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Since its proposal as an alternative risk measure to value-at-risk (VaR),
expected shortfall (ES) has attracted a great deal of attention in financial
risk management, primarily owing to its coherent properties. Recently, there
has been an upsurge of research on the estimation of ES from a non-
parametric perspective. The focus of this paper is on a few kernel-based ES
estimators, including jackknife-based bias-correction estimators that have
theoretically been documented to reduce bias. Bias reduction is particularly
effective in reducing the tail estimation bias as well as the consequential
bias that arises in kernel smoothing and finite-sample fitting and, thus,
serves as a natural approach to the estimation of extreme quantiles of
asset price distributions. By taking advantage of ES as an integral of the
quantile function, a new type of ES estimator is proposed. To compare the
performance of the estimators, a series of comparative simulation studies
are presented and the methods are applied to real data. An estimator that
has an analytical form turned out to perform the best.

1 INTRODUCTION

Risk measures play an important role in market risk management. The most common
risk measure is value-at-risk (VaR), which is defined as the maximum potential loss
of a given portfolio over a prescribed holding period at a given confidence level.
Its use was recommended by the Basel Committee in 1996 (Basel Committee on
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Banking Supervision (1996)) and also in the latest proposed Basel II standards
(Basel Committee on Banking Supervision (2003)). Following these guidelines,
financial regulators all over the world have adopted VaR to design capital adequacy
standards for banks and financial institutions. In addition, financial firms have
adopted VaR for internal risk management and the allocation of resources (see
Danielsson et al (2005)).

Artzner et al (1997) introduced the concept of coherent risk measures (see also
Artzner et al (1999) and Artzner (1999)). They argued that a risk measure should
satisfy four desirable properties: monotonicity, subadditivity, positive homogeneity
and translation invariance.

Artzner et al (2002) further extended the concept of coherence to multi-period
risk measurement, explaining why and how to deal with the definition, acceptability,
computation and management of risk in a genuinely multi-temporal way. They
pointed out that VaR is not a coherent risk measure because it does not satisfy the
subadditivity condition. This implies that the risk of a portfolio, when measured by
VaR, can be larger than the sum of the standalone risks of its components.

In order to construct a risk measure that is both coherent and easy to compute
and estimate, the expected shortfall (ES) was proposed and discussed by Acerbi et al
(2001). Expected shortfall is defined as the expectation of losses above VaR. Acerbi
and Tasche (2002a) then provided an integral representation of ES, while Acerbi and
Tasche (2002b) showed that ES arises in a natural way from the estimation of the
“average of the 100α% worst losses” in a sample of returns to a portfolio.

The estimation of VaR has received a great deal of attention in the literature, and
in recent years there has been a growing interest in the estimation of ES from a
non-parametric angle; see Scaillet (2004, 2005) and Chen (2008).

Basically, these authors propose a two-step non-parametric method that involves,
first, non-parametric estimation of VaR and, then, non-parametric estimation of the
expectation of a truncated variable at VaR. Fermanian and Scaillet (2005) also
explored some interesting applications of these methods in credit risk environments.

The above estimators, while interesting, may have substantial bias arising from
the boundary effects of kernel estimation for small probability levels. In this paper,
we note that ES can be expressed as an integral of the quantile function. By virtue
of this expression, studying the analytical properties of ES becomes analytically
tractable. Based on the integral, we develop a one-step non-parametric method of
ES estimation and consider some kernel-based estimators with bias correction.

The layout of the paper is as follows. Section 2 introduces the quantile function-
based ES estimator. Section 3 lists a few (existing or new) kernel-based estimators
of ES, including the proposed one-step kernel estimator and the existing two-step
kernel estimator of Scaillet (2004) and Chen (2008). In Section 4 we compare six
kernel-based ES estimators through Monte Carlo experiments. Finally, in Section 5,
we present an empirical illustration of the estimators on two financial indexes.

