GE1a=GE1a+FF*kdelta(ell,p)*E1A(p);
GE2a=GE2a+FF*kdelta(ell,p)*E2A(p); GE3a=GE3a+FF*kdelta(ell,p)*E3A(p);

end
GE0=((FF*E0F-GE0a)*(-SB3*SC2*SD1+SB2*SC3*SD1+SB3*SC1*SD2-SB1*SC3*SD2-...

SB2*SC1*SD3+SB1*SC2*SD3)+(FF*E1F-GE1a)*(SB3*SC2*SD0-SB2*SC3*SD0-...
SB3*SC0*SD2+SB0*SC3*SD2+SB2*SC0*SD3-SB0*SC2*SD3)+...
(FF*E2F-GE2a)*(-SB3*SC1*SD0+SB1*SC3*SD0+SB3*SC0*SD1-SB0*SC3*SD1-...
SB1*SC0*SD3+SB0*SC1*SD3)+(FF*E3F-GE3a)*(SB2*SC1*SD0-SB1*SC2*SD0-...
SB2*SC0*SD1+SB0*SC2*SD1+SB1*SC0*SD2-SB0*SC1*SD2))/DA;

GE1=-((FF*E0F-GE0a)*(-SA3*SC2*SD1+SA2*SC3*SD1+SA3*SC1*SD2-SA1*SC3*SD2-...
SA2*SC1*SD3+SA1*SC2*SD3)+(FF*E1F-GE1a)*(SA3*SC2*SD0-SA2*SC3*SD0-...
SA3*SC0*SD2+SA0*SC3*SD2+SA2*SC0*SD3-SA0*SC2*SD3)+...
(FF*E2F-GE2a)*(-SA3*SC1*SD0+SA1*SC3*SD0+SA3*SC0*SD1-SA0*SC3*SD1-...
SA1*SC0*SD3+SA0*SC1*SD3)+(FF*E3F-GE3a)*(SA2*SC1*SD0-SA1*SC2*SD0-...
SA2*SC0*SD1+SA0*SC2*SD1+SA1*SC0*SD2-SA0*SC1*SD2))/DA;

GE2=((FF*E0F-GE0a)*(-SA3*SB2*SD1+SA2*SB3*SD1+SA3*SB1*SD2-SA1*SB3*SD2-...
SA2*SB1*SD3+SA1*SB2*SD3)+(FF*E1F-GE1a)*(SA3*SB2*SD0-SA2*SB3*SD0-...
SA3*SB0*SD2+SA0*SB3*SD2+SA2*SB0*SD3-SA0*SB2*SD3)+...
(FF*E2F-GE2a)*(-SA3*SB1*SD0+SA1*SB3*SD0+SA3*SB0*SD1-SA0*SB3*SD1-...
SA1*SB0*SD3+SA0*SB1*SD3)+(FF*E3F-GE3a)*(SA2*SB1*SD0-SA1*SB2*SD0-...
SA2*SB0*SD1+SA0*SB2*SD1+SA1*SB0*SD2-SA0*SB1*SD2))/DA;

GE3=-((FF*E0F-GE0a)*(-SA3*SB2*SC1+SA2*SB3*SC1+SA3*SB1*SC2-SA1*SB3*SC2-...
SA2*SB1*SC3+SA1*SB2*SC3)+(FF*E1F-GE1a)*(SA3*SB2*SC0-SA2*SB3*SC0-...
SA3*SB0*SC2+SA0*SB3*SC2+SA2*SB0*SC3-SA0*SB2*SC3)+...
(FF*E2F-GE2a)*(-SA3*SB1*SC0+SA1*SB3*SC0+SA3*SB0*SC1-SA0*SB3*SC1-...
SA1*SB0*SC3+SA0*SB1*SC3)+(FF*E3F-GE3a)*(SA2*SB1*SC0-SA1*SB2*SC0-...
SA2*SB0*SC1+SA0*SB2*SC1+SA1*SB0*SC2-SA0*SB1*SC2))/DA;

GE4b=0; GE5b=0; GE6b=0; GE7b=0;
for q=1:Nq

GE4b=GE4b+alpha*FF*eta(ell)*RR(ell,q)*E4B(q)/b/s(q)/DD(q);
GE5b=GE5b+alpha*FF*eta(ell)*RR(ell,q)*E5B(q)/b/s(q)/DD(q);
GE6b=GE6b+alpha*FF*eta(ell)*RR(ell,q)*E6B(q)/b/s(q)/DD(q);
GE7b=GE7b+alpha*FF*eta(ell)*RR(ell,q)*E7B(q)/b/s(q)/DD(q);

end
GE4=((-GE4b-FF*E4F)*(-SF7*SG6*SH5+SF6*SG7*SH5+SF7*SG5*SH6-SF5*SG7*SH6-...

