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Abstract 

The construct of situation awareness (SA) has become a core theme within the human 

factors (HF) research community.  Consequently, there have been numerous attempts to 

develop reliable and valid measures of SA.  Despite this, it is apparent that there are a 

lack of techniques that have been developed specifically for the assessment of SA in 

C4i (command, control, communication, computers and intelligence) environments.  

During the design, development and evaluation of novel systems, technology and 

procedures, valid and reliable situation awareness measurement techniques are required 

for the assessment of individual and team SA.  SA is assessed in order to determine the 

improvements (or in some cases decrements) resulting from proposed design and 

technological interventions.  The following paper presents a review of existing situation 

awareness measurement techniques conducted in order to assess their suitability for use 

in the assessment of SA in C4i environments.  Seventeen SA measures were evaluated 

against a set of HF methods criteria.  It was concluded that current SA measurement 

techniques are inadequate for use in the assessment of SA in C4i environments, and a 

multiple-measure approach utilising different approaches is recommended.  
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Introduction 

C4i (command, control, communication, computers and intelligence) systems are 

comprised of both human and technological agents and are designed to gather 

information and facilitate the accurate communication of this information between 

multiple agents dispersed across multiple locations. White and Harris (1987) offer the 

following definition of C4i systems; 

 

“Command, control, communication, computers and intelligence is the 

management infrastructure for defence and war or any other large or 

complex, dynamic resource system […] it is intrinsically a diverse 

range of activities” (White and Harris 1987) 

 

Examples of C4i systems range from simplistic command and control infrastructures 

such as those seen in the emergency services (police and fire brigade) to more 

sophisticated networks, such as military network enabled capability infrastructures. 

An example of a simple C4i system would be a gold (fixed command post), silver 

(mobile command units) and bronze (agents in the field) command hierarchy.  

According to Smith (2003), the goal of C4i systems is to provide more appropriate 

information, more quickly and in the correct format, to the relevant agents.  

Furthermore Smith (2003) argues that one of the most challenging aspects for C4i 

systems and concepts is determining whether and by how much they increase the 

effectiveness of the military force that utilises them.  Of course, the design of any 

novel system requires rigorous scientific testing to establish the performance gains (or 

decrements) associated with its use.  The design and development of a novel C4i 

system raises pertinent HF issues, including mental workload, error and situation 
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awareness (SA), all of which should be assessed thoroughly throughout the design 

process.  The level of SA that the C4i system provides to the agents involved in its use 

is a particularly crucial aspect, with potentially catastrophic consequences associated 

with poor or loss of SA.  Within the military, the problem of ‘blue-on-blue’ or 

friendly fire is becoming more and more prominent, and so the level of awareness that 

agents possess during battlefield operations is placed under increasing scrutiny.  

During the first gulf war conflict, 35 (24%) of the 146 casualties suffered by US 

forces were caused by friendly fire incidents (Ripley 2003) and 9 (38%) of the 24 

casualties suffered by British forces were attributed to friendly fire (Cooper 2003).  

British forces have also suffered tragic losses caused by friendly fire during the 

current Gulf conflict.  Two British soldiers were killed when their Challenger II tank 

was mistakenly fired upon by another British tank during fighting outside of Basra, 

whilst two RAF pilots were killed when their GRU Tornado was erroneously shot 

down by a US patriot missile (BBC News, 2003).  The problem of friendly fire and 

operator SA may be linked, in that a lack of awareness of both own and enemy forces 

may result in such mishaps, and so the accurate assessment of SA during the design of 

such systems is imperative.  

 

A number of techniques designed to assess operator SA already exist and have been 

used extensively in the past, such as SAGAT (Endsley 1995b) and SART (Taylor 

1990).  However, a valid and reliable technique designed to measure operator SA in 

C4i environments is yet to emerge.  This paper presents a review of existing SA 

measures that was conducted in order to determine their suitability for use in the 

assessment of SA in C4i systems. 
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Situation Awareness 

The construct of SA has received considerable attention from the psychology and HF 

communities over the past twenty years.  Although the original impetus for research 

into the construct came from within the military aviation domain, the construct has 

since developed into a critical research theme in almost any domain that involves 

humans performing tasks in complex, dynamic systems.  SA research is widespread and 

ongoing in a variety of domains, including military operations (Endsley et al 2000, 

Matthews et al 2000), aviation (Kaber et al 2002, Keller et al 2004), air traffic control 

(ATC) (Hauss & Eyferth 2003, Endsley and Smolensky 1998), automotive (Zheng, 

McConkie and Tai 2004), and C4i environments (Walker et al 2004). 

 

Despite numerous attempts, a universally accepted definition and model of SA is yet to 

emerge.  According to Stanton, Chambers & Piggott (2001), three definitions and their 

associated theoretical perspectives dominate.  These are the three-level model (Endsley, 

1995a), the perceptual cycle model (Smith & Hancock 1995) and the activity theory 

model (Bedny & Meister 1999).  The three-level model (Endsley 1995a) depicts SA as 

a product comprised of three hierarchical levels.  The perceptual-cycle model (Smith & 

Hancock 1995) describes the cyclical process of achieving and updating SA, suggesting 

that SA resides through the interaction of the person with the world (Smith & Hancock 

1995).  The activity theory of SA (Bedny & Meister 1999) describes SA through an 

activity theory perspective, defining SA as an individual’s conscious dynamic reflection 

on the situation.  The main point of contention between theoretical perspectives lies in 

whether SA refers to the processes employed in achieving and maintaining it or the end 

product of SA, derived as a result of these processes.  The three-level model proposed 

by Endsley (1995a) describes SA as a product comprised of three hierarchical levels, 
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separate from those processes (labelled situation assessment) used to achieve it.  

Alternatively, the perceptual cycle model proposed by Smith & Hancock (1995) 

purports that SA resides through the interaction of the person with the world (Smith & 

Hancock 1995) and describes SA both in terms of the cognitive processes used to 

engineer it and also the continuously updating product of SA.  The process versus 

product debate has a huge impact upon the measurement of SA in terms of what it is 

that should be measured when considering SA.  Process oriented models would argue 

that the processes used to achieve and maintain SA should be measured, whilst the 

product models would suggest that the level or amount of SA achieved should be 

measured.   

