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ABSTRACT the abstract algorithm description in Section 2.3.

Principal Component Analysis (PCA) is a well-established tech-
nique in image processing and pattern recognition. Incremental2 1. Incremental PCA Updating
PCA and robust PCA are two interesting problems with numer- ) ) )
ous potential applications. However, these two issues have onlyPCA seeks to compute the optimal linear transform with reduced
been separately addressed in the previous studies. In this papeflimensionality in the sense of least mean squared reconstruction
we present a novel algorithm for incremental and robust PCA by €rTor. This problem is usually solved using batch-mode algorithms
seamlessly integrating the two issues together. The proposed alSUch as eigenvalue decomposition and Singular Value Decompo-
gorithm has the advantages of both incremental PCA and robustSition which are computationally intensive when applied to large
PCA. Moreover, unlike most M-estimation based robust algorithms, Scale problems where both the dimensionality and number of train-
it is computational efficient. Experimental results on dynamic ing examples are large. Incremental algorithms can be employed
background modelling are provided to show the performance of t0 Provide approximate solutions with simplified computation. Along

the algorithm with a comparison to the conventional batch-mode With the algorithms presented in the previous work [1, 2, 3, 4], we
and non-robust algorithms. present a novel incremental algorithm in this paper.

Given a new observation vectarwhich has been subtracted

1. INTRODUCTION by the mean vectan, i.e.

!
T=x —p @
Principal Component Analysis (PCA) has been extensively applied wherez' is the original observation vector, if we assume the up-
to numerous applications in image processing and pattern recogdating weights on the previous PCA model and the current obser-

nition. While it can efficiently represent high dimensional vectors vation vector arex and1 — « respectively, the mean vector can be
with a small number of orthogonal basis vectors, the conventional ypdated as

methods of PCA usually perform in batch-mode which is compu-

i . - ; p Y =ap+ (1—a)x' =pu+(1-a)x (2)
tationally expensive when dealing with large scale problems. To ] )
address this problem, there have been sevataémentalalgo- Constructp + 1 vectors from the previous eigenvectors and the
rithms developed in the previous studies [1, 2, 3, 4]. These algo- current observation vector
rithms are generally similar in terms of accuracy and speed while Y, =valiu;, i=1,2,..,p (©)]
the differences are mainly on how to approximate the covariance
matrix. Ypt1 =v1—ax 4)

In addition, the traditional PCA, in the sense of least mean where{u;} and{)\;} are the current eigenvectors and eigenval-

squared error minimisation, is susceptible to outlying measure- ,.c The PCA updating problem can then be solved as an eigen-

ments. To enable PCA less vulnerable to “outliers”, it has been i ;
' decomposition problem on thet1 vectors. Am x 1) matrix
proposed to use robust methods for PCA computation [5, 6, 7]. A can Fhen be gefined as (p+1)

Unfortunately most of these methods are computationally inten-
sive because the optimisation problem has to be compteed A=Y, Ys s Ypia) (5)
atively, e.g. the self-organising algorithms in [5], the criss-cross Assume the covariance mati@ can be approximated by the first
regressions in [6] and the Expectation Maximisation algorithm in p significant eigenvectors and their corresponding eigenvalues,
(7 . C~ UnyAy, Uy, (6)
To address the two problems discussed above, we present an . .
integrated algorithm for incremental and robust PCA computing. where the columns_dﬂs are eigenvectors @_and diagonal ma-
To our knowledge, these two issues have not yet been addressed tc}glcesAs are comprise d of elgeqvglues(df With a new observa-
gether in the previous studies. We will give the detailed mathemat- tion z, the new covariance matrix is expressed by

ical derivation of the algorithm and demonstrate its computational CcC" = aC+(1-a)zz’
efficiency and robustness with experimental results on background = aUnpApprLp + (1 - o)z’
modelling. »
= Z aluu + (1 - a)zz” (7
2. INCREMENTAL AND ROBUST PCA LEARNING i=1

In the next two sub-sections, we will present the mathematical Substituting (3), (4) and (5) into (7) gives
derivation of our algorithm for incremental and robust PCA before Cc™v = AAT (8)