The Journal of Risk Volume 12/Number 4, Summer 2010



Kernel quantile-based estimation of expected shortfall 17

2 EXPECTED SHORTFALL

Let X be the random variable describing the future value of the profit or loss of a
portfolio at some fixed time horizon T from today, and let α ∈ (0, 1) be a probability
level. Usually, α stands for the loss probability. The quantile with level α is defined
to be:

q(α)= sup{x | P(X ≤ x)≤ α} (2.1)

and the VaR is defined by:
VaR(α)=−q(α) (2.2)

If the truncated mean exists, ie, if E[X−]<∞ where X− = max(−X, 0), then
the tail conditional expectation (TCE) and the expected shortfall (ES) are defined,
respectively, as:

TCE(α)=−E{X |X ≤ q(α)} (2.3)

and:

ES(α)=− 1

α
{E[XI(X ≤ q(α))] − q(α)[P(X ≤ q(α))− α]} (2.4)

Delbaen (1998) reported that the TCE does not, in general, satisfy subadditivity.
Acerbi et al (2001) proved that ES(α) is subadditive but that TCE(α) generally is
not. However, if X is a continuous random variable, then:

ES(α)= TCE(α)=− 1

α
E[XI(X ≤ q(α))] (2.5)

Based on the structure of truncated expectation, Scaillet (2004) presented a non-
parametric kernel estimator of the ES associated with a portfolio, and derived the
asymptotic properties of the kernel estimator and its first-order derivative with
respect to portfolio allocation, in the context of a stationary process satisfying strong
mixing conditions. The asymptotic performance and optimal bandwidth of the kernel
estimator were considered by Chen (2008). These estimation methods involve two
bandwidth selections: one for estimating q(α) and the other for estimating ES(α).

In this paper we shall use the fact that ES can be expressed as an integral of a
quantile function via a simple integral transformation:

ES(α)=− 1

α

∫ α

0
q(p) dp (2.6)

See, for example, Pflug and Römisch (2007).
This expression makes studying the analytical properties of ES mathematically

tractable. For instance, it is clear from (2.6) that ES(α) is continuous in α, while
this is not obvious from (2.4). Moreover, ES(α) can be estimated via an explicit
computation as long as the quantile function q(p) is specified; thus the estimation is
both simple and fast.
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3 NON-PARAMETRIC ESTIMATION OF EXPECTED SHORTFALL

3.1 Kernel estimation

The basic kernel density estimator is given by f̂h(x)= (1/n)
∑n

i=1 Kh(x − xi),
where x1, x2, . . . , xn ∼ f is a sample from the distribution with density f . Here
Kh(u)= h−1K(h−1u), h is the smoothing parameter, and K(u) is taken to be a
symmetric probability density function (see Silverman (1986)).

Let F be the distribution function of f . The basic kernel estimator of F is given
by F̂h(x)= (1/n)

∑n
i=1 Ah(x − xi), where A(x)= ∫ x

−∞ K(u) du is the integrated
kernel and Ah(u)= A(u/h).

Let q(p) be a p% quantile of F (where 0< p < 1). Then there are three basic
kernel quantile function estimators of qp, given by:

1) distribution function-based estimation from the inverse solution of Fh(x)= p;
2) density function-based estimation from the integral solution of∫ q(x)

−∞ fh(x) dx = p;

3) a kernel-weighted sum of order statistics, q̂(p)= ∑n
i=1[

∫ i/n
i−1/n Kh

(t − p) dt]x(i), where x(1), x(2), . . . , x(n) are the sample order statistics.

The above three kernel quantile estimators have equivalent asymptotic perfor-
mance, in terms of the following asymptotic mean square error (AMSE) given by
Cheng and Sun (2006):

AMSE = p(1 − p)

n
u2(p)+ h4

4
(u′(p)σK)2 − h

n
u2(p)ψ(K) (3.1)

where u= q ′, u′ = q ′′, σ 2
K = ∫ ∞

−∞ t2K(t) dt and ψ(K)= 2
∫
yK(y)A(y) dy. The

finite-sample performance of the three kernel quantile estimators is studied in
Section 4.