 

The three-level model of SA proposed by Endsley (1995a) is by far the most commonly 

cited and used model of SA, and for the purposes of this methods review is adequate for 

describing the construct, since the majority of SA measurement techniques are based 

upon the model.  Endsley (1995a) defines SA as, 

 

“The perception of the elements in the environment within a volume of 

time and space, the comprehension of their meaning, and the 

projection of their status in the near future” (Endsley 1995a) 

 

The three-level model describes SA through an information processing approach, and 

proposes that operator SA is an internally held product comprising three hierarchical 

levels that is separate to those processes (termed situation assessment) used to achieve 

it.  According to Endsley (1995a), operator SA consists of level 1 SA (the perception of 

the elements in the environment, level 2 SA (the comprehension of their meaning) and 
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level 3 SA (the projection of their future status).  The three-level model of SA is 

presented in figure 1.  The model depicts SA as an essential component of human 

decision-making activity.  The achievement and maintenance of SA is influenced by 

both individual and task factors, such as experience, training, workload and also 

interface design.  The model is intuitive and neat, and the three hierarchical levels are 

particularly useful for the measurement of the construct.  As a result of this, the 

majority of existing SA measurement techniques are based upon the three-level model.  

 
Figure 1. The three-level model of SA (Source: Endsley 1995a) 

 

Team or shared SA 

A more recent theme to emerge within the construct of SA is the concept of team or 

shared SA.  The increased use of teams in complex environments has shifted the focus 

from individual operator SA onto the shared SA of teams of operators.  Salas (2004) 

defines a team as consisting of two or more people, dealing with multiple information 

resources, who work to accomplish some shared goal.  Cooke (2004) suggests that 
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teams are required to detect and interpret cues, remember, reason, plan, solve problems, 

acquire knowledge and make decisions as an integrated and co-ordinated unit. The 

concept of team SA first began to emerge within the aviation community and has since 

received considerable attention from the military domain.  Team or shared SA reflects 

the co-ordinated awareness that the team possesses as a whole unit.  However, as Salas 

et al (1995) point out, there appears to be a lot more to the concept than merely 

combining individual team member SA. There have been a number of attempts to 

define team SA, although a universally accepted definition is yet to appear.  Salas et al 

(1995) describe team SA as, 

 

“At least in part the shared understanding of a situation among team 

members at one point in time” (Salas et al 1995) 

 

Endsley (1995a) refers to team SA as the degree to which every team member 

possesses the SA required for his or her responsibilities.  According to Klein (2000) 

shared situation awareness refers to the degree to which the team members have the 

same interpretation of ongoing events.  In their description of SA as distributed 

cognition, Artman & Garbis (1998) go further to suggest that the SA of a team is 

distributed not only throughout the agents comprising the team, but also in the artefacts 

that they use in order to accomplish their goals.  According to Artman & Garbis (1998), 

existing models of SA are inadequate when considering team-based tasks.  They also 

argue that in domains such as military command, teamwork is essential for success and 

thus a non-individual approach to the assessment of SA is necessary.  Artman and 

Garbis (1998) define team SA as, 
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“The active construction of a model of a situation partly shared and partly 

distributed between two or more agents, from which one can anticipate 

important future states in the near future” (Artman & Garbis 1998) 

 

The concept of team SA is not yet clearly defined nor understood. Further, evidence of 

the accurate measurement of team SA in the literature is sparse.  It is apparent that the 

majority of existing SA measurement approaches focus upon the assessment of 

individual operator SA.  In a review of team SA literature, Salas et al (1995) discovered 

that of existing measurement approaches, most were designed to measure individual 

team member SA. Whilst the ability to assess individual team member SA is an 

important provision when considering team SA in C4i environments, the underlying 

aim has to be the measurement of overall or shared team SA during task performance.  

However, this has proved more elusive than the measurement of individual SA and an 

approach designed to assess team SA is yet to emerge.  The individualistic approach to 

the assessment of SA used in the past may no longer suffice, and it is new team-based 

SA measures that require further investigation.  

 

Measuring SA  

The provision of valid and reliable methods for assessing SA is essential during system 

design and evaluation.  One of the primary goals of any system design effort is to 

enhance the SA of the personnel involved in the operation of the system.  In order to 

ensure that SA is improved and not degraded by the design effort, valid and reliable 

techniques that can accurately measure operator and team SA are required throughout 

the design process.  The measurement of individual operator SA has been successfully 

undertaken across a wide variety of domains since the dawn of the construct.  

 8



Techniques such as SAGAT (Endsley 1995b) and SART (Taylor 1990) have been 

applied in a number of areas, including military aviation (Endsley 1995b), air traffic 

control (Endsley and Kiris 1995), military operations (Matthews et al 2000), driving 

(Walker, Stanton and Young 2004) and the process industry (Hogg et al 1995).   

 

As the construct of SA has become more and more eminent, attempts have been made 

to develop more sophisticated SA measurement approaches.  In a review of SA 

measurement techniques, Endsley (1995b) describes a number of different approaches, 

including physiological measurement techniques, performance measures (external task 

measures and imbedded task measures), subjective rating techniques (self and observer 

rating), questionnaires (post-trial and on-line) and the freeze technique (SAGAT).   

 

Reliability and Validity 

A recurrent issue when discussing the selection and application of human factors 

techniques is the problem surrounding the validation of the techniques.  When using 

HF techniques during the design lifecycle, one has to ensure that the technique in 

question actually works.  According to Stanton & Young (1999, 2003), despite the 

increased number of HF techniques, there is little evidence that the methods actually 

work, and the way in which to ensure that they work is to assess their reliability and 

validity. When measuring SA, reliability refers to the degree to which the measure 

will generate the same data when measuring SA under the same conditions over and 

over again.  Validity refers to the extent to which the measure is actually measuring 

SA, and not some other psychological process or product.  Endsley (1995b) reports 

that when considering SA measurement techniques, it is necessary to establish that the 

technique: 
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1) Measures SA and does not measure other processes or factors. 

2) Possesses the required level of sensitivity i.e. the technique can accurately detect 

changes in SA caused by novel technologies and programmes. 

3) Does not alter SA during the measurement procedure. 

 

The validation of HF techniques such as SA measurement techniques, whilst 

inherently necessary, is often neglected.  This is for a number of reasons, mainly the 

high cost and resources invested when conducting validation studies.  Stanton & 

Young (1999) also point out that researchers tend to stick with methods that they 

know and trust (often methods that they developed themselves), and so validation is 

assumed, rather than tested.  From a previous HF methods review (Salmon et al 2004) 

it was discovered that the majority of HF techniques available in the open literature 

are developed and then subjected to an initial validation study, and then discarded, 

never to be used again.  Those techniques that are successful enough to be used 

elsewhere are often the techniques that are extensively validated.  Typically, a handful 

of techniques within an application area emerge as the most commonly used and 

extensively validated.  For example, SHERPA is by far the most commonly used 

human error identification (HEI) technique, and has a number of promising validation 

studies associated with it (Whalley & Kirwan 1989, Kirwan 1992, Baber & Stanton 

1996, Stanton & Baber 2001, Stanton & Stevenage 2000).  In the measurement of 

mental workload, the NASA-TLX (Hart & Staveland 1988) is the most commonly 

used and also the most widely validated of the various techniques available. The 

measurement of SA is no different, with the situation awareness global assessment 

technique (SAGAT) (Endsley 1995b) being by far the most commonly used approach, 
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and also the technique with the most associated validation evidence.  This highlights a 

potential problem: if new SA measurement techniques do not quickly catch on, there 

may not be any attempts to validate it.  As a result, advances in the measurement of 

SA may become stilted, as practitioners will tend to use the familiar methods (Stanton 

& Young 1999). 

