1	Lower Silurian stromatolites in shallow-marine environments of
2	the South China Block (Guizhou Province, China) and their
3	palaeoenvironmental significance
4	
5	Yue Li ^{a, *} , Guan Wang ^b , Stephen Kershaw ^c , Shenyang Yu ^{a, d} , Chao Ni ^{a, d}
6	^a Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute
7	of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, P R
8	China,
9	^b South China Sea Institute of Oceanology, Chinese Academy of Sciences,
10	Guangzhou, 510301, P R China
11	^c Institute for the Environment, Brunel University, Uxbridge, UB8 3PH, UK
12	^d University of Chinese Academy of Sciences, Beijing 100049, P R China
13	* Corresponding author (Yue Li): E-mail address: yueli@nigpas.ac.cn
14	
15	Abstract
16	In northern Guizhou Province (Upper Yangtze Platform, South China Block) two
17	types of reef communities developed in the Lower Silurian (upper Aeronian,
18	Llandovery) Shihniulan Formation; they are calcimicrobial- and metazoan-dominated
19	structures, and existed because of northward deepening of the shallow-marine ramp
20	setting in which they grew. Stromatolitic communities are the focus of the present
21	study and dominated the shallowest reef structures, while metazoan-dominated reefs,
22	previously described in other papers, grew in the outer shelf portion of the ramp.

23	Stromatolitic reefs occur in several sections (Daijiagou, Baishanxi, Jianba and
24	Lianghekou), palaeogeographically close to Qianzhong Land. Within the stromatolite
25	units, laminar sheets of microbial mats and columns are pronounced, with individual
26	stromatolite thicknesses generally less than one meter. Some very small stromatolites
27	are only centimeters in diameter and thickness. Stromatolitic units are cyanobacterial
28	bindstones mostly associated with shales, siltstones and thin-bedded bioclastic
29	limestones. Their growth was frequently punctuated by siliciclastic sediments, and
30	their shallow-water nature is demonstrated by association with birds-eye structures,
31	cross-stratified sediments, and Lingulella-bearing silts in intertidal or/and lagoonal
32	environments. The stromatolites formed during a regression and erosion surfaces are
33	common at the top of the Shihniulan Formation. The Tongzi Uplift, a short-duration
34	expansion of Qianzhong Land, ended the deposition of the late Aeronian limestones.
35	
36	Keywords: stromatolite, shallow marine, Shihniulan Formation, Lower Silurian,
37	north Guizhou, South China Block

1. Introduction

Following the Hirnantian Stage (latest Ordovician) icehouse climate and global
eustatic sea level fall events (Brenchley, 1984), gradual recovery and reorganization
of epibenthic shelly communities led to the first appearance of coral-stromatoporoid
patch reefs in the Rhuddanian Hilliste Formation of the Baltic Basin (Nestor, 1997).
The Aeronian Epoch (Middle Llandovery, Silurian) was a time of global recovery of

45	reef-building communities (e.g. Li and Kershaw, 2003; Copper and Jin, 2012), most
46	likely due to the warmth of marine waters at that time (Li et al., 2008). An 80
47	million-year period of greenhouse conditions began in the Llandovery Epoch (Early
48	Silurian) and lasted until the latest Devonian, thus was optimum for stable
49	development of reefs (Copper, 1988, 2002). The principal Silurian hermatypic fauna
50	includes tabulate and rugose corals, stromatoporoids and bryozoans with microbial
51	structures acting as binders in most cases (e.g. Scrutton, 1988; Copper and Brunton,
52	1991; Brunton and Copper, 1994; Brunton et al., 1998; Copper, 2002; Nose, 2006).
53	Nevertheless, typical Silurian stromatolites formed of purely cyanobacterial
54	bindstones are not common; they are quite limited in time and space and less
55	documented (Brett, 1991; Cao, 1996; Soja and Antoshkina, 1997).
56	Silurian limestones and reefs in the South China Block occur in only the
57	Llandovery sequences temporally and geographically in what is termed the Upper
58	Yangtze Platform (western part of the South China Block; e.g. Zhang et al., 1994;
59	Wan et al., 1997). Late Aeronian reef types in north Guizhou are mainly metazoan
60	framework-dominated structures in an outer-shelf setting (Wang et al., 2014). Coeval
61	stromatolitic units at the Daijiagou section, Tongzi County, were first recognized by
62	the senior author of this paper in the winter of 2005, and also previously recorded in
63	lithological logging by Zhan and Jin (2007). That unit and three more
64	stromatolite-bearing sections are investigated here and altogether the stromatolites
65	occupy a narrow belt spatially. Accordingly, this paper aims to place these unusual
66	stromatolitic units in perspective of Silurian reef studies. We describe the