Instead of ther x n matrix C™"“*, we eigen-decompose a smaller
(p+1) x (p+ 1) matrixB,

B=A"A 9)
yielding eigenvector§wv;°*} and eigenvalue$\;°*} which sat-

isfy

ATAD?Y = NPV, 1=1,2,..,p+1 (10)
Left multiplying by A on both sides, we have
AATADY = N[ Av}e? (11)
Defining
ui " = Avy " (12)
and then using (8) and (12) in (11) leads to
Cnewu?ew — A:Lew ;_’Lew (13)

i.e.ul" is an eigenvector o™ with eigenvalue\; .

Note that the proposed algorithm performs similarly to other
algorithms in terms of accuracy and complexity. The difference
to other algorithms is how to express the covariance matrix incre-
mentally (Equation (7)). Thus, it at least provides an alternative
solution to the problem; and moreover, our algorithm can be inter-
preted as approximating the original large scale PCA with a small
scale PCA oy, ¥, -, ¥, 1 }» Which is more concise and ana-
lytical in the way of presentation. It is also important to note that,
like other incremental algorithms, the update ratevhich deter-
mines the weights on the previous information and new informa-

tion, is application-dependent and has to be chosen experimentally.

2.2. Robust Analysis

Recall that PCA is the optimal linear transform in the sense of

Equation (17) can be written as
L ord

J\nJ I

220 g, -

which is exactly the solution of a new least-squares problem

miny > w(r])(r])’ (20)

0, k=1,2,....,np (29)

If we define
w(r?

)y

; (21)
then substituting (14) and (21) into (20) leads to a new eigen-

decomposition problem

min Z HUnpUz;,pzi — ZiH2 (22)
7

It is important to note thatv is a function of the residual error
r? which needs to be computed for each individual training vector
(subscript;) and each of its elements (superscript The former
maintains the adaptability of the algorithm, while the latter ensures
the algorithm is robust to every element of a sample vector.

If we choose the robust function as the Cauchy function

C2 t 2
plt) = Slog(1+ (2)?) (23)
wherec controls the convexity of the function, then we have the
weight function 1

C 1+ (t/e)?

Now it seems we arrive at a typical iterative solution to the
problem of robust PCA: compute the residual error with the cur-
rent PCA model (14), evaluate the weight functiaiir!) (24),
computez; (21), eigen-decompose (22) to update the PCA model,
and go back to (14) again... Obviously an iterative algorithm like
this would be computationally expensive.

The reason why we have to use an iterative algorithm is that

w(t)

(24)

least squared reconstruction error. When the data used to cone do not know which part of a sample is likely to be outliers.

struct the PCA contain contaminated outlying measurement, the

conventional PCA may deviate from the desired solution. As op-
pose to the iterative algorithms of robust PCA developed previ-
ously [5, 6, 7], we present a simplified method as follows.

Given a PCA model, the residual error of a veckoris ex-
pressed by

r, = UnpUZszi - (14)

We know that the conventional non-robust PCA is the solution of
a least-squares problém

min 3 [l = 30 3 ()

Instead of sum-of-squares, the robust M-estimation method [8]
seeks to solve the following problem via a robust functjign)

miny> 3 plr) (16)

Differentiating (16) byd, the pajrameters to be estimated, i.e. the
elements olU,,,,, we have
arf
0

Xij Z () 7
wherey (t) = dp(t)/dt is the influence function. By introducing
a weight function

w(t) = A1 (18)

1In this context, we use subscript to denote the index of vectors, and
superscript the index of their elements.

Xi

(15)

an

However, if we have a reasonably good prototype model in hand,
itis much easier to determine the outliers. In fact, the updated PCA
model at each step from an incremental algorithm is good enough
to serve for this purpose in most dynamic problems. Based on this
idea, we can begin with estimating the parameters of the robust
function, and perform the robust PCA updating in a single run.