 

SA measurement in C4i systems 

The measurement of SA in C4i environments poses a great challenge to the human 

factors community.  As described previously, the environment is typically complex, 

dynamic and information rich.  Due to the collaborative and dispersed nature of C4i 

environments, an assessment of both individual and team (or shared SA) is required in 

order to provide accurate measures of SA.  As a result, any method that is used to 

measure operator and team SA in C4i environments should possess three distinct 

capabilities.  Firstly, the technique should be capable of measuring SA simultaneously 

at different geographical locations. In order to gain a true measure of team of shared 

SA, each agent involved should be simultaneously assessed for their SA. However, due 

to the dispersed nature of C4i environments, agents are typically remote from one 

another. Therefore, SA should also be assessed at different geographical locations. 

Therefore, any technique used to assess SA in C4i environments should be capable of 

simultaneous administration at different locations. For example, the level of SA at 

different command locations (command centre, mobile units and foot units) may need 

to be assessed to ensure that the team involved has an adequate level of shared SA and 

that task relevant information is communicated efficiently. This would require a 

concurrent assessment of SA at the command centre, the mobile units, and also 

commanders in the field.  Secondly, the technique should be capable of measuring both 
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individual and team or shared SA.  Individual team members may possess individual 

goals, mental models and SA, whilst simultaneously pursuing team goals, and 

maintaining a level of team or shared SA.  The SA technique used should be able to 

cater for the two different ‘types’ of SA, or at least offer separate approaches for each 

type of SA.  Thirdly, the technique should be capable of measuring SA in real-time.  

Typically, simulations of scenarios are used in order to assess SA.  However, due to the 

dynamic, collaborative and dispersed nature of C4i scenarios, it appears that this may 

not be possible, and exercises conducted ‘in-the-field’ may be used. As a result, 

simulations of task scenarios and querying SA during task ‘freezes’ may not be 

appropriate. 

 

SA Methods Review 

The aim of the SA methods review was to develop an understanding of existing SA 

measurement techniques and also to determine whether any of the existing approaches 

could potentially be used in the assessment of SA in C4i environments.  An initial 

literature review was conducted in order to create an exhaustive database of existing SA 

measurement techniques.  The literature review was based upon a survey of standard 

ergonomics textbooks, relevant scientific journals and existing HF method reviews.  

The literature survey identified over thirty existing SA measurement techniques.  A 

screening process was then employed in order to select the most appropriate techniques 

for further analysis.  The screening process was based upon technique availability, 

make-up and applicability to C4i, and was designed to quickly select or reject 

techniques from the initial database.  As a result of the screening process, seventeen SA 

measurement techniques were selected for further analysis (see table 1).  Each 

technique was then evaluated against a set of HF methods criteria adapted from Stanton 
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et al (2004) designed to determine its suitability for use in the assessment of SA in C4i 

systems (e.g. domain of application, training and application times, tools needed, 

reliability and validity, advantages and disadvantages etc).  A number of the criteria 

used were also descriptive, allowing the output to act as a user manual for each 

technique (e.g. background and applications, procedure and advice, flowchart etc).  The 

following categories of SA measurement technique were assessed. 

 

1) SA requirements analysis 

2) Freeze probe techniques 

3) Real-time probe techniques 

4) Self-rating techniques 

5) Observer-rating techniques 

6) Performance measures 

7) Process Indices (Eye Tracker) 

 

A brief description of each of the different categories and the methods reviewed within 

each category is presented below. 

 

SA requirements analysis 

An SA requirements analysis represents the first step in any assessment of SA and is 

conducted in order to determine what actually comprises operator SA in the task or 

environment under analysis.  Endsley (1993) describes a generic procedure for 

conducting an SA requirements analysis that involves the use of unstructured 

interviews with SME’s (subject matter experts), goal-directed task analysis and 

questionnaires in order to determine the relevant SA requirements.  The output of an 
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SA requirements analysis is then used during the development of the SA assessment 

technique used, in order to determine which elements comprise operator SA and thus, 

what should be assessed. 

 

Freeze probe techniques 

Freeze probe techniques involve the administration of SA related queries on-line during 

‘freezes’ in a simulation of the task under analysis.  Typically, a task is randomly 

frozen and a set of SA queries regarding the current situation are administered.  The 

participant is required to answer each query based upon his knowledge of the situation 

at the point of the freeze.  During these ‘freezes’ all operator displays and windows are 

typically blanked.  A computer is used to select and administer the queries and also to 

record the responses.  The primary advantage associated with the use of freeze probe 

techniques is their direct nature.  However, freeze probe techniques are criticised for 

their intrusion upon primary task performance, and also can only be applied where 

there is a simulation of the task under analysis.    

 

The situation awareness global assessment technique (SAGAT) is the most popular 

freeze probe technique that was developed to assess pilot SA across the three levels of 

SA proposed in the three-level model (Endsley 1995a).  SAGAT comprises a set of 

queries of designed to assess participant SA, including level 1 SA (perception of the 

elements), level 2 SA (comprehension of their meaning) and level 3 SA (projection of 

future status).  Although developed specifically for use in the military aviation domain, 

a number of different versions of SAGAT exist, including a specific air-to-air tactical 

aircraft version (Endsley, 1990), an advanced bomber aircraft version (Endsley, 1989) 

and an Air traffic control version (Endlsey & Kiris 1995).  SALSA (Hauss & Eyferth 
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2003) is another freeze probe technique that was developed specifically for use in air 

traffic control.  The SALSA queries are based upon fifteen aspects of aircraft flight, 

such as flight level, ground speed, heading, vertical tendency, conflict and type of 

conflict.  The situation awareness control room inventory (SACRI) is an adaptation of 

SAGAT (Endsley 1995b) and uses the freeze technique to administer control room 

based SA queries.  SACRI was developed as the result of a study investigating the use 

of SAGAT in process control rooms (Hogg et al 1995).   

