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Abstract: This paper is concerned with the filtering problem for a class of nonlinear systems
with stochastic sensor saturations and Markovian measurement transmission delays, where the
asymptotic stability in probability is considered. The sensors are subject to random saturations
characterized by a Bernoulli distributed sequence. The transmission time-delays are governed by a
discrete-time Markov chain with finite states. In the presence of the nonlinearities, stochastic sen-
sor saturations and Markovian time-delays, sufficient conditions are established to guarantee that
the filtering process is asymptotically stable in probability without disturbances and also satisfies
the H∞ criterion with respect to nonzero exogenous disturbances under the zero-initial condition.
Moreover, it is illustrated that the results can be specialized to linear filters. Two simulation exam-
ples are presented to show the effectiveness of the proposed algorithms.

1. Introduction

In the past decades, the filtering problem has been attracting considerable research attention due to
its significance in signal processing, communication, navigation and tracking, finance, etc. There
have been many different filtering methods reported in the literature. Traditional Kalman filter
and extended Kalman filter can solve the estimation problem, respectively, for linear and nonlinear
systems in the least mean square sense [1, 2]. The H∞ filtering has been extensively studied to
guarantee that the L2 gain from the disturbance to the estimation error is less than a predefined
positive level [3, 4]. For stochastic systems, the concept of stability in probability is important
[5, 6] because it can describe the system dynamics in a probabilistic way. So far, the filtering
problem in the sense of stability in probability has stirred some initial research interests [7, 8, 9].

In practical engineering, sensors cannot generate measured outputs with unbounded ampli-
tudes due to physical and technological limitations such as nonlinear transition shift sensors [10],
position sensors [11], displacement sensors [12], pressure sensors [13], and so on. This phe-
nomenon, often referred to as sensor saturation, would bring in extra challenges to the filtering
problem. So far, the filtering problem with sensor saturations has drawn much research attention
[14, 15, 16, 17, 18]. In most of the reported literature, the sensor saturations have been assumed to
occur definitely and described by the so-called sector-bounded conditions. Nevertheless, sensors
in practical systems might be subject to some transient phenomena especially in unattended envi-
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ronments such as power grids [19, 20, 21]. In these cases, the saturations may occur in a random
way owing to various reasons such as random sensor failures and abrupt environmental changes
[22]. The filtering problem with stochastic sensor saturations has not received adequate research
attention yet, not to mention the case where the stability in probability is also taken into account to
quantify the performance. As such, it would be interesting to examine how the saturation levels and
the statistical characteristics of the sensor saturations would influence the stability in probability
for the filter design problem.

It is well known that time delays are frequently encountered in many practical systems and may
deteriorate the system performances if they are not appropriately coped with in the design proce-
dure [23, 24, 25, 26]. The filtering problem with time-delays has been investigated for a variety of
systems such as two-dimensional systems [27] and neural networks [28]. A widely adopted way to
formulate the stochastic time-delays is the finite state Markov chain method, which can reflect the
relationship between the delays at different time steps [29, 30]. An H∞ filter has been proposed
in [31] for nonlinear systems with model uncertainties and Markov delays. Also, least-squares
estimators for systems with Markov delays have been designed recursively in [32, 33]. Neverthe-
less, when the Markov time-delay issue is coupled with stochastic sensor saturations, the filtering
problem for discrete nonlinear systems with guaranteed stability in probability still remains as an
ongoing research issue. In fact, it is non-trivial to establish a unified framework to accommodate
nonlinearities, stochastic sensor saturations as well as Markov time-delays simultaneously. The
main purpose of this paper is to shorten such a gap.

In this paper, we aim to address filtering problem, in the sense of asymptotic stability in proba-
bility, for a class of nonlinear systems with stochastic sensor saturations and Markov time-delays.
A Bernoulli-distributed sequence is employed to regulate the stochastic sensor saturations. Time
delays in the measurement transmissions are governed by a discrete Markov chain with finite states.
Sufficient conditions are established to guarantee the desired stability in probability and determine
the filter parameters. The linear filter is further investigated as a special case. Two simulation
examples are presented to show the effectiveness of the proposed method. The main novelty of
the paper lies in the following aspects: 1) a comprehensive model is established which covers
nonlinearities, stochastic sensor saturations, and Markov time delays; 2) sufficient conditions are
achieved under which the designed filter is asymptotically stable in probability in the disturbance-
free case and also robust to exogenous disturbances under the zero-initial condition; and 3) the
conditions are specialized to some linear filters such that the simplified results are more applicable
in practice.

The rest of paper is organized as follows. In Section 2, the formulation of the addressed non-
linear system with stochastic sensor saturations and Markov time delays is provided. In Section 3,
the desired filter is designed in the sense of stability in probability, and a linear filter is established
as a special case. Two simulation examples are presented in Section 4 and the paper is concluded
in Section 5.

Notations. The notation used in the paper is fairly standard except where otherwise stated.
Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and the set of all n × m
real matrices. The superscript “T” denotes the transpose and the notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means that X − Y is positive semidefinite
(respectively, positive definite). I is the identity matrix with compatible dimension. E{x} stands
for the expectation of the stochastic variable x. ∥x∥ refers to the Euclidean norm of vector x. ◦
stands for the Hadamard product with this product being defined as [A ◦ B]ij = AijBij . ⊗ is the
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Kronecker product defined as A ⊗ B =

 a1,1B · · · a1,nB
... . . . ...

am,1B · · · am,nB

. 1 represents a matrix whose

entries are all one. ∗ in a symmetric block matrix represents a term that can be determined by
symmetry.

2. Problem Formulation

Consider the following class of stochastic discrete-time nonlinear systems:
xk+1 = f(xk) + g(xk)vk + (h(xk) + s(xk)vk)wk,

zk = m(xk),
ỹk = λkσ(l(xk)) + (1− λk)l(xk) + k(xk)vk,
yk = ỹk−dk ,

(1)

where xk ∈ Rnx is the state; zk ∈ Rnz is the signal to be estimated; wk is a one-dimensional
and zero-mean Gaussian white noise sequence with E {w2

k} = r2 (r is a known positive scalar);
vk ∈ Rnv is the exogenous disturbance satisfying {vk}k∈N ∈ l2([0,+∞),Rnv); ỹk ∈ Rny is the
measurement before transmission; yk ∈ Rny is the received signal impaired by communication
delays; dk is the homogeneous discrete-time Markov chain defined on N , {0, 1, · · · , d− 1} with
the one-step transition matrix (πij)d×d and the initial distribution π0, where d > 0 is a fixed integer.

