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An Effective Scheme for QoS Estimation via
Alternating Direction Method-based Matrix
Factorization

Abstract—Accurately estimating unknown quality-of-service (QoS) data based on historical records of Web-service invocations
is vital for automatic service selection. This work presents an effective scheme for addressing this issue via alternating direction
method-based matrix factorization. Its main idea consists of a) adopting the principle of the alternating direction method to
decompose the task of building a matrix factorization-based QoS estimator into small subtasks, where each one trains a subset
of desired parameters based on the latest status of the whole parameter set; b) building an ensemble of diversified single
models with sophisticated diversifying and aggregating mechanism; and c) parallelizing the construction process of the
ensemble to drastically reduce the time cost. Experimental results on two industrial QoS datasets demonstrate that with the
proposed scheme, more accurate QoS estimates can be achieved than its peers with comparable computing time with the help

of its easy parallel realization.

Index Terms—Quarlity-of-service, QoS Estimation, Alternating Direction Method, Matrix Factorization, Ensemble, Collaborative

Filtering

1 INTRODUCTION

N THIS ERA of cloud computing, Web-services are in-

dispensible for most industrial Web applications, there-
by resulting in drastically increasing number of online
Web-services. In such context, how to select suitable ser-
vices from a large candidate set becomes a thorny issue
[1-4]. To conduct warming-up tests for service selection is
one feasible approach to this issue [1-3]. However, it is
inefficient due to high economical expenses and compu-
ting time [4-7]. Hence, automatic mechanisms of Web-
service selection become vital for industrial Web applica-
tions [3-11].

Service selection should be taken according to various
characteristics of Web-services [4-11]. Quality-of-service
(QoS) is one of the most important characteristics of a
Web-service [1-5]. It can be measured by many specific
metrics, e.g., request-time and throughput. Given a group
of candidate services, once their QoS data are available,
reliable service selection can be taken accordingly. Alt-
hough it is expensive to conduct warming-up tests for
QoS-data, historical QoS records are usually available.
Therefore, the key problem is how to estimate unob-
served QoS data based on observed ones with high accu-
racy.

According to pioneering research [4-11], collaborative
filtering (CF)-based approaches are highly efficient to QoS
estimation. A CF-based QoS estimator can be achieved by
several approaches, where a popular choice is the similar-
ity-based K-nearest-neighborhood (S-KNN) model [4-7,
12-15]. In general, an S-KNN-based QoS estimator works
by a) modeling historical QoS data into user/service fea-
ture vectors, b) building the similarities among us-
ers/services to select the K-nearest-neighbors of each us-
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er/service, and c) estimation unobserved QoS data based
on the observed ones by the neighbors of involved us-
ers/services. Shao et al. [4] propose a user S-KNN model
to implement automatic QoS estimation for Web-services.
Zheng et al. [5] propose the architecture of a Web-service
recommender system whose key component is an S-KNN
model for QoS estimation. Their further research [6] offers
a mixed approach by combining user-oriented and ser-
vice-oriented S-KNN models to obtain QoS estimates
with higher accuracy. Cao et al. [7] propose a hybrid S-
KNN model which combines the user/service similarity
from the historical QoS data and inverse consumer fre-
quency to obtain the final estimates of unknown QoS data.

Another widely-adopted kind of approaches to CF-
based QoS estimation is via matrix factorization (MF) [16-
22]. A QoS estimator of this kind generally works by a)
modeling the historical QoS data on a given QoS metric,
i.e., request time, with a user-service matrix. In this ma-
trix, each row stands for a specified user, each column for
a specified service and each entry for the QoS record by a
specified user on a specified service. Note that since each
user can only touch a finite subset of the whole service set,
this user-item matrix is highly incomplete with numerous
missing data; b) building a low-rank approximation to
this incomplete user-service matrix based on its known
entries only; and c) estimation unobserved QoS data in
the user-service matrix with corresponding entries in its
low-rank approximation. As unveiled by recent research
in the recommender system community [12-19], MF-
based CF models are highly accurate and scalable for
many cases. They are also very effective in addressing the
problem of QoS estimation [8-11, 20]. However, motivat-
ed by practical requirements, it is still desired to further
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improve the accuracy of MF-based QoS estimators.