  

Real-time probe techniques 

An alternative approach to the use of highly intrusive freeze probe techniques is the use 

of real-time probe techniques. Real-time probe techniques involve the administration of 

SA related queries on-line (during task performance), but with no freeze of the task 

under analysis.  Typically, subject matter experts (SME’s) develop queries either prior 

to or during task performance and administer them, without a freeze, at the relevant 

points during task performance.  Answer content and response time are taken as a 

measure of participant SA.  Based upon a comparison of real-time probes, SAGAT and 

SART when used to measure operator SA in war and peace scenarios, Jones and 

Endsley (2000) report that when there is no simulation of the system under analysis and 

the task cannot be frozen, real-time probes may provide a viable option for measuring 

SA.   It is argued that the main advantage associated with these ‘real-time’ probe 

techniques are reduced intrusiveness, due to the fact that no freeze in the task under 

analysis is required.  However, real-time probe queries may also serve to direct 

participant attention to the required elements in the environment, resulting in biased 

data.  The alleged reduction in intrusion is also questionable, as receiving queries and 

responding to them still imposes a degree of intrusion upon the primary task. 
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The situation present assessment method (SPAM) (Durso et al 1998) is a real-time 

probe technique developed for use in the assessment of air traffic controllers SA.  The 

technique involves the use of on-line real time probes to evaluate operator SA.  The 

analyst probes the operator for SA using task related SA queries based on pertinent 

information in the environment (e.g. which of the two aircraft A or B, has the highest 

altitude?) via telephone.  The query response time (for those responses that are correct) 

is taken as an indicator of the operators SA.  Additionally, the time taken to answer the 

telephone acts as an indicator of workload.  SASHA (Jeannot, Kelly & Thompson 

2003) is a methodology developed by Eurocontrol™ for the assessment of air traffic 

controllers SA in automated systems.  The methodology consists of two techniques, 

SASHA_L (real-time probe technique) and SASHA_Q (post-trial questionnaire).  

SASHA_L is based upon the SPAM technique (Durso et al 1998), and involves probing 

the participant on-line using real-time SA related queries.  The response content and 

response time is recorded.  Once the trial is completed, the participant completes the 

SASHA_Q questionnaire, which consists of ten questions designed to assess participant 

SA.   

 

Self-rating techniques 

Self-rating techniques are used to gain a subjective assessment of participant SA.  

Typically administered post-trial, self-rating techniques involve participants providing a 

subjective rating of their perceived SA via an SA related rating scale.  The primary 

advantages of self-rating techniques are their ease of application (easy, quick and low 

cost) and their non-intrusive nature (since they are administered post-trial).  However, 

subjective self-rating techniques are heavily criticised for a plethora of reasons, 
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including the various problems associated with the collection of SA data post-trial 

(correlation of SA with performance, poor recall etc) and also issues regarding their 

sensitivity. 

 

The situation awareness rating technique (SART) (Taylor 1990) is a subjective rating 

technique that was originally developed for the assessment of pilot SA.  SART uses 

the following ten dimensions to measure operator SA: Familiarity of the situation, 

focussing of attention, information quantity, information quality, instability of the 

situation, concentration of attention, complexity of the situation, variability of the 

situation, arousal, and spare mental capacity.  SART is administered post-trial and 

involves the participant rating each dimension on a seven point rating scale (1 = Low, 

7 = High) in order to gain a subjective measure of SA.  The ten SART dimensions 

can also be condensed into the quicker 3 dimensional (3-D) SART, which involves 

participants rating attentional demand, attentional supply and understanding.  The 

situation awareness rating scales technique (SARS) (Waag & Houck 1994) is a 

subjective rating technique that was developed for the military aviation domain.  

When using the SARS technique, participants subjectively rate their performance on a 

six-point rating scale (from acceptable to outstanding) for 31 facets of fighter pilot 

SA.  The SARS SA categories and associated behaviours were developed from 

interviews with experienced F-15 pilots (Waag & Houck 1994).  The 31 SARS 

behaviours are divided into 8 categories representing phases of mission performance. 

The eight categories are: general traits (e.g. decisiveness, spatial ability), tactical 

game plan (e.g. developing and executing plan), communication (e.g. quality), 

information interpretation (e.g. threat prioritisation), tactical employment beyond 

visual range (e.g. targeting decisions), tactical employment visual (e.g. threat 
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evaluation) and tactical employment general (e.g. lookout, defensive reaction).  

According to Waag & Houck (1994) the 31 SARS behaviours represent those that are 

crucial to mission success.  The Crew awareness rating scale (CARS) (McGuiness & 

Foy 2000) technique has been used to assess command and control commanders SA 

and workload (McGuinness & Ebbage 2000).  The CARS technique comprises two 

separate sets of questions based upon the three level model of SA (Endsley 1995a).  

The content subscale consists of three statements designed to elicit ratings based upon 

ease of identification, understanding and projection of task SA elements (i.e. levels 1, 

2 and 3 SA).  The fourth statement is designed to assess how well the participant 

identifies relevant task related goals in the situation.  The workload subscale also 

consists of four statements, which are designed to assess how difficult, in terms of 

mental effort, it is for the participant in question to identify, understand, project the 

future states of the SA related elements in the situation.  CARS is administered post-

trial and involves participants rating each category on a scale of 1 (ideal) to 4 (worst) 

(McGuinness & Ebbage 2000).   The mission awareness rating scale (MARS) 

(Matthews & Beal 2002) technique is a development of the CARS technique 

(McGuiness & Foy 2000) designed specifically for use in the assessment of SA in 

military exercises .  The MARS technique was developed for use in ‘real world’ field 

settings, rather than in simulations of military exercises (Matthews & Beal 2002).  

The technique is normally administered post-trial, upon completion of the task or 

mission under analysis.  The quantitative analysis of situational awareness (QUASA) 

technique (McGuinness 2004) combines participant self-ratings with on-line probes 

in order to assess actual and perceived SA in military command and control 

environments.  Participants are probed for their SA during task performance and then 

simultaneously asked to rate their confidence in their answer to the probe in question.  

 18



QUASA uses true or false probes and a confidence ratings scale (Very low – Very 

high) in order to assess actual and perceived SA.  The Cranfield situation awareness 

scale (C-SAS) (Dennehy 1997) is a subjective rating scale that is used to assess 

student pilot SA during flight training exercises.  C-SAS is administered either during 

or post-trial and involves participants rating five SA related components on an 

appropriate rating scale.  Each rating scale score is then summed in order to 

determine an overall SA score. 

