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Abstract: This paper deals with a fundamental issue of evaluating the performance of widely used
fault detection and diagnosis (FDD) schemes within a closed-loop framework. The focus is to
examine how certain implemented controller would impact on the FDD performance and how such
performance can be further improved. For this purpose, we consider the FDD problem for a class of
linear discrete-time systems (with and without unknown disturbances) under typical proportional-
integral (PI) control using observer-based methods. It is revealed that some existing observer-
based FDD approaches are no longer applicable in the closed-loop situation due to the feedback
control. Furthermore, by appropriately modifying the structure and designing the parameters of
the observers, it is proven that the dynamics of closed-loop residuals can be made identical with
those of the residuals obtained with known control inputs at each time step. A numerical example
is provided to show the effectiveness of the proposed algorithm.

1. Introduction

In the past decades, the fault detection and diagnosis (FDD) problems have been attracting con-
siderable research attention because of the increasing complexity and safety demands in modern
industrial systems [1, 2, 3, 4]. To improve the reliability of practical systems, the FDD problems
have been extensively studied in a variety of situations such as photovoltaic panels [5], diesel en-
gines [6], induction motors [7], underground cables [8], steam turbines [9], high-speed railways
[10], etc. The FDD methods enable us to detect, isolate and estimate possible faults such that
severe performance deteriorations and disasters can be prevented as early as possible [11, 12]. So
far, a great number of results have been reported on the topic, see e.g. [13, 14, 15, 16] and the
references therein.

Among the existing FDD methods, observer-based methods have been investigated for a lot of
practical systems [17, 18, 19]. In particular, the classical Luenberger observer has been widely uti-
lized in linear systems under certain completely observable condition owing to its simple structure
and stable performance since it was proposed in 1971 [20]. Some modified Luenberger observers
have been developed so as to cope with nonlinearities as well [21, 22]. A kind of robust observer
has been established in [23] to realize fault detection and isolation by specializing the structures
of some significant parameters. When the addressed systems are subject to unknown disturbances,
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unknown input observer (UIO) methods have been presented to guarantee that the residuals are
completely decoupled from disturbances [24]. The UIO techniques have been applied to various
systems including uncertain systems [25], distributed systems [26] and singular systems [27].

In practical engineering, many real-world systems have been subjected to closed-loop control
under the demands for stability and robustness. With given control laws, the closed-loop controllers
can adjust the control inputs on-line according to the system outputs. It should be pointed out that,
in most reported FDD literature using observer-based methods, it has been implicitly assumed that
the control input is exactly known at every time step. However, such an assumption is not always
realistic. For example, the closed-loop control input in practical systems may be unavailable to
the FDD unit owing to many reasons such as large scales and distributed structures of the systems.
It is often the case that only the prescribed control law, rather than the actual control input, can
be used to solve the FDD problems. In such a situation, it would be interesting to examine how
the feedback control would influence the performances of the FDD approaches, and this gives rise
to the fundamental issue of evaluating the performance of existing schemes within a closed-loop
framework. Furthermore, in the case that the FDD performance is indeed degraded by the feedback
control, it is of more engineering significance to modify the existing schemes such that they are
suitable to be used in closed-loop systems. So far, despite its clear engineering insight, such a
closed-loop FDD performance evaluation problem has been largely overlooked due probably to
the difficulties in mathematical formulation. It is, therefore, the main aim of this paper to shorten
such a gap by initializing the study on the FDD problem under closed-loop control.

In this paper, the FDD problems are investigated for a class of closed-loop systems under PI
control that is fairly popular in engineering practice. Some frequently used observer-based FD-
D approaches are examined within the closed-loop framework. To be more specific, the UIO-
based approach is studied for a class of systems with unknown disturbances, and then both the
Luenberger-observer-based method and the robust-observer-based FDD method are discussed in
the disturbance-free case. It is shown that some methods are no longer applicable in the closed-loop
case when only the control laws are available. Subsequently, the observers are re-designed such
that the dynamics of the closed-loop residuals can be the same as those of the residuals achieved
with control inputs. A simulation example is presented to show the effectiveness of the proposed
method in the closed-loop situation. The main novelty of the paper is twofold: 1) it is illustrated
that the performance of the closed-loop residuals may be deteriorated by the effects of the feed-
back control; and 2) the structures of the observers can be adjusted and the parameters can be
re-calculated in the closed-loop case such that the modified FDD methods are applicable in the
closed-loop cases.

