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Abstract—In this paper, the fault detection and iso-

lation problem of intermittent faults (IFs) in a class of

linear stochastic systems is investigated. For the detection

and isolation of intermittent faults, it includes: i) to

detect both the appearing time and the disappearing time

of an IF; ii) to detect the appearing (disappearing) time

of each IF before the subsequent disappearing (appear-

ing) time; iii) to determine where the IFs happen. Based

on the outputs of the observers we designed, a novel

set of residuals is constructed by using the sliding time

window technique, two hypothesis tests are proposed to

detect all the appearing time and disappearing time of

intermittent faults. The isolation problem of intermittent

faults is also considered. Furthermore, within a statistical
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framework, the definition of the diagnosability of IFs is

proposed, and a sufficient condition is brought forward

for the diagnosability of intermittent faults. Quantitative

performance analysis results for the false alarm rate

and the missing detection rate are discussed, and the

influences of some key parameters of the proposed

scheme on performance indices such as the false alarm

rate and the missing detection rate are analyzed rigor-

ously. Effectiveness of the proposed scheme is illustrated

via a simulation example of an unmanned helicopter

longitudinal control system.

Index Terms—Intermittent faults (IFs), fault detection

and isolation, diagnosability, linear stochastic systems,

hypothesis test.

ACRONYMS

DES discrete event system

FDI fault detection and isolation

IF intermittent fault
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IFAP

-diagnosable

appearing time of the IF is

probabilistically diagnosable

IFDP

-diagnosable

disappearing time of the IF is

probabilistically diagnosable

IFP

-diagnosable

IF is probabilistically diag-

nosable

PF permanent fault

NOTATION

E[·] expectation

P (·) probability

V ar[·] variance

Φ(·) normal Gaussian distribution

bi ith fault signature of systems

mi(t) intermittent fault (IF) in bi

µi,q, νi,q qth unknown appearing, and dis-

appearing time of the IF mi(t)

fi(q) qth magnitude of the IF mi(t)

ρi lower bound of the magnitude of

the IF mi(t)

τ dur
i,q , τ int

i,q qth duration time, and interval

time of the IF mi(t)

τ̃ dur
i , τ̃ int

i minimal values of the duration

time, and the interval time of the

IF mi(t)X real vector space with typical ele-

ments of state vector x(t)

S invariant subspace, a A-invariant

subspace is the subspace S ⊆ X

with the property AS ⊆ S

Bi image of bi, Bi =Im bi

Ker C kernel of C

S(·) set of all (C,A)-unobservability

subspaces containing given sub-

spaces

Qi(W) set of all Qi satisfying (A +

QiC)W ⊆ W for a given (C,A)-

invariant subspace W

dim(·) dimension of the given space

In n-dimensional identity matrix

∆ti
sliding time window for mi(t)
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ri(t,∆ti) novel set of residuals

γi1 , γi2 test sizes of hypothesis tests for

the detection of appearing time,

and disappearing time of mi(t)

µd
i,q, ν

d
i,q detection time of qth appearing

time, and disappearing time of

mi(t)

Πi1 , Πi2 detection thresholds for the ap-

pearing time, and the disappearing

time of mi(t)

ϑi1 , ϑi2 confidence values of hypothesis

tests for the detection of appear-

ing time, and disappearing time of

mi(t)

µ̃d
i,q, ν̃

d
i,q worst allowable detection time of

µd
i,q, and νd

i,q for mi(t)

δ∗i minimal length of the permissable

sliding window for mi(t)

Ri
test hypothesis test result for the novel

residual ri(t,∆ti)

I. INTRODUCTION

With the growing demand of the reliability

and safety of complex industrial processes [32],

[10], [5], [23], [20], the fault diagnosis problem

of stochastic systems has received increasing at-

tention in the past three decades [5], [9], [12],

[14], [35], [37]. Compared with the hardware

redundancy method, analytical redundancy based

fault diagnosis schemes, such as model-based

approaches [9], [17] and data-driven approaches

[37], [12], are more appealing due to their low ex-

pense, high adaptabilities, and good performances.

Consequently, a number of efficient analytical

redundancy based fault diagnosis methods have

been presented [2], [26], [21], [31].

With the development of digital circuit tech-

nologies and computer technologies, a large frac-

tion of faults are actually IFs (also called transient

faults) in most application fields, especially in

electromechanical systems, power systems, mil-

itary systems, and aerospace or aircraft systems

[13], [8], [19], [27]. IFs are different from perma-

nent faults [36]. In [30], IFs are defined as “Fault

of an item for a limited period of time, following

which the item recovers its ability to perform its

required function without being subjected to any

external corrective action” and “such faults are

often recurrent” [8]. Owing to the fact that IFs
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can randomly appear and disappear with unknown

magnitudes, they are one of the main factors

resulting in false alarms and temporary failure

in industrial processes [18]. According to [28],

more than 50% of all pilot-reported operational

faults in avionics are IFs. As illustrated in [1], the

inspection and maintenance costs of IFs in large

scale integrated circuits remain high while those

for permanent faults (PFs) decrease. Moreover,

many IFs are related to the degradation of systems

or equipments [8]. Therefore, the FDI of IFs

should be studied carefully to make corrective

maintenance strategy and assure the reliability of

systems or equipments.

Different from the FDI of permanent faults,

the FDI of IFs requires to detect not only all

the appearing time but also all the disappearance

time of IFs. That is, we must detect the appearing

(disappearing) time of IFs before the subsequent

disappearing (appearing) time[6], [13]. Besides,

the duration time and the interval time of an IF

may be very short, so the FDI scheme for IFs must

be fast enough [3]. Note that IFs can disappear

without any corrective actions. The FDI of IFs

must be accurate enough to avoid unnecessary

reparation operations. Hence, it is hard to detect

and isolate IFs at a fast speed as well as a high

accuracy rate, which motivates us to investigate

the FDI problem of IFs.

In the existing FDI results for IFs, many of

them are based on the qualitative analysis methods

and the data-driven methods for specific plants

[20], [3], [34]. Most of them have focused on

detecting whether an IF has happened in the

system, but they have ignored the intermittent

property of IFs and may be ineffective in detecting

all the appearing time and disappearing time. In

[15], the diagnosability of IFs based on discrete

event systems (DES) was proposed which is of

paramount significance. However, much prior in-

formation about system structures and IFs were

required to build up the DES and no quantitative

performance analysis was provided to assure the

accuracy of the FDI of IFs. Based on the fact that

IFs may change the mean of residuals, an effective

approach was proposed in [6] to detect all the

appearing and disappearing time of a scalar IF in

linear stochastic systems with ideal measurements

y = x and a necessary and sufficient condition

for the detectability of IFs was obtained. Since

noises are inevitable in most practical systems, it

makes more sense to study the FDI problem of

IFs in linear stochastic systems with measurement

noises, and analyze the diagnosability, the false

alarm rate, and the missing detection rate, based

on the proposed FDI scheme.
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In this paper, a novel method is proposed to

study the FDI problem of IFs in linear stochastic

systems with measurement noises. The FDI prob-

lem of IFs includes: i) to detect both the appearing

time and the disappearing time of an IF; ii) to

detect the appearing (disappearing) time of each

IF before the subsequent disappearing (appearing)

time; iii) to determine where the IFs happen. In

order to isolate IFs in different fault signatures, a

set of observers sensitive to each fault signature

is designed. Based on the outputs of observers, a

novel set of residuals is constructed by introducing

sliding time windows and two hypothesis tests are

brought forward to detect all the appearing time

and the disappearing time separately. The main

contributions of this paper are as follows: 1) a

novel scheme is provided to detect and isolate IFs

in a class of linear stochastic systems with both

process noises and measurement noises, where a

novel set of residuals is constructed by using the

sliding time window technique; 2) the diagnosabil-

ity of IFs is defined within a statistical framework,

and a sufficient condition is brought forward for

the diagnosability of IFs; 3) some quantitative

performance analysis results for the false alarm

rate and the missing detection rate are presented

and the influences of some key parameters of the

proposed scheme on those performance indices are

analyzed rigorously.

The rest of this paper is organized as follows.

