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Abstract

We present a method to solve optimal stopping problems in infinite horizon for a Lévy process
when the reward function g can be non-monotone.

To solve the problem we introduce two new objects. Firstly, we define a random variable
η(x) which corresponds to the argmax of the reward function. Secondly, we propose a certain
integral transform which can be built on any suitable random variable. It turns out that this
integral transform constructed from η(x) and applied to the reward function produces an easy
and straightforward description of the optimal stopping rule. We illustrate our results with
several examples.

The method we propose allows to avoid complicated differential or integro-differential equa-
tions which arise if the standard methodology is used.
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1 Introduction

In recent papers [14, 5, 6, 7, 8, 4], the solutions to optimal stopping problems for Lévy pro-
cesses and random walks with monotone reward functions were found in terms of the maxi-
mum/minimum of the process. In [2], the two-sided optimal stopping problem for a strong
Markov process was considered. In the present paper we use the method similar to [14], [7], and
develop it further to the case of non-monotone reward functions.

In [14], even though some of the construction was defined for a wide class of reward functions,
the actual stopping problem was solved only for monotone reward functions. Paper [2] obtains
the necessary conditions for a function to solve the two-sided optimal stopping problem. In this
paper, we present a constructive method to solve optimal stopping problems for a fairly gen-
eral reward function g. That is, we show how to find the optimal stopping boundary. The key
ingredient here is to construct the integral transform Aη(x) (see Definition 2.1) on the random
variable η(x) = argmaxg0≤t≤eq (x+Xs)− x (see Definition 3.1).

Suppose X = (Xs)s≥0 is a real-valued Lévy process. Let P and E denote the probability and
the expectation, respectively, associated with the process X when started from 0. The natural
filtration, generated by X, is denoted by F = (Ft)t≥0, and M is the set of all stopping times
with respect to F . We aim to find the “value” function V ∗ = V ∗(·) and the optimal stopping
time τ∗, such that

V ∗(x) = sup
τ∈M

E
(
e−qτg(x+Xτ )

)
= E

(
e−qτ

∗
g(x+Xτ∗)

)
, (1.1)

where q > 0, and g is a measurable function with respect to F under some conditions to be
specified later.

From the general theory of optimal stopping [13] we know that optimal stopping problems
can be solved through the so-called Markovian method, (see [9], chapter 1). Taking this path, the
original problem can be reduced to the corresponding free-boundary problem. The free moving
boundary divides the space into two subspaces. We are looking for the optimal stopping bound-
ary among all possible moving boundaries. The optimal boundary divides the space into two
subspaces, namely the “continuation region” (where it is optimal not to stop, but to continue
observations), and the “stopping region” (where it is optimal to stop the process).

In [8, 7] Novikov and Shiryaev considered the optimal stopping problem (1.1) with the reward
function g(x) = (x+)ν , ν > 0. They have discovered that the optimal stopping boundary can be
found for g(x) = (x+)n as a unique root of an Appell polynomial, see [8]. Or, more generally,
the optimal stopping boundary can be found for g(x) = (x+)ν as a unique root of an Appell
function, see [7]. The Appell function should be non-negative and increasing in the stopping
region, and negative in the continuation region.

We follow a similar approach and generalize the result of Novikov and Shiryaev. We show
that the optimal stopping boundaries can be found as zeros of some suitable integral trans-
form Aη(x){g} of the reward function g. The function Aη(x){g} should be non-negative and
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co-monotone with g in the stopping regions and negative in the continuation regions.

Our algorithm to find the solution to the optimal stopping problem is the following

• We introduce an auxiliary random variable η(x) pathwise tracking the value of Xt that
achieved the running maximum of g(x+X).

• We use η(x) to define the transform Aη(x) mapping the reward function g = g(·) into the
function Aη(x){g}(·) for each x.

• We define the region S as those arguments (x, y) at which Aη(x){g}(y) is non-negative, i.e.
S = {(x, y) | Aη(x){g}(y) ≥ 0}.

• We define the candidate value function as V (x) = E
(
Aη(x){g}(x+ η(x))1{(x,x+η(x))∈S}

)
,

and the candidate optimal stopping time as τ+ = inf{s ≥ 0 : Aη(x){g}(x+Xs) ≥ 0}.

• We show that the obtained solution is the optimal solution indeed (see Theorem 4.1), i.e
the candidate value function V and the candidate optimal stopping time τ+ coincide with
the value function V ∗ and the optimal stopping time τ∗ from (1.1).

Finally, we illustrate our method by several examples.

2 Aν-transform.

2.1 Definition

Suppose we are given a real function g = g(·) and a random variable ν , with Eeλ|ν| < ∞ for
some λ > 0. Suppose function g = g(·) has an inverse bilateral Laplace transform L−1{g}. For
the existence of the inverse bilateral Laplace transform we can assume, that g is vanishing at
infinity and continuous. Alternatively, we can look at the function g as a formal power series,
and take the inverse bilateral Laplace transform formally (for the motivation see Proposition
2.2).