The rest of paper is organized as follows. In Section 2, the UIO-based FDD method is discussed
for a class of linear closed-loop systems with unknown external disturbances. In Section 3, the
Luenberger-observer-based method and robust-observer-based FDD method are studied for a class
of linear systems under PI control. An illustrative example is presented in Section 4 and the paper
is concluded in Section 5.

Notations. The notation used in the paper is fairly standard except where otherwise stated.
Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and the set of all n × m
real matrices. The superscript “T” denotes the transpose. I is the identity matrix with compatible
dimension. diagl{♢} is employed to represent a block-diagonal matrix whose entries are all ♢.
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2. UIO method

Consider the following class of linear discrete-time systems with unknown disturbances:{
xk+1 = Axk +Buk + Edk + fk + wk,
yk = Cxk + vk,

(1)

where xk ∈ Rn is the state; uk ∈ Rp is the control input; yk ∈ Rm is measurement output; dk ∈ Rq

is the unknown external disturbance; fk ∈ Rn is the additive fault; wk ∈ Rn and vk ∈ Rm are the
process noise and measurement noise, respectively; and A, B, C and E are known matrices with
appropriate dimensions.

For system (1), the UIO of the following structure is adopted as a discrete version of that in [24]
when uk is attainable at each time step:{

zk+1 = Fzk + TBuk +Kyk,
x̂k+1 = zk+1 +Hyk+1,

(2)

where zk ∈ Rn is the observer state and x̂k ∈ Rn is the state estimate. The parameters F , T , K
and H are provided as follows:

K =K1 +K2, (3)
E =HCE, (4)
T =I −HC, (5)
F =A−HCA−K1C, (6)
K2 =FH, (7)

and the system matrix F is Schur stable (i.e., all the eigenvalues of F lie within the open unit disk).
With the given UIO, the dynamics of estimation error ek = xk − x̂k is governed by:

ek+1 =Fek −Hvk+1 −K1vk + (I −HC)wk + (I −HC)fk. (8)

The residual signal is taken as

rk = yk − Cx̂k = Cek + vk, (9)

which is fully decoupled from the disturbance dk. Necessary and sufficient conditions for (2) to be
a UIO for the system defined by (1) are

1. rank(CE)=rank(E);

2. The pair (C,A−HCA) is detectable.

Consider the discrete PI controller

uk = Qpyk +Qi

l∑
j=1

yk−j, (10)

where l, Qp and Qi are predefined parameters that can ensure the stability of the closed-loop
system. When only the control law is available to the observer (rather than the control input),
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substituting the control law into the original system (1) yields
xk+1 = (A+BQpC)xk +BQiC

∑l
j=1 xk−j + Edk

+fk + wk +BQpvk +BQi

∑l
j=1 vk−j,

yk = Cxk + vk.

(11)

To apply the UIO method, define the following augmented state and measurement noise:

x̄k = [xT
k , x

T
k−1, . . . , x

T
k−l]

T , v̄k = [vTk , v
T
k−1, . . . , v

T
k−l]

T .

Then, the closed-loop system (11) can be rewritten in the following form:{
x̄k+1 = Āx̄k + Ēdk + D̄fk + D̄wk + F̄1v̄k,
yk = C̄x̄k + F̄2v̄k,

(12)

where

Ā =


A+BQpC BQiC · · · BQiC

I
. . .

I 0

 , F̄1 =


BQp BQi · · · BQi

0 · · · · · · 0
... · · · · · · ...
0 · · · · · · 0

 ,

C̄ = [C, 0, · · · , 0], Ē = [ET , 0, · · · , 0]T , D̄ = [I, 0, · · · , 0]T , F̄2 = [I, 0, · · · , 0].

For system (12), a closed-loop UIO of the following structure is adopted:{
z̄k+1 = F̄ z̄k + K̄yk,
ˆ̄xk+1 = z̄k+1 + H̄yk+1,

(13)

where z̄k ∈ Rnl is the observer state and ˆ̄xk ∈ Rnl is the state estimate.
To guarantee that the closed-loop residual is still decoupled from the disturbance, we need to

choose H̄ such that

Ē = H̄C̄Ē. (14)

Considering the structure of Ē, the matrix H̄ should be determined as

H̄ = [HT , 0, · · · , 0]T (15)

and, with H̄ given in (15), we have

F̄ =Ā− H̄C̄Ā− K̄1C̄

=


(I −HC)(A+BQpC) (I −HC)BQiC · · · (I −HC)BQiC

I
. . .