The nonlinear functions f : Rnx → Rnx , g : Rnx → Rnx×nv , h : Rnx → Rnx , s : Rnx →
Rnx×nv , m : Rnx → Rnz , l : Rnx → Rny and k : Rnx → Rny×nv are assumed to be smooth,
matrix-valued functions with f(0) = 0, h(0) = 0, m(0) = 0 and l(0) = 0. λk ∈ R is a Bernoulli
distributed white sequence taking values on 0 or 1 with{

Prob{λk = 1} = λ̄,
Prob{λk = 0} = 1− λ̄,

(2)

where λ̄ ∈ [0, 1] is a known scalar.
For a vector q =

[
q1, . . . , qny

]T , the saturation function σ : Rny → Rny is defined as:

σ(q) =
[
σ1(q1), · · · , σny(qny)

]T
, (3)

with σi(qi) = sign(qi)min(qi,max, |qi|), where the notation of “sign” denotes the signum function
and qi,max > 0 denotes the ith saturation level.

For notational brevity, we set

x̄k =
[
xT
k , · · · , xT

k−(d−1)

]T
, v̄k =

[
vTk , · · · , vTk−(d−1)

]T
, f̄(x̄k) =

[
fT (xk), x

T
k , · · · , xT

k−(d−2)

]T
,

ḡ(x̄k) = diag {g(xk), 0, · · · , 0} , h̄(x̄k) =
[
hT (xk), 0, · · · , 0

]T
, s̄(x̄k) = diag {s(xk), 0, · · · , 0} ,

ȳk =
[
ỹTk , · · · , ỹTk−(d−1)

]T
,Λk = diag

{
λk, · · · , λk−(d−1)

}
⊗ Iny , m̄(x̄k) = m(xk),

l̄(x̄k) =
[
lT (xk), · · · , lT (xk−(d−1))

]T
, σ̄(l̄(x̄k)) =

[
σT (l(xk)), · · · , σT (l(xk−(d−1)))

]T
,

k̄(x̄k) = diag
{
k(xk), · · · , k(xk−(d−1))

}
,

and Cdk = [0, · · · , 0, I, 0, · · · , 0] with the (dk + 1)th block being an identity.
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With the defined notations, then the original model (1) can be written in the following form:
x̄k+1 = f̄(x̄k) + ḡ(x̄k)v̄k + (h̄(x̄k) + s̄(x̄k)v̄k)wk,

zk = m̄(x̄k),
ȳk = Λkσ̄(l̄(x̄k)) + (I − Λk)l̄(x̄k) + k̄(x̄k)v̄k,
yk = Cdk ȳk.

(4)

Remark 1. The measurement equations in (1) are employed to address the Markov transmission
delays and the stochastic sensor saturations. The random variables Λk and dk account for the sensor
saturations and time delays, respectively. The statistics of Λk and dk would be utilized in the filter
design procedure.

In this paper, a full-order filter of the following structure is adopted:{
x̂k+1 = f̂(x̂k) + ĝ(x̂k, dk)yk,

ẑk = m̂(x̂k),
(5)

where x̂k ∈ Rd×nx is the state estimate; ẑk ∈ Rnz is the estimate of zk, and f̂ , ĝ and m̂ are filter
parameters of appropriate dimensions that are to be determined with f(0) = 0, m(0) = 0 and
x̂0 = 0.

By introducing a new vector ηk =
[
x̄T
k , x̂

T
k

]T and letting the filtering error be z̃k = zk − ẑk, an
augmented system is obtained as follows:{

ηk+1 = f̃(ηk, dk) + g̃(ηk, dk)vk + (h̃(ηk) + s̃(ηk)v̄k)wk,
z̃k = m̄(x̄k)− m̂(x̂k),

(6)

where

f̃(ηk, dk) =

[
f̄(x̄k)

f̂(x̂k) + ĝ(x̂k, dk)CdkΛkσ̄(l̄(x̄k)) + ĝ(x̂k, dk)Cdk(I − Λk)l̄(x̄k)

]
,

g̃(ηk, dk) =

[
ḡ(x̄k)

ĝ(x̂k, dk)Cdk k̄(x̄k)

]
, h̃(ηk) =

[
h̄(x̄k)
0

]
, s̃(ηk) =

[
s̄(x̄k)
0

]
.

Before proceeding, let us first introduce the following definition, which is a discrete version of
that in [34].

Definition 1. The solution ηk = 0 of (6) is said to be

1. stable in probability if for every pair of ϵ ∈ (0, 1) and α > 0, there exists a δ = δ(ϵ, α) > 0
such that

Prob {∥ηk∥ < α, ∀k ∈ N} ≥ 1− ϵ, whenever ∥η0∥ < δ;

2. asymptotically stable in probability if the origin of (1) is stable in probability, and

lim
k→∞

Prob {∥ηk∥ = 0} = 1, ∀η0 ∈ R2nx .

In this paper, we aim to design the filter parameters f̂(x̂k), ĝ(x̂k, dk) and m̂(x̂k) in (5) such that
the following requirements are simultaneously satisfied:
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1. The zero-solution of the augmented system (6) with v̄k = 0 is asymptotically stable in prob-
ability;

2. Under the zero-initial condition, the filtering error z̃k satisfies

∞∑
k=0

E
{
∥z̃k∥2

}
< γ2

∞∑
k=0

E
{
∥v̄k∥2

}
(7)

for all nonzero v̄k, where γ > 0 is a given disturbance attenuation level.

The filtering problem for the addressed nonlinear system will be solved in the next section, and
the results will be applied to some special cases for practical convenience.

3. Main Results

We start with the following definitions and lemma which will be used in the development of the
main results.

Definition 2. [35] A function V : Rn → R+ is said to be positive definite if V (0) = 0 and
V (x) > 0 for all x ∈ Rn\{0}.

Definition 3. [36] A function κ : R+ → R+ is said to be a K class function if it is continuous,
strictly increasing and κ(0) = 0. A K class function κ(·) is said to be a K∞ class function if
κ(r) → +∞ as r → +∞.

