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Abstract—In this letter, the performance of an energy detection
(ED) is analysed over different composite generalized multi-
path/gamma fading channels, namely, κ−µ/gamma, η−µ/gamma,
and α − µ/gamma. The mixture gamma (MG) distribution is
employed to approximate with high accuracy the signal-to-noise-
ratio (SNR) for all these channels. General, mathematically
tractable, and unified analytic expressions for the performance
metrics of ED, i.e., the average detection probability and the
average area under the receiver operating characteristics curve
(AUC), are derived. The validation of our analysis is verified by
comparing the analytical results with the simulation results.

Index Terms—Mixture gamma distribution, κ−µ, η−µ, α−µ,
gamma distribution, energy detection.

I. INTRODUCTION

THE performance of energy detection (ED) that is widely
employed to perform spectrum sensing in cognitive radio

(CR), has been extensively analysed over different fading
channels [1]-[8]. For example, the behaviours of ED over
κ − µ and η − µ fading channels, which are proposed by
[9] to model the line-of-sight (LoS) and Non-line-of-sight
(NLoS) communication scenarios, respectively, are studied in
[5] and [8], respectively. In [4], the performance of ED over
α − µ fading channel, which is utilised to represent the non-
homogeneous propagation environment [10], is investigated.

A part of fading channel is shadowing that may occur
at the same time with the multipath fading. In the open
technical literature, few works have been dedicated to study
this scenario over conventional composite fading channels.
In [2], the performance of ED over composite Nakagami-
m/gamma fading channels, i.e., KG is investigated by deriving
the average probability of detection. Analytic expressions for
the average area under the receiver operating characteristics
curve (AUC) over composite Rician/gamma fading channel
are given in [7]. But, these expressions are mathematically
complicated and included an infinite series that is converged
slowly and unsteadily. To overcome these problems, a mixture
gamma (MG) distribution is suggested by [3] to approximate
with high accuracy a variety of fading channels and derive
unified expressions for both the average probability of detec-
tion and average AUC. However, the average probability of
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detection is expressed in integral form and it is applicable
when the values of both the fading parameter (e.g., µ) and
time-bandwidth product are integer numbers. Furthermore, the
expression of the average AUC is restricted by the value of the
time-bandwidth product which should be an integer number.

Motivated by the above, in this work, we firstly employ the
MG distribution to represent the signal-to-noise-ratio (SNR) of
the composite κ−µ/gamma, η−µ/gamma and α−µ/gamma
fading channels that have not been yet studied. Then, we derive
general, exact, and computationally tractable analytic expres-
sions for both the average probability of detection and average
AUC to analyse the behaviour of ED over aforementioned
composite fading channels. It is noteworthy that unlike the
work in [3], our derived expressions are applicable for both
integer and non-integer numbers of the fading parameter and
time-bandwidth product.

II. ENERGY DETECTION MODEL

In the case of additive white Gaussian noise (AWGN), the
probability of detection, Pd(γ, λ), [1, eq. (5)] and probability
of false alarm, Pf (λ), [1, eq. (4)] are expressed as

Pd(γ, λ) = Qu(
√

2γ,
√
λ) and Pf (λ) =

Γ(u, λ/2)

Γ(u)
. (1)

where γ = |h|2Es/N0, h, N0, Es and λ are the instanta-
neous SNR, the channel gain, the transmitted signal energy,
one-side of the noise power spectral density and the pre-
defined threshold value, respectively. Moreover, Γ(a, b) =∫∞
b
e−xxa−1dx is the upper incomplete gamma function [11],

Γ(a) =
∫∞

0
e−xxa−1dx is the gamma function [11], and

Qu(a, b) =
∫∞
b

xu

au−1 e
− x

2+a2

2 Iu−1(ax)dx is the generalized
Marcum-Q function [6] where u and Ia(.) represent the time-
bandwidth product and the modified Bessel function of the
first kind and ath order, respectively.1.

III. THE MG DISTRIBUTION FOR COMPOSITE
κ− µ/GAMMA, η − µ/GAMMA AND α− µ/GAMMA FADING

CHANNELS

The probability density function (PDF) of the instantaneous
SNR, γ, (fγ(γ)) of wireless fading channel can be expressed
by the MG distribution as [3, eq. (1)]

fγ(γ) =

N∑
i=1

α̃iγ
βi−1e−ζiγ . (2)

1It can be noted that u = S/2 and 1 +u = S/2where S is the number of
samples [1].
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where N is the number of terms and α̃i, βi and ζi are the
parameters of ith Gamma component. It can be observed that
the main problem in using the MG is how to determine N .
In [3], some methods are proposed to compute a minimum N
that achieves good approximation with high accuracy. One of
these methods is based on evaluating the mean square error
(MSE) between the PDF of the exact distribution and the PDF
of the approximate distribution that is modelled by the MG
distribution.

