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Abstract

Since the proposal of a fast learning algorithm for deepebeletworks in 2006, the deep learning techniques
have drawn ever-increasing research interests becaus$eiofinherent capability of overcoming the drawback of
traditional algorithms dependent on hand-designed featuDeep learning approaches have also been found to be
suitable for big data analysis with successful applicatimncomputer vision, pattern recognition, speech recagnit
natural language processing, and recommendation sysiehss paper, we discuss some widely-used deep learning
architectures and their practical applications. An upkite overview is provided on four deep learning architexsur
namely, autoencoder, convolutional neural network, dedipfnetwork, and restricted Boltzmann machine. Différen
types of deep neural networks are surveyed and recent pseEgeare summarized. Applications of deep learning
technigques on some selected areas (speech recognititernpagcognition and computer vision) are highlighted. A
list of future research topics are finally given with cleastjfications.

Index Terms

Autoencoder, Convolutional Neural Network, Deep Learnibgep Belief Network, Restricted Boltzmann
Machine

. INTRODUCTION

Machine learning techniques have been widely applied inreetyaof areas such as pattern recognition, natural
language processing and computational learning. With madearning techniques, computers are endowed with
the capability of acting without being explicitly prograredh constructing algorithms that can learn from data,
and making data-driven decisions or predictions. Durirggghst decades, machine learning has brought enormous
influence on our daily life with examples including efficiameb search, self-driving systems, computer vision,
and optical character recognition. In addition, by adaptmachine learning methods, the human-level artificial
intelligence (Al) has been improved as well, see [101], [13¥65] for more discussions. Nevertheless, when it
comes to the human information processing mechanisms gpagch and vision), the performance of traditional
machine learning techniques are far from satisfactorypited by deep hierarchical structures of human speech
perception and production systems, the concept of deepifggalgorithms was introduced in the late 20th century.
Breakthroughs on deep learning have been achieved sindg \#0B8n Hinton proposed a novel deep structured
learning architecture called deep belief network (DBN)][5Bhe past decade has seen rapid developments of
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deep learning techniques with significant impacts on signdlinformation processing. Research on neuromorphic
systems also supports the development of deep network mdds]. In contrast to traditional machine learning
and artificial intelligence approaches, the deep learrgéchriologies have recently been progressing massively with
successful applications to speech recognition, naturajuage processing (NLP), information retrieval, compute
vision, and image analysis [91], [125], [159].

The concept of deep learning originated from the study oificgad neural networks (ANNs) [60]. ANNs have
become an active research area during the past few deca&JefLER], [166], [167], [175]. To construct a standard
neural network (NN), it is essential to utilize neurons t@duce real-valued activations and, by adjusting the
weights, the NNs behave as expected. However, dependintgegoroblems, the process of training a NN may take
long causal chains of computational stages. Backpropagéatian efficient gradient descent algorithm which has
played an important role in NNs since 1980. It trains the ANNth a teacher-based supervised learning approach.
Although the training accuracy is high, the performanceadfkpropagation when applied to the testing data might
not be satisfactory. As backpropagation is based on locignt information with a random initial point, the
algorithm often gets trapped in local optima. Furthermdréhe size of the training data is not big enough, NNs
will face the problem of overfitting. Consequently, othefeefive machine learning algorithms such as support
vector machine (SVM), boosting and K-nearest neighbour NiKMave been adopted to obtain global optimum
with lower power consumption. In 2006, Hinton [59] proposedew training method (called layer-wise-greedy-
learning) which marked the birth of deep learning techniqukhe basic idea of the layer-wise-greedy-learning
is that unsupervised learning should be performed for nétvpoe-training before the subsequent layer-by-layer
training. By extracting features from the inputs, the daifmethsion is reduced and a compact representation is
hence obtained. Then, exporting the features to the negt,layl of the samples will be labeled and the network
will be fine-tuned with the labeled data. The reason for theuterrity of deep learning is twofold: on one hand, the
development of big data analysis techniques indicatesttigaoverfitting problem in training data can be partially
solved; on the other hand, the pre-training procedure beafosupervised learning will assign non-random initial
values to the network. Therefore, a better local minimum loarreached after the training process and a faster
converge rate can be achieved.

Up to now, the research on deep learning techniques hasdstirgreat deal of attention and a series of exciting
results have been reported in the literatures. Since 20@|mageNet’s competition has attracted a great many
computer vision research groups throughout the world frath tacademia and industry. In 2012, the research
group led by Hinton won the competition of ImageNet ImagesSification by using deep learning approaches
[86]. Hinton’s group attended the competition for the fiisté and their results were0% better than that in the
second place. Both Google and Baidu have updated their irr@gech engines based on Hinton's deep learning
architecture with great improvements in searching acquBaidu also set up the Institute of Deep Learning (IDL)
in 2013 and invited Andrew Ng, the associate professor atf&td University, as the Chief Scientist. In March
2016, a Go Game match was held in South Korea by Google’s aégsepihg project (called DeepMind) between
their Al player AlphaGo and one of the world’s strongest pl@ylLee Se-dol [140]. It turned out that AlphaGo,
adopting deep learning techniques, showed surprisinggitteand beat Lee Se-dol Ryl. In addition, deep learning
algorithms have also shown outstanding performance inigtied the activity of potential drug molecules and the
effects of mutations in non-coding DNA on gene expression.

With rapid development of computation techniques, a pawdramework has been provided by ANNs with
deep architectures for supervised learning. Generallgildpg, the deep learning algorithm consists of a hieraathic
architecture with many layers each of which constitutes r&limeear information processing unit. In this paper, we
only discuss deep architectures in NNs. Deep neural nesM@RINs), which employ deep architectures in NNs,
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can represent functions with higher complexity if the numsbef layers and units in a single layer are increased.
Given enough labeled training datasets and suitable modeép learning approaches can help humans establish
mapping functions for operation convenience. In this pafer main deep architectures are recalled and other
methods (e.g. sparse coding) are also briefly discussedtiéwmally, some recent advances in the field of deep
learning are described.

The purpose of this article is to provide a timely review antiidduction on the deep learning technologies and
their applications. It is aimed to provide the readers withagkground on different deep learning architectures
and also the latest development as well as achievementssiarda. The rest of the paper is organized as follows.
In Sections II-V, four main deep learning architecturesjolhare restricted Boltzmann machines (RBMs), deep
belief networks (DBNSs), autoencoder (AE), and convolutiomeural networks (CNNSs), are reviewed, respectively.
Comparisons are made among these deep architectures amd degelopments on these algorithms are discussed.
The applications of those deep architectures are higldiyim Section VI. Conclusions and future topics of research
are presented in Section VII.

II. DEEPLEARNING ARCHITECTURES RESTRICTEDBOLTZMANN MACHINE
A. The motivation

In this part, a brief review of RBMs is given. RBMs are widelgead in deep learning networks on account of
their historical importance and relative simplicity. Th8R was first proposed as a concept by Smolensky, and
has become prominent since Hinton published his work [59006. RBMs have been used to generate stochastic
models of ANNs which can learn the probability distributi@rith respect to their inputs. RBMs consist of a
variant of Boltzmann machines (BMs). BMs can be interpreted\Ns with stochastic processing units connected
bidirectionally. Since it is difficult to learn aspects of amknown probability distribution, RBMs have been proposed
to simplify the topology of the network and to enhance thecigfficy of the model. It is well recognized that an
RBM is a special type of Markov random fields with stochastgible units in one layer and stochastic observable
units in the other layer.