67	morphological and lithological features of the stromatolites and discuss their
68	depositional setting during a regressional process. This study therefore provides better
69	understanding of the palaeogeographical implications of these Silurian stromatolites
70	following the end-Ordovician biotic crisis.
71	Facies described in this paper were studied by field observations and logging,
72	followed by hand specimen and thin section study to characterize the material.
73	Comparisons with literature facilitated the discussion.
74	
75	2. Geological setting
76	Coeval to the reef-bearing units in Anticosti, Laurentia and Baltica, those in the
77	South China Block were also situated within the low latitudes of the southern
78	hemisphere in Early Silurian time (Scotese et al., 1985; McKerrow and Scotese, 1990;
79	Golonka, 2002). Northern Guizhou lay in the southwestern part of the Yangtze
80	Platform in an epicontinental sea during Silurian time. Qianzhong Land, in the
81	southern part of the study area, played a primary role in configuration of biofacies and
82	lithofacies differentiations of the area (e.g. Rong et al., 2003), leading to
83	interpretations of water depth. The near-shoal belt close to Qianzhong Land in
84	northeastern Guizhou was a shallow, well-oxygenated environment in Rhuddanian
85	time (earliest Silurian). Carbonate facies with shelly benthic communities were
86	gradually reconstructed after the reef-building gap of the Hirnantian Stage cold
87	interval (Ni et al., 2015). The first reefs to appear after the extinction are small-scale
88	coral-stromatoporoid patch reefs in the middle Aeronian upper Xiangshuyuan

89	Formation in Shiqian area, northeastern Guizhou Province (Li and Kershaw, 2003).
90	Coeval graptolitic black shales of anoxic marine-floor had a much wider distribution
91	regionally including north Guizhou, so reefs were able to form in only limited areas.
92	Updated litho- and biostratigraphic correlation schemes suggest that Llandovery
93	sequences in north Guizhou are comprised of shales and siltstones of the Lungmachi
94	Formation (mainly of Rhuddanian-Middle Aeronian), limestone-dominated
95	Shihniulan Formation (late Aeronian) and siltstones-sandstones of the Hanchiatien
96	Formation (lower Telychian) in ascending order. They were all deposited in a ramp
97	setting deepening seaward to the north (e.g. Chen et al., 2001; Zhan and Jin, 2007).
98	Terrigenous-dominated depositional units of the Lungmachi Formation ended in late
99	Aeronian time. Sequences from Lungmachi to Shihniulan Formations are essentially
100	regressive. Shallow-marine carbonate facies of the late Aeronian expanded on the
101	upper Yangtze Platform. The upper Aeronian Shihniulan Formation is ~ 100 m thick
102	and is subdivided in ascending order into nodular limestone intercalated with shales
103	and siltstones of the Songkan Member, and bioclastic and intraclastic bank- and
104	reef-dominated facies of the Shihniulan Member (Rong et al., 2003).
105	Non-reef lithofacies as well as Llandovery reefs on the Yangtze Platform are
106	evidence that tectonic uplift and clarity of marine water (low turbidity) were key
107	factors controlling reef distribution. Ideal conditions in the late Aeronian Epoch
108	promoted thriving benthic biotas and the formation of diverse bank and reefal units
109	(Li and Kershaw, 2003; Li and Rong, 2007). The short-duration Tongzi Uplift caused
110	northward (regressive) migration of the coastline for tens kilometers and terminated

111	carbonate deposition in latest Aeronian time. Sedimentary features such as palaeokarst
112	surfaces, desiccation mudcracks and birds-eye structures at the top of the Shihniulan
113	Formation indicate subaerial exposure especially in those near-shoal belt sections of
114	the Qianzhong Land (Rong et al., 2012; Deng et al., 2012). A transgressional tract of
115	the early Telychian Hanchiatien Formation in northern Guizhou is mainly composed
116	of terrigenous debris. Silurian marine facies above the Llandovery are quite rare in the
117	South China Block due to large-scale tectonic uplift in the Yangtze region (Chen et al.,
118	1996; Rong et al., 2003).
119	Typical metazoan patch reefs in the Shihniulan Member in the Shuibatang section
120	of Tongzi County, north Guizhou, which was situated in an outer-shelf belt of the
121	Yangtze epicontinental sea, were described in preliminary work by Wang et al. (2014).
122	Equivalent stromatolitic units have limited spatial distributions in north Guizhou and
123	are confined to the Lianghekou area of Xishui County, the Daijiagou and Baishanxi
124	areas of Tongzi County, and the Jianba area of Suiyang County. Palaeogeographically
125	these sections lay along the near-shoal belt near Qianzhong Land (Fig. 1).
126	

127 **3. Nature of stromatolites**

128 Stromatolites within the Shihniulan Member occur in four sections where the 129 stromatolite-bearing units terminated at erosion surfaces in all sites due to subaerial 130 exposure during the Tongzi Uplift (Fig. 2). The overlying strata belong to the 131 Hanchiatien Formation. Biotic and sedimentary features of the stromatolites, from 132 west to east, are described next.

134 3.1. Lianghekou section

135	The stromatolite-bearing unit in the upper Shihniulan Member crops out in a
136	vertical cliff section at Lianghekou section (GPS 28°7'52.56"N, 106°12'24.60"E).
137	Here, the Shihniulan Formation sequences below the stromatolites are covered by a
138	road (Fig. 3A). Column- and mat-shaped stromatolitic units herein are rather thin,
139	only several centimeters thick individually (Fig. 3B). Below and above the
140	stromatolites are dark grey calcareous siltstones and shales. Microfacies of the
141	stromatolites show that dark laminations dominated their structure (Fig. 3C). Some
142	very small stromatolites are only centimeters in width (Fig. 3D). Light-grey micritic
143	limestones capping the stromatolites contain birds-eye structures and in some cases
144	also show stromatolitic texture. Macrofossils are also very rare in these micritic
145	limestone layers (Fig. 3E). A palaeokarst surface of the Tongzi Uplift occurs at the
146	top of the Shihniulan Formation (Fig. 3F).
147	

