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Abstract 

In current structural stainless steel design codes, local buckling is accounted for through a 

cross-section classification framework, which is based on an elastic, perfectly-plastic material 

model, providing consistency with the corresponding treatment of carbon steel cross-sections. 

Hence, for non-slender cross-sections, the codified design stress is limited to the 0.2% proof 

stress without considering the pronounced strain hardening exhibited by stainless steels, 

while for slender cross-sections, the effective width method is employed without considering 

the beneficial effect of element interaction. Previous comparisons between test results and 

codified predictions have generally indicated over-conservatism and scatter. This has 

prompted the development of more efficient design rules, which can reflect better the actual 

local buckling behaviour and nonlinear material response of stainless steel cross-sections. A 

deformation-based design approach called the continuous strength method (CSM) has been 

proposed for the design of stocky cross-sections, which relates the strength of a cross-section 

to its deformation capacity and employs a bi-linear (elastic, linear hardening) material model 
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to account for strain hardening. In this paper, the scope of the CSM is extended to cover the 

design of slender stainless steel cross-sections under compression, bending and combined 

loading, underpinned by and validated against 794 experimental and numerical results. The 

proposed approach allows for the beneficial effect of element interaction within the cross-

section, and is shown to yield a higher level of accuracy and consistency, as well as design 

efficiency, in the capacity predictions of slender stainless steel cross-sections, compared to 

the effective width methods employed in the current international design standards. Non-

doubly symmetric sections in bending, which may be slender, but still benefit from strain 

hardening, are also discussed. The reliability of the CSM proposal has been confirmed by 

means of statistical analyses according to EN 1990, demonstrating its suitability for 

incorporation into future revisions of international design codes for stainless steel structures.  

 

1. Introduction 

Stainless steel is becoming an increasingly attractive choice as a construction material, rather 

than simply a decorative material, in a range of engineering applications, owing principally to 

its favourable mechanical properties, good ductility and excellent corrosion and fire 

resistance. Given the high initial material price of stainless steels, structural design efficiency 

is of primary concern. For the design of stainless steel plated sections (e.g., square and 

rectangular hollow sections (SHS and RHS), I-sections, channel sections, angle sections and 

T-sections) susceptible to local buckling, although a number of design standards exist, the 

provisions were generally developed in line with the corresponding carbon steel design 

guidelines, which are based on the idealised elastic, perfectly-plastic material model without 

accounting for strain hardening, and the traditional cross-section classification and effective 

width concepts without considering element interaction. Hence, current stainless steel design 

standards generally ignore these two beneficial effects – strain hardening and element 



           

 

 

interaction – and have, as a result, been shown to often result in unduly conservative and 

scattered predictions of cross-section resistances under compression [1–4], bending [3,5–8] 

and combined loading [9–12]. 

 

To address this shortcoming, a deformation-based design approach called the continuous 

strength method (CSM) has been proposed [13–16]. The CSM replaces the concept of cross-

section classification, which is defined on the basis of the most slender constituent plate 

element of the cross-section, with a non-dimensional measure of cross-section deformation 

capacity, which is presented as a function of the full cross-section slenderness that accounts 

for the beneficial effect of element interaction within the cross-section. An elastic, linear 

hardening material model is also adopted, representing better the actual material behaviour of 

stainless steels, compared to the elastic, perfectly-plastic material model used in current 

design standards. The CSM [13–15] has previously been developed for the design of non-

slender stainless steel plated sections, and shown to yield substantially improved predictions 

of capacity over the current design standards, due to the consideration of strain hardening and 

element interaction, while its application to slender plated sections is extended and described 

herein. 

 

The paper begins with a brief review and comparative analysis of the current design methods 

for slender stainless steel cross-sections failing by local buckling, including the European 

codes EN 1993-1-4 [17] and EN 1993-1-5 [18], American specification SEI/ASCE-8 [19], 

Australian/New Zealand standard AS/NZS 4673 [20], AISC design guide 27 [21] and direct 

strength method (DSM) [6,22–25]. The continuous strength method (CSM), originally 

developed to account for strain hardening in the design of non-slender stainless steel plated 

sections, is firstly described, and then extended to cover the design of slender cross-sections, 



           

 

 

underpinned by experimental results collected from the literature. A numerical modelling 

programme is also performed to generate further structural performance data. The present 

numerical studies focus primarily on tubular SHS and RHS, though a wider study by the 

authors also includes other open section profiles, such as I-, T-, channel and angle sections. 

Finally, the combined experimental and numerical data are employed to assess the accuracy 

and reliability of the proposed CSM for slender stainless steel plated sections.   

 

2. Current design methods for slender stainless steel cross-sections 

2.1 Codified design methods  

The codified treatment of local buckling in slender stainless steel cross-sections, as given in 

the current European codes EN 1993-1-4 [17] and EN 1993-1-5 [18], American specification 

SEI/ASCE-8 [19], Australian/New Zealand standard AS/NZS 4673 [20] and AISC design 

guide 27 [21], is based on the traditional effective width concept, as adopted in the 

corresponding carbon steel design standards. The effective width methods treat the cross-

section as an assemblage of isolated plate elements without considering element interaction, 

and account for loss of effectiveness due to local buckling through a reduction in plate 

element width. The level of the susceptibility of a plate element to local bucking and thus the 

reduction in plate width and resistance are dependent on its plate element slenderness l , as 

defined in Eq. (1), where b  is the flat width of the plate element, t is the plate thickness, 