Definition 2.1. Let ν be a random variable, such that Eeλ|ν| < ∞ for some λ > 0. The
transform Aν of function g = g(·) is the function Qνg = Qνg(·), defined by

Qνg(y) = Aν{g}(y) =

∫ ∞
−∞
L−1{g}(u)

euy

Eeuν
du. (2.1)

The function Qνg(y) is an integral over the product of the inverse bilateral Laplace trans-

form of the function g and the Esscher transform euy

Eeuν of the random variable ν.

As it will be shown through examples below, the transform Aν was designed to convert a reward
function g into a function of an “Appell type”, i.e. into a function with properties similar to
the Appell function from [7] and the well-known Appell polynomials. We chose the notation
Qνg = Qνg(y) for the image of Aν -transform of the function g in order to be consistent with the
existing notation for the Appell function from [7], and the Appell polynomials. However, as the
term “Appell function” is already widely used for an extension of the hypergeometric function
to two variables, and the term “Appell transform” is used in connection to heat conduction, we
decided not to proceed with the term “Appell”, but to emphasize the “Appellness” by denoting
the transform by the letter “A”.

One can note, that instead of the bilateral Laplace transform we could have used any expo-
nential transform with the same success. Our choice of the bilateral Laplace is motivated by the
desire to have the Esscher transform in the definition.
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2.2 Properties

2.2.1 The averaging property

Lemma 2.1. Let ν be a random variable with Eeλ|ν| <∞ for some λ > 0, Aν{g}(y) be an Aν-
transform of function g given by Definition 2.1. Then the Aν-transform satisfies the averaging
property E(Aν{g}(y + ν)) = g(y).

Proof. Indeed,

E(Aν{g}(y + ν)) = EQνg(y + ν) =

∫ ∞
−∞
L−1{g}(u)

Eeu(y+ν)

Eeuν
du =

∫ ∞
−∞
L−1{g}(u)euydu = g(y).

4

2.2.2 The martingale property of AXt{g}(Xt) for a Lévy process X.

Lemma 2.2. Let Xt be a Lévy process such that for any t there is some λ > 0 such that
Eeλ|Xt| <∞. Then AXt{g}(Xt) is a martingale.

Proof. Indeed,

E
(
AXt{g}(Xt)

∣∣Fs) = E

(∫ ∞
−∞
L−1{g}(u)

euXt

EeuXt
du

∣∣∣∣Fs)
=

∫ ∞
−∞
L−1{g}(u)E

(
euXt

EeuXt

∣∣∣∣Fs) du
=

∫ ∞
−∞
L−1{g}(u)

euXs

EeuXs
du

= AXs{g}(Xs)

4

2.2.3 The linearity

The linearity of Aν-transform follows from linearity of the inverse bilateral Laplace transform.

Lemma 2.3. Let Aν-transform exist for the real functions f and g. Then

Aν{c1f + c2g}(y) = c1Aν{f}(y) + c2Aν{g}(y), (2.2)

where c1 and c2 are some constants.

Proof.

Aν{c1f + c2g}(y) =

∫ ∞
−∞
L−1{c1f + c2g}(u)

euy

Eeuν
du

=

∫ ∞
−∞

(
c1L−1{f}(u) + c2L−1{g}(u)

) euy

Eeuν
du

= c1

∫ ∞
−∞
L−1{f}(u)

euy

Eeuν
du+ c2

∫ ∞
−∞
L−1{g}(u)

euy

Eeuν
du

= c1Aν{f}(y) + c2Aν{g}(y).

4
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2.2.4 The differential property

Lemma 2.4. Let f be a differentiable function on R. Suppose Aν-transform of f is differentiable.
Then it satisfies the following differential property

d

dy
(Aν{f}(y)) = Aν

{
df

dx

}
(y). (2.3)

Proof. It is well known that if L−1(f) is the inverse bilateral Laplace transform of f(y), then
uL−1(f) is the inverse bilateral Laplace transform of d

dyf(y). Therefore, we have

d

dy
(Aν{f}(y)) =

d

dy
Qνf (y) =

∫ ∞
−∞
L−1(f)(u)

d

dy

(
euy

Eeuν

)
du

=

∫ ∞
−∞

(
uL−1(f)(u)

) euy

Eeuν
du

=

∫ ∞
−∞
L−1

(
df

dx

)
(u)

euy

Eeuν
du

= Qνdf
dx

(y) = Aν
{
df

dx

}
(y).

4

The differential property of Aν-transform allows us to say, that if Aν-transform exists for
some derivative of the function f , then taking into account d

dyQ
ν
f (y) = Qνdf

dx

(y) we can extend

the definition of Aν-transform to the function f such that the averaging property is satisfied.

To show how it works let the real function f be differentiable on R. Suppose the Aν-transform
exists for df

dx , i.e. there exists function Qνdf
dx

= Qνdf
dx

(y). Then we can build a function Qνf (y) as

Qνf (y) = Qνf (0) +

∫ y

0

Qνdf
dx

(z)dz, (2.4)

with Qνf (0) = −E
∫ ν
0
Qνdf
dx

(z)dz + f(0), assuming the mathematical expectation exists.

