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(a) Small foveal region with (r0 = 5◦, r1 =
10◦, pmin = 0.01)

(b) Medium foveal region with (r0 = 10◦, r1 =
20◦, pmin = 0.05)

(c) Full Renderer

Figure 1: Images generated by using our foveated renderer showing the effect of different configurations for the foveal region, including an
image that was rendered by ray tracing every pixel.

Abstract
Head-mounted displays with dense pixel arrays used for virtual reality applications require high frame rates and low latency
rendering. This forms a challenging use case for any rendering approach. In addition to its ability of generating realistic images,
ray tracing offers a number of distinct advantages, but has been held back mainly by its performance. In this paper, we present
an approach that significantly improves image generation performance of ray tracing. This is done by combining foveated
rendering based on eye tracking with reprojection rendering using previous frames in order to drastically reduce the number
of new image samples per frame. To reproject samples a coarse geometry is reconstructed from a G-Buffer. Possible errors
introduced by this reprojection as well as parts that are critical to the perception are scheduled for resampling. Additionally,
a coarse color buffer is used to provide an initial image, refined smoothly by more samples were needed. Evaluations and user
tests show that our method achieves real-time frame rates, while visual differences compared to fully rendered images are hardly
perceivable. As a result, we can ray trace non-trivial static scenes for the Oculus DK2 HMD at 1182×1464 per eye within the
the VSync limits without perceived visual differences.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Ray Tracing, Virtual Reality;

1. Introduction

A long-envisioned dream in virtual reality is the ability to present
a real or imagined world in a compelling and convincing way. Ad-
vancements in display technologies and mass production have in-
troduced a range of high-quality head-mounted displays (HMDs)
with a wide field of view (FOV), gaining interest from researchers
in the field of virtual and augmented reality. Thereby, pixel den-
sities have dramatically increased over the two last decades (e.g.
Forte VFX 3D at 263× 480× 2 in 1997 and StarVR at 2560×
1440× 2 in 2016). However, providing the highest possible visual
quality at retinal resolution would require about 32k×24k = 768M
pixels for the full dynamic field of view of the human eye (200◦

horizontally and 150◦ vertically) [Hun15]. Rendering at such reso-
lutions interactively is far beyond reach of current and foreseeable
hardware and software solutions. Besides rendering convincing im-
agery for high pixel densities, high update rates are crucial for lim-
iting potential motion sickness. The combination of high pixel den-
sities and update rates are a major challenge when bringing image
synthesis algorithms to HMDs.

This challenge can be approached by a dynamic adaptation of
rendering based on the user’s gaze (foveated rendering). This tech-
nique exploits the limitations of the human eye by omitting details
in the peripheral visual area that are largely imperceptible, as only
our central vision affords high visual acuity. Thus, we can degrade
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rendering quality with increasing eccentricity (angular distance to
the user’s gaze in the image). The parts of the eye responsible for
central vision consist of the fovea (5.2◦ in diameter around the cen-
tral optical axis), parafovea (approximately 5.2◦ to 9◦) and peri-
fovea (approximately 9◦ to 17◦). Peripheral vision refers to the area
outside of central vision [Wan95]. While the fovea affords high vi-
sual acuity, it rapidly drops with increasing distance to this area as
the number of cones is subject to a hyperbolic falloff. In contrast,
the number of rods is decreasing slower, a property that leads to
a high sensitivity to spatial and temporal brightness and contrast
changes in the peripheral area that needs to be regarded when de-
veloping new techniques [LK87, GP98, MD07]. While other issues
like colors, patterns, shapes [LMR∗12], and motion [MN84] also
influence perception, we particularly looked at brightness and con-
trasts. Furthermore, visual attention has been shown to affect per-
ception as it can cause visual tunneling, where details outside the
point of fixation are largely ignored [Miu86].

While so far rendering for HMDs is mainly based on rasteriza-
tion because of performance considerations, ray tracing has sev-
eral advantages when it comes to stereo rendering, wide fields
of view, correcting chromatic aberrations and low latency render-
ing [Hun15]. In this work, we mainly focus on its ability of dis-
tributing samples freely on the screen and the inherent possibil-
ity of creating high-quality renderings, crucial to achieve a good
immersion. Yet, ray tracing has been mainly held back by its per-
formance as it is challenging to achieve the same performance as
rasterization without specific hardware acceleration. In this paper,
we introduce a novel ray-tracing-based foveated rendering system
capable of rendering high-quality images fast enough for modern
HMDs. We reduce the sample density by adapting the ray genera-
tion to the foveal receptor density. To improve perception, there is
a need for foveated rendering methods that reconstruct images at
a high quality to limit the detection of visual artifacts. Using our
approach, missing information from the sampling process can ei-
ther be reconstructed using a support image that is guaranteed to
sample the full scene using a lower uniform resolution or by using
information from reprojected frames to improve the quality of the
reconstructed final image. Note that there is no explicit handling
of view-dependent effects like reflections in our system, which is
generally challenging for reprojection-based methods. While the
quality of such effects may suffer due to the reprojection process,
the influence on the perceived quality in a system like ours still has
to be analyzed. Nonetheless, our benchmarks demonstrate the high
performance of our implementation when compared to standard ray
tracing. We also conducted a user study using an Oculus Rift DK2
equipped with an eye tracker. This made it possible to substanti-
ate the high visual quality provided by our method for static scenes
and revealed significant effects of the foveal region’s size and vi-
sual attention. The latter can greatly optimize foveated rendering
performance, as fewer samples need to be generated in the periph-
ery when users concentrate on a specific part of the scene.