148 *3.2. Daijiagou section*

Daijiagou section (GPS 28°4'57.04"N, 106°47'0.80"E) is one of the best-known
sites that record complete successions through the Upper Ordovician to Llandovery
sequences in the northern Guizhou areas. Stromatolitic units preliminary reported by
Zhan and Jin (2007) are mainly preserved in Beds 25-26 of the logged section as
described below:

154 Bed 26 (5.7 m thick) comprises dark grey, medium- to thick-bedded argillaceous

and bioclastic limestones with some stromatolites occurring in the middle part. 155 Associated bioclastic material is composed of mainly brachiopod fragments, in 156 samples AFN113-115, but no complete fossils have been found. 157 Bed 25, 13.8 m thick, is dominated by dark grey, thin-bedded argillaceous 158 159 limestone with a few intercalations of calcareous mudstone, siltstone, and coral shell layers. Of 157 AFN106-112 sampled here, Sample AFN107 is a coral shell bed, and 160 AFN109 stromatolite unit. 161 162 Of the two major stromatolitic horizons in Beds 25 and 26, the stromatolitic unit 163 of Bed 25 is about 2 m thick, and formed as an accumulation of low-relief mats (Fig. 4A) with horizontal to curving stromatolitic laminae (Fig. 5A). The stromatolite 164 morphology, overall, is similar to that in the Late Archean Campbellrand-Malmani 165 166 platform of South Africa (Riding, 2011). Bed 26 stromatolites vary from maximum of 1.5 m to about 0.5 m in thickness. They typically formed column-shapes and 167 cabbage-like morphologies (Fig. 4B-C). Microfacies of laminations show great 168 169 similarity to that of algal-mats from Bed 25 except obvious dome-like structures (Fig. 5B). 170 171 Some small stromatolitic units with thicknesses about 10 cm are uncommonly found in grevish black shales and siltstones between these two major stromatolitic 172 units in Bed 25-26. Macrofossils are rare, and represented by few Eospirifer and 173

174 *Linguella* (Fig. 4D).

Siltstones and shales intercalated with some limestone with little macrofossilcontent occur above the stromatolite of Bed 26, in which thin-bedded limestone

177	contains cross bedding (Fig. 4, E). A palaeokarst surface is pronounced at the top of
178	the thin-bedded limestone, indicating an unconformable boundary between the
179	Shihniulan Formation and the overlying lower Telychian Hanchiatien Formation (Fig.
180	4F).
181	
182	3.3. Baishanxi section
183	Two stromatolitic units intercalated with thin-bedded bioclastic limestone occur
184	in the Baishanxi section (GPS: 28°8'4.97"N, 106°56'2.11"E) (Fig. 6A). Therein
185	columnar stromatolites are pronounced, and they are 0.5 m and 0.7 m thick in the
186	lower and upper units, respectively (Fig. 6B-C). Most columns are 5-8 cm in diameter.
187	Individual thicknesses of the laminae are somewhat variable in both lower (Fig. 6D)
188	and upper (Fig. 6E) stromatolitic units, in which they are largely light-coloured
189	horizontal laminae.
190	
191	3.4. Jianba section
192	The stromatolitic unit about 1-1.5 m below the top of the Shihniulan Member is
193	about 0.7 m in thickness at this section (GPS 28°4'20.90"N, 106°2'42.64"E). The base
194	and top layers of the stromatolitic unit are thin-bedded yellow calcareous siltstones
195	containing uncommon fine-grained bioclastic components (Fig. 7A). Stromatolites are
196	column-shaped with individual columns being 3-10 cm in diameter and with the
197	widest column being 25 cm in diameter (Fig. 7B). Dark laminae are most common
198	and regularly intercalated with bright laminae. Some horizontal laminae are not very

199 clear due to dolomitization. Fine-grained dolomite is commonly present.

200

201 **4. Discussion**

202 4.1. General setting

203	Most stromatolites described in this paper are underlain or overlain by dark
204	siltstones and/or shales. Thus sporadic turbidity and possible anoxic lagoonal
205	conditions are interpreted to have punctuated growth of the microbial communities
206	and constrained development of the stromatolites. The low diversity and abundance of
207	brachiopod fauna of Lingulella and Eospirifer at the Daijiagou section are possibly
208	indicators of BA1, a benthic association in the very shallow belt close to the land
209	(based on the well-known benthic assemblage depth scheme described by Ziegler,
210	1965; Boucot and Johnson, 1973; and Johnson et al., 1985). Cross-stratification in the
211	Daijiagou sequence also suggests an intertidal to shallow subtidal setting. Micritic
212	limestones with birds-eye structures above the stromatolites in the Lianghekou section
213	are similar to the descriptions and environmental interpretations by Ham (1952) and
214	Flügel (2004); they are indicators of very shallow lime-mud flats occasionally
215	exposed above sea level. Therefore, the palaeonvironment is interpreted as lagoonal to
216	intertidal close to the coastline of the Qianzhong Land and was unfavorable for
217	diverse metazoan fauna but advantageous for opportunistic taxa of cyanobacteria.
218	
219	4.2. Controls on formation of stromatolites