SF6*SG5*SH7+SF5*SG6*SH7)+(-GE5b-FF*E5F)*(SF7*SG6*SH4-SF6*SG7*SH4-...
SF7*SG4*SH6+SF4*SG7*SH6+SF6*SG4*SH7-SF4*SG6*SH7)+...
(-GE6b-FF*E6F)*(-SF7*SG5*SH4+SF5*SG7*SH4+SF7*SG4*SH5-SF4*SG7*SH5-...
SF5*SG4*SH7+SF4*SG5*SH7)+(-GE7b-FF*E7F)*(SF6*SG5*SH4-SF5*SG6*SH4-...
SF6*SG4*SH5+SF4*SG6*SH5+SF5*SG4*SH6-SF4*SG5*SH6))/DB;

GE5=-((-GE4b-FF*E4F)*(-SE7*SG6*SH5+SE6*SG7*SH5+SE7*SG5*SH6-SE5*SG7*SH6-...
SE6*SG5*SH7+SE5*SG6*SH7)+(-GE5b-FF*E5F)*(SE7*SG6*SH4-SE6*SG7*SH4-...
SE7*SG4*SH6+SE4*SG7*SH6+SE6*SG4*SH7-SE4*SG6*SH7)+...
(-GE6b-FF*E6F)*(-SE7*SG5*SH4+SE5*SG7*SH4+SE7*SG4*SH5-SE4*SG7*SH5-...
SE5*SG4*SH7+SE4*SG5*SH7)+(-GE7b-FF*E7F)*(SE6*SG5*SH4-SE5*SG6*SH4-...
SE6*SG4*SH5+SE4*SG6*SH5+SE5*SG4*SH6-SE4*SG5*SH6))/DB;

GE6=((-GE4b-FF*E4F)*(-SE7*SF6*SH5+SE6*SF7*SH5+SE7*SF5*SH6-SE5*SF7*SH6-...
SE6*SF5*SH7+SE5*SF6*SH7)+(-GE5b-FF*E5F)*(SE7*SF6*SH4-SE6*SF7*SH4-...
SE7*SF4*SH6+SE4*SF7*SH6+SE6*SF4*SH7-SE4*SF6*SH7)+...
(-GE6b-FF*E6F)*(-SE7*SF5*SH4+SE5*SF7*SH4+SE7*SF4*SH5-SE4*SF7*SH5-...
SE5*SF4*SH7+SE4*SF5*SH7)+(-GE7b-FF*E7F)*(SE6*SF5*SH4-SE5*SF6*SH4-...
SE6*SF4*SH5+SE4*SF6*SH5+SE5*SF4*SH6-SE4*SF5*SH6))/DB;

GE7=-((-GE4b-FF*E4F)*(-SE7*SF6*SG5+SE6*SF7*SG5+SE7*SF5*SG6-SE5*SF7*SG6-...
SE6*SF5*SG7+SE5*SF6*SG7)+(-GE5b-FF*E5F)*(SE7*SF6*SG4-SE6*SF7*SG4-...
SE7*SF4*SG6+SE4*SF7*SG6+SE6*SF4*SG7-SE4*SF6*SG7)+...
(-GE6b-FF*E6F)*(-SE7*SF5*SG4+SE5*SF7*SG4+SE7*SF4*SG5-SE4*SF7*SG5-...
SE5*SF4*SG7+SE4*SF5*SG7)+(-GE7b-FF*E7F)*(SE6*SF5*SG4-SE5*SF6*SG4-...
SE6*SF4*SG5+SE4*SF6*SG5+SE5*SF4*SG6-SE4*SF5*SG6))/DB;

VFA=(-Fdelta+GE0*G6a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2+...
GE1*G4a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2+...
GE2*G2a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2+...
GE3*G0a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2).';

V0=(G6a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2/DA).';
V1=-(G4a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2/DA).';
V2=(G2a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2/DA).';
V3=-(G0a.*(besselj(n-1,gamma*a)-besselj(n+1,gamma*a)).*gamma./CC./QQa/2/DA).';
VFB=(alpha*FF*eta(ell).*RR(ell,:)./s./DD/b+...

GE4*G6b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2+...
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GE5*G4b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2+...
GE6*G2b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2+...
GE7*G0b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2).';

V4=(G6b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2/DB).';
V5=-(G4b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2/DB).';
V6=(G2b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2/DB).';
V7=-(G0b.*(besselj(n-1,kappa*b)-besselj(n+1,kappa*b)).*kappa./s./DD./QQb/2/DB).';
M0=zeros(Np,Nq); M1=zeros(Np,Nq); M2=zeros(Np,Nq); M3=zeros(Np,Nq); M4=zeros(Np,Nq);
M5=zeros(Np,Nq); M6=zeros(Np,Nq); M7=zeros(Np,Nq); MFA=zeros(Np,Nq);
for p=1:Np

for q=1:Nq
M0(end,q)=E0B(q);
M1(p,q)=alpha*RR(p,q)*E0A(p)/a/CC(p);
M2(end,q)=E1B(q);
M3(p,q)=alpha*RR(p,q)*E1A(p)/a/CC(p);
M4(end,q)=E2B(q);
M5(p,q)=alpha*RR(p,q)*E2A(p)/a/CC(p);
M6(end,q)=E3B(q);
M7(p,q)=alpha*RR(p,q)*E3A(p)/a/CC(p);
MFA(p,q)=alpha*RR(p,q)/a/CC(p);

end
end
M8=zeros(Nq,Np); M9=zeros(Nq,Np); M10=zeros(Nq,Np); M11=zeros(Nq,Np); M12=zeros(Nq,Np);
M13=zeros(Nq,Np); M14=zeros(Nq,Np); M15=zeros(Nq,Np); MFB=zeros(Nq,Np);
for p=1:Np

for q=1:Nq
M8(q,p)=-alpha*eta(p)*RR(p,q)*E4B(q)/b/s(q)/DD(q);
M10(q,p)=-alpha*eta(p)*RR(p,q)*E5B(q)/b/s(q)/DD(q);
M12(q,p)=-alpha*eta(p)*RR(p,q)*E6B(q)/b/s(q)/DD(q);
M14(q,p)=-alpha*eta(p)*RR(p,q)*E7B(q)/b/s(q)/DD(q);
MFB(q,p)=alpha*eta(p)*RR(p,q)/b/s(q)/DD(q);

end
M9(end,p)=E4A(p);
M11(end,p)=E5A(p);
M13(end,p)=E6A(p);
M15(end,p)=E7A(p);

end
ep=ones(1,Np); eq=ones(1,Nq);
Ap=(eye(Np)-(...