(235 / )( / 210000)yf E   is a coefficient related to material properties, in which fy is the 

material yield stress, taken as the 0.2% proof stress σ0.2 for stainless steels, E is the Young’s 

modulus, and kσ is the plate buckling coefficient, depending on the edge support conditions 

and the stress ratio across the plate width. Note that the definition of flat width b  varies 

between the design codes and the appropriate width has been used for the calculations and 

comparisons presented. 
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The reduction factor ρ in plate element width due to local buckling is a function of the plate 

element slenderness l . The American specification SEI/ASCE-8 [19] and Australian/New 

Zealand standard AS/NZS 4673 [20] adopt the same reduction factor (ρASCE=ρAS/NZS), as 

shown in Eq. (2) for both internal (stiffened) and outstand (unstiffened) plate elements. The 

reduction factors used in the European code EN 1993-1-4 [17] and AISC design guide 27 [21] 

are based on the findings of Gardner and Theofanous [26], as given by Eq. (3) and Eq. (4) for 

internal (ρEC3-1-4-I=ρAISC-I) and outstand (ρEC3-1-4-O=ρAISC-O) plate elements, respectively. The 

European code EN 1993-1-5 [18] for plated carbon steel structural elements considers the 

effect of stress gradient on the local buckling behaviour of internal plate elements, with the 

reduction factor shown in Eq. (5), where ψ is the end stress ratio of an internal plate element, 

but employs the same reduction factor for outstand plate elements as those in EN 1993-1-4 

[17] and AISC [21], as given by Eq. (6). 
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On the basis of the effective width of each constituent plate element, the effective cross-

section properties, including the effective section area Aeff and modulus Weff, can be 

determined. The effective cross-section resistances under pure compression (Neff) and 

bending (Meff) are then calculated as the products of the yield stress fy and the effective 

section area Aeff and modulus Weff, respectively. For slender cross-sections under combined 

loading, failure is determined based on a linear summation of the utilization ratios under each 

component of loading, with a limit of unity. The design expression is given by Eq. (7), in 

which NEd is the applied axial load, MEd,y and MEd,z are the applied bending moments about 

the two principal axes, Neff, Meff,y and Meff,z are the corresponding design effective cross-

section compression and bending resistances. 
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Following comparisons with test and finite element (FE) results, it has been generally found 

in previous research [27] that the effective width methods result in rather scattered cross-

section resistance predictions, especially for sections where the slenderness of the constituent 

plate elements varies significantly, e.g., RHS with large aspect ratios, owing to the failure to 

account for the beneficial effect of element interaction in the design. Moreover, application of 

the effective width method is often cumbersome, due to a shift of neutral axis. 

 

2.2 The direct strength method (DSM)  

The direct strength method (DSM) was developed by Schafer and Peköz [22,23] to overcome 

the cumbersome nature of the effective width method when applied to slender cold-formed 

carbon steel cross-sections of complex geometries or under stress gradients, and to consider 

the beneficial effect of element interaction in the determination of cross-section resistances. 

The DSM directly relates the strength of a cross-section to its overall cross-section 



           

 

 

slenderness /p y crf f , in which fcr is the elastic buckling stress of the full cross-section 

under the applied loading conditions, and may be determined using the finite strip software 

CUFSM [28]. In contrast, the effective width method treats the cross-section as an 

assemblage of isolated plate elements and calculates the effective width and strength of each 

plate element based on the individual plate slenderness l  without considering the beneficial 

effect of element interaction. The DSM design resistance formulae are given by Eqs (8) and 

(9) for cross-sections failing by local buckling in compression (Nnl) and bending (Mnl), 

respectively, in which Ny is the cross-section yield load, equal to the gross cross-section area 

A multiplied by yield stress fy and Mel is the elastic moment capacity, defined as the product 

of the cross-section elastic section modulus Wel and yield stress fy. Following successful 

application to cold-formed carbon steel sections, proposals to extend the DSM to structural 

stainless steel sections of austenitic [24,25], duplex [6] and ferritic [24,25] grades have been 

set out. Although the DSM approach is currently included in the North American 

specification for cold-formed carbon steel structures AISI-S100-12 [29], it has not yet been 

incorporated into stainless steel design standards. 
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3. The continuous strength method (CSM) 

3.1 Introduction  

The continuous strength method (CSM) [13–16] is a deformation-based design approach, 

originally developed to allow for a rational exploitation of strain hardening in the design of 



           

 

 

stocky (i.e. non-slender Class 1, 2 and 3) stainless steel cross-sections. It was shown to yield 

a high level of accuracy and consistency in the resistance predictions of non-slender stainless 

steel cross-sections under various loading conditions, including pure compression [4,9–12,14], 

pure bending [6,8,9–12,14] and combined loading [9–12]. In the following sub-section, a 

brief summary of the CSM for non-slender stainless steel sections is firstly described; 

extension of the method to slender (Class 4) cross-sections is in Section 3.3. 