For the robust function (23,24) we choose above, one param-
eter,c, needs to be determined which controls the sharpness of the
robust function and hence determines the likelihood of a measure-
ment being an outlier. In the previous studies, the parameters of a
robust function are usually computed at each step in an iterative ro-
bust algorithm [8, 9] or using Median Absolute Deviation method
[7]. Both of the methods are computationally expensive. Here we
use a simplified method.

The first step is to estimate;, the standard deviation of the
jth element of the observation vectdrs;}. Assuming that the
current PCA model (including its eigenvalues and eigenvectors)
is already a robust estimation from an adaptive algorithm, we ap-
proximates; with

o; = max_; v Ailui| (25)
i.e. the maximal projection of the current eigenvectors onjthe
dimension (weighted by their corresponding eigenvalues). This
is a reasonable approximation if we consider that PCA actually
presents the distribution of the original training vectors with a
hyper-ellipse in a subspace of the original space and thus the vari-
ation in the original dimensions can be approximated by the pro-

jections of the ellipse onto the original space.



Fig. 1. Comparison results of using our proposed algorithm and the conventional algorithm. From left to right are the original images,
our algorithm, reconstruction and the absolute difference images (dark

reconstruction and the weights (dark intensity for low weight) from
intensity for large difference) from the conventional algorithm.

The next step is to expressthe parameter of (23,24), with

Initialisation
Construct the initial PCA from the firgt(q > p) observations.

C; = ﬁO'j (26)
whereg is a fixed coefficient, for examplgd = 2.3849 is ob-
tained with thed5% asymptotic efficiency on the normal distribu-
tion [10]. B can be set at a higher value for fast model updating,
but at a risk of accepting outliers into the model. To our knowl-
edge, there are no easy solutions so far to this kind of problems
like determining the coefficiens.

We have compared thg; computed with the proposed method
and that with the traditional method (the ground-truth). Experi-
mental results indicate that the former is a good approximation of
the latter. Due to page limit, these results are not included in the
paper.

2.3. Algorithm

The algorithm of incremental and robust PCA is presented in Ta-
ble 1. The underlying principle is very simple: we begin with an
initial PCA model, compute the confidence of a new observation
vector (or the likelihood to be an outlier) based on the current PCA
model and weight the new vector accordingly, then perform an in-
cremental PCA with the weighted vector. The advantages of this
algorithm include:

1. Computational efficiency: it is much faster than the con-
ventional batch-mode PCA algorithms for large scale prob-

lems, not to mention the iterative robust algorithms.
. Model adaptability: the model can be updated online over

time with new observations. This is especially important for
modelling dynamic systems where the system state is vari-
able, for example, background modelling in video surveil-

lance which we will discuss in Section 3.
. The computation is reasonably mild if the Cauchy function

is adopted. However, even when more intensive computa-
tion like exponential and logarithm involved in the weight
function w, a look-up-table (indexed by/c) can be built

for the weight itemy/w(-) in Equation (21) which can re-
markably reduce the computation.

3. EXPERIMENTS

The proposed algorithm can be easily applied to many pattern
recognition problems, especially for dynamic problems with the

Updating

FOR EACH new observation

. Estimatez; from the current PCA (25,26);

. Compute the residual errer(14);

. Compute the weighb(r7) for each element aof (24);

. Computez (21);

Update the mean vector (2), replacindy z;

Computey,, y,, ..., y,, from the previous PCA (3);

Computey,  ; (4), replacinge by z;

. Construct matribA (5);

Compute matriB (9);

. Eigen-decomposB to obtain eigenvector§v; '} and
eigenvalueg A\7¢*};

. Compute new eigenvectofa; "} (12).

COONOUTAWN R

e =
'_\

Table 1. The algorithm of incremental and robust PCA.

background can be represented by the mean image and the first
significant eigenvectors. Once this model is constructed, one can
project an input image into the dimensional PCA space and re-
construct it from thep dimensional PCA vector. The foreground
pixels can then be obtained by computing the difference between
the input image and its reconstruction.