In summary, we present an interactive foveated ray tracing sys-
tem for HMDs that includes the following contributions:

• A high-performance, adaptive sampling approach for ray tracing
driven by eye tracking and limitations of human perception.
• A reprojecting and merging process using a coarse approxima-

tion of the scene geometry to aid reconstruction of the final im-
age from sparse samples.
• A user-study showing that our method only has minimal impact

on the perceived quality when regarding foveal region limits. The
study also reveals a great potential of deploying visual attention
to further optimize foveated rendering techniques.

2. Related Work

In the following section, we provide an overview of the main fields
of research related to our system: Foveated rendering and tem-
poral rendering optimization techniques. Early work in foveated
rendering has exploited the perceptual deficits of the human vi-
sual system without eye tracking, making use of focus assump-
tions [FS93] or using models of visual attention, e.g. [YPG01].
Such systems, however, have limited applicability as the user’s ex-
act focus cannot be predicted. This requires eye tracking, which
has been deployed in general within the domain of 3D graphics
[ODH02], as well as specifically for gaze-contingent 2D displays
[RLMS03, Dc07]. An early foveated rendering system for volume
rendering was developed by [LW90], using a multi-resolution tech-
nique to alter the resolution and sampling rates. Other techniques
have been used for HMDs, e.g., in [WWH04], where geomet-
ric level-of-detail based on eccentricity is introduced. Another ap-
proach to foveated rendering was introduced in [GFD∗12]. Their
system employs raster graphics to render three layers with differ-
ent sampling rates blended into a final image. Rasterization only
allows for a fixed resolution, making a continuous change of the
sampling rate inefficient. However, in [SGEM16] a deferred shad-
ing system is introduced that creates a stochastic sampling pattern
to adaptively select the rasterized fragments for shading based on
the user’s gaze - shading is the most computationally demanding
part of modern image synthesis algorithms. Moreover, they also
point out the importance of contrast and brightness perception by
specifically shading samples with a high saliency and contrasts.

However, ray-based methods are better-suited for sampling the
adaptive patterns needed for foveated rendering not only limited to
shading. An approach introduced in [MD07] uses a precomputed
mesh specifying ray locations for sampling and increasing the sam-
pling density near object silhouettes and regions with high contrast.
However, their method cannot accelerate rendering and does not re-
project samples over time to improve image quality. One approach
to foveated ray tracing was presented in [FH14]. A precomputed
sampling pattern together with a kNN scheme is used to recon-
struct the image from sparse samples. However, the proposed sys-
tem still shows artifacts, does not consider the eye’s sensitivity to
contrasts, and a user study is missing. In contrast, we apply a tem-
poral caching and resampling scheme that enables us to cope with
increasing resolutions and improve the quality of the reconstruction
specifically for regions that expose high contrasts and silhouettes.
Finally, [PBNG15] adapt rendering by exploiting lens astigmatism
in HMDs, which leads to a decrease in image quality towards outer
regions. Their system deploys ray tracing on the CPU combined
with rasterization to reduce the sampling rate for areas outside the
lens center. However, the system does not adapt to the user’s gaze
or the visualized content.

To speed up rendering and perform image reconstruction we ex-
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ploit techniques that reuse data temporally. Early approaches in
this field include the RenderCache [WDP99] and the Holodeck
ray cache [WS99]. However, these techniques either require dense
sampling or higher order representations like Voronoi regions or
a spherical Delaunay mesh [Sim00] to reconstruct a full image,
which makes them computationally costly. To overcome this, the
Tapestry system [SS00], the Shading Cache [TPWG02], and the
system by Jeschke et al. [JW02] accumulate samples in a 3D mesh
and perform hardware-rasterization to reproject and reconstruct the
scene. However, such a mesh does not eliminate all the artifacts:
Geometric edges have to be reconstructed using a large number
of point samples. Adaptive Frameless rendering [DWWL05] uses
2D kD-trees for sample selection and a splatting process for image
reconstruction. Since the splat’s size rendered to the image must
be overestimated taking a neighborhood of splats into account, it
elicits artifacts and is computationally demanding for high sam-
ples counts. Despite sparsely sampling an image the reuse of sam-
ples for anti-aliasing by utilizing reprojection has been proposed
in [NSL∗07]. Especially important is the question of how sam-
ples can be combined temporally using a running estimate. Yang
et al. [YNS∗09] improved the mathematical models behind such an
estimate with the goal of reducing blur and temporal artifacts. A
popular image space post-processing technique for HMDs hiding
rendering latencies is Time Warping [MMB97]. The rendered im-
age is shifted and distorted just before display to compensate for
orientation changes. However, due to occlusion it only works for
rotations and does not help with translations.

3. Foveated Real-time Ray Tracing

In this section we describe the building blocks of our foveated ren-
dering system. An overview of the entire pipeline is presented in
Figure 2. The system’s core is a fast ray tracer based on NVIDIA
CUDA using an SBVH acceleration structure [SFD09] (Figure 2,
Block 2). It generates a sampling pattern from three parameters de-
scribing a foveal region to account for the user’s perception and
gaze (see Section 3.1). However, this foveated sampling process
results in a sparse image. This means that with increasing eccen-
tricities we get proportionally larger gaps between sampled pixels.
Presenting such an image to the user would not meet the perceptual
requirements, as the gaps would result in the sparse image’s bright-
ness being vastly different from the fully sampled image. Also,
strong temporal flickering would be present due to the stochastic
sampling process used to generate rays. Thus, it is necessary to
provide a method that improves image quality outside the foveal
region, generating a smooth image from the sparse samples. This
method has to meet certain requirements: While performance has
to be high enough to stay within VSync limits (13.3ms at 75Hz),
image quality has to suffice human perception.