Let q̂(p) be the kernel estimator of q(p); then the two-step kernel estimation of ES
from the basic definition (2.5) is given by ẼSh(α)= (1/nα)

∑n
i=1 xiAh(q̂(α)− xi)

(Scaillet (2004); Chen (2008)), where q̂(α) is the solution of Fh(x)= α.
Alternatively, a one-step kernel estimator of ES from (2.6) is given by ÊSh(α)=

−(1/α) ∫ α
0 q̂(p) dp.

Clearly, ẼSh(α) is a sum-type estimator whereas ÊSh(α) is an integral-type
estimator.

From asymptotic results on kernel estimation (see Parzen (1979)), the bias of all
these estimators is O(h2) as h→ 0. In terms of theoretical properties, it is difficult
to compare the performance of a one-step kernel estimator with that of a two-step
one, but in the appendix we do provide some analytical properties of these estimators,
such as their asymptotic bias and mean-square errors. Under certain conditions, these
asymptotic properties do recommend ÊSh over ẼSh(α). In order to evaluate and
compare the finite-sample performance of these estimators, in Section 4 we employ
Monte Carlo simulations to calculate the bias of all the proposed estimators for a
number of different models.
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3.2 Bias reduction of kernel estimators

According to the kernel-based jackknife rule (see Jones and Signorini (1997), among
others), if η̂h is the kernel estimator of ηh with biasO(h2), then as h→ 0, η̃ = 2η̂h −
η̂√2h theoretically improves bias fromO(h2) toO(h4). There is usually data scarcity
in the tail of a distribution, especially in the far tail. Consequently, for small p, proper
kernel estimation of the quantile q(p) is difficult. The simulation study in Section 4
shows that the bias-reduction technique is particularly effective for the estimation of
ES(α) when α is small.

3.3 One- and two-step kernel estimators

For the simulation and empirical studies we will compare the following six ES
estimators.

We consider the two-step sum-type kernel estimator and its bias-reduced form, as
follows.

Est1(2S): ẼSh(α)= (1/(nα))
∑n

i=1 xiAh(q̂(α)− xi), where q̂(α) is a kernel
estimator of q(α).

Est2(2S)br(1): the bias-reduced version of Est1(2S), ie, ẼSr (α)= 2ẼSh(α)−
ẼS√2h(α).

Two-step kernel estimation requires selecting the smoothing parameter h twice.
The selection of h is of crucial importance and is well known to be a difficult task,
especially when smoothing the tails of underlying distributions with possible data
scarcity. Hence, the fewer times h is selected the simpler the estimator.

We also consider the following three one-step kernel estimators.

Est3(1S)dens: ÊSf (α)=−(1/α) ∫ α
0 q̂(p) dp, with q̂(p) being estimated by a kernel

density function.
Est4(1S)dist: ÊSF (α)=−(1/α) ∫ α

0 q̂(p) dp, with q̂(p) being estimated by a kernel
distribution function.

Est5(1S)order: ÊSKq(α)=−(1/α) ∫ α
0 q̂(p) dp, with q̂(p) being estimated by

kernel-weighted order statistics.

Note that there is an explicit expression for Est5(1S)order, namely ÊSKq,h(α)≡
ÊSKq(α)=−(1/α)∑n

i=1 x(i)
∫ i/n
(i−1)/n

∫ α
0 Kh(t − p) dp dt .

In addition, we consider its bias-reduced version, as follows:

Est6(1S)br(5): ÊSKqr(α)= 2ÊSKq,h(α)− ÊS
Kq,

√
2h(α)

As discussed in Remark 1 of Appendix A, the two-step kernel estimator almost
always underestimates ES, but the one-step kernel estimator may not.

Henceforth, where convenient, we shall refer to the above estimators as estima-
tors 1 to 6.
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4 MONTE CARLO STUDY

Throughout this section, we fix the kernel function to be the standard normal density
and employ the bandwidth selection rules proposed by Sheather and Jones (1991)
and Bowman et al (1998) for the estimation of kernel density and distribution,
respectively.

A Monte Carlo study was carried out to evaluate the performance of the six
estimators of ES(α) using three different models.