+((-SB3*SC2*SD1+SB2*SC3*SD1+SB3*SC1*SD2-SB1*SC3*SD2-SB2*SC1*SD3+...
SB1*SC2*SD3)*V0+(-SA3*SC2*SD1+SA2*SC3*SD1+SA3*SC1*SD2-SA1*SC3*SD2-...
SA2*SC1*SD3+SA1*SC2*SD3)*V1+(-SA3*SB2*SD1+SA2*SB3*SD1+SA3*SB1*SD2-...
SA1*SB3*SD2-SA2*SB1*SD3+SA1*SB2*SD3)*V2+(-SA3*SB2*SC1+SA2*SB3*SC1+...
SA3*SB1*SC2-SA1*SB3*SC2-SA2*SB1*SC3+SA1*SB2*SC3)*V3)*ep*M0...
+((-SB3*SC2*SD1+SB2*SC3*SD1+SB3*SC1*SD2-SB1*SC3*SD2-SB2*SC1*SD3+...
SB1*SC2*SD3)*V0+(-SA3*SC2*SD1+SA2*SC3*SD1+SA3*SC1*SD2-SA1*SC3*SD2-...
SA2*SC1*SD3+SA1*SC2*SD3)*V1+(-SA3*SB2*SD1+SA2*SB3*SD1+SA3*SB1*SD2-...
SA1*SB3*SD2-SA2*SB1*SD3+SA1*SB2*SD3)*V2+(-SA3*SB2*SC1+SA2*SB3*SC1+...
SA3*SB1*SC2-SA1*SB3*SC2-SA2*SB1*SC3+SA1*SB2*SC3)*V3)*ep*M1...
+((SB3*SC2*SD0-SB2*SC3*SD0-SB3*SC0*SD2+SB0*SC3*SD2+SB2*SC0*SD3-...
SB0*SC2*SD3)*V0+(SA3*SC2*SD0-SA2*SC3*SD0-SA3*SC0*SD2+SA0*SC3*SD2+...
SA2*SC0*SD3-SA0*SC2*SD3)*V1+(SA3*SB2*SD0-SA2*SB3*SD0-SA3*SB0*SD2+...
SA0*SB3*SD2+SA2*SB0*SD3-SA0*SB2*SD3)*V2+(SA3*SB2*SC0-SA2*SB3*SC0-...
SA3*SB0*SC2+SA0*SB3*SC2+SA2*SB0*SC3-SA0*SB2*SC3)*V3)*ep*M2...
+((SB3*SC2*SD0-SB2*SC3*SD0-SB3*SC0*SD2+SB0*SC3*SD2+SB2*SC0*SD3-...
SB0*SC2*SD3)*V0+(SA3*SC2*SD0-SA2*SC3*SD0-SA3*SC0*SD2+SA0*SC3*SD2+...
SA2*SC0*SD3-SA0*SC2*SD3)*V1+(SA3*SB2*SD0-SA2*SB3*SD0-SA3*SB0*SD2+...
SA0*SB3*SD2+SA2*SB0*SD3-SA0*SB2*SD3)*V2+(SA3*SB2*SC0-SA2*SB3*SC0-...
SA3*SB0*SC2+SA0*SB3*SC2+SA2*SB0*SC3-SA0*SB2*SC3)*V3)*ep*M3...
+((-SB3*SC1*SD0+SB1*SC3*SD0+SB3*SC0*SD1-SB0*SC3*SD1-SB1*SC0*SD3+...
SB0*SC1*SD3)*V0+(-SA3*SC1*SD0+SA1*SC3*SD0+SA3*SC0*SD1-SA0*SC3*SD1-...
SA1*SC0*SD3+SA0*SC1*SD3)*V1+(-SA3*SB1*SD0+SA1*SB3*SD0+SA3*SB0*SD1-...
SA0*SB3*SD1-SA1*SB0*SD3+SA0*SB1*SD3)*V2+(-SA3*SB1*SC0+SA1*SB3*SC0+...
SA3*SB0*SC1-SA0*SB3*SC1-SA1*SB0*SC3+SA0*SB1*SC3)*V3)*ep*M4...
+((-SB3*SC1*SD0+SB1*SC3*SD0+SB3*SC0*SD1-SB0*SC3*SD1-SB1*SC0*SD3+...
SB0*SC1*SD3)*V0+(-SA3*SC1*SD0+SA1*SC3*SD0+SA3*SC0*SD1-SA0*SC3*SD1-...
SA1*SC0*SD3+SA0*SC1*SD3)*V1+(-SA3*SB1*SD0+SA1*SB3*SD0+SA3*SB0*SD1-...
SA0*SB3*SD1-SA1*SB0*SD3+SA0*SB1*SD3)*V2+(-SA3*SB1*SC0+SA1*SB3*SC0+...
SA3*SB0*SC1-SA0*SB3*SC1-SA1*SB0*SC3+SA0*SB1*SC3)*V3)*ep*M5...
+((SB2*SC1*SD0-SB1*SC2*SD0-SB2*SC0*SD1+SB0*SC2*SD1+SB1*SC0*SD2-...
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SB0*SC1*SD2)*V0+(SA2*SC1*SD0-SA1*SC2*SD0-SA2*SC0*SD1+SA0*SC2*SD1+...
SA1*SC0*SD2-SA0*SC1*SD2)*V1+(SA2*SB1*SD0-SA1*SB2*SD0-SA2*SB0*SD1+...
SA0*SB2*SD1+SA1*SB0*SD2-SA0*SB1*SD2)*V2+(SA2*SB1*SC0-SA1*SB2*SC0-...
SA2*SB0*SC1+SA0*SB2*SC1+SA1*SB0*SC2-SA0*SB1*SC2)*V3)*ep*M6...
+((SB2*SC1*SD0-SB1*SC2*SD0-SB2*SC0*SD1+SB0*SC2*SD1+SB1*SC0*SD2-...
SB0*SC1*SD2)*V0+(SA2*SC1*SD0-SA1*SC2*SD0-SA2*SC0*SD1+SA0*SC2*SD1+...
SA1*SC0*SD2-SA0*SC1*SD2)*V1+(SA2*SB1*SD0-SA1*SB2*SD0-SA2*SB0*SD1+...
SA0*SB2*SD1+SA1*SB0*SD2-SA0*SB1*SD2)*V2+(SA2*SB1*SC0-SA1*SB2*SC0-...
SA2*SB0*SC1+SA0*SB2*SC1+SA1*SB0*SC2-SA0*SB1*SC2)*V3)*ep*M7+MFA)...