B. The structure and the algorithm

As shown in Figure 1, the neurons are restricted to form artiipagraph in an RBM. It can be seen that there
is a full connection between the visible units and the hiddees, while no connection exists between units from
the same layer [165]. To train an RBM, the Gibbs sampler ipp#ath Starting with a random state in one layer
and performing Gibbs sampling, we can generate data fromBM.FOnce the states of the units in one layer
are given, all the units in the other layers will be updatebisTupdate process will carry on until the equilibrium
distribution is reached. Next, the weights within an RBM algained by maximizing the likelihood of this RBM.
Specifically, taking the gradient of the log-probability thie training data, the weights can be updated according
to:

dlogp(v?) 010
22 T — 9ROy — (pOR® 1
By, = (0FH) — R), (1)
wherew;; represents the weight between the visible unénd the hidden unif. (v?h% and (v°h3°) are the
correlations when the visible and hidden units are in theekiwayer and the highest layer, respectively. The
detailed proof can be found in [59]. It should be noted thattiaining process will be more efficient when using
the gradient-based contrastive divergence (CD) algorithine CD algorithm for RBM training was developed by

Hinton in 2002 [56]. The procedure of thestep CD algorithm is given in Algorithm 1.
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Fig. 1. Schematic diagram of RBMs

Algorithm 1 k-step contrastive divergence for RBMs

Input: RBM(V4,....V,, Hy,....H,), training periodT’, learning ratec

Output: The RBM weight matrixw, gradient approximatiolw;;, Aa; andAb; fori =1,...m, j=1,...,n
Initialize w with random values distributed uniformly if9, 1], Aw;; = Aa; = Ab; = 0 for i = 1,...,m,

ji=1..n
ForvVt=1:T do,
samplev”)  P(v;|n®) wheni =1,...,m
Samplehg.”l) P(h;lv®) whenj =1,...n
Fori=1,...m,j=1,..,n do
Aw;j = Aw;j +e x [P(Hj = 1|v@) x vi(o) — P(H; = 1]v™M) x ’UZ(T)]
Aa; = Aa; + € x (’UZ(O) - ’UZ(T))
Abj = Abj + e x [P(H; = 1}v©) — P(H; = 1|[v™)]
w=w+e€ex Awj;
End For
End For

Assuming that the difference between the model and thettdig&ibution is not large, we can use the samples
generated by the Gibbs chain to approximate the negatidiegria Ideally, as the length of the chain increases, its
contribution to the likelihood decreases and tends to z&2p However, in [147], we can find that the estimation
of the gradient cannot represent the gradient itself. Meeeomost CD components and the corresponding log-
likelihood gradient have equal signs [45]. Hence, a moretwal algorithm called persistent contrastive divergenc
was proposed in [115]. In this approach, the authors sugdésttrace the states of persistent chains rather than
searching the initial value of the Gibbs Markov chain at aegivlata vector. The states of the hidden and visible
units in the persistent chain are renewed following the tgwdaeach weight. In this way, even a small learning rate
will not cause much difference between the updates and thasgent chain states while bringing more accurate
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estimates.

C. Variations of RBMs

Nowadays, RBMs are playing an important role in various i@pgibns such as topic modeling, dimensionality
reduction, collaborative filtering, classification andttea learning. For example, an RBM can be used to encode
the data and then applied to unsupervised learning for segne or classification. Additionally, the RBMs can be
used as a generative model. We can calculate the jointlisish of the visible and hidden unif3(v, i) with the
Bayesian law. The conditional probability of a single umik|v) can also be calculated with RBMs. Therefore, an
RBM can also be used as a discriminative model.

Generally, RBMs are used as feature extractors in the pieitig process for classification tasks. However, the
features extracted by the RBMs in unsupervised learning medype useful in the supervised learning process. In
addition, the selection of parameters, which is criticatite performance of learning algorithms, will also bring
difficulties. To handle these problems, discriminativetieed Boltzmann machines (DRBMs) was proposed by
Larochelle and Bengio in 2008. Furthermore, for online néag with big datasets, the model of hybrid DBRMs
(HDRBMSs) performs well due to their combined advantagesatifilyenerative and discriminative learning. In multi-
label classification tasks, however, the performance of RB&not satisfactory. Mnih et al. [115] proposed the
so-called conditional restricted Boltzmann machines (&RBfor further performance improvement. Meanwhile,
in high-dimensional time series, the CRBMs can be used adinear generative models. In [153], an undirected
model is established with real-valued visible variabled bimary latent ones. In this model, the visible variables
at the last few time-steps can be directly influenced by tientaand visible variables at each time step. With
this property, online inference can be carried out more iefiity by the CRBMs. In addition, learning from time
series, the CRBMs are able to obtain rich distributed repriegions in order to guarantee the efficiency of accurate
inference.

Recently, a self-contained DRBM (called FE-RBM) was depebb by Elfwing based on a novel discriminative
learning algorithm [41]. In the FE-RBM, the output for anypurt and class vectors is computed according to the
negative free energy of an RBM. The learning objective ideadd through minimizing the mean-squared training
error using a stochastic gradient descent method. Moreavapired by the previous research, the free energy
is scaled by a constant based on the network size to impravedbustness of function approximation in the
FE-RBMs.

When RBMs are applied to areas like image and speech reayrttieir performance may be severely degraded

by the noises in the data [55]. In 2012, Tang et al. [152] mhiiced a state-of-the-art model, the robust Boltzmann
machine (RoBM), which can be used to deal with noises andusimis in visual recognition. With the RoBM,
a better generalization can be achieved by eliminating tifleence of corrupted pixels. Trained with unlabeled
data with noises using unsupervised leaning algorithmes,RbBM model can also learn the spatial structure of
the occluders. Compared with traditional algorithms, tr@BRs have shown enhanced performance in various
applications such as image inpainting and facial recogmiti

As a key factor in the Boltzmann distribution, temperatugefor the first time, taken into consideration in the
graphical model of DBNs by Li et al. [97]. The temperaturedzhsestricted Boltzmann machines (TRBMs) were
proposed where the temperature acts as an independentgtardambe adjusted. Theoretical analysis reveals that
the temperature is a key factor that controls the selegtafitthe firing neurons in the hidden layers. It is proved
that the performance of the proposed TRBMs can be enhancedopgrly setting the sharpness parameter of the
logistic function. Since an extra level of flexibility is maduced, the TRBMs can obtain more accurate results.
Furthermore, the research also provides some insightshist®BMs from a physical point of view which indicates
that there may exist some relationship between the temperanhd some real-life NNs.
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[1l. DEEPLEARNING ARCHITECTURES DEEPBELIEF NETWORK
A. The motivation
As mentioned in the previous section, the hidden and visialgables are not mutually independent [165]. To
explore the dependencies between these variables, in 200&n constructed the DBNs by stacking a bank of
RBMs. Specifically, the DBNs are composed of multiple lay#rstochastic and latent variables and can be regarded

as a special form of the Bayesian probabilistic generatiseeh Compared with ANNs, DBNs are more effective,
especially when applied to problems with unlabeled data.

B. The structure and the algorithm

The schematic diagram of the model is shown below in Figure 2.
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Fig. 2. Schematic Diagram of DBNs

It can be seen from Figure 2 that in a DBN, every two adjacerériaform an RBM. The visible layer of each
RBM is connected to the hidden layer of the previous RBM amditip two layers are non-directional. The directed
connection between the above layer and the lower layer istopalown manner. Different layers of RBMs in a
DBN are trained sequentially: the lower RBMs are trained,fiteen the higher ones. After features are extracted
by the top RBM, they will be propagated back to the lower 1ay|80]. Compared with a single RBM, the stacked
model will increase the upper bound of the log-likelihoodhieh implies stronger learning abilities [5].

The training process of a DBN can be divided into two stages:pre-training stage and the fine-tuning stage.
In the pre-training stage, an unsupervised learning basedrtg is carried out in the down-up direction for feature
extraction; while in the fine-tuning stage, a supervisednieg based up-down algorithm is performed for further
adjustment of the network parameters. We note that the weprperformance of the DBNs can be largely attributed
to the pre-training stage in which the initial weights of thetwork are learned from the structure of the input data.
Compared with the randomly initialized ones, these weiginéscloser to the global optima and can therefore bring
better performance.

The CD algorithm introduced in the previous section can lelus pre-train a DBN. The performance, however,
is usually unsatisfactory especially when the input datac@damped. To overcome this problem, a greedy layer-
by-layer learning algorithm was introduced which optinsizbe weights of a DBN at time complexity linear to
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the size and depth of the network [59]. In the greedy layelalygr learning algorithm, the RBMs that constitute a
DBN are trained sequentially. Specifically, the visibledaypf the lowest RBM is trained first with® as the input.
The values in the visible layer are then imported to the hiddgers where the activation probabilitiéXh|v) of

the hidden variables are calculated. The representatitaingd in the previous RBM will be used as the training
data for the next RBM and this training process continues alhthe layers are traversed. Since in this algorithm,
the approximation of the likelihood function is only reqadrin one step, the training time has been significantly
reduced. The underfitting problem that usually occurs inpdeetworks can also be overcome in the pre-training
process. This pre-training algorithm is also called thesdyelayer-by-layer unsupervised training algorithm. For
clarity, we have provided its implementation procedure igotithm 2.