 

Observer rating techniques 

Observer rating techniques are most commonly used to assess SA during tasks 

performed ‘in-the-field’.  Observer rating techniques typically involve a subject 

matter expert (SME) observing participants performing the task under analysis and 

then providing an assessment or rating of each participants SA.  The SA ratings are 

based upon observable SA related behaviour exhibited by the participants during task 

performance.  The main advantages associated with the use of observer rating scales 

to measure SA are their non-intrusive nature and their ability to be applied ‘in-the-

field’.  However, the extent to which observers can accurately rate participant SA is 

questionable, and also multiple SME’s are required.  The situation awareness 

behavioural rating scale (SABARS) is an observer rating technique that has been used 

to assess infantry personnel situation awareness in field training exercises (Matthews, 

et al 2000, Matthews & Beal 2002).  The technique involves domain experts 

observing participants during task performance and rating them on 28 observable SA 

related behaviours.  A five point rating scale (1=Very poor, 5 =Very good) and an 

additional ‘not applicable’ category are used.  The 28 behaviour rating items are 

designed specifically to assess platoon leader SA (Matthews et al 2000).     
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Performance measures 

Using performance measures to assess SA involve measuring relevant aspects of 

participant performance during the task under analysis. Depending upon the task, 

certain aspects of performance are recorded in order to determine an indirect measure 

of SA. For example, in a military infantry exercise, performance measures may be 

‘kills’, ‘hits’ or mission success or failure. In an assessment of driver SA, Gugerty 

(1997) measured hazard detection, blocking car detection, and crash avoidance during 

a simulated driving task.  Whilst performance measures are simple to obtain and are 

non-intrusive as they are generated through the natural flow of the task, they are beset 

by a number of problems concerning the relationship between SA and performance.  

For example, an expert participant may be able to achieve acceptable performance 

even when his SA is inadequate.  Similarly, a novice participant may possess superior 

levels of SA but still achieve inferior performance, due to other factors such as 

inexperience. 

 

Process indices  

Process indices can also be used to measure SA.  Process indices involve recording 

the processes that the participants use in order to develop SA during the task under 

analysis.  One example of using process indices to assess SA is the measurement of 

participant eye movements during task performance (Smolensky 1993).  An eye-

tracking device can be used to measure participant fixations during the task under 

analysis, which can then be used to determine how the participant’s attention was 

allocated during the task under analysis.  There are a number of disadvantages 

associated with the use of an eye-tracker device, including their in-direct nature (how 
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do we no the participant perceived what they looked at?), an inability to be used 

outside of laboratory settings, the temperamental nature of the equipment, and also the 

problem of the ‘look but do not see’ phenomenon, whereby participants may fixate 

upon an environmental element but do not actually perceive it.  Concurrent verbal 

protocol analysis (VPA) involves creating a written transcript of operator behaviour as 

they perform the task under analysis.  The transcript is based upon the operator 

‘thinking aloud’ as he conducts the task under analysis.  VPA is used as a means of 

gaining an insight into the cognitive aspects of complex behaviours and is often used 

to indicate operator SA during task performance. 

 

A summary of the methods review is presented in table 1.  For the full methods review, 

readers should contact the authors of this paper. 
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Table 3. Summary of SA measurement techniques review 

      Method Type of
method 

Domain Team SME’s
required 

Training 
time 

Application 
time 

Tools 
needed 

Validation 
studies 

Advantages Disadvantages

CARS 
McGuinness 
& Foy 
(2000) 

Self rating 
technique 

Military 
(infantry 
operations) 

No    No Low Low Pen and
paper 

Yes 
2 

1) Developed for use in infantry environments. 
2) Less intrusive than on-line techniques. 
3) Quick, easy to use requiring little training. 

1) Construct validity questionable. 
2) Limited evidence of use and validation. 
3) Problems of gathering SA data post-trial e.g. 
correlation with performance, forgetting low SA 
periods. 

MARS 
Matthews & 
Beal (2002) 

Self rating 
technique 

Military 
(infantry 
operations) 

No     No Low Low Pen and
paper 

Yes 
2 

1) Developed for use in infantry environments. 
2) Less intrusive than on-line techniques. 
3) Quick, easy to use requiring little training. 

1) Construct validity questionable. 
2) Limited evidence of use and validation. 
3) Problems of gathering SA data post-trial e.g. 
correlation with performance, forgetting low SA 
periods. 

SABARS 
Matthews & 
Beal (2002) 

Observer 
rating 

Military 
(infantry 
operations) 

No     Yes High Med Pen and
paper 

Yes 
2 

1) SABARS behaviours generated from 
infantry SA requirements exercise. 
2) Non-intrusive. 

1) Extent to which observers can accurately rate 
internal construct of SA is questionable. 
2) The presence of observers may influence 
participant behaviour. 
3) Access to SME’s and field settings is required. 

SACRI 
Hogg et al 
(1995) 

Freeze on-
line probe 
technique 

Nuclear 
Power 

No    No Low Med Simulator Yes 
Computer 1 

1) Removes problems associated with 
collecting SA data post-trial. 
2) Direct approach. 

1) Requires expensive simulators. 
2) Intrusive to primary task performance. 
3) Cannot be applied ‘in-the-field’. 

SAGAT 
Endsley 
(1995b) 

Freeze on-
line probe 
technique 

Aviation 
(military) 

No    No Low Med Simulator Yes 
Computer 10+ 

1) Direct approach. 
2) Subject to numerous validation studies. 
3) Removes problems associated with 
collecting SA data post-trial 

1) Requires expensive simulators. 
2) Intrusive to primary task.  Difficult to see how 
it would work in C4 environments. 
3) Cannot be applied ‘in-the-field’ or in real-time. 

SALSA 
Hauss & 
Eyferth 
(2003) 

Freeze on-
line probe 
technique 

ATC     No No Low Med Simulator Yes 
Computer 1 

1) Removes problems associated with 
collecting SA data post-trial e.g. correlation 
with performance, forgetting etc. 

1) Requires expensive simulators. 
2) Intrusive to primary task performance. 
3) Limited use and validation. 

SASHA 
Jeannott, 
Kelly & 
Thompson 
(2003) 

Real-time 
probe 
technique 
Post-trial 
quest 

ATC     No Yes High Med Simulator No 
PC 
Telephone 
Pen and 
paper 

1) Offers two techniques for the assessment of 
SA. 
2) Administering probes in real-time removes 
the need for task freezes, and allows the 
technique to be applied ‘in the field’. 

1) Probes may direct attention to required 
elements. 
2) Generation of appropriate SA queries places 
great burden upon analyst/SME. 
3) Limited evidence of use or validation studies. 