220 Coral-stromatoporoid reef communities of the Yangtze Platform, South China

221	Block, originated in the Late Ordovician Period; they were strongly affected by the
222	cooling Hirnantian Stage regression (e.g. Li et al., 2004). Metazoan reef recovery
223	started in the near-shoal belt of Qianzhong Land in the middle Aeronian
224	Xiangshuyuan Formation, and can be recognized in the Xiangshuyuan and Baisha
225	sections, Shiqian, northeastern Guizhou. Carbonate platforms and the
226	metazoan-dominated biota expanded stepwise towards outer-shelf positions in the late
227	Aeronian Epoch (Li and Kershaw, 2003); the Shihniulan Formation succession
228	indicates a full recovery of colonial rugose and tabulate corals, stromatoporoids and
229	high diversity reef-attached biota. Wang et al. (2014) suggested that these changes
230	represent a global evolutionary step in the aftermath of the latest Ordovician mass
231	extinction event, further indicated by coeval global analogues comprising similar
232	biotic structures in Anticosti (Copper and Jin, 2012) and in Kazakhstan (Berg et al.,
233	1980; Zadoroshnaya and Nikitin, 1990). About eight major units of carbonate
234	platforms with a total of 30 patch reefs of the late Telychian Ningqiang Formation
235	demonstrate the peak stage of Silurian reefs in the northwest margin of the Yangtze
236	Platform (Li et al., 2002). Therefore, the late Aeronian Epoch is a time of
237	evolutionary significance for full recovery of reefs. Wide resurgence of
238	post-extinction microbial buildups of the earliest Silurian in Nevada and Utah
239	(Sheehan and Harris, 2000, 2004) and the Early Triassic (Schubert and Bottjer, 1992;
240	Yang et al., 2011; Kershaw et al., 2007, 2012; Chen et al., 2014; Luo et al., 2016)
241	have been interpreted as anachronistic facies, indicating the harsh environments
242	following major biotic crises (Sepkoski et al., 1991; Schubert and Bottjer, 1992; Chen

243	and Benton, 2012). However, late Aeronian stromatolitic units documented here were
244	not evolutionary analogues of a disaster episode. Instead, they are clearly placed as
245	communities in near-shoal positions co-existing with thriving reefal metazoans that
246	were present in the outer shelf.
247	Biotic structure and size of reefs are governed by multiple oceanographic
248	parameters (Copper, 1994a, b) resulting in low biodiversities and simple fabrics in
249	some Silurian reefs (Watkins, 1979). Silurian stromatolites occurred more frequently
250	in restricted environments, especially in deep water habitats or hypersaline zones in
251	which the predating pressure was not as high as that in a typical open reef-setting
252	(Brett, 1991; Copper and Brunton, 1991). Although the Shihniulan stromatolites grew
253	in shallow niches, they inhabited similar environmental settings to Silurian
254	stromatolites of other areas mentioned above. When compared with the worldwide
255	spread of metazoan-dominated reefs during the Silurian, cyanobacterial buildups
256	including stromatolites are limited and occurred locally during that time (Textoris and
257	Carozzi, 1966; Cherns, 1982; Soja and Riding, 1993; Soja, 1994; Soja et al., 2000).
258	Soja and Antoshkina (1997) inferred ecological similarity and palaeogeographical
259	significance of Upper Silurian subtidal stromatolites in Alaska and the Ural
260	Mountains, built by an unusual consortium of microbial taxa in association with
261	distinctive sphinctozoan sponges. Microbialites and algal framework fabrics are also
262	present in the Middle-Late Silurian stromatoporoid-tabulate coral reefs in Baltic
263	Gotland (Nose et al., 2006). In addition to the aspects of biotic evolution, reefs are
264	also constrained by water depth and turbidity (Li and Kershaw, 2003). The

265	Llandovery sea-level change curves reconstructed worldwide indicate a highstand
266	level (or transgressional interval) during the late Aeronian (Leggett et al., 1981;
267	Johnson et al., 1991; Ross and Ross, 1996; Jeppsson et al., 1997; Loydell, 1998; Haq
268	and Schutter, 2008; Johnson, 2010). Surprisingly, the Shihniulan stromatolites
269	described in this paper are confined to the intertidal or lagoonal belt close to
270	Qianzhong Land during the late Aeronian Epoch. The record of the high-frequency
271	sea-level changes in the near-shoal belt might reflect small-scale sea-level drops in
272	morphological differentiations of algal-mats and column-shape stromatolites. The
273	sedimentary features, especially in subaerially exposed surfaces at the top of the
274	Shihniulan Formation from the near-shoal facies sections mentioned above, reinforce
275	our view that the Tongzi Uplift played a key role in configuration of the distribution
276	of land and sea regionally. Sporadic inputs of muddy and silty debris in near-shoal
277	belts also affected the growth of the stromatolites in the northern Guizhou areas. Such
278	a turbid environmental setting is attributed to gradual expansion of land during the
279	Tongzi Uplift (Rong et al., 2012).