Algorithm 2 Greedy layer-by-layer algorithm for DBN
Input: Input visible vector;,, training period T, learning rate number of layers/.
Output: Weight matrixw’ of layeri,i = 1,2,...,J — 2.
Initialize w with random values from 0 to 1° = v;,,; whereh? denotes the value of units in the input layer.
h' represents the units’ value of thigh layer. layer = 1;
forvt=1:T do,
for layer < L, do gibbs sampling'¥¢" using P(h!®ve"|plaver—1)
Computing the CD in Algorithm Lw(layer) is achieved using(t + 1) = w(t) + € x Aw
End for
End for

In the fine-tuning stage, the DBNSs are trained with labeled ¢g the up-down algorithm which is a contrastive
version of the wake-sleep algorithm [57]. To find out the gatg boundaries of the network, a set of labels are set
to the top layer for the recognition weights learning preceédso, the backpropagation algorithm is used to fine-
tune the weights with labeled data [149]. Compared with thgiral wake-sleep algorithm, the up-down algorithm
does not suffer from the problems of mode-averaging whicl brang poor recognition weights.

To summarize, the training process of a DBN includes an wersiged layer-by-layer pre-training procedure
performed in a bottom-up manner and a supervised up-dowriime process. The pre-training process can be
regarded as feature learning through which a better inafle for the weights can be obtained, and the up-down
algorithm is then used to adjust the whole network. It's Wwgrto mention that with DBNSs, the unlabeled data is
processed effectively. Moreover, the overfitting and ufitfielg problems can also be avoided [30].

C. Variations of DBNs

In 2009, Nair and Hinton [121] introduced a top-level mod#lDBNs and evaluated it on a 3D object recognition
task. A third-order Boltzmann machine is used as the topHewdel and trained by a hybrid algorithm which
combines both generative and discriminative gradientseBaon Indiveri and Liu’s work [75], it is claimed that
the brain-inspired processor architectures are suppodefscof DNNs and cortical networks. Moreover, it was
proved that the complementary priors can be used to overtoenmference difficulty in densely connected belief
networks. In 2008, Salakhutdinov and Hinton [136] introgidca method to learn a good covariance kernel for
a Gaussian process with unlabeled data and a DBN. Compathdawiormal kernel based on the raw input, a
Gaussian kernel performs better if the data sets are in Higkrgsions and highly structured.

Due to successful applications of the DBNs to the TIMIT Adfhonetic Continuous Speech Corpus bench-
mark, researchers are motivated to deal with a much mordecigithg task, the large vocabulary topic. It was
proved that for such a task, training DBNs is computatignatiore difficult. Although the backpropagation of



REVISED 8

stochastic gradient descent has shown its power in the dime4tep, it is difficult to modify the learning process
especially for a large-scale dataset. On the basis of arragtpowerful GPU machine, it is possible to train a deep
architecture for dozens of speech recognizers using a tprgetity of speech training data with remarkable results.
However, it won't be able to obtain acceptable results witty @ne GPU machine since current architectures cannot
guarantee the training efficiency. Hence, Deng and Yu [36ppsed a novel deep architecture, referred to as deep
convex networks (DCNSs), to overcome the shortcomings imlag scalability. The DCNs consist of a variety of
layered modules. One module is formed with a single hiddgerlas well as two sets of weights in a special
neural network. More specifically, the lowest module is cosgtl of two linear layers and a non-linear layer. One
linear layer contains the input variables and the other amains output variables. Besides, the non-linear layer
contains nonlinear input variables. The learning metho®@Ns is batch-mode based which leads to a parallel
training. Additionally, the performance of DCNs can be imyed by the structure-exploited fine-tuning process.

Compared with standard classification algorithms such d¢l 8d KNN, DBNs can also be employed in image
classification because of their outstanding performancéedature learning. Based on the greedy layer-by-layer
unsupervised training algorithm, Abdel et al. [1] proposedautomatic diagnosis system which includes a DBN
for pre-training and a backpropagation NN for fine-tuningngpared with the standard NN with only one supervised
phase, the diagnosis system can achieve higher classificaticuracy.

Recently, Liao et al. [100] proposed a novel image retrigwethod which is based on DBNs and a Softmax
Classifier. The standard Content-Based Image RetrievalRC&gorithm that exploits automated feature extraction
methods is employed to retrieve similar images from thelztega. However, the image feature representation is not
as good as expected. It is shown that the DBN-Softmax modalrabhigher precision and better recall than previous
ones, such as the shape-based algorithm and the perceasiahlyorithm. Generally, based on simulations of the
human visual system architecture, DBN-Softmax can proadelid representation and extraction measurement
more effectively than the standard algorithms in which ashold is required to be set manually based on the
hamming distance computation.

To increase the flexibility of DBNs, a novel model of conviduial deep belief networks (CDBNs) was introduced
[3]. As the inputs should be vectorized as an image matrin-diwnensional (2-D) structure information such as
an input image cannot be imported as input directly in DBNewElver, in CDBNSs, features of high dimensional
images can be extracted. Although the greedy layer-byrlaigorithm plays an important role in training DBNSs,
many other deep learning techniques have also been inatelign 2009, Bengio [10] claimed that we can regard
each pair of layers of the DBN as a denoising autoencoder JDAE

IV. DEEPLEARNING ARCHITECTURES AUTOENCODER
A. The motivation

An autoencoder (AE), which is another type of ANNS, is alstiechan autoassociator. It is an unsupervised
learning algorithm used to efficiently code the datasetHiergurpose of dimensionality reduction [10], [60], [61],
[137]. During the past few decades, the AEs have been at ttiagedge among researches on the ANN. In 1988,
Bourlard and Kamp [15] found that a multilayer perceptronL@ in auto-association mode could achieve data
compression and dimensionality reduction in the areasitik@mation processing.

Recently, the AEs have been employed to learn generativelmodl data [30]. The input data is first converted
into an abstract representation which is then converteH ivéc the original format by the encoder function. More
specifically, it is trained to encode the input into some espntation so that the input can be reconstructed from
that representation. Essentially, the AE tries to apprexéthe identity function in this process. One key advantage
of the AE is that this model can extract useful features owmmtiisly during the propagation and filter the useless
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information. Besides, since the input vector is transfatritéo a lower dimensional representation in the coding
process, the efficiency of the learning process can be eedanc

B. The structure and the algorithm

The AE is a one-hidden-layer feed-forward neural networkilar to the MLP [13]. The difference between an
MLP and an AE is that the aim of the AE is to reconstruct the fnpthile the purpose of the MLP is to predict
the target values with certain inputs. The numbers of nodélké input layer and the output layer are identical. In
the coding process, the AE first converts the input vectono a hidden representatidnusing a weight matrix;
then in the decoding process, the AE mapsack to the original format to obtaih with another weight matrix’.
Theoreticallyw’ should be the transpose ©f Parameter optimization is adopted in order to minimizeaherage
reconstruction error betweenandz. Mean square errors (MSES) are used to measure the readimstraccuracy
according to assumed distribution of the input feature4]1T0he schematic diagram of the model is shown below
in Figure 3.

- Reconstruction
Decoder
A
- Code
Encoder
A
Input

Fig. 3. Schematic Diagram of AEs

Similar to that for the DBNs, the training process for an Al edso be divided into two stages: the first stage is
to learn features using unsupervised learning and the dasdo fine-tune the network using supervised learning.
To be specific, in the first stage, feed-forward propagatiofirst performed for each input to obtain the output
value z. Then squared errors are used to measure the deviatienfroin the input value. Finally, the error will
be backpropagated through the network to update the weilshthe fine-tuning stage, with the network having
suitable features at each layer, we can adopt the standpaivésed learning method and the gradient descent
algorithm to adjust the parameters at each layer.
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C. Variations of AEs

In 2008, Vincent et al. [154], [155] proposed the DAEs for dising the traditional AEs. The DAE intentionally
adds noises into the training data and trains the AEs witketltdrrupted data. Through the training process, the
DAE can recover the noise-free version of the training dataich implies an enhanced robustness. Compared
with RBMs, some standard optimization methods can be usddAias [101], [155]. It should be noted that by
exploiting the statistical dependencies inherent in thpuis, the DAE will undo the adverse effects of the noisy
inputs corrupted in a stochastic manner. The objectivetiondor optimization in the DAE is shown in Equation
2:

Ipap =Y 1E oL, g5(fo(@))], @
t

Whel’e[Eq(j‘xm)[L(w(t),gg(fg(i‘)))] represents the average value over corrupted @atewn from the corruption
procedurey(Z|z(*). In practice, stochastic gradient descent is employed tionige the objective function. A novel
architecture was developed in [156] based on stacked lafdds\Es. With the stacked model, the implementation
of the DAE becomes easier since we only need to determineypgeeand level of the corrupting noise.