 

3.2 The CSM for non-slender cross-sections  

The main characteristics of the CSM for non-slender sections lie in the employment of a 

‘base curve’ to determine the maximum strain that a cross-section can attain prior to failure 

by local buckling, and the adoption of an elastic, linear hardening material model to enable 

design stresses greater than the yield stress. The base curve, derived on the basis of a 

regression fit to compression and bending test data for a range of metallic materials, 

including austenitic, duplex and ferritic stainless steels, carbon steel, high strength steel and 

aluminium, defines the relationship between the deformation capacity, expressed in terms of 

the strain ratio (εcsm/εy), and the full cross-section slenderness 
p , as given by Eq. (10), where 

εcsm is the maximum attainable strain and εy is the yield strain equal to fy/E. Two limits are 

applied to the strain ratio (εcsm/εy) given by Eq. (10): the first limit of 15 is to prevent 

excessive strains and also corresponds to the material ductility requirement given in EN 

1993-1-4 [17], while the second limit, which is related to the adopted elastic, linear hardening 

material model, is to avoid over-prediction of the material strength. Similarly to the direct 

strength method (DSM), the continuous strength method (CSM) also uses the full cross-

section slenderness p  rather than the individual plate slenderness l , and thus takes into 

account the beneficial effect of element interaction. Note that the base curve, defined by Eq. 



           

 

 

(10), applies to non-slender cross-sections with 
p  less than or equal to 0.68, at which point 

the strain ratio εcsm/εy is equal to unity. 
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The CSM elastic, linear hardening material model, which features four material coefficients 

(C1, C2, C3 and C4), is illustrated in Fig. 1, with the strain hardening slope Esh calculated from 

Eq. (11). Values of the coefficients for each metallic material were calibrated based on the 

material tensile coupon test data by means of least squares regression, and are summarised in 

Table 1 [16]. The CSM material model parameter C1 is used to define a cut-off strain (see Eq. 

(10)) to ensure that the material strength is not over-predicted from the adopted linear 

hardening material model. The CSM material coefficient C2 is employed in Eq. (11) to define 

the strain hardening slope Esh, while the parameter εu=C3(1–fy/fu)+C4 is the predicted strain 

corresponding to the material ultimate strength fu.  
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Upon determination of the maximum attainable strain εcsm and the strain hardening modulus 

Esh, the CSM design stress fcsm can be calculated from Eq. (12), which is then employed 

directly to obtain the cross-section compression resistance Ncsm,Rd, as given by Eq. (13), 

where γM0 is a partial factor for cross-section resistance, with a recommended value of 1.1 for 

stainless steel. Based on the assumption of a linearly-varying through-depth strain 

distribution and the bi-linear CSM material model, the CSM bending resistance for non-

slender cross-sections Mcsm,Rd can be determined from the design formula given by Eq. (14), 

where Wel and Wpl are the elastic and plastic section moduli, respectively, and α is the CSM 



           

 

 

bending coefficient, related to cross-section shape and axis of bending: for SHS and RHS 

bending about either axis and for I-sections under major axis bending, α is equal to 2.0, while 

for I-sections in minor axis bending, α=1.2 [14,15]. For mono-symmetric sections (e.g., 

channel sections and T-sections) and asymmetric sections (e.g., angle sections), the 

corresponding values of the α coefficient have been recently derived by Zhao and Gardner 

[30].  
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The scope of the CSM was extended from isolated loading cases (i.e. pure compression or 

pure bending) to combined loading cases (i.e. combined compression and bending) by Liew 

and Gardner [15] and Zhao et al. [10,11]. The proposals utilise the CSM compression and 

bending resistances as the end points, with efficient cross-section interaction curves between 

these points.  

 

Following comprehensive comparisons with the test and FE results, it was found that the 

CSM generally yields a much higher level of accuracy and consistency in the resistance 

predictions of non-slender stainless steel cross-sections subjected to various loading 

conditions, including pure compression [4,9–12,14], pure bending [6,8,9–12,14] and 

combined compression and bending [9–12], owing principally to the consideration of strain 

hardening. 

  



           

 

 

3.3 Extension of the CSM to slender cross-sections  

Upon successful application to non-slender stainless steel cross-sections, the CSM is now 

extended to cover the design of slender cross-sections, in which local buckling occurs prior to 

the attainment of the 0.2% proof stress, and no significant benefit arises from strain hardening. 

The CSM generally features two key components – a base curve defining the maximum strain 

that a cross-section can achieve prior to failure by local buckling, and an elastic, linear 

hardening material model, which offers a simplified representation of the nonlinear stress–

strain characteristics of stainless steels. As described previously, the adopted CSM material 

model was calibrated based on the analysis of material tensile coupon test data, and is thus 

independent of cross-section slenderness. Therefore, the key step towards extending the CSM 

to the design of slender cross-sections lies in the development of a second base curve for 

slender sections with slenderness 
p  greater than 0.68.  

 

The CSM base curve was derived for non-slender cross-sections through a regression fit to 

the test data, with the experimental local buckling limiting strain εlb taken as the maximum 

attainable strain at the ultimate load, e.g., εlb is equal to the ratio of the end shortening δu at 

failure to the initial specimen length L for stub columns. However, for slender cross-sections 

that fail by local buckling before yielding, the observed experimental deformation response is 

strongly influenced by elastic buckling (accompanied by a drop in axial stiffness and hence 

deviation from the elastic material behaviour) and post-buckling, and thus the base curve 

developed on the basis of the former definition of the experimental local buckling limiting 

strain would result in over-predictions of failure stress from the adopted CSM material model, 

which has a linear stress–strain response up to the yield stress. The above issue is illustrated 

in Fig. 2, where the experimental stress–strain curve, transformed from the load–end 

shortening curve of a typical slender section (RHS 100×40×2) stub column test [31], is 



           

 

 

plotted together with the CSM elastic, linear strain hardening material model, indicating that 

the actual failure stress fu,actual would be greatly over-predicted by the adopted CSM material 

model, if the local buckling limiting strain is defined as the maximum strain at the failure 

load for slender cross-sections. 