4.1 Model 1: normal distribution

Suppose that the return of a financial asset X is normally distributed such that:

X ∼N(µ− σ 2/2, σ 2) (4.1)

Write a =: µ− σ 2/2; then we have:

E[XI(X ≤ q(α))] = a"

(
q(α)− a

σ

)
− σ√

2π
e−([q(α)−a]2/2σ 2)

Hence, the true value of ES is given by:

ES(α)= σ 2

α
φ

(
q(α)− a

σ

)
− a (4.2)

where and φ(·) and "(·) denote, respectively, the standard normal density and
distribution functions.

4.2 Model 2: mixture normal distribution

Assume that X is the return of an asset with a mixture normal distribution:

f (x)= τf1(x)+ (1 − τ)f2(x) (4.3)

where f1(x) and f2(x) are the density functions of N(a1, σ
2
1 ) and N(a2, σ

2
2 ),

respectively. This is a non-elliptical distribution. Under (4.3), the true value of ES is:

ES(α)= τσ1

α
φ

(
q(α)− a1

σ1

)
+ (1 − τ)σ2

α
φ

(
q(α)− a2

σ2

)
− τa1 − (1 − τ)a2

4.3 Model 3: mixture t distribution

Assume that X is the return of an asset with a mixture Student’s t distribution:

f (x)= τf1(x)+ (1 − τ)f2(x) (4.4)
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TABLE 1 Mean bias comparison of the kernel quantile estimators based on cumu-
lative distribution, density and order statistics for a sample size of 100.

Distribution Density Order statistics

α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

Model 1 −0.0173 −0.0127 −0.0171 −0.0127 0.0056 0.0092
(0.2883) (0.1818) (0.2881) (0.1810) (0.3433) (0.2077)

Model 2 0.0210 0.0148 0.0210 0.0148 0.0256 0.0186
(0.0762) (0.0492) (0.0762) (0.1809) (0.0904) (0.0554)

Model 3 0.7270 0.4226 0.8316 0.4226 0.7526 0.5242
(7.6468) (0.0492) (9.3140) (0.1809) (12.8185) (2.6595)

Shown in brackets are the standard errors multiplied by 100.

where f1(x) and f2(x) are the density functions of Student’s t distributions with
degrees of freedom three and five, respectively. Under (4.4), the true value of ES is
given by:

ES(α)= 1

α

(
τ

4√
2π

+ (1 − τ)
3

2
√

2π

)
q(α)

Before proceeding to the calculation of ES, we empirically assess the finite-
sample performance of the three kernel quantile estimators described in Section 3.1,
which are known to have the same asymptotic mean square error. Table 1 shows the
average bias induced by the three estimators for a sample size of 100. From the table
it can be observed that there are no significant differences in results obtained from the
three estimators. The table further confirms the fact that the accuracy of the kernel
quantile estimators diminishes as we attempt to estimate extreme quantiles.

For all three models we now consider the ES estimation for each estimator
at loss probability levels 0.01 and 0.05 and sample sizes 100 and 300, where
the mean and variance in (4.1) are chosen to be 0.05 and 0.01, respectively. In
response to a referee’s suggestion that the kernel-based estimators be compared with
other commonly used methods of estimating expected shortfall, we include in our
comparison the extreme value theory (EVT) approach to estimating ES by fitting a
generalized Pareto distribution to the lower tail of the distribution, as explained in
McNeil and Frey (2000).

Table 2 (see the next page) reports the bias of the estimators as well as 95%
confidence bands of biases, based on 1,000 replications, for a sample size of 100. The
results for sample size 300 are presented in Table A.1 (see page 30) in the appendix.

Numerical results show that, in most cases, kernel-based methods tend to under-
estimate the theoretical ES, which is consistent with the theoretical result stated in
Remark 1 of Appendix A. However, the performances of these estimators differ.
First, despite similar asymptotic behavior, the four non-bias-reduced estimators (1, 3,
4 and 5) show different bias performances for finite samples of size n= 100 and size
n= 300; see Remark 1 in Appendix A. In particular, at both 1% and 5% levels, the
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two-step estimator 1 performed better than the one-step non-bias-reduced estima-
tors 3 and 4 but achieved more or less the same results as the other one-step non-
bias-reduced estimator, namely estimator 5. Second, by comparing the performance
of estimator 2 with that of estimator 1 and the performance of estimator 6 with
that of estimator 5, we observe that, in agreement with the asymptotic results, bias
reduction does improve estimation accuracy for a finite sample. Additionally, it is
worth noting that the biases of estimators 1 to 4 may be partially caused by the
kernel estimation of q(p) in the first place, whereas estimators 5 and 6 do not rely
on any initial estimation of q(p). Finally, it can be observed that the one-step bias-
reduced estimator 6, derived from estimator 5, performs best with the smallest bias
and narrower confidence bands.

