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The recent adoption of Bayesian networks (BNs) in ecology provides an opportunity to make advances because complex interactions can be
recovered from field data and then used to predict the environmental response to changes in climate and biodiversity. In this study, we use a
dynamic BN model with a hidden variable and spatial autocorrelation to explore the future of different fish and zooplankton species, given al-
ternate scenarios, and across spatial scales within the North Sea. For most fish species, we were able to predict a trend of increase or decline
in response to change in fisheries catch; however, this varied across the different areas, outlining the importance of trophic interactions and
the spatial relationship between neighbouring areas. We were able to predict trends in zooplankton biomass in response to temperature
change, with the spatial patterns of these effects varying by species. In contrast, there was high variability in terms of response to productivity
changes and consequently knock-on effects on higher level trophic species. Finally, we were able to provide a new data-driven modelling ap-
proach that accounts for multispecies associations and interactions and their changes over space and time, which might be beneficial to give
strategic advice on potential response of the system to pressure.
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Introduction
The North Sea is a dynamic system, heavily modified by humans

and climate. Thus, there is an increasing demand for tools with

which to explore alternative hypotheses about ecosystem response

to change in pressures (Mackinson and Daskalov, 2007). In this

study, we present an approach to explore how species and trophic

groups respond to change in human and climate pressures and

understand potential trade-offs between such ecosystem compo-

nents, given a set of alternate scenarios.

The North Sea has been exploited for centuries by the sur-

rounding countries and the state of its environment has been

altered greatly by human activities (Jennings and Kaiser, 1998).

Fishing pressure can change the structure of marine populations

and consequently influence the nature of their responses to

climate (Planque et al., 2010). However, in late 1990s the EU

began a fleet reduction scheme and most recently, the EU

Common Fisheries Policy introduced significant changes to how

fisheries are to be managed, including a landings obligation and

management plans that take account of biological and technical

interactions (EC, 2013). The ecosystem-based approach to fish-

eries management acknowledges that fisheries are part of the en-

vironment and cannot be managed in isolation (Cury et al., 2005)

and requires recognition of the ecosystem dynamics and

structure.

One way to understand ecosystem dynamics is to incorporate

multispecies information and interactions with both physical and

biological components that would reduce uncertainty in predict-

ing the species response to change in fisheries and climate. The
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biological characteristics of any species stock are dependent upon

and shaped over time by its interactions with other species and

the rest of the ecosystem (Mackinson and Daskalov, 2007). As

such, by using multispecies ecosystem models, the species effects

can be quantified across space and over time, under different fish-

eries exploitation and climate scenarios.

Many studies using different techniques have been undertaken

to utilize environmental information and provide advice to meet

management needs and understand future environmental states

(Lewy and Vinther, 2004; Mackinson and Daskalov, 2007; Ulrich

et al., 2011; Lynam and Mackinson, 2015). Although, such mod-

els incorporate a large percentage of the higher trophic groups,

they lack important extrinsic drivers, such as climate variation

(e.g. Ecopath with Ecosim in Mackinson and Daskalov, 2007),

which is fundamental for interpreting community dynamics. In

addition, for such models to be valuable, they would also need to

reflect the link between an input that can be managed (fisheries

catch) and the response (e.g. change in species biomass), and

therefore require an anthropogenic involvement (Garc�ıa-Carreras

et al., 2015). Our modelling approach of utilizing multiple associ-

ations between species and their environment presents a more

comprehensive route to projecting future ecosystem change

allowing empirical data to be combined with some existing know-

ledge to build scenarios that describe possible alternative futures.

Predicting species response to ecosystem changes is challenging

because of the variability in observations and uncertainty in po-

tential associations. However, machine learning techniques have

been proposed to be an appropriate approach with desired prop-

erties to address uncertainty in prediction (Uusitalo, 2007). In

particular, probabilistic methods such as Bayesian Networks

(BNs) provide estimates of the uncertainty associated with pre-

dictions, as demonstrated by Fernandes et al. (2010). With the re-

cent adoption of BNs in predictive ecology, few assumptions can

be made about the data and complex, spatially varying inter-

actions can be recovered from collected field data, as demon-

strated by Trifonova et al. (2015). Such probabilistic models

allow predictions to be made across very different platforms and

organisms (Smith et al., 2006) through the use of a network

structure and inference that allow us to ask “what if” type ques-

tions of the data. For example, one could ask, what is the prob-

ability of seeing a change in the biomass of cod, given that we

have observed a change in the probability distribution of catch

and/or herring biomass?