 

The concept of equivalent local buckling strain [32] is therefore used in the definition of the 

experimental limiting strain for slender sections, in order to avoid over-predictions of design 

failure stress. Considering that the CSM adopts a linear stress–strain material model up to the 

yield stress, the equivalent experimental local buckling limiting strains εlb,e for slender section 

members that fail below the yield strength are determined based on the assumption of a linear 

load–deformation structural response, as illustrated in Fig. 2; hence εlb,e=Nu,test/(AE) and 

εlb,e=Mu,test/(WelE) for slender section stub columns and beams, respectively, where Nu,test is 

the test ultimate load and Mu,test is the test ultimate bending moment. The experimental local 

buckling strain ratios for stub columns and beams, defined as the ratio of the equivalent local 

buckling stain to the yield strain εy, are now therefore simply equal to the corresponding 

ratios of the test ultimate capacity to the yield capacity, as shown in Eqs (15) and (16), 

respectively, where Ny=Afy is the cross-section yield load and My =Welfy is the cross-section 

elastic bending moment capacity. Additionally, with this adopted definition of deformation 

capacity, unlike in the development of the base curve for non-slender sections [14], no further 

account needs to be made for the difference between the actual rounded material stress–strain 

response and the assumed CSM linear elastic material response below the 0.2% proof stress, 

and hence εcsm/εy= εlb,e/εy. 

 
, ,lb e u testcsm

y y y

N

N
 


 
 (15) 

 
, ,lb e u testcsm

y y y

M

M
 


 
 (16) 



           

 

 

 

Previous stub column and beam test data have been collected for the development of the 

second base curve for slender cross-sections with 0.68p  . In total, 442 experimental 

results have been gathered from the literature, including 149 for stainless steel [1,3–8,31,33–

42], 13 for carbon steel [43–46], 61 for high strength steel [47–55], and 219 for aluminium 

[56–65]. For each data point, the equivalent local buckling limiting strain ratio, as determined 

from Eq. (15) or Eq. (16), is plotted against the cross-section slenderness in Fig. 3. The base 

curve is defined by a continuous function of the general form given by Eq. (17), which is 

similar to that used in other strength-based design approaches, such as the DSM and effective 

width methods. The values of the parameters A and B were determined following a 

regression fit of Eq. (17) to the test data; for compatibility with the CSM base curve for non-

slender cross-sections with 0.68p  , the base curve for slender sections should also pass 

through the identified cross-section slenderness limit (transition point) between slender and 

non-slender sections, i.e. (0.68, 1). The derived CSM base curve for slender sections, as 

defined by Eq. (18), is shown in Fig. 3, together with the design curves from the codified 

effective width methods for comparison purposes. The full base curve, together with the test 

data on both stocky and slender cross-sections is also shown in Fig. 4. Note that the 

continuity of position, but not slope is maintained at 0.68p  . 
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The CSM cross-section compression and bending resistances are then calculated as the 

corresponding yield (elastic) strengths multiplied by the strain ratio, as shown in Eqs (19) and 

(20), respectively.  
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For the design of slender cross-sections under combined axial compressive load and bending 

moment, a linear interaction formula is employed, as given by Eq. (21), where Ncsm,Rd is the 

CSM compression resistance, calculated from Eq. (19), while Mcsm,y,Rd and Mcsm,z,Rd are the 

CSM bending moment resistances about the major and minor axes, respectively, determined 

from Eq. (20). 
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For slender non-doubly symmetric sections (e.g., channel, T- and angle sections) in bending, 

in the case where the neutral axis is closer to the extreme compressive fibre, although the 

limiting strain in compression is less than the yield strain, the corresponding strains in tension 

can be significantly larger than the yield strain, resulting in strain hardening. Therefore, 

slender non-doubly symmetric sections in bending can also benefit from strain hardening. 

The CSM can take this beneficial strain hardening effect into account in the design. For 

slender non-doubly symmetric sections in bending (i.e. cross-section slenderness greater than 

0.68), the design local buckling strain in compression εcsm is determined from Eq. (18), while 

the design strain in tension εcsm,t can be obtained based on the assumption of a linearly-

varying through-depth strain distribution. For ,csm t y   (i.e. when yielding occurs on the 



           

 

 

tensile side), the design position of the neutral axis can be approximated as the mid-point 

between the elastic and plastic neutral axes for practically used non-doubly symmetric 

sections in structural engineering [30,66]. When 
,csm t y  , the cross-section remains elastic 

and the elastic neutral axis is therefore employed in the design calculations. The shift in 

neutral axis resulting from local buckling is not explicitly considered in the CSM, though this 

effect is inherently present in the bending test and FE data used to formulate and assess the 

design proposals; the same approach is adopted in the direct strength method (DSM) but not 

in the design methods of EN 1993-1-4 [17] and EN 1993-1-5 [18], where the shift in neutral 

axis should be explicitly determined. The corresponding stress distribution is then derived on 

the basis of the CSM elastic, linear hardening material model. Fig. 5 illustrates the CSM 

design strain and stress distribution for a slender T-section in major axis bending. The CSM 

cross-section bending moment resistance is then determined by integration of the stress 

distribution throughout the cross-section depth. The detailed development of simplified 

design equations for slender mono-symmetric and asymmetric cross-sections in bending is 

described by Zhao and Gardner [30].  