Zhang et al. [8] propose an MF-based QoS estimator
that integrates the time interval as an additional factor. Lo
et al. [9] propose an extended MF-based QoS estimator
with the consideration of location information in each
historical QoS record. These approaches have proven ef-
fective in generating accurate QoS estimates. However,
their applications are restricted when the required auxil-
iary information is not available [8, 9]. Zheng et al. [10]
propose to improve the MF-based QoS estimator by con-
sidering the neighborhood information. Nonetheless, it
cost much memory to store the pair-wise factors for iden-
tifying the neighbors of each user/service in real applica-
tions. Luo ef al. [19, 20] propose to ensemble a set of di-
versified non-negative latent factor models to achieve a
highly accurate QoS estimator. This ensemble model is
able to achieve high prediction accuracy. However, its
base models train desired parameters through the single-
element-dependent non-negative multiplicative update,
which usually requires excessive training iterations to
converge, thereby resulting in much computational time.

In general, most of current QoS estimators achieve
high accuracy by extending the information inputs. As
proven in prior works [8-11, 19, 20], with properly mod-
eled learning objectives, additional information besides
historical QoS data can be integrated into an MF-based
QoS estimator seamlessly. However, the performance of
such extensions relies heavily on the benchmark models.
Hence, it is highly significant to develop effective QoS
estimators relying on QoS data only. This work focuses
on designing an effective MF-based scheme for QoS esti-
mation with a) high prediction accuracy, b) low time cost,
and c) dependence on the QoS data only. Its main idea
consists of a) adopting the principle of the alternating
direction method to accelerate the training process of an
MF model without loss of prediction accuracy; b) build-
ing the ensemble of single models with several diversify-
ing and aggregating mechanism; and c) parallelizing the
construction process of the ensemble to reduce the com-
putational time.

The rest of this paper is organized as follows; Section II
formulates the problem. Section III presents the scheme.

Section IV gives the experiments and discusses the results.

And finally, Section V concludes this paper.

2 PROBLEMS FORMULATION

For an MF-based QoS estimator, the fundamental data

source is a user-service QoS-matrix as defined in [4-11, 20]:

Definition 1. Given a user set U and a service set S, a us-
er-service QoS-matrix Q is a |U|x|S| matrix consisting of the
historical records of a specified QoS-property by U on S
where each known entry g, denotes the QoS-record by
user u on service s.

As mentioned before, Q is highly incomplete due to the
impossibility for a user to invoke all services from S. Let
Qk and Qu denote the known and unknwon entry sets of
Q respectively, we have the following problem [4-11, 20]:
Definition 2. Given Q, the problem of MF-based QoS estima-
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tion is to build a rank-f approximation Q to Q based on Qx,
such that the most accurate estimate g,, of each un-
known entry g,,s€ Qu is generated.

As illustrated in [8-20], O usually consists of two rank-f
matrices P and E, where P has dimension |U|Xf, E has f%|S]
and f<<min{|U],|S|}. Note that P and E are usually inter-

preted as the user and service latent-feature-matrices,
which reflect the user and service characteristics hidden

in the historical QoS-data. With them, the desiredQ is

denoted by 0 = PE, and the objective turns to solve P
and E according to Qx. This is implemented by building
the cost function, e.g., Euclidean distance or Kullback-
Leibler divergence, to measure the difference between Q

and Q [8-20], and then minimize it with respect to P and

E. With the loss function based on Euclidean distance, the
problem is formulated by:

A2 5

e(P.E)=|0-9| =lo-PE;. 1)
where ||-||r denotes the Frobenius norm of a matrix. Note
that the incompleteness of Q makes (1) not solvable. Nev-
ertheless, according to [16-22], to expand (1) into a single-
element-dependent form enables the optimization process