I 0

− K̄1C̄.

To make the dynamics of the closed-loop residuals as similar as possible with that of residuals
obtained with control inputs uk, one needs to choose

K̄1 = [(K1 +BQp −HCBQp)
T , 0, · · · , 0]T (16)
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and it then follows that

F̄ =


F (I −HC)BQiC · · · (I −HC)BQiC
I

. . .
I 0

 . (17)

Similar to (3) and (7), K̄2 and K̄ are given as below to eliminate the terms directly related to yk
in the estimation error dynamics:

K̄ =K̄1 + K̄2, (18)
K̄2 =F̄ H̄. (19)

Considering the structures of F̄ , K̄ and H̄ , the augmented estimation error ēk = x̄k − ˆ̄xk can
be partitioned as ēk =

[
eTk , . . . , e

T
k−l

]T . Based on the parameters obtained in (15)-(19), we have

ek+1 =Fek + (I −HC)BQiC
l∑

j=1

ek−j −K1vk + (I −HC)BQi

l∑
j=1

vk−j

−Hvk+1 + (I −HC)wk + (I −HC)fk. (20)

From (20), it is straightforward to see that the estimation error dynamics of the closed-loop
system may be unstable even if F is Schur stable owing to the effects of the delayed errors
ek−1, . . . , ek−l. Such influences result from the integral part of the feedback control. Consider-
ing the sparse nature of C̄ in the closed-loop situation, the eigenvalues of F̄ cannot be assigned
effectively no matter how K̄1 is selected. To tackle such a problem, the structure of the closed-loop
UIO should be appropriately changed.

Introducing the augmented measurement ȳk = [yTk , y
T
k−1, . . . , y

T
k−l]

T , we have

ȳk = C̃x̄k + v̄k, (21)

where C̃ = diagl{C}.
Now, consider a closed-loop UIO in the following form for system (12):{

z̄k+1 = F̄ z̄k + K̄ȳk,
ˆ̄xk+1 = z̄k+1 + H̄yk+1,

(22)

where z̄k ∈ Rnl and ˆ̄xk ∈ Rnl are the same as defined above. The modified UIO will be developed
in the next theorem.

Theorem 1. Consider the UIO (22) for the closed-loop system (1) with the PI controller (10). For
the initial error ē0 = [eT0 , 0, . . . , 0]

T , if H̄ is given by (15), and K̄ and F̄ are calculated as follows:

K̄ =K̄1 + K̄2, (23)

F̄ =Ā− H̄C̄Ā− K̄1C̃, (24)

K̄1 =


K1 + (I −HC)BQp (I −HC)BQi · · · (I −HC)BQi

0 · · · · · · 0
... · · · · · · ...
0 · · · · · · 0

 , (25)

K̄2 =F̄ H̄F̄2, (26)

then the dynamics of the closed-loop residual rk = yk − C̄ ˆ̄xk will be identical with that in (8)-(9).
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Proof. Based on (12) and (22), we have

ēk+1 = x̄k+1 − (zk+1 + H̄yk+1)

= (I − H̄C̄)x̄k+1 − H̄F̄2v̄k −
[
F̄ zk + (K̄1 + K̄2)ȳk

]
. (27)

Considering the definition of ȳk, we obtain that

ēk+1 = (I − H̄C̄)x̄k+1 − H̄F̄2v̄k+1 − F̄ (x̄k − ēk − H̄yk)− K̄1(C̃x̄k + v̄k)− K̄2ȳk. (28)

According to (12) and (24), (28) can be written as

ēk+1 = F̄ ēk − K̄1v̄k − H̄F̄2v̄k+1 + (I − H̄C̄)Ēdk + (I − H̄C̄)D̄fk + (I − H̄C̄)D̄wk

+ (I − H̄C̄)F̄1v̄k + F̄ H̄yk − K̄2ȳk. (29)

From (15), (26) and the fact yk = F̄2ȳk, it follows that

ēk+1 = F̄ ēk − K̄1v̄k − H̄F̄2v̄k+1 + (I − H̄C̄)D̄fk + (I − H̄C̄)D̄wk + (I − H̄C̄)F̄1v̄k. (30)

Now, we are in a position to investigate F̄ . With (24) and (25), we have

F̄ =Ā− H̄C̄Ā− K̄1C̃ (31)

=


(I −HC)(A+BQpC) (I −HC)BQiC · · · (I −HC)BQiC

I
. . .