*(...
+((SF7*SG6*SH5-SF6*SG7*SH5-SF7*SG5*SH6+SF5*SG7*SH6+SF6*SG5*SH7-...
SF5*SG6*SH7)*V4+(SE7*SG6*SH5-SE6*SG7*SH5-SE7*SG5*SH6+SE5*SG7*SH6+...
SE6*SG5*SH7-SE5*SG6*SH7)*V5+(SE7*SF6*SH5-SE6*SF7*SH5-SE7*SF5*SH6+...
SE5*SF7*SH6+SE6*SF5*SH7-SE5*SF6*SH7)*V6+(SE7*SF6*SG5-SE6*SF7*SG5-...
SE7*SF5*SG6+SE5*SF7*SG6+SE6*SF5*SG7-SE5*SF6*SG7)*V7)*eq*M8...
+((SF7*SG6*SH5-SF6*SG7*SH5-SF7*SG5*SH6+SF5*SG7*SH6+SF6*SG5*SH7-...
SF5*SG6*SH7)*V4+(SE7*SG6*SH5-SE6*SG7*SH5-SE7*SG5*SH6+SE5*SG7*SH6+...
SE6*SG5*SH7-SE5*SG6*SH7)*V5+(SE7*SF6*SH5-SE6*SF7*SH5-SE7*SF5*SH6+...
SE5*SF7*SH6+SE6*SF5*SH7-SE5*SF6*SH7)*V6+(SE7*SF6*SG5-SE6*SF7*SG5-...
SE7*SF5*SG6+SE5*SF7*SG6+SE6*SF5*SG7-SE5*SF6*SG7)*V7)*eq*M9...
+((-SF7*SG6*SH4+SF6*SG7*SH4+SF7*SG4*SH6-SF4*SG7*SH6-SF6*SG4*SH7+...
SF4*SG6*SH7)*V4+(-SE7*SG6*SH4+SE6*SG7*SH4+SE7*SG4*SH6-SE4*SG7*SH6-...
SE6*SG4*SH7+SE4*SG6*SH7)*V5+(-SE7*SF6*SH4+SE6*SF7*SH4+SE7*SF4*SH6-...
SE4*SF7*SH6-SE6*SF4*SH7+SE4*SF6*SH7)*V6+(-SE7*SF6*SG4+SE6*SF7*SG4+...
SE7*SF4*SG6-SE4*SF7*SG6-SE6*SF4*SG7+SE4*SF6*SG7)*V7)*eq*M10...
+((-SF7*SG6*SH4+SF6*SG7*SH4+SF7*SG4*SH6-SF4*SG7*SH6-SF6*SG4*SH7+...
SF4*SG6*SH7)*V4+(-SE7*SG6*SH4+SE6*SG7*SH4+SE7*SG4*SH6-SE4*SG7*SH6-...
SE6*SG4*SH7+SE4*SG6*SH7)*V5+(-SE7*SF6*SH4+SE6*SF7*SH4+SE7*SF4*SH6-...
SE4*SF7*SH6-SE6*SF4*SH7+SE4*SF6*SH7)*V6+(-SE7*SF6*SG4+SE6*SF7*SG4+...
SE7*SF4*SG6-SE4*SF7*SG6-SE6*SF4*SG7+SE4*SF6*SG7)*V7)*eq*M11...
+((SF7*SG5*SH4-SF5*SG7*SH4-SF7*SG4*SH5+SF4*SG7*SH5+SF5*SG4*SH7-...
SF4*SG5*SH7)*V4+(SE7*SG5*SH4-SE5*SG7*SH4-SE7*SG4*SH5+SE4*SG7*SH5+...
SE5*SG4*SH7-SE4*SG5*SH7)*V5+(SE7*SF5*SH4-SE5*SF7*SH4-SE7*SF4*SH5+...
SE4*SF7*SH5+SE5*SF4*SH7-SE4*SF5*SH7)*V6+(SE7*SF5*SG4-SE5*SF7*SG4-...
SE7*SF4*SG5+SE4*SF7*SG5+SE5*SF4*SG7-SE4*SF5*SG7)*V7)*eq*M12...
+((SF7*SG5*SH4-SF5*SG7*SH4-SF7*SG4*SH5+SF4*SG7*SH5+SF5*SG4*SH7-...
SF4*SG5*SH7)*V4+(SE7*SG5*SH4-SE5*SG7*SH4-SE7*SG4*SH5+SE4*SG7*SH5+...