Table 2 demonstrates empirically that the EVT method, like the kernel-based
estimators, underestimates the true ES.

In order to gain a better understanding of the bias as a function of α, we consider
40 equally spaced levels of α ranging from 0.01 to 0.05. Figure 1 (see the next page)
displays smoothed bias estimates and their 95% bootstrapped confidence bands for
estimators 5 and 6, based on model 1 with n= 100. Graphs for estimators 1 to 4 are
shown in Figure A.1 of Appendix A (see page 29). The plots of all estimators show a
slight increase in bias as α decreases; however, such a gentle increase does not make
the estimation accuracy weak. The wider confidence bands for the lower quantiles
indicate greater uncertainty in estimating ES, primarily owing to the scarcity of data.

Comparing the biases of the estimators for n= 100 and n= 300 reveals that
bias does not always decrease with large sample size. This observation is further
illustrated by Figure 2 (see page 25), which shows the calculated bias for all six
estimators under the normal mixture model for n= 100 and n= 300. The results
for the remaining models are roughly the same and are therefore omitted. We also
considered the bias-reduced versions of estimators 3 and 4 but came to the conclusion
that they perform no better than estimator 6.

The bias performance of the bias-reduction estimators is significantly better than
that of their originators. In particular, estimator 6 (ie, ÊSKqr(α)= 2ÊSKq,h(α)−
ÊSKq,

√
2h(α)) generally does best.

5 EMPIRICAL STUDY

In this section, the proposed kernel estimators are applied to estimate the ES of two
financial series. These two financial series consist of the daily returns of the Dow
Jones and S&P 500 indexes for the period from January 1, 2002 to December 31,
2004, comprising 750 observations. Figure 3 (see page 26) displays the log-returns
series for the two indexes.

All six ES estimators investigated in this study are based on non-parametric
methods and thus make no distribution assumptions. It is by now well established
that one of the characteristics of real financial time series is the presence of het-
eroscedasticity. In order to account for the effects of changing volatility in forecasting
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FIGURE 1 The estimated bias together with 95% confidence bands for Est5(1S)order
(left panel) and Est6(1S)br(5) (right panel), based on model 1 with n= 100.
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the next period’s ES, the six proposed estimators could be applied after the removal
of heteroscedasticity through filtering methods such as the one proposed by McNeil
and Frey (2000). However, we note that the application of the filtering approach of
McNeil and Frey (2000) would render the six estimators semi-parametric, because
this method requires the selection of a specific model, such as the generalized
autoregressive conditional heteroscedasticity (GARCH) model of Bollerslev (1986),
for the conditional mean and volatility dynamics.

Assuming that the conditional mean is zero and that the distribution of the return
process is constant, as is commonly the case in many financial applications, we make
use of Parkinson’s volatility estimator (Parkinson (1980)) in conjunction with the six
proposed estimators to forecast the ES one period ahead and thus maintain the non-
parametric nature of the estimators.

Let Ht and Lt denote, respectively, the highest and lowest prices on day t ; then
the Parkinson volatility estimator is defined as:

σ̂P,t = ln(Ht )− ln(Lt )√
4 ln(2)

(5.1)
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FIGURE 2 The estimated bias, based on model 2, for sample sizes n= 100 (top
panel) and n= 300 (bottom panel).
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The dash–dotted, dashed, circled, solid, starred and dotted lines represent estimators 1 to 6, respectively.