to focus on Qk rather than on Q, thereby resulting in the
following problem:
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where P,. and E.; denotes the uth row-vector of P and sth
column-vector of E, respectively. Moreover, as indicated
in [8-20], a more efficient extension of (2) is achieved by
integrating the linear-bias-factors and [, regularization
into it:
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where b, and ¢, are linear-bias-factors for user u and ser-
vice s, B and C are length-|U| and |S] vectors consisting of
all user and service biases, and As, Ac, Ap and Ag are posi-
tive constants denoting the regularizing coefficients for B,
C, P and Q, respectively. With loss function (3), the objec-
tive is to minimize ¢ with respect to B, C, P and E,

(B,C,P,E)=argmin &(B,C,P,E), 4)

B,C,P.E

for obtaining a converging model able to generate estimates
for unknown entries in Q.

3 PROPOSED SCHEME

3.1 Training Scheme with Alternating Direction
Method

The principle of ADM [21, 22] is to decompose the
original optimization task into tiny sub-ones, and then
solve each subtask sequentially. The optimization process
of a subtask relies on the updated status of those previ-
ously solved ones, thereby leading to fast convergence.
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Hence, the first step to implement an ADM-based QoS
estimator is to decompose the optimization task (4).

Note that (4) is bi-linear and non-convex. It is thus not
analytically solvable. A widely-adopted training scheme
effective in addressing such a problem is the alternating
least square (ALS)-based optimization [17, 23, 24], which
works by fixing part of the decision parameters, e.g., B, C,
and P in (3), to make the system convex and analytically
solvable with respect to the remaining parameters, e.g., Q
in (3). With ALS, the original training task (4) is actually
decomposed into four subtasks as follows,

B'«—argmin ¢(B,C,P,E),
B

C'«—argmin ¢(B,C,P,E),
C

5
P’ — argmin ©)
»

( )
¢(B,C,P,E),
( )

E'—argmin ¢(B,C,P,E),
E

To introduce the ADM principle into the ALS-based
training process of (3), we further decompose each ALS
task in (5) into small sub tasks where each one deals with
the optimization of a single parameter only. Here we take
the training process of B for example. For a single param-
eter b, in B, which is the linear bias for user u, let (B-b.)
denote parameters in B except b,, (3) is convex with b, by
fixing the others, i.e., (B-b,), C, P and E. Hence, we analyt-
ically solve (3) with respect to b, by adopting ALS as fol-
lows,

b — argmin ¢(B,C,P,E),
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where Qk(u) denotes the subset of Qx related to user u.

By applying (6) to each parameters in B, we decom-
pose the ALS task with respect to B in (6) into |U| sub-
tasks, each of which updates one single parameter in B.
By analogy, we decompose the ALS taks with respect to C,

P and Q to obtain their training rules as follows,
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where Qx(s) denotes the set of data in Qx related to ser-

vice s. Note that as shown in [19, 20], because QoS-data
are defined on the positive field of real numbers, it is
meaningful to constrain the resulting MF-based QoS es-
timator to be non-negative. Here we adopt the non-
negative projection strategy discussed in [25, 26] to keep
the model parameters non-negative. More specifically, we
extend the ALS-based parameter learning rules as follows,
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Note that with B, C, P and E starting with non-negative
initial hypothesis, i.e., all factors in B, C, P and E are ini-
tialized to fulfill
VueU,seS,kedl, 2, .., f}:
b,>20,¢,>20,p,, >0, ¢, >0, ©)

the ALS-based update rule (8) will keep them non-
negative.