Originally, BNs were introduced in the context of bioinfor-

matics research but there has been significant progress in their

application to environmental problems (Chen and Pollino, 2012;

Uusitalo et al., 2012; Hamilton et al., 2015), to manage fisheries

resources (Lee and Rieman, 1997) and for other uses (Olson

et al., 1990). As applied in ecology, BNs represent probabilistic

dependencies among species and ecosystem factors that influence

the variables’ likelihood in an intuitive, graphic form (Jensen,

2001), therefore different expertise can have a quantitative indica-

tion of the range of possible scenarios consistent with the data to

give strategic advice on potential ecosystem response. The visual

nature of BNs can help to communicate modelling results and

they allow a variety of perspectives of natural and anthropogenic

effects to be represented (Levontin et al., 2011).

In this study, we are interested in the characteristics of BNs to

demonstrate the effects of change in human and environmental

pressures on the forward projections of variables of interest. A dy-

namic BN model was applied to investigate the consequences of

fisheries catch, temperature and primary productivity scenarios

on different fish and zooplankton species. Through the developed

scenarios, we explore the specific trends of species in response to

change in pressures and examine potential trade-offs between the

species of interest but also with other trophic groups of species.

The approach we are using is a modified version of the model in

Trifonova et al. (2015), which uses the functional network ap-

proach to predict the dynamics of species groups, accounting for

trophic associations and interactions with external stressors and

unmeasured hidden effects at spatial and temporal scale. Now, we

extend this approach to model individual fish and zooplankton

species data further into the future by developing a set of scen-

arios, accounting for their spatially differentiated biotic and abi-

otic associations, which are important because species

interactions can increase or reduce future changes at different

scales, influencing the emergence of winners and losers (Barange

et al., 2014). Hence, we aim at predicting species year-to-year

variations and understanding their dynamics, which is essential

to give strategic advice on potential response of the system to

pressure.

Methods
We used a modelling approach that integrates the functional net-

work approach (combination of known topological features of

food webs with quantitative variation in species interactions with

their environment and surrounding stressors) with a dynamic BN

model. We first modify the model to make future projections of

species (and trophic groups). Then, we use the model in combin-

ation with alternate scenarios of fisheries catch, temperature and

productivity to explore species (and trophic groups) trends in re-

sponse to change in pressures.

Data
The analyses are based on the database of the International

Bottom Trawl Survey (IBTS, https://datras.ices.dk) for Quarter 1

(January to March), maintained by the International Council for

the Exploration of the Sea (ICES) and conducted within ICES

areas between 51 and 62� latitude (Figure 1, only areas 1–7 were

considered in the study here due to limited quality and consistency

of the data on the remaining spatial areas). In the study, catch per

unit effort data were extracted for the years: 1983–2015 and con-

verted to biomass (kg/h), using length–weight relationships and

summing by species and year (www.fishbase.org). Next, individual

fish species were aggregated by summing up the data into the rele-

vant trophic group: pelagics (P), small piscivorous (SP), and large

piscivorous and top predators (LP). (FishBase was used as a guid-

ance point). The following fish species were separated as specific

variables of interest: cod (Gadus morhua), haddock

(Melanogrammus aeglefinus), herring (Clupea harengus), European

plaice (Pleuronectes platessa), sole (Solea solea), saithe (Pollachius

virens), and whiting (Merlangius merlangus). The species were

chosen due to their high commercial importance and contribution

to total landings (http://www.ices.dk/marine-data/dataset-collec

tions/Pages/Fish-catch-and-stock-assessment.aspx). We also used

biomass data for zooplankton species and data for sea surface tem-

perature (temperature), net primary production (Net PP) and fish-

eries catch. See the Supplementary Materials, section 1.1 for a

detailed description of these variables and their sources. The data

were standardized (sample mean removed from each observation,

which is then divided by the standard deviation) prior to
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conducting the modelling experiments but when visualizing the

results, we reversed the standardization of the modelled values.