Therefore, the ray tracer is coupled to a reprojection scheme
(Figure 2, Block 1), providing additional information to improve
image quality. First, a coarse depth mesh is reconstructed from the
scene and rendered from a new perspective used to reproject sam-
ples (see Section 3.2). Second, parts of the image that are poorly
reprojected or critical to peripheral vision are detected (see Sec-
tion 3.3). These are marked for resampling in an auxiliary buffer
referred to as resampling info.

Finally, information is stored inside a cache and a final image is
constructed (Figure 2, Block 3). Missing samples can either be re-
constructed by the reprojected previous frame or by low-resolution
color and G-buffers (support image and support G-buffer) which
are updated completely per frame (see Section 3.4). The resolution
of these buffers is only a fraction of the target resolution required
for the HMD. The support image contains a regular low-resolution
color image, while the support G-buffer contains the geometric nor-
mals and depth values that are later used to reconstruct the coarse
geometry for the next frame. An optional post-processing step (Fig-
ure 2, Block 4) can further improve image quality when stochas-
tic sampling processes are used. (see Section 3.5). Each of the
pipeline’s steps will be described in the following sections.

3.1. Ray Generation and Ray Tracing

In the beginning, a ray generation kernel is launched which creates
rays with a density proportional to a foveal falloff function. In ad-
dition, rays are generated for all pixels that are either marked in the
resampling info or belong to the support image’s resolution. The
generated rays are intersected with the scene geometry resulting
in a list of hit points and their respective pixel indices. The kernel
introduced by Aila and Laine [ALK12] is employed for ray traver-
sal, extended to speed up the evaluation of fully transparent alpha
values in the innermost loop.

After the intersections, a kernel computes shaded pixel colors
for the rays’ hit points. Shading currently supports Phong lighting
with mipmapping, ambient occlusion, point, and area light sources.
Besides computing the shaded pixel color, the irradiance from the
area light sources and an ambient occlusion factor for diffuse sur-
faces are stored in a separate light buffer. This way the running es-
timate, used to combine samples temporally, can be adapted to dif-
ferent rates for color and lighting information, allowing to reduce
noise introduced by sampling area light sources or ambient occlu-
sion. Furthermore, these irradiance values can be spatially reused
between neighboring pixels (see Section 3.5).

Visual acuity is subject to a hyperbolic falloff with increasing
eccentricity (distance to the visual center) [GFD∗12,SRJ11]. How-
ever, we chose to use a model with a linear falloff for the sampling
probability, as the increased sampling rate compared to a hyper-
bolic falloff allows for better motion perception in the periphery.
Also, a higher sampling rate reduces spatial as well as temporal
aliasing artifacts in these areas that are critical due to the high flick-
ering sensitivity at larger angular distances to the center of vision.
Moreover, a linear model also matches visual acuity well for small
angles [GFD∗12]. We refer to this model as the foveal function,
which is illustrated in Figure 3.

To achieve a linear behavior, ray generation is based on two user-
defined eccentricity thresholds: An inner threshold r0 and an outer
threshold r1, both given in degrees in the visual field. r0 determines
the size of the foveal region (i.e., the area rendered at full detail),
while r1 together with the minimum sampling probability pmin de-
termines the probability falloff beyond r0. All three values together
are referred to as a foveal region configuration (FRC). Pixels with
a larger eccentricity than r1 are only sampled with a probability of
pmin. Generally, pixels are only queued for sampling if ξq < p(q)
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Figure 2: Building blocks of our reprojection pipeline. Old color and auxiliary cache info are reprojected using a GL Reprojector (Block 1).
New rays are generated based on the user’s gaze and possible errors introduced by the reprojection are marked in a resampling info buffer.
The ray traced pixel values (Block 2) are blended using a temporal caching and merging scheme (Block 3). An optional Post-Processor is
used to smooth artifacts arising from stochastic sampling processes like ambient occlusion (Block 4).
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Figure 3: Probability p(q) for sampling a specific pixel q based on
its eccentricity and user-defined parameters r0, r1 and pmin. Despite
the hyperbolic falloff of cones towards outer regions a linear falloff
is employed to improve motion perception in the periphery and to
reduce spatial and temporal aliasing artifacts in these areas.

with ξq ∈ [0,1] being a uniformly distributed random number. If a
pixel is needed for the support image or is marked in the resampling
info, it is always scheduled for sampling.

3.2. Reprojection

After computing an array of newly shaded samples along with the
pixel indices for the current frame, our reconstruction relies on
information from the previous frame. As computing more sam-
ples is expensive, reusing information from previous frames helps
to increase performance while it can also improve image quality.
To create a perspective-correct reprojection of information from
the previous frame the scene geometry must be taken into ac-
count. Possible approaches include the reprojection methods in
[SS00,TPWG02], constructing and updating an irregular mesh with
potentially as many vertices as pixels at the highest quality level.
However, such approaches are costly. Ray tracing is fast (up to 200

Mrays/sec for traversal [ALK12]) and expensive methods do not
pay off. Hence, we decided to use a reprojection strategy based on a
coarse uniform mesh. Reprojection errors resulting from this geom-
etry are resolved by computing additional samples for these regions
instead of constructing a more precise mesh representation. The re-
projection process (Figure 2, Block 1) transforms the final color
image along with the final cache info to a new reprojected color
image and reprojected cache info buffer. The cache info buffers are
use to keep a state in the buffer that maintains how samples should
be combined temporally. As described in Section 3.4, this buffer is
a float4 texture that is reprojected along with the color informa-
tion. For each frame, a uniform mesh is generated from the support
G-Buffer’s by creating and displacing a uniform grid of vertices
matching the support G-Buffer’s resolution.