I 0

 (32)

−


K1C + (I −HC)BQpC (I −HC)BQiC · · · (I −HC)BQiC

0 · · · · · · 0
... · · · · · · ...
0 · · · · · · 0

 (33)

and it follows that

F̄ =


F 0 · · · 0
I

. . .
I 0

 . (34)

With the proposed UIO parameters, the augmented estimation error ēk can still be partitioned
as ēk =

[
eTk , . . . , e

T
k−l

]T . Taking F̄ in (34) into account, we have

ek+1 =Fek −Hvk+1 −K1vk + (I −HC)wk + (I −HC)fk, (35)

and

rk =Cek + vk, (36)

which means that the dynamics of the closed-loop estimation error and the residual are exactly the
same as those in (8) and (9) if the initial error ē0 = [eT0 , 0, . . . , 0]

T . This concludes the proof.
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Remark 1. A modified UIO has been presented in Theorem 1 for a class of linear discrete-time
system under PI control. The UIO has been developed with the control law, rather than the control
input uk. By doing so, the real-time signal transmission from the controller to the FDD unit can
be avoided, and the relationship between the feedback control and the FDD performance can be
established. At each time step, some historical measurements yk−1, yk−2, . . . , yk−l are utilized
to deal with the effects of the feedback control. It is noted that when, only proportion control
uk = Qpyk is employed, the UIO in (2) can be applied in the closed-loop case simply by setting that
K̄1 = K1+BQp−HCBQp and the dynamics of the closed-loop estimation error will be identical
with that in (8) when the initial values are the same. In other words, the structure of the UIO is
adjusted to specifically cope with the influences from the integral control. In the next section, a
linear system without unknown disturbances will be considered, and both the Luenberger-observer-
based method and the robust-observer-based method will be modified in the closed-loop case under
PI control.

3. Luenberger-observer-based and robust-observer-based method

In this section, the Luenberger-observer-based and robust-observer-based method will be investi-
gated for a class of linear systems under PI control.

Consider the following discrete-time system:{
xk+1 = Axk +Buk + fk + wk,
yk = Cxk + vk,

(37)

where the variables xk, uk, yk, fk, wk and vk and the same as defined in Section 2. The conventional
Luenberger observer which directly uses the control input is of the following structure [20]:

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k), (38)

where L is determined such that A − LC is stable. The dynamics of the estimation error ek =
xk − x̂k and residual rk = yk − Cx̂k can be obtained, respectively, as follows:

ek+1 =(A− LC)ek + wk + fk − Lvk, (39)

rk = Cek + vk. (40)

Considering the same PI control (10), the system (37) can be written as{
x̄k+1 = Āx̄k + D̄fk + D̄wk + F̄1v̄k,
yk = C̄x̄k + F̄2v̄k,

(41)

where x̄k, v̄k, Ā, D̄, F̄1, C̄ and F̄2 have been defined previously. For system (41), the following
Luenberger observer is selected:

ˆ̄xk+1 = Āˆ̄xk + L̄(yk − C̄ ˆ̄xk). (42)

Following the similar procedure in the previous section, if we choose

L̄ = [(L+BQp)
T , 0, · · · , 0]T , (43)
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then

ek+1 =(A− LC)ek +BQiC
l∑

j=1

ek−j − Lvk +BQi

l∑
j=1

vk−j + wk + fk, (44)

from which we can conclude that the effects of the delayed errors may lead to unsatisfactory
dynamics of the estimation error in the closed-loop system. To deal with this problem, we would
resort to, once again, the augmented measurement output ȳk.

Consider a closed-loop Luenberger observer in the following form:

ˆ̄xk+1 = Āˆ̄xk + L̄(ȳk − C̃ ˆ̄xk), (45)

where L̄ is to be given in the next theorem.