Bayesian networks
Formally, a BN describes the joint distribution (a way of assigning

probabilities to every possible outcome over a set of variables,

X1. . .XN) by exploiting conditional independence relationships,

represented by a directed acyclic graph (DAG) (Friedman et al.,

1999). The conditional probability distribution associated with

each variable X encodes the probability of observing its values

given the values of its parents, and can be described by a continu-

ous or a discrete distribution. The DAG consists of nodes (or

variables) and edges (or links) between the variables. “Parent”

nodes are those from which arrows originate and “child” nodes

are those to which arrows are pointing. Edges between nodes rep-

resent dependence relationships. Here, the observed variable

nodes in the network are Gaussian nodes, so we assume continu-

ous distribution with mean mu and covariance Sigma. Each node

in the DAG is characterized by a state which can change depend-

ing on the state of other nodes and information about those states

propagated through the DAG. By using this kind of inference,

one can change the state or introduce new data or evidence

(change a state or confront the DAG with new data) into the net-

work, apply inference and inspect the posterior distribution

(which represents the distributions of the variables given in the

observed evidence). Given a graphical structure, BNs naturally

perform prediction using inference. Modelling time series is

achieved by using an extension of the BN known as the Dynamic

Bayesian Network (DBN), where nodes represent variables at par-

ticular time slices, Figure 2a (Friedman et al., 1999). The

semantics of a DBN can be defined by “unrolling” the two-slice

DBN into T time slices (Figure 2b). The parameters for slices t¼ t,

tþ 1, . . . do not change over time, i.e. the model is time invariant

which allows unbounded amount of data to be modelled with a

finite number of parameters (Murphy, 2002). In the study, DBNs

allow us to integrate heterogeneous data at different scales and

make robust predictions of the temporal species dynamics under

modelled scenario interactions with external stressors. DBNs can

model the dynamics of a dataset through the use of a latent or

hidden variable (HV). This latent variable is used to model unob-

served variables and missing data and can infer some underlying

state of the series when applied through an autoregressive link

that can capture relationships of a higher order (Murphy, 2001).

Specifically, the HV was chosen to most easily reflect complex

interdependencies between and among species and their environ-

ment that might represent something external to the community,

which is not purely constrained within the model structure.

Model description
Here, the modelling approach is a modified version of the hidden

spatial dynamic Bayesian network model developed in Trifonova

et al. (2015) (we will refer to the model as HSDBN). The model

structure represents a potential “end-to-end” ecosystem model of

each area’s trophic dynamics by incorporating data driven inter-

actions with some expertise knowledge (known topological fea-

tures of food webs) on the zooplankton dynamics. This model is

an extension of the published model in terms of predicting spe-

cies data further into the future and modelling individual fish

species dynamics under different effects from biotic and abiotic

scenarios. In addition to modelling individual fish species, we

also model the aggregated species groups: P, SP, and LP to ac-

count for the trophic effect in predicting future changes. We in-

corporate only one HV and instead of a second HV, as originally

in Trifonova et al. (2015), we incorporate the observed zooplank-

ton biomass for the North Sea. In addition to the three spatial

nodes: P sp., SP sp., and LP sp., we add an additional spatial node

(the average biomass of the relevant fish species from the spatial

neighbourhood (the three or four nearest neighbours) of the cur-

rent area) as a parent node to the fish species variable, to account

for the effect of spatial autocorrelation. In this way, we build the

notion that one area’s dynamics is likely to affect another into the

model and analysis. The observed variables in the model include

total catch, a single fish species catch, temperature, Net PP, total

zooplankton biomass, a single fish species and three aggregated tro-

phic species groups: P, SP, and LP and the equivalent spatial

nodes from above. This totals 13 observed variables per area. The

HSDBN structure varies but the general form is presented in

Figure 3a, with example for one of the areas in Figure 3b. Hence,

Figure 1. ICES statistical rectangles within the North Sea (areas 1–7
were used in this study). Source: ICES, Manual for the International
Bottom Trawl Surveys.

Figure 2. (a) A two slice DBN (b) the same model unrolled for
T¼ 4 slices.

Ecosystem responses to changes in fisheries catch, temperature, and primary productivity 3

 at B
runel U

niversity on January 4, 2017
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: s
Deleted Text: s
Deleted Text: N
Deleted Text: Bayesian network
Deleted Text: (CPD) 
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: s
Deleted Text: &grave;&grave;
Deleted Text: &quot;
Deleted Text: ,
Deleted Text: D
Deleted Text: dynamic Bayesian network
Deleted Text:  
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: '
Deleted Text: '
http://icesjms.oxfordjournals.org/


we can explore multiple species associations and model their fu-

ture dynamics with interactions from external stressors and under

specific scenario conditions. Using a recognized model structure,

we can compare the modelled scenario outputs across spatial and

temporal scales, accounting for the spatial heterogeneity and eco-

logical complexity.