Lemma 1. If there exists a positive definite function V : R2d×nx → R+, two K∞ class functions
κ1, κ2, and a K class function κ3 such that for all k ∈ N,

κ1(∥η∥) ≤ V (η) ≤ κ2(∥η∥),∀η ∈ R2d×nx , (8)
E {V (ηk+1)|ηk} − V (ηk) ≤ −κ3(∥ηk∥), (9)

then the origin of (6) with v̄k = 0 is asymptotically stable in probability.

Proof. Based on (9) and the definitions of K class functions and positive definite functions, we
have

0 ≤ E {V (ηk+1)} ≤ E {V (ηk)} ≤ · · ·V (η0). (10)

Then, for any α > 0 and k ∈ N, we have

Prob {∥ηk∥ ≥ α} = Prob {κ1 (∥ηk∥) ≥ κ1(α)} ≤ Prob {V (ηk) ≥ κ1(α)} . (11)

Since V (ηk) is nonnegative, we have

E {V (ηk)} ≥ κ1(α)Prob{V (ηk) ≥ κ1(α)}. (12)

With (11) and (12), it can be obtained that

Prob{V (ηk) ≥ κ1(α))} ≤ E {V (ηk)}
κ1(α))

≤ V (η0)

κ1(α))
≤ κ2 (∥η0∥)

κ1(α)
. (13)

5



Therefore, for any ϵ > 0, we can choose δ = κ−1
2 (ϵκ1(α)) > 0 such that

Prob {∥ηk∥ < α, ∀k ∈ N} ≥ 1− ϵ,whenever ∥η0∥ < δ.

With (10), we can also find a V∞ ≥ 0 such that

lim
k→∞

E {V (ηk)} = V∞. (14)

Substituting (14) into (9) yields

lim
k→∞

E {κ3(∥ηk∥)} = 0 (15)

which implies that

lim
k→∞

Prob {∥ηk∥ = 0} = 1.

The proof is now complete.

With Lemma 1, sufficient conditions are going to be established in the following theorem to
facilitate the filter design.

Theorem 1. Given a disturbance attenuation level γ > 0. If there exist two positive definite
matrices P = P T > 0 and Q = QT > 0, and a K class function κ3 satisfying the inequalities H(x̄, x̂, τ) = B(x̄, x̂, τ)A−1(x̄, x̂, τ)BT (x̄, x̂, τ) + r2h̄T (x̄)Ph̄(x̄) +D(x̄, x̂, τ)

+∥z̃∥2 + κ3(∥η∥) < 0, for any x̄, x̂ ∈ Rd×nx , τ ∈ N,
A(x̄, x̂, τ) > 0, for any x̄, x̂ ∈ Rd×nx , τ ∈ N,

(16)

where

Λ̄ = λ̄Id×ny , Λ̄2 =


1− λ̄ (1− λ̄)2 · · · (1− λ̄)2

∗ 1− λ̄ · · · ...
...

... . . . ...
∗ · · · · · · 1− λ̄

⊗ 1ny×ny ,

Λ̄1 =


λ̄ λ̄2 · · · λ̄2

∗ λ̄ · · · ...
...

... . . . ...
∗ · · · · · · λ̄

⊗ 1ny×ny , Λ̄3 =


0 λ̄(1− λ̄) · · · λ̄(1− λ̄)

∗ 0 · · · ...
...

... . . . ...
∗ · · · · · · 0

⊗ 1ny×ny ,

A(x̄, x̂, τ) =γ2I − r2s̄T (x̄)P s̄(x̄)− ḡT (x̄)P ḡ(x̄)− k̄T (x̄)S1(x̄, x̂, τ)k̄(x̄), (17)

B(x̄, x̂, τ) =r2h̄T (x̄)P s̄(x̄) + f̄T (x̄)P ḡ(x̄) + f̂T (x̂)Qĝ(x̂, τ)Cτ k̄(x̄)

+ ST
2 (x̄, x̂, τ)Qĝ(x̂, τ)Cτ k̄(x̄), (18)

D(x̄, x̂, τ) =(f̄(x̄) + x̄)TP (f̄(x̄)− x̄) + (f̂(x̂) + x̂)TQ(f̂(x̂)− x̂) + 2f̂T (x̂)QS2(x̄, x̂, τ)

+ σ̄T (l̄(x̄))
(
Λ̄1 ◦ S1(x̂, τ)

)
σ̄(l̄(x̄)) + 2σ̄T (l̄(x̄))

(
Λ̄3 ◦ S1(x̂, τ)

)
l̄(x̄)

+ l̄T (x̄)
(
Λ̄2 ◦ S1(x̂, τ)

)
l̄(x̄), (19)

S1(x̂, τ) =CT
τ ĝ

T (x̂, τ)Qĝ(x̂, τ)Cτ , (20)

S2(x̄, x̂, τ) =ĝ(x̂, τ)Cτ Λ̄σ̄(l̄(x̄)) + ĝ(x̂, τ)Cτ (I − Λ̄)l̄(x̄), (21)

then the filtering problem for system (1) is solved by (5) in the sense of asymptotic stability in
probability.
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Proof. Set V (1)(x̄) = x̄TPx̄ and V (2)(x̂) = x̂TQx̂. Define

ρ̄ = max{λmax(P ), λmax(Q)}, ρ = min{λmin(P ), λmin(Q)},

where λmax(·) and λmax(·) denote the maximum and the minimum eigenvalue of the square matrix,
respectively. Then, two K∞ functions can be defined as κ1(∥η∥) = ρ∥η∥2 and κ2(∥η∥) = ρ̄∥η∥2,
and it follows that κ1(∥η∥) ≤ V (η) ≤ κ2(∥η∥).