With (8), the original optimization task is divided into
(UHSP*(f+1) subtasks. To achieve a highly-efficient
ADM-based training process, it is necessary to arrange
them into a properly designed solving-sequence [21, 22].
By carefully investigating the ALS-based update rule (8),
we have the following results:

a) The update of parameters inside B/C is independent,
e.g., for users u and v, the update of b, does not affect that
of b,. However, B and C are interdependent, e.g., for users
u and service s, the update of b, affects c; if 4,,s € Qx. Natu-
rally, the update of B and C affects that of P and E; and

b) The update of parameters in P/E is dependent, i.e., the
update of the kth parameter of a user/service affects that
of the remaining k+1~fth parameters. Parameters in P and
E are also interdependent.

Hence, we split the ALS-based optimization task (5) in-
to (f+2) subtasks, and solve them sequentially following
the ADM principle as follows:

1. VYu€eU,b, — argmin ¢(B,C,P,E),

2.Vse S,c}f «— argmin E(B/,C,P,E),

3.fork=1~f,YVueU,seS
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where P, and E. denote the columns/rows in P and E

corresponding to specified feature dimensions, respec-
tively. Note that the parameter optimization of (10) fol-
lows (8). An illustrative example for a single iteration of
the training process (10) is given in Fig. 1.
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Fig. 1. The update process of all involved parameters in one iteration.

According to (10) and Fig. 1, all (f+2) subtasks are se-
quentially performed in each training iteration. The up-
date of B is firstly taken, followed by the update of C tak-
en based on the updated B, i.e., B'. Subsequently, parame-
ters in P and E are grouped by the dimension of the latent
factor space to obtain the remaining f subtasks, which are
sequentially done based on B', C', and updated parame-
ters in P and E.

3.2 Building Ensemble

As discussed in [27-37], ensemble methods are effec-
tive in boosting the accuracy of machine-learning models.
Moreover, as shown in [20, 32-37], it is also feasible to
further boost the performance of an MF model through
building ensembles. Note that for building an effective
ensemble which can outperform any of its base models, it
is necessary to diversify these base models without im-
pairing their accuracy [29, 34].

From (3), we see that an MF-based QoS-predictor esti-
mates ¢,,,€ Qu as follows,

f
‘}w =b,+c + va,kek,r' (11)
=1

From (8) we see that this rule decides the training process.
For instance, if an MF-based model adopts (2) as its objec-
tive function, then it has the following rule:
s
q\f.r € QU : é\’,r = va,kek,r’ (12)
k=1
According to (10) and (11), its ALS-based parameter train-

ing process following the ADM principle is given by
fork=1~f,VueU,s€S
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with the following parameter update rule,
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Obviously, MF-models that respectively rely on (8) and
(14) are significantly different in the training process, and
different training processes result in model diversity.
From this point of view, we diversify base models in the
ensemble by adopting different QoS-estimation rules,
which actually resul: in different loss-functions and pa-
rameter training processes. Table I summarizes the esti-
mation rules along with the corresponding learning objec-
tives adopted in our ensemble. For conciseness, we do not
list corresponding parameter update rules; however, they
can be easily inferred following (6)-(8).

Moreover, in order to further diversify the base models
in our ensemble, we inject randomness into each base
model, which is a widely-adopted model-diversifying
strategy in the area of artificial neural networks [27]. For
each base model, the possibly involved features are B, C,
P and E. When applying randomness-injection to these
base models, these features are initialized in a certain in-
terval, e.g., (0,0.004), randomly. With such a process, each
base model possesses different initial hypothesis [20, 27],
thereby leading to further diversity among them. To be
shown later in the experiments, the diversified base mod-
els are able to achieve closely high accuracy.
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Fig. 2. The processing flow of the proposed scheme.

With the diversified base models, we finally aggregate
their estimates for unknown QoS data in Qy as follows,

n
\ AP
,w[ ’qv,r
P __ _i=1
qv,r € QU . qv,r - n ’

Z Wi
i=1

where g, denotes the estimate by the ith base model, n

(15)

denotes the number of base models in the ensemble, and
w; denotes the model weight of the ith base model, re-
spectively. Note that the model weights can be obtained
through several model aggregating approaches [27-37].
Here we choose the AdaBoost approach [20, 30-37] to
compute them. As proven in [20, 32, 35-37], this approach
is effective in aggregating MF-based models for missing-
data-estimation. In general, with AdaBoost the weight of
each base model is computed according to its training
error and the training weights assigned to each training
instance by previous-trained base models. For more de-
tails of this process, please refer to [20, 32].