SE5*SG4*SH7-SE4*SG5*SH7)*V5+(SE7*SF5*SH4-SE5*SF7*SH4-SE7*SF4*SH5+...
SE4*SF7*SH5+SE5*SF4*SH7-SE4*SF5*SH7)*V6+(SE7*SF5*SG4-SE5*SF7*SG4-...
SE7*SF4*SG5+SE4*SF7*SG5+SE5*SF4*SG7-SE4*SF5*SG7)*V7)*eq*M13...
+((-SF6*SG5*SH4+SF5*SG6*SH4+SF6*SG4*SH5-SF4*SG6*SH5-SF5*SG4*SH6+...
SF4*SG5*SH6)*V4+(-SE6*SG5*SH4+SE5*SG6*SH4+SE6*SG4*SH5-SE4*SG6*SH5-...
SE5*SG4*SH6+SE4*SG5*SH6)*V5+(-SE6*SF5*SH4+SE5*SF6*SH4+SE6*SF4*SH5-...
SE4*SF6*SH5-SE5*SF4*SH6+SE4*SF5*SH6)*V6+(-SE6*SF5*SG4+SE5*SF6*SG4+...
SE6*SF4*SG5-SE4*SF6*SG5-SE5*SF4*SG6+SE4*SF5*SG6)*V7)*eq*M14...
+((-SF6*SG5*SH4+SF5*SG6*SH4+SF6*SG4*SH5-SF4*SG6*SH5-SF5*SG4*SH6+...
SF4*SG5*SH6)*V4+(-SE6*SG5*SH4+SE5*SG6*SH4+SE6*SG4*SH5-SE4*SG6*SH5-...
SE5*SG4*SH6+SE4*SG5*SH6)*V5+(-SE6*SF5*SH4+SE5*SF6*SH4+SE6*SF4*SH5-...
SE4*SF6*SH5-SE5*SF4*SH6+SE4*SF5*SH6)*V6+(-SE6*SF5*SG4+SE5*SF6*SG4+...
SE6*SF4*SG5-SE4*SF6*SG5-SE5*SF4*SG6+SE4*SF5*SG6)*V7)*eq*M15-MFB))\...
(VFA+(...
+((-SB3*SC2*SD1+SB2*SC3*SD1+SB3*SC1*SD2-SB1*SC3*SD2-SB2*SC1*SD3+...
SB1*SC2*SD3)*V0+(-SA3*SC2*SD1+SA2*SC3*SD1+SA3*SC1*SD2-SA1*SC3*SD2-...
SA2*SC1*SD3+SA1*SC2*SD3)*V1+(-SA3*SB2*SD1+SA2*SB3*SD1+SA3*SB1*SD2-...
SA1*SB3*SD2-SA2*SB1*SD3+SA1*SB2*SD3)*V2+(-SA3*SB2*SC1+SA2*SB3*SC1+...
SA3*SB1*SC2-SA1*SB3*SC2-SA2*SB1*SC3+SA1*SB2*SC3)*V3)*ep*M0*VFB...
+((-SB3*SC2*SD1+SB2*SC3*SD1+SB3*SC1*SD2-SB1*SC3*SD2-SB2*SC1*SD3+...
SB1*SC2*SD3)*V0+(-SA3*SC2*SD1+SA2*SC3*SD1+SA3*SC1*SD2-SA1*SC3*SD2-...
SA2*SC1*SD3+SA1*SC2*SD3)*V1+(-SA3*SB2*SD1+SA2*SB3*SD1+SA3*SB1*SD2-...
SA1*SB3*SD2-SA2*SB1*SD3+SA1*SB2*SD3)*V2+(-SA3*SB2*SC1+SA2*SB3*SC1+...
SA3*SB1*SC2-SA1*SB3*SC2-SA2*SB1*SC3+SA1*SB2*SC3)*V3)*ep*M1*VFB...
+((SB3*SC2*SD0-SB2*SC3*SD0-SB3*SC0*SD2+SB0*SC3*SD2+SB2*SC0*SD3-...
SB0*SC2*SD3)*V0+(SA3*SC2*SD0-SA2*SC3*SD0-SA3*SC0*SD2+SA0*SC3*SD2+...
SA2*SC0*SD3-SA0*SC2*SD3)*V1+(SA3*SB2*SD0-SA2*SB3*SD0-SA3*SB0*SD2+...
SA0*SB3*SD2+SA2*SB0*SD3-SA0*SB2*SD3)*V2+(SA3*SB2*SC0-SA2*SB3*SC0-...