Now the function defined by (2.4) satisfies the averaging property as in Lemma 2.1. Indeed,

E(Qνf (y + ν)) = Qνf (0) + E

∫ y+ν

0

Qνdf
dx

(z)dz

= Qνf (0) + E

∫ ν

0

Qνdf
dx

(z)dz + E

∫ y+ν

ν

Qνdf
dx

(z)dz

= −E

∫ ν

0

Qνdf
dx

(z)dz + f(0) + E

∫ ν

0

Qνdf
dx

(z)dz +

∫ y+ν

ν

EQνdf
dx

(z)dz

= f(0) +

∫ y+ν

ν

EQνdf
dx

(z)dz

= f(0) +

∫ y

0

EQνdf
dx

(z + ν)dz

= f(0) +

∫ y

0

df

dz
dz

= f(y).
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2.3 Examples

2.3.1 Monomials.

Appell polynomials Qνn(y) are traditionally defined as

Qνn(y) =
dn

dun

(
euy

E (euν)

)∣∣∣∣
u=0

(2.5)

in other words, euy

E(euν) is the generating function for Appell polynomials

euy

E(euν)
=

∞∑
n=0

un

n!
Qνn(y). (2.6)

Proposition 2.1. The Aν-transform of the monomial yn is the corresponding Appell polynomial
Qνn(y).

Proof. Before we proceed any further, let us introduce the necessary notation. By L−1{g} we
denote the inverse bilateral Laplace transform for some function g = g(·). By δ(n)(u) we denote
the n′th derivative of the delta function (see [3], ch.I, §2). More precisely,∫ ∞

−∞
δ(n)(u)φ(u)du = (−1)nφ(n)(0) (2.7)

Note, that the inverse bilateral Laplace transform of yn is the n′th derivative of the delta
function,

L−1{yn}(u) = (−1)nδ(n)(u).

Indeed, ∫ ∞
−∞
L−1{yn}(u)euydu =

∫ ∞
−∞

(−1)nδ(n)(u)euydu = (−1)2n
dn

dun
(euy)

∣∣∣∣
u=0

= yn.

Therefore,

Qνyn(y) =

∫ ∞
−∞
L−1{yn}(u)

euy

Eeuν
du

=

∫ ∞
−∞

(−1)nδ(n)(u)
euy

Eeuν
du =

=
dn

dun

(
euy

E (euν)

)∣∣∣∣
u=0

= Qνn(y)

4
Thus with a slight abuse of notation we write for simplicity Qνn(y) instead of Qνyn(y).

2.3.2 Polynomials (analytic functions/formal power series).

Assume that the function g = g(·) is a polynomial, (analytic or a formal power series in the style
of umbral calculus [11]), then we can show, that the Aν-transform of g can be represented as a
linear combination (power series) of Appell polynomials.

Proposition 2.2. Let

g(y) =

n∑
k=0

cky
k. (2.8)

6



Then the Aν-transform of g is a linear combination in Appell polynomials with the same coeffi-
cients as g(·), i.e.

Aν{g}(y) = Qνg(y) =

n∑
k=0

ckQ
ν
k(y),

where Qνk(y) are Appell polynomials of order k generated by the random variable ν.

Proof.

Aν{g}(y) = Qνg(y) =

∫ ∞
−∞
L−1{g}(u)

euy

Eeuν
du =

∫ ∞
−∞

(
n∑
k=0

ckL−1{yk}(u)

)
euy

Eeuν
du

=

n∑
k=0

ck

∫ ∞
−∞
L−1{yk}(u)

euy

Eeuν
du =

n∑
k=0

ck

∫ ∞
−∞

(−1)kδ(k)(u)
euy

Eeuν
du

=

n∑
k=0

ck
dk

duk

(
euy

Eeuν

)∣∣∣∣
u=0

=

n∑
k=0

ckQ
ν
k(y)

2.3.3 Linear combination of exponentials.

Let the reward function g be given by linear combination of exponentials

g(y) =

n∑
k=0

cke
rky.

One can notice that the inverse bilateral Laplace transform of erky is the delta function at rk,

L−1{erky}(u) = δ(u− rk).

Indeed, ∫ ∞
−∞
L−1{erky}(u)euydu =

∫ ∞
−∞

δ(u− rk)euydu = euy|u=rk = erky.

Proposition 2.3. Let

g(y) =

n∑
k=0

cke
rky. (2.9)

Then the Aν-transform of g is a sum of the corresponding Esscher transforms, i.e.

Aν{g}(y) = Qνg(y) =
n∑
k=0

ck
erky

Eerkν
.

Proof.

Aν{g}(y) = Qνg(y) =

∫ ∞
−∞
L−1{g}(u)

euy

Eeuν
du =

∫ ∞
−∞

(
n∑
k=0

ckL−1{erky}(u)

)
euy

Eeuν
du

=

n∑
k=0

ck

∫ ∞
−∞
L−1{erky}(u)

euy

Eeuν
du =

n∑
k=0

ck

∫ ∞
−∞

δ(u− rk)
euy

Eeuν
du

=

n∑
k=0

ck
euy

Eeuν

∣∣∣∣
u=rk

=

n∑
k=0

ck
erky

Eerkν
.