To reconstruct the scene geometry from the depth information
stored in the support G-buffer, the vertices are adjusted to these
image space depth values with a geometry shader. Afterwards, an
"unprojecting" step is performed using the model, view, and projec-
tion (MVP) matrices of the previous frame. These were also used
to create the support G-buffer. This yields the vertex positions in
world space representing the surface of the visible scene geome-
try from the previous frame. In the next step the vertices are pro-
jected to the new frame using the current MVP matrices. This mesh
is rasterized at the full rendering resolution, textured with the last
frame’s final color image and final cache info, finally yielding the
reprojected version of the previous frame.

Due to the changed perspective, each pixel’s footprint may cover
a couple of texels of the previous frame’s final color image. There-
fore, simple bilinear filtering of the texture is not sufficient and spe-
cial care has to be taken to filter this texture during rendering. As
computing a mipmap hierarchy along with anisotropic filtering for
the reprojected texture per frame based on the new pixel’s footprint
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is too expensive, another texture filtering method has to be used. We
chose to randomly sample the pixel footprint multiple times using a
normal distribution inside the fragment shader to compute the final
reprojected color. Another option would be to use MSAA and over-
sample each pixel’s extent. However, additional geometry samples
computed by MSAA are not necessary as they do not improve the
quality of the reprojection.

3.3. Handling Reprojection Errors

The uniform mesh employed for reprojection is not a perfect rep-
resentation of the actual scene geometry. This may lead to per-
ceptible errors. Possible causes for these errors include geome-
try newly entering the view frustum, disocclusions, and undersam-
pling [MMB97]. If a part of the scene has not been inside the view
frustum in the previous frame and sampling has not been triggered
by the foveal function, missing pixels are reconstructed from the
coarse support image (see Section 3.4). Disocclusions and under-
sampling can both cause strong visual artifacts to appear in the im-
age (see Figure 1a). This is caused by incorrectly or incompletely
reprojected information. The coarse sampling adds new correctly
computed samples on top, which also adds noise. Therefore, we
try to detect and create additional samples for those areas, conse-
quently improving perceived image quality.

First, to detect regions that need further sampling, the scene is
rendered using the coarse resolution matching the support image
and support G-Buffer using the reprojection procedure described
in Section 3.2. If there is a depth or luminance difference between
a pixel and its direct neighborhood in the reprojected image that
is larger than a user-defined threshold εdepth or εlum, a pixel is
marked for resampling in the resampling info. This process resem-
bles methods like SMAA [JESG12].

Depending on the chosen value for ε, it may happen that ge-
ometry that does not resemble the scene is used for reprojection
anyway, e.g., in case of relatively flat objects in front of a wall.
If such geometry is looked at frontally in frame t− 1, moving the
camera in frame t can result in undersampling artifacts because the
possibly wrongly closed geometry is reconstructed, connecting the
object to the wall. These objects might expose depth and luminance
distances well below the respective ε-thresholds, while the closed
geometry resulting from the reprojection process is actually wrong
[MMB97]. Such surfaces occur along the user’s viewing direction,
i.e., the angle between the surface normal and the observer is close
to 90◦. We detect such artifacts with an additional test looking at
the surface geometry. From the previous frame’s geometric normal
~n and camera orientation ~d, we compute edget = max{~n · ~d,0}. If
edget < ε, the pixel is marked for ray generation. Partial derivatives
of texture coordinates would be another measure to detect regions
that need sampling. They yield information about an observer’s an-
gle towards a potentially undersampled surface. However, we have
not found noticeable visual enhancements by using this information
as head movements are limited when wearing an HMD. In case of
complex geometry, a huge part of the image may be covered by pos-
sibly undetected and thus undersampled edges (see Figure 1a). This
necessitates a measure for sample quality accounting for a sample’s
age, as presented in the next section.

3.4. Cache Update and Merging

At this point, the current image consists of the previous frame’s re-
projected color image (see Figure 2). Newly shaded samples from
the ray tracing process have to be combined with this cache im-
age using a temporal blending method. This accumulation process
should be designed in a way that reduces the weight of older sam-
ples, as simply accumulating samples with equal weights does not
make sense for two reasons: First, due to the sparse sampling pro-
cess, each pixel may have been sampled last at a different point in
time. Second, assigning a high weight to old samples leads to vi-
sual artifacts like smearing on edges. However, at the same time
just using the new sample without considering cached values can
lead to disturbing temporal noise, especially because of the human
eye’s high peripheral flickering sensitivity. This is caused by cor-
rectly reprojected regions having temporally varying color values
due to the sampling process. To overcome this, we chose to apply a
smooth temporal blending process with a limit to the samples’ age.
This age is used to give higher weights to samples that should be
combined with old samples. While such a process reduces temporal
flickering, large-scale contrast for the visual periphery is preserved.