 

The accuracy of the proposed CSM for slender stainless steel cross-sections is evaluated 

through comparisons against the test and FE data in Section 5 of the paper. The experimental 

data on a range of section types, including SHS and RHS, I-section, channel section and 

angle section, were collected from the literature, while the FE results, generated in Section 4, 

focused primarily on tubular SHS and RHS. With regards to loading type, the experimental 

dataset includes stub column test results for SHS and RHS [1,3,4,31,33–36,38,39,41,42], I-

sections [35,40,41], channel sections [35] and angle sections [35], and beam tests results for 

SHS and RHS [5–8,31,37,38,42], while the numerical study considers SHS and RHS under 

pure compression, pure bending and combined compression and bending. 



           

 

 

4. Numerical modelling  

The present numerical modelling programme was carried out through the use of the nonlinear 

finite element analysis package ABAQUS [67]. Numerical simulations were carried out on 

stainless steel SHS and RHS stub columns subjected to both concentric and eccentric 

compression, and beams under four-point bending. A detailed description of the development 

of the FE models and their validation against experimental results were presented by the 

authors in previous numerical studies [10,11,31] of stainless steel tubular sections under pure 

compression, pure bending and combined loading, so only the key features of the modelling 

are reported herein. 

 

Having been used successfully employed in previous studies [10,11,31] concerning the 

modelling of stainless steel SHS and RHS structural members, the four-noded doubly curved 

shell element with reduced integration and finite membrane strain, S4R [67], was adopted in 

the present numerical studies. An element size equal to the cross-section thickness was used 

in the flat portions of the modelled cross-sections, while a finer mesh of four elements was 

assigned to the corners to accurately represent the curved geometry. Symmetry was exploited 

by modelling only half the cross-section and member length of the concentrically-loaded stub 

column, uniaxial eccentrically-loaded stub column, and four-point bending FE models. For 

the biaxial eccentrically-loaded stub column FE models, half the member length but the full 

cross-section was modelled. Suitable symmetry boundary conditions were applied to each 

axis of symmetry.   

 

The adopted material properties for the present numerical modelling were taken from 

previous tests on stainless steel SHS and RHS structural members [9,31]. Table 2 reports the 

employed material properties for each of the three considered stainless steel grades (austenitic, 



           

 

 

duplex and ferritic), including the Young’s modulus E, the 0.2% proof stress σ0.2, the 1.0% 

proof stress σ1.0, the ultimate tensile strength σu and the strain hardening exponents n, n’0.2,1.0 

and n’0.2,u, as utilized in the two–stage Ramberg–Osgood (R–O) material model [68–71]. 

Since ABAQUS [67] requires the material properties to be specified in the form of true stress 

and log plastic strain for the adopted element type, the measured engineering stress–strain 

curves from the tensile coupon tests [9,31] were firstly represented by the two-stage 

Ramberg–Osgood material model, and then converted into true stress-strain curves. Measured 

corner material properties were also assigned to the curved corner portions of the sections, 

and to the adjacent flat portions extending beyond the corners to a distance equal to two times 

the cross-section thickness, in accordance with the previous finding [72,73] that both of the 

aforementioned regions exhibit similar stress–strain characteristics due to approximately the 

same degree of strength enhancement experienced during the cold-rolling process. The 

material properties of the flat material were assigned to the remaining regions of the FE 

models. 

 

Stainless steel SHS and RHS structural members are generally fabricated by cold-forming, 

during which the flat metal sheets are firstly cold-rolled into circular tubes and welded closed, 

and then gradually deformed into the required profiles by means of dies. Two types of 

residual stresses – through-thickness bending residual stresses arising from non-uniform 

plastic deformation during cold-forming and membrane residual stresses induced through 

uneven cooling upon welding, are introduced into the specimens during the fabrication 

process and therefore exist in the sections in their unloaded state. However, explicit inclusion 

of residual stresses in the numerical models was deemed unnecessary, principally owing to 

the negligible influence of the membrane residual stresses on cold-formed stainless steel 



           

 

 

tubular profiles, and the inherent presence of the more dominant through-thickness residual 

stresses in the measured material properties [74–76]. 

 

The end section boundary conditions of the numerical models were arranged as follows: For 

the concentrically-loaded stub column FE models, all degrees of freedom of the loaded end 

section were coupled to a concentric reference point, which only allowed longitudinal 

translation, to simulate fixed end boundary conditions. With regards to the four-point bending 

FE models, the end cross-section was coupled to a reference point, located at the bottom 

(tension) flange of the model, where all degrees of freedom were restrained except for the 

longitudinal translation and rotation about the axis of buckling, in order to replicate simply-

supported boundary conditions. In addition, the cross-section of the beam model under the 

loading point was set as a rigid body, which only allowed rotation about the loading point and 

vertical deflection. For each eccentrically-loaded stub column FE model, the loaded end 

section was coupled to an eccentric reference point, allowing longitudinal translation and 

rotation about the axis of buckling, to model pin-ended boundary conditions; an axial load 

was applied to the model through the eccentric reference point, resulting in the application of 

both axial compressive load and bending moment to the numerical model. 