4
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2.3.4 Linear combinations of exponential polynomials.

Let the reward function g be given by an exponential polynomial

g(y) =

n∑
k=0

cky
kerky.

Note that the inverse bilateral Laplace transform of ykerky is the k′th derivative of the delta
function at rk,

L−1{ykerky}(u) = (−1)kδ(k)(u− rk).

Indeed,∫ ∞
−∞
L−1{ykerky}(u)euydu =

∫ ∞
−∞

(−1)kδ(k)(u− rk)euydu = (−1)2k
dk

duk
(euy)

∣∣∣∣
u=rk

= ykerky.

Denote the k-th derivative in u of euy

Eeuν at u = a by Qνk(y; a):

Qνk(y; a) :=
dk

duk

(
euy

Eeuν

)∣∣∣∣
u=a

(2.10)

Proposition 2.4. Let

g(y) =

n∑
k=0

cky
kerky. (2.11)

Then the Aν-transform of g is a sum of products of corresponding Esscher transforms and Appell
polynomials, i.e.

Aν{g}(y) = Qνg(y) =

n∑
k=0

ckQ
ν
k(y; rk).

Proof.

Aν{g}(y) = Qνg(y) =

∫ ∞
−∞
L−1{g}(u)

euy

Eeuν
du =

∫ ∞
−∞

(
n∑
k=0

ckL−1{ykerky}(u)

)
euy

Eeuν
du

=

n∑
k=0

ck

∫ ∞
−∞
L−1{ykerky}(u)

euy

Eeuν
du =

n∑
k=0

ck

∫ ∞
−∞

(−1)kδ(k)(u− rk)
euy

Eeuν
du

=

n∑
k=0

ck
dk

duk

(
euy

Eeuν

)∣∣∣∣
u=rk

=

n∑
k=0

ckQ
ν
k(y; rk).

4

3 The random variable η(x)

3.1 Construction of η(x)

Definition 3.1. Denote ςs = inf{r, s ≤ r ≤ t | g(Xr) ≥ g(Xu) for any u, s ≤ u ≤ t}. The
running argmaxg starting at time s and running up to time t is defined by

Xςs = argmaxg
s≤u≤t

(x+Xu). (3.1)

8



Our aim is to deliver a pathwise construction for the running argmaxg of the process X.
Consider a trajectory of X starting at time 0, X0 = 0, and running up to time t. Then
g(argmaxg0≤u≤t(x+Xu)) is the maximum of the path

[0, t] 3 u→ g(x+Xu) ∈ R

Note that if g is a nondecreasing function, then the running argmaxg of the process X coincides
with the running max of the process X, i.e.

argmaxg
0≤s≤t

(x+Xu) = max
0≤u≤t

(x+Xu). (3.2)

Similarly, if g is a nonincreasing function, then the running argmaxg coincides with the running
min of the process

argmaxg
0≤u≤t

(x+Xu) = min
0≤u≤t

(x+Xu). (3.3)

Now we are ready to define the random variable η(x) that will be used to define the Aν-
transform.

Definition 3.2. Let eq be an exponentially distributed random variable with mean 1/q and in-
dependent of the process X. We define the random variable η(x) as

η(x) = argmaxg
0≤s≤eq

(x+Xs)− x. (3.4)

In the same way as above, if g is a nondecreasing function, then

η(x) = max
0≤s≤eq

(x+Xs)− x = max
0≤s≤eq

(Xs),

and if g is a nonincreasing function, then

η(x) = min
0≤s≤eq

Xs.

It is useful to note that if g is a monotone function, then η(x) does not depend on the starting
position x.

3.2 Properties of η(x).

Recall ςs = inf{r, s ≤ r ≤ t | g(x + Xr) ≥ g(x + Xu) for any s ≤ u ≤ t}. Let τa be the first
moment at which g(x + Xs) reaches the level a, i.e. τa = inf {s ≥ 0 : g(x+Xs) ≥ a}, (see the
Figure 1).

In this section we present several propositions showing the connection between η(x + Xτa) and
η(x).

Proposition 3.1. Let τa = inf {s ≥ 0 : g(x+Xs) ≥ a}. Then, conditionally on Fτa and {eq >
τa}, we have x+ η(x)

d
= x+Xτa + η(x+Xτa).

Proof. Indeed, as τa is the first moment at which g(x + Xs) reaches a, then, conditionally on
Fτa and {eq > τa}, pathwise we have

argmaxg
0≤s≤eq

(x+Xs)
d
= argmaxg

τa≤s≤eq
(x+Xs)

d
= argmaxg

τa≤s≤eq
(x+Xτa −Xτa +Xs)

d
= argmaxg

τa≤s≤eq
(x+Xτa +Xs−τa)

d
= argmaxg

0≤t≤eq
(x+Xτa +Xt)

9



Figure 1: The trajectory g(x+Xt) starting from g(x), τa is the first moment at which g(x+Xs) reaches the level
a. Here ς0 coincides with ςτa .

