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Abstract- In this paper, a variance constrained filtering
problem is considered for systems with both non-Gaussian
noises and polytopic uncertainty. A novel filter is developed
to estimate the systems states based on the current observation
and known deterministic input signals. A free parameter is
introduced in the filter to handle the uncertain input matrix
in the known deterministic input term. In addition, unlike
the existing variance constrained filters, which are constructed
by the previous observation, the filter is formed from the
current observation. A time-varying linear matrix inequality
(LMI) approach is used to derive an upper bound of the
state estimation error variance. The optimal bound is obtained
by solving a convex optimisation problem via Semi-Definite
Programming (SDP) approach. Simulation results are provided
to demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Kalman filter has been widely applied in many engineering
and information systems, for instance, target tracking, image
processing, signal processing, communication and control
engineering [1]. However, filtering performance may dete-
riorate by use of standard Kalman filter when the underlying
systems contain parameter uncertainties and non-Gaussian
noises due to unmodelled dynamics, parameter variations,
model reduction, linearisation and external severe environ-
ment [25]. There are essentially two approaches to cope
with parameter uncertainties and/or non-Gaussian noises.
One is robust filtering and the other is H,, filtering. H,,
filtering method provides an energy bounded gain from the
noise inputs to the estimation error without the need for
knowledge of noise statistics [24]. In this filtering, process
and measurement noises are assumed to be arbitrary rather
than Gaussian processes. It has been proven that H,, filtering
is less sensitive to parameter uncertainties and non-Gaussian
noises, but its design is too conservative and there is no
provision to ensure that the variance of the state estimation
error lies within acceptable bounds [21], [24]. Robust filter-
ing has attempted to constrain the variance in spite of large
parameter uncertainties [6], [7], [11], [14], [15].
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There have been a number of literature to address the
robust filtering problems with variance constrained. The ro-
bust variance constrained filtering problems were considered
for linear systems with norm-bounded parameter uncertain-
ties [18], [23]. The filter was obtained by solving two Riccati-
like equations, where a scaling parameter will be searched to
find a feasible solution [5], [28]. In order to avoid the scaling
parameter search, an LMI approach has been applied to solve
for linear systems with both norm-bounded parameter uncer-
tainties and polytopic uncertainties [5], [16], [22]. Recently,
this problem has been extensively studied. For example,
the robust variance constrained filtering problem for uncer-
tain systems with multiplicative noises has been considered
in [19], [25]; the robust variance constrained filtering prob-
lem for uncertain systems with stochastic nonlinearities has
been studied in [26]; the robust variance constrained filtering
problem for uncertain systems with random sensor delays has
been solved in [27]; the robust variance constrained filtering
problem for uncertain systems with missing measurements
has been investigated in [20]. So far, to the best of our
knowledge, it is always assumed that the process noises
and measurement noises are Gaussian white ones in the
existing literature about robust variance constrained filtering.
However, in practical applications, the process noises and
measurement noises may be non-Gaussian [8], [9]. This
motivates us to investigate the robust variance constrained
filter design problems for non-Gaussian noises. Moreover, we
will also investigate filtering problem for uncertain systems
containing known deterministic input [10]. In deterministic
systems, the existence of a known deterministic input is of
no significance for the filtering problem, as the filter can be
designed to cancel the effect on the estimation error. When
there exist parameter uncertainties in systems, the known
deterministic input will produce an unknown bias in filtering
error [10]. In order to avoid the design difficulty, most of the
existing works in this area assume that the system is driven
only by noise processes without the presence of a known
deterministic input [5]-[7], [11], [14]-[16], [18]-[20], [22],
[23], [25]-[28].

In this paper, we will present several novel techniques to
tackle these two problems. We combine them as a robust
variance constrained filtering problem for uncertain system
with known deterministic input and non-Gaussian noises. In
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particular, a novel filter is proposed based on the current
observation and known deterministic input signals. A free
parameter is introduced in the filter to handle the uncer-
tain input matrix in the known deterministic input term.
In addition, unlike the existing variance constrained filters,
which are constructed by the previous observation, the filter
is formed from the current observation. An upper bound of
the state estimation error variance is derived from the system
equation and the filter equation, which is an inequality
containing non-Gaussian process and measurement noises
constraints. S-procedure and Schur complement techniques
are employed to combine all inequalities into a time-varying
LMI. The convex combination approach is applied to handle
the polytopic uncertainties in the LMI. Finally, the filtering
problem is transferred into a convex optimisation problem,
which is easily solved via SDP approach.
The remainder of this paper is organised as follows.