 

Initial local geometric imperfections are introduced into the cold-formed structural members 

primarily during the fabrication process and can influence the development of local buckling, 

the failure load and the post-ultimate behaviour. For each type of the numerical model, the 

initial local geometric imperfection pattern along the member length was taken as the lowest 

local buckling model shape under the considered loading condition, which was determined by 

performing a prior elastic eigenvalue buckling analysis [10,11,31,77–79]. The initial local 

imperfection amplitudes were determined by means of the modified Dawson and Walker 



           

 

 

model [72,80], as given by Eq. (22), where σcr,min is the minimum elastic buckling stress of all 

the plate elements making up the cross-section. Upon incorporation of the initial local 

geometric imperfections into the FE models, geometrically and materially nonlinear analyses 

were carried out, based on the modified Riks method [67], to determine the failure loads, 

which were then used to assess the accuracy of the proposed CSM for slender stainless steel 

cross-sections subjected to a range of loading conditions.  
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With regards to the geometric dimensions of the modelled cross-sections, the outer width was 

set equal to 100 mm while the outer depths ranged from 100 mm to 200 mm, leading to a 

spectrum of cross-section aspect ratios between 1.0 and 2.0; the internal corner radii were set 

equal to the cross-section thickness, which varied from 0.5 mm to 4 mm, resulting in a range 

of cross-section slenderness values 
p  between 0.65 and 2.70. The member length of each 

concentrically- or eccentrically-loaded stub column FE model was set equal to four times its 

mean outer dimension, while the length of each four-point bending FE model was set equal to 

15 times its mean outer dimension. For the eccentrically-loaded stub column FE models, the 

employed initial loading eccentricities ranged from 1 mm to 500 mm, enabling a broad range 

of loading combinations (i.e. proportions of bending moment to axial load) to be examined. 

In total, 645 parametric study results were generated, with 215 for each grade, which 

included 75 for concentrically-loaded stub columns, 70 for four-point bending beams and 70 

for eccentrically-loaded stub columns.  

 

5. Comparisons with test and FE results  

The accuracy of the proposed design approach, as well as the effective width methods given 

in the current European codes EN 1993-1-4 [17] and EN 1993-1-5 [18], American 



           

 

 

specification SEI/ASCE-8 [19], Australian/New Zealand standard AS/NZS 4673 [20] and 

AISC design guide 27 [21], for the design of slender stainless steel cross-sections, was 

evaluated through comparisons of the test and FE strengths with the unfactored (i.e. all partial 

factors set to unity) predicted strengths, based on the measured or modelled geometries and 

weighted average (by area) material properties to allow for the higher strengths in the corners. 

The direct strength method (DSM) [23], though originally developed for the design of slender 

carbon steel cross-sections, was also assessed herein for slender stainless steel sections. The 

comparisons are presented in terms of the ratio of test (or FE) to predicted strengths Ru/Ru,pred, 

as shown in Tables 3(a)–3(c) for concentrically-loaded stub columns, beams and 

eccentrically-loaded stub columns, respectively, in which Ru is equal to the test (or FE) 

failure load Nu for the concentrically- and eccentrically-loaded stub columns, and is equal to 

the test (or FE) failure moment Mu for beams, while Ru,pred is the corresponding predicted 

resistance from each design method. Note that ratios greater than unity indicate that the test 

(or FE) data points are safely predicted.  

 

The mean ratios of test (or FE) to CSM predicted strengths, as reported in Tables 3(a)–3(c), 

are equal to 1.07, 1.23 and 1.17 with coefficients of the variation (COV) of 0.06, 0.05 and 

0.06 for slender stainless steel sections subjected to pure compression, pure bending and 

combined compression and bending, respectively, revealing that the proposed CSM leads to a 

higher level of design accuracy and consistency than the European code EN 1993-1-4 [17] 

and AISC design guide 27 [21] in the prediction of slender stainless steel cross-section 

resistances. The European code EN 1993-1-5 [18], American specification SEI/ASCE-8 [19] 

and Australian/New Zealand standard AS/NZS 4673 [20] were generally found to yield more 

accurate mean ratios of test (or FE) to predicted capacities than the CSM, but with a higher 

degree of scatter, as shown in Tables 3(a)–3(c). In addition, these three design standards led 



           

 

 

to many resistance predictions on the unconservative side, as can be seen from Figs 6 and 7, 

where the ratio of test (or FE) capacity to predicted capacity Ru/Ru,pred is plotted against the 

cross-section slenderness 
p . Moreover, the effective width approaches generally involve 

more cumbersome calculation in order to obtain the design resistance, while the CSM directly 

calculates the design resistance as the product of the cross-section yield (elastic) strength and 

the strain ratio, and is thus very practical. Note that EN 1993-1-4 [17] and the AISC design 

guide [21] utilise the same reduction factor for plate elements susceptible to local buckling, 

but with a different definition of the flat width b  of the plate element, e.g., for SHS and RHS, 

3b b t   is used in EN 1993-1-4 [17], while 2 2 ib b t r    is employed in the AISC design 

guide [21]; this leads to different capacity predictions, as can be seen from Tables 3(a)–3(c). 

The direct strength method (DSM) [23] was also shown to result in more accurate strength 

predictions than the CSM proposal, on average, but a significant portion of the strength 

predictions lie on the unconservative side, as indicted in Fig. 8. The ratios of test (or FE) 

failure loads to predicted strengths, arranged by stainless steel grade, are presented in Tables 

4(a)–4(c), enabling the accuracy of the design methods to be assessed for each material grade. 

Figs 9–11 present the comparisons between the CSM and the European code EN 1993-1-4 

[17] for austenitic, duplex and ferritic stainless steels, respectively. 

 

Comparisons were also made based on the test data only. The mean ratios of test to CSM 

predicted capacities Ru,test/Ru,csm, as reported in Tables 5(a) and 5(b), are 1.07 and 1.22 with 

the same COV of 0.08 for stub columns and beams, respectively, indicating that the CSM 

leads to more precise and consistent resistance predictions than the European code EN 1993-

1-4 [17]; this can also be seen in Fig. 12, where the Ru,test/Ru,pred ratio against the cross-section 

slenderness 
p  is depicted. 