Recently, it has been observed that the performance ofiiitasi®n tasks will be improved when sparsity is
encouraged to learn the representations. Sparse re@tiseatare used to produce a simple interpretation of the
input data by extracting the hidden structure of the dat&. [Earning algorithm for sparse representation was firstly
proposed by Ranzato in 2006 [128]. To tune a code vector irgoasi-binary sparse one, a non-linear sparsity is
added between a linear encoder and a linear decoder. Wehattéot binary inputs, large weights are required to
minimize the reconstruction error. The overall cost funictin a sparse AE is shown in Equation 3:

N
Tsparse(0,0) = J (@, b) + 5 Y _ K L(p]pf) (3)
j=1
wherep is a sparsity parameter, typically a small quantity closedm, N is the number of neurons in the hidden
layer, p;- is the average activation of hidden ugijtand Jy,q,sc(w, b) is the previous cost functiorti controls the
weight of the sparsity penalty term.

Furthermore, Makhzani and Frey [110] proposek-sparse AE in 2013. The-sparse AE consists of the basic
architecture of a standard AE while keeping only the highesttivations in the hidden layers. The results obtained
show that thek-sparse AEs perform better than the DAEs and RBMs. They eldithat thek-sparse AEs can
be easily trained, and the advanced encoding process wilribate to achieving satisfactory performance for
large-scale problems.

In 2011, Rifai et al. [133] proposed the contractive autaelees (CAES) where a well selected penalty term
is added to the standard cost function in the reconstructiage. This penalty term is employed to penalize
the sensitivity of the features with respect to the inputsthis way, the mapping from the input vector to the
representation will converge with higher probability. Rés obtained by CAEs are identical to or even better than
those obtained by other regularized AEs such as DAEs. Tldrtgaobjective of the CAEs is shown in Figure 4:

Joar =Y L@, go(fo(@))) + AT (D)3, @)
t

where L(-) is the cost function) is the parameter to control the regularization strengtld, .Afx) is the function
which represents the Jacobian matrix of the encoder. Rifai.aliscovered that the penalty term would produce
robust features on the activation layer. Moreover, the Ieran be used to address the trade-off between the
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robustness and reconstruction accuracy. It is also shoatmatlbAE with slight corrupting noises can be regarded
as a CAE in which the whole reconstruction function is pemali[11]. Furthermore, in 2016, Sun et al. [146]
proposed a separable deep autoencoder (SDAE) which is asdeht with the unseen noise estimation. The total
reconstruction error of the noisy speech spectrum can bémigied by adjusting the unknown parameters of the
DAE and the estimation of the clean speech spectrum [19].

V. DEEPLEARNING ARCHITECTURES DEEP CONVOLUTIONAL NEURAL NETWORKS
A. The motivation

CNNs are a subtype of the discriminative deep architect8feapd have shown satisfactory performance in
processing two-dimensional data with grid-like topologych as images and videos. The architecture of CNNs is
inspired by the animal visual cortex organization. In thé&d® Hubel and Wisel [73] proposed a concept called
receptive fields. They found that the complex arrangemeitelts were contained in the animal visual cortex in
charge of light detection in overlapping and small subaagiof the visual field. Furthermore, the computational
model Neocognitron was introduced in [46] with hierarcHicarganized image transformations. However, the
Neocognitron differs from the CNNs in that it does not requar shared weight.

The concept of CNNs is inspired by time-delay neural netwdfkDNN). In a TDNN, the weights are shared
in a temporal dimension, which leads to reduction in comjiuta In CNNs, the convolution has replaced the
general matrix multiplication in standard NNs. In this wdye number of weights is decreased, thereby reducing
the complexity of the network. Furthermore, the images,aas inputs, can be directly imported to the network,
thus avoiding the feature extraction procedure in the stahtbarning algorithms. It should be noted that CNNs
are the first truly successful deep learning architecturetduthe successful training of the hierarchical layers. The
CNN topology leverages spatial relationships so as to redhe number of parameters in the network, and the
performance is therefore improved using the standard vapkigation algorithms. Another advantage of the CNN
model is that it requires minimal pre-processing.

With rapid development of computation techniques, the GRetklerated computing techniques have been ex-
ploited to train CNNs more efficiently. Nowadays, CNNs haleady been successfully applied to handwriting
recognition, face detection, behavior recognition, she@cognition, recommender systems, image classification,
and NLP.

B. The structure and the algorithm

Three factors play a key role in the learning process of a CHjparse interaction, parameter sharing and
equivariant representation [74]. Different from the ttamtial NNs where the relationship between the input and
output units are derived by matrix multiplication, the CNifsluce the computational burden with sparse interaction
where the kernels are made smaller than the inputs and usealefovhole image. The basic idea of parameter
sharing is that, instead of learning a separate set of paeasnat each location, we only need to learn one set
of them, which implies a better performance of the CNN. Patamsharing has also endowed the CNN with an
attractive property called equivariance, meaning thatnelier the input changes, the output changes in the same
way. Consequently, fewer parameters are required for CNdbagpared to other traditional NN algorithms, which
leads to reduction in memory and improvement in efficien¢dye Tomponents of a standard CNN layer are shown
in Figure 4, and a conceptual schematic diagram of a star@idid is shown in Figure 5.

As shown in Figure 5, a CNN is a multi-layer neural networkt tbansists of two different types of layers, i.e.,
convolution layers (c-layers) and sub-sampling layeigaysts) [30], [74], [86]. C-layers and s-layers are conadct
alternately and form the middle part of the network. As Fegdrshows, the input image is convolved with trainable
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filters at all possible offsets in order to produce featurgsnia the first c-layer. A layer of connection weights are

included in each filter. Normally, four pixels in the featureap form a group. Passed through a sigmoid function,
these pixels produce additional feature maps in the firaysrl This procedure carries on and we can thus obtain the
feature maps in the following c-layers and s-layers. Findlie values of these pixels are rasterized and displayed

in a single vector as the input of the network [3].
Generally, c-layers are used to extract features when the of each neuron is linked to the local receptive field

of the previous layer. Once all the local features are etdthdhe position relationship between them can be figured
out. An s-layer is essentially a layer for feature mappingede feature mapping layers share the weights and form
a plane. Additionally, to achieve scale invariance, thensigl function is selected as the activation function due to

its slight influence on the function kernel. It should alsontmted that, the filters in this model are used to connect

a series of overlapping receptive fields and transform tieixage batch input into a single unit in the output.
However, when the dimensionality of the inputs equals to tfiahe filter output, it will be difficult to maintain
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translation invariance with additional filters. Due to thighhdimensionality, the application of a classifier may @us
overfitting. To solve this problem, a pooling process, alatled sub-sampling or down-sampling, is introduced
to reduce the overall size of the signal. In fact, sub-samgplias already been successfully applied for data size
reduction in audio compression. In the 2-D filter, sub-séangghas also been used to increase the position invariance.

The training procedure for a CNN is similar to that for a stamdNN using backpropagation. More specifically,
Lecun et al. [10] introduced error gradient to train the CINMsthe first stage, information is propagated in the
feed-forward direction through different layers. Saligdtures are obtained by applying digital filters at eacleday
The values of the output are then computed. During the sestag®, the error between the expected and actual
values of the output is calculated. Backpropagating andmi@ing this error, the weight matrix is further adjusted
and network is thus fine-tuned. Unlike other standard atlgais in image classification, the pre-processing is not
frequently performed in CNNs. Instead of setting paransetas is the case with traditional NNs, we just need to
train the filters in CNNs. Moreover, in feature extractiol\IIs are independent of prior knowledge and human
interference.