281 **5.** Conclusions

A wide carbonate ramp with northward-deepening sea was favorable for differentiation of reef communities in the upper Aeronian (Llandovery, Silurian) Shihniulan Formation in northern Guizhou. Distinctive stromatolites formed solely by cyanobacterial communities are restricted to the near-shoal belt close to Qianzhong Land; coeval metazoan reefs occupied the outer shelf. Deposition of siliciclastic

287	sediment in this marginal marine environment constrained the size of the stromatolites.
288	Termination of the Shihniulan Formation as well as calcimicrobial inhabitation was
289	mainly caused by shallowing up, including subaerial exposure, due to the northern
290	seaward migration of the coastline during the Tongzi Uplift episode. Overall, the
291	Shihniulan stromatolites are interpreted as one of a subfacies of a reef complex
292	together with metazoan reefs from the outer shelf.
293	
294	Acknowledgements: We are grateful to anonymous referees for their valuable
295	comments on our manuscript. Thanks are also due to Prof. Jiayu Rong in NIGPAS for
296	guilder in the field excursion. We offer our sincere gratitude to Prof. Thomas Algeo
297	and Prof. Zhongqiang Chen for editing. This study was supported by National Natural
298	Science Foundation of China (granted No. 41072002, 41372022, XDB10010503 and
299	41521061).
300	
301	References
302	Berg, L.S., Keller, B.M., Kovalevskii, O.P., Tolmacheva, S.G., Palets, L.M.,
303	Bandaletov, S.M., Olenicheva, M.A., 1980. Chu-Iliiskii rudnyi polyas,
304	Geologiya Chu-iliiskovo raiona [Chu-IIi Mining Camp Geology of the Chu-Iii
305	Region]. Nauka, Alma-Ata 1–503 (in Russian).
306	Boucot, A.J., Johnson, J.G., 1973. Silurian brachiopods. In: Hallam, A., (ed.), Atlas of
307	Palaeobiogeography, Elsevier, Amsterdam, 59-65.
308	Brenchley, P.J., 1984. Late Ordovician Extinctions and their relationship to the

309	Gondwana Glaciation. In: Brenchley, P.J. (Ed.), Fossils and Climate. John
310	Wiley and Sons, Inc. pp. 291–327.
311	Brett, C.E., 1991. Organism-sediment relationships in Silurian marine environments.
312	In: Bassett, M.G., Lane, P.D., Edward, D. (Eds.), The Murchison Symposium:
313	Proceedings of an International Conference on the Silurian System. Spec. Pap.
314	Palaeontol. 44, pp. 301–344.
315	Brunton, F.R., Copper, P., 1994. Paleoecology, temporal, and spatial analysis of Early
316	Silurian reefs of the Chicotte Formation, Anticosti Island, Quebec, Canada.
317	Facies 31, 57–80.
318	Brunton, F.R., Smith, L., Dixon, O.A., Copper, P., Kershaw, S., Nestor, H., 1998.
319	Silurian reef episodes, changing seascapes, and paleobiogeography. New York
320	State Mus. Bull. 491, 265–282.
321	Cao, R.G., 1996. Cambrian and Silurian stromatolites in eastern Yunnan. Reg. Geol.
322	Chin. 27–30. (in Chinese)
323	Chen, X., Rong, J.Y., Wang, C.Y., Geng, L.Y., Deng, Z.Q., Wu, H.J., Chen, T.E., Xu,
324	J.T., Holland, C.H., Aldridge, R.J., Bassett, M.G., Downie, C., Lane, P.D.,
325	Richards, R.B., Scrutton, C.T., 1996. Telychian (Llandovery) of the Yangtze
326	region and its correlation with British Isles. Beijing (Science Press), 162pp (in
327	Chinese with English summary).
328	Chen, X., Rong, J.Y., Zhou, Z.Y., Zhang, T.D., Zhan, R.B. Liu, J.B., Fan, J.X., 2001.
329	The central Guizhou and Yichang uplifts, Upper Yangtze region, between
330	Ordovician and Silurian. Chin. Sci. Bull. 46, 1580–1584.

331	Chen, Z.Q., Benton, M.J., 2012. The timing and pattern of biotic recovery following
332	the end-Permian mass extinction. Nat. Geosci. 5, 375–383.
333	Chen, Z.Q., Wang, Y.B., Kershaw, S., Luo, M., Yang, H., Zhao, L.S., Fang, Y.H.,
334	Chen, J.B., Li, Y., Zhang, L., 2014. Early Triassic stromatolites in a siliciclastic
335	nearshore setting in northern Perth Basin, Western Australia: geobiologic
336	features and implications for post-extinction microbial proliferation. Glob.
337	Planet. Chang. 121, 89–100.
338	Cherns, L., 1982. Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian
339	Eke Formation of Gotland, Sweden. Sedimentology 29, 819-833.
340	Copper, P., 1988. Ecological succession in Phanerozoic reef ecosystems: is it real?.
341	Palaios 3, 136–151.
342	Copper, P., 1994a. Reef under stress: the fossil record. Cour. Forschungsinst.
343	Senckenberg 172, 87–94.
344	Copper, P., 1994b. Ancient reef ecosystem expansion and collapse. Coral reefs 13, 3-
345	11.
346	Copper, P., 2002. Silurian and Devonian reefs: 80 million years of global greenhouse
347	between two ice ages. In: Kiessling, W., Flügel, E., Golonka, J. (Eds.),
348	Phanerozoic Reef Patterns. SEPM Special Publication 72, pp. 181–238.
349	Copper, P., Brunton, F., 1991. A global review of Silurian reefs. In: Bassett, M.G.,
350	Lane, P.D., Edward, D. (Eds.), The Murchison Symposium: Proceedings of an
351	International Conference on the Silurian System. Spec. Pap. Palaeontol. 44, pp.
352	225–260.

