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Automatic translation of plant data into management performance metrics: a case for
real-time and predictive production control
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(Received 26 January 2016; accepted 17 September 2016)

A scalable and repeatable solution for linking shop-floor control system to a discrete event simulation (DES) model is
presented. The key objective is to automatically translate the real-time data from the control system (e.g. supervisory
control and data acquisition, SCADA) into KPI transfer functions of the production process. Such a seamless
translation allows for the integration of engineering data emitted at plant level to higher level information system for
decision-making. The solution provides a platform for researchers and practitioners to utilise the capabilities of real-
time DAQ and control with that of discrete event simulation to accurately measure the key manufacturing systems
performance metrics. In addition to the real-time capabilities, the predictive capabilities of the solution provide the
managers to look ahead and to conduct What-if scenarios. Such capability enables line management to optimise
performance and predict destabilising factors in the system ahead of time. A fully operational version of the designed
solution has been deployed in a brewery’s live production system for the first time. The brewhouse production line
model measures the utilisation of resources, Overall Equipment Effectiveness, and Overall Line Effectiveness in
real-time and fast-forward mode simulation. The results of the predictive models (What-if-Scenarios) have been
validated and verified by statistical means and direct observations. The accuracy of the estimated parameters is highly
satisfactory.

Keywords: control; real-time; predictive; overall equipment/line effectiveness; simulation; brewery

1. Introduction

The motivation for this research project was to provide a solution for filling the gap between engineering data
emanating from the factory control system (i.e. flows, levels, rates, sensors, actuators, alarms) and the higher level
production management data (i.e. efficiency, utilisation, effectiveness, quality, …). Such integration should facilitate
effective communication between day-to-day production management and that of strategic decision-makings at board
levels.

With the introduction of advanced control technologies, like other manufacturing industries, breweries are producing
a large number of end products with wider variety of raw materials. Their management main goal is to decrease the cost
per hectolitre and hence increase production throughput. The proposed performance measurement and control system for
breweries is in direct response to the persisting shortcomings of existing ERP solutions in dealing with the uncertainties
of production lines.

Every operation manager and production strategist in the Brewery sector uses a set of generic KPI for the measuring
process efficiency. These KPIs are utilisation of resource, overall equipment effectiveness (OEE) and overall line
effectiveness (OLE) (Leachman 1997; Oechsner et al. 2002; Nachiappan and Anantharaman 2006; Mousavi et al. 2007;
Iannone and Nenni 2013). Moreover, the use of discrete event simulation (DES) as an effective tool for analysis of sys-
tems performance with respect to uncertainties of production process has a strong following (e.g. Moon and Phatak
2005; De Ugarte et al. 2006; Jahangirian et al. 2010). DES in real-time has also shown to be effective for monitoring
(Viswanadham and Narahari 1992), prediction tool for testing ‘what-if’ scenarios, predictive process control
(e.g. Onut et al. 1994) and as a scheduling tool (Gupta, Sivakumar, and Sarawgi 2002; Mousavi, Broomhead, and
Devagiri 2008).

It seems that the use of existing shop-floor monitoring and control systems integrated with a DES modelling capabil-
ities, both robust and well established in academia and industry may be a reasonable platform for measuring and
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monitoring industrial KPI. Therefore, the primary aim here is to present a feasible implementation and to illustrate the
potential benefits of a real-time simulation-based application that measures key productivity metrics in the brewing
industry. The solution will include a simulation model of a brewhouse line with the capability of running either in real-
time or in fast modes. The fast mode simulation will use the probability distributions obtained by a curve fitting analysis
of historical brewery data. It will be capable of evaluating alternative production-scheduling scenarios (What-if). The
authors believe that the scalable solution suggested in this paper can be applied to other manufacturing processes regard-
less of their nature (speed and frequency of operations and product motion) with no or minimum adjustments.

The main contributions of the paper can be listed as:

(1) Development of a novel and flexible middleware that connects the shop-floor control system with higher level
production management systems (Section 3.1).

(2) Introduction of the concept of OLE for measuring KPI of productivity in multiple line production environments.
This is combined with the concurrent measurement of resource utilisation which the authors believe would pro-
vide a more realistic overview of performance and productivity of system (Sections 3.2 and 3.3).