In Section II, the FDI problem of IFs in linear

stochastic systems with measurement noises is

mathematically formulated. A novel scheme is

proposed to detect both the appearing time and

the disappearing time of IFs and isolate them.

A sufficient diagnosability condition for a class

of IFs is provided in Section III. In Section IV,

performance indices such as the detection time,

the false alarm rate and the missing detection rate,

are analyzed and the influence of key parameters

of the proposed scheme on these performance

indices are quantitatively analyzed. In Section V,

simulation results are provided to illustrate the

validity of the proposed scheme. Finally, we draw

up the concluding remarks in Section VI.

II. PROBLEM FORMULATION

Consider a class of continuous stochastic linear

time invariant (LTI) dynamic systems formulated

as
ẋ(t) = Ax(t) +Bu(t) +

∑l
i=1 bimi(t) + Ew(t)

y(t) = Cx(t) +Dv(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rl and y(t) ∈ Rs are

the state vector, input vector and output vector,

respectively; w(t) ∈ Rp and v(t) ∈ Rd denote the
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system noises and measurement noises which are

independent Gaussian white noises with known

covariances Rw and Rv; mi(t) ∈ R is the fault

mode and bi ∈ Rn is the fault signature, which

is the ith column of B; the real constant system

matrices A, B, E, C, D are of appropriate di-

mensions. Note that sensor faults and changes in

system dynamics can be represented as pseudoac-

tuator faults by modifying A, B, bi, and C [21].

Hence, the following analysis will focus on the

model with actuator faults.

In model (1), mi(t) : R+ → R stands for the

IF signal which is in the following form [6]:

mi(t) =
∞∑
q=1

[Γ(t−µi,q)−Γ(t− νi,q)] · fi(q), (2)

where Γ(t) is the step function; µi,q and νi,q stand

for the qth unknown appearing and disappearing

time of the IF in the fault signature bi respectively

satisfying µi,q < νi,q < µi,q+1; the qth duration

time of the IF is τ dur
i,q = νi,q − µi,q, and the qth

interval time is τ int
i,q = µi,q+1−νi,q; fi(q) : N+ → R

represents the unknown fault magnitude.

Assumption 1: There is no redundancy in dif-

ferent fault signatures, i.e. Bj ̸= Bk, ∀j ̸= k.

Assumption 2: i) Each IF mi(t) has a known

lower bound represented by ρi satisfying |fi(q)| ≥

ρi. ii) The minimal values of τ dur
i,q and τ int

i,q of each

IF are formulated as
τ̃ dur
i , inf

q∈N+
τ dur
i,q ,

τ̃ int
i , inf

q∈N+
τ int
i,q .

(3)

Let δi = min
{
τ̃ dur
i , τ̃ dur

i

}
and assume δi is known.

III. THE FDI SCHEME FOR IFS

In this section, a novel scheme is proposed to

study the FDI problem of IFs for system (1).

An observer-type scheme is utilized to generate a

novel set of residuals which can be used to isolate

IFs in different fault signatures. But the residuals

are subjecting to process noises and measurement

noises. Then two hypothesis tests are provided to

analyze the residuals to detect all the appearing

time and the disappearing time of the IFs.

A. The Unidimensional Residual Design

For system (1), a set of observers governed by

the following dynamics
ω̇i(t) = Fiωi(t)− Jiy(t) +Giu(t),

ri(t) = Miωi(t)−Hiy(t) +Kiu(t),

(4)

is designed for each fault signature bi such that

the output of the observer ri(t) is decoupled from

all the other IFs mj(t) (j ̸= i) but affected by

mi(t) and w(t) and v(t). In (4), ωi(t) ∈ Rñ (ñ

is defined below) is state of the ith observer; u(t)

and y(t) are the input and output of system (1);
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Fi, Ji, Gi, Mi, Hi and Ki are parameter matrices

of appropriate dimensions to be designed.

Let S∗
i := inf S(

∑
j ̸=i Bj). If S∗

i ∩ Bi = 0 (i =

1, · · · , l) is satisfied, the parameters of Gi, Mi,

Hi and Ki in (4) can be calculated by using the

following algorithm [21]: Let Qi,0 ∈ Qi(S∗
i ). Let

Pi : X → X /S∗
i be the canonical projection with a

right inverse P−r
i , and let Ai,0 be the induced map

on X/S∗
i , so we have Ai,0 = Pi(A +Qi,0C)P−r

i .

Construct Hi from Ker HiC = S∗
i +Ker C, and

let Mi = (HiC)P−r
i , then the pair (Mi, Ai,0) is

observable. So a Qi,1 exists such that σ̌(Fi) = Λi,

where Fi = Ai,0 + Qi,1M , σ̌(Fi) is the spectrum

of Fi and Λi is a given diagonal set. The rest

of the coefficient matrices can be derived by

Ji = PiQi,0 + Qi,1Hi, Gi = PiB and Ki = 0.

Let ñ = n− dim(S∗
i ), and define εi(t) = ωi(t)−

Pix(t), then we can obtain the dynamics of the ñ

dimension observers as

ε̇i(t) =Fiωi(t)− Ji(Cx(t) +Dv(t))

+Giu(t)− PiAx(t)− PiBu(t)

− Pibimi(t)− PiEw(t)

=Fiωi(t)− JiCx(t)− JiDv(t)

− PiAx(t)− Pibimi(t)− PiEw(t)

=Fiωi(t)− PiQi,0Cx(t)− PiAx(t)

− Pibimi(t)− JiDv(t)− PiEw(t)

=Fiεi(t)− Pibimi(t)− PiEw(t)

− JiDv(t),

(5)

ri(t) = Miw(t)−Hiy(t)

= Miεi(t)−HiDv(t).

(6)

From (5) and (6), we can conclude that the output

of the ith observer ri(t) is decoupled from all the

other IFs mj(t) (j ̸= i) but affected by mi(t) and

w(t) and v(t). Then, by introducing a sliding time

window ∆ti (0 < ∆ti ≤ δi) [6], we can obtain the

sliding-window based estimation error [22]

εi(t,∆ti) , εi(t)− eFi∆tiεi(t−∆ti)

=

∫ t

t−∆ti

eFi(t−τ)[−Pibimi(t)

− PiEw(t)− JiDv(t)]dτ,

(7)

In order to construct and analyze novel residu-

als, a convenient set of unidimensional observers

governed by (4) should be designed for scalar

IFs for the sake of conceptual and computational

simplicity. Here, we propose the following two

lemmas to design a set of unidimensional ob-

servers.

Lemma 1: For system (1) with the input matrix

B ∈ Rn×l(l ≤ n), a set of unidimensional

observers can be designed for each fault signature

bi if there exists a matrix L̃i = [Li1 Li2 · · · Liz ] ∈

Rn×z(z ≤ n−l) such that the following conditions

can be satisfied

dim(S ′
i) = n− 1,S ′

i ∩ Bi = 0, i = 1, · · · , l, (8)
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where S ′
i := inf S(

l∑
j ̸=i

Bj +
z∑

k=1

Lik).

Proof: Note that S ′
i ⊃ S∗

i . If S ′
i∩Bi = 0 (i =

1, · · · , l) is satisfied, the parameter matrices of the

ith observer, Gi, Mi, Hi and Ki, can be derived

by using S ′
i instead of S∗

i , and the output of the

ith observer ri(t) is decoupled from all the other

IFs mj(t) (j ̸= i) but affected by mi(t) and w(t)

and v(t). Apparently, the order of the ith observer

is n− dim(S ′
i) = 1.

Lemma 2: For system (1) with overactuated

actuators (i.e., l > n) [24], a set of unidimensional

observers can be designed for each fault signature

bi if for each (n− 1) combination bi1 , · · · , bi(n−1)

of bi’s, there exist (C,A)-unobservable subspaces

S ′
i1i2···in−1

∩ Bk = 0, k ̸= ij,

j = 1, · · · , n− 1,

(9)

where S ′
i1i2···in−1

:= inf S(
∑n−1

j=1 Bij).

Proof: It can be easily derived that

dim(S ′
i1i2···in−1

) = n − 1 under the assumption

Bj ̸= Bk, ∀j ̸= k. Similar to the proof of Theorem

2.2 of [24] and Lemma 1, Lemma 2 can be easily

obtained therefore the proof is omitted here.