353	Copper, P., Jin, J.S., 2012. Early Silurian (Aeronian) East Point coral patch reefs of
354	Anticosti Island, Eastern Canada: first reef recovery from the
355	Ordovician/Silurian Mass Extinction in Eastern Laurentia. Geosciences 2, 64-
356	89.
357	Deng, X.J., Wang, G., Li, Y., 2012. Sedimentary characteristics at the top of the
358	Shihniulan Formation (late Aeronian, Silurian) and their implications for
359	identification of the shoal line in Tongzi, Northern Guizhou. J. Stratigr. 36,
360	718–722 (in Chinese with English summary).
361	Flŭgel, E., 2004. Microfacies of carbonate rocks: analysis, interpretation and
362	application. Heidelberg: Springer-Verlag, 1-984.
363	Golonka, J., 2002. Plate tectonic maps of the Phanerozoic. In: Kiessling, W., Flügel,
364	E., Golonka, J. (Eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72,
365	pp. 21–75.
366	Ham, W.E., 1952. Algal origin of the "Birdseye" limestone in the McLish Formation.
367	Proc. Oklahoma Acad. Sci. 33, 200–203.
368	Haq, B.U., Schutter, S.R., 2008. A chronology of Paleozoic sea-level changes.
369	Science 322, 64–68.
370	Jeppsson, L., 1997. Recognition of a probable secundo-primo event in the Early
371	Silurian. Lathaia 29, 311–315.
372	Johnson, M.E., 2010. Tracking Silurian eustasy: alignment of empirical evidence or
373	pursuit of deductive reasoning?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296,
374	276–284.

375	Johnson, M.E., Rong, J.Y., Yang, X.C., 1985. International correlation by sea-level
376	events in the Early Silurian of North America and China. Bull. Geol. Soc.
377	London, 81, 343-385.
378	Johnson, M.E., Kaljo, D., Rong, J.Y., 1991. Silurian eustasy. In: Bassett M.G.,
379	Edwards, D. (Eds.), The Murchison Symposium – Proceedings of an
380	International Conference on the Silurian System. Spec. Pap. Palaeontol. 44, pp.
381	145–163.
382	Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q.L., Mu, X.N., Collin, P.Y.,
383	Reynolds, A., Guo, L., 2007. Earliest Triassic microbialites in the South China
384	block and other areas: controls on their growth and distribution. Facies 53, 409-
385	425.
386	Kershaw, S., Crasquin, S., Li, Y., Collin, P.Y., Forel, M.B., Mu, X.N., Baud, A.,
387	Wang, Y., Xie, S.C., Maurer, F., Gou, L., 2012. Microbialites and global
388	environmental change across the Permian–Triassic boundary: a synthesis.
389	Geobiology 10, 25–47.
390	Leggett, J.K., McKerrow, W.S., Cocks, L.R.M., Richards, R.B., 1981. Periodicity in
391	the early Palaeozoic marine realm. J. Geol. Soc. Lon. 138, 167–176.
392	Li, Y., Kershaw, S., Chen, X., 2002. Biotic structure and morphology of patch reefs
393	from South China (Ningqiang Formation, Telychian, Llandovery, Silurian).
394	Facies 46, 133–148.
395	Li, Y., Kershaw, S., 2003. Reef reconstruction after extinction event of Latest
396	Ordovician in Yangtze Platform, South China. Facies 48, 269–284.

397	Li, Y., Kershaw, S., Chen, X., 2004. Control of carbonate sedimentation and reef
398	growth in Llandovery sequences on the northwestern margin of Yangtze
399	Platform, South China. Gondwana Res. 7 (4), 937–949.
400	Li, Y., Rong, J.Y., 2007. Shell concentrations of Early Silurian virgianid brachiopods
401	in northern Guizhou: Temporal and spatial distribution and tempestite
402	formation. Chin. Sci. Bull. 52, 1680-1691.
403	Li, Y., Wang, J.P., Zhang, Y.Y., Gu, C.G., 2008. Perspective of carbonates during the
404	Ordovician-Silurian transition in South China: implications of their
405	palaeoclimate response. Progr. Nat. Sci. 18(10): 122-128. (in Chinese)
406	Loydell, D.K., 1998. Early Silurian sea-level changes. Geol. Mag. 135, 447–471.
407	Luo, M., Chen, Z.Q., Shi, G.R., Fang, Y.H., Song, H.J., Jia, Z.H., Huang, Y.G., Yang,
408	H., 2016. Upper Lower Triassic stromatolite from Anhui, South China:
409	geobiologic features and paleoenvironmental implications. Palaeogeogr.
410	Palaeoclimatol. Palaeoecol. 452, 40–54.
411	McKerrow, W.S., Scotese, C.R., 1990. Revised world basemaps. In: McKerrow, W.S.,
412	Scotese, C.R. (Eds.), Palaeozoic palaeogeography and biogeography. Mem.
413	Geol. Soc. London. 12, pp. 1–20.
414	Nestor, V., 1997. Reflection of Wenlock oceanic episodes and events on the
415	chitinozoan succession of Estonia. Proc. Est. Acad. Sci., Geol. 46 (3), 119-126.
416	Ni, C., Deng, X.J., Li, Y., 2015. Biodiversity of the "Lungmachi Formation"
417	limestones at the Xiangshuyuan section, Shiqian, NE Guizhou. Acta
418	Micropalaeontol. Sin. 32 (1), 96–104 (in Chinese with English summary)