A sample’s color is written to the output if it belongs to the foveal
region, is part of the resampling process (marked in the resampling
info) or is written to a part of the image that did not contain any
reprojected color due to disocclusion or movement. Moreover, the
support image and support G-buffer are extracted as well (see Fig-
ure 2). For all other samples, geometry is accounted for by looking
at the depth difference between ct−1(q) and st(q) with ct(q) refer-
ring to a cached pixel with index q, cached at frame t, while st(q)
is the newly computed sample at time t for pixel index q. If this
value is above a threshold ε the reprojection contains an error, as
the ray has hit a part of the scene different from the cache. There-
fore, we take the newly generated sample without considering any-
thing from the cache. If the depth difference is below the threshold,
the cached color values at pixel index q can be combined with the
new sample s. The new pixel value s′t(q) is now computed using a
blending value αt (q):

s′t(q) = αt(q) · st(q)+(1−αt(q)) · st−1(q) (1)

To account for the issues mentioned above, αt(q) has to be adjusted
according to the number of samples accumulated at pixel position
q as well as the most recent update-time of this pixel. To do this,
α
′
t(q) is computed as:

α
′
t(q) =

1
ρt−1(q)+1

ρt(q) =
(

α
2
t +

(1−αt)
2

ρt−1(q)

)−1
,

where ρt(q) represents the number of samples that have been ac-
cumulated at pixel index q at frame t [YNS∗09]. To avoid infinite
accumulation of samples, k is the minimum possible weight for the
new sample to finally compute αt(q) = min{α′t ,k}.

In contrast to [YNS∗09], we do not sample each pixel in every
frame. Therefore, it is best to adapt k dynamically based on a sam-
ple’s age. If a pixel has been sampled a couple of frames ago, it has
undergone the potentially imprecise reprojection process multiple
times, especially since the camera is constantly moving when head
tracking is active. If the time span between the previous update and
the current time is high, it is better to account for the current sam-
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ple with a higher weight. Therefore, instead of a fixed k we use the
following exponential function:

kt(∆t) = min
{

exp
(

x0 +
∆t−1

tmax−1
(x1− x0)

)
,kmax

}
,

with x0 = lnkmin and x1 = lnkmax. It can be parameterized based
on a fixed interval [kmin,kmax] and the maximum time span tmax we
allow for accumulating samples. ∆t = t− ttouched is the difference
of the current frame index and the frame index a value has last been
touched and updated in the cache. tmax is the user specified maxi-
mum number of frames between two samples. Computing k this
way poses a trade-off: tmax should be chosen according to the re-
fresh rate and in a way that resolves possible artifacts as early as
possible by giving the new sample a higher weight. At the same
time, weighting older samples relatively high guarantees a smooth
temporal transition and reduces flickering. An additional cache in-
formation buffer is used to keep track of αt(q), ρt(q) and ttouched ,
stored per pixel along with the color image. However, to have these
estimates available in the next frame it is necessary to reproject this
buffer to the new perspective the same way as it is done for the
color values described in Section 3.2. Eventually, another kernel
is launched to merge the images with the support image (see Fig-
ure 2, Block 3). Since both the reprojection process and foveated
sampling can fail for parts that have not been in the view frustum
for frame t− 1, the support image is used to fill in all missing in-
formation.

3.5. Post-Processing

When rendering scenes with stochastic sampling processes (e.g.,
for area lights or ambient occlusion), the resampling process pre-
sented above leads to a discrepancy in convergence for recon-
structed and resampled image regions, as the latter do not consider
any cache information. This leads to a visual difference between
noise in these areas, appearing as high-frequency temporal flicker-
ing - almost exclusively caused by the stochastic processes. An op-
tional post-processing filter (see Figure 2, Block 4) can be applied
to resampled regions marked in the resampling info to reduce noise.
For each pixel q in such a region, the nearest reconstructed (i.e.,
non-resampled) neighbor along the horizontal and vertical axis on
the image plane is searched. The distance to this neighbor is then
used to create a search window which is randomly sampled n times.
This process then selects the closest reconstructed pixel r found
during the sampling step and applies the information stored in the
light buffer for r to the noisy pixel q.

4. Evaluation

Below, we describe the performance of our system and analyze the
perceived visual quality of our methods.

4.1. Benchmarks

The hardware configuration for the performance benchmarks con-
sisted of an Intel Core i7-3820 CPU, 64GiB of RAM and a NVIDIA
GeForce Titan X driving a Oculus Rift DK2. Using the Ocu-
lus SDK, we determined the FOV for a single eye and com-
puted the projection matrix. Rendering was done at a resolution

of 1182× 1464 per eye. Table 1 lists the benchmark results of fly-
throughs with 1000 frames each. We decided to use the parameters
(r0 = 10◦,r1 = 20◦, pmin = 0.05) to configure the user’s foveal re-
gion. As shown in Section 4.2, users were mostly unable to detect
any visual differences to the full renderer for this FRC. For the
benchmark process, the foveal region was statically positioned at
the image center. A resolution of 256× 318 was selected for the
support image and support G-buffer. This was chosen empirically
as it provided a good trade-off between speed and quality for the
used HMD and scenes. The four following test scenes were se-
lected: Sibenik, Sponza, Rungholt, Urban Sprawl (see Figure 5).
Each of the scenes was rendered with one point light source, an
area light source with 8 samples per pixel (spp), and ambient oc-
clusion using 16 spp.