If the condition of Lemma 1 (for l ≤ n)

or Lemma 2 (for l > n) is satisfied, we can

design a set of unidimensional observers (Fi = λi)

governed by (4). According to (7), the following

equation holds

Miεi(t,∆ti) = Miεi(t)−Mie
λi∆tiεi(t−∆ti)

= ri(t)− eλi∆tiri(t−∆ti) +HiDv(t)

− eλi∆tiHiDv(t−∆ti),

Define ri(t,∆ti) , ri(t)− eλi∆tiri(t−∆ti), then

we can calculate a novel set of residuals

ri(t,∆ti) =

∫ t

t−∆ti

eλi(t−τ)[−MiPibimi(τ)

−MiPiEiw(τ)−MiPiQi,0v(τ)

− λiHiv(τ) +MiAi,0M
−r
i Hiv(τ)]dτ

−HiDv(t) + eλi∆tiHiDv(t−∆ti),

(10)

where λi is the only parameter to be determined.

Remark 1: In fact, based on a set of multidi-

mensional observers, a novel set of residuals can

be designed if we construct a special form of Fi

in (4) as Fi = λi · Iñ. As for the following two

hypothesis tests for detecting all the appearing

time and the disappearing time of IFs, a compo-

nent by component strategy [4] or a Mahalanobis

distance based strategy [11] can be utilized for the

multidimensional residuals which we will consider

in our future work.
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B. Stochastic Properties of the Unidimensional

Residuals

To analyze the sochastic properties of the resid-

ual ri(t,∆ti), we rewrite ri(t,∆ti) into five parts:

pi0(t,∆ti) , −
∫ t

t−∆ti
eλi(t−τ)MiPibimi(τ)dτ,

pi1(t,∆ti) , −
∫ t

t−∆ti
eλi(t−τ)MiPiEw(τ)dτ,

pi2(t,∆ti) , −
∫ t

t−∆ti
eλi(t−τ)(MiPiQi,0 + λiHi

−MiAi,0M
−r
i Hi)v(τ)dτ,

pi3(t,∆ti) , HiDv(t),

pi4(t,∆ti) , eλi∆tiHiDv(t−∆ti),

According to [7], pi1(t,∆ti) and pi2(t,∆ti) are

both Gaussian distributed [33] with the mean

E [pi1(t,∆ti)] = E [pi2(t,∆ti)] = 0. The variance

of pi2(t,∆ti) is derived by [6]

V ar [pi1(t,∆ti)]

=E
[ ∫ t

t−∆ti

eλi(t−τ)MiPiEw(τ)dτ ·
∫ t

t−∆ti

eλi(t−τ)

×MiPiEw(τ)dτ
]

=

∫ t

t−∆ti

∫ t

t−∆ti

eλi(2t−τ1−τ2)(MiPiE)

× E[w (τ1)w (τ2)](MiPiE)Tdτ1dτ2

=(MiPiE)Rw(MiPiE)T
∫ t

t−∆ti

e2λi(t−τ)dτ

=
1− e2λi∆ti

−2λi

(MiPiE)Rw(MiPiE)T .

Similarly, the variance of pi2(t,∆ti) can be ob-

tained. Note that w(t) and v(t) are independent

white Gaussian noises. Based on the definition

and properties of mean R-S integral [33], [16],

pij(t,∆ti), j ∈ {1, 2, 3, 4}, are mutually indepen-

dent distributions [29] by direct calculation of mu-

tual covariances (where ∀j ̸= l, j, l ∈ {1, 2, 3, 4},

E
[
pij(t,∆ti)p

T
il
(t,∆ti)

]
= 0). Let pi(t,∆ti) =∑4

j=1 pij(t,∆ti). Then, the mean of pi(t,∆ti) is

E [pi(t,∆ti)] = 0. Moreover, we are able to derive

the variance of pi(t,∆ti) as

V ar[pi(t,∆ti)]

=− 1− e2λi∆ti

2λi

((
MiPiQi,0 −MiAi,0M

−r
i Hi

)
×Rv

(
MiPiQi,0 −MiAi,0M

−r
i Hi

)T
+MiPiERw (MiPiE)T

)
+

1− e2λi∆ti

2

×
((

MiPiQi,0 −MiAi,0M
−r
i Hi

)
RvH

T
i

+HiRv

(
MiPiQi,0 −MiAi,0M

−r
i Hi

)T )
−

λi

(
1− e2λi∆ti

)
2

HiRvH
T
i

+
(
1 + e2λi∆ti

)
(HiD)Rv (HiD)T .

(11)

Let σ(∆ti) =
√

V ar[pi(t,∆ti)], and therefore

pi(t,∆ti) ∼ Φ(0, σ2(∆ti)), where Φ(·) is a Nor-

mal Gaussian Distribution .

C. The Detection of Appearing Time for IFs

Note that pi0(t,∆ti) = 0, when µi,q < νi,q <

t−∆ti ≤ t. According to [4], [6], we introduce the
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following hypothesis test to detect the appearing

time of the IF mi(t) i.e. µi,q:
HA

i,0 : E[ri(t,∆ti)] = 0,

HA
i,1 : E[ri(t,∆ti)] ̸= 0.

(12)

Using the Mahalanobis distance d(·, ·) [11], we

can obtain the test acceptance region for a given

small value of the test size γi1 in the form of

BA
γi1

(∆ti) =
(
LA
γi1

(∆ti), U
A
γi1

(∆ti)
]

=
(
− h γi1

2

σ(∆ti), h γi1
2

σ(∆ti)
]
,

(13)

where h γi1
2

is the value of a Normal Gaussian

Distribution Φ(·) satisfying 1 − Φ
(
h γi1

2

)
=

γi1
2

.

The time instant, when the qth appearing time

of mi(t) is detected, can be defined as a random

variable

µd
i,q = inf

{
t > µi,q : ri(t,∆ti) /∈ BA

γi1
(∆ti)

}
.

(14)

We can summarize the rules for the detection of

appearing time µi,q using (12) for the IF mi(t) as

follows:

1) µi,q < µd
i,q < νi,q;

2) d (ri(t,∆ti), 0) ≤ h γi1
2

, ∀t ∈ (µi,q, µ
d
i,q);

3) d
(
ri(µ

d
i,q,∆ti), 0

)
> h γi1

2

.

Here, Πi1 = ±h γi1
2

σ(∆ti) is the detection thresh-

old for the appearing time of mi(t) for given ∆ti

and γi1 .

One of the most important challenges in detect-

ing the qth appearing time of mi(t) is to determine

µd
i,q before the qth disappearing time of mi(t).

Therefore, we require that µd
i,q < νi,q which can

be used to formalize the diagnosability of the

appearing time for IFs in a probabilistic sense.

As is demonstrated in [4], we can construct a

confidence region B̃A
ϑi1

(∆ti) ⊂ R at each time t

(t ≥ µi,q + ∆ti) such that P
(
ri(∆ti) ∈

B̃A
ϑi1

(t,∆ti)
∣∣HA

i,1

)
= 1− ϑi1 by using the scheme

(12). Owing to pi0(t,∆ti) =
MiPibifi(q)

λi
(1−eλi∆ti),

when µi,q < t −∆ti ≤ t ≤ νi,q, we can calculate

the confidence region B̃A
ϑi1

(t,∆ti) as

B̃A
ϑi1

(∆ti) =
(
L̃A

ϑi1
(∆ti), Ũ

A
ϑi1

(∆ti)
]

=
(
κ1(∆ti)− hϑi1

2

σ(∆ti),

κ1(∆ti) + hϑi1
2

σ(∆ti)
]
,

(15)

where κ1(∆ti) =
MiPibifi(q)

λi

(
1− eλi∆ti

)
[11]. Note

that ∆ti is not only the length of the sliding

window of ri(t,∆ti) but also the allowable max-

imal detection delay for the appearing time of

mi(t). Letting δ̃Ai , inf
{
∆ti > 0 : B̃A

ϑi1
(∆ti)

∩BA
γi1

(∆ti) = ∅
}

and µ̃d
i,q , µi,q + δ̃Ai , then µ̃d

i,q

is the worst allowable detection time of µi,q when

∆ti = δ̃Ai [6]. If 0 < δ̃Ai ≤ τ̃ dur
i , we can derive

that µ̃d
i,q ≤ νi,q which implies that the qth (q ∈ N+)

appearing time of mi(t) can be detected before the

qth IF disappearance time νi,q in the worst case.