With E{wk} = 0, E {w2
k} = r2 and (6), it can be obtained that

E {V (ηk+1)|ηk} − V (ηk) + E
{
∥z̃k∥2

}
− γ2E

{
∥v̄k∥2

}
+ κ3(∥ηk∥)

=E
{
f̄T (x̄k)P f̄(x̄k) +

(
f̂(x̂k) + ĝ(x̂k, dk)CdkΛ̄σ̄(l̄(x̄k)) + ĝ(x̂k, dk)Cdk(I − Λ̄)l̄(x̄k)

)T
Q
(
f̂(x̂k)

+ ĝ(x̂k, dk)CdkΛ̄σ̄(l̄(x̄k)) + ĝ(x̂k, dk)Cdk(I − Λ̄)l̄(x̄k)
)
+ r2

(
v̄Tk s

T (x̄k)Ps(x̄k)v̄k + h̄T (x̄k)

× Ph̄T (x̄k) + 2h̄T (x̄k)Ps(x̄k)v̄k

)
+ v̄Tk

(
ḡT (x̄)P ḡ(x̄) + k̄T (x̄)CT

τ ĝ
T (x̂, τ)Qĝ(x̂, τ)Cτ k̄(x̄)

)
v̄k

+ 2f̄T (x̄k)P ḡ(x̄k)v̄k + 2
(
f̂(x̂k) + ĝ(x̂k, dk)CdkΛ̄σ̄(l̄(x̄k)) + ĝ(x̂k, dk)Cdk(I − Λ̄)l̄(x̄k)

)T
Q

× ĝ(x̂, τ)Cτ k̄(x̄)v̄k

}
− x̄T

kPx̄k − x̂T
kQx̂k + E

{
∥z̃k∥2

}
− γ2E

{
∥v̄k∥2

}
+ κ3(∥ηk∥).

Completing the squares with respect to v̄k yields that

E {V (ηk+1)|ηk} − V (ηk) + E
{
∥z̃k∥2

}
− γ2E

{
∥v̄k∥2

}
+ κ3(∥ηk∥)

=E
{
− (v̄k − v̄∗k)

TA(x̄k, x̂k, dk)(v̄k − v̄∗k) +B(x̄k, x̂k, dk)A
−1(x̄k, x̂k, dk)B

T (x̄k, x̂k, dk)

+D(x̄k, x̂k, dk) + r2h̄T (x̄k)Ph̄(x̄k) + ∥z̃k∥2 + κ3(∥ηk∥)
}
,

where v̄∗k = A−1(ηk, ηαk
, dk)B

T (ηk, ηαk
, dk). Based on (16), we have

E {V (ηk+1)|ηk} − V (ηk) + E
{
∥z̃k∥2

}
− γ2E

{
∥v̄k∥2

}
+ κ3(∥ηk∥)

≤B(x̄k, x̂k, dk)A
−1(x̄k, x̂k, dk)B

T (x̄k, x̂k, dk) +D(x̄k, x̂k, dk) + r2h̄T (x̄k)Ph̄(x̄k) + ∥z̃k∥2

+ κ3(∥ηk∥)
=H(x̄k, x̂k, dk) < 0.

Now we have proved that

E {V (ηk+1)|ηk} − V (ηk) + E
{
∥z̃k∥2

}
− γ2E

{
∥v̄k∥2

}
+ κ3(∥ηk∥) < 0. (22)

Noticing that κ3(∥ηk∥) > 0 and summing up (22) from 0 to positive integer N with respect to k,
we have

N∑
k=0

E
{
∥z̃k∥2

}
< γ2

N∑
k=0

E
{
∥v̄k∥2

}
+ E {V (0)} − E {V (ηN+1)} . (23)

Considering V (ηN+1) > 0, V (0) = 0 under the zero-initial condition and letting N → ∞, we can
get

∞∑
k=0

E
{
∥z̃k∥2

}
< γ2

∞∑
k=0

E
{
∥v̄k∥2

}
, (24)
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which means that the desired H∞ performance requirement is met.
When v̄k = 0, it follows from (22) and E {∥z̃k∥2} > 0 that

E {V (ηk+1)|ηk} − V (ηk) ≤ −κ3(∥ηk∥). (25)

It follows directly from (16), (25) and Lemma 1 that the augmented system (6) is asymptotically
stable in probability, and this concludes the proof.

Remark 2. In Theorem 1, a nonlinear filter has been designed to guarantee the asymptotic stability
in probability. The nonlinear function σ̄ and the matrices Λ̄ and Λ̄i(i = 1, 2, 3) represent the
influences of stochastic sensor saturations, and the parameter τ quantifies the effects of Markov
time delays. The scalar r represents the consideration of the noise wk. It is noted that the conditions
established in (1) are in a very general form that will be applied to some special cases later.

Lemma 2. [2, 37] Let x, y ∈ Rn and ϵ > 0. Then we have

2xTy ≤ ϵxTx+ ϵ−1yTy. (26)

In the case that k̄(x̄) ≡ I , the conditions of Theorem 1 can be further simplified/decoupled.

Corollary 1. Given a disturbance attenuation level γ > 0 and k̄(x̄) ≡ I . If there exist two positive
constants µ1, µ2, two positive definite matrices P = P T > 0 and Q = QT > 0 and two K class
functions κ1 and κ2 satisfying the following inequalities for all τ ∈ N :

CT
τ ĝ

T (x̂, τ)Qĝ(x̂, τ)Cτ ≤ µ1I, (27)

γ2I − r2s̄T (x̄)P s̄(x̄)− ḡT (x̄)P ḡ(x̄) > (µ1 + µ2) I, (28)

H1(x̄, τ) =
5
µ2

(
∥f̄T (x̄)P ḡ(x̄)∥2 + r4∥h̄T (x̄)P s̄(x̄)∥2

)
+
(
f̄(x̄) + x̄

)T
P
(
f̄(x̄)− x̄

)
+r2h̄T (x̄)Ph̄(x̄) +

(
5λ̄2µ2

1
µ2

+ λ̄+ 2λ̄µ1

)
∥σ̄(l̄(x̄))∥2 +

(
5(1− λ̄)2µ2

1
µ2

+(1− λ̄) + 2(1− λ̄)µ1

)
∥l̄(x̄)∥2 + 2∥m̄(x̄)∥2 + κ1(∥x̄∥) < 0,

(29)

H2(x̂, τ) =(f̂(x̂) + x̂)TQ(f̂(x̂)− x̂) +
(
5
µ2

+ 1
)
∥f̂T (x̂)Qĝ(x̂, τ)Cτ∥2 + 2∥m̂(x̂)∥2

+κ2(∥x̂∥) < 0,
(30)

then the filtering problem for system (1) is solved by (5) in the sense of asymptotic stability in
probability.