Experiments
The experiments involved prediction of survey data under scen-

arios of fisheries catch, temperature and Net PP. The network

architecture varied with the areas but the method of prediction

was universal. Given the probability distribution over X[t] where

X¼X1. . .Xn are the n variables observed along time t, to predict

the biomass of each species and/or trophic group, we inferred the

biomass at time tþ 1. . .tþ 5 by using the observed evidence (or

available data) from t�1 and t. The choice of 2020 as the horizon

for this study was chosen to limit uncertainty and, more import-

antly, to reflect the need for short-term predictions in fish stock

management. We used an exact inference method: the junction

tree algorithm (Murphy, 1998). The HV is specified as a discrete

node which is parameterized using the Expectation Maximization

algorithm in a maximum likelihood sense and assumes a discrete

distribution. Non-parametric bootstrap [re-sampling with re-

placement from the training set, (Friedman et al., 1999)] was

applied 250 times for each modelling scenario to obtain statistical

validation in the predictions for each area (number of iterations

was found to be optimum through experimentation). First, we

predict the survey data for each area using historical observations,

we refer to this model output as Historical. Then, we use different

fixed year levels from each individual fish species catch data to

design our fisheries catch scenarios. We use scenarios at varying

levels of fisheries catch: low, medium, and high (these to be

referred from now on as scenarios of L.FC., M.FC., and H.FC., re-

spectively). We choose from the fisheries catch data 3 years

equivalent to these levels and keep each level fixed from the

chosen “scenario” year until the year 2015. We keep the other

measured variables unchanged. For example, in order to model

the dynamics of cod in area 4 in response to change in fisheries

catch, we chose from the cod catch data the year 1995 to repre-

sent the year from which the scenario of M.FC. starts. Figure 4a

illustrates the data input assuming this scenario and the generated

output. Note, that the data input for testing the M.FC. model,

prior to the chosen scenario year, includes all of the observed

variables (and one unmeasured HV) up to 1995 and after 1995–

2015, the input is only the fixed values of the total fisheries catch

and cod catch (5 � 104 tonnes live weight) (Figure 4b). In this

way, we rule out the simple idea that observed values after the

“scenario” year are causing the results to stabilize.

We perform this for each individual fish species and across

each area, according to the originally published model structure.

For example, in area 4 catch is a direct parent to LP, so in this

area, we would investigate fisheries catch scenarios for individual

LP fish species such as cod (Figure 3b). At the same time, we pre-

dict other fish species which are represented by the trophic spe-

cies groups (P, SP, and LP). Essentially, each area is characterized

by a sub-model, driven by the spatial dynamics of the species of

interest (there could be more than one sub-model for an area)

that accounts for any specific biotic and abiotic interactions be-

tween that species and other variables. In this way, we can keep

the historically driven interactions between variables and examine

their modelled trends under potential changes in stressors such as

fisheries catch. Hence, we can examine how different ecosystem

components respond to varying levels of fisheries catch, account-

ing for the heterogeneous nature of the modelled variables and

driving factors within each area and their changes over time.

(i) Data input and output for Medium Fisheries Catch scenario

for cod, area 4

(ii) Fisheries Catch Level for Medium Fisheries Catch scenario

for cod, area 4

Figure 3. General structural form of the HSDBN model (a). Solid line represents fixed edges across areas. The spatial nodes (P sp., SP sp., LP
sp., Fish species sp.), HV, catch and temperature are individually linked to either P, SP, or LP (represented by the dotted surrounding),
depending on the spatial area (grey line). Connectivity between P, SP, and LP and with the fish species also differs spatially. Network structure
for area 4 (b) that models the dynamics of cod. The edges shown by a dotted line are defined by expert knowledge.

4 N. Trifonova et al.
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We generate a 10% increase temperature scenario (T.I.) and Net

PP scenarios: 30% increase and 30% decline (referred from now

on as: Net.I. and Net.D) to understand the effects of temperature

on primary production and its potential knock-on effects on dif-

ferent zooplankton species and trophic species higher up the food

chain. We did consider a scenario of temperature decline but we

only present the results following a potential increase in tempera-

ture. We used 1990 as the “divergent year”, which is the year to

start the scenario changes from by manipulating the temperature

or Net PP data to either increase or decline but keeping the rest

of the observed data unchanged, e.g. if the average sea surface

temperature for 1990 is 9�C, then for 1991 it would be 9.9�C. For

these two types of scenarios, the number of observed variables in

the experimental set-up is 12 (total catch, temperature, Net PP,

Calanus finmarchicus, Calanus helgolandicus, small copepods, P sp.,

SP sp., LP sp., P, SP, and LP).