Theorem 2. Consider the Luenberger observer (45) for the closed-loop system (37) with the PI
controller (10). If the initial error ē0 = [eT0 , 0, . . . , 0]

T and L̄ is derived as:

L̄ =


L+BQp BQi · · · BQi

0 · · · · · · 0
... · · · · · · ...
0 · · · · · · 0

 , (46)

then the dynamics of the closed-loop residual rk = yk−C̄ ˆ̄xk will be identical with that in (39)-(40).

Proof. Noticing the fact that

Ā− L̄C̃

=


A+BQpC BQiC · · · BQiC

I
. . .

I 0

−


LC +BQpC BQiC · · · BQiC

0 · · · · · · 0
... · · · · · · ...
0 · · · · · · 0



=


A− LC 0 · · · 0

I
. . .

I 0

 ,

Theorem 2 can be easily obtained and the proof is omitted here for conciseness.

Now, let us discuss the robust observer presented in [23]. For system (37), the following ob-
server is taken into account in the discrete situation:{

zk+1 = Fzk + TBuk +Gyk,
rk+1 = Kzk+1 + Pyk+1

(47)

where

TA− FT = GC, (48)
KT + PC = 0, (49)
F is stable. (50)
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For such an observer, rk is the residual and the estimation error is defined as ek = zk−Txk. Based
on (37) and (47), we have

ek+1 =Fek − Twk − Tfk +Gvk, (51)

and

rk = Kek + Pvk. (52)

For system (41), the following robust observer is selected:{
z̄k+1 = F̄ z̄k + Ḡyk,
rk+1 = K̄z̄k+1 + P̄ yk+1,

(53)

With hope to make dynamics of the closed-loop error as similar as possible with that of the
error obtained with control inputs, we choose the following parameters:

T̄ =diagl{T}, (54)

F̄ =


F 0 · · · 0
I

. . .
I 0

 , (55)

K̄ = [K, 0, · · · , 0] , (56)
P̄ =P, (57)

Ḡ =[(G+ TBQp)
T , 0, · · · , 0]T , (58)

and then we have

ek+1 =Fek − TBQiC

l∑
j=1

ek−j +Gvk − TBQi

l∑
j=1

vk−j − Twk − Tfk. (59)

Again, we need the augmented measurement to eliminate the influences of the integral control.
For this purpose, we consider a closed-loop robust observer in the following form for system (37):{

z̄k+1 = F̄ z̄k + Ḡȳk,
rk+1 = K̄z̄k+1 + P̄ yk+1.

(60)

In virtue of Theorem 1, the following results are easily accessible.

Theorem 3. Consider the robust observer (60) for the closed-loop system (37) with the PI con-
troller (10). For the initial error ē0 = [eT0 , 0, . . . , 0]

T , if T̄ , F̄ , K̄ and P̄ are given by (54)-(57) and
Ḡ is adopted as:

Ḡ =


G+ TBQp TBQi · · · TBQi

0 · · · · · · 0
... · · · · · · ...
0 · · · · · · 0

 , (61)

then the dynamics of the closed-loop residual rk will be identical with that in (51)-(52).
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Proof. The proof of Theorem 3 is similar to that of Theorem 1 and is therefore omitted.

Remark 2. So far, several observer-based FDD methods (including UIO-based method, Luenberger-
observer-based method and robust-observer-based method) have been examined in the closed-loop
situations. It is revealed that the effects of the integral control may degrade the performances of
the observers when only control laws are available. Fortunately, by appropriately changing the
structure of the observers, the dynamics of the closed-loop residuals can be made exactly the same
as that of residuals obtained with known control inputs. The scalar l and the matrices Qp and Qi

quantify the effects of the controller on the dimensions and parameterizations of the observers,
respectively. According to Theorems 1-3, the parameters of the closed-loop observers can be con-
structed with the open-loop observer parameters and the original system parameters after several
matrix additions and matrix multiplications. The computation burden of the presented method
would not get significantly increased even with higher parameter dimensions, which makes the
method easy to implement in practice. It is also worth mentioning that the results obtained in the
paper can be easily extended to time-varying systems by using Theorems 1-3 at each time step.
For uncertain systems in which the directions of the uncertainties are known, the UIO-based FDD
method can be utilized after formulating the uncertainties as parts of unknown inputs. When the
directions of the uncertainties are unavailable, the H∞ observer can be used to constrain the attenu-
ation level from the uncertainties to the residuals. The structure of the observer should be modified,
and the parameters should be re-designed accordingly. For the systems under the network-based
environments, the network-induced phenomena such as time delays and packet dropouts [28, 29]
will lead to that the influences of the possible faults on the residuals are stochastic and the dynamics
of residuals is directly dependent on the stochastic variables and the original system states. In such
a case, it makes more sense to study the FDD problem and adjust the observer parameters in the
robust or mean-square sense, and the residual evaluation problem becomes more challenging. In
the next section, an illustrative example will be provided to show the effectiveness of the proposed
closed-loop algorithm in the presence of the PI controller.