Consequently, we give the following definition,

inspired by [4], [6].
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Definition 1: Under Assumption 2, for given

γi1 and ϑi1 , if 0 < δ̃Ai ≤ τ̃ dur
i , then we say the

appearing time of the IF mi(t) is probabilistically

diagnosable or IFAP-diagnosable using the pro-

posed scheme (4) and (12).

Inspired by [4], we can postulate the following

theorem.

Theorem 1: If an IF mi(t) is IFAP-diagnosable,

then

P (µd
i,q ≤ µd

i,q ≤ νi,q|HA
i,1) ≥ 1− ϑi1 , (16)

where µd
i,q = µi,q +∆ti.

Proof: Apparantly, we have µd
i,q ≤ νi,q. By

construction of the confidence region B̃A
ϑi1

(∆ti)

and the definition of µd
i,q, we can derive that

P
(
ri(µ

d
i,q,∆ti) /∈ BA

γi1
(∆ti)|HA

i,1

)
≥ P

(
ri(µ

d
i,q,∆ti) ∈ B̃A

ϑi1
(∆ti)|HA

i,1

)
= 1− ϑi1 .

Thus, P (µd
i,q ≤ µd

i,q ≤ νi,q|HA
i,1) ≥ 1 − ϑi1 is

obtained.

Remark 2: In fact, (16) is related to the detec-

tion speed (or detection time) of the appearing

time for mi(t) in a probabilistic sense. Note that

µd
i,q is related to the given test size γi1 and ϑi1 .

Then, by settling λi, γi1 and ϑi1 appropriately in

(4) and (12), we are able to realize the expected

detection speed of the appearing time for mi(t).

Based on Definition 1, we give the following

theorem.

Theorem 2: Considering IFs satisfying As-

sumption 2, for given γi1 , ϑi1 , a sufficient con-

dition to guarantee µ̃d
i,q ≤ νi,q for the IF mi(t)

such that the appearing time of mi(t) is IFAP-

diagnosable using the proposed scheme (4) and

(12), is

i) Lemma 1 for (l ≤ n) or Lemma 2 for (l > n)

is satisfied;

ii) ρ2i ≥ ξ2i πi;

iii) 0 < δAi ≤ ∆ti ≤ τ̃ dur
i ;

whereξi =
h γi1

2

+hϑi1
2

MiPibi
, πi = max {πi1 , πi2} ,

δAi = 1
λi
ln

4ϵi−
√

16ϵiηiλ2
i−4ηi2λ4

i+4λ2(αi−λiβi+λ2
i ζi)

2

4ϵi−2λ2
i ηi−2λi(αi−λiβi+λ2

i ζi)
,

(17)

and the relative parameters in (17) are defined as

follows:

αi = (MiPiQ0,i −MiA0,iM
−r
i Hi)Rv

× (MiPiQ0,i −MiA0,iM
−r
i Hi)

T

+ (MiPiE)Rw(MiPiE)T ,

βi = (MiPiQ0,i −MiA0,iM
−r
i Hi)RvH

T
i

+HiRv(MiPiQ0,i −MiA0,iM
−r
i Hi)

T ,

ζi = HiRvH
T
i , ηi = (HiD)Rv(HiD)T ,

ϵi =
ρ2i
ξ2i
, ϵ̃i =

f2
i (q)

ξ2i
,

πi1 =
−ζiλ

3
i+(βi+ηi)λ

2
i−αiλi

2
,

πi2 =
−ζi

2λ4
i+2βiζiλ

3
i−(βi

2+2αiζi−ηi
2)λ2

i+2αiβiλi−αi
2

4ηi
.

(18)
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Proof: If Lemma 1 (for l ≤ n) or Lemma 2

(for l > n) is satisfied, we can construct the novel

residual ri(t,∆ti) for each fault signature bi such

that ri(t,∆ti) is decoupled from all the other IFs

mj(t) (j ̸= i) but affected by mi(t) and w(t) and

v(t), according to (10).

In the case that −MiPibifi(q) > 0, we have

E[ri(t,∆ti)|HA
i,1]− E[ri(t,∆ti)|HA

i,0]

=

∫ t

t−∆t

eλi(t−τ)[−MiPibimi(τ)]dτ

=κ1(∆ti),

(19)

according to (12) [6]. Consider the function

g(eλi∆ti) =[2ϵi − λ2
i ηi − λi(αi − λiβi + λ2

i ζi)]

× e2λi∆ti − 4ϵie
λi∆ti + [2ϵi − λ2

i ηi

+ λi(αi − λiβi + λ2
i ζi)].

(20)

Apparently, (αi − λiβi + λ2
i ζi) is positive because

αi − λiβi + λ2
i ζi = (MiPiQi,0 −MiAi,0M

−r
i Hi −

λiHi)Rv(MiPiQi,0 − MiAi,0M
−r
i Hi − λiHi)

T +

(MiPiEi)Rw(MiPiEi)
T > 0. According to ii) of

Theorem 2, we can get

[2ϵi − λ2
i ηi − λi(αi − λiβi + λ2

i ζi)] >

[2ϵi − λ2
i ηi + λi(αi − λiβi + λ2

i ζi)] > 0,

(21)

For ∆ti ≥ δAi , it is easy to derive eλi∆ti ≤ eλiδ
A
i .

From (17), we have g(eλiδ
A
i ) = 0. According

to iii) of Theorem 2, we obtain g(eλi∆ti) > 0

for eλi∆ti ≤ eλiδ
A
i , which implies ∀ ∆ti ≥

δAi , g(eλi∆ti) = [2ϵi − λ2
i ηi − λi(αi − λiβi +

λ2
i ζi)]e

2λi∆ti − 4ϵie
λi∆ti + [2ϵi − λ2

i ηi + λi(αi −

λiβi + λ2
i ζi)] ≥ 0, i.e.

ϵi ≥− λi(1 + eλi∆ti)

2(1− eλi∆ti)
αi +

λ2
i (1 + eλi∆ti)

2(1− eλi∆ti)
βi

− λ3
i (1 + eλi∆ti)

2(1− eλi∆ti)
ζi +

λ2
i (1 + e2λi∆ti)

(1− eλi∆ti)2
ηi.

(22)

Combined with (11), it can be obtained that

ϵ̃i ≥ ϵi ≥
λ2
i

(1− eλi∆ti)2
σ2(∆ti). (23)

Owing to that −MiPibifi(q) > 0 , (23) can be

transformed to
−MiPibifi(q)

−λi

(1− eλi∆ti)

≥
(
h γi

2
σ(∆ti) + hϑi

2

σ(∆ti)
)
.

(24)

From (12), (17) and (24), we can derive that

∃δAi ∈ (0, τ̃ dur
i ] such that ∀ δAi ≤ ∆ti ≤ τ̃ dur

i ,

E[ri(t,∆ti)|HA
i,1]− E[ri(t,∆ti)|HA

i,0]

≥ h γi
2
σ(∆ti) + hϑi

2

σ(∆ti).
(25)

Then,{
∆ti : L̃

A
ϑi1

(∆ti) ≥ UA
γi1

(∆ti)
}

=
{
∆ti : E[ri(t,∆ti)|HA

i,1]− h γi
2
σ(∆ti) ≥

E[ri(t,∆ti)|HA
i,0] + hϑi

2

σ(∆ti)
}

=
{
∆ti : E[ri(t,∆ti)|HA

i,1]− E[ri(t,∆ti)|HA
i,0]

≥ h γi
2
σ(∆ti) + hϑi

2

σ(∆ti)
}

⊇ [δAi , τ̃
dur
i ] ̸= ∅.