 



           

 

 

6. Reliability analysis 

In this section, a statistical analysis is carried out to assess the reliability of the proposed 

continuous strength method for slender stainless steel cross-sections, according to the 

provisions of EN 1990 [81]. Table 6 summarises the key calculated statistical parameters, 

calculated based on a total of 794 test and FE data on slender stainless steel cross-sections 

subjected to compression, bending and combined loading, where kd,n is the design (ultimate 

limit state) fractile factor, b is the average ratio of test (or FE) to design model resistance 

based on a least squares fit to all data, Vδ is the COV of the tests and FE simulations relative 

to the resistance model, Vr is the combined COV incorporating both model and basic variable 

uncertainties, and γM0 is the partial safety factor for cross-section resistance. In the reliability 

analyses, the over-strength ratios for material yield strength were taken as 1.3, 1.1 and 1.2, 

with COVs of 0.060, 0.030 and 0.045, for the austenitic, duplex and ferritic stainless steels, 

respectively, while the COV of the geometric properties was taken as 0.050 for all the 

stainless steel grades, as recommended by Afshan et al. [82]. As can be seen from Table 6, 

the resulting partial factor for each stainless steel grade is less than the currently adopted 

value of 1.1 in EN 1993-1-4 [17], and thus demonstrate that the proposed CSM for slender 

stainless steel cross-sections satisfies the reliability requirements of EN 1990 [81]. 

 

7. Conclusions 

Current design provisions for slender stainless steel cross-sections, as set out in the European 

codes EN 1993-1-4 [17] and EN 1993-1-5 [18], American specification SEI/ASCE-8 [19], 

Australian/New Zealand standard AS/NZS 4673 [20] and AISC design guide 27 [21], are 

based on the traditional effective width methods. Comparisons of collected test data from the 

literature and FE results generated herein with the capacity predictions from these codes 

generally show a fairly high level of scatter, due mainly to the neglect of the beneficial effect 



           

 

 

of element interaction within the cross-section, and often require cumbersome calculations. 

To address these shortcomings, an improved design approach has been proposed through 

extension of the deformation-based continuous strength method (CSM) to cover the design of 

slender stainless steel cross-sections. The CSM proposal considers the beneficial effect of 

element interaction within the cross-section, and directly calculates the design strength as the 

product of the cross-section yield (elastic) strength and the strain ratio, which was shown to 

yield a high level of design accuracy and consistency, as well as design efficiency, in the 

prediction of the resistances of slender stainless steel sections. The reliability of the proposal 

was demonstrated by means of statistical analyses according to EN 1990 [81]. It is therefore 

recommended that the proposed approach for slender stainless steel cross-sections be 

considered for incorporation into future revisions of stainless steel structural design standards. 
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Table 1 Summary of the CSM material model coefficients for each metallic material. 

Material C1 C2 C3 C4 

Hot-finished carbon steel –
a
 –

a
 –

a
 –

a
 

Cold-formed carbon steel 0.40 0.45 0.60 0 

High strength steel 0.40 0.45 0.60 0 

Austenitic and duplex stainless steels 0.10 0.16 1.00 0 

Ferritic stainless steel 0.40 0.45 0.60 0 

Aluminium 0.50 0.50 0.13 0.06 

 

                      
a
 Hot-finished carbon steel material model is under development. 

 

Table 2 Summary of key measured material properties from the tensile flat and corner coupons employed 

in the FE models. 

(a) Flat material properties. 

Material grade E σ0.2 σ1.0 σu R-O exponents 

 
(GPa) (MPa) (MPa) (MPa) n n’0.2,1.0 n’0.2,u 

Austenitic 193 343 391 605 6.7 2.4 3.1 

Duplex 199 519 578 728 5.3 2.8 3.7 

Ferritic 199 470 485 488 7.3 7.6 10.9 

 

(b) Corner material properties. 

Material grade E σ0.2 σ1.0 σu R-O exponents 

 
(GPa) (MPa) (MPa) (MPa) n n’0.2,1.0 n’0.2,u 

Austenitic 193 526 601 687 10.8 3.0 3.5 

Duplex 207 831 906 920 8.9 6.1 4.4 

Ferritic 200 579 – 648 4.0 – 7.3 

 

 

Table 3 Comparisons of test and FE results with predicted strengths for each loading case. 

(a) Concentrically-loaded stub columns (pure compression) 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 127 
Ru/Ru,EC3-1-4 Ru/Ru,EC3-1-5 Ru/Ru,AISC Ru/Ru,ASCE Ru/Ru,AS/NZS Ru/Ru,CSM Ru/Ru,DSM 

No. of FE data: 225 

Mean 1.12 1.00 1.07 0.98 0.98 1.07 0.96 

COV 0.06 0.07 0.06 0.07 0.07 0.06 0.08 

 

 

 



           

 

 

(b) Beams (pure bending) 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 22 
Ru/Ru,EC3-1-4 Ru/Ru,EC3-1-5 Ru/Ru,AISC Ru/Ru,ASCE Ru/Ru,AS/NZS Ru/Ru,CSM Ru/Ru,DSM 

No. of FE data: 210 

Mean 1.30 1.14 1.24 1.10 1.10 1.23 1.11 

COV 0.04 0.08 0.04 0.11 0.11 0.05 0.07 

 

(c) Eccentrically-loaded stub columns (combined compression and bending) 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 0 
Ru/Ru,EC3-1-4 Ru/Ru,EC3-1-5 Ru/Ru,AISC Ru/Ru,ASCE Ru/Ru,AS/NZS Ru/Ru,CSM Ru/Ru,DSM 

No. of FE data: 210 

Mean 1.29 1.10 1.22 1.07 1.07 1.17 1.03 

COV 0.05 0.09 0.05 0.09 0.09 0.06 0.10 

 

 

Table 4 Comparisons of test and FE results with predicted strengths for each stainless steel grade. 