Therefore, conditionally on Fτa and {eq > τa}, we get

x+ η(x) = argmaxg
0≤s≤eq

(x+Xs)

d
= argmaxg

0≤t≤eq
(x+Xτa +Xt)

d
= x+Xτa + argmaxg

0≤t≤eq
(x+Xτa +Xt)− x−Xτa

d
= x+Xτa + η(x+Xτa).

4

Proposition 3.2. Denote τa = inf{s ≥ 0 : g(x+Xs) ≥ a}. Conditionally on Fτa and {eq > τa},
we have g(x+ η(x+Xτa)) ≤ g(x+Xτa + η(x+Xτa)) almost surely.

Proof. Indeed, by definition of η(x) and argmaxg we have

g(x+Xτa + η(x+Xτa)) = g(argmaxg
0≤s≤eq

(x+Xτa +Xs))

≥ g(argmaxg
0≤s≤eq

(x+Xτa +Xs)−Xτa)

= g(x+ η(x+Xτa)).

4

Proposition 3.3. Let τ be any stopping moment, τ ∈ M. Then, conditionally on Fτ and
{eq > τ}, we have g(x+Xτ + η(x)) ≤ g(x+Xτ + η(x+Xτ )) almost surely.

Proof. Indeed, by definition of η(x) and argmaxg we have

g(x+Xτ + η(x+Xτ )) = g(argmaxg
0≤s≤eq

(x+Xτ +Xs))

≥ g(argmaxg
0≤s≤eq

(x+Xs) +Xτ )

= g(x+Xτ + η(x)).

10



Figure 2: The trajectory g(x+Xt) starting from g(x), τ is any stopping moment. One can easily see g(x+Xς0) =
g(argmaxg0≤u≤eq (x+Xu)) ≥ g(argmaxgτ≤u≤eq (x+Xu)) = g(x+Xςτ ).

4

Proposition 3.4. Let τ be any stopping moment, τ ∈ M. Then, conditionally on Fτ and
{eq > τ}, we have g(x+Xτ + η(x+Xτ )) ≤ g(x+ η(x)) almost surely.

Proof. Indeed, by definition of η(x) and argmaxg we have

g(x+Xτ + η(x+Xτ )) = g(argmaxg
0≤s≤eq

(x+Xτ +Xs))

≤ g(argmaxg
0≤s≤eq

(x+Xs))

= g(x+ η(x)).

4

3.3 The property of Aη(x)-transform

Let the function Q
η(x)
g (·) be given by the definition 3.1 as the image of the Aη(x)-transform of

the function g.

The following proposition shows how the functions Q
η(x)
g (·) and Q

η(x+Xτa )
g (·) are connected.

Proposition 3.5. Let τa = inf {s ≥ 0 : g(x+Xs) ≥ a}. Then, conditionally on {Xτa = z} and

{eq > τa}, we have Q
η(x)
g (y) = Q

η(x+z)
g (y − z).

Proof. The proof follows directly from the definition. Indeed, conditionally on {Xτa = z} and

11



{eq > τa} we have

Qη(x)g (y) =

∫ ∞
−∞
L−1{g}(u)

e−uy

Ee−uη(x)
du (3.5)

proposition 3.1
=

∫ ∞
−∞
L−1{g}(u)

e−uy

Ee−u(η(x+z)+z)
du (3.6)

=

∫ ∞
−∞
L−1{g}(u)

e−uy

e−uzEe−uη(x+z)
du (3.7)

=

∫ ∞
−∞
L−1{g}(u)

e−u(y−z)

Ee−uη(x+z)
du (3.8)

= Qη(x+z)g (y − z) (3.9)

4

4 Main results. Solution to the optimal stopping problem

4.1 The candidate value function

To solve the optimal stopping problem we have to find the “value” function V ∗ = V ∗(·) and the
optimal stopping time τ∗, such that

V ∗(x) = sup
τ∈M

E
(
e−qτg(x+Xτ )

)
= E

(
e−qτ

∗
g(x+Xτ∗)

)
, (4.1)

Here we introduce the candidate optimal stopping time τ+ and the candidate value function V .
Let the candidate optimal stopping time τ+ be defined as

τ+ := inf{s ≥ 0 : Qη(x)g (x+Xs) ≥ 0}. (4.2)

In order to define the candidate value function we introduce the set S. By S we denote the

set of all pairs (x, y) such that the function Q
η(x)
g (y) (i.e. Aη(x)-transform of the reward function

g) is non-negative

S := {(x, y) | Qη(x)g (y) ≥ 0}. (4.3)

Now we can say that τ+ is the first moment at which (x, x+Xs) reaches S.
Let the candidate value function V be defined as

V (x) := E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
. (4.4)

To show that our candidates are indeed the solution to the optimal stopping problem we
have to show V (x) = V ∗(x) for any x; and τ+ is the optimal stopping moment, i.e. V (x) =

E
(
e−qτ

+

g(x+Xτ+)
)

. To prove the optimality we will need two auxiliary lemmas which are

presented below.