419	Nose, M., Schmid, D.U., Leinfelder, R.R., 2006. Significance of microbialites,
420	calcimicrobes, and calcareous algae in reefal framework formation from the
421	Silurian of Gotland, Sweden. Sediment. Geol. 192 (3), 243-265.
422	Riding, R., 2011. The nature of stromatolites: 3,500 Million years of history and a
423	century of research. In: Reitner, J., (eds.), Advance in Stromatolite Giobiology.
424	Lect. Note Earth Sci. 131, 29–74.
425	Rong, J.Y., Chen, X., Su, Y.Z., Ni, Y.N., Zhan, R.B., Chen, T.E., Fu, L.P., Li, R.Y.,
426	Fan, J.X., 2003. Silurian paleogeography of China. In: Landing, E., Johnson,
427	M.E. (Eds.), Silurian Lands and Seas-Paleogeography Outside of Laurentia.
428	New York State Mus. Bull. 493, pp. 243–298.
429	Rong, J.Y., Wang, Y., Zhan, R.B., Huang, B., Wu, R.C., Wang G, Li, Y., Deng, X.J.,
430	2012. On the Tongzi Uplift: Evidences of northward expansion of Qianzhong
431	Oldland during Aeronian, Llandovery, Silurian. J. Stratigr. 36, 679–691 (in
432	Chinese with English summary)
433	Ross, C.A., Ross, R.P., 1996. Silurian sea-level fluctuations. In: Witzke, B.J.,
434	Ludvigson, G.A., Day, J. (Eds.), Paleozoic Sequence stratigraphy: view from
435	the North American Craton. Geol. Soc. Am. Spec. Pap. 306, pp. 187–192.
436	Schubert, J.K., Bottjer, D.J., 1992. Early Triassic stromatolites as post-mass
437	extinction disaster forms. Geology 20, 883-886.
438	Schubert, J.K., Bottjer, D.J., 1995. Aftermath of the Permian-Triassic mass extinction
439	event: Paleoecology of Lower Triassic carbonates in the western USA.
440	Palaeogeogr. Palaeoclimatol. Palaeoecol. 116, 1-39.

441	Scotese, C.R., Van der Voo, R., Barrett, S.F., Westoll, T.S., Chaloner, W.G., 1985.
442	Silurian and Devonian Base Maps [and Discussion]. Philos. Trans. R. Soc.
443	London, B: Biol. Sci. 309 (1138), 57-77.
444	Scrutton, C.T., 1988. Patterns of extinction and survival in Palaeozoic corals. In:
445	Larwood, G.P. (Ed.), Extinction and survival in the fossil record. Clarendon
446	Press, Oxford, pp. 65–88.
447	Sepkoski, J.J.Jr., Bambach, R.K., Droser, M.L., 1991. Secular changes in Phanerozoic
448	event bedding and biological overprint. In: Einsele, G., Ricken, W., Seilacher,
449	A., (Eds.), Cycles and events in stratigraphy. Heidelberg: Spring Verlag, 298-
450	312.
451	Sheehan, P.M., Harris, M.T., 2000. Early Silurian stromatolites and thrombolites:
452	successful disaster forms after the Late Ordovician mass extinction. Abstr.
453	Progra. Geol. Soc. Am. Nat. Meeting 32, 367–368.
454	Sheehan, P.M., Harris, M.T., 2004. Microbialite resurgence after the Late Ordovician
455	extinction. Nature 430, 75–78.
456	Soja C.M., 1994. Significance of Silurian stromatolite-sphinctozoan reefs. Geology 22,
457	355–358.
458	Soja, C.M., Riding, R., 1993. Silurian microbial associations from the Alexander
459	terrane, Alaska. J. Paleont. 67, 728–738.
460	Soja, C.M., Antoshkina, A.I., 1997. Coeval development of Silurian stromatolite reefs
461	in Alaska and the Ural Mountains: Implications for paleogeography of the
462	Alexander terrane. Geology 25, 539–542.

463	Soja, C.M., White, B., Antoshkina, A., Joyce, S., Mayhew, L., Flynn, B., Gleason, A.,
464	2000. Development and decline of a Silurian stromatolite reef complex, Glacier
465	Bay National Park, Alaska. Palaios 15, 273–292.
466	Textoris, D.A., Carozzi, A.V., 1966. Petrography of a Cayugan (Silurian) stromatolite
467	mound and associated facies, Ohio. Bull. Amer. Assoc. Petrol. Geol. 50, 1375-
468	1383.
469	Wan, Y., Zhang, T.S., Lan, G.Z., Yuan, J.X., 1997. The Silurian reef and its
470	environmental evolution in the southeastern Sichuan Province and northern
471	Guizhou Province. Acta Sediment. Sin. 15, 106–113 (in Chinese)
472	Wang, G., Li, Y., Kershaw, S., Deng, X.J., 2014. Global reef recovery after the
473	end-Ordovician extinction: evidence from the late Aeronian
474	coral-stromatoporoid reefs in South China. GFF 136, 286-289.
475	Wang, J.P., Deng, X.J., Wang, G., Li, Y., 2012. Types and biotic successions of the
476	Ordovician reefs in China. Chin. Sci. Bull. 57, 1160–1168.
477	Watkins, R., 1979. Three Silurian bioherms of the Högklint Beds, Gotland.
478	Geologiska Foreningens i Stockholm Forhandlingar 101, 33–48.
479	Wignall, P.B., Twitchett, R.J., 1999. Unusual intraclastic limestones in Lower Triassic
480	carbonates and their bearing on the aftermath of the end-Permian mass
481	extinction. Sedimentology 46, 303–316.
482	Yang, H., Chen, Z.Q., Wang, Y., Tong, J., Song, H., Chen, J., 2011. Composition and
483	structure of microbialite ecosystems following the end-Permian mass extinction
484	in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111-128.