Results
In the following, we describe the outputs from the modelled fish-

eries catch, temperature and Net PP scenarios by examining fu-

ture trends of individual fish and zooplankton species at spatial

and temporal scales. We explain the results from the scenarios by

examining if the predictions of the ecosystem components were

to increase or decline. Our results demonstrate some variability

in the future trends of different species, which we explain through

the use of “what if” type descriptions of the model structures in

response to predicted changes in the other variables.

Fisheries catch scenarios
Cod
First, looking at the Historical output, the model managed to cap-

ture the cod variations throughout time and predicted some in-

crease in near future years which were then followed by some

decline (Figure 5c).

Second, looking at the scenario outputs, as we would expect,

the scenario of High Fisheries Catch (H.FC.) resulted in the lowest

modelled cod survey data in areas 4 (Figure 5d) and 6 (thus, ad-

dressing in detail only area 4 but look at Figure 3a and b in the

Supplementary Materials for area 6). We notice a sudden decline

in early 1990s (as a result from the high scenario catch level), but

then the modelled values were characterized by some fluctuating

trend, that was higher than the observed data. This does not

mean that if cod could continue to be fished at the highest

Figure 4. An example matrix from a Medium Fisheries Catch scenario model with initial input used in model definition, the input during
model testing and the generated output (a). The time window for each variable is shown in brackets. Note, the time window for the output
starts from 1989. “[]” represents variables for which no evidence is introduced and which are predicted. Z stands for zooplankton. The
observed cod catch prior to the scenario year of 1995 (solid line) and fixed catch level for the Medium Fisheries Catch scenario (dashed line)
is shown in (b).

Ecosystem responses to changes in fisheries catch, temperature, and primary productivity 5
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recorded level the stock would still be ok but more likely when

the cod survey values and spatial biomass in neighbouring areas

(Figure 5a) are low and catch is high (Figure 5b), another species

might increase and a year later that would cause the cod to in-

crease. For example, in this area, cod is influenced by the dy-

namics of species group P (Figure 3b), which were predicted to

be relatively stable with an increasing trend in the near future,

partly explaining the modelled cod results here. Under the scen-

ario of Medium Fisheries Catch (M.FC.), the modelled survey data

seemed to be genuinely stable throughout time that was higher

than the scenario of H.FC. However, we notice that these two

scenarios seem to converge in the near future, highlighting the

similarity in species response to contrasting levels of fisheries

catch, thus still having the need to identify a potential “optimum”

level of fisheries catch. The scenario of Low Fisheries Catch (L.FC.)

resulted in the highest modelled cod survey data, highlighting the

importance of fisheries catch on this species dynamics and identify-

ing a potential “optimum” level of fisheries exploitation comparing

to the medium and high levels from above.

(a) Cod spatial data, area 4

(b) Cod catch, area 4

(c) Cod survey data and Historical output, area 4

(d) Cod survey data and modelled scenario cod, area 4

Whiting
The Historical model managed to reflect on the declining trend of

whiting throughout time and predicted some rising trends in the

near future which were then followed by some decline

(Figure 6c).

We found the opposite of what we were expecting from the

fisheries catch scenarios for whiting in area 3: a scenario of L.FC.

produced whiting predictions that were characterized with the

lowest trend throughout time (Figure 6d). The surrounding pre-

dictions of the whiting spatial node were also characterized by a

declining trend, which in combination with the medium to high

catch from M.FC. and H.FC. and relatively low values of the P

species group (network shown in Figure 6a) might allow for an-

other species to increase (e.g. larger predator), which in turn

would cause the projected whiting values here. We also note that

the predicted trends from the M.FC. and H.FC. scenarios were

relatively similar. Interestingly, the hidden variable (HV) captured

some of the expected “correct” characteristics: the scenario of

L.FC. projected a strongly increasing trend of the HV, that was

much higher than the HV from the Historical model. The HV is

linked to the LP species group (which includes cod), so it is cap-

turing changes in the variance of their survey data, due to species

associations and interactions (LP is influenced by SP and P sp.)

and consequent trade-offs between species, that were not easily

detected by the model predictions alone. Thus, still having the

need to identify a potential “optimum” level of fisheries catch to

account for the effect of trade-offs between species.