(a) Austenitic stainless steel  

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 104 
Ru/Ru,EC3-1-4 Ru/Ru,EC3-1-5 Ru/Ru,AISC Ru/Ru,ASCE Ru/Ru,AS/NZS Ru/Ru,CSM Ru/Ru,DSM 

No. of FE data: 215 

Mean 1.19 1.06 1.14 1.03 1.03 1.12 1.02 

COV 0.10 0.11 0.09 0.11 0.11 0.09 0.11 

 

(b) Duplex stainless steel 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 22 
Ru/Ru,EC3-1-4 Ru/Ru,EC3-1-5 Ru/Ru,AISC Ru/Ru,ASCE Ru/Ru,AS/NZS Ru/Ru,CSM Ru/Ru,DSM 

No. of FE data: 215 

Mean 1.27 1.08 1.20 1.05 1.05 1.18 1.04 

COV 0.08 0.09 0.08 0.10 0.10 0.07 0.10 

 

(c) Ferritic stainless steel 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 23 
Ru/Ru,EC3-1-4 Ru/Ru,EC3-1-5 Ru/Ru,AISC Ru/Ru,ASCE Ru/Ru,AS/NZS Ru/Ru,CSM Ru/Ru,DSM 

No. of FE data: 215 

Mean 1.21 1.05 1.15 1.02 1.02 1.14 1.01 

COV 0.08 0.09 0.08 0.10 0.10 0.08 0.10 

 

 

 

 

 



           

 

 

Table 5 Comparisons of test results with predicted strengths for each loading case. 

(a) Concentrically-loaded stub columns (pure compression) 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 127 Ru,test/Ru,EC3-1-4 Ru,test/Ru,EC3-1-5 Ru,test/Ru,AISC Ru,test/Ru,ASCE Ru,test/Ru,AS/NZS Ru,test/Ru,CSM Ru,test/Ru,DSM 

Mean 1.11 1.02 1.07 0.99 0.99 1.07 0.98 

COV 0.08 0.09 0.07 0.09 0.09 0.08 0.09 

 

(b) Beams (pure bending) 

 EN 1993-1-4 EN 1993-1-5 AISC ASCE AS/NZS CSM DSM 

No. of test data: 22 Ru,test/Ru,EC3-1-4 Ru,test/Ru,EC3-1-5 Ru,test/Ru,AISC Ru,test/Ru,ASCE Ru,test/Ru,AS/NZS Ru,test/Ru,CSM Ru,test/Ru,DSM 

Mean 1.31 1.21 1.26 1.19 1.19 1.22 1.14 

COV 0.08 0.07 0.08 0.08 0.08 0.08 0.07 

 

 

Table 6 Reliability analysis results calculated according to EN 1990. 

Grade No. of test and FE data kd,n b Vδ Vr γM0 

Austenitic 319 3.121 1.056 0.088 0.117 1.05 

Duplex 237 3.132 1.104 0.073 0.093 1.10 

Ferritic 238 3.132 1.072 0.079 0.104 1.08 
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Fig. 1. CSM elastic, linear hardening material model. 

 

 

Fig. 2. Comparison of stress–strain curve from a slender section stub column test [31] with CSM material model. 
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Fig. 3. Experimental equivalent local buckling strain ratio plotted against cross-section slenderness.  

 

 

 

Fig. 4. Full CSM base curve with test data on both stocky and slender cross-sections.  
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Fig. 5. Illustration of CSM strain and stress distribution for a slender T-section in bending. 

 

 

 

 

Fig. 6. Comparison of stainless steel test and FE results with EN 1993-1-5 strength predictions.  
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Fig. 7. Comparison of stainless steel test and FE results with SEI/ASCE (or AS/NZS 4673) strength predictions.  

 

 

 

Fig. 8. Comparison of stainless steel test and FE results with DSM strength predictions.  
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Fig. 9. Comparison of austenitic stainless steel test and FE results with CSM and EN 1993-1-4 strength 

predictions. 

 

 

Fig. 10. Comparison of duplex stainless steel test and FE results with CSM and EN 1993-1-4 strength 

predictions.  
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Fig. 11. Comparison of ferritic stainless steel test and FE results with CSM and EN 1993-1-4 strength 

predictions. 

 

 

Fig. 12. Comparison of test results with CSM and EN 1993-1-4 resistance predictions.  

 

 

0.0

0.4

0.8

1.2

1.6

2.0

0.6 0.9 1.2 1.5 1.8 2.1 2.4

R
u
/R

u
,p

re
d

 

Cross-section slenderness 

CSM

EN 1993-1-4

0.0

0.4

0.8

1.2

1.6

2.0

0.6 0.9 1.2 1.5 1.8

R
u
,t

es
t/
R

u
,p

re
d
 

Cross-section slenderness 

CSM_Stub columns CSM_Beams

EN 1993-1-4_Stub columns EN 1993-1-4_Beams

λ̅𝑝 

λ̅𝑝 