SARS 
Waag & 
Houck 
(1994) 

Self rating 
technique 

Aviation 
(military) 

No     No Low Low Pen and
paper 

Yes 
1 

1) Quick and easy to use, requiring little training
2) Non-intrusive to primary task. 
3) Low cost compared to other techniques. 

1) Problems of gathering SA data post-trial e.g. 
correlation with performance, forgetting low SA. 
2) Limited use and validation evidence. 

SART 
Taylor 
(1990) 

Self rating 
technique 

Aviation 
(military) 

No     No Low Low Pen and
paper 

Yes 
10+ 

1) Quick and easy to administer. Also low cost. 
2) Generic – can be used in other domains. 
3) Widely used in a number of domains. 

1) Problems of gathering SA data post-trial e.g. 
correlation with performance, forgetting low SA 
periods. 
2) Issues regarding sensitivity of the technique. 
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        Method Type of
method 

Domain Team SME’s
required 

Training 
time 

Application 
time 

Tools 
needed 

Validation 
studies 

Advantages Disadvantages

SA-SWORD 
Vidulich & 
Hughes 
(1991) 

Self rating 
technique 

Aviation     No No Low Low Pen and
paper 

Yes 
2 

1) Easy to learn and use. Also low cost. 
2) Generic – can be used in other domains. 
3) Useful when comparing two design 
concepts. 

1) Post-trial administration – correlation with 
performance, forgetting etc. 
2) Limited use and validation evidence. 
3) Does not provide a measure of SA. 

SPAM 
Durso et al 
(1998) 

Real-time 
probe 
technique 

ATC     No Yes High Low Simulator Yes 
Computer 
Telephone 

4 
1) No freeze required. 
2) Has shown promising results in validation 
studies. 
3) Administering probes in real-time removes 
the need for task freezes, allowing the 
technique to be applied ‘in the field’. 

1) Low construct validity. 
2) Limited use. 
3) Attention may be directed to required SA 
elements. 

SA 
requirements 
analysis 
Endsley 
(1993) 

SA 
requirements 
analysis 

Generic     No Yes Med High Video and
audio 
recording 
equipment 

 No 1) The output specifies the elements that 
comprise operator SA in the scenario under 
analysis. 
2) Output can be used to develop SA measure. 
3) The procedure is generic and can be applied 
in any domain. 

1) The procedure is a time consuming one, 
involving observation, interviews and task 
analysis. 
2) Access to numerous SME’s is required for a 
lengthy period of time.  This may prove difficult 
to gain. 

C-SAS 
Dennehy 
(1997) 

Self rating 
technique 
Observer 
rating 
technique 

Civil 
aviation 

No     Yes Low Low Pen and
paper 

No 1) Very quick and very easy to use, requiring 
very little training. 
2) C-SAS scales are generic, and can be 
applied in any domain. 
3) Can be used as a self-rating tool and an 
observer-rating tool. 

1) Very unsophisticated measurement tool. 
2) No validation evidence associated with the 
technique. 
3) Problems of gathering SA data post-trial e.g. 
correlation with performance, forgetting low SA 
periods. 

Performance 
Measures 

Performance 
measure 

Generic     No No Low Low Computer No 1) Data collection is simplistic. 
2) Provides an objective measure if SA. 
3) Non-intrusive  

1) May not reflect actual level of SA e.g. poor 
performance may still occur with accurate SA. 
2) Indirect assessment of SA. 
3) Suffers from diagnosticity and sensitivity 
problems. 

Eye tracker Process 
Indices 

Generic      No No Med High Eye
Tracking 
Device 
Relevant 
Software 
PC 

No 1) Relatively unintrusive to primary task 
performance. 
2) Can be used to determine which 
environmental elements are attended to. 
3) Widely used. 
 

1) Equipment is temperamental and difficult to 
operate, cannot be used ‘in-the-field’ and the data 
analysis procedure is very time consuming. 
2) ‘Look but do not see’ phenomenon should be 
considered. 
3) Offers only an indirect assessment of SA 
(Endsley et al 2000). 

Verbal 
Protocol 
Analysis 
 
 

Process 
Indices 

Generic      No No Med High Audio
recording 
equipment 
Observer 
Pro + PC 

Yes 1) Verbalisations provide a genuine insight 
into cognitive processes. 
2) VPA provides a rich data source (Walker In 
Press) 
3) Simplistic procedure. 

1) Data analysis procedure is extremely laborious 
and time consuming. 
2) Prone to bias. 
3) Verbal commentary can sometimes serve to 
change the nature of the task. 

QUASA 
McGuinness 
(2004) 

Probe/Self 
rating 
technique 

Military      No No Low Low Pen and
paper 

Yes 1) Combines subjective ratings with SA 
probes. 
2) Developed specifically for military 
command and control environments. 
3) Provides an assessment of actual participant 
SA and also their perceived SA (confidence in 
their SA) 

1) Intrusive to primary task performance. 
2) Does not cater for teams. 
3) Limited evidence of use and validation. 

 



Summary  

In summary, the results of the methods review demonstrate that (aside from the SA 

requirements analysis procedure which would be required prior to any form of SA 

analysis) in their current format existing SA measurement approaches are inadequate 

for the measurement of SA in C4i environments.  There are two main reasons for this 

conclusion.  Firstly, the SA measurement techniques reviewed all focused upon the 

assessment of individual SA.  As outlined earlier in this report, this is problematic 

when considering the measurement of team or shared SA in C4i environments.  The 

methods review highlighted a lack of specific team SA measurement approaches, and 

further investigation into the measurement of team or shared SA is required.  

Secondly, the review revealed that each of the different SA measurement approaches 

are beset by distinct flaws that could potentially hinder any SA data obtained.  Freeze-

probe techniques are intrusive and cannot be applied ‘in the field’ whilst real-time 

probe techniques are difficult to apply and are still intrusive to primary task 

performance.  Self-rating techniques suffer from a host of problems associated with 

collecting SA data post-trial (correlation with performance, participant’s inability to 

rate low periods of SA etc) and the construct validity of observer rating techniques, 

measuring participant fixations and performance measures is questionable.  A brief 

description of the conclusions for each category of SA measurement technique is 

presented below. 

 

 
Freeze probe techniques 

Freeze-probe techniques such as SAGAT (Endsley 1995a) are the most commonly 

used SA measurement techniques.  There are two primary advantages associated with 

freeze probe approaches.  Firstly, they offer a direct measurement of operator SA, 
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which removes the various problems associated with collecting post-trial and 

subjective SA data (see self-rating techniques summary).  Secondly, the SAGAT 

approach is the most widely used and validated of the SA measures available, and has 

consistently demonstrated reliability and validity in a number of domains. Along with 

the SART technique, SAGAT is the most widely validated of all SA techniques.  

