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Cytokine Therapy-Mediated
Neuroprotection in a Friedreich’s

Ataxia Mouse Model
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Objectives: Friedreich’s ataxia is a devastating neurological disease currently lacking any proven treatment. We stud-
ied the neuroprotective effects of the cytokines, granulocyte-colony stimulating factor (G-CSF) and stem cell factor
(SCF) in a humanized murine model of Friedreich’s ataxia.
Methods: Mice received monthly subcutaneous infusions of cytokines while also being assessed at monthly time
points using an extensive range of behavioral motor performance tests. After 6 months of treatment, neurophysio-
logical evaluation of both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed
for messenger RNA, protein, and histological analysis of the dorsal root ganglia, spinal cord, and cerebellum.
Results: Cytokine administration resulted in significant reversal of biochemical, neuropathological, neurophysiologi-
cal, and behavioural deficits associated with Friedreich’s ataxia. Both G-CSF and SCF had pronounced effects on
frataxin levels (the primary molecular defect in the pathogenesis of the disease) and a regulators of frataxin expres-
sion. Sustained improvements in motor coordination and locomotor activity were observed, even after onset of
neurological symptoms. Treatment also restored the duration of sensory nerve compound potentials. Improvements
in peripheral nerve conduction positively correlated with cytokine-induced increases in frataxin expression, providing
a link between increases in frataxin and neurophysiological function. Abrogation of disease-related pathology
was also evident, with reductions in inflammation/gliosis and increased neural stem cell numbers in areas of tissue
injury.
Interpretation: These experiments show that cytokines already clinically used in other conditions offer the prospect
of a novel, rapidly translatable, disease-modifying, and neuroprotective treatment for Friedreich’s ataxia.
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Friedreich’s ataxia, the commonest autosomal-recessive

ataxic condition, is characterized neuropathologically

by degeneration of large sensory neurons, the spinal

cord, and the deep cerebellar nuclei.1 Friedreich’s ataxia

patients inevitably acquire neurological disability, with

progressive ataxia, dysarthria, neuropathy, and pyramidal

weakness, as well as cardiac and endocrine disease.2 In

most cases, Friedreich’s ataxia is caused by homozygous

GAA.TTC trinucleotide repeat expansion within intron

1 of the FXN gene,3 causing transcriptional repression of

frataxin.4 Frataxin is an essential mitochondrial protein,

loss of which causes disrupted respiratory chain activity,

impaired cellular iron homeostasis, and oxidative stress,

leading to cell death in affected tissues.5–7

Currently, there are no treatments that can protect

nerves, promote nervous system regeneration, or slow
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disease progression.8 However, specific cytokines and

growth factors may show therapeutic potential in mediat-

ing nervous system injury and repair. Originally used

clinically for stimulating and mobilising specific subsets

of bone marrow stem and progenitor cell populations

preceding a peripheral blood stem cell harvest, the

agents, granulocyte-colony stimulating factor (G-CSF)

and stem cell factor (SCF),9,10 may also exhibit direct

protective and reparative effects within diseased tissues

and, in combination, show significant biological and

clinical synergy with each other.11 Therapeutically, G-

CSF and SCF are known to cross the blood–brain barri-

er,12 exert antiapoptotic effects on glial and/or neural

cells,13,14 stimulate neurogenesis and neurite out-

growth,15,16 and promote migration of endogenous neu-

ral progenitor cells.17 Furthermore, these agents promote

accelerated recovery in several animal models of neuro-

logical disease18 and are already in human clinical trials

for other neurological disorders.19 Here, we study the

therapeutic potential of the repeated subcutaneous

administration of both G-CSF and SCF in a humanized

murine Friedreich’s ataxia model. Using recognized cyto-

kine regimens for the mobilization of murine peripheral

blood hematopoietic stem cells (HSCs), we demonstrate

for the first time, major benefits in clinical, biochemical,

neurophysiological, and pathological parameters associat-

ed with the disease.

Materials and Methods

Experimental Design
The objectives of the study were to investigate, in a mouse

model of Friedreich’s ataxia (YG8R mice), the therapeutic

effects of cytokine administration (G-CSF/SCF) on disease

phenotype. Experimental protocols are described in Fig 1A.

Investigators were blinded to treatment group for behavioral

studies.

Animals
All animal experiments were performed in accord with the UK

Animals (Scientific Procedures) Act 1986 and approved by the

University of Bristol Animal Welfare and Ethical Review Body.

Fxntm1Mkn Tg(FXN)YG8Pook/J (YG8R) transgenic mice, which

carry a human genomic FXN transgene (on a murine frataxin

null background) containing expanded GAA repeats of 82 to

190 units within intron 1 of FXN, were used. Ataxic (strain no.

Fxntm1Mkn Tg(FXN)YG8Pook/J; stock no. 008398) were

purchased from The Jackson Laboratory (Bar Harbor, ME).

Control C57BL/6 VAF/Elite mice were provided by Charles

River Laboratories (Margate, UK). All mice were housed in a

pathogen-free facility, with free access to food and water.

Treatment
Cytokine doses were based on standard regimens for G-CSF

mobilization of peripheral blood HSCs. In humans, 5 to 10mg

kg/day of recombinant G-CSF is administered for 4 to 7 days

(British National Formulary; BNF20). Mobilizing doses of G-

CSF for murine HSCs is considerably higher than for humans

to achieve similar levels of mobilization,21 commonly 100 to

300 mg/kg/day is injected for 5 or more days.22–24 The rationale

to use cytokines G-CSF and SCF at a single fixed dosage

(200 mg/kg) was to allow comparisons to be made between the

effectiveness of the two cytokines when used alone.

Mice received subcutaneous injection of murine G-CSF

and/or SCF (both 200mg/kg; PeproTech, Rocky Hill, NJ) in

phosphate-buffered saline (PBS) once-daily for 5 consecutive

days. Treatments were repeated every 4 weeks. PBS alone was

administered as a vehicle control, during the same period. Bro-

modeoxyuridine (BrdU; 50mg/kg; Sigma-Aldrich, St. Louis,

MO) in PBS was also administered intraperitoneally once-daily

for 5 consecutive days (directly following growth factor infu-

sion) during the last treatment round.

Peripheral Blood Mononuclear Cell Counts
One hundred microliters of peripheral blood (PB) was har-

vested from the tail vein and suspended in PBS (pH 7.4)/ethyle-

nediaminetetraacetic acid (2mg/ml). Red cells were removed

using red cell lysis buffer, the remaining nucleated cell popula-

tion resuspended in PBS/3% fetal bovine serum and counted

using a hemocytometer.