Given the historical evolution of log-transformed prices of a financial asset, {rt =
ln(Pt )− ln(Pt−1)}Tt=1 where Pt denotes the closing price on day t , together with the
highest and lowest prices {H }Tt=1 and {L}Tt=1, our approach, like that of McNeil and
Frey (2000), can be split into two stages as follows.

1) Estimate {σ̂P,t }Tt=1 and standardize the returns so that {zt }Tt=1 =
{rt }Tt=1/{σ̂P,t }Tt=1; then use the proposed estimators to estimate the ES
of the standardized returns, ESz(α).

2) To obtain an estimate of the next day’s ES, multiply the standardized expected
shortfall by σ̂P,T ; that is, take ES(α)= σ̂P,T ESz(α). Implicitly, this model-
free approach uses the current volatility as an estimator of the next period’s
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FIGURE 3 Log-returns time series for the Dow Jones index (DJI) and the S&P 500
index.
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volatility and is different from the method proposed by McNeil and Frey
(2000), which by construction uses a model to forecast volatility; furthermore,
McNeil and Frey (2000) employed the generalized Pareto distribution to
estimate the ES of the standardized residuals.

Before estimating the one-step-ahead ES from the six models, we present in
Figure 4 (see the next page) ES estimates for 40 equally spaced loss probability
levels ranging from 0.01 to 0.05, using the original unstandardized returns of the
S&P 500 index. The estimates for the Dow Jones index exhibit the same pattern
and are therefore not included. Careful investigation of the graph reveals that, in
comparison to the other four estimators, estimators 2 and 6 produce very close ES
estimates.

Table 3 (see the next page) shows one-step-ahead ES estimates for the Dow Jones
and S&P 500 indices obtained from the six estimators using the procedure outlined
above. In Table 3 we also present ES estimates obtained from the Gaussian and
Student’s t distributions, using the same procedure of estimating volatility. From the
table it can be observed that the kernel-based and parametric ES estimators produce
quite different results.
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FIGURE 4 ES estimates produced by the six estimators.
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respectively.

TABLE 3 One-period-ahead ES estimates for loss probability levels α = 0.01 and
α = 0.05 obtained from kernel-based and parametric estimators, where the original
value has been multiplied by 100.

DJI S&P 500

α = 0.01 α = 0.05 α = 0.01 α = 0.05

Est1(2S) 0.7262 0.4177 0.9842 0.4477
Est2(2S)br(1) 0.5427 0.4087 0.7146 0.4258
Est3(1S)dens 0.6396 0.5091 0.6784 0.5780
Est4(1S)dist 0.5638 0.4710 0.5937 0.5345
Est5(1S)order 0.5581 0.4805 0.8151 0.5952
Est6(1S)br(5) 0.5317 0.3854 0.7091 0.5654

Normal 0.4912 0.4270 0.6737 0.5794
Student’s t(5) 0.5305 0.4487 0.7078 0.5456
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6 CONCLUSIONS

Kernel smoothing is a useful non-parametric method for estimating ES. In this
paper we have proposed one-step kernel estimators of ES, and through Monte Carlo
simulation we have demonstrated the appealing numerical performance of these
estimators in comparison to existing two-step kernel estimators. Our estimators are
kernel quantile-based ones. Several of the estimators proposed in this paper, such as
estimators 1, 3, 4 and 5, are shown to be fast, efficient and valid for the estimation
of ES. Estimator 5 can even be computed explicitly. The failure of an estimator of
ES is often due not to substandard methodology but rather to the inaccurate and
difficult estimation in the tail of a distribution. It was noted that application of a
bias-reduction technique leads to estimators (namely, estimators 2 and 6) that show
improved accuracy relative to their non-bias-reduced versions (estimators 1 and 5).
In particular, estimator 6, a computationally efficient new bias-reduction estimator
with an explicit expression, is demonstrated to be unrivaled in terms of reducing ES
estimation bias.

APPENDIX A ANALYTIC PROPERTIES OF ẼSh(α) AND ÊSh(α)

We use the following basic assumptions from Chen and Tang (2005).