(i) Area 3

(ii) Whiting catch, area 3

(iii) Whiting survey data and Historical output, area 3

Figure 5. Recorded spatial cod data is shown in (a). The observed cod catch (live weight in tonnes) with the three fixed year levels of
fisheries catch scenarios for the time window 1983–2015 is shown in (b). Recorded survey cod data (solid line) with the generated output by
the Historical model (dotted line) for the time window 1989–2020 for area 4 is shown in (c). Recorded survey cod (solid line) with the mod-
elled cod is shown in (d) under fisheries catch scenarios of high (black dashed line), medium (grey dashed line) and low (black dotted line)
levels for the time window 1989–2020.

6 N. Trifonova et al.
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(iv) Whiting survey data and modelled whiting, area 3

To summarize, for most species we were able to predict trends

that were modelled to either increase or decrease in response to

change in fisheries catch but this varied across areas, thus high-

lighting the spatial heterogeneity in terms of species-specific re-

sponse to ecosystem change, the spatial relationship between

neighbouring areas and trophic interactions. Finally, we need to

mention that the aggregated species group biomass might include

species not directly targeted by fisheries, which could potentially

influence the scenario interpretations, however the fact that we

accounted for “what if” type descriptions of all ecosystem compo-

nents in the network model, should help us in the interpretation

of our results.

Temperature and Net PP scenarios
We are now looking at the potential influence of temperature on

the future projections of productivity and consequently how the

productivity will influence the future trends of different zoo-

plankton species. We have chosen to present results only for areas

1, 3, and 6 due to the contrasting nature of the physical and bio-

chemical characteristics of these areas.

For area 1 (and area 3), the scenario of T.I. resulted in an

increasing trend of Net PP throughout time that was also higher

than the Historical model. However, the T.I. scenario projected

some Net PP decline in the near future that was characterized by

a converging trend with the projections of the Historical model,

possibly indicating a drop in productivity. Conversely, for area 6,

the scenario of T.I. projected a trend of lower Net PP values than

the Historical model, potentially due to larger temperature

changes in southern areas. Similarly to areas 1 and 3, there was a

drop in productivity projected from 2017 onwards.

Following a scenario of temperature increase, a lower trend

(compared with the Historical model) throughout time was pro-

jected for C. finmarchicus, whilst the opposite was found for C.

helgolandicus. In some areas, it was also the scenario of Net PP de-

cline that led to higher values of both zooplankton species, as a

consequence of temperature influence on productivity. However,

at the same time, a distinct drop was found in the projected val-

ues of the C. finmarchicus species in the near future, highlighting

that potential trade-offs will also emerge between lower trophic

level species. Look at the Supplementary Material (2.2

Temperature and Net PP Scenarios) for a more detailed descrip-

tion of the zooplankton results in terms of the different spatial

areas and the modelled predictions (Supplementary Figure S7).

We were able to detect a knock-on effect on the future dy-

namics of the P species group survey data, following changes in

temperature and productivity. For some of the areas, it was the

scenario of Net PP decline that led to an increase in the trends of

the herring and P species group survey data. Look at the

Supplementary Materials, section 2.2 for a more detailed descrip-

tion of these results in terms of the different spatial areas and

modelled predictions (Supplementary Figure S8).

To summarize, we found the modelled future zooplankton

trends to be species-specific but there seems to be consistency in

terms of their response to temperature change across the different

areas, whilst more variability was found relating to productivity

Figure 6. The model structure for area 3 is shown (a). The dotted edges are defined by the expert. The observed whiting catch (live weight in
tonnes) with the three fixed year levels of fisheries catch scenarios for the time window 1983–2015 is shown in (b). Recorded whiting survey
(solid line) data with the generated output by the Historical model (dotted line) for the time window 1989–2020 for area 3 is shown in (c).
Recorded survey (solid line) with the modelled whiting data under fisheries catch scenarios of high (black dashed line), medium (grey dashed
line), and low (black dotted line) levels for the time window 1989–2020 is shown in (d).
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changes. In addition, we were able to confirm the potential influ-

ence from productivity and to some extent temperature (depend-

ing on the area) changes to species, higher up the food chain.