3.3 Parallelization

Note that an ensemble of MF-based QoS-estimators
usually contains dozens of base models. If we build these
base models sequentially, the computing time is much
more than that of building a single MF-based estimator.
To reduce the computing time, it is necessary to parallel-
ize an ensemble building process. Since the training pro-
cess of each base model is independent of that of the oth-
ers, it is easy to implement such parallelization by train-
ing different base models on different computational
nodes. From this point of view, we give the processing
flow of the parallelized ensemble in Fig. 2.

As depicted in Fig. 2, the ensemble building process
includes a) with the input QoS data, the controlling node
dispatches the building task of each base model to each
training node; b) each training node randomly initializes
the features of each base model, and executes the corre-
sponding feature training process based on ALS with
ADM,; and c) the resulting base models are sent back to
the controlling node to implement the AdaBoost-based

aggregation, resulting in the desired ensemble of QoS-
estimators. With sophisticated parallel computing
frameworks like map-reduce, this process can be imple-
mented conveniently. We name the proposed scheme in
Fig. 2 as the Ensemble of Alternating-direction-method-
based Matrix Factorization Models (EAMFM). Next we
analyze its computational and storage complexity.

3.4 Complexity Analysis

The computational complexity of EAMFM depends on
that of its base models. From (6)-(8), (13), (14) and Table I,
we see that its base models employ the ALS-based itera-
tive parameter training scheme with the ADM principle,
where each training iteration is decomposed into f~(f+2)
sub tasks. Note that processing each subtask requires a
single traverse on Qx for computing the update gain of
corresponding features. Hence, the computational cost of
each iteration is O(|Qk|%f). Assuming that T iterations are
required to make each base model coverage, we have the
training cost O(|Qx|*/XT).

After finishing training the base models, the ensemble
is built based on AdaBoost. As described in [20, 32], such
a process requires testing the estimation error of each
base model on Qg for deciding their weights in the en-
semble. To test the estimation error of a base model re-
quires traversing on Qx and computing the estimate g,

for Vgq,; € O, thereby leading to the cost at O(Qk|*/).
Hence, given that an EAMFM model consists of n base
models, its computational complexity comes to
O(|Qx|*f*Txn). In theory, this computational complexity is
roughly n times that of building a single MF-based QoS-
estimator. However, as shown in Fig. 2 and later in the
experiments, with parallelization the computing time of
building an EAMFM is comparable with that of building
a single QoS-estimator.

In terms of the storage complexity, each base model
needs to cache corresponding features as depicted in Ta-
ble I and Fig. 2. Depending on their estimation rules and
objective functions, their storage complexity ranges from
O((UIHS)*f) to O((UIHS))*(f+1)). By reasonably omitting



the lower-order terms, the storage complexity of n base
models in an EAMFM model is @((|U[+S))xfxn). Mean-
while, it is necessary to cache Qx for taking the training
process. Hence, the total storage cost of an EAMFM mod-
el is O((|UIH|S|)*f*n+|Qkl). Given that f<<min{|U],|S|}, such
storage complexity can be easily handled in industrial
applications.

