Justification of Business Process Change to Enable Higher Levels of TSO-DSO Interaction

A Z M Shahriar Muttalib Brunel University London

Academic Supervisor: Gareth Taylor Industrial Supervisor: Martin Bradley

Contents

- National Grid (NG)
 - Offline modelling strategy
 - Modelling requirement
- Critical Challenges
- Proposed modelling strategy
- Operational analysis
- Final Remarks

Main Acronyms

- National Grid (NG)
- Stability Analysis (SA)
- Fault Level Analysis (FLA)
- Contingency Analysis (CA)
- Engineering Recommendation (ER)
- Active Distribution Networks (ADNs)
- Enhanced Extended Ward Equivalent (EEWE)

Coping with Future Trends

- Active participation of different stakeholders
- Exploration of alternative approaches and adoption of new methods and strategies
- Consideration of ADNs in planning procedures
- Integration of various state-of-art developments to enhance and optimize the short term planning and real time operation
- Coordination of the different platforms

NG's Offline Modelling Strategy

Benefits of the Dynamic Equivalent

Tangible Benefits		Intangible Benefits
i.	Reduction in model size and data	i. Reduces non-convergence scenarios in
	volume.	system analysis caused by improper LV
ii.	Less manual intervention by	network configuration.
	automating the network modelling	
	processes.	ii. Improves and standardizes dynamic
iii.	Simpler to utilize the real time metering	load models (in accordance with ER
	data as they are readily available at	G.74).
	the GSP level	
iv.	Equivalences small embedded	iii. Improves platform interoperability
	generators and radial networks	
v.	Lessens the work load in network	iv. Eases the data exchange process with
	validation process	DNOs.
vi.	Supports better TSO-DSO interaction	
vii.	Faster simulation	v. Improves accountabilities in the
viii.	Enabling more users to be supported	modelling process, by limiting full detail to
	by the same hardware	areas for which NG is operationally
		responsible.

HOQ considering the NG's business requirement

7

Load Modelling Strategy

Nine Critical Problems for NG's offline network modelling

- i. Structural issues e.g. discrepancy in the model depths.
- ii. Poor scalability as LV networks are expanding and becoming more active.
- iii. Static load representation.
- iv. Large volumes of data exchange, both internal and external.
- v. High manual intervention.
- vi. Infrequent updates to LV data (mostly annual)
- vii. Extensive validation procedures required.
- viii. Reliance on apportionment of loads to LV points.

ix. Extensive modelling of LV networks for which NG has no operational accountability.

Internal, Buffer and External Zone

Proposed Transition

Enhanced Extended Ward Equivalent (EEWE)

- Fundamental structure based on Extended Ward Equivalent
- Enhanced by:
 - Including the multiple *X*/*R* ratios
 - Apportioning the real and reactive power
 - Including the frequency dependency components
 - ER G.74 Compliant Equivalent and also follow IEC 60909

UKPN South West (USE)

Reduced Network of USE area

Number of objects for different network models

Model Validation

$$\min f(x) = \int_{t_{initial}}^{t_{final}} \sum_{n_R^i}^{N_R} \left\| (Parameter)_{org} - (Parameter)_{equ} \right\|$$

s.t.
$$n_R^i \neq 0, i = 1, 2, \dots, N_R$$

X =>

Voltage magnitude Real and reactive power flow Make and Break *X/R* ratio, Initial peak current rms break current Peak break current Generator rotor angle with respect to the reference machine.

Objective function considers a predefined integration time, thus parameters can reflect non-linear nature as well.

FLA Results

Power & Energy Society

CA Results

Ε

Power & Energy Society*

Wavelet Decomposition

A Z M S. Muttalib, G. A. Taylor and M. E. Bradley, "Improvement of Stability Analysis and Assessment through Wavelet Decomposition", in *IET International Conference on the Resilience of Transmission and Distribution Networks* (**IET RTDN 2015**), pp.1-8, Birmingham, UK, 22-24 September 2015.