(3) Provision of decision-making tool that provides real-time information about the current state of the system, but
more importantly at a fingertip allows the line managers to conduct predictive what-if-scenarios for better deci-
sion-making.

2. Background literature

The research questions posed by the brewery management to the researchers were: ‘Could breweries decrease the cost
per hectolitre of production whilst maximising resource utilisation and improve OEE and OLE at the same time?’ and
‘How can we be confident about the information we have and the decisions we make?’

The research therefore focused on answering the second question first by engineering an information architecture
which makes sense of the obtained data. And then to prove that with confidence in the ‘knowns’ the company can eval-
uate new initiatives for reducing production costs whilst maximising productivity. The aim was therefore to test and val-
idate the feasibility of developing and implementing real-time KPI measurement in the brewing industry. The first
challenge was to explore the possibility of assessing the current capabilities and finding an effective method for estimat-
ing and monitoring productivity metrics. The next step was to explore the methods of linking such metrics with the pro-
duction cost. The constraint was to find solutions within the existing technological capabilities and not to impose
prohibitive new purchases on the factory. The solution should:

(1) Be able to receive and translate real-time data generated by the SCADA system into KPI.
(2) Use the real-time data to trigger the event of the process simulator.
(3) And use the capabilities of the production simulator to run predictive scenarios.

Zhang et al. (2013) emphasise the need for basic engineering data produced by equipment and other manufacturing
resources from the plant into shop-floor knowledge. They offer a systematic method that facilitates this translation and
transition of engineering data into management knowledge system. The knowledge as a metadata structure can then be
fed into higher level performance measurement platforms. We find such an approach relevant to the proposed solution
in this paper. The authors also encourage readers to review the mechanisms of engineering data and knowledge in man-
ufacturing plants in (Tavakoli, Mousavi, and Broomhead 2013).

2.1 Productivity measurement methods

Productivity measurement helps to identify problems and find solutions for improving system performance (Oechsner
et al. 2002; de Ron and Rooda 2005; Nachiappan and Anantharaman 2006; Braglia, Frosolini, and Zammori 2008). In
the context of manufacturing, productivity seems to be linked to equipment availability and equipment utilisation.
Leachman (1997) defines equipment utilisation as the equipment busy time over the total operating time (i.e. availability
of equipment).

Equipment availability is defined as the fraction of total operating time that a resource was capable of performing or
actually performing processing work, excluding the time used for maintenance, cleaning, or calibration. It seems that
these two metrics alone cannot represent the overall equipment efficiency levels, because normally availability does not
take efficiency losses caused by equipment idle times. Moreover, when measuring equipment utilisation, the speed of
the Unit of Production Process (UPP) is not taken into consideration. For example, at occasions, the equipment can be
reported to be fully utilised but not providing 100% of its theoretical productivity. This discrepancy can be attributed to
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the differences in operator handling, production line jamming or the equipment being out-of-tune or unable to operate at
full speed. Braglia, Frosolini, and Zammori (2008) and Huang et al. (2003) use production productivity, throughput and
equipment utilisation as indicators of performance. Their definition fits well with brewery processes that are the main
concern of this article.

OEE is the ratio between what was actually manufactured and what could be ideally manufactured, or the fraction
of the time in which a production entity works at its full operating capacity (Braglia, Frosolini, and Zammori 2008).
OEE was proposed by Nakajima (1988) as the key metric to support Total Productive Maintenance (TPM). The TPM
entails the rigorous measurement of production equipment effectiveness (PEE) (Nakajima 1988; Leachman 1997; Huang
et al. 2002).

According to Jonsson and Lesshammar (1999), manufacturing losses are either chronic or sporadic. The chronic
losses may be hidden and caused by several concurrent events that may not seem relevant to the untrained observer.
The sporadic disturbances on the other hand are sudden and immediately observable. They cause major disturbances
(deviations) to the normal state. Ljungberg (1998) believes that chronic disturbances may seem normal to the untrained
eyes, and their impact can be overlooked. The most logical way to identify chronic disturbances could be to compare
the actual performance with the theoretical capacity of the equipment (Jonsson and Lesshammar 1999; Nachiappan and
Anantharaman 2006). But this requires a good understanding of real-time data and applying corrective actions immedi-
ately or preventatively. Such preventative actions can break the chain of events that embed themselves as chronic distur-
bances. A reasonable account of OEE can therefore help in reducing losses. For example, Jonsson and Lesshammar
(1999) found that the main causes for low OEE were lack of material, breakdown, corrective maintenance and time for
programming the flexible manufacturing systems.