(26)
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Consequently, we obtain that 0 < δ̃Ai ≤ δAi ≤ τ̃ dur
i

implying µ̃d
i,q ≤ µd

i,q + δAi ≤ µi,q + τ̃ dur
i ≤ µd

i,q +

τ dur
q ≤ νi,q. We can get the same conclusion in a

similar way in the case that −MiPibifi(q) < 0.

To sum up, we have verified that IFs mi(t)

(i = 1, · · · , l) satisfying Theorem 2 are IFAP-

diagnosable by using the proposed scheme (4) and

(12).

Theorem 3: If IFs are IFAP-diagnosable using

the proposed scheme (4) and (12), the minimal

length of the allowable sliding window (also the

minimal value of the allowable maximal detection

time) for the detection of appearing time for the

IF mi(t) is

inf Ψi = δAi , (27)

where δAi is defined in (17), and

Ψi =
{
∆ti > 0 :B̃A

ϑi1
(∆ti) ∩BA

γi1
(∆ti) = ∅,

0 < ∆ti ≤ τ̃ dur
i

}
.

Proof: Apparently, the set of allowable ∆ti

for the detection of appearing time for mi(t) is

Ψi. In the case that −MiPibifi(q) > 0, we derive

that

Ψi =
{
∆ti :L̃

A
ϑi1

(∆ti) ≥ UA
γi1

(∆ti),

0 < ∆ti ≤ τ̃ dur
i

}
.

(28)

By calculation of L̃A
ϑi1

(∆ti) and UA
γi1

(∆ti), we

have L̃A
ϑi1

(∆ti) ≥ UA
γi1

(∆ti), which implies

κ1(∆ti)−hϑi1
2

σ(∆ti) ≥ h γi1
2

σ(∆ti). Then, we can

derive that −MiPibifi(q)
(h γi1

2

+hϑi1
2

)
≥ −λiσ(∆ti)

(1−eλi∆ti )
> 0, i.e. ϵ̃i ≥

λ2
i σ

2(∆ti)

(1−eλi∆ti )2
. Note that ϵ̃i ≥ λ2

i σ
2(∆ti)

(1−eλi∆ti )2
should be

satisfied for all fi(q) (q ∈ N+). That is, (22) must

be satisfied. Considering eλi∆ti (0 < eλi∆ti < 1)

as a whole variable, we can get that (22) is equal

to g(eλi∆ti) ≥ 0, when Theorem 2 is satisfied. For

simplicity, defining

D̃i = αi − λiβi + λ2
i ζi,

Ãi = 2ϵi − λ2
i ηi − λi(αi − λiβi + λ2

i ζi),

B̃i = −4ϵi,

C̃i = 2ϵi − λ2
i ηi + λi(αi − λiβi + λ2

i ζi),

then we can get that B̃i < 0 < D̃i, C̃i < Ãi.

Therefore, we arrive at

Ψi =
{
∆ti > 0 : g(eλi∆ti) = Ãie

2λi∆ti

+B̃ie
λi∆ti + C̃i ≥ 0,

0 < ∆ti ≤ τ̃ dur
i

}
.

(29)

Only in the case that Ψi is a nonempty set. Thus,

we can derive that

Ψi =
{
∆ti > 0 : eλi∆ti ≤ ϕi

}
, (30)

where ϕi =
4ϵi−

√
16ϵiηiλ2

i−4ηi2λ4
i+4λ2(αi−λiβi+λ2

i ζi)
2

4ϵi−2λ2
i ηi−2λi(αi−λiβi+λ2

i ζi)
.

In conclusion, we obtain that

inf Ψi = inf{∆ti : δ
A
i ≤ ∆ti ≤ τ̃ dur

i } = δAi . (31)

In the case that −MiPibifi(q) < 0, we can get

the same conclusion. Consequently, the minimal
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length of the allowable sliding window (also the

minimal value of the allowable maximal detection

time) for the detection of the qth appearing time

for the IF mi(t) is δAi .

D. The Detection of Disappearing Time for IFs

Note that |fi(q)| ≥ ρi. We can get that

|E[ri(t,∆t)]| ≥ |−MiPibi| ρi
−λi

(1− eλi∆ti), (32)

for µi,q ≤ t − ∆ti ≤ t ≤ νi,q. Let κ0(∆ti) =

|−MiPibi|ρi
−λi

(1− eλi∆ti). The hypothesis test for the

detection of disappearing time νi,q for mi(t) is

proposed as
HD

i,0 : |E[ri(t,∆t)]| ≥ κ0(∆ti),

HD
i,1 : |E[ri(t,∆t)]| < κ0(∆ti).

(33)

Similar to the analysis on the detection of

appearing time for mi(t), for a given γi2 , we can

calculate the test acceptance region of (33) as

BD
γi2

(∆ti)

=
(
−∞, UD

γi2
(∆ti)

]
∪
[
LD
γi2

(∆ti),+∞
)

=
(
−∞,−κ0(∆ti) + hγi2

σ(∆ti)
]

∪
[
κ0(∆ti)− hγi2

σ(∆ti),+∞
)
.

(34)

The time instant when the disappearing time of IFs

is detected can be defined as the random variable

νd
i,q = inf

{
t > νi,q : ri(t,∆ti) /∈ BD

γi2
(∆ti)

}
.

The hypothesis test decision for the detection of

disappearing time νi,q is

i) νi,q < νd
i,q < µi,q+1;

ii) ri(t,∆ti) ∈ BD
γi2

(∆ti), ∀t ∈ (νi,q, ν
d
i,q);

iii) ri(νd
i,q,∆ti) /∈ BD

γi2
(∆ti).

Moreover, Πi2 = ±
(
κ0(∆ti)− hγi2

σ(∆ti)
)

is the

detection threshold for the disappearing time of

mi(t) for given ∆ti and γi2 . To formalize the

detection requirement νd
i,q < µi,q+1, we can also

construct a ((1− ϑi2)× 100)% confidence region

B̃D
ϑi2

(∆ti) ⊂ R at time t

B̃D
ϑi2

(∆t)

=
(
L̃D

ϑi2
(∆ti), Ũ

D
ϑi2

(∆ti)
)

=
(
E(ri(t,∆t)|HD

0,1)− hϑi2
σ(∆ti),

E(ri(t,∆t)|HD
0,1) + hϑi2

σ(∆ti)
)

=
(
−hϑi2

σ(∆ti), hϑi2
σ(∆ti)

)
,

(35)

such that P (ri(t,∆ti) ∈ B̃D
ϑi2

(∆ti)|HD
i1
) < 1−ϑi2

for µi,q ≤ t−∆ti ≤ t ≤ νi,q.

Similar to Definition 1, we can give the fol-

lowing diagnosablility definition for the detection

of disappearing time for mi(t) in a probabilistic

sense, based on δ̃Di = inf{∆ti > 0 : B̃D
ϑi2

(∆ti) ∩

BD
γi2

(∆ti) = ∅} and ν̃d
i,q , νi,q + δ̃Di .

Definition 2: Under Assumption 2, for given

γi2 and ϑi2 , if 0 < δ̃Di ≤ τ̃ int
i , then we say the

disappearing time of the IF mi(t) is probabilisti-

cally diagnosable (IFDP-diagnosable) by using the

proposed scheme (4) and (33).
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Corollary 1: If an IF mi(t) is IFDP-

diagnosable, then

P (νd
i,q ≤ νd

i,q ≤ µi,q+1|HD
i,1) ≥ 1− ϑi2 , (36)

where νd
i,q = νi,q +∆ti.

Proof: The proof of Corollary 1 is similar to

Theorem 1, which is omitted here.

Corollary 2: Considering IFs satisfying As-

sumption 2, for given γi2 , ϑi2 , a sufficient con-

dition to assure ν̃d
i,q ≤ µi,q for the IF mi(t)

such that the disappearing time of mi(t) is IFDP-

diagnosable using the proposed scheme (4) and

(33), is

i) Lemma 1 for (l ≤ n) or Lemma 2 for (l > n)

is satisfied;

ii) ρ2i > ξ̂2i πi;

iii) 0 < δDi ≤ ∆ti ≤ τ̃ int
i ;

where
ξ̂i =

hγi2
+hϑi2

MiPibi
, ϵ̂i =

ρ2i
ξ̂2i
,

δDi = 1
λi
ln

4ϵ̂i−
√

16ϵ̂iηiλ2
i−4ηi2λ4

i+4λ2(αi−λiβi+λ2
i ζi)

2

4ϵ̂i−2λ2
i ηi−2λi(αi−λiβi+λ2

i ζi)
,

(37)

and the relative parameters of αi, βi, ζi, ηi, and πi

are illustrated in (17).