4 EXPERIMENTS AND RESULTS
4.1 General Settings

Datasets. Two datasets are involved in the experi-
ments; both are collected by the WS-Dream system [3, 5-6,
8, 10, 11]. The first one, i.e., D1, is the response-time da-
taset, which contains 1,873,838 response-time data by 339
users on 5,825 real-world Web-services. The second da-
taset, i.e., D2, consists of 1,831,253 throughput data by 339
users on 5,825 real-world Web-services. Note that these
two WS-Dream datasets are the largest QoS datasets pub-
licly available, and are commonly employed in prior re-

search regarding QoS estimation [3, 5-11, 20].
TABLE Il
DETAILED SETTINGS OF THE TEST CASES

Dataset No. Train:Test Training Testing
data data

D1 D1.1 5%:95% 93,692 1,780,146
D12 10%:90% 187,384 1,686,454
D1.3 15%:85% 281,076 1,592,762
D14 20%:80% 374,768 1,499,070

D2 D2.1 5%:95% 91,563 1,739,690
D2.2 10%:90% 183,125 1,648,128
D23 15%:85% 274,688 1,556,565
D2.4 20%:80% 366,251 1,465,002

On both datasets, we have designed different test cases
for validating the performance of each tested model un-
der different data densities, as shown in Table II. The col-
umn “Train: Test’ means the ratio of training data to test-
ing ones; e.g., 5%:95% denotes that 5% of the given data
are chosen randomly and employed as training data, to
predict the remaining 95% of the given data. This process
is repeated for 10 times to obtain more objective results.
Naturally, all the testing data are not involved in the
training process.

Evaluation Metric. In this work, we focus on the accu-
racy of generated QoS-predictions, since it can directly
reflect whether or not the model has captured the essen-
tial characteristics of given data. Hence, we employ the
commonly accepted evaluation metrics mean absolute
error (MAE) [39, 40] as the evaluation metric, which is
formulated by

MAE
MAE

o 20

40 60 80
Number of Training Iterations

(a) D1.1

100 0 20 40 60 80

Number of Training Iterations

(b) D1.2

100

MAE
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MAE= 3" |q,,—4,, (16)

(v.r)el

/|r|,

where I' denotes the testing dataset, and naturally
OxNI'=¢. For a specified model, low MAE stands for high
prediction accuracy. Note that during our experiment, we
have recorded them both with 4 significant digits.

Meanwhile, we are also concerned with the computa-
tional efficiency of the proposed model, which is directly
reflected by the consumed time to train a tested model.
Hence, we have recorded it during our experiments.

Experimental Process. The experiments include four
parts:

A. Accuracy test of base models with different combina-
tions of linear-bias-factors, which demonstrates that the
diversified base models are able to generate accurate QoS
estimates;

B. Accuracy test of EAMFM with the number of base
models increasing from 1~20, indlicating that EAMFM is
effective in achieving higher accuracy than its component
models;

C. Computing time test of EAMFEM with the number of
computing nodes increasing from 1~20, indicating that
efficient parallelization can drastically reduce the compu-
ting time of EAMFM; and

D. The comparison between EAMFM and three state-of-
the-art QoS estimators to show the effectiveness of the
proposed scheme.

To present a concise report, for Experiment Parts A-C we
only present the results on D1; however, similar results
are obtained on D2 in our tests.

All experiments are conducted on a cluster with 32
computing nodes, where each node is equipped with a
3.0GHz CPU and 4GB memory. All tested models are
implemented in JAVA SE7U60.

4.2 Part A

As mentioned before, the effectiveness of an ensemble
depends on the diversity and accuracy of its base models,
Section III states how we diversify the base models in an
EAMFM model in detail. However, it is necessary to
check whether or not these diversified models have close-
ly high prediction accuracy, -if not, they cannot be used to
build an effective ensemble.

We first test the accuracy of four different base models,
which are marked as Models 1-4 corresponding to the
estimation rules and objective functions 1-4 in Table I,
respectively. For all models, the regularizing parameters
are set as Ag=Ac=Ap=A=0.1. To make a fair comparison,

MAE

0 20 40 60 80
Number of Training Iterations

(c)D1.3

100 0 20 40 60 80

Number of Training Iterations

(d) D1.4

100

Fig. 3. Typical training process of base models with different estimation rules and objective functions. In the legends, Models 1-4 correspond
to estimation rules and objective functions 1-4 in Table |.
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Fig. 6. Computing time of building a 20-model EAMFM with the number of computing nodes increasing.