Neurobehavioral Testing

BODY WEIGHT. Mouse body weights were recorded once-

monthly between 3 and 9 months of age using a digital scale.

ROTAROD. A digital rotarod, rod diameter 30mm, accelerat-

ing from 4 to 40rpm over 400 seconds was used (Ugo Basile

47600; Ugo Basile S.R.L., Gemonio, Italy). Mice were allowed

to stand on the slowly rotating (4rpm) rod for 30 seconds

before acceleration. Each month, mice were first trained on the

rotarod using three unrecorded trials with 15-minute intertrial

intervals. Six hours later, mice received four recorded trials with

15-minute intertrial intervals. All trials ended when the mouse

fell off the rotarod or after a maximum 400 seconds had

elapsed. The time that each mouse maintained its balance on

the rotating rod was measured as the latency to fall.

GRIP STRENGTH. A 2.5-Newton meter was used to assess

forelimb grip strength. Mice were held by the base of the tail

and allowed to grasp a metal bar attached to the meter. The

peak force with which mice pulled the bar horizontally was

measured in three trials with a rest period of 1 minute between

each trial.

BAR HANG TEST. Mice were placed with their forepaws

grasping the middle of a 200-mm horizontal wooden bar

(4mm thick), secured to a vertical post, elevated 300mm from

a flat surface. The ability to grip the bar was scored as follow-

ing: 0 unable to remain on bar; 1, hangs by both forepaws; 2,

attempts to climb onto bar; 3, both forepaws and one or both

hindpaws around bar; 4, four paws and tail around bar, with
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lateral movement; and 5, escape. The score was measured in

three trials with a rest period of 5 minutes between each trial.

STRING TEST. Mice were placed with their forepaws grasping

the middle of a taut 1-m horizontal rope (4mm thick), sus-

pended between two vertical supports, elevated 300mm from a

flat surface. The time taken for each mouse to reach either end

of the rope was measured. Trials ended when the mouse fell off

the rope or after a maximum 60 seconds had elapsed. Latency

was measured in three trials with a rest period of 5 minutes

between each trial.

BEAM-WALK TEST. The test was carried out using a wooden

beam 900mm long, with an external diameter of 10mm.

Within a darkened room, the beam was placed between two

platforms sloping up from 300 to 600mm above the bench sur-

face with the lower end mounted on a narrow support with a

60-W lamp, while a darkened safety platform was located at

the other end of the beam, in which the mouse could escape.

Performance on the beam was quantified by measuring the

time it took the mouse to traverse the beam and enter the safe-

ty platform. Latency was measured with a rest period of 5

minutes between each trial.

OPEN FIELD. Within a darkened room, mice were placed

into a 3 3 3 gridded (300 3 300mm size) clear Perspex box

with 150-mm-high walls. A 60-W lamp illuminated the arena.

The total number of grid squares entered, the frequency of

FIGURE 1: Neurological deficits in YG8R mice that carry a human genomic FXN transgene containing expanded GAA repeats of
82 to 190 units within intron 1 of FXN. (A) Experimental protocol using wild-type controls (WT) and YG8R mice to investigate the
effects of cytokine administration on disease phenotype. Mice received monthly infusions of cytokines (red arrows) while also
being assessed at monthly time points using an extensive range of behavioral performance tests. Bromodeoxyuridine was also
administered during the last round of cytokine treatment (blue arrow). At 9 months of age, neurophysiological evaluation of
both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed for mRNA, protein, and histologi-
cal analysis. Comparisons between WT-control and untreated YG8R mice: longitudinal results for (B) weight; (C–G) motor perfor-
mance; and (H) locomotor performance (open field test) in mice from 3 to 9 months of age. Repeated measures two-way analysis
of variance was applied for all behavioral studies. *p < 0.05;**p < 0.01; ***p < 0.001; values represent means 6 standard error of
the mean. For all tests, n 5 10 (5 female and 5 male) per genotype. mRNA 5 messenger RNA; ns 5 not significant.

ANNALS of Neurology

214 Volume , No.



central square entered, and the total number of hindpaw rear-

ings by each mouse over a period of 5 minutes was recorded.

Scores were measured with a rest period of 30 minutes between

each trial.

Gait Analysis
To obtain footprints, hind- and forepaws of the mice were coat-

ed with red and green nontoxic food coloring, respectively. The

animals were then allowed to walk along a 500-mm-long, 55-

mm-wide runway with 100-mm-high walls (lit at the entrance

with a 60-W lamp), with white paper lining the floor, into a

darkened enclosed escape box. All mice received both one train-

ing and trial run. A fresh sheet of paper was placed on the floor

of the runway for each run. The footprint patterns of the hind-

and forepaws were analyzed for four-step parameters (all mea-

sured in millimeters): stride length; stance length; intra-step dis-

tance; and overlap distance (shown in Fig 2).

Neurophysiology
Animals were anesthetized with ketamine (100mg/kg; Vetalar;

Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO) and

xylazine (10mg/kg; Rompun; Bayer Plc, Newbury, UK) intra-

peritoneally. Depth of anesthesia was regularly assessed by a

paw pinch to monitor reflex muscle tone, and supplementary

doses were administered as required. Core body temperature

was maintained at 378C by a heated blanket.

TAIL NERVE CONDUCTION STUDIES. Assessment of the

conduction velocity of sensory and motor fibers was performed

by stimulating the distal and proximal parts of the tail, respec-

tively, and recording evoked responses.25,26 For stimulation of

the sensory nerves, two uninsulated needles with a separation of

approximately 5mm were inserted at the tip of the tail with the

cathode. The cathode was the most proximal of the needles to

the base of the tail. Bipolar recordings were made using needle

electrodes inserted approximately 20 (position A) and 40mm

(position B) from the cathode. The reference electrode was

inserted above the base of the tail. For stimulation of motor

nerves, the same electrode positions were used except that the

electrodes in the tip of the tail were used to record the

responses and stimulation delivered at positions A and B.

Electrical stimulation consisted of constant current square

pulses of 0.2ms duration delivered every 3 seconds. Recordings

were made with a stimulus intensity 33 threshold to evoke a

response. Nerve compound potentials were amplified (31,000),

bandpass filtered (5Hz–5kHz) and digitized online using a

Cambridge Electronic Design (CED, Cambridge, UK) Micro

1401 analog-to-digital converter and Spike2 software (CED).

Latency of responses was taken from stimulus onset time to the

beginning of the potential as well as to the peak. The distance

between the two recording sites was measured with a calliper

and the sensory and motor nerve conductions calculated by

dividing the distance by the difference in latencies of the proxi-

mal and distal recording sites. For each animal analysis of sen-

sory and motor conduction, velocities and nerve volley duration

was based on an average of 10 trials.