Table 1 shows that the speed-up of our foveated ray tracer com-
pared to a full ray tracer scales well with increasing ray workloads,
as it reduces the number of rays. Hence, the smallest speed-up of
1.46 is achieved for rendering the scene Urban Sprawl with a sin-
gle point light, while the maximum speed-up of 4.18 is achieved
for Sponza with ambient occlusion (see Table 1). It also shows the
time required for reprojection, cache update, merging, and the post-
processing step. The latter are nearly constant for all scenarios, as
they are mainly tied to the rendering and support buffer resolutions.
The influence of the FRC on the rendering performance measured
in FPS for Sponza is illustrated in Figure 5.

Even though rasterization is inherently different from ray trac-
ing, we provide a few numbers for comparison to state-of-the-art
approaches employing this method. In [GFD∗12], rasterizing the
image in three layers with different resolutions yields a speedup
of 6.2 with only 7% of the pixels being rendered as the images
are strongly undersampled. To still achieve an acceptable visual
quality, this method needs to rely on specific anti-aliasing methods,
limiting its applicability [SGEM16]. Moreover, numbers are only
reported for a single scene. By using NVIDIAs Multi-Resolution
Shading [Ree15] a speedup of 1.3 to 2 is reported depending on the
configuration. Stengel et al. [SGEM16] report a speedup of 1.34
on average, with the number of shaded pixels being decreased by
65% for a resolution of 1280× 1440 pixels and 83% for twice as
many pixels. Our method has shown a reduction of sampled pix-
els by 79% on average for all benchmark scenes, with an average
speedup of 2.55. The ray-based approach [FH14] report similar
frame rates compared to our approach even though they use dif-
ferent and more GPUs rendering at a lower resolution. The per-
formance of our method could be further improved by generating
rays that directly match the image distortion of the HMD, making
it possible to cope with even higher resolutions and refresh rates.

4.2. User Study

The user study addressed the perceived visual quality of our
method. It was driven by the following research questions:

• RQ1: Can subjects differentiate between scenes with varying
graphical contexts, rendered with and without our foveated ren-
dering method?
• RQ2: Do modifications of the foveal region parameters in the ray

generation have an effect on the perceived visual quality?
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(a) Sponza (b) Rungholt (c) Tunnel_Geom

(d) Sibenik (e) Urban Sprawl (f) Tunnel_Maps

Figure 4: Scenes used for benchmarks and user studies of our implementations

Scene Type # of rays Re- Ray Tracing Cache Merge Post Total Time Speed-Up
full ours project full ours Update full ours Factor

Sibenik point light 3.46M 0.81M 1.41 10.74 3.85 0.64 0.84 0.00 10.74 6.74 1.59
75K Triangles area light (8spp) 15.57M 3.64M 1.51 47.96 14.80 0.67 0.85 0.33 47.96 18.36 2.61

Figure. 5a ao (16spp) 29.42M 6.88M 1.45 94.64 27.96 0.64 0.83 0.32 94.64 31.39 3.02
Sponza point light 3.46M 0.64M 1.41 13.93 4.43 0.58 0.84 0.00 13.93 7.26 1.92

154K Triangles area light (8spp) 15.54M 2.89M 1.44 81.61 20.07 0.58 0.83 0.24 81.61 23.17 3.52
Figure 5b ao (16spp) 29.36M 5.45M 1.43 179.01 39.79 0.58 0.83 0.24 179.01 42.87 4.18
Rungholt point light 2.90M 0.58M 1.38 9.51 3.54 0.59 0.83 0.00 9.51 6.34 1.50

6704K Triangles area light (8spp) 11.10M 2.25M 1.38 34.20 9.98 0.59 0.83 0.19 34.20 12.97 2.64
Figure 5c ao (16spp) 20.47M 4.17M 1.39 168.03 51.15 0.59 0.83 0.19 168.03 54.14 3.10

Urban Sprawl point light 3.06M 0.64M 1.37 8.97 3.33 0.60 0.83 0.00 8.97 6.12 1.46
773K Triangles area light (8spp) 12.34M 2.60M 1.36 29.67 8.68 0.60 0.83 0.28 29.67 11.75 2.52

Figure 4e ao (16spp) 22.95M 4.85M 1.39 110.11 30.02 0.60 0.83 0.29 110.11 33.13 3.32

Table 1: Times in ms for each stage of the pipeline in comparison to a full renderer showing the speed-up of our approach. Times and speed-
ups are computed for a medium sized foveal region with (r0 = 10◦, r1 = 20◦, pmin = 0.05) for a single eye with a resolution of 1182×1464
and no oversampling on an NVIDIA GeForce Titan X. For the chosen foveal region, users were mostly unable to detect any visual difference
to full rendering in the user study.

• RQ3: Does the fixation type have an effect on the perceived vi-
sual quality?

4.2.1. Experimental Procedure and Design

The experiment was conducted as a within-subject study [FH03],
employing a 4× 4× 3 full factorial design. Each participant com-
pleted 96 trials in randomized order, consisting of a full factorial
combination of four scenes {Sponza, Tunnel_geom, Tunnel_maps,
Rungholt} (see Figure 5), four FRCs {small, medium, large, full}
(described below) and three fixation types {fixed, moving, free}.
All conditions were presented twice. Full ray tracing was included
as the FRC full, representing our control group. Each trial consisted
of an 8-second-flight with one factor combination.