4. A Simulation Example

Inspired by the three-tank system proposed in [1], a system (1) with the following parameters is
considered:

A =

 0.9908 0 0.0091
0 0.9856 0.0072

0.0091 0.0072 0.9836

 , B =

 64.6627 0.0007 0.2978
0.0007 64.4908 0.2358
0.2978 0.2358 64.4217

 , E =

 2
1
0

 ,

C =

[
1 0 0
0 1 0

]
.

The closed-loop control is designed as uk = Qpyk +Qi

∑2
i=1 yk−i where

Qp =

 −0.0029 0.0087
0.0001 −0.0057
−0.0372 −1.8862

 , Qi =

 0 0.0001
−0.004 0
0.001 0.001

 .

The disturbances dk, wk and vk are mutually independent Gaussian distributed sequences whose
variances are 1 × 10−10I , 1 × 10−12I and 1 × 10−12I , respectively. The observer parameters in
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(3)-(7) are determined as

H =

 0 2
0 1
0 0

 , K1 =

 0.4 0
0 0.3
0 0

 , K2 =

 0 −0.7896
0 −0.3
0 0.0254

 ,

F =

 0.5908 −1.9712 −0.0053
0 −0.3 0

0.0091 0.0072 0.9836

 .

In such a case, F is stable and its eigenvalues are 0.5909, 0.9835 and -0.3.
The additive fault fk is in the following form:

fk =

{
[0, 0, 0]T , if k ≤ 20,

[−8× 10−6, 0, 0]
T
, otherwise.

In the fault-free case, the average Euclidean norm of the residual obtained with the proposed
closed-loop observer is 1.9983 × 10−4 in 50 Monte-Carlo simulations. With the traditional open-
loop observer, the average Euclidean norm of the residual is 4.4595× 10−4. Fig. 1 plots the norm
of residual achieved with the conventional UIO method (13) in the fault-free case. It can be seen
that: 1) the closed-loop UIO can achieve better estimation performance than the open-loop one due
to the consideration of the feedback control; 2) the residual obtained with the open-loop observer
cannot converge even when there is no fault in the system. As a result, the conventional UIO is
no longer applicable in the closed-loop case. Fig. 2 depicts the norm of residual obtained with the
closed-loop UIO method (22) in the faulty situation and the threshold obtained from 100 Monte-
Carlo experiments. We can conclude that the closed-loop UIO method proposed in (22) could help
us to detect the fault effectively thanks to our efforts to deal with the closed-loop system dynamics.

0 5 10 15 20 25 30
Time step

0

0.5

1

1.5

2

2.5

3
×10-3

Fig. 1. Residual obtained with (13) in the fault-free case
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0 5 10 15 20 25 30
Time step

0

1

2

3

4

5

6

7

8
×10-4

residual obtained with (22)
threshold

Fig. 2. Residual obtained with (22) and the threshold

5. Conclusion

In this paper, the FDD problems under closed-loop control have been investigated with a class
of observer-based methods. A discrete-time linear system with/without unknown inputs under PI
control has been considered. Several observer-based FDD methods have been taken into accoun-
t including UIO method, Luenberger observer method and robust observer method. It has been
shown that the approaches may be no longer applicable in closed-loop situations when only con-
trol laws are available due to the integral feedback control. Then the structures of the observers
have been modified and the parameters have been adjusted such that the dynamics of closed-loop
residuals are identical with that of the residuals obtained with known control inputs. A numerical
example has been presented to show the effectiveness of the proposed algorithm. Future research
topics would include the extension of our results to systems with more complex controls (e.g.
sliding-mode control and adaptive control), and more complicated practical systems such as un-
certain systems, nonlinear systems and networked systems.
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