Proof: Apparently, in the case that

−MiPibifi(q) > 0, we have

δ̃Di = inf
{
∆ti > 0 : B̃D

ϑi2
(∆ti) ∩BD

γi1
(∆ti) = ∅

}
= inf

{
∆ti > 0 :

(
hϑi2

+ hγi2

)
σ(∆ti)

≤ κ0(∆ti)} .

As is shown in the proof of Theorem 2, we can

derive that ∃δDi ∈
(
0, τ̃ int

i

]
such that

δ̃Di = inf
{
∆ti > 0 : B̃D

ϑi2
(∆ti) ∩BD

γi1
(∆ti) = ∅

}
⊇

[
δDi , τ̃

int
i

]
̸= ∅,

if ii) and iii) are satisfied. That is, 0 < δ̃Di ≤ τ̃ int
i

is satisfied such that ν̃d
i,q < µi,q+1 be true. The

same conclusion can be drawn up in the case that

−MiPibifi(q) > 0. So the fault mi(t) are IFDP-

diagnosable using the proposed scheme (4) and

(33).

Corollary 3: If IFs are IFDP-diagnosable using

the proposed scheme (4) and (33), the minimal

length of the allowable sliding window (also the

minimal value of the allowable maximal detection

time) for the detection of disappearing time for

mi(t) is

inf
{
∆ti > 0 : B̃D

ϑi2
(∆ti) ∩BD

γi2
(∆ti) = ∅,

0 < ∆ti ≤ τ̃ int
i

}
= δDi ,

(38)

where δDi is defined in (37).

Proof: The proof is similar to Theorem 3 and

omitted here for space limitation.

E. Diagnosability of IFs

The detection and isolation of IFs means: i) to

detect both the appearing time and the disappear-

ing time of an IF; ii) to detect the appearing (dis-

appearing) time of each IF before the subsequent
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disappearing (appearing) time; iii) to determine

where the IFs happen. Therefore, combined the

hypothesis test (12) with (33), we can detect all the

appearing time and the disappearing time of IFs

and determine where they happen using (4). Here,

we define the diagnosability of IFs as follows.

Definition 3: Under Assumption 2, for given

γi1 , ϑi1 , γi2 and ϑi2 , the IF mi(t) is probabilisti-

cally diagnosable (IFP-diagnosable) by using the

proposed scheme (4), (12) and (33) if the IF mi(t)

is IFAP-diagnosable and IFDP-diagnosable.

According to the constructions of BA
γi1

(∆ti)

and BD
γi2

(∆ti), we can infer that BA
γi1

(∆ti) ∩

BD
γi2

(∆ti) = ∅ should be satisfied for a settled

sliding time window ∆ti [6]. Then, we can easily

derive that the following sufficient diagnosability

condition for IFs.

Theorem 4: Consider IFs satisfying Assump-

tions 1 and 2, for given γi1 , ϑi1 , γi2 and ϑi2 ,

a sufficient condition to assure the IFs are IFP-

diagnosable using the scheme (4), (12) and (33),

is

1) Lemma 1 for (l ≤ n) or Lemma 2 for (l > n)

is satisfied;

2) ρ2i ≥ πimax
{
ξ2i , ξ̂

2
i , ξ̌

2
i

}
;

3) 0 < δ∗i ≤ ∆ti ≤ min{τ̃ int
i , τ̃ dur

i };

where
ξ̌i =

h γi1
2

+hγi2

MiPibi
, ϵ̌i =

ρ2i
ξ̌2i
,

δCi = 1
λi
ln

4ϵ̌i−
√

16ϵ̌iηiλ2
i−4ηi2λ4

i+4λ2(αi−λiβi+λ2
i ζi)

2

4ϵ̌i−2λ2
i ηi−2λi(αi−λiβi+λ2

i ζi)
,

δ∗i = max
{
δAi , δ

D
i , δ

C
i

}
.

(39)

and the relative parameters of αi, βi, ζi, ηi, ϵi, and

ϵ̆r,i are defined in (17), (37).

Proof: Similar to the proof of Theorem 2,

we can easily calculate ϵ̌i and δCi based on{
BA

γi1
(∆ti) ∩BD

γi2
(∆ti) = ∅

}
. Combining Theo-

rem 2 with Corollary 2, Theorem 4 can be proved

apparently which is omitted here due to space

limitation.

IV. PERFORMANCE ANALYSIS

There are three basic performance indices for

each FDI method: the detection time, the false

alarm rate and the missing detection rate.

A. The Detection Time

For an IFAP-diagnosable IF mi(t), we can infer

that at least ((1−ϑi1)%) of the appearing time of

mi(t) can be detected before the time instant µd
i,q

according to Theorem 1. Besides, in a probabilistic

framework, the minimal value of the permissable

maximal detection time ∆ti (illustrated as δ̃Ai ) for

the appearing time of mi(t) can be lowered down

by choosing λi. Similar conclusions can be drawn

up for an IFDP-diagnosable IF mi(t).
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B. False Alarm Rates and Missing Detection

Rates

Based on the fact that it is impossible to always

make a right decision to retain or reject null

hypothesis, false alarm and missing detection are

inevitable using our method. Moreover, these per-

formance indices play an important role in setting

some key parameters in the proposed scheme.

Here, we will give an upper bound of each rate.

Let Ri
test be the hypothesis test result for ri(t,∆ti)

at time t. Then, we can derive the following

results.

1) The detection of appearing time for an IFAP-

diagnosable IF at time t:

a) The false alarm of the detection of ap-

pearing time for an IFAP-diagnosable IF means

the case in which we have detected the appearing

time of the IF when there is no IF or the IF

has disappeared actually. That is, we reject the

null hypothesis HA
i,0 when it is true. So the false

alarm rate of the detection of appearing time for

an IFAP-diagnosable IF by using the proposed

method is

P
(
Ri

test = HA
i,1 | HA

i,0

)
= 1− P

(
Ri

test = HA
i,0 | HA

i,0

)
= γi1 .

b) The missing detection of the detection

of appearing time for an IFAP-diagnosable IF at

time t is the event
{
µd
i,q > νi,q|t ≥ µi,q

}
which

contains the case µd
i,q = +∞ (implying that the

qth appearing time has never been detected) and

the case νi,q < µd
i,q < +∞ (implying that the

qth appearing time has been detected after the IF

disappears). Thus, we have

P
(
µd
i,q > νi,q

∣∣∣HA
i,1

)
≤ P

(
µd
i,q > µ̃d

i,q

∣∣∣HA
i,1

)
= P

(
ri(µ̃

d
i,q,∆ti) ∈ BA

γi1
(∆ti)

∣∣∣HA
i1

)
.

In the case that [−MiPibifi(q)] > 0, we have

L̃A
ϑi1

(∆ti) > UA
γi1

(∆ti). Hence,

P
(
ri(µ̃

d
i,q,∆ti) ∈ BA

γi1
(∆ti)

∣∣∣HA
i1

)
= P

(
LA
ϑi1

(∆ti) < ri(µ̃
d
i,q,∆ti) ≤ UA

γi1
(∆ti)

∣∣∣HA
i,1

)
< P

(
r(µ̃d

i,q,∆ti) ≤ L̃A
ϑi1

(∆ti)
∣∣∣HA

i,1

)
=

ϑi1

2
.

Therefore, the missing detection rate of the detec-

tion of appearing time for an IFAP-diagnosable

IF at time t is P

(
µd
i,q > νi,q

∣∣∣∣HA
i,1

)
<

ϑi1

2
.

2) The detection of disappearing time for an

IFDP-diagnosable IF at time t:

a) The false alarm of the detection of disap-

pearing time for an IFDP-diagnosable IF at time t

is the case where we have detected the disappear-

ing time of an IF when it has not disappeared.