In 1998, the max pooling method was proposed in LeNets forssupling [92]. By summarizing the statistics
of the nearby outputs, a pooling function is used to replaeedutput of the network at a certain position. Using
the max-pooling method, we can obtain the maximum outputrectangular neighborhood. The pooling procedure
can also make the representation invariant to the traosmtf the input. Now, by adding a max pooling layer
between the convolutional layers, spatial abstractnessases with the increase of feature abstractness.

As mentioned in [17], pooling is used to obtain invariancenrage transformations. This process will lead to
better robustness against noise. It is pointed out thatenf@mnance of various pooling methods depends on several
factors, such as the resolution at which low-level featamesextracted and the links between sample cardinalities.
In 2011, Boureau [16] found that even if features are widégidhilar, it is possible to pool them together as long as
their locations are close. Furthermore, it is found thatdsgierformance can be delivered by performing clustering
ahead of the pooling stage. In [78], it is shown that bettelipg performance can be achieved by learning receptive
fields more adaptively. Specifically, utilizing the conceptover-completeness, an efficient learning algorithm is
proposed to accelerate the training process based on iantehfeature selection.

More recently, Sermanet et al. [138] proposed a novel pgofirethod calledZ, pooling and obtained high
accuracy on the SVHN dataset, pooling is a biological model inspired by complex cells. 1813, Zeiler and
Fergus [171] proposed a stochastic pooling method to regaldarge CNNs which is equivalent to introduce a
stochastic pooling procedure in each convolutional lagecording to a multinomial distribution, the activation is
randomly selected in each pooling region. Moreover, siheesklections in higher layers are independent of those
in the lower ones, stochastic pooling is used to compute #ferahations in a multi-layer model.

C. Variations of CNNs

CNN has become a popular research topic in the past few yi@aPf13, Eigen et al. [40] introduced a novel
model called recursive convolutional networks (RCNs). &nehitecture of RCNs can be viewed as a CNN with
identical number of feature maps in all layers and tied fikeights across layers. It is shown that a larger number
of layers imply an increased computational burden, whiclkeadittle sense to precisely specify the size of the
feature maps dimensions.

CNN has also been used for feature extraction in areas lifecblbecognition. In 2009, Jarrett et al. [77]
proposed a novel model which combines convolution with an B&sed on the AE architecture, predictive sparse
decomposition unsupervised feature learning is employigdsparsity constraints on the feature vector. The feature
extraction stage involves a filter bank, a non-linear tramsétion, and a feature pooling layer. More recently,



REVISED 14

Masci et al. [112] developed an advanced stacked convokitidE for unsupervised feature learning. During the
training process, conventional gradient descent algarithused by each convolutional AE without adding additional
regularization terms. It is proved that the stacked cortiamhal AE can achieve satisfactory CNN initializations by
avoiding the local minima of highly non-convex objectivenftions.

Great success has been achieved when CNNs are applied ®stereh of computer vision. In 2008, Desjardins
and Bengio [36] proposed a novel model to employ RBMs in a CiNhich constitutes the convolutional restricted
Boltzmann machines (CRBMs). In the CRBMSs, a convolution agnputed with a normal RBM as the kernel.
Although the number of parameters in RBMs depends on the rdiioe of the input image, the complexity of
CRBMs only depends on the number of features to be extraatedttze size of the receptive field. The CD
algorithm can also be applied to train CRBMs. The visibleslaig initialized with the image input. An upward pass
is performed to compute the pixel states in the hidden l&yempared with standard RBMs in vision applications,
CRBMs can achieve a higher convergence rate with a smallee vd the negative likelihood function. Besides, the
convolutional deep belief networks (CDBNSs) have also besvelbped [87] and applied to scalable unsupervised
learning for hierarchical representations, and unsupedvieature learning for audio classification [94], [95].

Recently, fast Fourier Transform (FFT) has been employeatiginal CNNs. In 2014, Mathieu and Henaff [113]
introduced a fast training procedure for CNNs using FFTc8iiarge amounts of data are required for CNNs to learn
complex functions, even with the modern GPUs, it will takeddime, sometimes several weeks, to train the CNNs
to produce promising results. When dealing with web-scal@asets, the cost of producing labels with a trained
network is high. Towards this problem, a simple algorithndéveloped in [113] to accelerate the training process
with a significance factor. The method is realized by computionvolutions as products in the Fourier domain.
The same transformed feature map is used many times. Thiemdalof training CNNs lies in the convolution
of pairs of 2-D matrices. With the Fourier transformatiooneolution of the matrices is converted into pairwise
products, which can be carried out efficiently. Based on timaputation requirement, a GPU processor can be used
to implement the algorithm.

Sainath et al. [135] proposed an advanced CNN algorithm geesh recognition by introducing an extra filter
bank layer to replace the mel-filter bank. The filter bank &med jointly with other network parameters, through
which the cross-entropy objective function is optimizedoribver, a novel method is developed to normalize the
filter-bank features while maintaining their positivity gtat the logarithm non-linearity can be applied. Similar to
the standard CNNSs, the initial weights of the filter bank lagee not randomly selected but identical to those of
the mel-filter bank.

VI. APPLICATIONS OFDEEPLEARNING

In this section, we will review some practical applicatioofsthe deep learning architectures. In fact, due to
its ability to handle large amounts of unlabeled data, degpning techniques have provided powerful tools to
deal with big data analysis [31], [122]. In recent years, shaesamounts of data have been collected in various
fields including cyber security, medical informatics [1,78hd social media. Deep learning algorithms are used to
extract high-level features from these data in order toinkhéerarchical representations. Recently, deep learning
has attracted the attention of many high-tech enterprisels as Google, Facebook and Microsoft.

The architecture of deep networks has been widely appliegpgech recognition and acoustic modeling for
audio classification [95]. Besides, deep learning appresiciiso play an important role in the area of image
processing such as handwritten classification [84], hagolution remote sensing scene classification [66], single
image super-resolution (SR) [38], multi-category rapidadevisual presentation Brain Computer Interfaces (BCI)
[111], redand domain adaptation for large-scale sentirdassification [47]. Moreover, deep architectures have als
been employed in multi-task learning for NLP with an enhahicgerence robustness [26], [88]. In the following,
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we will make a general review on several selected applicataf the deep networks: speech recognition, computer
vision, and pattern recognition.

A. Speech Recognition

During the past few decades, machine learning algorithme Ih&en widely used in areas such as automatic
speech recognition (ASR) and acoustic modeling [76], [L1B]8], [126]. The ASR can be regarded as a standard
classification problem which identifies word sequences ffeature sequences or speech waveforms. In some
well-defined applications such as transcription and dmtatcommercial speech recognizers have been widely
used. Many issues have to be considered for the ASR to ackem&factory performance, for instance, noisy
environment, multi-model recognition, and multilingu&cognition. Normally, the data should be pre-processed
using noise removal techniques before the speech recogratgorithms are applied. Singh et al. [141] reviewed
some general approaches for noise removal and speech entamicsuch as spectral subtraction, Wiener filtering,
windowing, and spectral amplitude estimation. Traditiamachine learning algorithms, such as the SVM, and NNs,
have provided promising results in speech recognition.[68} example, Gaussian mixture models (GMMs) have
been used to develop speech recognition systems by refirgséme relationship between the acoustic input and
the hidden states of the hidden Markov model (HMM) [7].

1) Standard Speech Recognition Architecture and Algosthm

The standard architecture of an ASR system is given in Figure
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Fig. 6. Speech recognition system architecture

First, the speech waveform passes through the auditory e where the signal is pre-processed and spectral-
like features are produced. Then the features will be pagsedphone likelihood estimator in order to estimate
the likelihood of each phone. After that, the decoder wiltade the speech with phone likelihoods using n-gram
language model (LM) and the HMM. Finally, the output will bens to the parser, transformed to the best word
sequence and converted to a readable format.