SA3*SB0*SC2+SA0*SB3*SC2+SA2*SB0*SC3-SA0*SB2*SC3)*V3)*ep*M2*VFB...
+((SB3*SC2*SD0-SB2*SC3*SD0-SB3*SC0*SD2+SB0*SC3*SD2+SB2*SC0*SD3-...
SB0*SC2*SD3)*V0+(SA3*SC2*SD0-SA2*SC3*SD0-SA3*SC0*SD2+SA0*SC3*SD2+...
SA2*SC0*SD3-SA0*SC2*SD3)*V1+(SA3*SB2*SD0-SA2*SB3*SD0-SA3*SB0*SD2+...
SA0*SB3*SD2+SA2*SB0*SD3-SA0*SB2*SD3)*V2+(SA3*SB2*SC0-SA2*SB3*SC0-...
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SA3*SB0*SC2+SA0*SB3*SC2+SA2*SB0*SC3-SA0*SB2*SC3)*V3)*ep*M3*VFB...
+((-SB3*SC1*SD0+SB1*SC3*SD0+SB3*SC0*SD1-SB0*SC3*SD1-SB1*SC0*SD3+...
SB0*SC1*SD3)*V0+(-SA3*SC1*SD0+SA1*SC3*SD0+SA3*SC0*SD1-SA0*SC3*SD1-...
SA1*SC0*SD3+SA0*SC1*SD3)*V1+(-SA3*SB1*SD0+SA1*SB3*SD0+SA3*SB0*SD1-...
SA0*SB3*SD1-SA1*SB0*SD3+SA0*SB1*SD3)*V2+(-SA3*SB1*SC0+SA1*SB3*SC0+...
SA3*SB0*SC1-SA0*SB3*SC1-SA1*SB0*SC3+SA0*SB1*SC3)*V3)*ep*M4*VFB...
+((-SB3*SC1*SD0+SB1*SC3*SD0+SB3*SC0*SD1-SB0*SC3*SD1-SB1*SC0*SD3+...
SB0*SC1*SD3)*V0+(-SA3*SC1*SD0+SA1*SC3*SD0+SA3*SC0*SD1-SA0*SC3*SD1-...
SA1*SC0*SD3+SA0*SC1*SD3)*V1+(-SA3*SB1*SD0+SA1*SB3*SD0+SA3*SB0*SD1-...
SA0*SB3*SD1-SA1*SB0*SD3+SA0*SB1*SD3)*V2+(-SA3*SB1*SC0+SA1*SB3*SC0+...
SA3*SB0*SC1-SA0*SB3*SC1-SA1*SB0*SC3+SA0*SB1*SC3)*V3)*ep*M5*VFB...
+((SB2*SC1*SD0-SB1*SC2*SD0-SB2*SC0*SD1+SB0*SC2*SD1+SB1*SC0*SD2-...
SB0*SC1*SD2)*V0+(-SA2*SC1*SD0+SA1*SC2*SD0+SA2*SC0*SD1-SA0*SC2*SD1-...
SA1*SC0*SD2+SA0*SC1*SD2)*V1+(SA2*SB1*SD0-SA1*SB2*SD0-SA2*SB0*SD1+...
SA0*SB2*SD1+SA1*SB0*SD2-SA0*SB1*SD2)*V2+(SA2*SB1*SC0-SA1*SB2*SC0-...
SA2*SB0*SC1+SA0*SB2*SC1+SA1*SB0*SC2-SA0*SB1*SC2)*V3)*ep*M6*VFB...
+((SB2*SC1*SD0-SB1*SC2*SD0-SB2*SC0*SD1+SB0*SC2*SD1+SB1*SC0*SD2-...
SB0*SC1*SD2)*V0+(-SA2*SC1*SD0+SA1*SC2*SD0+SA2*SC0*SD1-SA0*SC2*SD1-...
SA1*SC0*SD2+SA0*SC1*SD2)*V1+(SA2*SB1*SD0-SA1*SB2*SD0-SA2*SB0*SD1+...
SA0*SB2*SD1+SA1*SB0*SD2-SA0*SB1*SD2)*V2+(SA2*SB1*SC0-SA1*SB2*SC0-...
SA2*SB0*SC1+SA0*SB2*SC1+SA1*SB0*SC2-SA0*SB1*SC2)*V3)*ep*M7*VFB+MFA*VFB));