Although Oliveret al. claimed that this background model can
be adapted over time, it is computationally intensive to perform
model updating using the conventional PCA. Moreover, without a
mechanism of robust analysis, the outliers or foreground objects
may be absorbed into the background model. To address the two
problems stated above, we extend PCA background model by ap-
plying our incremental and robust PCA algorithm. The image se-
quences used in the experiments are from the PET2001 datasets,
a benchmark database for video surveillance. The parameters are
chosen as: PCA dimensign = 10, size of initial training set
q = 20, update ratex = 0.95, and coefficien3 = 10.

Figure 1 shows the comparison results on a test sequence be-
tween our algorithm (Table 1) and the conventional batch-mode
PCA algorithm. It is infeasible to run the latter on the same data
since they are too big to be fit in the computer memory. We ran-
domly selected 200 frames from the sequence to perform a con-
ventional batch-mode PCA. Then the trained PCA was used as a
fixed background model.

It is noted that our algorithm successfully captured the back-

system status changing over time. In this section, we demonstrateground changes while the fixed PCA model failed with noticeably

the performance of the algorithm on background modelling, which
is a important process for object segmentation, tracking and visual
event detection.

ghost effect in the reconstruction and the false foreground detec-
tion. In this experiment, our algorithm achieved a frame rate of 5
fps on a 1.5GHz Pentium IV computer (with JPEG image decod-

Modelling background using PCA was firstly proposed by Olivering and image displaying).

et al. [11]. By performing PCA on a sample df images, the

To illustrate the importance of robust analysis, we show the



first first three eigenvectors of the PCA background models of us- As we do not know which part of a sample is outliers, tradi-
ing and not using robust analysis in Figure 2. It is noted that the tional M-estimation based robust algorithms usually perform in an
non-robust algorithm unfortunately captured the variation of out- iterative manner which is computational expensive. However, if a
liers, most noticeably the trace of pedestrians and cars on the walk-PCA model is updated incrementally, the current model is usually
way appearing in the images of the eigenvectors. This is exactly sufficient to be used for outlier detection for new observation vec-
the limitation of conventional least-squares based PCA as the out-tors. This is the underlying principle of our proposed algorithm.
liers usually contribute more to the overall mean squared errorand  Estimating the parameters of a robust function is usually a
thus deviate the results from desired. On the other hand, the robustricky problem for robust M-estimation algorithms. In this work,
algorithm correctly captured the variation of the background. we have solved this problem by approximating the parameters di-
It can be further illustrated in Figure 3 which shows the values rectly from the current eigenvectors/eigenvalues, so that the com-
of the first dimension of the PCA vectors computed with the two putation of the robust algorithm is only slightly more than an in-
algorithms. It is observed that the non-robust algorithm presentscremental algorithm.
a fluctuant result because it struggled to compensate the large er- As an example, we demonstrate the performance of the algo-
ror from outliers by severely adjusting the values of model compo- rithm on dynamic background modelling, with a comparison to the
nent, especially when significant activities happened during framesconventional batch-mode PCA algorithm and the non-robust algo-
1000-1500, while the robust algorithm achieves a steady perfor-rithm. Improved results have been achieved in the experiments.

mance.

Fig. 2. The first three eigenvectors obtained from the robust al-
gorithm (upper row) and non-robust algorithm (lower row). The
intensity values have been normalised[@0255] for illustration
purpose.

‘M

I
Hil
Av—| |
|
|

I

1

‘ | iw‘Nr"‘M

i My i, ot \‘
{ A

A iy "\’“J"\’W’{VW‘ M Vf‘g’fﬂl’ t‘vm(ﬂ ,Wu\‘\.&uﬂx ”Mx‘\

) P‘CA vector
PCA vector

500 1000 1500 2000 2500 3000 500 000 1500

Frame Frame
@) (b)

Fig. 3. The first dimension of the PCA vector computed on the
same sequence in Figure 1 with robust analysis (a) and without

(b).
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4. CONCLUSIONS

Learning PCA incrementally and robustly is an interesting issue in
pattern recognition and image processing. However, this problem
has only been addressed separately in the previous studies, i.e. e
ther incrementally or robustly. In this work, we have developed an
incremental PCA algorithm, and extended it with efficient robust
analysis.

This algorithm can be readily applied to many large scale PCA
problems, especially dynamic problems with system status chang-
ing over time.
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