Huang et al. (2003) predicted that OEE would become popular and widely used as quantitative tool for measurement
of productivity in manufacturing operations. However, OEE alone would not be sufficient as no production entity is iso-
lated in a factory, but operates in a liked and complex environment (Oechsner et al. 2002; Nachiappan and Ananthara-
man 2006). The evolution of OEE measurement has led to other productivity measurements such as Total Equipment
Effectiveness Performance, PEE, OLE and Overall Factory Effectiveness of the entire factory (Nachiappan and
Anantharaman 2006; Muchiri and Pintelon 2008). Nevertheless, research has shown that not all the overall performance
metrics can be used in all manufacturing system/factory.

The OEE measurement method adopted in this work evaluates how well equipment are exploited in comparison to
their theoretical potential originally suggested by Nakajima’s (1988) and improved by (Leachman 1997; Nachiappan and
Anantharaman 2006). The reason for this choice is that in our experience, a large number of production process control
and optimisation solution providers (e.g. SAP, Harford Control, Acontrol, BrewMaxx …) has adopted OEE measure-
ment as one of the KPI in their solutions. Thus, the popularity of such measurement is ubiquitous and well established
as a KPI in the process industry

2.2 Performance evaluation and performance modelling

There is a difference between performance evaluation and performance modelling. Performance evaluations use factory
data to monitor resources and operations and diagnose failures. By comparing the expected and the actual performance a
relative evaluation of system performance is achieved (Viswanadham and Narahari 1992). Performance modelling on the
other hand employs simulation or analytical techniques to study the operational and decision-making issues. Simulation
and modelling have become one of the most popular analytical methods to explain performance in industrial systems
(e.g. Jahangirian et al. 2010; Komashie et al. 2015). Banks et al. (2009, 14) defined DES as ‘the modelling of systems in
which the states variables changes only at a discrete set of points in time’. DES has proven to be able to capture the
stochastic nature of manufacturing systems, shop floor control and operations (Wu and Wysk 1988; Son et al. 2002;
Smith 2003; Ramakrishnan, Wysk, and Prabhu 2004; Jahangirian et al. 2010; Mousavi, Komashie, and Tavakoli 2011).
According to Kelton et al. (2010) and Altiok and Melamed (2007), DES models have shown to outperform other analyti-
cal or physical models capturing the complexities manufacturing systems. The models enable managers and systems ana-
lysts to quickly evaluate production scenarios (Curry and Feldman 2009, 45). They are useful tools for optimising
production processes (Gupta, Sivakumar, and Sarawgi 2002; Huang et al. 2002; Robinson 2005; Curry and Feldman
2009; Duflou et al. 2012).

One of the weaknesses of traditional DES modelling has been the time lag between input data collection and the
time the modelling process produces results. Once the results are produced, the model will become obsolete, because
the settings of the plant have changed already. In recent years, research into using real-time data feed, automatic curve-
fitting and the application of real-time DES in predictive control have shown promising results (Harmonosky 1990,
1995; McConnell and Medeiros 1992; Son, Rodriguez-Rivera, and Wysk 1999; Son and Wysk 2001; Tavakoli, Mousavi,
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and Komashie 2008a; Mousavi, Komashie, and Tavakoli 2011). In the experience of authors, the automation of input
data collection and analysis for the purpose of DES can reduce the DES project life cycle by 70%.

The application of multi-pass simulation-based real-time scheduling and shop-floor control system was demonstrated
by (Son and Wysk 2001). The performance of this multi-pass tool yielded a throughput increase of 138% over
single-pass dispatching procedures in the laboratory. Even though the solution inspired many research projects e.g.
Moreno-Lizaranzu et al. (2001), Ramakrishnan and Thakur (2005), Son and Wysk (2001), Son, Wysk, and Jones
(2003), Mousavi et al. (2007, 2008, 2011), Mousavi and Tavakoli (2009), Lee, Son, and Wysk (2007), Gupta et al.
(2002) and De Ugarte et al. (2006) – but the solutions remained localised. To the best knowledge of the authors, a stan-
dard solution that could be implemented in day-to-day control of plants has never become available. The desire for an
instrument of preventive and proactive management in food, automotive, process and aviation sector persists to date.