4.2 Auxiliary lemmas

To prove the optimality we will need the notion of co-monotonicity. Let us recall the definition
of co-monotone functions.

Definition 4.1. The two real functions f and g are co-monotone on Γ ⊂ R, if for any u, v ∈ Γ
we have (f(u)− f(v))(g(u)− g(v)) ≥ 0.

12



Lemma 4.1. Let τ be any stopping moment, τ ∈ M. Suppose for (x, y) ∈ S the functions

g = g(y) and Q
η(x)
g (y) are co-monotone in y on S for each fixed x. Then, conditionally on Fτ

and {eq > τ}, the following inequality holds

E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
≥ E

(
e−qτg(x+Xτ )

)
.

Proof. Note that for any x and y

Qη(x)g (y)1{(x,y)∈S} ≥ Qη(x)g (y) (4.5)

by definition of the set S. Thus

E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
tower property

= E
(
E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S} | Fτ

))
prop. 3.4

≥
co−monot.

E
(
E
(
Qη(x)g (x+Xτ + η(x+Xτ ))1{(x,x+Xτ+η(x+Xτ ))∈S} | Fτ

)
; eq > τ

)
prop. 3.3

≥
co−monot.

E
(
E
(
Qη(x)g (x+Xτ + η(x))1{(x,x+Xτ+η(x))∈S}

)
; eq > τ

)
(4.5)

≥ E
(
E
(
Qη(x)g (x+Xτ + η(x))

)
; eq > τ

)
lemma 2.1

= E (g(x+Xτ ); eq > τ)

= E
(
e−qτg(x+Xτ )

)
4

Recall τ+ = inf{s ≥ 0 : Q
η(x)
g (x+Xs) ≥ 0}.

Lemma 4.2. Suppose for (x, y) ∈ S the functions g = g(y) and Q
η(x)
g (y) are co-monotone in y

on S for each fixed x. Then, conditionally on Fτ+ and {eq > τ+}, the following identity holds

E
(
e−qτ

+

g(x+Xτ+)
)
≥ E

(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

Proof. The functions g = g(·) and Q
η(x)
g (·) are co-monotone on S for any fixed x. Therefore,

we have

{(x, x+ η(x)) ∈ S} = {(x, argmaxg
0≤s≤eq

(x+Xs)) ∈ S}

d
= {Qη(x)g (argmaxg

0≤s≤eq
(x+Xs)) ≥ 0}

d
= {eq > τ+}

Therefore,

E
(
Qη(x)g (x+ η(x)) 1{(x,x+η(x))∈Sa}

)
= E

(
Qη(x)g (x+ η(x)) 1{eq>τ+}

)
tower property

= E
(
E
(
Qη(x)g (x+ η(x)) 1{eq>τ+}|Fτ+

))
= E

(
1{eq>τ+}E

(
Qη(x)g (x+ η(x)) |Fτ+

))
proposition 3.1

= E
(
1{eq>τ+}E

(
Qη(x)g (x+Xτ+ + η(x+Xτ+)) |Fτ+

))
proposition 3.5

= E
(
1{eq>τ+}E

(
Q
η(x+Xτ+ )
g (x+ η(x+Xτ+)) |Fτ+

))
proposition 3.2

≤
co−monot.

E
(
1{eq>τ+}E

(
Q
η(x+Xτ+ )
g (x+Xτ+ + η(x+Xτ+))

))
lemma 2.1

= E
(
1{eq>τ+}g (x+Xτ+)

)
= E

(
e−qτ

+

g (x+Xτ+)
)

13



4

Corollary 4.1. The following fluctuation identity holds for τ+ defined by (4.2)

E
(
e−qτ

+

g(x+Xτ+)
)

= E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

Proof. By lemma 4.1 we have for any τ ∈M

E
(
e−qτg(x+Xτ )

)
≤ E

(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

If the inequality is true for any τ , then it is true for τ+ too. Therefore, we have

E
(
e−qτ

+

g(x+Xτ+)
)
≤ E

(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

On the other hand, by lemma 4.2, we have

E
(
e−qτ

+

g(x+Xτ+)
)
≥ E

(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

Thus, it follows

E
(
e−qτ

+

g(x+Xτ+)
)

= E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

4

4.3 The main theorem

Theorem 4.1. Let S and τ+ be given by (4.3) and (4.2) correspondingly. Suppose for (x, y) ∈ S
the functions g = g(y) and Q

η(x)
g (y) are co-monotone in y on S for each fixed x. Then the stopping

time τ+ is optimal for the problem (1.1), and the value function is given by

V ∗(x) = E
(
e−qτ

+

g(x+Xτ+)
)

= E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

Proof. Let τ be any stopping moment, and recall

V (x) = E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
.

Let us show V (x) ≥ V ∗(x). By lemma 4.1 we have for any τ ∈M

V (x) = E
(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
lemma 4.1
≥

(
e−qτg(x+Xτ )

)
.

As we obtained V (x) ≥ E (e−qτg(x+Xτ )) for any stopping time τ , then it also holds for the
optimal stopping time τ∗:

V (x) ≥ E
(
e−qτ

∗
g(x+Xτ∗)

)
= sup

τ
E
(
e−qτg(x+Xτ )

)
= V ∗(x).