Tissue Processing
Mice were sacrificed and tissues for both proteomic and geno-

mic analyses were dissected, immediately snap-frozen in liquid

nitrogen, and stored at –80 �C until use. Frozen tissue was then

FIGURE 2: YG8R mice show gait abnormalities. Comparisons
between WT-control and untreated YG8R mice: (A) footprint
(gait) analysis and (B) representative footprint traces in mice
9 months of age. The unpaired t test was applied for all
analysis. *p < 0.05; **p < 0.01; ***p < 0.001; values represent
means 6 standard error of the mean. For all tests, n 5 10
(5 female and 5 male) per genotype. WT 5 wild type.
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thawed and homogenized on ice by use of the PARIS kit

(Ambion, Cambridge, UK) and a protease and phosphatase

inhibitor cocktail (1:100; Fisher Scientific UK Ltd., Loughbor-

ough, UK).

For histological analyses, mice were anesthetized by intra-

peritoneal injection of Euthatal and perfused with PBS followed

by 4% paraformaldehyde (PFA) in PBS. Brains and spinal cords

were dissected and placed in 4% PFA in PBS for 24 hours at

48C and subsequently embedded in paraffin for sectioning on a

rotary microtome (Leica LM2135; Leica Microsystems, Buffalo

Grove, IL) and mounting on glass slides.

Gene Expression Analysis: Quantitative
Polymerase Chain Reaction
Total RNA was extracted from tissue lysates on ice using the

PARIS kit (Ambion), according to manufacturer’s instructions,

and treated with DNase I recombinant (Roche Diagnostics,

Indianapolic, IN)/MgCl2 solution (Bioline, London, UK). All

RNA samples were quantified using a Qubit Fluorometer and

Quant-iT RNA assay kit (Invitrogen, Paisley, UK), according to

manufacturer instructions. RNA was reverse transcribed to pro-

duce complementary DNA (cDNA) using the High Capacity

cDNA Kit (Applied Biosystems, Foster City, CA) and quantita-

tive polymerase chain reaction (qPCR) performed using Taq-

Man Fast Advanced Master Mix (Applied Biosciences, Paisley)

and the StepOnePlus Real-Time PCR System (Applied Biosys-

tems, UK) with primers for Epas1 (Mm01236112_m1), FXN

(Hs00175940_m1), Srf (Mm00491032_m1), Tfap2a

(Mm00495574_m1), and Trp53 (Mm01731290_g1; TaqMan

MGB probe, FAM dye-labeled; Applied Biosystems, UK). Rela-

tive gene expression (relative quantities [RQ] value) was calcu-

lated using the 2-DDCt method with both Beta Actin (Actb;

Mm00607939_s1) and NeuN (Rbfox3; Mm01248771_m1)

used as housekeeping genes.

Protein Analysis
The Qubit Fluorometer and Quant-iT protein assay kit (Invi-

trogen, UK) was used to quantify the concentration of total

protein within each tissue homogenate. Frataxin levels were

measured using the Frataxin Human SimpleStep enzyme-linked

immunosorbent assay (ELISA) kit (Abcam), and enzyme activi-

ty of Aconitase was determined using the Aconitase assay kit

(Cayman Chemical, Ann Arbor, MI).

For further quantitative protein analysis, immunodot

blotting was carried out using the Bio-Dot Microfiltration man-

ifold system (Bio-Rad Laboratories, Hercules, CA). Protein

homogenates were transferred to the nitrocellulose membrane

using gravity filtration, blocked using 5% bovine serum albu-

min, before incubation with the following primary antibodies:

catalase (Abcam; ab16731 1:5000); glutathione peroxidase 1

(GPX1; 1:5,000; ab22604; Abcam); 4-hydroxynonenal (4-

HNE; 1:6,000; ab48506; Abcam); nuclear factor E2-related fac-

tor 2 (Nrf2; 1:2,000; sc-722; Santa Cruz Biotechnology, Santa

Cruz, CA); peroxisome proliferator-activated receptor-gamma

coactivator 1 alpha (PGC-1a; 1:2,000; sc-13067; Santa Cruz

Biotechnology); neuronal nuclear antigen (NeuN; 1:4,000;

ab177487; Abcam); superoxide dismutase 1 (SOD1; 1:5,000;

ab16831; Abcam); and superoxide dismutase 2 (SOD2;

1:20,000; ab16956; Abcam). Immunoreactivity was detected

using horseradish peroxidase–conjugated goat antimouse immu-

noglobulin G (IgG; 1:5,000; ab6789; Abcam) or antirabbit IgG

(1:3,000; ab6721; Abcam) secondary antibodies. Protein expres-

sion was visualized using a chemiluminescence EZ-ECL kit in

conjunction with a Bio-Rad Universal III Bioplex imager. Den-

sitometric analysis of protein expression was performed using

Image Lab software (version 5.0; Bio-Rad).

IMMUNOHISTOCHEMISTRY AND IMAGING. Mounted tis-

sue sections were deparaffinized, rehydrated, and washed with

PBS. For antigen-exposing pretreatment, sections were incubat-

ed with boiling 0.01M of sodium citrate buffer (pH 6.0).

Immunohistochemical staining with 3,3’;-diaminobenzidine has

been described previously.27 For immunofluorescent labeling,

nonspecific binding was blocked with 10% normal goat serum

diluted in PBS containing 0.1% Triton. Sections were incubat-

ed at 48C overnight with primary antibodies to 4-HNE (1:200;

ab48506; Abcam), beta-3 tubulin (1:250; ab78078; Abcam),

BrdU (B2531; Sigma-Aldrich), Calbindin-D28K (1:500;

C2724; Sigma-Aldrich), glutamate decarboxylase (GAD;

1:1,000; ab11070; Abcam), glial fibrillary acidic protein

(GFAP; 1:200; ab33922; Abcam), myelin basic protein (MBP;

1:100; MCA4095; AbD Serotec, Kidlington, UK), NeuN

(ab177487 [1:500] and ab104224 [1:500]; Abcam), Nestin

(1:200; 556309; BD Biosciences, San Jose, CA), OX42 (1:100;

ab1211; Abcam), S100 (1:200; MAB079; Milipore, Billerica,

MA), and S100 (1:200; Z0311; Dako, Carpinteria, CA). Sec-

tions were washed in PBS and incubated for 45 minutes in the

dark with Alexa Fluor 488/555, goat antimouse (1:500), or

Alexa Fluor 488/555, goat antirabbit (1:500; Invitrogen, UK)

before being mounted in VECTASHIELD medium containing

the nuclear dye, 40,6-diamidino-2-phenylindole (DAPI; H-

1200; Vector Laboratories). For BrdU labeling, sections were

incubated at 378C in 2N of HCl for 30 mins followed by

0.1% Trypsin for 20 minutes before blocking.