De Ugarte et al. (2006) presented an open architecture framework supporting real-time decision-making. This archi-
tecture involves the integration of optimisation and real-time simulation with ERP and MES systems. The solution inte-
grated a real hybrid continuous and discrete manufacturing scenario in the aluminium industry. The core of the
decision-making was a system dynamic builder (SD Builder). The SD Builder is a combination of a discrete-event simu-
lator, a production rules-based expert system and a state-graph search-based optimisation engine. The SD Builder runs
the models and initiates decision-making logics depending on the disturbing events and the current system state. The
decision-making process begins by initialising the SD Builder with data from the ERP and from the MES. The
demonstrator solution endeavours to prove that simulation-based decision tools can be integrated with enterprise-level
activities.

Similarly, Mousavi, Hamdi, and Sarhadi (2007) argued that SCADA, MRP and ERP systems alone are not enough,
and that decision-making tools are needed. They proposed a quick-response modeller for the food production process to
help manager to take decisions based on the measurement of system performance within the food industry. They out-
lined four KPFs; resources utilisation, production efficiency, customer satisfaction and inventory levels for the purpose
describing the state of the plant using real-time and historical shop-floor data. Consequently, they integrated this system
with a standard simulation tool in order to provide managers with a prediction platform to improve decision-making.
The objective here was to illustrate that real-time data along with high-quality information help managers to be proac-
tive. But the solution remained case-based and not repeatable.

Tavakoli et al. (2008a, 2008b) proposed a generic-enabling protocol for quick-response decision-making. The Flexi-
ble Data Input Layer Architecture (FDILA) was used to enable the system developers to define any number of data
entry points for the purpose of data integration. The solution combines real-time DAQ and discrete event simulation
software. The solution was tested in automated pet food manufacturing system where key data such as process times for
each machine, machinery capacity and resource utilisation were measured. The idea behind modelling this plant was not
only to test the data processing module, but also to initiate a research on the measurement of KPFs as a tool to improve
decision-making.

In the following sections, we will discuss the development of a generic repeatable and scalar solution that combines
supervisory control and DAQ systems with DES. The technical and financial constraints of the project were to minimise
any imposition of purchasing new software/hardware licences for the company. Therefore, the BrewmaxxTM control sys-
tem solution holding one-fifth of global beer production was chosen as the base controller. The ArenaTM, one of the
prevalent discrete event simulation software solutions from Rockwell Automation® was the chosen solution for the real-
time and predictive modelling. The methodology and the protocols suggested in the solution can be repeated and cus-
tomised for any other control systems and modelling tool.

3. Methodology

In this section, we will explain the development of a real-time DES modelling application for the purpose of translating
shop-floor control signals (engineering metrics) into productivity metrics (management metrics). The solution consists of
three parts:

(1) The Inter-Process-Communication (IPC) platform connects the shop-floor control system (i.e. BrewmaxxTM) and
the DES (i.e. ArenaTM). The IPC links the control system (engineering layer) to the higher level performance
measurement (management layer). It is modular and can be linked with any control system and the DES applica-
tions or simply a Microsoft Excel® spreadsheet that contains the necessary formulation of transfer lines and
general serial systems.

(2) The model of the brewhouse production process. The input parameters of the DES model describe the variations
of raw material, order patterns, production plan, resource allocation, plan layout, capacity scheduling, mean-time
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between failures, uptime and downtime of resources, processing time, production quality, material handling, and
the plant layout. The output parameters of the DES model provide a very good estimation (up to 95% confi-
dence interval) of resource utilisation, production throughput and cycle time, as well as waste. The preliminary
output is then used to measure the overall equipment and line effectiveness (OEE/OLE).

(3) The OEE/OLE is expressed as the product of three efficiency parameters; product quality, availability, and per-
formance of the resources. The efficiency of product quality is the ratio of defective products over the amount
of rework (Dal, Tugwell, and Greatbanks 2000; Muchiri and Pintelon 2008; Garza-Reyes et al. 2010). Note that
in continuous processes as opposed to discrete processes, the way rework is handled would be different. In con-
tinuous processes, rework and good products cannot physically be separated. Therefore, defective products need
to be reworked at the same time and place as the good products (Nachiappan et al. 2006). The OEE and OLE
measurement models suggested here takes this into consideration, meaning that product is not transferred to the
next stations in the production line unless the quality is acceptable.