Section II discusses the problem of the robust variance
constrained filtering for polytopic uncertain discrete-time
systems with non-Gaussian noises and known deterministic
input, and Section III develops a novel algorithm to minimise
the upper bound of the state estimation error variance.
Section IV provides an illustrative example to demonstrate
the effectiveness of our algorithm. Conclusions are drawn in
Section V.

Notation. The notation X > Y (respectively, X > Y)
where X and Y are symmetric matrices, means that X- Y
is positive semi-definite (respectively, positive definite). The
superscript T stands for matrix transposition. The notation
trace(P) denotes the trace of P.

II. PROBLEM FORMULATION

Consider the following discrete-time polytopic uncertain
system:

Xk+1

Yk

Ak(a)Xk + Fk (a)uk + Bk (a)wk, (1)
Ckk + Dkvk, (2)

where Xk C R' is the system state, Uk C R' is the
known deterministic input, Yk C Rm is the measurement
output, Wk C kr is the process noise, and Vk C RP is the
measurement noise.

Wk and Vk are non-Gaussian noise signals at time step k,
which are assumed to satisfy the following constraints:

wTQ-1Wk < 1 (3)
v[Rk Vk < 1, (4)

where Qk Q/T > 0 and Rk = R/T > 0 are known
matrices with compatible dimensions. The initial state xo
is also assumed to satisfy a constraint:

(X0 -O)(Xo _0)T < p0, (5)

where x0 is an estimate of x0 which is assumed to be given,
and P0 = PR > 0 is a known matrix.
The matrices Ak (a), Bk (a) and Fk (a) are unknown time-

varying parameters with appropriate dimensions. We assume
that (Ak (a), Bk (a), Fk (a)) C Q, where Q is a convex
polyhedral set described by K vertices

Q {(Ak (a), Bk (a), Fk (a))
K K

Eovj(A(i),B(i) F(')),°1ci = l,ogvi >_ O},(6)
i=l i=l

where (A( B{(), F are known for all i = 1,2, ..., K.
Remark 1: As compared with the norm-bounded uncer-

tainty, the polytopic uncertainty considered in this paper is
more flexible. Polytopic uncertainty is probably the most
general way of capturing the structured uncertainty that may
affect the system parameters. It includes the well-known
interval parametric uncertainty [2].

In this paper, a novel filter based on the current observation
is developed for the uncertain system (1)-(2). The filter is
given in the following form:

Xk+l = Gkk + HUk + Lkyk+l, (7)

where Jk e 1R' is the state estimate of Xk, Gk, Hk and Lk
are the filter parameters to be determined.
Remark 2: The filter (7) has two remarkable advantages.

The first one is to use a design parameter Hk to cope with the
uncertain input matrix Fk (a), since we cannot simply choose
any matrix from the uncertain matrix Fk (a) like a fixed input
matrix Fk [10]. The second advantage is that the filter is
based on the current observation Yk+1 and makes full use
of the observation information. It is worth mentioning that
most literature published recently construct the filter based
on the previous observation Yk, for example, [5]-[7], [14]-
[16], [18], [19], [22], [23], [28], to name a few.
Our objective is first to design the filter (7) such that an

upper bound for the estimation error variance is guaranteed
for all unknown matrices (Ak (o), Bk (al), Fk (a)) C Q, and
then minimise such a bound in the sense of the matrix trace,
that is, to find the filter (7) and a sequence of positive-definite
matrices Pk+1 (0 < k < N -1) such that

min trace(Pk+l)
P+1, Gk, Hk, Lk

subject to

(8)

and the constraints (3) and (4). This problem will be referred
to as a robust variance constrained filter design problem.

III. ROBUST VARIANCE CONSTRAINED FILTER DESIGN

In this section, a robust variance constrained filter will
be designed for discrete-time polytopic uncertain systems
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subject to any non-Gaussian process noise and measurement
noise satisfying (3) and (4). We first consider the system (1)-
(2) with the known parameters (Ak, Bk, Ck, Dk, Fk). The
following theorem provides a design of the filter (7) by
solving the problem (8) for the deterministic system.