As mentioned previously, traditional machine learningesnbks have achieved satisfactory results for ASR. Among
them, HMMs and GMMs are widely used for acoustic modelingaaeayate low-level acoustic contents from high-
level acoustic inputs [32], [34], [79], [101], [116], [12d1L30]. Here we will make a brief introduction about these
two models. Since a speech signal can be regarded as ais®mit a piecewise stationary signal, we can, for a



REVISED 16

short time period, assume that the speech process is statich Markov model can therefore be to describe the
stochastic speech process. Additionally, the training@ss of HMMs is automatic and simple to implement. We
can use a sequence of hidden states of the HMM to represeunstacteatures with non-stationary distributions.
The HMM will generate a sequence of vectors representindikkéhood of each state.

It should be noted that the performance of HMMs can be gredfgcted by the mismatch between the training
and testing conditions. In such a case, large amounts ofadataquired. In [126], GMMs were used to estimate the
output density of the HMM states. Furthermore, GMMs play mpartant role in speech-generation tasks and are
frequently used in frame-by-frame mapping, especiallydpeech enhancement, articulatory-to-acoustic mapping
and voice conversion. The GMM-HMM systems have signifigaittiproved the accuracy of classification and
can also be applied for noise removal in noisy speech uttesarPAdmittedly, the GMM-HMM still has some
limitations. It is difficult for the GMM-HMM to represent nelinear or more complex relationships between the
acoustic features and the speech inputs. The modelingesiffigiis usually very low for data near a non-linear
manifold. Besides, the assumption of conditional indegecd is another well-known drawback of the GMMs.
Furthermore, the loss of raw information can also degradepdrformance of the GMM-HMM systems.

It is widely recognized that NNs lying on or near a non-lineaanifold can deliver better performance than
the GMM-HMM systems. Elegant results have been achievedd®aades ago when researchers adopted ANNs
with one layer of non-linear hidden units to predict the HMKAtes from windows of acoustic coefficients [58].
However, due to the limited computation resources, it wigdit to implement standard NNs with many hidden
layers at that time. During the past few years, the comprigechniques have developed rapidly, which leads to
more efficient ways to train the DNNs. Since 2006, deep legrhias emerged as a new research area of machine
learning. As we just mentioned, deep learning algorithms lwang satisfactory results in feature extraction and
transformation, and they have been successfully appligétiern recognition. Compositional models are generated
using DNNs models where features are obtained from lowesrtayThrough some well-known datasets including
the large vocabulary datasets, researchers have showDtiNg could achieve better performance than GMMs on
acoustic modeling for speech recognition. Due to their tantding performance in modeling data correlation, the
deep learning architectures are now replacing the GMMs @eslp recognition [33], [58].

Early applications of the deep learning techniques cortdisarge vocabulary continuous speech recognition
(LVCSR) [28] and phone recognition [117]-[119]. In thesepligations, DBNs are used to train the unlabeled
data discriminatively. Moreover, the DBN-HMM method, whicombines HMMs with the deep learning models,
has achieved a great success. The observation probakiligtimated using DBNs, while the HMM is used to
model the sequential information. As pointed out in [11He tadvanced DBN-HMM method has adopted the
conditional random fields (CRFs) to replace the HMM in mauglthe sequential information. The maximum
mutual information (MMI) is employed to train the DBN-CRF this case, the transition weights, the weights
of the DBN, and the phone language model are jointly optichimeing the sequential discriminative learning
techniqgue. Compared with the DBN-HMM with frame-discrimiive training process, the DBN-CRF can achieve
higher accuracy. In [176], a combination of the heterogesddNNs and the CRF has been proposed for Chinese
dialogue act recognition.

Next we will review the recent progress in speech recognmitiaring the past few years. In 2015, the DNNs
have been employed in automatic language identificatioD)LExperiments have been carried out on short test
utterance [49] from two datasets: the Google 5 million aitees LID and the public NIST Language Recognition
Evaluation dataset. More recently, a multi-task learniky’I() method is proposed to improve the low-resource
ASR using DNNs with no requirement on additional languag®ueces [20]. Many other achievements have also
been obtained in ASR, especially in distant talking situadi[132], [161], [164], audio-visual speech recognition
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(AVSR) systems [125], and data augmentation on the basibefipreserving transformations [27]. Great progress
has also been made using RBMs for enhanced sound wave nejatase [76]. Moreover, the DNNs have been
employed for tracking dialog state [53], transferring srtsnguage knowledge [71], learning the filter banks [135],
designing an automatic feature extraction systems froniogdbd], and speaker adaptive training (SAT) for acoustic
modeling [114].

2) Large Vocabulary Continuous Speech Recognition:

In 2010, the context-dependent DBN-HMM approach has beepgsed for LVSCR to replace the context-
independent one [28]. Experiments on Bing mobile voice dealata showed that the context-dependent DBN-
HMM achieved enhanced performance compared with the stdrid&IM approach. Five pre-trained layers with
2048 hidden units at each layer are trained to classify thgraleframe. The performance of the DBN-HMM
system can be greatly improved by using triphone senoneBea®MN training labels and tuning the transition
probabilities properly.

It should be noted that the CNNs can be regarded as an altermabdel for speech recognition [134], [139].
Compared with DNNs, CNNs have attracted researchers'taitefor the following reasons: on one hand, the input
of DNNs can be interpreted in any order without any influencé¢he network performance, whereas speech spectral
representations are strongly correlated in frequency mnel tCNNs with shared weights have distinct advantages
in modeling such local correlations [93]; on the other hathak to the influence of different speaking styles, the
formants will be shifted and DNNs may lead to poor resultsfanslational variance models [90]. Moreover, a large
number of parameters and large networks are required for ©tdNcapture translational invariance. However, by
averaging the outputs of the hidden units in different fesgies, the CNNs can capture the translational invariance
with fewer parameters. Experiment results in [134] showed CNNs can achieve relatively better performance
than DNNs for LVCSR tasks.

In 2015, Li et al. [99] compared different acoustic modelaggproaches using DNNs and evaluated the perfor-
mance of Chinese dialog model on the basis of LVSCR. It isadiffifor traditional ASR systems to handle Chinese
because it is a syllabic language with 1254 distinct sydlabdnd 408 toneless base-syllables. Additionally, the
syllable based architecture may lead to poor coverage amainiborm distribution of the training data. Furthermore,
large size of modeling units are required for data trainigjch excludes the possibility of using GMM based
acoustic models. In [99], a multi-task learning strategyswatroduced to combine different models in the DNN
based speech recognition systems and achieved bettermarfoe than the GMMs based model. Moreover, by
using DNNs, Aryal et al. [6] developed a novel method for 1@k data-driven articulatory synthesis. A tapped-
delay input line is adopted to capture context informatiorthie articulatory trajectory, which means there is no
need to post-processing the data. Additionally, deep iegrechniques can also be used for head motion synthesis
[37] and speech enhancement [81].

It is recognized that both audio information and visual comgnt are key factors for human speech recognition.
Synthetic talking avatar has been introduced in many hucoamputer interaction applications such as virtual
newscaster, computer agent, email reader, and inform&task. In 2015, Wu at el. [160] developed a real-time
speech driven talking avatar system using DNNs. With theustio speech as its input, the three-dimensional
avatar system can react with articulatory movements aguglyd The most important factor in this system is the
acoustic-to-articulatory mapping. This mapping procedsrnot trivial due to the non-linear relationship between
the acoustic and articulatory features. The challenge ¢®topute the articulator movements according to both the
current and the preceding phonemes. Four models that hare ielely used are GMMs, general linear model
(GLM), ANNSs, and DNNSs.

The simplest approach to determine the relationship betwhez acoustic input and the articulatory output is the
linear mapping method such as the GLM. However, as mentitweéore, the acoustic-to-articulatory mapping is
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non-linear, which indicates that GLM cannot achieve ideafg@rmance. In the training process, the HMM method
requires phonetic information as constraints to tacklenta@ping problem. The relationship between the acoustic
and articulatory features is regarded as a linear mappingach state of the HMM. In this case, the GMM is
employed to model the joint distribution of the articulataand acoustic features to address the unconstrained
mapping problem. As shown in [126], the ANNs can be used ttdbihie real-time speech driven talking avatar
system due to their relatively short computation time. Camegd with other models, the ANNs have delivered
superior performance. However, it usually takes long timdrain an ANN with multiple hidden layers and the
training process tends to get trapped in poor local optinesides, the performance can be significantly affected by
how the ANNSs are initialized. Motivated by these facts, tHdNB are adopted for an effective treatment of a large
qguantity of unlabeled data. With the DNNs, a more sensilitalization is made and a more efficient pre-training
is performed, which has also to some extent relieved thefittirey problem.