On the other hand, by lemma 4.2 we have the following inequalities for the moment τ+

V ∗(x) = sup
τ

E
(
e−qτg(x+Xτ )

)
≥ E

(
e−qτ

+

g(x+Xτ+)
)

lemma 4.2
≥ E

(
Qη(x)g (x+ η(x))1{(x,x+η(x))∈S}

)
= V (x).

Thus, we see V (x) ≥ V ∗(x) ≥ V (x) for any x ∈ R, i.e. we have proved V (x) = V ∗(x) for any

x ∈ R. Furthermore, by corollary 4.1 we have V (x) = E
(
e−qτ

+

g(x+Xτ+)
)

. Thus we have

proved that τ+ is the optimal stopping time. 4
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5 Examples

5.1 The Novikov-Shiryaev optimal stopping problem with g(x) = (x+)n.

In [8] Novikov and Shiryaev solved the optimal stopping problem (1.1) with g(x) = (x+)n,
n = 1, 2, . . . for random walks, and in [15] Kyprianou and Surya found the solution for Lévy
processes.

Here we repeat their results with our method.
Let X be a Lévy process with X0 = 0, and the reward function g(x) = (x+)n. Then we have

η(x) = argmaxg
0≤t≤eq

(x+Xt)− x

= max
0≤t≤eq

(x+Xt)− x

= max
0≤t≤eq

(Xt)

= η.

The Aη-transform of xn is an Appell polynomial of order n

Qηxn(y) =

∫ ∞
−∞
L−1{xn}(u)

euy

Eeuη
du

=

∫ ∞
−∞

δ(n, u)
euy

Eeuη
du

= Qηn(y)

In such a way we repeat the results of Novikov and Shiryaev, and if (Qηn(x))
+

and (xn)+ are
co-monotone, than the optimal stopping boundary is the positive root of the Appell polynomial
Qηn(x).

5.2 The Novikov-Shiryaev optimal stopping problem with g(x) = (x+)ν.

In [7] Novikov and Shiryaev solved the optimal stopping problem (1.1) with g(x) = (x+)ν when
the underlying process is a Lévy process.

Here we repeat their results with our method.
Let X be a Lévy process with X0 = 0, and the reward function g(x) = (x+)ν . Exactly as in

the previous example we obtain

η(x) = argmaxg
0≤t≤eq

(x+Xt)− x

= max
0≤t≤eq

(x+Xt)− x

= max
0≤t≤eq

(Xt)

= η.

The inverse bilateral Laplace transform of xν with ν < 0 is

L−1{xν}(u) =

 −
(−u)−ν−1

Γ(−ν)
, if u < 0

0, if u ≥ 0.

where Γ is a gamma function. Indeed,∫ ∞
−∞
L−1{xν}(u)euydu =

∫ 0

−∞
− (−u)−ν−1

Γ(−ν)
euydu

=

∫ ∞
0

u−ν−1

Γ(−ν)
e−uydu

= yν
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Thus, for ν < 0 the Aη-transform of xν is given by

Qηxν (y) =

∫ ∞
−∞
L−1{xν}(u)

euy

Eeuη
du

=

∫ 0

−∞
− (−u)−ν−1

Γ(−ν)

euy

Eeuη
du

=

∫ ∞
0

u−ν−1

Γ(−ν)

e−uy

Ee−uη
du.

This coincides with the results obtained by Novikov and Shiryaev for ν < 0. For ν > 0, we
use (2.4) to define Qηxν (y) in the same way as in [7].

Therefore, we repeat the results of [7] and state that if (Qηxν (x))
+

and (xν)+ are co-monotone,
then the optimal stopping boundary is the positive root of the Aν -transform of xν , i.e. Qηxν (x).

5.3 Two-sided problem

Consider the optimal stopping problem (1.1) with the reward function

g(x) = eax + e−bx − 2, (5.1)

with
√

2q > a > b > 0 some constants, and q is an interest (killing) rate in our stopping problem.
We assume that the underlying process is a Brownian motion Bt with B0 = 0.

Figure 3: The reward function g(x) = ex/10 + e−x/20 − 2.

The function g(x) is decreasing for x ≤ ln(b/a)/(a+ b) and increasing for x ≥ ln(b/a)/(a+ b).
Moreover, it is well known that ( sup

0≤t≤eq
Bt) and (− inf

0≤t≤eq
Bt) are equal in distribution.

To find η(x) we should compare

g

(
x+ sup

0≤t≤eq
Bt

)
and g

(
x+ inf

0≤t≤eq
Bt

)
,

or, equivalently, to compare

g

(
x+ sup

0≤t≤eq
Bt

)
and g

(
x− sup

0≤t≤eq
Bt

)
,
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or, equivalently, to compare

e(a+b)x and
sinh

(
b sup0≤t≤eq Bt

)
sinh

(
a sup0≤t≤eq Bt

) .
Define the function f : [0,∞)→ R as

f(u) =
sinh(bu)

sinh(au)
. (5.2)

The function f is decreasing on [0,∞) due to a > b > 0. We write f−1 for the inverse function
of f , and denote by c(x) the function c(x) = f−1

(
e(a+b)x

)
.