In the remainder of this section, the parameters of the MG
distribution for different composite channels are derived as:

A. κ− µ/gamma Fading Channel

The κ − µ contains two parameters which are κ and µ.
The former represents the ratio between the total power of
the dominant components and the scattered waves whereas the
latter, which is also presented in the η−µ and α−µ, represents
the real extension of the number of the multipath clusters. The
κ − µ/gamma fading channel is a composite fading channel
from the κ− µ fading channel and gamma distribution which
models the shadowing. Accordingly, the SNR distribution of
the κ−µ/gamma fading channel can be evaluated by averaging
[9, eq. (10)] over gamma distribution [2, eq. (4)] as follows

fγ(γ) =
µ(1 + κ)

µ+1
2 γ

µ−1
2

Γ(k)Ωkκ
µ−1

2 eµκ

×
∫ ∞

0

yk−
µ
2−

3
2 e−

µ(1+κ)γ
y − y

Ω Iµ−1

(
2µ

√
µ(1 + κ)γ

y

)
dy. (3)

where k is the shaping parameter and Ω is the mean power.
By substituting x = µ(1+κ)γ

y in (3), this yields

fγ(γ) = ϑκ−µγ
k−1

∫ ∞
0

e−xg(x)dx. (4)

where ϑκ−µ = − µk−
µ−1

2

Γ(k)κ
µ−1

2 eµκ

(
1+κ

Ω

)k
and g(x) =

x
µ
2−k−

1
2 e−

µ(1+κ)γ
Ωx Iµ−1

(
2µ
√
x
)
. The integration in (4), S =∫∞

0
e−xg(x)dx, can be approximated as a Gaussian-Laguerre

quadrature sum as S ≈∑N
i=1 wig(xi) where xi and wi are the

abscissas and weight factors for the Gaussian-Laguerre inte-
gration, respectively [12]. Consequently, (4) can be expressed
by the MG distribution with parameters

α̃i =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
µ(1 + κ)

Ωxi
,

θi = ϑκ−µwix
µ
2−k−

1
2

i Iµ−1

(
2µ
√
xi

)
. (5)

B. η − µ/gamma Fading Channel

The η−µ includes two parameters which are η and µ. The
definition of η depends on the type of format. In format 1, η
represents the power ratio between the in-phase and quadrature
scattered components in each multipath cluster with 0 < η <
∞. The respective H and h are expressed by H = (η−1−η)/4
and h = (2+η−1+η)/4, respectively. In format 2, η stands for
the correlation coefficient between the in-phase and quadrature
scattered components in each multipath cluster with −1 < η <

1. The respective H and h are given by H = η/(1− η2) and
h = 1/(1− η2), respectively [9].

The SNR distribution of the η − µ/gamma fading channel
can be found by integrating the η − µ fading channel [9, eq.
(26)] over [2, eq. (4)] as follows

fγ(γ) =
2
√
πhµµµ+ 1

2 γµ−
1
2

Γ(µ)Γ(k)ΩkHµ− 1
2

×
∫ ∞

0

yk−µ−
3
2 e−

2µhγ
y −

y
Ω Iµ− 1

2

(
2µHγ

y

)
dy. (6)

By assuming x = 2µhγ
y and following the same procedure

for the κ− µ/gamma fading channel, we obtain

α̃i =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
2µh

Ωxi
,

θi = ϑη−µwix
µ−k− 1

2
i Iµ− 1

2

(
H

h
xi

)
. (7)

where ϑη−µ = −
√
π2k−µ+ 1

2 hk−
1
2

Γ(µ)Γ(k)Hµ−
1
2

(
µ
Ω

)k
.

C. α− µ/gamma Fading Channel

The α − µ distribution is used to model the non-linear
environment of wireless communications. Due to a limited
space, please refer to [10] for further information.

The SNR distribution of composite α − µ/gamma can be
computed by using [10, eq. (1)] and [2, eq. (4)] as follows

fγ(γ) =
αµµγ

αµ
2 −1

2Γ(µ)Γ(k)Ωk

∫ ∞
0

yk−
αµ
2 −1e

−µγ
α/2

yα/2
− y

Ω dy. (8)

where α > 0 is the non-linear fading parameter.
By using x = µγα/2

yα/2
and following a similar procedure for

the κ− µ/gamma channel, the parameters of MG distribution
for the α− µ/gamma fading channel are obtained as

α̃i =
θi∑N

l=1θlΓ(βl)ζl
−βl

, βi = k, ζi =
µ2/α

Ωx
2/α
i

,

θi = ϑα−µwix
µ− 2k

α −1
i . (9)

where ϑα−µ = − µ2k/α

Γ(µ)Γ(k)Ωk
.