Theorem 1: For the deterministic system (1)-(2), the
solution to the optimisation problem (8) subject to (9) and
the constraints (3), (4) is obtained by solving the following
convex optimisation problem:

min trace(Pk+l) (10)
Pk+ >O, Gk, Lk, T1>0, T2>0, T3>0

subject to

Pk+l
L H(Xk, Uk)T diag(l- Ti

H(Xk, Uk)

T2 -T3, T1I, T2Qk1, T3Rk4l)

where

l(xk, Uk) (I -LkCk+1)Akxk -Gkxk- LkCk+lFkuk
(I -LkCk+1)AkEk (I -LkCk+1)Bk -LkDk+1 (12)

and Ek is a factorisation of Pk = EkEkj. Moreover, the
filter is given by

X+1 Gkk+Fuk+Lkyk±. (13)
For polytopic uncertain systems, we cannot employ The-

orem 1 to obtain an optimised upper bound of the state
estimation error variance and the corresponding filter. Now
we apply the convex combination approach proposed by [4],
[13], [22] to cope with polytopic uncertain systems.
Theorem 2: For the polytopic uncertain system (1)-(2)

which parameters reside in polytope Q (6) with given vertices

Ak(), B(i) and F(i) (i = 1, 2, ,K), K is the number of the
vertices, the solution to the optimisation problem (8) subject
to (9) and the constraints (3), (4) is obtained by solving the
following convex optimisation problem:

A(k), B(k) and F(k) are the matrices in (6) at the ith vertex

of the polytope.
Remark 3: We can see from Theorem 2 that the inequali-

ties (15) are linear to the variables Pk+1, Gk, Hk and Lk, Ti,
T2, T3, Hence, the optimisation problems (14) can be solved
by the existing SDP via interior-point approach.

IV. AN ILLUSTRATIVE EXAMPLE

Consider an uncertain system

Xk[1 ° -0.951 [X 1IU + 10 ]
+ 0.8 2 2

Yk [0.1 0.5 ]Xk+vk

Due to modelling errors, a is unknown but it belongs to the
known interval [amin, amax], where amin = -0.03 and
amax = 0.03.

In the simulation, wk and Vk are chosen as 0.5 sin(2k)
and 0.5 sin(30k), respectively. The input is set as Uk = 10.
The initial state and state estimate are assumed as xo =

[10 15]T and xo = [0 O]T, respectively. The initial variance

is assumed as P0 = 0 ]. For all k, Qk 0.25 and

Rk = 0.25.
The simulation results are obtained by solving the convex

optimisation problem (14)-(15) in Theorem 2 under Matlab
6.5 with YALMIP 3.0 and SeDuMi 1.1 [12]. Fig. 1 and
Fig. 2 show that the actual variances of the states stay

below their upper bounds. Therefore the proposed design
method provides an expected variance constraint. However.
due to the non-Gaussian noises, the upper bounds seem too

conservative. The actual state response x, and its estimate

i1 generated by the filter (18) are shown in Fig. 3, and the
actual state response x2 and its estimate x2 are plotted in
Fig. 4.

[l(I

min trace(Pk+l)
Pk+1>O, Gk, Hk, Lk,T1>O, T2>0, T3>O

subject to
Pk+1 () (4, Uk)
)(xkUk)T diag(l1-Ti T2-T3,T1I,T2Qk ,T3Rkl)

(14)

I >0
(15)

where

ri(i) ( Uk)^

-LkDk+1 ] .(16)

The variance
The upper bound

-0

°2 80 tr

Q-

._
C:
CZ 60 _

x 40 _

i(i) (Xk, Uk) = (I -LkCk+1)A(i)k- GkX - HkUk
+(I- LkCk±1)F( Uk (17)

for all i C {1, 2,... , K}, and Ek is a factorisation of Pk =
EkEk . Moreover, the filter is given by

Xk+l = Gkk + HUk + Lkyk+l.
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Fig. 1. The actual state xl estimation error variance and its upper bound.
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Fig. 2. The actual state X2 estimation error variance and its upper bound. Fig. 4. The true state X2 value and its estimate.

20

10 T

10

20

C

-20 -
-0
CZ

-30_

-40

-50 L
0 5 10 15 20 25 30

Time, k

The true state
The state estimation

35 40 45 50

Fig. 3. The true state xI value and its estimate.

V. CONCLUSIONS

In this paper, a variance constrained filtering problem has
been considered for discrete-time systems with polytopic
uncertainty and non-Gaussian noises. The proposed filter has
been constructed from the current observation and known
deterministic input signals. The time-varying LMI approach
has been applied to derive an upper bound of the state

estimation error variance which is optimised by solving a

convex optimisation problem SDP approach. An illustrative
example has demonstrated the feasibility of the proposed
filtering methods. The filtering algorithm is computationally
attractive for on-line systems with polytopic uncertainties and
non-Gaussian noises.
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