3.1 The control system architecture and the real-time data feed

The control systems architecture shown in Figure 1 comprises the Programmable Logic Control (PLC), the Execution
Server and the Client module. The communication of the individual components with each other runs via Ethernet con-
nections, TCP/IP and Object Linking and Embedding for Process Control (OPC). Prominent commercial control systems
providers such as Brewmaxx, Rockwell Automations, AControl, National Instruments, Siemens, Harford Control, to
name a few, have similar modules and functionality with minor variations.

The role of the PLC is to interconnect the set of sensors and actuations that monitor and control the operations of
the plant and transfer the information to the higher level information systems. The real-time and Archive SQL database
hold all recipe parameters, automation object settings, real-time process data, step-logs and historical records from the

Figure 1. The control system architecture.
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latest orders. Also, it is the source of information for the workstations where process visualisation and reporting are
available. The step logs are the triggers of events for the DES models.

The server provides the operators, supervisors and managers with the data to customise reports on the process, add
new recipes and other control functions. One capability of Brewmaxx is the Sequence-Based Recipe Control (SBRC).
Such a feature facilitates process-related executions with respect to production sequences. Figure 2 shows an overview
of Brewmaxx sequence-based recipe control including the step logs feature (ProLeiT 2015). Each sequence is a class
instance with configurable parameters for specifying production steps. Moreover, each step encloses the activation of
automation objects such as valves and pumps, monitoring analogue inputs and control of process values according to
recipe parameters. A step ends when specific operations are fulfilled, for instance, maximum step time, temperature set
point, operator interventions, etc. The step logs record the ‘start’ and the ‘end’ times of each step, the duration of the
step, the alarms and their duration and other relevant process values. The information from the logger is used to specify
the productivity metrics.

Table 1 lists a number of parameters specified for describing the system state at any given time.

3.2 Input variable selection and process formulation

The purpose of data selection and curve fitting process is to identify relevant information for the purpose of DES mod-
elling. The brewery produces eight different type of beer. The input variables required for building the DES model were
resource occupancy time (ROT) (busy time), the actual and the theoretical production processing time, scheduled and
unscheduled downtimes, and the production plan.

It is worth noting that the product is not released by a resource unless the quality of the product reaches an accept-
able level. As a result, the ROT may vary depending on the properties of the raw material and other production factors.
In the case of continuous process, the ROT is a combination of waiting time, the delay time caused for unscheduled
downtimes and the rework time. By recording and conducting statistical goodness-of-fit from historical data, the prelimi-
nary (default) ROT probability distribution function (PDF) is produced. This random processing time with respect to the
calculated PDF will be updated continuously and automatically beyond this point. The unscheduled downtimes were

Figure 2. The Brewmaxx sequence-based recipe control.
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calculated based on the data available from the PLC and a mean-time-between-failure and out-service time probability
distribution function was calculated.

Based on the ROT and scheduled and unscheduled downtimes, two types of Processing Time (PT) was calculated.
PT1 is the difference between the ROT and the unscheduled downtime.

ROT ¼ EndStepEndTime � StartStepStartTime (1)

UDT ¼
Xn

1

Time inHeld (2)

PT1 ¼ ROT� UDT (3)

where n is the total number of alarms.
PT2 is the duration of a sub-process which is a fraction of the resource occupation time. It is used when the ROT is

a part of previous and/or subsequent operations in the production line. Equation (4) calculates the PT2. For example, the
‘Mashing Time’ and the ‘Transfer to LS Time’ type of data.

PT2 ¼ StepMEndTime � StepNStartTime � UDTN!M (4)

The theoretical equipment-processing time (Garza-Reyes et al. 2010) was provided by the brewery production manage-
ment.

3.3 The modelling of the system

The logical construct of the manufacturing process was built based on Duflou et al. (2012) definitions of unit of produc-
tion process (UPP), the unit factory (UF) and the facility. For example, we considered the processes in Millstar, Mashtun
and Lauterstar as relevant to UPP. The brewhouse as the UF and the brewery as the facility. The equipment productivity
measurement applies to the sequential operations. Also for UPP, OEE and OLE measurements, we adopted the equip-
ment states model (Leachman 1997; Oechsner et al. 2002; de Ron and Rooda, 2005; Nachiappan et al. 2006). Accord-
ingly:

• Idle state: the UPP is ready for processing the product, but no product is available.
• Busy state: the UPP is processing the product as planned (de Ron and Rooda 2005).
• Unscheduled down state: the UPP is not processing any product due to unplanned downtime events (e.g. random
equipment failures).