485	Zadoroshnaya, N.M., Nikitin, I.F., 1990. Kazakhstanskaya skladchataya oblast. In:
486	Belenitskaya, G.A., Zadoroshnaya, N.M. (Eds.), Rifogennye i sulfatonosnye
487	formatsii Fanerozoya SSSR (Phanerozoic Reefal and Sulfate bearing
488	Formations of the USSR). Ministerstvo Geologii SSSR, Moscow, Nedra, pp.
489	41–52 (in Russian)
490	Zhan, R.B., Jin, J.S., 2007. Ordovician-Early Silurian (Llandovery) Stratigraphy and
491	Palaeontology of the Upper Yangtze Platform, South China. Science Press,
492	Beijing, 169 pp
493	Zhang, T.S., Lan, G.Z., Gao, W.D., Copper, P., 1994. Silurian reefs in northeast
494	Sichuan, China. Science and Technology University Publishing House Science
495	Press of Chengdu, Chengdu 115 pp. (in Chinese).
496	Ziegler, A.M., 1965. Silurian marine communities and their environmental
497	significance. Nature 207, 270–272.
498	
499	Figure captions
500	Fig. 1 Localities of four stromatolite deposits in the southern region and one
501	metazoanal reef in the northern region sections in the Shihniulan Formation in north
502	Guizhou. The southern region of these localities was Qianzhong Land closer to the
503	location of stromatolite formation than the metazoan reefs. The greyish lines in the
504	south and greyish dot line in the north are the coastlines of the beginning and end,
505	respectively, of the Shihniulan Formation deposition (base palaeogeographic
506	reconstruction map after Rong et al., 2012).

Fig. 2. Lithological logs of the four stromatolite-bearing sections in north Guizhou.

510	Fig. 3. Sedimentary features of the upper Shihniulan Member at Lianghekou section,
511	Xijiu, Xishui. (A) a cliff showing the horizons of stromatolite of (B) and (D) and
512	associated micritic limestone with birds-eye structures of (E). (B) stromatolitic unit in
513	dark grey silts and shales (lens cap = 8 cm for scale). (C) microfacies of the
514	stromatolite of B. (D) centimeter-scale stromatolite. E, micritic limestone with
515	birds-eye structures above the stromatolitic unit. (F) erosion surface as the
516	unconformable boundary between Shihniulan and overlying Hanchiatien formations.
517	
518	Fig. 4. Successions of the Shihniulan Member, Shihniulan Formation at the Daijiagou
519	section, Tongzi. (A) mat-like stromatolites. (B) plan-view of columnar stromatolites;
520	the hammer is 28 cm long. (C) profile view of stromatolite columns. (D) small
521	loaf-shape stromatolite surrounded by greyish black siltstones and shales yielding
522	brachiopods Lingulella (a) and Eospirifer (b). (E) thin-bedded limestones with
523	cross-bedding above the stromatolitic units. (D) palaeokarst surface at the top of the
524	boundary between the Shihniulan and Hanchiatien formations.
525	
526	Fig. 5. Microfacies of the stromatolites at the Daijiagou section. (A) calcimicrobial
527	mat-like stromatolite from the Bed 25. (B) columnar stromatolite from Bed 26.
528	

529	Fig. 6. Lithological features of the stromatolites in the Shihniulan Member at the
530	Baishanxi section, Tongzi. (A) thin-bedded nodular bioclastic limestone between the
531	lower and upper stromatolitic units. (B–C) both upper (B) and lower (C) stromatolitic
532	units are columnar. (D–E) pale laminations are common in both lower (D) and upper
533	(E) stromatolitic units.
534	
535	Fig.7. Lithological features of the stromatolites of the Shihniulan Member at Jianba
536	section, Suiyang. (A) upper part of the Shihniulan Member showing the horizon of
537	stromatolite-bearing unit; (B) columnar and dome-shaped stromatolites, white scale=8
538	cm; (C–D) microfacies showing open spaces between stromatolitic laminae (C) and
539	dolomitization of stromatolites locally (D).
540	
541	Highlights:
542	1) Early Silurian biofacies differentiation on a carbonate ramp in the Upper Yangtze
543	Platform were essentially controlled by depth of the sea.
544	2) Small-sized stromatolites formed in a regressional setting close to Qianzhong Land
545	showing algal mat and column-shape.
546	3) Associated facies were typically formed in intertidal or/and lagoonal environments.
547	4) Tectonic uplif ended the deposition of limestones.

Figure2 Click here to download high resolution image

Figure7 Click here to download high resolution image