Decomposition steps of the signal

Multi-stage reconstruction with chosen decomposed signals

Wavelet Decomposition Result and Time Constant 5 X 10⁻³ 4 • r1 'r2 3 r3 -r4 Wavelet Coefficient 2 1 ••• r9 0 r10 - r11 r12 ******** -1 r13 r14 r15 -2 r16 r17 -3 r18 r19 r20 -4 -5 ∟ -5 0 5 10 15 20 25 30 Time (Sec)

Original Network	Wavelet Decomposition Technique	Reduced Network with LTE
2.715	2.649 (2.43%)	2.715 (0%)
3.456	3.469 (0.37%)	3.456 (0%)
1.245	1.295 (4.01%)	1.246 (0.7%)
5.673	5.802 (2.27%)	5.673 (0%)
7.345	7.401 (0.76%)	7.347 (0.03%)
Average Error	1.97%	0.02%

IEEE

Load Modelling Strategy

NG will be able to adopt a dynamic load model consisting of multiple components

Methodology and Strategy

24

For LF, FLA and CA

Challenges

- **Proper data availability** (e.g. updated load model parameters) to support the proposed load modelling approach.
- Model Derivation: An additional task for DSO. However, this change should be part of a wider development of data exchange between DSO and TSO (including real-time as well as planning data) which will bring benefits to both parties.
- Updating Codes and Standards: A permanent modification to data exchange practices should be reflected in a change to the codes, which would require the **agreement of all parties** involved.

Final Remarks

- EEWE which was designed according to ER G.74, showed resilient results
- For stability analysis, **LTE** was more appropriate option.
- Various operational study results outlined that EEWE and LTE in general produce pessimistic results
- Potentiality of reducing the hardware size
- Parameters that have been used to develop the equivalents established a **physical meaning**.
- Minor adjustment of the equivalents can be done without recomputing.
- Recommended to model in full non-linear detail only at the transmission level and equivalence the remainder provided that the GSP interconnections are intact.

Future Research

- As DG will continually grow and the nature of loads tend to change, there is a requirement for tuning equivalent parameters periodically.
- Identification of the most significant parameters within equivalent models for direct inclusion in the TSO-DSO data exchange process

See following references for more details

1. A Z M S. Muttalib, G. A. Taylor, and M. E. Bradley, "Investigating Scalable Computational Tools and Infrastructure to Enable Interoperable and Secure Control of Large-scale Power Systems", in *48th International Universities Power Engineering Conference (UPEC 2013)*, pp.1-6, Dublin, Ireland, 1-4 Sept. 2013.

2. A Z M S. Muttalib, G. A. Taylor, and M. E. Bradley, "Novel Approach to Updating Network Equivalents for Different Cardinal Points", in *49th International Universities Power Engineering Conference (UPEC 2014), pp.1-6, Cluj Napoca, Romania, 2-5 Sept. 2014.*

3. A Z M S. Muttalib, G. A. Taylor and M. E. Bradley, "Modelling Enhancement of LV Network Equivalents for Accurate Operational Planning of the GB Power System", in *11th IET International Conference on AC and DC Power Transmission* (IET ACDC 2015), pp.1-8, Birmingham, UK,10-12 Feb. 2015.

4. A Z M S. Muttalib, G. A. Taylor, and M. E. Bradley, "Contingency Analysis of Operational Planning Models with Distribution Network Reconfiguration", in IEEE Power & Energy Society General Meeting (**PESGM 2015**), pp.1-5, Denver, Colorado, USA, 26-30 July 2015.

5. A Z M S. Muttalib, G. A. Taylor and M. E. Bradley, "Improvement of Stability Analysis and Assessment through Wavelet Decomposition", in *IET International Conference on the Resilience of Transmission and Distribution Networks* (**IET RTDN 2015**), pp.1-8, Birmingham, UK, 22-24 September 2015.

6. A Z M S. Muttalib, A. Ali, G. A. Taylor, and M. E. Bradley, "Enhancement of Operational Planning Processes though Automated Data Integration", in *50th International Universities Power Engineering Conference (UPEC 2015)*, pp.1-6, Staffordshire, UK, 1-4 Sept. 2015.

7. A Z M Shahriar Muttalib, G A Taylor, and M E Bradley, "Developing and Enhancing Business Processes to Enable Higher Levels of TSO-DSO Interaction", **CIRED 2016**, Helsinki, Finland, 14-15 June 2016.

8. A Z M Shahriar Muttalib, G A Taylor, and M E Bradley, "Novel Adaption of Distribution System Equivalents for Enhanced Operational Planning of Transmission Systems", in **IEEE Transactions on Power Systems** [Submitted Feb 2016]

Thanks