Bq=VFB+(...
+((SF7*SG6*SH5-SF6*SG7*SH5-SF7*SG5*SH6+SF5*SG7*SH6+SF6*SG5*SH7-...
SF5*SG6*SH7)*V4+(SE7*SG6*SH5-SE6*SG7*SH5-SE7*SG5*SH6+SE5*SG7*SH6+...
SE6*SG5*SH7-SE5*SG6*SH7)*V5+(SE7*SF6*SH5-SE6*SF7*SH5-SE7*SF5*SH6+...
SE5*SF7*SH6+SE6*SF5*SH7-SE5*SF6*SH7)*V6+(SE7*SF6*SG5-SE6*SF7*SG5-...
SE7*SF5*SG6+SE5*SF7*SG6+SE6*SF5*SG7-SE5*SF6*SG7)*V7)*eq*M8...
+((SF7*SG6*SH5-SF6*SG7*SH5-SF7*SG5*SH6+SF5*SG7*SH6+SF6*SG5*SH7-...
SF5*SG6*SH7)*V4+(SE7*SG6*SH5-SE6*SG7*SH5-SE7*SG5*SH6+SE5*SG7*SH6+...
SE6*SG5*SH7-SE5*SG6*SH7)*V5+(SE7*SF6*SH5-SE6*SF7*SH5-SE7*SF5*SH6+...
SE5*SF7*SH6+SE6*SF5*SH7-SE5*SF6*SH7)*V6+(SE7*SF6*SG5-SE6*SF7*SG5-...
SE7*SF5*SG6+SE5*SF7*SG6+SE6*SF5*SG7-SE5*SF6*SG7)*V7)*eq*M9...
+((-SF7*SG6*SH4+SF6*SG7*SH4+SF7*SG4*SH6-SF4*SG7*SH6-SF6*SG4*SH7+...
SF4*SG6*SH7)*V4+(-SE7*SG6*SH4+SE6*SG7*SH4+SE7*SG4*SH6-SE4*SG7*SH6-...
SE6*SG4*SH7+SE4*SG6*SH7)*V5+(-SE7*SF6*SH4+SE6*SF7*SH4+SE7*SF4*SH6-...
SE4*SF7*SH6-SE6*SF4*SH7+SE4*SF6*SH7)*V6+(-SE7*SF6*SG4+SE6*SF7*SG4+...
SE7*SF4*SG6-SE4*SF7*SG6-SE6*SF4*SG7+SE4*SF6*SG7)*V7)*eq*M10...
+((-SF7*SG6*SH4+SF6*SG7*SH4+SF7*SG4*SH6-SF4*SG7*SH6-SF6*SG4*SH7+...
SF4*SG6*SH7)*V4+(-SE7*SG6*SH4+SE6*SG7*SH4+SE7*SG4*SH6-SE4*SG7*SH6-...
SE6*SG4*SH7+SE4*SG6*SH7)*V5+(-SE7*SF6*SH4+SE6*SF7*SH4+SE7*SF4*SH6-...
SE4*SF7*SH6-SE6*SF4*SH7+SE4*SF6*SH7)*V6+(-SE7*SF6*SG4+SE6*SF7*SG4+...
SE7*SF4*SG6-SE4*SF7*SG6-SE6*SF4*SG7+SE4*SF6*SG7)*V7)*eq*M11...
+((SF7*SG5*SH4-SF5*SG7*SH4-SF7*SG4*SH5+SF4*SG7*SH5+SF5*SG4*SH7-...
SF4*SG5*SH7)*V4+(SE7*SG5*SH4-SE5*SG7*SH4-SE7*SG4*SH5+SE4*SG7*SH5+...
SE5*SG4*SH7-SE4*SG5*SH7)*V5+(SE7*SF5*SH4-SE5*SF7*SH4-SE7*SF4*SH5+...
SE4*SF7*SH5+SE5*SF4*SH7-SE4*SF5*SH7)*V6+(SE7*SF5*SG4-SE5*SF7*SG4-...
SE7*SF4*SG5+SE4*SF7*SG5+SE5*SF4*SG7-SE4*SF5*SG7)*V7)*eq*M12...
+((SF7*SG5*SH4-SF5*SG7*SH4-SF7*SG4*SH5+SF4*SG7*SH5+SF5*SG4*SH7-...
SF4*SG5*SH7)*V4+(SE7*SG5*SH4-SE5*SG7*SH4-SE7*SG4*SH5+SE4*SG7*SH5+...
SE5*SG4*SH7-SE4*SG5*SH7)*V5+(SE7*SF5*SH4-SE5*SF7*SH4-SE7*SF4*SH5+...
SE4*SF7*SH5+SE5*SF4*SH7-SE4*SF5*SH7)*V6+(SE7*SF5*SG4-SE5*SF7*SG4-...
SE7*SF4*SG5+SE4*SF7*SG5+SE5*SF4*SG7-SE4*SF5*SG7)*V7)*eq*M13...
+((-SF6*SG5*SH4+SF5*SG6*SH4+SF6*SG4*SH5-SF4*SG6*SH5-SF5*SG4*SH6+...
SF4*SG5*SH6)*V4+(-SE6*SG5*SH4+SE5*SG6*SH4+SE6*SG4*SH5-SE4*SG6*SH5-...
SE5*SG4*SH6+SE4*SG5*SH6)*V5+(-SE6*SF5*SH4+SE5*SF6*SH4+SE6*SF4*SH5-...
SE4*SF6*SH5-SE5*SF4*SH6+SE4*SF5*SH6)*V6+(-SE6*SF5*SG4+SE5*SF6*SG4+...
SE6*SF4*SG5-SE4*SF6*SG5-SE5*SF4*SG6+SE4*SF5*SG6)*V7)*eq*M14...
+((-SF6*SG5*SH4+SF5*SG6*SH4+SF6*SG4*SH5-SF4*SG6*SH5-SF5*SG4*SH6+...
SF4*SG5*SH6)*V4+(-SE6*SG5*SH4+SE5*SG6*SH4+SE6*SG4*SH5-SE4*SG6*SH5-...
SE5*SG4*SH6+SE4*SG5*SH6)*V5+(-SE6*SF5*SH4+SE5*SF6*SH4+SE6*SF4*SH5-...
SE4*SF6*SH5-SE5*SF4*SH6+SE4*SF5*SH6)*V6+(-SE6*SF5*SG4+SE5*SF6*SG4+...
SE6*SF4*SG5-SE4*SF6*SG5-SE5*SF4*SG6+SE4*SF5*SG6)*V7)*eq*M15-MFB)*Ap;