A1) The process {Xi : 1 ≤ i ≤ n} is strictly stationary and α-mixing, and there exists
a ρ ∈ (0, 1) such that the mixing coefficient satisfies α(k)≤ Cρk for all k ≥ 1.
The random variableX1 is continuously distributed, with f and F as its density
and distribution functions, respectively.

A2) We have f (q(p)) > 0 whenever p ∈ (0, 1) and f has continuous second
derivative in a neighborhood B(q(p)) of q(p). The second partial derivatives
of Fk , which form the joint distribution function of (X1, Xk+1) for k ≥ 1, are
all bounded in B(q(p)) uniformly with respect to k.

A3) The kernel function G(t)= ∫ t
∞ K(u) du, where K is a univariate probability

density function, has continuous bounded second derivative and satisfies the
following moment conditions:∫ ∞

−∞
uK(u) du= 0 and

∫ ∞

−∞
u2K(u) du= σ 2

K <∞

A4) The smoothing bandwidth h satisfies h→ 0, nh3−τ →∞ for any τ > 0 and
nh4 log2(n)→ 0 as n→∞.

Under the assumptions A1–A4, Chen and Tang (2005) gave the mean square error
of q̂(p) as follows:

MSE(q̂(p))= n−1σ 2(p; n)f−2(q(p))− 2n−1hbKf
−1(q(p))

+ 1

4
h4σ 4

K{f ′(q(p))f−1(q(p))}2 + o

(
h

n
+ h4

)
(A.1)
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FIGURE A.1 The estimated bias of estimators 1 to 4, based on model 1 with n= 100
and α taking equally spaced values between 0.01 and 0.05.
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The top panel displays the estimated bias of Est1(2S) (dashed line) and Est2(2S)br(1) (dotted line); the
bottom panel shows the estimated bias of Est3(1S)dens (dotted line) and Est4(1S)dist (dashed line). In
both panels, the 95% confidence bands for the dotted and dashed lines are given, respectively, by
starred and circled lines.

where bK = ∫ ∞
−∞ uK(u)G(u) du, σ 2(p; n)= {p(1 − p)+ 2

∑n−1
k=1(1 − k/n)γ (k)}

and γ (k)= cov{I (X1 < q(p)), I (Xk+1 < q(p))} for positive integers k. Clearly,
σ 2(p; n)= p(1 − p) for an independent process.

From (A.1), it is easy to get an upper bound for the mean square error of the
one-step estimator ÊSh(α). Indeed, we have:

MSE(ÊSh(α))≤ 2

nα2

(∫ α

β

σ 2(p; n)f−2(q(p)) dp

)

+ h4σ 4
K

4α2

[∫ α

β

f ′(q(p))f−1(q(p)) dp

]2

− 4hbK
nα2

(∫ α

β

f−1(q(p)) dp

)
+ o(h/n+ h4) (A.2)

Owing to the mathematical complexity, it is difficult to compare the two types of
estimators by their mean square errors. However, we may be able to compare their

Research Paper www.thejournalofrisk.com



30 K. Yu et al

TA
BL

E
A

.1
Bi

as
of

th
e

ke
rn

el
es

tim
at

io
n

of
ES

w
ith

sa
m

pl
e

si
ze
n
=

30
0,

w
he

re
th

e
bi

as
ha

s
be

en
m

ul
tip

lie
d

by
1,

00
0.

Es
t1

(2
S)

Es
t2

(2
S)

br
(1

)
Es

t3
(1

S)
de

ns
Es

t4
(1

S)
di

st
Es

t5
(1

S)
or

de
r

Es
t6

(1
S)

br
(5

)
EV

T

α
=

0.
01

M
od

el
1

−5
.1

−4
.9

−8
.1

−2
.2

6.
3

−1
.3

−1
6.

3
(−

19
.2

,2
.6

)
(−

10
.1

,6
.7

)
(−

16
.3

,−
2.

1)
(−

3.
8,

−1
.2

)
(−

8.
5,

13
.6

)
(−

7.
3,

2.
1)

(−
37

.3
,−

5.
3)

M
od

el
2

−1
7.

7
−1

8.
0

−2
7.