B. Computer Vision and Pattern Recognition

Computer vision aims to make computers accurately undetstad efficiently process visual data like videos and
images [8], [144]. The machine is required to perceive vealld high-dimensional data and produce symbolic or
numerical information accordingly. The ultimate goal ofrquuter vision is to endow computers with the perceptual
capability of human. Conceptually, computer vision refeyshe scientific discipline which investigates how to
extract information from images in artificial systems. Thédwing areas are included as sub-domains of computer
vision: event detection, scene reconstruction, objectai®in and recognition, object posture estimation, image
restoration, statistical learning, image editing and giéehancement.

Pattern recognition is a scientific discipline which aimsdentify the pattern of a given input value [14]. It is a
rather general concept which encompasses several subirdolika classification, regression, sequence labeling, an
speech tagging. Due to the rapid industrial developmeetgtlare ever increasing requirements on the capability
of information retrieval and processing, which has brougétv challenges to pattern recognition. Recently, the
development in deep learning architectures has providedlrapproaches to the problem of pattern recognition,
which will be discussed in what follows.

1) Recognition:

During the past few years, deep learning techniques haviewazh tremendous progress in the domains of
computer vision and pattern recognition, especially inaareuch as object recognition. We will discuss some
classical problems in computer vision regarding recognitiasks. In classification applications, feature selactio
is an important issue. Normally, features are specified minin traditional classification algorithms, which have
limited generality. Some typical deep learning architegtguch as the CNNs, can select the features automatically
and achieve outstanding performance based on GPU-adeeleramputational resources. Note that human vision
systems are different from computer vision systems, an@sdt lieen shown that DNNs can be easily fooled by
unrecognizable images [124]. However, this does not meah deep learning techniques are not suitable for
classification tasks. Recent researches have shown th&dsification tasks, deep learning technigques can obtain
promising results [9], [89].

In object recognition, which is also called object clasaificn, deep learning methods have achieved superior
performance compared with conventional classificatiowritlgms [151]. Here we review some recent progress on
classification tasks. For German traffic sign recognititwe, multi-column DNN has been proposed [24], [25]. To
study neuropsychiatric conditions based on functionaheativity (FC) patterns, standard classifiers like the SVM
have been widely used. Recently, the DNNs have been emptoyddssify the whole-brain resting-state FC patterns
of schizophrenia (SZ) [83]. To improve the performance @fsslfication, a novel maximum margin multimodal
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deep neural network (3mDNN) was proposed to take advantddlkeeomultiple local descriptors of an image
[131]. Compared with standard algorithms, this method,s@ering the information of multiple descriptors, can
achieve discriminative ability. DNNs can also be used fa wind speed patterns classification and the supervised
multispectral land-use classification [70], [105].

In computer vision and pattern recognition, sometimes wedrte build and process 3D models. Mesh under-
standing is one of the key factors in this field. Particularhesh labeling can be used to find out the inherent
characteristics of the mesh. For image labeling tasks,ugga@t al. [96] proposed an input output deep architecture
(IODA) in 2015. Previously, the mesh labeling approachesi$ed on the mesh triangle which was characterized
by heuristically designed geometry features [72], [801thAligh these standard methods could obtain satisfactory
results, they suffered from a serious problem that the géiorfeatures obtained could provide promising results
only for few 3D mesh types. Therefore, it is of great impoceno develop new approaches for feature generation
and labeling using different types of meshes. Towards #riget, a more effective representation of meshes was
introduced in [50]. Combining human vision knowledge anéméarning models, CNNS are employed to learn
mesh representations with much better performance. Mergsince promising abilities were shown in learning
multi-layered non-linear features, DBNs have been widagdiin object classification tasks.

It is well recognized that when larger datasets are useddaring, the problem of overfitting can be prevented
effectively, which implies improved performance. Therefoas a dataset that includes over 15 million labeled
images, the ImageNet has attracted great attention [29iné&stioned in previous sections, the performance of the
CNNs can be controlled by adjusting the depth and breadthftemweights of the CNNs are shared, which imply
a shorter tuning process. Therefore, CNNs are employed ayéNet and have achieved satisfactory performance
[86]. In addition, the CNNs have also been used for highitdem remote sensing (HRRS) scene classification
[66] and handwritten Hangul recognition [84].

It should be noted that deep learning techniques can alsgjpléed to hand posture recognition (HPR). Since
the features generated by traditional algorithms are dichiand it is difficult to detect and track hands with normal
cameras, the DNNs are employed to produce enhanced feftdBisBased on functional near infrared spectroscopy
(FNIRS), deep learning techniques have achieved promigigglts in classifying brain activation patterns for BCI
[54].

2) Detection:

Detection is one of the most widely known sub-domains in cat@pvision. It seeks to precisely locate and
classify the target objects in an image. In the detectiokstafe image is scanned to find out certain special issues.
For example, we can use image detection to find out the pesalimiormal tissues or cells in medical images.
The deformable part-based model (DPM) proposed by Felreiszs one of the most popular methods [43]. As
demonstrated in [148], due to their strong abilities to uepthe geometric information such as object locations,
DNNs have been widely used for detection and have shownamutistg performance.

As mentioned in [1], DBNs are employed in the computer-aidiagnosis (CAD) systems for early detection of
breast cancer. In this case, the accuracy of the classifiee imost important factor for the CAD system. Compared
with standard classification algorithms such as the C4.5siectree method, the supervised fuzzy clustering (SFC)
technique, the Fuzzy-GA approach, the radial bases functeural network (RBFNN) method, and the particle
swarm optimized wavelet neural network (PSOWNN), the DBlda achieve better performance for the CAD
system. The DBNs can also be used to reduce the non-lineandionality of the input features. Studies on
the brain tumor detection and the segmentation task hawivegtincreasing attention during the past few years
[127]. Due to its computational efficiency, the magneticoremce imaging (MRI) method for clinical brain tumor
detection was introduced using deep learning techniquesieMer, the MRI based brain tumor detection method
suffers from the discrepancy between the predicted sizeshage of the brain tumors. The CNNs are employed to
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solve this problem for its strong learning capability. loskd be noted that promising results have been achieved
by CNNs in areas like human detection and Doppler radar bastdty classification [85].

Similarly, deep learning methods can also be applied to @mb@g@enetic variants to identify pathogenic variants.
Normally, the combined annotation-dependent depletioAdB) algorithm is most widely used to annotate the
coding and non-coding variants [129]. In the CADD methodjreedr kernel SVM is trained as the classifier.
However, because of limitations of SVM, CADD method cannaptare the non-linear relationships among the
features. Therefore, the DANNSs are used instead of the S\dgkdier. The DANNSs are suitable for large amounts
of samples and features. More specifically, to predict theeom order/disorder regions, the deep convolutional
neural fields (DCNF) method was introduced in [157]. In régayars, the saliency detection models have attracted
increasing research attention in predicting human eyadéd locations in the visual field. Traditional approaches
are based on contrast inference mechanisms and hand-elé$@miures. The deep learning techniques only require
raw image data [52]. Besides, deep learning techniques &laeebeen applied to Glaucoma detection [23], and
human-robot interaction systems with promising resul®y.[8

As another significant application of computer vision, imaghange detection plays an important role in not
only civil but also military fields. The target of image cha&ndetection is to sort out the differences between
two images taken at different time for the same scene. Thgénatection has been widely employed in remote
sensing, medical diagnosis, disaster evaluation, ancdovideveillance. In particular, the synthetic aperture rada
(SAR) image processing is a widely used application in ckadegtection [48]. In the state-of-the-art methods,
a difference image (DI) is produce between multi temporaRSkages for change detection. However, the DI
may have an adverse influence on the change detection parfoenTo avoid this, the deep learning techniques
have ignored the process of generating a DI. For traffic obammd maritime security monitoring, ship detection on
spaceborne images has been widely used. Due to their diedalbntents and high resolution properties, spaceborne
images are superior to other remote sensing images in odgeettion. However, compared with the infrared and
synthetic aperture radar images, the spaceborne imagesasitg affected by the weather condition. In addition,
the difficulty of image processing increases as larger dalis treated for higher resolution. To overcome these
two shortcomings, the DNNs are combined with the extremmieg machines (ELMs) in [150]. Compared with
other state-of-the-art methods, this approach has adhieigher accuracy with less detection time.