Confocal analysis was performed using either a Leica

SP5-AOBS confocal laser scanning microscope attached to a

Leica DM I6000 inverted epifluorescence microscope (Leica

Microsystems) or a Nikon C1 confocal microscope (Nikon,

Tokyo, Japan) and EZ viewer software. All Z-stack and three-

dimensional (3D) imaging was created using both Leica Appli-

cation Suite Advanced Fluorescence software and Volocity 3D

image software (PerkinElmer, Waltham, MA). For light imag-

ing, images were acquired using an Olympus IX70 microscope

(Olympus, Tokyo, Japan) coupled with Image-Pro Plus

software.

Histological Staining
For histological assessment, tissues were sectioned, deparaffi-

nated, rehydrated, and stained with hematoxylin and eosin

(H&E; visualisation of dorsal root ganglia [DRG] vacuoles) or

Luxol fast blue/cresyl violet (visualisation of myelin).
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Cell Quantification
At least four independent tissue samples from each group were

included in the analyses. All cells were counted within random-

ly assigned set areas within the DRG, spinal cord, and cerebel-

lar dentate nucleus. For spinal cord sections, representative

samples of cervical, thoracic, and lumbar were all analyzed.

DRG Vacuoles
Each section was scanned across the entire cross-sectional area

of the DRG for neuronal cell bodies containing either nuclear

and/or cytoplasmic vacuoles. A minimum of 400 DRG neurons

from each mouse was examined, allowing for the determination

of the frequency of vacuolated cells.

NEURONAL CELL SIZE. To quantify changes in neuronal

size, the cross-sectional diameter of a nucleated cell soma was

measured in each cell using ImageJ software (National Institutes

of Health [NHI], Bethesda, MD). Neurons were identified by

either beta-3 tubulin (cerebellar dentate nucleus) or NeuN/

H&E (DRG).

Statistical Analysis
The analysis was performed using GraphPad Prism software

(GraphPad Software Inc., San Diego, CA. For all tests, values

of p< 0.05 were considered statistically significant. Statistical

tests were all two-sided. At least five independent tissue samples

or mice from each group were included in the analyses. Data

between two groups were analyzed using either unpaired t tests

or Mann–Whitney U tests. Statistical comparisons for over two

groups were analyzed using either Friedman’s test or one- or

two-way analysis of variance with post-hoc testing between

groups where appropriate (as indicated in figure legends).

Where possible, data are represented as mean 6 standard error

of the mean, or for qPCR data geometric mean 6 95% confi-

dence intervals are stated.

Results

To investigate G-CSF/SCF administration, we used 3-

month Fxntm1Mkn Tg(FXN)YG8Pook/J (YG8R) transgen-

ic mice, which carry a human genomic FXN transgene

(on a murine frataxin null background) containing

expanded GAA repeats within intron 1 of FXN. Mice are

frataxin-deficient and develop progressive neurodegenera-

tion and cardiac pathology.28,29 Because of the phenotyp-

ic similarity between C57BL/6 and Y47R mice (Y47R

mice carry the human FXN transgene with normal-sized

GAA repeats), C57BL/6 mice were used as healthy con-

trols.29 Before any therapeutic intervention, neurological

deficits were already apparent in the YG8R mice com-

pared to age-matched wild-type (WT) controls. These

deficits in the YG8R mice became more prominent with

increasing age (Figs 1C–H and Fig 2).

FIGURE 3: Treatment with G-CSF and/or SCF improves both motor and locomotor performance in YG8R mice. (A) The peripheral
blood MNC counts of WT control and YG8R mice subcutaneously injected with G-CSF and/or SCF dissolved in PBS (200lg/kg
body weight daily for 5 consecutive days). Longitudinal results for (B) weight; (C–G) motor performance; (H) locomotor perfor-
mance (open field test); and (I) gait analysis in YG8R mice treated with G-CSF and/or SCF from 3 to 9 months of age. All statistical
comparisons are versus YG8R mice using either the unpaired t test, one-way or repeated measures two-way analysis of variance,
followed by Dunnett’s multiple comparison test. *p < 0.05; **p < 0.01; ***p < 0.001; values represent means 6 standard error of the
mean. For all neurobehavioral tests, n 5 10 (5 female and 5 male) per genotype. G-CSF 5 granulocyte colony-stimulating factor;
MNC 5 mononuclear cell; ns 5 not significant; PBS 5 phosphate-buffered saline; SCF 5 stem cell factor; WT 5 wild type.
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G-CSF and SCF Improve Both Motor and
Locomotor Performance in YG8R Mice
YG8R transgenic mice were subcutaneously injected with

PBS (untreated controls) or G-CSF and/or SCF dissolved

in PBS (daily for 5 consecutive days) monthly for 6 con-

secutive months (Fig 1A). For the duration of the study,

no observable side effects in the mice were noted post-G-

CSF and/or -SCF administration, weights remained con-

sistent/normal (Fig 3B), and all mice (n 5 50) completed

the study. Combined G-CSF/SCF increased peripheral

blood mononuclear cell (MNC) counts approximately 8-

fold and was a more effective mobilizing regimen com-

pared to administration of single agents (Fig 3A).

Motor coordination and locomotor activity in

YG8R and control mice were assessed monthly. Signifi-

cantly, after 6 months of G-CSF and/or SCF administra-

tion, improvements were observed in the majority of

motor coordination and locomotor activities tested (Fig

3C–I). Performances were independent of changes in

body mass (Fig 3B).

G-CSF and SCF Increase Frataxin Messenger
RNA and Protein Expression
Transcriptional repression of FXN is the primary molecu-

lar event in the pathogenesis of Friedreich’s ataxia.3,4 To

explore potential neuroprotective mechanisms of G-CSF

and SCF, we measured frataxin messenger RNA (mRNA)

levels in cerebellum and spinal cord of YG8R mice (aged

9 months) 24 hours postinjection of cytokines. FXN

mRNA levels were significantly amplified following treat-

ment, with G-CSF or G-CSF/SCF (cerebellum) and G-

CSF/SCF (spinal cord) having the most pronounced

FIGURE 4: Both frataxin and regulatory factors implicated in
controlling frataxin transcription are elevated in the cerebel-
lum and spinal cord of YG8R mice treated with G-CSF and/
or SCF. (A) A schematic of the 5’; end of the human frataxin
(FXN) gene showing approximate locations of the binding
sites (yellow bars) for HIF-2A, SRF, TFAP2A, and p53 in
human or murine cells. The locations of the promotor (PR),
Exon1, Exon2, and Intron1 regions are depicted. Different
transcription start sites (TSS1 and TSS2) are shown
upstream of Exon1, which holds the ATG translation start
site. The directions of transcription for FXN (red arrows)
and FXN antisense transcript (FAST-1; dashed black arrow)
are shown. The red triangle indicates the site of the trinucle-
otide GAA repeat expansion within intron 1 of FXN gene of
patients with Friedreich’s ataxia. The relative (B) mRNA and
protein expression levels of frataxin within the cerebellum
and spinal cord of YG8R mice (normalized to NeuN or b