Proof. With the element inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we have

∥z̃∥2 = ∥m̄(x̄)− m̂(x̂)∥2 ≤ 2∥m̄(x̄)∥2 + 2∥m̂(x̂)∥2. (31)

Considering (17), (27) and (28), we have

A(x̄, x̂, τ) =γ2I − r2s̄T (x̄)P s̄(x̄)− ḡT (x̄)P ḡ(x̄)− CT
τ ĝ

T (x̂, τ)Qĝ(x̂, τ)Cτ

≥ (µ1 + µ2) I − µ1I = µ2I. (32)
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Then it follows from (18), (27), (28) and (32) that

B(x̄, x̂, τ)A−1(x̄, x̂, τ)BT (x̄, x̂, τ) ≤ 1

µ2

B(x̄, x̂, τ)BT (x̄, x̂, τ)

≤ 5

µ2

(
∥f̄T (x̄)P ḡ(x̄)∥2 + r4∥h̄T (x̄)P s̄(x̄)∥2 + ∥f̂T (x̂)Q

× ĝ(x̂, τ)Cτ∥2 + λ̄2µ2
1∥σ̄(l̄(x̄))∥2 + (1− λ̄)2µ2

1∥l̄(x̄)∥2
)
.

(33)

With Lemma 2, we can obtain

2f̂T (x̂)Qĝ(x̂, τ)Cτ Λ̄σ̄(l̄(x̄)) ≤ λ̄
(
∥f̂T (x̂)Qĝ(x̂, τ)Cτ∥2 + ∥σ̄(l̄(x̄))∥2

)
, (34)

2f̂T (x̂)Qĝ(x̂, τ)Cτ (I − Λ̄)σ̄(l̄(x̄)) ≤ (1− λ̄)
(
∥f̂T (x̂)Qĝ(x̂, τ)Cτ∥2 + ∥l̄(x̄)∥2

)
. (35)

Define the K class function as κ(∥η∥) = κ1(∥x̄∥) + κ2(∥x̂∥), and it follows that

H(x̄, x̂, τ) ≤ 5
µ2

(
∥f̄T (x̄)P ḡ(x̄)∥2 + r4∥h̄T (x̄)P s̄(x̄)∥2 + ∥f̂T (x̂)Qĝ(x̂, τ)Cτ∥2 + λ̄2µ2

1

×∥σ̄(l̄(x̄))∥2 + (1− λ̄)2µ2
1∥l̄(x̄)∥2

)
+
(
f̄(x̄) + x̄

)T
P
(
f̄(x̄)− x̄

)
+ (f̂(x̂) + x̂)T

×Q(f̂(x̂)− x̂) + r2h̄T (x̄)Ph̄(x̄) + λ̄∥σ̄(l̄(x̄))∥2 + λ̄∥f̂T (x̂)Qĝ(x̂, τ)Cτ∥2
+(1− λ̄)∥l̄(x̄)∥2 + (1− λ̄)∥f̂T (x̂)Qĝ(x̂, τ)Cτ∥2 + 2λ̄µ1∥σ̄(l̄(x̄))∥2 + 2(1− λ̄)µ1

×∥l̄(x̄)∥2 + 2∥m̄(x̄)∥2 + 2∥m̂(x̂)∥2 + κ1(∥x̄∥) + κ2(∥x̂∥)
=H1(x̄, τ) +H2(x̂, τ) < 0.

(36)

The rest of the proof follows directly from that of Theorem 1.

If the adopted positive definite function is dependent on not only the augmented states but also
the values of time delays, then the sufficient conditions would be obtained subsequently.

Theorem 2. Given a disturbance attenuation level γ > 0. If there exist two sets of positive-definite
matrices P (τ) = P T (τ) > 0 and Q(τ) = QT (τ) > 0 for all τ ∈ N , and a K class function κ
satisfying the inequalities

H(x̄, x̃, τ) = B(x̄, x̃, τ)A−1(x̄, x̃, τ)BT (x̄, x̃, τ) + r2h̄T (x̄)P̃ (τ)h̄(x̄) + f̄T (x̄)P̃ (τ)f̄(x̄)
+D(x̄, x̃, τ)− x̄TP (τ)x̄− x̂TQ(τ)x̂+ ∥z̃∥2 + κ(∥η∥) < 0,
for any x̄, x̂ ∈ Rd×nx , τ ∈ N,

A(x̄, x̃, τ) > 0, for any x̄, x̂ ∈ Rd×nx , τ ∈ N,

(37)
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where P̃ (τ) =
d−1∑
i=0

πτiP (i), Q̃(τ) =
d−1∑
i=0

πτiQ(i) and

A(x̄, x̃, τ) =γ2I − r2s̄T (x̄)P̃ (τ)s̄(x̄)− ḡT (x̄)P̃ (τ)ḡ(x̄)− k̄T (x̄)S1(x̂, τ)k̄(x̄), (38)

B(x̄, x̃, τ) =f̄(x̄)P̃ (τ)ḡ(x̄) + f̂(x̂)Q̃(τ)ĝ(x̂, τ)Cτ k̄(x̄) + r2h̄T (x̄)P̃ (τ)s̄(x̄)

+ ST
2 (x̄, x̂, τ)Q̃(τ)ĝ(x̂, τ)Cτ k̄(x̄), (39)

D(x̄, x̃, τ) =f̂T (x̂)Q̃(τ)f̂(x̂) + 2f̂T (x̂)Q̃(τ)S2(x̄, x̂, τ) + σ̄T (l̄(x̄))
(
Λ̄1 ◦ S1(x̂, τ)

)
σ̄(l̄(x̄))

+ 2σ̄T (l̄(x̄)
(
Λ̄3 ◦ S1(x̂, τ)

)
l̄(x̄) + l̄T (x̄)

(
Λ̄2 ◦ S1(x̂, τ)

)
l̄(x̄), (40)

S1(x̂, τ) =CT
τ ĝ

T (x̂, τ)Q̃(τ)ĝ(x̂, τ)Cτ , (41)

S2(x̄, x̂, τ) =ĝ(x̂, τ)Cτ Λ̄σ̄(l̄(x̄)) + ĝ(x̂, τ)Cτ (I − Λ̄)l̄(x̄), (42)

then the filtering problem for system (1) is solved by (5) in the sense of asymptotic stability in
probability.