IV. AVERAGE PROBABILITY OF DETECTION

The average probability of detection, Pd(λ), can be evalu-
ated by [8, eq. (4)]

Pd(λ) =

∫ ∞
0

Pd(γ, λ)fγ(γ)dγ. (10)

When u ∈ R, i.e., u is a real number, the Pd(λ) can be
found as [see Appendix A]

Pd(λ) = 1− 2−uλue−
λ
2

Γ(1 + u)

N∑
i=1

α̃iΓ(βi)

(1 + ζi)βi

×Φ2

(
βi, 1; 1 + u;

λ

2
,

λ

2(1 + ζi)

)
. (11)

where Φ2(.) is the bivariate confluent hypergeometric function
defined in [11, eq. (9.261.2)].
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It can be noted that Φ2(.) is not yet implemented in common
mathematical packages such as MATLAB and MATHEMAT-
ICA software. Therefore, a series convergence is assumed by
a limited number of terms, R, with truncation error, ER.

By invoking [11, eq. (9.261.2)] and using the identity
(a)b+c = (a)b(a+ b)c, ER for (11) can be expressed as

ER =

N∑
i=1

α̃iΓ(βi)

(1 + ζi)βi

∞∑
n=0

(1)n
(1 + u)nn!

(
λ

2

)n
×1F1

(
βi; 1 + u+ n;

λ

2(1 + ζi)

)
. (12)

where (.)R and 1F1(.) are the Pochhammer symbol and the
confluent hypergeometric function, respectively.

It can be observed that 1F1(.) in (12) is monotonically
decreasing with n. Accordingly, after following the same
procedure in [13], this yields

ER ≤
(1)R(λ2 )R

(1 + u)RR!

N∑
i=1

α̃iΓ(βi)

(1 + ζi)βi
1F1

(
1; 1 + u+R;

λ

2

)
×1F1

(
βi; 1 + u+R;

λ

2(1 + ζi)

)
. (13)

The tightness of the upper bound of (11) for all composite
fading channels is verified here by numerically evaluating the
integration in (10) using the trapezoidal integration routine in
MATLAB software. Then the results are compared with their
analytical and simulation counterparts as shown in Table I. It
can be noted from this table that the difference between the
provided results is approximately zero.

When u is an integer number, i.e., u ∈ Z, the Pd(λ) can be
computed by substituting Pd(γ, λ) of (1) and (2) into (10) with
the help of [14, eq. (9)] and [11, eq. (3.35.3)]. Consequently,
after some mathematical operations, this yields

Pd(λ) =
e−

λ
2

Γ(2− u)

N∑
i=1

α̃iΓ(βi − u+ 1)

(1 + ζi)βi−u+1

×Φ1

(
βi − u+ 1, 1; 2− u;

1

1 + ζi
,

λ

2(1 + ζi)

)
. (14)

where Φ1(.) is another form of the bivariate confluent hyperge-
ometric function defined in [11, eq. (9.261.1)]2. This function
is also not available in MATLAB and MATHEMATICA soft-
ware packages. Therefore, a series convergence is assumed.

Using [11, eq. (9.261.1)] and following the same method-
ology in (12), ER for (14) can be obtained as

ER ≤
(βi − u)R(1)R

(2− u)RR!

N∑
i=1

α̃iΓ(βi − u+ 1)

(1 + ζi)βi−u+1

(
1

1 + ζi

)R
×2F1

(
βi − u+R, 1; 2− u+R;

1

1 + ζi

)
×1F1

(
βi − u+R; 2− u+R;

λ

2(1 + ζi)

)
. (15)

where 2F1(.) is the Gaussian hypergeometric function.

2The function Φ1(.) can be evaluated by its Euler-type representation and
standard numerical integration methods [15, eq. (8)].

TABLE I
COMPARISON OF NUMERICAL INTEGRATION, ANALYTICAL, AND

SIMULATION VALUES OF Pd(λ) OVER DIFFERENT COMPOSITE CHANNELS
WITH µ = 0.5, k = 4.5, γ̄ = 15 dB, N = 15, u = 1.5, AND ER ≤ 10−7 .

Channel Pd(λ) Pd(λ) Pd(λ)
Integration Analytical Simulation

κ− µ, κ = 2.5 0.764712 0.765723 0.763800

η − µ, η = 0.7 0.904627 0.905435 0.904717

α− µ, α = 3 0.973688 0.965964 0.973789

V. AVERAGE AREA UNDER THE ROC CURVE

The average AUC, Ā, is given as [7, eq. (33)]

Ā =
1

2uΓ(u)

∫ ∞
0

λu−1e−
λ
2 Pd(λ)dλ. (16)

Substituting (11) into (16) with the aid of [11, eq. (9.261.2)],
[11, eq. (3.35.3)] and Γ(a+ b) = (a)bΓ(a), Ā for u ∈ R can
be found as

Ā = 1− Γ(2u)

u[2uΓ(u)]2

N∑
i=1

α̃iΓ(βi)

(1 + ζi)βi

×F1

(
2u, 1, βi; 1 + u;

1

2
,

1

2(1 + ζi)

)
. (17)

where F1(.) is the double variables Appell hypergeometric
function [11, eq. (9.180.1)] and its a standard built-in function
available in MATHEMATICA software package.