• Scheduled/Inactive down state: the UPP is not processing any product due to planned downtime (e.g. planned
maintenance) or the UPP is put off-line due to capacity alteration plans.

The utilisation of the resources is calculated using Equation (5) (Kelton, Sadowski, and Swets 2010).

U ¼ Production time

Resource Available time
(5)

The OEE is expressed as the product of availability efficiency (AE), operational efficiency (OE), rate efficiency (RE)
and quality efficiency (QE) (de Ron and Rooda 2005).

Table 1. Sequence status description.

Status Description

Idle Machine/Resource is ready for use
Running Step is active; sequence is being processed
Paused Step is active but no automatic transitions. Automation objects could be activated. This status is not being used by the

German brewery
Held Step is active but no automatic transitions and no automation objects are activated. This is triggered normally by Alarms
Completed Normal completion of the functional sequence
Stopped No Normal, smooth completion of the functional sequence
Aborted No Normal, immediate completion of the functional sequence
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OEE ¼ AE� OE� REð Þ � QE (6)

Where,

AE ¼ Manufacturing time

Total time
(7)

OE ¼ Production time

Manufacturing time
(8)

RE ¼ Theoretical production time for actual orders

Production time
(9)

QE ¼ Theoretical production time for effectives orders

Theoretical production time for actual orders
(10)

Since brewhouses do not have separate rework areas, any quality discrepancy is detected immediately. The rework there-
fore occurs within the existing production processes. Therefore, the rework should be expressed as RE loss rather than
quality loss. Such an approach requires modifying Equation (6) to:

OEE ¼ AE� OE� REð Þ (11)

And for OLE calculations, Equation (12) is adopted (Nachiappan and Anantharaman 2006).

OLE ¼ LA� LPQP (12)

where LA is the line availability efficiency, and LPQP is the line production quality-performance efficiency.

LA ¼ OTn

ðTotal time� SDT1Þ (13)

OTn is the operation time of the nth UPP, and SDT1 is the scheduled downtime of the first UPP. OTi can be expressed
as:

OTi ¼ OTi � SDTi½ � � UDTi (14)

UDTi is the unscheduled downtime for the UPPi. LPDP can thus be expressed as:

LPQP ¼ Gn � CYT

OT1
(15)

where Gn is the volume of good products at the nth process, (CYT) is the longest cycle time (bottleneck) amongst all
processes (1 to n) and OT1 process time of the first process.

The practical implementation of the real-time simulation requires two parts, the data integration and processing, and
the simulation modelling engine (Tavakoli, Mousavi, and Komashie 2008a). The first component obtains the real-time
data and the second produces the discrete event simulation (Figure 3).

The IPC application (the dashed inside square, Figure 3) acts as the link between the two parts. This framework was
chosen because the Real-time Model Matching Mechanism (R3 M) (Tavakoli, Mousavi, and Komashie 2008a) offers an
effective way for tracking discrete events received from the control system. Within the R3 M, the process flow of the
simulation model runs continuously with respect to the discrete events received from the production line. The events
associated with the start and stop of the processes (i.e. sequences) are reproduced by the simulation model. Similarly,
when a new order starts in the physical model, then R3 M creates a new entity in the model with similar attributes
(Figure 4).

4. Implementation and analysis of results

Figure 5 shows the components of the test platform implemented at the brewery. The brewhouse test system consists of
Brewmaxx server, Brewmaxx workstation and the ABC soft PLC emulating the Simatic® S7-CPU 416 with CP443-1.
The components run within a VMWare ESXi Server environment mirroring the real process. The server contains the
current settings, recipes and parameters of the brewhouse. The workstation contains the latest process graphics. In addi-
tion to the standard enabling technology, the developed IPC module was embedded inside the virtual machine. The role
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of the IPC is to manage the data communication between various components of the real-time and predictive simulation.
Furthermore, a new graphical interface showing the scheduled utilisation was added to the Brewmaxx system. The real-
time DES model (e.g. Arena) is connected to the Brewhouse test system (Figure 5).