According to Jones and Kaber (2004) numerous studies have been performed to 

assess the validity of the SAGAT and the evidence suggests that the method is a valid 

metric of SA.  Endsley (2000) reports that the SAGAT technique has been shown to 

have a high degree of validity and reliability for measuring SA.  According to Endsley 

(2000) a study found SAGAT to have high reliability (test-retest scores of .98, .99, .99 

and .92) of mean scores for four fighter pilots participating in 2 sets of simulation 

trials.  Collier and Folleso (1995) also reported good reliability for SAGAT when 

measuring nuclear power plant operator SA.  Also, in a driving task study (Gugerty, 

1997) reported good reliability for the percentage of cars recalled, recall error and 

composite recall error.  Regarding validity, Endsley et al (2000) reported a good level 

of sensitivity for SAGAT, but not for real time probes (on-line queries with no freeze) 

and subjective SA measures.  Endsley (1990) also reported that SAGAT showed a 

degree of predictive validity when measuring pilot SA, with SAGAT scores indicative 

of pilot performance in a combat simulation.  The study found that pilots who were 

able to report on enemy aircraft via SAGAT were three times more likely to later kill 

that target in the simulation.  However, whilst freeze probe techniques are the most 

popular of existing approaches, they are also seriously flawed when considering the 

measurement of SA in C4i environments.  Firstly, the use of freeze-probe techniques 

‘in-the-field’ is problematic.  Freezing a ‘real’ scenario (with multiple information 

sources) and administering SA queries to multiple agents across multiple geographical 
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locations appears to be almost impossible.  This limitation alone poses serious 

questions regarding the use of a freeze probe technique in C4i environments.  

Secondly, the intrusion upon primary task performance caused by the task freezes is a 

major problem.  If a novel way of using freeze-probe techniques in the field were 

developed, then the intrusion upon primary task performance would still presumably 

be high.  There are alternative approaches that could be used to remove the various 

problems of using a SAGAT style approach ‘in-the-field’.  Instead of incorporating 

freezes, participants could be queried for their SA during low complexity portions of 

the task.  Incorporating freezes whereby participants are queried for their SA into the 

natural flow of the task is also another possible approach.  In considering the 

measurement of SA in infantry operations, Endsley et al (2000) report two alternatives 

designed to remove the problems associated with applying SAGAT ‘in the field’.  The 

‘St Peter Technique’ involves querying participants who have been ‘killed’ during 

task performance, and the ‘Angel of Death Technique’ involves randomly selecting 

participants to be ‘killed’ and then immediately administering a series of SA queries.  

Both approaches, however, whilst allowing a freeze probe style approach to be 

applied ‘in-the-field’, are still problematic.  The St Peter Technique may provide a 

bias measure of SA (Endsley et al 2000) as those participants who die during task 

performance may be those with poor SA, and so participants with higher levels of SA 

may not be subject to measurement.  Furthermore, both approaches still carry a high 

level of intrusion to the task under analysis. 

 

Therefore, the use of freeze-probe techniques to measure SA in C4 environments is 

questionable.  It is apparent that a novel variation of the freeze-probe technique 

designed to cater for the dispersed, collaborative nature of C4i environments requires 
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development.  Incorporating freezes into ‘in-the-field’ exercises represents a major 

challenge, and is one that has not yet been met by the techniques available in the open 

literature. 

 

Real-time probe techniques 

Real-time probe techniques offer a way of circumventing the intrusion upon the task 

under analysis imposed by freeze-probe techniques.  The main advantages associated 

with real-time probe techniques are the removal of the need for task freezes and also 

the ability to be applied ‘in-the-field’.  However, the degree to which intrusion upon 

task performance is reduced is certainly questionable.  Whilst no freeze is required, 

the SA queries are still administered during task performance, which still represents a 

level of intrusion upon the primary task.  Furthermore, participant attention may be 

directed to the relevant SA information as a result of the query, which could bias the 

results obtained.  Real-time probe techniques also suffer from a number of other 

major flaws.  Due to the dynamic and unpredictable nature of C4i tasks, the SA 

queries would presumably be generated in real-time, and not prior to task 

performance.  The generation of probes in real-time would potentially place a great 

burden upon SME’s used, and may prove too difficult for C4 environments.  Also, 

when using a real-time probe approach in C4i environments, numerous SME’s would 

be required due to the amount of personnel involved.  Furthermore, a measurement of 

team or shared SA would be difficult to obtain using such an approach. 

 

Self-rating techniques 

The use of self-rating techniques to measure SA in C4i environments is attractive for 

a number of reasons.  Firstly, self-rating techniques are non-intrusive to task 
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performance, as they are completed post-trial.  Secondly, they are very quick and easy 

to use and require very little training.  Thirdly, as a result of their simplistic nature, 

very little cost is incurred when using self-rating techniques.  Fourthly, and perhaps 

most importantly, self-ratings of SA can be obtained from different team members 

(Endsley et al 2000) and so offer a potential avenue into the assessment of team SA. 

The majority of self-rating techniques are pen and paper tools, whereby participants 

rate their own SA upon completion of the task under analysis, and so there is no 

requirement for expensive simulators, SME’s or a lengthy training process, all of 

which reduces the cost of the procedure considerably.  The simplicity and low cost of 

self-rating techniques is reflected in their widespread use, with the SART technique 

(Taylor 1990) being especially popular.  However, despite the encouraging 

advantages associated with the use of self-rating techniques, their use in measuring 

SA in C4i environments is questionable due to a number of distinct flaws.  Firstly, 

whilst the majority of self-rating techniques are generic and can be applied in 

numerous environments, a specific team SA approach is yet to emerge.  

Consequently, a C4i specific self-rating technique would require development, 

incorporating the dispersed collaborative nature of C4i environments.  Secondly, there 

are a host of problems associated with the collection of SA data post-trial that would 

appear to rule out the use of a self-rating tool (on its own at least) for assessing SA in 

C4i environments.  SA ratings may be correlated with performance (Endsley 1995b) 

i.e. a participant who performs well in a trial automatically rates their SA as good.  

Also, participants are prone to ‘forgetting’ periods of the task when they possessed a 

poor level of SA, and more readily remember the periods when they possessed a 

superior level of SA.  Endsley (1995b) reports that people are poor at reporting 

detailed information about past mental events and that post-trial questionnaires only 
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capture participant SA at the end of the task under analysis.  Thirdly, in various 

validation studies, the SAGAT (freeze probe) technique has proved to be superior in 

terms of reliability, validity and sensitivity when compared to the SART (self-rating) 

technique.  Fourthly, as Endsley (1995b) points out, participant’s ability to rate their 

own SA is questionable, as they may not be able to accurately rate their poor SA e.g. 

it is questionable how accurately they can rate poor SA as they may not realise that 

they have inadequate SA in the first place. 