Proof. The positive definite function is taken as:

V (ηk, dk) = x̄T
kP (dk)x̄k + x̂T

kQ(dk)x̂k. (43)

We take

ρ̄ = max

{
max
τ∈N

λmax(P (τ)),max
τ∈N

λmax(Q(τ))

}
, ρ = min

{
min
τ∈N

λmin(P (τ)),min
τ∈N

λmin(Q(τ))

}
,

then two K∞ functions can be defined as κ1(∥η∥) = ρ∥η∥2 and κ2(∥η∥) = ρ̄∥η∥2, and it follows
that κ1(∥η∥) ≤ V (η, τ) ≤ κ2(∥η∥) for all τ ∈ N .

With notations above, one has

E {V (ηk+1, dk+1)|ηk, dk} − V (ηk, dk) + E
{
∥z̃k∥2

}
− γ2E

{
∥v̄k∥2

}
+ κ(∥ηk∥)

=E
{
− (v̄k − v̄∗k)

TA(x̄k, x̃k, dk)(v̄k − v̄∗k) +B(x̄k, x̃k, dk)A
−1(x̄k, x̃k, dk)B

T (x̄k, x̃k, dk)

+D(x̄k, x̃k, dk) + r2h̄T (x̄k)P̃ (dk)h̄(x̄k) + f̄T (x̄k)P̃ (dk)f̄(x̄k)− x̄T
kP (dk)x̄k − x̂T

kQ(dk)x̂k

+ ∥z̃k∥2 + κ(∥ηk∥)
}

≤H(x̄k, x̂k, dk) < 0.

The rest of the proof follows directly from that of Theorem 1 and is therefore omitted.

We also have the following corollary from Theorem 2 and Corollary 1.

Corollary 2. Given a disturbance attenuation level γ > 0 and k̄(x̄) ≡ I . If there exist two positive
constants µ1, µ2, two sets of positive definite matrices P (τ) = P T (τ) > 0 and Q(τ) = QT (τ) > 0
for all τ ∈ N , and two K class functions κ1 and κ2 satisfying the following inequalities for all
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τ ∈ N :

CT
τ ĝ

T (x̂, τ)Q̃(τ)ĝ(x̂, τ)Cτ ≤ µ1I, (44)

γ2I − r2s̄T (x̄)P̃ (τ)s̄(x̄)− ḡT (x̄)P̃ (τ)ḡ(x̄) > (µ1 + µ2) I, (45)

H1(x̄, τ) =
5
µ2

(
∥f̄T (x̄)P̃ (τ)ḡ(x̄)∥2 + r4∥h̄T (x̄)P̃ (τ)s̄(x̄)∥2

)
+ f̄T (x̄)P̃ (τ)f̄(x̄)

+r2h̄T (x̄)P̃ (τ)h̄(x̄)− x̄TP (τ)x̄+

(
5λ̄2µ2

1
µ2

+ λ̄+ 2λ̄µ1

)
∥σ̄(l̄(x̄))∥2

+

(
5(1− λ̄)2µ2

1
µ2

+ (1− λ̄) + 2(1− λ̄)µ1

)
∥l̄(x̄)∥2 + 2∥m̄(x̄)∥2 + κ1(∥x̄∥) < 0,

(46)

H2(x̂, τ) = f̂T (x̂)Q̃(τ)f̂(x̂)− x̂TQ(τ)x̂+
(
5
µ2

+ 1
)
∥f̂T (x̂)Q̃(τ)ĝ(x̂, τ)Cτ∥2 + 2∥m̂(x̂)∥2

+κ2(∥x̂∥) < 0,
(47)

then the filtering problem for system (1) is solved by (5) in the sense of asymptotic stability in
probability.

Proof. The proof of the corollary is a straightforward consequence of that of Corollary 1 and is
omitted here for conciseness.

Remark 3. A set of nonlinear filters has been obtained via solving nonlinear matrix inequalities
for some positive definite functions that could be either delay-dependent or delay-independent.
Sufficient conditions have been achieved under which the estimation is asymptotically stable in
probability in the disturbance-free case and robust to the exogenous disturbances under the zero-
initial condition. In real-world applications, a linear filter is much easier to implement than a
nonlinear one. As a result, a linear filter for the nonlinear system (1) would be investigated next.

Consider the filter of the following structure:{
x̂k+1 = Fx̂k +G(dk)yk,

ẑk = Mx̂k,
(48)

where x̂k ∈ Rd×nx is the state estimate; ẑk ∈ Rnz is the estimate of zk. F , G and M are filter
parameters of appropriate dimensions to be determined.

Similar to the nonlinear case, we can have the following augmented system.{
ηk+1 = f̃(ηk, dk) + g̃(ηk, dk)vk + (h̃(ηk) + s̃(ηk)v̄k)wk,
z̃k = m̄(x̄k)−Mx̂k,

(49)

where

f̃(ηk, dk) =

[
f̄(x̄k)

Fx̂k +G(dk)CdkΛkσ̄(l̄(x̄k)) +G(dk)Cdk(I − Λk)l̄(x̄k)

]
,

g̃(ηk, dk) =

[
ḡ(x̄k)

G(dk)Cdk k̄(x̄k)

]
, h̃(ηk) =

[
h̄(x̄k)
0

]
, s̃(ηk) =

[
s̄(x̄k)
0

]
.