actin); (C) mRNA expression levels of transcription factors
implicated in controlling frataxin expression Epas1, Srf,
Tfap2a, and Trp53 (normalized to NeuN). (D) Correlation
and linear regression analysis of FXN and Epas1 mRNA lev-
els (normalized to NeuN) in the spinal cord and cerebellum
of treated YG8R mice (lines of best fit and 95% confidence
interval [CI] are depicted); r 5 Spearman’s correlation coeffi-
cient. All statistical comparisons are versus YG8R mice.
Comparisons between control and untreated YG8R mice
were analyzed using unpaired t tests or Mann–Whitney U
tests. For all other analyses, either one-way analysis of vari-
ance followed by Dunnett’s multiple comparison test or
Kruskal-Wallis followed by Dunn’s multiple comparison test
was applied. *p < 0.05; **p < 0.01; ***p < 0.001. For mRNA
and protein expression, values represent the geometric
means 6 95% CI and means 6 standard error of the mean,
respectively, relative to values in untreated YG8R mice. For
all tests, n 5 4 or 5 per genotype. mRNA 5 messenger RNA;
NeuN 5 neuronal nuclear antigen; RQ 5 relative quantities.
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effects (Fig 4B). Notably, in all cases, increases in frataxin

mRNA expression were more prominent using the

neuronal-specific marker, NeuN, housekeeping gene

comparator, suggesting that the treatments, at least in

part, potentiate increases in neuronal frataxin.

Transcriptional repression of FXN is thought to

result from reduced accessibility of transcriptional regula-

tory factors to the promoter region caused by the trinu-

cleotide repeat expansion,30 and various regulatory

factors binding close to the FXN gene locus are implicat-

ed31–33 (Fig 4A). Of these, we found that tumor protein

p53 (p53; encoded by Trp53), transcription factor AP-2

alpha (TFAP2A; encoded by Tfap2a), serum response

factor (SRF; encoded by Srf ), and hypoxia-inducible fac-

tor-2alpha (HIF-2A; encoded by Epas1) were increased

following cytokine administration (Fig 4C). Of the regu-

latory factors tested, only Epas1 and Trp53 were upregu-

lated in both cerebellum and spinal cord in response to

cytokine administration; and of these, only Epas1 expres-

sion in treated mice correlated with respective FXN

expression (Fig 4D).

We also showed marked increases in frataxin pro-

tein expression within the spinal cord, and to a lesser

extent in the cerebellum, with G-CSF or G-CSF/SCF

administration (using a human-specific frataxin ELISA,

as with qPCR analysis, did not allow comparisons

between the “human” frataxin levels within YG8R mice

and control mouse frataxin levels; Fig 4B).

Frataxin deficiency results in increased oxidative

stress and impaired recruitment of antioxidant defences.34

In line with previous studies YG8R mice had reduced pro-

tein levels of PGC-1a and Nrf2 in either the spinal cord

and/or cerebellum.35,36 This was associated with global

reductions in expression of antioxidant enzymes and enzy-

matic activity of the iron-sulphur protein aconitase within

the cerebellum28 (Table). Untreated YG8R mice also

showed increases in the lipid peroxidation product, 4-

HNE, within the cerebellum and spinal cord (see Table).

Administration of cytokines led to restoration of aco-

nitase activity in cerebellum and spinal cord to, or beyond,

levels observed in WT control mice. Similarly, there were

increases in levels of PGC-1a and Nrf2 protein expression

with associated elevations in SOD1 and SOD2, catalase,

and GPX1. Finally, consistent with cytokines facilitating

redox homeostasis, in cerebellum and spinal cord, reduc-

tions in 4-HNE were also apparent with combined

administration of G-CSF and SCF (see Table).

G-CSF and SCF Improve Nerve Conduction
Given that Friedreich’s ataxia patients exhibit abnormali-

ties in nerve conduction,37 neurophysiological evaluation

of sensory and motor nerve conduction was performed.

Electrophysiological recordings were obtained from the

tail nerves of WT controls, untreated YG8R mice, and

YG8R mice treated with combined G-CSF/SCF (Fig

5A–D). There was no statistical difference in the sensory

or motor conduction velocities among all three groups

regardless of whether the peak (Fig 5C) or onset latency

was used. However, duration of the sensory compound

nerve potential in untreated YG8R mice was significantly

longer than that of WT controls, signifying temporal dis-

persion of the nerve impulses evoked by the stimulation.

Furthermore, G-CSF/SCF treatment restored nerve vol-

ley duration to normal levels (Fig 5C).

Electrophysiological abnormalities in Friedreich’s

ataxia correlate with GAA triplet repeat expansion

length38 (and therefore reduced frataxin protein expres-

sion). We found that increases in cerebellar frataxin pro-

tein levels in G-CSF/SCF-treated mice significantly

correlated with shorter duration and increased conduc-

tion velocity of sensory compound nerve potentials (Fig

5D). These findings provide support for a link between

increases in frataxin and neurophysiological improve-

ments observed in treated YG8R mice.

G-CSF and SCF Reduce DRG, Spinal Cord, and
Cerebellar Friedreich’s Ataxia–Related
Pathology
We further characterized neuropathological changes in

YG8R mice. In common with human Friedreich’s ataxia1

and previous studies describing the YG8R mouse,28,39

untreated YG8R mice displayed: frequent intra-nuclear

and -cytoplasmic vacuolization of the large sensory neuro-

nal cell bodies of the DRG with significant lipofuscin

accumulation (Fig 6A–D) and an increased satellite cell to

DRG neuron ratio (Fig 6E) representing large sensory

DRG neuronal loss (Fig 6F,G) and/or subsequent satellite

cell proliferation; neuronal loss in the spinal cord dorsal

nucleus of Clarke (DNoC; Fig 6H,I); atrophy of large

neurons within the cerebellar dentate nucleus with

grumose-type GAD-positive intracytoplasmic labeling pat-

tern in the large neuronal cell bodies of the YG8R mice

(Fig 6J–M); and spinal cord astrocytosis–associated 4-

HNE accumulation at the peripheral aspects of the anteri-

or and lateral white matter tracts and extending into the

dorsal columns (Fig 7C,D,G), although no significant

white matter loss (Fig 7E,F). Patchy astrocytosis was also

observed in the gray matter surrounding the central canal

and extending toward the DNoC (Fig 7G); influx of

inflammatory OX42 (CD11b/c)-positive cells in both the

spinal cord and cerebellar dentate nucleus (Fig 7A,B); and

reduction in nestin-positive cells in lateral corticospinal

tracts, DNoC, and cerebellar dentate nucleus, compared

to WT control mice (Fig 7H,I).
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TABLE. Friedreich’s Ataxia–Associated Molecules and Antioxidant Defenses Are Restored in Both the