When u ∈ Z, Ā can be expressed as

Ā =
1

2uΓ(2− u)

N∑
i=1

α̃iΓ(βi − u+ 1)

(1 + ζi)βi−u+1

×F1

(
βi − u+ 1, 1, u; 2− u;

1

1 + ζi
,

1

2(1 + ζi)

)
. (18)

The expression in (18) is evaluated by using (14) and (16)
with the help of [11, eq. (9.261.1)] and [11, eq. (3.35.3)] and
doing some mathematical simplifications.

VI. ANALYTICAL AND SIMULATION RESULTS

In this section, Monte Carlo simulations with 106 iterations
are utilized to compare the simulation results with the analyti-
cal results of ED over κ−µ/gamma, η−µ/gamma (format 1),
and α−µ/gamma fading channels. In all figures, the numerical
results are represented by solid lines with marks while the
simulated results are shown by dot marks. To achieve MSE
≤ 10−6 between the exact PDF and approximate PDF using
a MG distribution, N is selected as 15 for all channels.

Fig. 1 and Fig. 2 show the complementary receiver operating
characteristics curve (CROC) which plots the average proba-
bility of missed-detection, Pmd(λ), (Pmd(λ) = 1 − Pd(λ))
versus Pf (λ) and the complementary AUC (1-Ā) versus
average SNR, respectively. In both figures, the simulation
parameters are κ = 2.5, η = 0.7, α = 3, k = 4.5, γ̄ = 15
dB, and u = 1.5. Moreover, numbers of terms, R, in Fig. 1
that are required to evaluate (12) at Pf = 0.1 with seven figure
accuracy for α−µ/gamma, η−µ/gamma and κ−µ/gamma are
20, 21, and 22, respectively. From the provided figures, it is
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Fig. 1. Complementary ROC curves over κ− µ/gamma, η − µ/gamma and
α− µ/gamma fading channels for µ = 0.5, k = 4.5, γ̄ = 15 dB and u = 1.5.

clear that the numerical results match well with their Monte
Carlo simulation counterparts, proving the high accuracy of
the analysis using a MG distribution.

It can be observed that the results in Fig. 1 and Fig. 2 can
not be obtained by [3, eq. (29)] and [3, eq. (33)], respectively.
This is because [3, eq. (29)] is valid when the values of βi
(i.e., k) and u are integer and [3, eq. (33)] is applicable for
integer-valued of u.

VII. CONCLUSIONS

In this letter, the performance of ED over composite κ −
µ/gamma, η−µ/gamma and α−µ/gamma fading channels was
analysed by using a MG distribution. Novel, general, unified,
and not limited analytic expressions for both the average
probability of detection and average AUC were derived. The
provided numerical results using a MG distribution were
matched exceedingly with the Monte Carlo simulation results.
The behaviour of ED over κ − µ, η − µ and α − µ fading
channels can be studied by inserting k → ∞ in our derived
expressions. Furthermore, the results of this paper can be
employed to analyse the performance of ED over different
composite fading channels such as Nakagami-m/gamma.

APPENDIX A

PROOF OF (11)

When u ∈ R, the Pd(γ, λ) of (1) can be expressed by [14,
eq. (34)] as follows

Pd(γ, λ) = 1−
(λ

2

)u
e−

2γ+λ
2 Φ̃3

(
1; 1 + u;

λ

2
,
γλ

2

)
. (19)

where Φ̃3(.) is the regularized bivariate confluent hypergeo-
metric function defined in [14, eq. (4)].

Inserting (2) and (19) into (10) with the help of [14, eq.
(4)] and

∫∞
0
fγ(γ)dγ , 1, this yields

Pd(λ) = 1− λue−
λ
2

2uΓ(1 + u)

N∑
i=1

α̃i

∞∑
l=0

∞∑
m=0

(1)l
(1 + u)l+ml!m!(λ

2

)l(λ
2

)m ∫ ∞
0

γm+βi−1e−(1+ζi)γdγ. (20)
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Fig. 2. Complementary AUC curves versus γ̄ over κ−µ/gamma, η−µ/gamma
and α− µ/gamma fading channels for µ = 0.5, k = 4.5 and u = 1.5.

Using [11, eq. (3.35.3)] to evaluate the integration in (20)
and invoking the identity Γ(a + b) = (a)bΓ(a), the desired
result in (11) is deduced.
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