Thus, the false alarm rate of the detection of

disappearing time for an IFDP-diagnosable IF at
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time t is

P
(
Ri

test = HD
i,1 | HD

i,0

)
= 1− P

(
ri(t,∆ti) /∈ BD

γi1
(∆ti)|HD

i,0

)
< γi2 .

b) Similarly, the missing detection rate of

the detection of disappearing time for an IFDP-

diagnosable IF at time t is the probability of

the event
{
νd
i,q > µi,q+1|t ≥ νi,q

}
. In the case that

[−MiPibifi(q)] > 0, we have L̃A
ϑi1

(∆ti) >

UA
γi1

(∆ti). Therefore, we can derive that

P
(
νd
i,q > µi,q+1

∣∣∣HD
i,1

)
≤ P

(
νd
i,q > ν̃d

i,q

∣∣∣HD
i,1

)
= P

(
r(ν̃d

i,q,∆ti) ≥ LD
γi1

(∆ti)
∣∣∣HD

i,1

)
≤ P

(
r(ν̃d

i,q,∆ti) ≥ ŨD
ϑi2

(∆ti)
∣∣∣HD

i,1

)
= ϑi2 .

Consequently, the missing detection rate of the

detection of disappearing time for an IFDP-

diagnosable IF at time t is P (νd
i,q > µi,q+1|HD

i,1) ≤

ϑi2 .

C. The Influences of Some Key Parameters on

Performance Indices

In this section, we will quantitatively analyze

the influences of some key parameters of the

proposed scheme on performance indices such as

the false alarm rate and the missing detection rate.

Some key parameters of our proposed method,

γi1 , ϑi1 , γi2 , ϑi2 , λi and ∆ti, can be settled

according to practical detection demands. As il-

lustrated in [4], these parameters can be selected

depending on whether a false alarm or a quick

fault detection is of more importance. According

to J. Neyman and E. S. Pearson’s criterion [25],

it is necessary to choose a small value of γi1 and

γi2 to avoid the primary Type I error (the fault

alarm rate), while we try to lessen the Type II

error (the missing detection rate) as possible as we

can. Consequently, we can propose the following

two theorems to analyze the influences of some

key parameters of the proposed scheme on these

performance indices.

Theorem 5: For given γi1 , ρi and δi, the mini-

mal value of feasible ϑi1 satisfies

ϑi1min > 2

[
Φ

(
h γi1

2

− κ0(δi)

σi(δi)

)
+Φ

(
h γi1

2

+
κ0(δi)

σi(δi)

)
− 1

]
,

(40)

where κ0(δi) =
|MiPibi|ρi

−λi

(
1− eλiδi

)
, and σi(δi) =√

V ar[ri(t, δi)].

Proof: When t − ∆ti ≤ µi,q < t ≤ νi,q,

let ∆t
(1)
i = t − µi,q. It is apparent to derive that

E
(
ri(t,∆ti)

∣∣HA
i,0

)
= 0 and E

(
ri(t,∆ti)

∣∣HA
i,1

)
=

−MiPibifi(q)
−λi

(1− eλi∆t
(1)
i ). Define

ϱi1(∆t
(1)
i ,∆ti) ,

∣∣E (
ri(t,∆ti)

∣∣HA
i,1

)
− E

(
ri(t,∆ti)

∣∣HA
i,0

) ∣∣
=

|MiPibi|fi(q)
−λi

(1− eλi∆t
(1)
i ).
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Letting Pi1(∆ti,∆t
(1)
i ) be the probability of the

Type II error, then, we get Pi1(∆ti,∆t
(1)
i ) =

P
(
Ri

test = HA
i,0|HA

i,1

)
<

ϑi1

2
. According to [25],

it can be derived that Pi1(∆ti,∆t1i ) is becom-

ing smaller as ϱi1(∆t
(1)
i ,∆ti) is getting bigger.

Apparently, considering |fi(q)| ≥ ρi, we have

ϱi1(∆t
(1)
i ,∆ti)max = κ0(δi), when ∆t

(1)
i = ∆ti =

δi for all fi(q) (q ∈ N+). In this case, we can

calculate Pi1(∆ti,∆t
(1)
i )min as follows.

Pi1(δi) , Pi1(∆ti,∆t
(1)
i )min

= P
(
ri(t, δi) ∈ BA

γi1
(δi) | HA

i1

)
= P

(
−h γi1

2

σi(δi) < r(t, δi)

≤ h γi1
2

σi(δi)

∣∣∣∣HA
i,1

)
.

(41)

Let Φ(·) be the standard normal distribution. Then,

we have

Pi1(δi) = Φ

(
h γi1

2

− κ0(δi)

σi(δi)

)
− Φ

(
−h γi1

2

− κ0(δi)

σi(δi)

)
= Φ

(
h γi1

2

− κ0(δi)

σi(δi)

)
+ Φ

(
h γi1

2

+
κ0(δi)

σi(δi)

)
− 1.

(42)

Consequently, we can derive that ϑi1min >

2Pi1(δi), i.e.

ϑi1min >2

[
Φ

(
h γi1

2

− κ0(δi)

σi(δi)

)
+Φ

(
h γi1

2

+
κ0(δi)

σi(δi)

)
− 1

]
.

(43)

Similarly, we have

Corollary 4: For given γi2 , ρi and δi, the min-

imal value of feasible ϑi2 satisfies

ϑi2min > Φ

(
hγi2

− κ0(δi)

σi(δi)

)
. (44)

Proof: The proof is similar to Theorem 6 and

is omitted here.

V. SIMULATION EXAMPLE

In this section, our proposed FDI scheme for IFs

is applied to an unmanned helicopter longitudinal

control system. This closed-loop control system

consists of two main rotors rotated by two servo

mechanisms. Here we consider the FDI problem

of IFs for each actuator of this system.


ẋ(t) = Ax(t) +Bu(t)

+
∑2

i bimi(t) + w(t),

y(t) = Cx(t) + v(t),

(45)

where x(t) =

[
hs(t) vs(t) ps(t) θd(t)

]T
is

the system state with initial condition x(0) =[
0.1 0.2 0 0.1

]T
consisting of the horizontal

velocity hs(t) (km/s), the vertical velocity vs(t)

(km/s), the pitch velocity ps(t) (deg/s), and the

pitching angle θd(t) (deg). u(t) =

[
δc(t) δe(t)

]
is the input vector where δc(t) is the collective

pitch (deg) and δe(t) is the longitudinal cyclic
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pitch (deg); w(t) and v(t) are the Gauss distributed

process noises and measurement noises with co-

variances, Rw and Rv; bi is the actuator fault

signature which is the corresponding column of

the input matrix B; mi(t) is the IF mode where

m1(t) is the IF signal of the collective pitch and

m2(t) is the IF signal of the longitudinal cycle

variable pitch. The constant system matrices A,

B, C are shown as follows:

A =



−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.707 1.420

0.0000 0.0000 1.0000 0.0000


,

B =



0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0.0000 0.0000


, C =



1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 1


,

Rw = 0.1×



1 0.5 0.2 0.1

0.5 1 0.2 0.1

0.2 0.1 1 0.1

0.1 0.2 0.1 1


,

Rv = 0.01×



1 0.3 0.1 0.2

0.3 1 0.2 0.1

0.1 0.2 1 0.2

0.2 0.1 0.2 1


.

To achieve precise trajectory tracking of the un-

manned helicopter, we design the following state

feedback tracking control law u(t) = Kx(t) −

Kryr(t) according to the target flight path yr(t).

The matrices of the controller are

K =

−0.1455 0.0148 0.2435 0.4478

0.0864 0.0575 −0.1292 −0.3763

 ,

Kr =

 0.1990 −0.0233 0 −0.0268

−0.0584 −0.1100 0 −0.1037

 .

The input signal and the output signal of system

(45) are illustrated in Fig. 1 and Fig. 2.