It is easy to see that

η(x) = argmaxg
0≤t≤eq

(x+Bt)− x

=


sup

0≤t≤eq
Bt if x ≥ ln(b/a)

(a+b) ,

sup
0≤t≤eq

Bt if x < ln(b/a)
(a+b) and sup

0≤s≤eq
Bs ≥ c(x),

inf
0≤t≤eq

Bt if x < ln(b/a)
(a+b) and inf

0≤s≤eq
Bs > −c(x).

(5.3)

As our reward function g is a linear combination of exponential functions plus some constant,
then Aη(x)-transform of g is given by

Aη(x){g}(y) = Qη(x)g (y) =
eay

E(ea η(x))
+

e−by

E(e−b η(x))
− 2.

Let us calculate E(euη(x)):

Eeu η(x) =

{ ∫∞
0
euypsup(y)dy, x ≥ ln(b/a)

(a+b) ,∫∞
c(x)

euypsup(y)dy +
∫ 0

−c(x) e
uypinf (y)dy, x < ln(b/a)

(a+b) ,
(5.4)

where pinf(y) =
√

2q ey
√
2q and psup(y) =

√
2q e−y

√
2q are the probability density functions for

inf0≤t≤eq Bt and sup0≤t≤eq Bt respectively.

Subsequently, for u <
√

2q we have

Eeu η(x) =

{ √
2q√

2q−u , x ≥ ln(b/a)
(a+b) ,√

2q√
2q−ue

−c(x)(
√
2q−u) −

√
2q√

2q+u
e−c(x)(

√
2q+u) +

√
2q√

2q+u
, x < ln(b/a)

(a+b) ,
(5.5)

Therefore Eea η(x) and Ee−b η(x) are given by

Eea η(x) =

{ √
2q√

2q−a , x ≥ ln(b/a)
(a+b) ,√

2q√
2q−ae

−c(x)(
√
2q−a) −

√
2q√

2q+a
e−c(x)(

√
2q+a) +

√
2q√

2q+a
, x < ln(b/a)

(a+b) ,
(5.6)

and

Ee−b η(x) =

{ √
2q√

2q+b
, x ≥ ln(b/a)

(a+b) ,√
2q√

2q+b
e−c(x)(

√
2q+b) −

√
2q√

2q−be
−c(x)(

√
2q−b) +

√
2q√

2q−b , x < ln(b/a)
(a+b) ,

(5.7)

One can easily check that for each fixed x the functions g(y) and Aη(x){g}(y) are co-monotone
(in y) for those y where Aη(x){g}(y) is nonnegative. Consequently, to find the optimal stopping
boundaries we have to find the zeros of Aη(x){g}(x).
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In other words, there are two optimal stopping boundaries x∗ and x∗, where x∗ > 0 is the
zero of the equation √

2q − a√
2q

ea x +

√
2q + b√

2q
e−b x − 2 = 0, (5.8)

and x∗ < 0 is the zero of

eax
√
2q√

2q−ae
−c(x)(

√
2q−a) −

√
2q√

2q+a
e−c(x)(

√
2q+a) +

√
2q√

2q+a

+
e−bx

√
2q√

2q+b
e−c(x)(

√
2q+b) −

√
2q√

2q−be
−c(x)(

√
2q−b) +

√
2q√

2q−b

− 2 = 0, (5.9)

where c(x) = f−1
(
e(a+b)x

)
.

The graph of function Aη(x){g}(x) for a = 0.1, b = 0.05 and q = 0.02 is shown in Fig.4

Figure 4: The graphs of the reward function g = g(x) (red) and itsAη(x)-transform as a function of x, i.e. Aη(x){g}(x)
(green) for a = 0.1, b = 0.05 and q = 0.02.

6 Conclusion and further development

In this paper, we presented a novel approach for solving optimal stopping problems by means
of applying a specially designed integral transform to the reward function. The important fea-
ture of our method that it works for non-monotone reward functions. To construct the integral
transform we need the reward function to have an inverse bilateral Laplace transform.

The newly defined random variable argmaxg plays the central role in the construction of the
integral transform. Calculation of argmaxg for various Levy processes is the task to be explored.
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We should mention the restriction of the proposed method, namely, the requirement for the
reward function g = g(y) and its transform Aη(x){g}(y) to be co-monotone in y for each fixed x
on the set S defined by (4.3). Perhaps this requirement is too strong and one can find a weaker
necessary condition.

Although our primary aim in this paper was to solve optimal stopping problems, it is worthwhile
mentioning a by-product of our results. The integral transform we created produces a martingale
if built on a Lévy process.

We showed that our method works particulary well when the reward function is a polynomial, an
exponential or an exponential polynomial. This naturally leads us to explore the possibility of
creating numerical methods for solving optimal stopping problems by approximating the reward
functions by polynomials/exponential polynomials. The work on this topic has barely begun but
looks very promising.
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