3) Other Applications:

Face alignment plays an important role in various visualiegfions such as face recognition. However, for the
extreme situations where the face images are taken, fagenatint may lead to difficulties during the analyzing
process. Therefore, different models for shape and appeasariation have been considered to solve this problem.
Based on the model used, the standard approaches can béyrdivigted into three groups: the active appearance
model, the constrained local model and the regression. @oedpwith the normal regression based methods, the
adaptive cascade deep convolutional neural networks (AT proposed by Dong for facial point detection,
have dramatically reduced the system complexity [39]. Deh@l. improved the basic DCNNs by exploiting an
adaptive manner for training with different network arelstures. Experiment results showed that their networks
can achieve better performance than the DCNNs or otherditéine-art methods.

It should be noted that the multi label image annotation isoatbpic in the field of computer vision [177].
Furthermore, deep learning techniques have recently hegied to the content-based image retrieval applications
[42]. More specifically, to address the cross-modal retli¢asks, a correspondence AE (Corr-AE) was introduced
by correlating the hidden representations of two uni-maslas [44]. Compared with bimodal AEs and bimodal
DBNs [123], [145], the Corr-AEs focus more on the correlatacross data than the complementarity learned from
different modalities. The correlation learning and repraation learning are carried out at the same time so that
the computation efficiency is improved. Additionally, orethasis of multimodal fusion and backpropagation deep
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learning models, ideal results have been obtained for videsed human pose recovery [62].

Pose estimation is another important sub-domain in compig®sn. The general target of pose estimation is to
estimate the relative position of a specific object with extpo the camera. This technique plays an irreplacealde rol
in various tasks such as building a robot arm. Taking varmoath poses and cluttered background into consideration,
researchers found that the on-trap moths automated iaeithh using traditional approaches was affected by
misidentification and incomplete feature extraction. EBfere, a deep learning architecture was introduced for
on-trap field moth sample images [158]. Particularly, Li Bt[88] proposed a heterogeneous multi-task learning
framework where a DCNN was adopted for monocular image bhsethn pose estimation.

In addition, deep learning approaches have been sucdgssfaployed in motion estimation especially for
video tracking tasks [22]. Object tracking has attracteccimresearch attention due to its theoretical value and
application prospects in areas such as self-driving vesjabbotics, and intelligence video surveillance. To glesi
a robust object appearance model, classifier constructimhf@ature representation are two major issues. As
mentioned previously, typical classifiers for designing thbust object appearance model include the SVM, sparse
coding, random forest, boosting, and so on. Conventiorzasifiers have achieved certain degree of success, their
structure, however, has limited performance especialiyhighly non-linear or time-varying object appearance
variations. Similarly, the traditional feature represdinin consists of various well-known features such as SFIT,
HoG, covariance matrix, subspace-based features, and kisltograms etc. These handcrafted and pre-defined
features have achieved great success for low-level featitevertheless, most handcrafted features cannot reflect
time-varying properties. Thus, the CNN tracker was intatlito solve the limitations of shallow classifier strucsure
and handcrafted features in object tracking tasks. Oneiash of traditional deep learning architectures comes
from the usage of a single observation model. In this casetréfitkers have to cope with contaminated features due
to occlusion. Hence, Wu et al. [159] introduced a regionapdiearning tracker containing multiple deep models,
and each of which is in charge of tracking one sub-region.

In computer vision, denoising is an important issue becauseligital images are corrupted by noise through
acquisition and transmission. Although there are many garmpalgorithms, most of them are designed for special
cases and lack generality. The Wiener filter performs welkémoving Gaussian noises [18]. However, it requires
the knowledge on the autocorrelation functions of the inj\ith respect to suppressing noisy images with edges,
median filtering deals with salt and pepper noises effelgtii. Therefore, stacked sparse denoising autoencoders
(SSDAESs) have been proposed with promising noise removéneance. Furthermore, the adaptive multi-column
SSDAEs (AMC-SSDAESs) have been introduced to improve theistiess of the filter [2].

VIlI. CONCLUSION

In this paper, we have reviewed the latest developmentseag deural networks. Some widely-used deep learning
architectures are investigated and selected applicatiormmputer vision, pattern recognition and speech retiogni
are highlighted. More specifically, four classes of deeprlieg architectures, namely the restricted Boltzmann
machine, the deep belief networks, the autoencoder, andoimnlutional neural network, are discussed in detail.
Since it is rarely possible to obtain labeled data in apfibos involving big data analysis, the supervised learning
algorithms can hardly provide satisfactory performanceuoch cases. Based on these deep learning approaches,
we can now use unsupervised learning algorithms to protessirilabeled data. Moreover, the trade-off between
accuracy and computational complexity can be adjusted flgxibility in most deep learning algorithms. With the
rapid development of hardware resources and computatibmédogies, we are confident that deep neural networks
will receive wider attention and find broader applicationghe future.

Based on the literature review, some related topics forréutasearch are listed as follows.
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o Design of deep models to learn from fewer training data: With the development of big data analysis,
deep learning have been used for scenarios where massiwentaral unsupervised data are involved. As an
efficient tool for big data analysis, the deep learning téqma have achieved great success with huge amounts
of unlabeled training data. However, when only a limited amtoof training data is available, more powerful
models are required to achieve an enhanced learning altility therefore of great significance to consider
how to design deep models to learn from fewer training dadpeeially for speech and visual recognition
systems.

« Ues of optimization algorithms to adjust the network parameters: The method to adjust the parameters in
machine learning algorithms is an emerging topic in compsgtéence. In DNNs, a large humber of parameters
need to be adjusted. Moreover, with an increasing numbeidafelh nodes, the algorithm is more likely get
trapped in the local optimum. Optimization techniqueshsas the PSO [172], are therefore required to avoid
this problem. The proposed training algorithm should be ablextract the features automatically and reduce
the loss of information so as to mitigate both the curse ofedisionality and the local optimum.

« Applications of unsupervised, semi-supervised and reinforcement-learning approachesto DNNs for com-
plex systems. As mentioned previously, deep learning techniques havdmught satisfactory results in NLP.
With the development of deep unsupervised learning and idejorcement learning, we have more alternatives
to train the DNNs for complex systems. The Alpha Go, which boras CNNs and reinforcement learning,
has already achieved a great success. Compared with thevisggelearning approaches, the unsupervised,
semi-supervised and reinforcement-learning approadagsble of overcoming the computational limitations,
deserve further investigation.

o Implementation of deep learning algorithms on mobile devices: It should be noted that deep learning
approaches, especially CNNs, usually require great coattipngl burden. Recently, the idea of deep learning
chips has emerged and attracted great research attent@ip Aor neural networks implementation has already
been presented by MIT researchers. This chip is 10 timesfiageaf as a mobile GPU, which means that we
can run Al algorithms in mobile devices with lower power comption. Additionally, Stanford has started
the project aiming at optimizing the CPU for deep learningisTarea can bring numerous benefits for both
industries and academia.

« Analysis of the stability of deep neural networks: Dynamic neural networks have been widely used to solve
optimization problems and applied to many engineeringiagpbns. Nowadays, the stability analysis of deep
neural networks has become a hot research topic because piitherous benefits for industries. It should be
pointed out that, so far, there have been a multitude of reBaasults on the stability analysis, stabilization
and synchronization problems for various types of systemasreetworks in the literature, see [64], [67], [68],
[102], [143], [163], [168], [174] for some recent publiaais. By utilizing these exploited technigues, we can
further deal with the corresponding issues including $tglanalysis, synchronization and state estimation for
deep neural networks.

« Applications of deep neural networks in nonlinear networked control systems (NCSs): Neural networks
have been extensively used in control engineering and Isggnaeessing to approximate the nonlinear systems.
On the other hand, up to now, the NCSs have been widely imgateti and considerable results have been
reported in the literature, see [21], [65], [69], [103], f10[106]-[109], [142], [169], [L70], among which the
networked control systems under consideration are eitheal or nonlinear with relative simple forms. Thus,
it is natural to apply the deep neural networks to approxéntla¢ nonlinear NCSs with complicated dynamics
to obtain better control/filtering performances.
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