Discussion
In this study, we explored the trends of ecosystem change in re-

sponse to anthropogenic and environmental scenarios by modify-

ing a dynamic data-driven functional network model, accounting

for spatial heterogeneity and unmeasured spatial effects. It is im-

portant to note that we did not attempt to indicate levels of

plausibility between these scenarios but rather explore the pre-

dictive results of species response to fisheries and environmental

change. Our results highlighted that reducing fisheries catch will

not necessarily lead to recovery of all commercially important

fish species because fish consume one another, thus the total

catch of one species will consequently affect that of others

through knock-on effects in the food web. Overall, we found

some spatial variability in terms of species response to different

fisheries catch and productivity scenarios, highlighting the influ-

ence from factors such as trophic associations, spatial connectiv-

ity between areas and species interactions with their

environment, that could potentially contribute towards the better

understanding of ecological stability and resilience in a changing

environment. However, at the same time, we found some univer-

sal species trends to changes in catch and temperature that could

provide some strategic advice on potential response of the system

to such pressures. Controlling for the level of fisheries exploit-

ation but also considering trophic interactions and spatial values

are of high significance in terms of short-term management. Our

results allow dynamic assessment of choices, which should be able

to provide strategic advice on potential system response to pres-

sure. In terms of management objectives and expectations, we

support the idea that for a given area, reorganization of the man-

agement strategies will be required to ensure that the right species

are targeted and harvested sustainably (Simpson et al., 2011).

Management strategies must also take into account the local

population dynamics and processes in a wider sense in order to

maximize biodiversity and survival. Fisheries management meas-

ures will contribute to improvements in the biodiversity of the

fish community, but food web interactions will mediate changes.

In the scenarios modelled here, some trade-offs between spe-

cies emerged in terms of how they would respond to different lev-

els of fisheries catch. Specifically, the potential recovery that we

found for cod in the near future (and variance explained by the

HV) could explain the modelled results for whiting because cod

feeds on juvenile whiting (Mackinson et al., 2009). Similar results

were found by Lewy and Vinther (2004) and Lynam and

Mackinson (2015), suggesting a more dominant role of the cod in

the food web after recovering from exploitation. The potential re-

covery trend that we found for cod could be due to strict manage-

ment regulations placed since the Millennium (Horwood et al.,

2006), which if continued, will hopefully give the stock a chance

to rebuild completely in some areas where the cod was formerly

abundant (Engelhard et al., 2014).

One of the differences between our model and others is the in-

corporation of a HV, adopted to capture unmeasured spatial ef-

fects and changes in species variance that are not purely

constrained within the model structure. For some of the areas,

the HV was characterized by a decline and showed high sensitivity

in terms of catch variation, outlining that such areas seem to ex-

hibit a range of discontinuous disturbance exacerbated by spatial

differences in recruitment and survival. Conversely, for some of

the other areas, the learned HVs were projected to increase, fol-

lowing some of the scenarios, which are reflective of the underly-

ing biomass changes, relating to potential knock-on effects, as it

was found for area 3. Specifically, our results of modelling whit-

ing in response to different fisheries levels and consequent rising

trophic interactions and sensitivities that were captured by the

HV, suggest that for effective management, reorganization of the

fishing strategies in the mixed-fisheries context will be required to

ensure that the right species are targeted and harvested sustain-

ably (Simpson et al., 2011). These results highlight that the use of

a HV when modelling species response to change is potentially

useful in providing insights on the spatially specific dynamics and

patterns in terms of ecological stability and resilience that can

contribute towards the general advice on potential response of

the system to pressure.

Overall, our results showed there were spatial differences in

terms of “optimum” level of fisheries catch, suggesting spatial

variability regarding community stability and the potential higher

influence of trophic interactions in some areas or spatial connect-

ivity in others, compared with fisheries exploitation. For example,

we found some similarity in the modelled whiting predictions

from the medium and high fisheries scenarios for area 3, which

might be due to similarity in the level of fisheries catch but also

due to the fact that trophic interactions are potentially more im-

portant for controlling the whiting dynamics compared with fish-

eries, as discussed in Trifonova et al. (2015) for this area. This

suggests that stocks cannot be managed in isolation from each

other (Cury et al., 2005). Thus, highlighting the need to use

multi-species models accounting for spatial connectivity.

Multispecies models have been proved useful in terms of provid-

ing long-term information on stock recovery and most import-

antly, have been used to evaluate precautionary reference points

for fishery management (Pinnegar et al., 2008). In doing so, mul-

tispecies and ecosystem models are anticipated as being helpful to

guide strategic management decisions (Mackinson and Daskalov,

2007). As such, multispecies stock assessments and simulation

models (e.g. SMS, 4M, Gadget, multispecies IBMs) are becoming

more refined (Plag�anyi, 2007).