 

Observer-rating techniques 

Observer-rating techniques are most commonly used when measuring SA ‘in-the-

field’ due to their non-intrusive nature, and at first glance appear to be the most suited 

to measuring SA in C4i environments.  However, upon further investigation, it is 

quickly apparent that observer-rating approaches are also beset by a number of crucial 

flaws that may restrict their usage.  The primary disadvantage associated with 

observer-rating techniques concerns the construct validity of the measure.  The extent 

to which observers can accurately rate the internal construct of SA remains a major 

doubt (Endsley 1995b).  Whilst there are observable behaviours that may indicate 

certain things regarding participant SA, the actual internal level of SA cannot be 

accurately measured by observation alone.  Observer-rating techniques may also be 

subject to bias, in that they may serve to alter participant behaviour.  Knowing that 

they are being observed may change participant behaviour, in that they may strive to 

operate ‘by-the-book’ so to speak, and as a result the data obtained is subject to bias.  

Finally, observer-rating techniques require repeated access to multiple SME’s over a 

long duration of time.  This may prove problematic, if not impossible, especially 

when military personnel are required. 
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Performance measures 

It is perhaps somewhat irrelevant to assess the potential use of performance measures 

in the measurement of SA as various performance measures are normally taken during 

task performance anyway.  Performance measures are often very simplistic to take 

and are non-intrusive.  The main problem associated with performance measures 

being used to measure SA is the assumption that efficient performance is achieved as 

a result of efficient SA and vice versa.  It may be that efficient performance is 

achieved despite an inadequate level of SA, or that poor performance is achieved 

regardless of a high level of SA.  The unstable nature of the relationship between task 

performance and SA serves to diminish the suitability of performance measures as 

indicators of participant SA.  However, their use is not to be discounted as the 

procedure is often very simple, and the data may still have uses, particularly as a 

back-up SA measure to the other techniques employed. 

 

Process Indices (Eye tracker) 

The most commonly used process index is the measurement of participant eye 

fixation using an eye-tracking device.  Eye tracker data can be used to assess which 

situational elements the participant(s) fixated upon during task performance, and has 

been extensively used in SA assessment exercises.  However, the use of an eye-

tracking device ‘in-the-field’ is not possible, and so it is not recommended in this 

case.  Furthermore, typical eye-tracking devices are temperamental in their operation, 

and the data analysis procedure is a lengthy one, requiring great patience on behalf of 

the analyst.  Another problem associated with the use of eye-tracking devices 

surrounds the ‘look-but-failed-to-see’ phenomenon (Brown 2001).  Whilst the eye-
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tracker data can point to which elements in the environment the participant fixated 

upon, there is no assurance that the element in question was accurately perceived. 

 

Conclusions 

Existing SA measurement techniques are inadequate for use in the assessment of SA 

in C4i systems.  Whilst each class of technique (freeze-probe, real-time probe, self-

rating etc) possess distinct flaws (as described above) which would hinder the data 

collected, the techniques also fail to meet the requirements specified earlier in the 

paper, namely that any technique used to assess SA in C4i environments should be 

able to assess SA across multiple locations at the same time, assess both individual 

and team SA for the same task and also assess SA in real-time.  The methods review 

also produced a number of more general conclusions regarding the measurement of 

SA.  Firstly, the SAGAT approach (Endsley 1995a) is the most commonly applied 

approach when assessing SA.  Secondly, validation of the techniques remains a 

problem.  Aside from SAGAT and SART, there is limited validation evidence 

associated with the existing SA measurement techniques.   

      

Recommendations  

The measurement of SA in C4i environments poses a considerable but exciting 

challenge to the HF community. The concept of team or shared SA requires much 

further investigation in itself, which in turn requires the provision of reliable and valid 

measurement procedures.  It is apparent that, in their current format, existing SA 

measurement approaches are inadequate for this purpose, and a novel approach is 

required.  As highlighted previously, the main issues surrounding the measurement of 

SA in C4i environments are the need to assess both individual and team SA in real-
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time, and simultaneously at different locations.  From the categories of measurement 

technique available in the literature, not one can boast an ability to achieve this 

without incurring serious flaws that may hinder the data collected.  There are two 

solutions to this problem.  The first solution would be to develop a novel approach to 

the assessment of SA that could satisfy these requirements.  This is a daunting 

prospect, and one that requires a great deal of further investigation.  The second 

solution would be to combine the most successful SA measurement techniques in 

order to form a battery or ‘toolkit’ of SA measures.  Consequently, it is proposed that 

a multiple-measure or toolkit approach of measurement techniques may be the most 

appropriate way to measure SA in C4i environments.  This recommendation is made 

on the basis of two key factors.  Firstly, the lack of a single technique that can cope 

with both individual and team SA across multiple geographical locations in real-time 

ensures that multiple approaches must be utilised.  Secondly, a multiple measure 

approach ensures that SA data can be effectively crosschecked between measures in 

order to ensure reliability and accuracy. The concept of using a battery of HF methods 

to achieve more efficient performance is not a new one. For example, in conclusion to 

a review of thirty-eight existing human reliability analysis (HRA) and human error 

identification (HEI) techniques (Kirwan 1998a), Kirwan (1998b) suggested that as 

none of the techniques available satisfied all of the fourteen criteria against which 

they were evaluated, a framework or toolkit approach using a mixture of independent 

HRA/HEI tools may be the most suitable approach to error analysis. It is also 

common to use a battery of methods (e.g. physiological measures, primary and 

secondary task performance measures and subjective measures) for the assessment of 

operator workload. A multiple measure approach has no doubt been used previously 

to measure SA, and it is not offered as a novel procedure, rather it is offered as a 
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solution to the considerable challenge faced when measuring SA in C4i environments.  

The make-up of such an approach is unclear, and considerable investigation is 

required in order to determine the logistics of such an approach.  The first stage 

required in this process is to conduct an SA requirements analysis for the C4i 

environment in question, in order to determine those elements that comprise both 

individual and team SA.  Next, the various components of the multiple measure 

approach require development.  Such an approach may utilise a number of different 

SA measurement approaches, in order to cater for both individual and team SA. One 

such battery or toolkit of SA measurement techniques may include performance 

measures, a freeze probe technique (adapted for C4i environments), a post trial 

subjective rating technique and an observer rating technique. 
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