In virtue of Theorem 1, the following results can be obtained.
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Theorem 3. Given a disturbance attenuation level γ > 0. If there exist two positive definite
matrices P = P T > 0 and Q = QT > 0, and a K class function κ3 satisfying the inequalities H(x̄, x̂, τ) = B(x̄, x̂, τ)A−1(x̄, x̂, τ)BT (x̄, x̂, τ) + r2h̄T (x̄)Ph̄(x̄) +D(x̄, x̂, τ)

+∥z̃∥2 + κ3(∥η∥) < 0, for any x̄, x̂ ∈ Rd×nx , τ ∈ N
A(x̄, x̃, τ) > 0, for any x̄, x̃ ∈ Rd×nx , τ ∈ N,

(50)

where

A(x̄, x̂, τ) =γ2I − r2s̄T (x̄)P s̄(x̄)− ḡT (x̄)P ḡ(x̄)− k̄T (x̄)S1(τ)k̄(x̄), (51)

B(x̄, x̂, τ) =r2h̄T (x̄)P s̄(x̄) + f̄T (x̄)P ḡ(x̄) + x̂TF TQG(τ)Cτ k̄(x̄) + ST
2 (x̄, τ)QG(τ)Cτ k̄(x̄),

(52)

D(x̄, x̂, τ) =(f̄(x̄) + x̄)TP (f̄(x̄)− x̄) + x̂T (F + I)TQ(F − I)x̂+ 2x̂TF TQS2(x̄, τ)

+ σ̄T (l̄(x̄))
(
Λ̄1 ◦ S1(τ)

)
σ̄(l̄(x̄)) + 2σ̄T (l̄(x̄))

(
Λ̄3 ◦ S1(τ)

)
l̄(x̄)

+ l̄T (x̄)
(
Λ̄2 ◦ S1(τ)

)
l̄(x̄), (53)

S1(τ) =CT
τ G

T (τ)QG(τ)Cτ , (54)

S2(x̄, τ) =G(τ)Cτ Λ̄σ̄(l̄(x̄)) +G(τ)Cτ (I − Λ̄)l̄(x̄), (55)

then the filtering problem for system (1) is solved by (48) in the sense of asymptotic stability in
probability.

Proof. This proof can be completed by following the similar line of Theorem 1 and is therefore
omitted.

Similar to Corollaries 1-2, we can have certain decoupled sufficient conditions in the following
corollaries.

Corollary 3. Given a disturbance attenuation level γ > 0 and k̄(x̄) ≡ I . If there exist two positive
constants µ1, µ2, two positive definite matrices P = P T > 0 and Q = QT > 0, and two K class
functions κ1 and κ2 satisfying the following inequalities for all τ ∈ N :

CT
τ G

TQGCτ ≤ µ1I, (56)

γ2I − r2s̄T (x̄)P s̄(x̄)− ḡT (x̄)P ḡ(x̄) > (µ1 + µ2) I, (57)

H1(x̄, τ) =
5
µ2

(
∥f̄T (x̄)P ḡ(x̄)∥2 + r4∥h̄T (x̄)P s̄(x̄)∥2

)
+
(
f̄(x̄) + x̄

)T
P
(
f̄(x̄)− x̄

)
+r2h̄T (x̄)Ph̄(x̄) +

(
5λ̄2µ2

1
µ2

+ λ̄+ 2λ̄µ1

)
∥σ̄(l̄(x̄))∥2

+

(
5(1− λ̄)2µ2

1
µ2

+ (1− λ̄) + 2(1− λ̄)µ1

)
∥l̄(x̄)∥2 + 2∥m̄(x̄)∥2 + κ1(∥x̄∥) < 0,

(58)

H2(x̂, τ) = x̂T (F + I)TQ(F − I)x̂+
(
5
µ2

+ 1
)
∥x̂TF TQGCτ∥2 + 2∥Mx̂∥2

+κ2(∥x̂∥) < 0,
(59)

then the filtering problem for system (1) is solved by (48) in the sense of asymptotic stability in
probability where G(τ) = G for any τ ∈ N .
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Corollary 4. Given a disturbance attenuation level γ > 0 and k̄(x̄) ≡ I . If there exist two positive
constants µ1, µ2, two sets of positive-definite matrices P (τ) = P T (τ) > 0 and Q(τ) = QT (τ) > 0
for all τ ∈ N , and two K class functions κ1 and κ2 satisfying the following inequalities for all
τ ∈ N :

CT
τ G

T (τ)Q̃(τ)G(τ)Cτ ≤ µ1I, (60)

γ2I − r2s̄T (x̄)P̃ (τ)s̄(x̄)− ḡT (x̄)P̃ (τ)ḡ(x̄) > (µ1 + µ2) I, (61)

H1(x̄, τ) =
5
µ2

(
∥f̄T (x̄)P̃ (τ)ḡ(x̄)∥2 + r4∥h̄T (x̄)P̃ (τ)s̄(x̄)∥2

)
+ f̄T (x̄)P̃ (τ)f̄(x̄)

+r2h̄T (x̄)P̃ (τ)h̄(x̄)− x̄TP (τ)x̄+

(
5λ̄2µ2

1
µ2

+ λ̄+ 2λ̄µ1

)
∥σ̄(l̄(x̄))∥2

+

(
5(1− λ̄)2µ2

1
µ2

+ (1− λ̄) + 2(1− λ̄)µ1

)
∥l̄(x̄)∥2 + 2∥m̄(x̄)∥2 + κ1(∥x̄∥) < 0,

(62)

H2(x̂, τ) = x̂TF T Q̃(τ)Fx̂− x̂TQ(τ)x̂+
(
5
µ2

+ 1
)
∥x̂TF T Q̃(τ)ĝ(x̂, τ)Cτ∥2 + 2∥Mx̂∥2

+κ2(∥x̂∥) < 0,
(63)

then the filtering problem for system (1) is solved by (48) in the sense of asymptotic stability in
probability.

The proofs of Corollaries 3-4 follow directly from those of Corollaries 1-2 and are therefore
omitted.

Remark 4. The filtering problem for a class of nonlinear systems with stochastic sensor saturations
and Markov time delays has been investigated in the sense of asymptotic stability in probability.
Sufficient conditions have been established to guarantee the asymptotic stability in probability of
the estimation process in the noise-free case and the robustness of the filtering error to the exoge-
nous disturbances under the zero-initial condition. Specifically, the linear filters have been con-
sidered for the convenience of practical applications. Both time-dependent and time-independent
linear filters have been obtained by choosing proper positive definite functions.

4. Simulation Examples

4.1. Example A

Consider the following nonlinear system
xk+1 = 0.7xk + 0.2 sin(xk) + vk + 0.4 cos(xk)vkwk,

zk = 2
3xk,

ỹk = λkσ(l(xk)) + (1− λk)l(xk) + vk,
yk = ỹk−dk ,

(64)

where dk belongs to the set {0, 1} and its transition probability matrix is given by Π = [col{0.7, 0.8},
col{0.3, 0.2}]. The variance of wk is 1 and Prob{λk = 1} = 0.9. The saturation level is 0.1. The
prescribed disturbance attenuation level is set to be γ = 1.414. Choose κ1(∥x̄∥) = 0.01∥x̄∥2,
κ2(∥x̂∥) = 0.01∥x̂∥2, µ1 = 0.5 and µ2 = 1. Then we can get the following nonlinear filter with
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Corollary 1: {
x̂k+1 = 0.4x̂k sin(x̂k−1) + 0.65yk,

ẑk = 0.5x̂k + 0.3x̂k−1.
(65)
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Fig. 1. Nonlinear filtering performance

As shown in Fig. 1, the established nonlinear filter can estimate zk well.