RQ1: We varied the test scenes to study the effect of graphical
contexts on the noticed visual differences (artifacts). The selection

of scenes was driven by perceptual differences of the peripheral vi-
sual field as opposed to central vision, including colors, patterns,
shapes [LMR∗12] and contrasts in near peripheral field [LK87].
Sponza represents the most real-world-like scene: While some dis-
continuities (and thus hard edges) are usually visible, the scene
also contains some smoother curves resembling real objects. Tun-
nel_geom contains a tunnel consisting of noisy, displaced geometry.
Depending on the point of view, this scene can contain both hard
edges and smooth, continuous surfaces. Tunnel_maps is a tunnel
textured with a checkerboard map and a noise texture. Rungholt is a
scene generated from a Minecraft map with many visible depth dis-
continuities, which can be challenging for our reprojection method.

RQ2: The FRCs were given by the following eccentricity thresh-
olds and minimum sampling probabilities: small (r0 = 5◦,r1 =
10◦, pmin = 0.01), medium (10◦,20◦,0.05), large (15◦,30◦,0.1)
and full (∞,∞,1). FRCs were determined by using the angular
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Figure 5: Influence of configuration of the foveal regions on FPS for the scene
Sponza, rendered with a point light source (a), an area light source with 8spp
(b) and with ambient occlusion with 16spp (c). MRays denotes the mean num-
ber of rays per frame. The scene was rendered at a resolution of 1182×1464
using a NVIDIA GeForce Titan X.
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Figure 6: Likert-scale ratings of perceived visual artifacts
for Small, Medium, Large, and Full foveal regions. While
small caused neutral ratings on average, ratings for medium
and large were not significantly different from full render-
ing (cf. Section 4.2.2, RQ1).

size of the fovea for r0 with a steep falloff for the smallest setting
and increasing the foveal region and minimum sampling probabil-
ity while reducing steepness for the other settings. The smallest
FRC was expected to yield visible artifacts for most participants,
as the foveal region used for rendering matched the fovea. The
medium and large FRC extended the foveal region to include the
parafovea and perifovea, respectively.

RQ3: Finally, while eye tracking determines a user’s focus point
in the scene (defining the foveal region), fixation may affect visual
attention, potentially leading to visual tunneling effects [Miu86].
We varied fixation types to trigger different levels of visual atten-
tion. The fixed focus mode contained a static fixation cross at the
image center to be focused for the entire trial. For the moving tar-
get mode, a set of paths across the image plane was generated. A
green sphere linearly moved along these paths, fitted to the accord-
ing scene depth to support the user’s ability to focus. Paths varied
in all trials except repetitions to avoid learning effects. The foveal
region for fixed focus and moving target was centered around the
fixation target. The moving target fixation mode was expected to
cause higher visual tunneling as the user had to concentrate on fol-
lowing the target. It was also selected to avoid the negative influ-
ence of the eye tracker’s inaccuracies (relatively low refresh rate,
inaccurate tracking towards outer display regions). Trials with free
focus fixation enabled the user to look around freely with the foveal
region following the user’s gaze.

The setup used for the user study differed from the benchmark
configuration. It comprised an Oculus Rift DK2 (SDK 0.8) on a
Windows 10 system including an Intel Xeon E5-2609 (2.4GHz),
and 64GiB of RAM. The DK2’s native refresh rate of 75Hz was
used as the baseline for our user study. As both the foveated ren-
dering and the OpenGL-based reprojection process had to be paral-
lelized in order to achieve this frame rate, it was necessary to deploy
two Quadro K6000 cards. These were required because the unavail-
ability of a Linux driver for the utilized eye tracker tied us to Win-
dows, which does not allow for multi-GPU rendering on NVIDIA’s
consumer cards. The Oculus was equipped with an SMI binocular

eye tracker running at 60Hz (asynchronous). The rendering resolu-
tion was equal to the benchmarks with one image being rendered
for each eye. With some minor optimizations, we achieved frame
rates of at least 75Hz for all scenes, including the final image warp-
ing to display them in the Oculus. However, all sequences used for
full ray tracing had to be pre-recorded (excluding any optimization
like reprojection), loaded at runtime, augmented with the specific
trial fixations and displayed at 75Hz.

After signing informed consent and receiving instructions, par-
ticipants were seated and equipped with the HMD. Prior to the main
experiment, six test trials of an alternative flight through Sponza
were shown, including the smallest FRC, full rendering and all fix-
ation types. After each main trial the participant rated if the shown
sequence was free of visual artifacts (Q1) as well as the level of
confidence for the given answer (Q2), both on a 7-point Likert scale
from strongly disagree (-3) to strongly agree (3).

4.2.2. Results and Discussion

15 subjects (10 male/5 female, all with academic background) aged
between 26 and 51 (M = 33, SD = 7.24), with normal or corrected-
to-normal vision participated in the user study. A multifactor analy-
sis of variance (ANOVA) [FH03] was performed on the data (1440
trials). We analyzed significant interactions and the observed main
effects with post-hoc t-tests using Holm’s method for p-value ad-
justment. Confidence values (Q2) were mostly high (M = 1.62,
SD = 1.14), with very small differences. Consequently, we do not
consider confidence in our analysis any further.

RQ1: Differentiation between foveated and non-foveated
rendering. Mostly, users cannot reliably differentiate between full
and foveated rendering. This is the case for foveal regions not
smaller than roughly 10◦, and scenes without too much high-
frequency geometry. Figure 7 shows responses for varying FRCs,
grouped by scenes. However, statistical data reveals that differenti-
ation depends significantly on all the test variables: FRC size, fixa-
tion mode and the displayed scene. While FRC shows a significant
main effect (F ≈ 30.54, p ≈ 0), there has also been strong inter-
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action between FRC and SCENE (F ≈ 3.09, p < 0.005). Hence,
we performed t-tests, which showed that significant differences be-
tween the medium, large, and full FRC were only present in the
scene Tunnel_Maps. All other scenes only showed significant dif-
ferences when the small FRC was involved. We mainly attribute
this to the regular rather extreme high-contrast checkerboard pat-
tern shown in Tunnel_Maps.