Cerebellum and Spinal Cord of YG8R Mice Treated With G-CSF and/or SCF

Protein Site Level Relative to Control YG8R YG8R1G-CSF YG8R1SCF YG8R1G-CSF/SCF

Friedreich’s ataxia–associated molecules

Nrf2 Cerebellum Total protein 1.40 (0.08)** 1.00 (0.05) 1.12 (0.09) 1.40 (0.18)* 1.45 (0.10)*

NeuN 1.27 (0.02)* 1.00 (0.09) 1.66 (0.17)** 1.54 (0.13)* 1.50 (0.11)*

Spinal cord Total protein 0.95 (0.05) 1.00 (0.07) 0.85 (0.10) 1.19 (0.11) 1.08 (0.11)

NeuN 1.61 (0.26) 1.00 (0.16) 2.06 (0.26)* 1.88 (0.33) 2.06 (0.16)*

PGC-1a Cerebellum Total protein 1.45 (0.08)*** 1.00 (0.04) 1.23 (0.10) 1.31 (0.10) 1.38 (0.09)*

NeuN 1.30 (0.02)* 1.00 (0.08) 1.81 (0.18)** 1.45 (0.13) 1.43 (0.14)

Spinal cord Total protein 1.18 (0.04)* 1.00 (0.06) 1.06 (0.07) 1.38 (0.09)** 1.20 (0.08)

NeuN 1.96 (0.40)* 1.00 (0.20) 2.46 (0.25)** 2.09 (0.30)* 2.26 (0.26)**

Aconitase Cerebellum Total protein 1.76 (0.12)*** 1.00 (0.06) 1.22 (0.16) 1.11 (0.10) 1.61 (0.10)**

NeuN 1.54 (0.16)** 1.00 (0.07) 1.72 (0.02)** 1.24 (0.11) 1.70 (0.12)**

Spinal cord Total protein 1.03 (0.11) 1.00 (0.10) 1.79 (0.38) 0.94 (0.20) 1.83 (0.14)

NeuN 1.70 (0.35) 1.00 (0.27) 4.07 (0.87)** 1.29 (0.23) 3.36 (0.34)*

Antioxidant enzyme/oxidative damage expression

SOD1 Cerebellum Total protein 1.37 (0.05)** 1.00 (0.05) 1.17 (0.08) 1.28 (0.07)* 1.22 (0.08)

NeuN 1.22 (0.03)* 1.00 (0.06) 1.74 (0.15)** 1.44 (0.15) 1.27 (0.10)

Spinal cord Total protein 1.42 (0.11)* 1.00 (0.06) 1.01 (0.11) 1.54 (0.06)** 1.40 (0.18)

NeuN 2.28 (0.31)** 1.00 (0.20) 2.30 (0.18)** 2.32 (0.31)** 2.60 (0.34)**

SOD2 Cerebellum Total protein 1.30 (0.12) 1.00 (0.08) 1.34 (0.07) 1.72 (0.13)*** 1.32 (0.14)

NeuN 1.19 (0.11) 1.00 (0.07) 2.01 (0.22)** 1.97 (0.28)** 1.37 (0.13)

Spinal cord Total protein 1.39 (0.24) 1.00 (0.05) 2.21 (0.14)*** 2.76 (0.26)*** 1.79 (0.20)*

NeuN 2.07 (0.25) 1.00 (0.23) 4.94 (0.43)** 3.96 (0.46)* 3.67 (1.16)*

Catalase Cerebellum Total protein 1.57 (0.13)** 1.00 (0.05) 1.23 (0.06) 1.42 (0.06)** 1.31 (0.12)*

NeuN 1.45 (0.08)** 1.00 (0.05) 1.84 (0.19)** 1.63 (0.21)* 1.35 (0.10)

Spinal cord Total protein 1.40 (0.19)* 1.00 (0.06) 1.75 (0.12)*** 2.04 (0.13)*** 1.62 (0.12)**

NeuN 1.84 (0.06)* 1.00 (0.23) 3.96 (0.47)*** 2.95 (0.37)* 3.09 (0.64)*

GPX1 Cerebellum Total protein 1.30 (0.08)* 1.00 (0.07) 1.21 (0.11) 1.40 (0.05)* 1.39 (0.12)*

NeuN 1.51 (0.32) 1.00 (0.06) 1.78 (0.10)*** 1.59 (0.12)*** 1.44 (0.08)*

Spinal cord Total protein 0.93 (0.05) 1.00 (0.10) 0.91 (0.03) 1.25 (0.04) 1.30 (0.15)

NeuN 1.69 (0.29) 1.00 (0.13) 2.29 (0.25)** 2.02 (0.23)* 2.06 (0.26)*

4-HNE Cerebellum Total protein 0.55 (0.02)* 1.00 (0.13) 0.74 (0.06) 0.95 (0.02) 0.67 (0.09)*

NeuN n/a n/a n/a n/a n/a

Spinal cord Total protein 0.54 (0.08)* 1.00 (0.11) 0.88 (0.10) 0.85 (0.12) 0.67 (0.06)

NeuN n/a n/a n/a n/a n/a

The relative protein expression levels of frataxin; aconitase enzyme activity; transcription factors Nrf2 and PGC-1a; antioxidant enzymes SOD1,

SOD2, catalase, and GPX1, and lipid peroxidation product 4-HNE, within the cerebellum and spinal cord of both WT controls and YG8R mice and

YG8R mice treated with G-CSF and/or SCF. All statistical comparisons are versus YG8R mice. Comparisons between control and untreated YG8R

mice were analyzed using unpaired t tests or Mann–Whitney U tests. For all other analyses, either one-way analysis of variance followed by Dunnett’s

multiple comparison test or Kruskal-Wallis followed by Dunn’s multiple comparison test was applied. *p < 0.05; **p < 0.01;

***p < 0.001. Values represent the mean 6 standard error of the mean, relative to values in untreated YG8R mice. For all tests, n 5 5 per genotype.