4.2. Example B

An inverted pendulum example is presented in this subsection to demonstrate the effectiveness of
the proposed approach. An appropriate controller has been pre-designed to stabilize the system.
The model of the inverted pendulum system is given by [31]

ml2θ̈ −mgl sin (θ) + (ς + ω)θ̇ + κθ = u+ 2ν2, (66)

where m is the mass, l is the length of the inverted pendulum, g is the gravitation coefficient, θ is
the inclination angle, ς is the spring coefficient, κ is the damping parameter, ω is the white noise
for the damping coefficient, ν2 is the external disturbance, and u is the control input that has been
pre-designed as u = k1θ+k2ml2θ̇. Two output measurements without stochastic sensor saturation

or transmission delays are ỹ1 = θ+ν1 and ỹ2 = ml2θ̇+
sin(ml2θ̇)
ml2g

+ν2, respectively. The regulated

output is described by z = θ +ml2θ̇
10 . Since inertial sensors in reality usually undergo saturations

[38], it is reasonable to consider sensor saturations in the inverted pendulum example (66) whose
outputs are related to angle and angular acceleration.

Taking x1 = θ, x2 = ml2θ̇, and the sampling period as T , the system model can be discretized
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and realized by the state-space model as follows:

[
x1,k+1

x2,k+1

]
=

 1 T
ml2

−κT + Tk1 1− Tς
ml2

+ Tk2

[ x1,k

x2,k

]
+

[
0

Tmgl sin(x1,k)

]

+

[
0 0
0 2T

] [
ν1,k
ν2,k

]
+

[
0 0

0 −
√
T

ml2

] [
x1,k

x2,k

]
ωk. (67)

The output measurement equation with stochastic sensor saturation is discretized as

[
ỹ1,k
ỹ2,k

]
=λkσ

([
1 0
0 1

] [
x1,k

x2,k

]
+

 0
sin(x2,k)
ml2g

)+ (1− λk)

([
1 0
0 1

] [
x1,k

x2,k

]

+

 0
sin(x2,k)
ml2g

)+

[
1 0
0 1

] [
ν1,k
ν2,k

]
. (68)

Due to the delay, the received measurement is yk = ỹk−dk , where dk is the random time delay
governed by a Markov chain. The state dk belongs to the set {0, 1, 2} and its transition probability
matrix is given by Π = [col{0.2, 0.1, 0.2}, col{0.8, 0.4, 0.4}, col{0, 0.5, 0.4}]. Furthermore, the
regulated output can be discretized as zk = 0.1x1,k + 0.1x2,k. The system parameters are m =
0.5kg, l = 0.5m, ς = 0.25, k1 = −49.5, k2 = −167.5, sampling period T = 0.01s, and κ =
0.5N/m. The variance of ω is 0.01 and Prob{λk = 1} = 0.2. The saturation level is 1. The
prescribed disturbance attenuation level is set to be γ = 0.707.

Consider the linear filter in the form of (48) and let κ1(∥x̄∥) = 0.5∥x̄∥2, κ2(∥x̂∥) = 0.5∥x̂∥2. F
and M have been selected to reflect the linear part of the system dynamics as follows:

F =

 F0 0 0
I 0 0
0 I 0

 , M =
[
M0 0 0

]
,

where

F0 =

 1 T
ml2

−κT + Tk1 1− Tς
ml2

+ Tk2

 , M0 =
[
0.1 0.1

]
.

In such a case, G can be calculated using Matlab for both delay-dependent and delay-independent
filters.

Using Corollaries 3 and 4 with µ1 = µ2 = 0.15, the feasible solutions for G can be obtained as

G =

[
−0.0021 −0.0031 0.0018 −0.0034 −0.0032 0.0009
0.0007 −0.0119 −0.0045 −0.0125 0.0024 0.0003

]
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for the delay-independent filter, and

G(0) =

[
−0.0032 −0.0013 −0.0013 −0.0014 −0.0033 0.0003
0.0002 −0.0077 −0.0003 −0.0083 0.0011 −0.0048

]
,

G(1) =

[
−0.0012 −0.0028 0.0042 −0.0028 −0.0017 0.0017
0.0004 −0.0079 −0.0010 −0.0097 0.0032 0.0003

]
,

G(2) =

[
−0.0016 −0.0024 0.0022 −0.0021 −0.0013 0.0007
0.0003 −0.0076 −0.0006 −0.0094 0.0019 −0.0012

]
for the delay-dependent filter.
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Fig. 2. Delay-dependent and delay-independent filtering performances

As illustrated in Fig. 2, both the delay-dependent and delay-independent filters achieve accept-
able estimation performance. The filtering errors are depicted in Fig. 3. The average filtering error
obtained with the delay-dependent filter is 5.258×10−3 in 100 Monte-Carlo simulations. With the
delay-independent filter, the average filtering error is 5.789 × 10−3. It can be easily seen that the
delay-dependent filter can generate smaller filtering error compared to the delay-independent one
due to the consideration of the information on time-delays.

5. Conclusion

In this paper, the filtering problem has been investigated, in the sense of asymptotic stability in
probability, for a class of nonlinear systems with stochastic sensor saturations and Markovian
measurement transmission delays. A Bernoulli distributed sequence and a discrete-time Markov
chain with finite states have been introduced to govern the random sensor saturations and the trans-
mission time delays, respectively. Sufficient conditions have been achieved to guarantee that the
filtering process is asymptotically stable in probability in the disturbance-free case and satisfies the
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Fig. 3. Delay-dependent and delay-independent filtering errors

H∞ criterion with respect to nonzero exogenous disturbances under the zero-initial condition. The
results have been specialized to delay-independent and delay-dependent linear filters as well. Two
simulation examples have been presented to show the effectiveness of the proposed algorithms.
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