RQ2: The effect of foveal region scales. As noted (RQ1), if
the foveal region is not too small, users will hardly notice visual
artifacts for most scenes.Figure 6 shows the responses for vary-
ing FRCs, including the mean values and standard deviations. The
small FRC scored significantly lower, while medium and large
FRCs were almost identical regarding perceived visual artifacts.
The difference to full rendering was limited to a larger standard de-
viation. As Figure 7 illustrates, this can again be mainly attributed
to the artifacts visible in Tunnel_Maps.

RQ3: The effect of fixation types. Fixation types, associated
with different levels of visual attention, had a significant main ef-
fect (F = 3.46, p = 0.03) on the perceived visual quality. While
free and fixed modes showed nearly identical responses ((M =
0.43,SD = 1.89) and (M = 0.43,SD = 1.81)), the moving target
was rated significantly better (M = 0.99,SD = 1.63). Thus, fewer
visual artifacts were noticed with presumed higher visual attention
of the moving target, as users were likely less aware of details out-
side the focus area [Miu86]. This is highly interesting as it could
further reduce the sampling rate outside the foveal region - targeted
in future work. Furthermore, the foveal region matched the gaze
when the target was perfectly followed. We assume visual tunnel-
ing did not affect the other fixation modes, which made it easier to
spot artifacts in the peripheral.

As the eye tracking system suffers from inaccuracies in outer
image regions, we filtered the logged data used for analyzing the
tracking information to only include the region utilized by SMI’s
calibration method. This region extends to maximum eccentricities
of approximately 10.3◦ left/right and 11.68◦ up/down. The num-
bers were taken from the SMI SDK’s 9-point calibration method
and converted to angles. We analyzed angular differences between
the fixation point and the tracked gaze. Participants stayed closer to
the fixation point for the fixed mode (M = 0.31◦, SD = 0.4◦) than
for the moving target (M = 1.9◦, SD = 1.52◦). Keeping in mind
that Tunnel_Maps had the greatest amount of visible artifacts for
the participants, it is important to mention that the median angular
differences for Sponza, Tunnel_Geom and Rungholt were between
1.25◦ and 1.58◦, while for Tunnel_Maps a median difference of
2.24◦ was found. As this larger distance to the foveal region’s cen-
ter indicates that the gaze was closer to sparsely sampled regions,
it is one explanation for the relatively low Likert ratings for this
scene. There were no significant differences between angular dif-
ferences for varying FRCs. The median values over all scenes for
the four FRCs were all within [1.62◦,1.7◦] for the moving target
and [0.22◦,0.25◦] for the fixed mode.

5. Conclusion

In this paper, we presented a novel approach for foveated rendering
using adaptive ray tracing and reprojection from previous frames.
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Figure 7: Likert-scale ratings for Q1 (Has the shown sequence been
free of visual artifacts?) for all scenes grouped by foveal region
configurations. The percentages on the left and right represent the
fraction of all participants that had a tendency towards disagree and
agree, respectively. As clearly visible, the smallest foveal region
configuration revealed a significant amount of artifacts, while the
larger foveal regions were close to the full renderer in this regard.

Our method is well-suited for wide-FOV HMDs equipped with eye
tracking. Sparsely sampled image data is reprojected to new views
using a depth mesh generated from a low-resolution G-Buffer. The
influence of errors arising from reprojection or regions critical for
perception is lowered by an update strategy that allows for resam-
pling critical image regions incorporating the samples’ quality. Our
method enables the visualization of static scenes with millions of
triangles within the Oculus Rift DK2 at a refresh rate of 75Hz. The
benchmarks have shown significant performance gains, while the
user study revealed the perceived visual quality for even moder-
ately sized FRCs is almost on-par with full rendering. Anti-aliasing
is crucial to rendering for HMDs: Pixels are distributed over a large
FOV, making single pixels visible. Therefore, jagged edges and un-
dersampling may easily become visible. Our strategy is to shoot
more rays by jittering the ray positions over the pixels’ extent. To
improve the reprojected image’s quality and handle errors while
accounting for the user’s gaze, each pixel that is either part of the
foveal region or marked in the resampling info is sampled by shoot-
ing a ray. The results are combined using the running estimate. We
are curious to evaluate how our system performs with moving ob-
jects, highly glossy materials, and dynamic light sources, also in
the context of stochastic global illumination methods. In general,
strongly view-dependent effects do not perform well with repro-
jection techniques. However, ray tracing gives us the advantage of
being able to (re-)sample individual pixels efficiently. This could be
used to include view-dependent effects in the resampling process. It
has to be kept in mind that in extreme cases this could lead to a fully
sampled image, bringing performance below the necessary refresh
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rates. Moreover, we plan to dynamically alter the foveal falloff and
minimum sampling probability in the peripheral region, making
our system adaptive to the complexity of the visualized content. Fi-
nally, an interesting field for further research is frameless rendering:
The reprojection and rendering components could run in separate
threads, asynchronously generating/merging new samples and re-
solving reprojection errors. To conclude, we are confident that our
developed approach is an important step in the process of making
realistic real-time ray tracing suitable for head-mounted devices.
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