4-HNE 5 4-hydroxynonenal; G-CSF 5 granulocyte colony-stimulating factor; GPX1 5 glutathione peroxidase 1; n/a 5 not applicable;

NeuN 5 neuronal nuclear antigen; Nrf2 5 nuclear factor E2-related factor 2; PGC-1a 5 peroxisome proliferator-activated receptor-gamma

coactivator 1 alpha; SCF 5 stem cell factor; SOD1/2 5 superoxide dismutase 1 and 2; WT 5wild type.



We observed clear attenuation of Friedreich’s atax-

ia–associated pathology within the DRG, spinal cord,

and cerebellum of YG8R mice treated with cytokines. All

treatment regimens led to significant reductions in the

number of DRG neurons containing either intracytoplas-

mic or -nuclear vacuoles (Fig 6A–C). Furthermore, treat-

ment returned satellite-cell-to-neuronal ratios to levels

found in WT controls—a likely consequence of

improved large sensory neuronal cell survival (Fig 6E–

G). Combined G-CSF/SCF treatment markedly reduced

neuronal loss within the spinal cord DNoC (Fig 6H,I)

and reduced the extent of astrocytosis and inflammatory

cell infiltrate within dorsal columns, spinocerebellar, and

corticospinal tracts (Fig 7A–D). In the cerebellar dentate

nucleus, both G-CSF and SCF reduced atrophy of large

neurons (resulting in an increased mean neuronal cell

size) and reduced the presence of grumose degeneration

(Fig 6J–M).

To assess the effects of treatment on cellular kinetics,

YG8R mice were injected with the thymidine analogue,

BrdU, directly following cytokine administration during

the final treatment round (Fig 1A). Histological analysis 1

FIGURE 5: Neurophysiological deficits of the sensory nerve pathway are restored in YG8R mice treated with a combination of G-
CSF and SCF. (A) Sensory compound nerve recording from the proximal tail after stimulation at the tail tip. (B) Motor compound
nerve recording from the distal tail after stimulation of the proximal tail. The first small negative wave is attributed to antidromic
activation of sensory fibers. (A and B) Responses are an average of 10 trials and from control animals. Arrowhead indicates onset
of the electrical stimulation. (C) Peak conduction velocities and durations of sensory and motor responses recorded from tails of
wild-type controls, untreated YG8R mice, and YG8R mice treated with combined G-CSF/SCF. (D) Correlation and linear regression
analysis of frataxin protein levels (normalized to NeuN) in the spinal cord and cerebellum of for untreated and treated YG8R
mice with either sensory nerve conduction velocity or wave duration (lines of best fit and 95% confidence interval are depicted).
All statistical comparisons are versus YG8R mice. One-way analysis of variance, followed by Dunnett’s multiple comparison test,
was applied for all analyses. *p < 0.05; values represent means 6 standard error of the mean. Spearman’s correlation was used to
analyze relationships between frataxin and sensory nerve conduction velocity or wave duration. r 5 correlation coefficient. G-
CSF 5 granulocyte colony-stimulating factor; NeuN 5 neuronal nuclear antigen; ns 5 not significant; SCF 5 stem cell factor.
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FIGURE 6: G-CSF and SCF administration improves Friedreich’s ataxia–associated pathology. (A) Hematoxylin and eosin–
stained DRG depicting reductions in vacuolization (red arrows) of large sensory neurons within YG8R mice treated with G-CSF/
SCF. (B) High-powered image of a DRG neuron showing significant vacuolisation (red arrow). (C) Frequency of DRG neurons
containing nuclear or cytoplasmic vacuoles. (D) DRG sections labeled with NeuN and S100 showing autofluorescent lipofuscin
(black arrow) and both intranuclear (white asterisk) and intracytoplasmic (white arrow) vacuolization. (E) DRG satellite-to-
neuron cell ratio, (F) size range, and (G) mean cell size (diameter) of DRG neurons. (H) Images and (I) numbers of NeuN-labeled
neurons within the DNoC of YG8R mice treated with G-CSF/SCF. (J) Images of beta-3 tubulin-expressing neurons and (K)
grumose-type GAD-positive intracytoplasmic labeling pattern in and around the large neuronal cell bodies within the cerebellar
dentate nucleus of control and YG8R mice. (L) Size range and (M) mean cell size (diameter) of beta-3 tubulin-labeled neurons
within the cerebellar dentate nucleus. Comparisons between WT-control and YG8R mice were compared using the unpaired t
test. All other statistical comparisons are versus YG8R mice using either one-way analysis of variance followed by Dunnett’s
multiple comparison test or Kruskal-Wallis followed by Dunn’s multiple comparison test. *p < 0.05; **p < 0.01; ***p < 0.001; val-
ues represent means 6 standard error of the mean. For all tests, n 5 5 per genotype. ACST 5 anterior corticospinal tract;
BIII 5 beta-3 tubulin; DAPI 5 4’,6-diamidino-2-phenylindole; DC 5 dorsal column; DN 5 cerebellar dentate nucleus; DNoC 5 dor-
sal nucleus of Clarke; DRG 5 dorsal root ganglia; GAD 5 glutamate decarboxylase; G-CSF 5 granulocyte colony-stimulating fac-
tor; H&E 5 hematoxylin and eosin; NeuN 5 neuronal nuclear antigen; SCF 5 stem cell factor.
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month post-BrdU exposure revealed a distinct reduction

in BrdU positive cell numbers within DRG of untreated

YG8R mice (compared to WT controls), but marked increases

in BrdU positive cells in DRG, dorsal spinal roots, cerebellar

dentate nucleus, and, to a lesser extent, in the spinal cord of G-

CSF- and/or SCF-treated mice (Fig 7J). We also found that

the pool of nestin-positive neural precursor cells within the

DRG, spinal cord, and cerebellar dentate nucleus was

FIGURE 7.
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significantly amplified in response to treatment with G-CSF

and/or SCF (Fig 7H,I).

Discussion

Here, we show that administration of G-CSF and SCF

have marked direct neuroprotective effects in a

“humanized” mouse model of Friedreich’s ataxia; these

agents correct many Friedreich’s ataxia–associated bio-

chemical abnormalities and improve functional, neuro-

physiological, and pathological parameters. Significantly,

administration of G-CSF and/or SCF mediates sustained

improvements in motor coordination and locomotor activ-

ity in YG8R “Friedreich’s ataxia” mice, even after onset of

clinical symptoms. Treatment also restored the duration of

sensory nerve compound potentials, reflecting reduced var-

iability in conduction velocities of individual nerve fibers

associated with Friedreich’s ataxia dysfunction.37,38

G-CSF and SCF had pronounced effects on fra-

taxin levels and on regulators of frataxin expression with-

in both the cerebellum and spinal cord. Of the potential

transcription factors we tested,31–33 HIF-2alpha encoded

by Epas1 was upregulated in the cerebellum and spinal

cord in response to treatment and correlated with FXN

expression, highlighting a possible regulatory mechanism

by which G-CSF and SCF control frataxin expression.