their features are initialized with the same arrays whose
elements are randomly generated in the scale of (0,0.04).
For all models, the training process terminates when the
training error arises or the decrease in training error be-
tween two consecutive iterations is less than 10+

The results are depicted in Fig. 3. From them, we see
that with different estimation rules and objective func-
tions, the accuracy of base models varies; however, the
difference is small. For instance, on testing case D1.1,
Model 1 achieves the lowest MAE at 0.5359. In contrast,
the MAE of Model 4 is the highest at 0.5385. The accuracy
gap between them is 0.48% only.

Another interesting phenomenon is that with the train-
ing data increasing, the accuracy rank of base models
with different estimation rules also varies, as depicted in
Fig. 3. For instance, the MAE of Model 4 is the highest
among all tested base models on testing case D1.1, but the
lowest on testing case D1.4. This phenomenon in fact in-
dicates the necessity to build an ensemble like our pro-
posed one, which takes the effect by different estimation
rules and objective functions into full consideration.

Afterwards, we have tested the effect of randomness
injection on the accuracy of base models. For each testing
case, the MAE of a base model with randomly initialized
features in the scale of (0,0.004) in 20 independent runs is
recorded. Fig. 4 depicts the MAE of Model 1 on D1 in
such a test. Note that similar situations can be found in
the same test for Model 2-4.

From Fig. 4, we see that the accuracy gap between
models with different initial hypothesis is a bit larger than
that caused by difference in training processes. For in-
stance, on testing case D1.1, with different initial hypoth-
esis, the highest MAE of Model 1 is 0.5379, and the lowest
is 0.5316, indicating the accuracy gap at 1.17%. With more
training data, this accuracy gap is shrunk. On testing case
D1.4, the highest and lowest MAE of Model 1 are respec-
tively 0.4302 and 0.4265, indicating a gap at 0.86% that is
smaller than that on D1.1.

To summarize, diversifying mechanism adopted by
EAMFM do not lead to loss in prediction accuracy of its
base models.

4.3 PartB

This part aims to evaluate the estimation results of
EAMFM as the number of base models increases from 1
to 20, to demonstrate its effectiveness in boosting the es-
timation accuracy. For each base model, the regularizing
parameters are set as Ag=Ac=Ap=A;=0.1. The results are
depicted in Fig. 5. From these results, we have the follow-
ing findings:

a) EAMFM has advantage in estimation accuracy over
its base models. As depicted in Fig. 5, its MAE decreases
with the number of base model increasing on all testing
cases. For instance, on D1.1, EAMFM achieves the MAE at
0.5078 with 20 base models. Compared with that of a sin-
gle base model at 0.5359, the improvement is 5.24%,
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which is quite significant.

b) The improvement in estimation accuracy by
EAMEFM is related with the amount of training data. In
Table III, we have summarized the improvement in esti-
mation accuracy by EAMFM on all testing cases. From
Table III, we see that with more and more training data,
the improvement generally gets smaller and smaller. On
possible reason for this phenomenon is that with more

IEEE TRANSACTIONS ON SERVICES COMPUTING

e) For EAMFM, the regularizing parameters in its base
models are set as Ag=Ac=Ap=Ag=0.1 on D1, and
As=Ac=Ap=Ar=6 on D2. The number of base models # is set
at 20.

TABLE IV
COMPARED MODELS IN EXPERIMENT PART Il

Models Description
training data, the resulting model generates its estimates M1 The QoS estimator proposed in [5, 6] that combines
nearer to the true values. Consequently, the accuracy gain user-oriented and item-oriented S-KNN models.
by an ensemble decreases. M2 The QoS estimator based on probabilistic matrix
MAE oF EAMFM (WllﬁgggﬂéE MODELS) AND AMF factor?zation proposed in [.15]. Itisa sopl‘ﬁsticated
and highly accurate model in CF community.
Testing EAMFM Single Accuracy Gain M3 The QoS estimator based on regularized single-
Case (20 models) Base Model by Ensemble element-dependent non-negative matrix factoriza-
D1.1 0.5062 0.5359 5.54% tion proposed in [19, 20]. It takes the non-negative
D1.2 0.4414 0.4722 6.52% nature of QoS data into consideration.
D13 0.4279 0.4471 4.29%
D14 0.4137 0.4272 3.16%

In summary, QoS estimates by EAMFM are more accu-
rate than those by a single base model.