7
−7

.4
21

.2
−4

.8
−4

.2
7

(−
67

.7
,1

3.
2)

(−
62

.9
,1

5.
3)

(−
52

.5
,−

7.
1)

(−
12

.6
,−

3.
4)

(−
16

.5
,5

1.
0)

(−
25

.2
,7

.1
)

(−
10

.4
,7

.2
)

M
od

el
3

−1
49

.4
−1

44
.5

−2
60

.4
−8

3.
5

12
4.

5
−4

5.
4

−1
26

.4
(−

91
2.

2,
31

5.
0)

(−
94

2.
6,

33
8.

1)
(−

69
6.

8,
29

.3
)

(−
18

2.
7,

−5
.3

)
(2

6.
6,

21
7.

1)
(−

36
0.

4,
11

9.
8)

(−
13

6.
8,

−1
17

.2
)

α
=

0.
05

M
od

el
1

−1
.4

−2
.4

−3
.5

−1
.5

7.
5

−0
.9

−1
1.

3
(−

4.
7,

2.
2)

(−
3.

1,
1.

8)
(−

5.
2,

−2
.4

)
(−

1.
9,

−0
.7

)
(5

.2
,1

0.
4)

(−
1.

5,
1.

3)
(−

30
.3

,−
0.

34
)

M
od

el
2

−4
.4

−4
.4

−1
2.

1
−5

.2
2.

6
−2

.9
−2

.7
(−

16
.3

,5
.8

)
(−

17
.2

,6
.0

)
(−

18
.5

,−
6.

4)
(−

8.
2,

−2
.9

)
(1

7.
0,

35
.8

)
(−

8.
1,

2.
2)

(−
17

.7
,6

.4
)

M
od

el
3

−7
0.

8
−6

5.
4

−1
81

.2
−7

7.
2

71
.1

−4
1.

4
−2

2.
5

(−
30

4.
2,

15
1.

9)
(−

29
0.

1,
15

3.
0)

(−
30

7.
6,

−0
.6

7)
(−

12
2.

2,
−4

0.
4)

(4
8.

1,
96

.8
)

(−
14

1.
8,

44
.5

)
(−

68
.6

,2
1.

3)

Sh
ow

n
in

br
ac

ke
ts

ar
e

th
e

95
%

bo
ot

st
ra

pp
ed

co
nfi

de
nc

e
in

te
rv

al
s.

The Journal of Risk Volume 12/Number 4, Summer 2010



Kernel quantile-based estimation of expected shortfall 31

biases. In fact, from Chen and Tang (2005) and Chen (2008), we have:

Bias(q̂(p))=− 1
2h

2σ 2
Kf

′(q(p))f−1(q(p))+ o(h2) (A.3)

and:

Bias(ẼSh(α))=− 1

2α
h2σ 2

Kf (q(α))+ o(h2) (A.4)

Using the fact that q ′(p)= f−1(q(p)) and Equation (A.3), we get:

Bias(ÊSh(α))= 1

2α
h2σ 2

K [f (q(α))− lim
β→0

f (q(β))] + o(h2) (A.5)

REMARK 1 Asymptotically, Equation (A.4) shows that the two-step kernel estimator
always underestimates ES; however, the integral-type estimator may or may not
underestimate ES, depending on the sign of the factor 1 − limβ→0 f (q(β))/f (q(α))

in Equation (A.5).

REMARK 2 The condition |1 − limβ→0 f (q(β))/f (q(α))| ≤ 1, which implies
that the one-step estimator ÊSh(α) has smaller bias than the two-step estimator
ẼSh(α), holds for some (but not all) distributions. In fact, we make the following
observations.

1) Because f (q(β)) tends to the left end of the support of f (x) when β tends to
zero, and f (x) is usually increasing in the left tail, we have f (q(β)) > 0 and
1 − f (q(β))/f (q(α)) < 1 provided that f ′(q(β)) > 0.

2) It can be seen that f (q(β))/f (q(α))≥ 0 when β is very small. For example,
under the normal distribution with f (x)= 1/(

√
2πσ) exp(−((x − a)2/2σ 2)),

we have 0< f (q(β))/f (q(α)) < 1.
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