end
function d=kdelta(n,m)
if n==m

d=1;
else

d=0;
end
end
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[24] E. Perrey-Debain, R. Maréchal, J. M. Ville, “Side-branch resonators modelling with

Green’s function methods”, Journal of Sound and Vibration, 333, 4458-4472, (2014).

211



[25] A. W. Leissa “Vibration of Shells”, NASA, SP-288 (1973).

[26] C. B. Burroughs, “Acoustic radiation from fluid-loaded infinite circular cylinders

with doubly periodic ring supports”, Journal of the Acoustical Society of America,

75(3), 715-722, (1984).

[27] E. H. Kennard, “The new approach to shell theory: circular cylinders”, Journal of

Applied Mechanics, 20, 33-40, (1953).

[28] J. B. Lawrie, “Vibrations of a heavily loaded, semi-infinite, cylindrical elastic shell.

I”, Proceeedings of the Royal Society of London, 408, 103-128, (1986).

[29] J. B. Lawrie, “An infinite, elastic, cylindrical shell with a finite number of ring

constraints”, Journal of Sound and Vibration, 130(2), 189-206, (1989).

[30] M.C. Junger and D. Feit “Sound, structures, and their interaction”, MIT Press,

(1972).

[31] P. Stepanishen and R. A. Touga, Jr. “Transient acoustic pressure radiated from a

finite duct”, Journal of the Acoustical Society of America, 93(6), 3074-3084, (1993).

[32] B. Zhang and I. D. Abrahams, “The radiation of sound from a finite ring-forced

cylindrical elastic shell”, Proceedings of the Royal Society A 450, 89-108, (1995).

[33] E. A. Skelton, “Line force receptance of an elastic cylindrical shell with heavy exterior

fluid loading”, Journal of Sound and Vibration, 256(1), 131-153, (2001).

[34] E. A. Skelton, “Acoustic scattering by a cylindrical shell with symmetirc line con-

straints in the heavy fluid-loading limit”, Journal of the Acoustical Society of America,

113(1), 299-308, (2003).

[35] E. J. Brambley and N. Peake, “Stability and acoustic scattering in a cylindrical thin

shell containing compressible mean flow”, Journal of Fluid Mechanics, 602, 403-426,

(2008).

[36] M. Caresta and N.J. Kessissoglou, “Structural and acoustic responses of a fluid-

loaded cylindrical hull with structural discontinuities, Applied Acoustics, 70(7), 954-

963, (2009).

[37] R. Kirby, Z. Zlatev and P. Mudge, “On the scattering of longitudinal elastic waves

from axisymmetric defects in coated pipes, Journal of Sound and Vibration, 332, 5040-

5058, (2013).

[38] M. Xie, J. Ih, T. Kim and Y. Li, “Prediction of Acoustic Power Transmission of Fluid-

Filled Thin Pipe Based on Impedance-Mobility Approach”, International Journal of

Aerospace Lightweight Structures, 135-151, (2013).

212



[39] Z. Y. Cao, “Vibration theory of plates and shells”, China Railway Publishing House,

Beijing, (1983).

[40] H. Lee and M. K. Kwak, “Free vibration analysis of a circular cylindrical shell using

the Raleigh-Ritz method and comparison of different shell theories”, Journal of Sound

and Vibration, 353, 344-377, (2015).

[41] M. Abramowitz and I. A. Stegun “Handbook of Mathematical Functions”, Dover

Publications, 9th edition, (1964).

[42] D. G. Crighton, A. P. Dowling, J. E. Ffowcs Williams, M. A. Heckl, F. A. Leppington,

“Modern Methods in Analytical Acoustics”, Springer-Verlag, (1992).

[43] D. P. Warren, J.B. Lawrie and I.M. Mohamed “Acoustic scattering in waveguides

that are discontinuous in geometry and material property”, Wave Motion 36, 119-142

(2002).

[44] J. B. Lawrie “Comments on a class of orthogonality relations relevant to fluid-

struture interaction”, Springer, (2006).

[45] R. Nawaz and J.B. Lawrie, “Scattering of a fluid-structure coupled wave at a flanged

junction between two flexible waveguides, Journal of the Acoustical Society of America,

134(3), 1939-1949, (2013).

[46] J. B. Lawrie “On eigenfunction expansions associated with wave propagation along

ducts with wave-bearing boundaries”, IMA Journal of Applied Mathematics, 376-394,

(2007).

[47] J.W. Brown and R.V. Churchill, “Fourier series and Boundary value problems”,

McGraw Hill, 241-297, (2008).

[48] J. B. Lawrie and I.D. Abrahams, “An orthogonality relation for a class of problems

with high-order boundary conditions; applications in sound-structure interaction”, The

Quarterly Journal of Mechanics and Applied Mathematics, 161-181, (1999).

[49] J. B. Lawrie, “On acoustic propagation in three-dimensional rectangular ducts with

flexible walls and porous linings, Journal of the Acoustical Society of America, 131(3),

1890-1901, (2012).

[50] J. B. Lawrie, “Analytic mode-matching for acoustic scattering in three dimensional

waveguides with flexible walls: Application to a triangular duct, Wave Motion, 50,

542-557, (2013).

[51] R .M. Pullen and J. B. Lawrie, “Reflection and transmission at the junction between

two sections of circular cylindrical shell”, ICSV21, Beijing, China, 1-7, (2014).

213