Although, we analyse the different scenarios in respect to the

species of interest in the relevant area, we do acknowledge that

one area’s dynamics likely affect another by introducing the spa-

tial nodes into the model structure. In this way, we also increase

the confidence in the robustness of the approach and contribute

to increased knowledge of model behaviour. One main issue en-

countered is the uncertainty in future trends, which is obviously

inherent to any model linking external factors to species inter-

actions. These linkages are of major importance for mixed-

fisheries management (Ulrich et al., 2011). However, the fact that

we were able to recover genuine trends of species dynamics

throughout space and time in Trifonova et al., (2015) and that we

were able to identify similarity in our results here with other

modelled species predictions (Lewy and Vinther, 2004; Vinther

et al., 2004; Lynam and Mackinson, 2015) contributes to

strengthening the confidence that our approach can provide

some strategic advice on modelling species response to change.

Here, the modelling framework was built to handle complex

systems such as the North Sea, so consequently we assume there

is a degree of complexity when modelling fisheries. The assump-

tions are based on key processes within the environment account-

ing for influence from external factors such as fisheries catch.

8 N. Trifonova et al.
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One aspect of the underlying processes that could be further

investigated includes fishermen behaviour or effort information

to estimate catch potentials for distinct fleets. An example of one

model that incorporates this is the Fcube (Fleet and Fisheries

Forecast) model. However, for the Fcube to be established at a re-

gional scale requires substantial analysis and due to its short-term

applicability, is often used as a routine advice model at the same

level as a single-stock assessment model (Ulrich et al., 2011).

Another example of a model that uses information on technical

interactions alongside biological information from stock assess-

ments is the MTAC developed by Vinther et al. (2004). However,

the MTAC did not prove to be robust and flexible enough for

mixed- fisheries and there were also problems with data availabil-

ity (Ulrich et al., 2011).

The HSDBN model represents a flexible framework of medium

complexity between single-stock assessments and multi-species

models such as Ecopath (Mackinson and Daskalov, 2007). By ex-

tending our model to use scenarios rather than optimization and

adding additional parameters compared with more traditional

approaches, we extract simple proxies that are indicative at the re-

gional scale but also work at the level of the broad picture. A

similar dynamic framework for the North Sea, accounting for

multiple-species interactions, was developed by Lynam et al. (un-

published) (presented at PICES Symposium on “Effects of climate

change on the world’s oceans”, March 2015), using a threshold-

Generalized Additive Model. The approach is data-demanding

and it includes external factors but does not include a spatial

component. In our model, we account for the complexity of the

spatio-temporal distribution by allowing a framework that ac-

counts for the heterogeneous nature of the driving factors within

each area (unique model structure for each area) and their

changes over time. Explicit spatiality is a key parameter in our

model which does add some complexity to the model structure

and it is data-demanding but accounting for additional sources of

variation seems to remove spurious interactions and reveal the

genuine complexity of such diverse and exploited ecosystems

such as the North Sea. Although, we allow for some variability,

the model has proven its high flexibility enabling latent effects

and testing alternative hypotheses about species and their dy-

namics to reduce scientific uncertainty.

Finally, in the modelled scenarios here, we found that some

species appear more robust to changes in fisheries exploitation,

compared with others; however, changes in temperature and

productivity might be more important in terms of the species

long-term sustainability. It was interesting to see that our results

of modelling a drop in future productivity coincides with other

work that could be related to the overall future productivity con-

ditions expected in the North Sea (Blanchard et al., 2012).

Increase in temperature leads to an increase in lower trophic

level species and consequently their predators, which we found

true for some areas, whilst in others, the effect of temperature on

fish was less evident due to interactions with productivity, which

could be acting more strongly than the effect of fishing

(Blanchard et al., 2010). For example in area 3, the influence of

productivity is likely to mask the effects from fisheries, or cause a

mixture of responses due to multiple causal mechanisms and

stressors on the ecosystem (Halpern et al., 2008). Such results

confirm that species response to any future changes in tempera-

ture will be determined by their spatial habitat because tempera-

ture variations consequently lead to spatial variability in

productivity, potentially causing further forcing on higher level

trophic species and mixture of responses at spatial scales.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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