Live tests were conducted for 20 h intervals on the production line. Two scenarios were modelled during the test. In
one scenario, a single batch went through the complete production process, triggering all possible events. The second

Figure 4. The R3 M diagram between physical plant and simulated model.

Figure 3. Components and modules for a real-time simulation platform.
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scenario captured multiple batches and different beer types. Whilst the first scenario captured a special case, the second
scenario encapsulated all possible events that could happen throughout a typical production shift. The tests helped to
prove that R3 M could successfully cope live production and it can be repeated and scaled up. The tests for measuring
OEE and OLE were verified by running a number of batches with events triggered on fixed periods so that measured
OEE and OLE could be easily compared against calculated values. Figure 8 shows the architecture of the real system.

The results of the translation of engineering layer shop-floor signals into management information are demonstrated
in Figures 6 and 7. Figure 6 represents scheduled utilisation of the resources. The chart displays the ‘Malt Hopper’ as
the resource with the highest utilisation, however, it is not considered as a bottleneck of system, because it works as a
buffer tank. In this example, the real bottleneck is the Mashtun with a scheduled utilisation of 0.907. Delays in the
Mashtun process had an impact on the equipment at the beginning of the line, particularly with the Malt Hopper.

Figure 7 shows the OEEs of resources, and the OLE for the entire brewhouse line.

Figure 5. Components of the real brewhouse system.
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Figure 6. The results of average scheduled utilisation of resources based on real-time simulation.
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Due to the limitations of access and setting up the proposed solution live on the Shop-floor, the real-time simulation
and predictive scenario builder were used at 20 h intervals of the production line.

For the purpose of model validation, the t-test for measuring the difference between the calculated performance
means against the actual system was conducted. The modelling of the brewhouse process was developed using Arena®
14.70. It involved a curve-fitting analysis of 16 processing times for 8 different beer types. The model was validated by
comparing means of simulated ROTs with historical ROTs over a 10-week period (Direct data collection). A comparison
of means indicated that the probability distributions are good-fit for the brewhouse process, thus allowing us to conclude
that the model is a close approximation of the actual production behaviour of the brewhouse. The validation process
covered the data for two years of the production process. The Discrete Event Simulation model of the brewhouse was
statistically proven to predict the production behaviour of the production plan and the results of the simulation were val-
idated by comparing the simulated data with the existing record of production. By doing so, we confirmed that our
model can estimate (i.e. predict) the production system with high levels of accuracy and with 95% confidence interval.

Tables 2 and 3 shows the results of 95% confidence interval and hypothesis tests of the operational times and the
key observable system parameters after 400 replications.
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Figure 7. The results of average OEE and OLE based on real-time simulation.

Table 2. Category report – Model validation – Resource operating times – Due to commercial sensitivity the name of the operations
have been changed and a few have not been listed to maintain confidentiality.

Category Overview

Brewhouse
No. Replications: 400 Time Units: Hours
Tally
Interval Average Half Width Min. Average Max. Average Min. Value Max. Value

Duration per Brew 4.7656 <0.47 0 9.7170 0 14.68
Operation Time R1 0.4303 <0.04 0 0.8819 0 1.68
Operation Time R2 1.2529 <0.12 0 2.5760 0 5.89
Operation Time R3 1.3568 <0.13 0 2.7923 0 5.86
Operation Time R4 0.7684 <0.08 0 1.5553 0 2.32
Operation Time R5 1.3433 <0.13 0 2.776 0 5.88

… … … … … … …
Operation Time RN-2 0.7259 <0.07 0 1.4801 0 2.23
Operation time RN-1 0.2125 <0.02 0 0.4335 0 0.73
Operation Time RN 0.8788 <0.09 0 1.7959 0 2.94
Counters
Count Average Half Width Min. Average Max. Average
Completed Brews (Batches) 39.0 <3.85 0 78.0
R1 Batches
R2 Batches

… … … … …
RN Batches 39.0 <3.85 0 78.0
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The calculated KPIs of the system via the proposed real-time systems modelling were compared with the historical
measurements of the system performance data. Figure 8 shows the results of the comparisons. The vertical lines on the
graph represent the range of the historical data and the points are calculated for OEEs using the real-time simulation
results. The calculated OEE are well within the known historical measurements and encouraging (see Figure 9).