According to Lemma 1, it is easy to verify that[
0 0 1 0

]T
and

[
0 0 0 1

]T
are feasible

solutions of (8). So a set of two observers that

is decoupled from either actuator fault signature

can be designed. In fact, by introducing the vir-

tual fault signatures Li1 =

[
0 0 1 0

]T
and

Li2 =

[
0 0 0 1

]T
(i = 1, 2), the order of either

observer is reduced from 3 to 1, which makes it

convenient for us to analyze their outputs. And

some of the parameters, Gi, Hi, Mi and Ki, are
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shown as follows:

G1 =

[
0.5243 0.0000

]
, G2 =

[
−0.0000 1.1146

]
,

H1 =

[
0.9997 0.0232 −0.0000 −0.0000

]
,

H2 =

[
0.9923 −0.1238 0.0000 0.0000

]
,

M1 = M2 = 1, K1 = K2 =

[
0 0

]
.

We set γ1,1 = γ1,2 = γ2,1 = γ2,2 = 0.05,

ϑ1,1 = ϑ1,2 = ϑ2,1 = ϑ2,2 = 0.1, respectively.

Based on Theorem 4, we can give a feasible

IFP-diagnosable region of IFs for system (45)

(shown in Fig. 4) once λi is determined. We can

conclude that the there is a minimal value of IF

magnitudes ρi for each IFP-diagnosable IF, which

is the primary diagnosable condition. Based on a

given ρi, we can detect IFs with duration (interval)

time longer than δ∗i . For example, we can detect

the practical IFs of δ∗1 ≥ 2.037s when ρ1 = 1.5,

and δ∗1 ≥ 1.065s when ρ1 = 1, from Fig. 4.

Besides, it is noted that λi can be designed for

different FDI requirements according to Theorem

5 and Corollary 4. Here, we set λ1 = −0.3

and λ2 = −0.5 for instance. It is easy to verify

that the IF m1(t) (ρ1 = 1.6, δ1 = 2.2s) and

the IF m2(t) (ρ2 = 1, δ1 = 1.4s) fulfil the

conditions in Theorem 4 by choosing ∆t1 = 2.0s

and ∆t2 = 1.2s.

The detection results using the proposed scheme
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Fig. 1. The state feedback tracking control law.
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Fig. 2. The output of the normal system.

are illustrated in Fig. 5 ∼ Fig. 8. Comparing the

novel residual ri(t,∆ti) with the IF signal mi(t),

we can find that r1(t,∆t1) is robust to m2(t)

and r2(t,∆t1) robust to m1(t). So we can easily

isolate IFs in different actuator fault signatures.

Meanwhile, we can find that by introducing an

appropriate sliding time window ∆ti, the novel

residual ri(t,∆ti) is more effective to be used

to detect the IF mi(t) than the output of the
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Fig. 3. The system output when IFs happens.
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Fig. 4. The diagnosability analysis of IFs by using the proposed

scheme.

observer ri(t). Take the detection results of m2(t)

as example. As illustrated in Fig. 8, both r2(t,∆t2)

and r2(t) exceed the detection threshold Π21 so

fast that the qth appearing time of m2(t) (µ2,q)

can be detected before ν2,q. But after ν2,q, r2(t)

takes so much time to reach below the detection

threshold of Π22 that r2(t) is still beyond Π22

when t = µ2,q+1. But r2(t,∆t2) decays below the
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Fig. 5. The residuals of r1(t,∆t1) when an IF happens in the

fault signature b1.

detection threshold of Π22 before νd
i,q (νd

i,q ≤ νd
i,q).

As a result, all the appearing (disappearing) time

of mi(t) can be detected before the subsequent

disappearing (appearing) time. Besides, from the

detection results, it should be noted that there is

somehow a contradiction between the detection of

appearing time and the detection of disappearing

time: an IF with a larger magnitude is easier to

detect its appearing time but harder to detect its

disappearing time before the subsequent appearing

time. That is one of the reasons why traditional

FDI methods are not effective to solve the FDI

problem of IFs in stochastic systems. The related

detection results are also illustrated in Table I,

where I, µd
i,q and νd

i,q are upper bounds of µd
i,q

and νd
i,q, respectively.

In order to show the effectiveness of the pro-
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Fig. 6. The residuals of r2(t,∆t2) when an IF happens in the

fault signature b1.
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Fig. 7. The residuals of r1(t,∆t1) when an IF happens in the

fault signature b2.

posed scheme, we also utilize the classical Kalman

filter to solve the FDI problem of IFs in fault

signatures, b1 and b2. The residuals are generated

by ri(k) = y(k) − ŷ(k) where the process noises

and measurement noises are much smaller than

those in system (1). Considering that the Kalman
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Fig. 8. The residuals of r2(t,∆t2) when an IF happens in the

fault signature b2.

TABLE I

DETECTION RESULTS USING THE PROPOSED DETECTION

SCHEME.

qth µ1,q µd
1,q µd

1,q ν1,q νd
1,q νd

1,q

1 3.00 3.59 5.20 5.70 5.48 7.90

2 8.20 8.87 10.40 11.20 12.13 13.40

3 13.90 14.45 16.10 16.70 17.66 18.90

4 19.20 20.06 21.40 22.00 22.86 24.20

5 24.60 25.36 26.80 27.10 28.00 29.30

6 30.20 90.91 32.40 32.60 33.37 34.80

qth µ2,q µd
2,q µd

2,q ν2,q νd
2,q νd

2,q

1 3.00 3.60 4.40 5.70 6.43 7.10

2 8.20 8.82 9.60 11.20 12.06 12.60

3 14.40 15.10 15.80 17.20 18.15 18.60

4 19.70 20.28 21.10 22.50 23.50 23.90

5 25.10 25.90 26.50 27.60 28.38 29.00

6 30.70 31.45 32.10 33.10 34.01 34.50
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filter based fault detection method can not perform

the isolation of IFs in different fault signatures.

Here, we only discuss the effectiveness of de-

tecting the appearing (disappearing) time of IFs.

For the same IFs, m1(t) and m2(t), the detection

results are shown in Fig. 9 and Fig. 10. Fig. 9

shows that the classical Kalman filter based fault

detection method can not detect both the appearing

time and the disappearing time of m1(t) while

the appearing (disappearing) time of m2(t) can

be detected at a high false alarm rate and missing

detection rate in Fig. 10. Note that the residual

ri(t,∆ti) can decay fast to zero which makes

it possible to detect the appearing (disappearing)

time of an IF before the subsequent disappearing

(appearing) time. Consequently, we can conclude

that the proposed method is more effective to

detect all the appearing (disappearing) time.

VI. CONCLUSIONS

In this paper, we have addressed the FDI prob-

lem for IFs in linear stochastic systems with

measurement noises. A novel scheme has been

proposed to detect all the appearing (disappearing)

time before the subsequent disappearing (appear-

ing) time of IFs and isolate them. In order to

isolate IFs, a novel set of residuals has been con-

structed based on the outputs of observers. Then
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Fig. 9. The detection results of an IF in the fault signature b1 by

using the Kalman filter.
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Fig. 10. The detection results of an IFs in the fault signature b2

by using the Kalman filter.

two hypothesis tests have been provided to detect

the appearing time and the disappearing time

respectively. Within a probabilistic framework, the

diagnosability of IFs has been defined, based on

which a sufficient condition has been obtained for

a class of IFs. Furthermore, performance indices

such as the detection speed, the false alarm rate
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and the missing detection rate have been analyzed

quantitatively and the effects of some key parame-

ters of the given scheme on these performance in-

dices are analyzed rigorously. Finally, a simulation

example of an unmanned helicopter longitudinal

control system has been illustrated to show how

to perform the proposed scheme and demonstrate

the validity of the scheme.

Since IFs are very common in modern indus-

trial processes, the problem of diagnosing IFs is

appealing to us both in theory and practice. The

research in this area is emerging and has attracted

more and more research attentions. The following

topics towards the IFs are promising in future:

1) the FDI of vector IFs in complex systems is

an interesting problem since the IFs considered

in this paper is assumed to be the scalar type;

2) the diagnosis of IFs with small magnitudes is

worthy to investigate. From Theorem 4, it can

be seen that incipient IFs are harder to detect

and isolate compared with the IFs with large

magnitudes; 3) the investigation of diagnosis for

IFs in nonlinear systems; 4) the derivation of fast

diagnosis methodology for IFs.
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