Indeed, others have shown that HIF-2alpha can activate

the murine FXN promoter through binding to a consen-

sus HIF-responsive enhancer element, and mice lacking

Epas1 have markedly reduced levels of frataxin.33

Interventions that increase the amount of the fra-

taxin protein are attractive therapeutic approaches. Carriers

of the GAA expansion, having approximately 50% of nor-

mal frataxin expression, are asymptomatic.5,40 Increasing

cellular frataxin levels above a specific threshold therefore

hold promise; a recent proof-of-concept study introducing

FXN transgenes into heart cells of frataxin-deficient mice

led to overexpression of frataxin and sustained remission

of Friedreich’s ataxia–associated heart disease.41 Experi-

mentally, several agents have shown potential to increase

frataxin expression (recombinant erythropoietin,

interferon-gamma, nicotinamide, and resveratrol); however,

there has been limited success in their capacity to elevate

frataxin levels when tested clinically.42–45

Molecules coupled with frataxin deficiency were

also elevated in response to treatment. Specifically, G-

CSF and/or SCF increased expression of molecules asso-

ciated with frataxin antioxidant functions, including

Nrf2, SODs, catalase, and GPX1. Nrf2 is a key orches-

trator of cellular antioxidant responses and its expression/

activity is reduced in frataxin-deficient cells, leading to

increased oxidative injury.35,46,47 Cytokines also increased

expression of PGC-1a, another key regulator of cellular

redox homeostasis,48 and reduced lipid peroxidation

products,49 thus confirming their antioxidative effects.

YG8R mice replicate human disease in many histo-

logical aspects, with neuronal atrophy in the DRG,

DNoC, and cerebellar dentate nucleus. Importantly, repeat-

ed administration of cytokines led to significant ameliora-

tion in disease-related pathology throughout the nervous

system, the likely explanation for the observed improve-

ments in motor and locomotor function. Mechanistically,

in addition to restoring frataxin-associated cellular homeo-

stasis, G-CSF/SCF attenuating inflammation (both astro-

and microgliosis) in the nervous system of YG8R mice

may have also slowed the progression of the disease.50

Adult neurogenesis appears to be an important

mechanism of brain plasticity in brain repair postin-

jury.51 We found reduced numbers of proliferating cells

and neural precursors throughout the nervous system of

untreated YG8R mice. This may be a consequence of

mitochondrial dysfunction induced by frataxin deficien-

cy,52 and abnormal neurogenesis may, in turn, exacerbate

neuropathology.53 Both G-CSF and SCF regulate prolif-

eration, differentiation, and recruitment of endogenous

neural and bone marrow progenitor cells during neuro-

logical injury.17,54 In accord, cytokine administration

increased the number of both nestin-positive and prolif-

erating cells in the YG8R nervous system. Of note,

FIGURE 7: G-CSF and SCF administration reduces glial/immune cell infiltration while stimulating the recruitment of neural precur-
sors to areas of tissue injury. Numbers of (A) OX42- and (C) GFAP-positive cells within the spinal cord and cerebellar dentate
nucleus. (B) Cerebellar sections depicting levels of OX42-positive cells in the cerebellar dentate nucleus. (D) Spinal cord sections
depicting levels of GFAP-positive cells within the spinal cord anterior corticospinal tract. Astrocytosis without loss of spinal cord
white matter in YG8R mice observed using (E) Luxol fast blue/cresyl violet staining and (F) MBP-dual immunolabeling with GFAP.
(G) Spinal cord sections immunolabeled with GFAP and either MBP or 4-HNE, exhibiting astrocytosis, in both the white and gray
matter, associated with 4-HNE accumulation. (H) Nestin cells/mm2 and (I) images of nestin-positive cells within DRG, spinal cord,
and cerebellar dentate nucleus. (J) BrdU cells/mm2 within DRG, spinal cord, and cerebellar dentate nucleus. Dorsal column (DC),
spinocerebellar tract (SCT), lateral corticospinal tract (LCST), anterior corticospinal tract (ACST), and dorsal nucleus of Clarke
(DNoC). Comparisons between WT-control and YG8R mice were compared using the unpaired t test. All other statistical compari-
sons are versus YG8R mice using either one-way analysis of variance followed by Dunnett’s multiple comparison test or Kruskal-
Wallis followed by Dunn’s multiple comparison test. *p < 0.05; **p < 0.01; ***p < 0.001; values represent means 6 standard error of
the mean. For all tests, n 5 5 per genotype. 4-HNE 5 4-hydroxynonenal; BIII 5 beta-3 tubulin; BrdU 5 bromodeoxyuridine;
DAPI 5 40,6-diamidino-2-phenylindole; DRG 5 dorsal root ganglia; G-CSF 5 granulocyte colony-stimulating factor; GFAP 5 glial fibril-
lary acidic protein; MBP 5 myelin basic protein; NeuN 5 neuronal nuclear antigen; SCF 5 stem cell factor; WT 5 wild type.
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numbers of nestin cells were elevated in the DRG,

DNoC, and cerebellar dentate nucleus, all areas in which

neuronal preservation was apparent in response to

treatment.

As demonstrated here, humanized mice are power-

ful tools in preclinical testing of potential therapeutic

agents of neurological disease; however, care should be

taken when interpreting data attributed to underlying

genomic differences between rodents and humans. We

believe these observations warrant further clinical trials of

stem-cell–mobilizing agents in patients with Friedreich’s

ataxia. When used clinically, both G-CSF and SCF are

generally well tolerated, with G-CSF having a well-

established safety record in healthy peripheral blood stem

cell donors. The pharmacokinetics of G-CSF administra-

tion has been extensively studied in humans, and the

therapeutic window, in terms of achieving HSC mobili-

zation, can extend beyond twice the recommend dose.55

Furthermore, monthly administrations of mobilizing

agents have been shown to be safe in a trial for amyotro-

phic lateral sclerosis.19 This has provided early safety data

on the use of G-CSF for neurodegenerative conditions.

In conclusion, these experiments have elucidated

mechanisms of action of cytokines in a humanized Frie-

dreich’s ataxia mouse model. Their pleiotropic effects con-

tribute to neuroprotection and repair against Friedreich’s

ataxia–associated pathological mechanisms, thereby offer-

ing a therapy that may reduce, or even help reverse, long-

term disability in patients with Friedreich’s ataxia.
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