Some of the interesting observations with regard to the the production process performance can be summarised as:

• The ‘Lauterstar’ is running slower than the theoretical value, whereas the ‘Prerun Tank’ shows an acceptable RE
but a low OE. Therefore, the low RE in the ‘Lauterstar’ may be affecting the performance of both UPPs Mashtun
and Prerun Tank (Figure 10).

• The productivity losses in the Mashtun can be attributed to the RE factor. It can be concluded that the processing
time in Mashtun and Lauterstar have significant impact on the production throughput.

• The efficiency losses in Mashtun can be attributed to the faulty step times in the recipe, delayed interventions of
the operators during the process and/or losses occurred in the ‘Lauterstar’.

• LA of 1.0 indicates that there were not failures during the simulation period (Figure 11). Focusing on the
efficiency of production quality (LPQP), the efficiency losses can be attributed to Mashtun cycle time (4.55 h).
Therefore, by minimising the bottleneck in the Mashtun and Lauterstar, the OLE will increase.

Table 3. Confidence interval and hypothesis test on the operating times.

Paired-T means comparison ROT validation

Identifier
ESTD. mean
difference

Standard
deviation

0.95 C.I. half
width

Minimum
value

Maximum
value

No.
observations

ROT Malt Transport −0.0154 0.113 0.0251 1.11 1.87 80
1.18 2.16 80

Fail to reject H0 => Means are Equal at 0.05 Level
ROT Malt Hopper

Real
0.0364 0.367 0.0822 1.89 3.35 79

1.19 3.4 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Millstar −0.0245 0.236 .0525 0.463 1.17 80

0.412 1.24 80
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Mashtun Real −0.0276 0.475 0.106 1.13 3.4 79

2.38 3.23 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Lauterstar Real 0.00194 0.167 0.0375 2.16 3.13 79

2.16 3 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Prerun Tank

Real
0.00757 0.134 0.03 1.76 2.5 79

1.1 2.59 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Wort Heater

Real
−0.00141 0.0466 0.0104 0.327 0.612 79

0.342 0.618 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Wort Kettle

Real
0.0251 0.151 0.0338 1.52 2.36 79

1.67 1.9 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT HOP Dosage −0.00242 0.108 0.0243 0.391 1.61 79

0.409 1.5 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Whirlpool 0.0468 0.351 0.0786 1.38 3.07 79

1.35 1.79 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Wort Cooler −0.0276 0.144 0.0323 1.23 2.09 79

1.29 2.06 79
Fail to reject H0 => Means are Equal at 0.05 Level
ROT Trub Tank 0.0157 0.917 0.214 0.152 3.38 73

1.15 3.23 73
Fail to reject H0 => Means are Equal at 0.05 Level
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Each identified source of low effectiveness can thus be analysed and remedial actions suggested. The fast-forward
What if scenario feature of the solution provided would allow the testing of initiatives at no cost or disturbance to the
actual line.

5. Conclusions

Building a solution that is capable of automatically translating shop-floor engineering data into high-level management
and decision-making information was the key motivation for this work. The design and development of a repeatable
and scalable real-time information system that is enhanced with a predictive what-if scenario generator has been the out-
come. The tool developed can now be used to answer the two questions posed by the brewery management: ‘Could
breweries decrease the cost per hectolitre of production whilst maximising resource utilisation and improve OEE and
OLE at the same time?’ and ‘How can we be confident about the information we have and the decisions we make?’

Given the ability to visualise the losses and gains of control interference/non-interference more accurately, the cost
of production can be reduced whilst resource utilisation reaches a balance (adjustment of capacity). Hidden capacity and
capabilities have been identified that can now be utilised for improving OEE and OLE. Through predictive analysis vali-
dated and verified by statistical and analytical means action plans can be devised to reduce the gap between expected
productivity and the actual productivity. The proactive line management allows better adjustments to the variations in
raw material, which we found to be one of the major causes for production delay and interference with best production
control settings.

The results of the look ahead ‘what-if-scenarios’ shown to be accurate estimation of the system state, paving the
way for line managers and engineers to intervene with the process control if required. The limited run of 20-h live run
of the solution was due to the software being at research and development stage, efforts are now underway to integrate
the solution with actual control system of the plant in the form of a professional embedded solution.
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