4.4 PartC

In this part we test the efficiency of parallelism in
EAMFM. On each testing case of D1, we build an
EAMFM model consisting of 20 base models, and record
the consumed time. This process is repeated with the
number of computational nodes increasing from 1 to 20.
The corresponding results are depicted in Fig. 6.

It can be clearly seen from Fig. 6 that with the number
of computing nodes increasing, the consumed time by
building a 20-model EAMFM drastically decreases. For
instance, on testing case D1.1, the consumed time is 101.7
seconds with 1 computing node, and 6.8 seconds with 20
computing nodes. However, the time is not linear with
respect to the number of employed computing nodes.
This is because when building an EAMFM model, the
model aggregation via an AdaBoost-based algorithm
cannot be parallelized, as depicted in Fig. 2.

4.5 Part D

This part compares the performance of the proposed
EAMEFM against three QoS estimators that are among the
most effective ones to the best knowledge of the authors.
They are summarized in Table IV. The experiment set-
tings of all tested models are as follows:

a) For M1, the number of the nearest neighbors and the
balancing coefficient directly decide the performance. We
tune them together on all cases following the instructions
in [5, 6];

b) For all MF-based QoS estimator, the dimension of the
latent factor space, i.e., f, is set at 20. Meanwhile, to elimi-
nate the effect of the random initial guess, we initialize
each model with the same randomly-generated arrays;

c) For M2, the momentum is set at 0.9, and we tuned its
step-size following the work in [15];

d) For M3, the regularizing coefficient is tuned for each
case by following [19, 20]; and

The comparison results are recorded in Tables V and VI.
From them, we conclude:

a) When compared with the other models, EAMFM is
able to gain its significant advantage in estimation accuracy.
On DI.1, its MAE is 0.5062, about 25.14% lower than
0.6762 by M1, 9.32% lower than 0.5582 by M2, and 6.91%
lower than 0.5438 by M3. On D1.4, with denser training
data the MAE of M1-M3 and EAMFM are 0.4589 and
0.4473, 0.4361 and 0.4137, respectively. The accuracy im-
provement to M1-M3 by EAMFM is 9.85%, 7.51%, and
5.14%, respectively. Similar results are also obtained in the
experiments on D2, as recorded in Table V.

a) Due to its need for building nultiple base models,
EAMFM indeed consumes much more time than its peers.
However, owing to its ease of parallelization, its compu-
ting time can be reduced to be comparable with that of
the other sophisticated QoS estimators. As recorded in
Table VI, with only one computing node, to build a 20-
model EAMFM consumes 81.0 seconds. This is 2.36, 19.76
and 13.28 times that of the time by UIPCC, PMF and
RSNMF, respectively. However, with 20 computing
nodes its time is drastically reduced to 5.4 seconds, which
is clearly comparable with 4.1 and 6.1 seconds needed by
PMF and RSNMF, and much lower than that 34.3 seconds
needed by UIPCC. This indicates that the practicability of
EAMEFM can be greatly improved via its efficient parallel-
ization.

TABLE V

MAE OF TESTED MODELS ON ALL CASES
Testing  y1pcc PMF RSNMF EAMFM
Case
D11 0.6762 0.5582 0.5438 0.5062
D1.2 0.5412 0.4931 0.4868 0.4414
D1.3 0.4993 0.4647 0.4593 0.4279
D14 0.4589 0.4473 0.4361 0.4137
D21 28.70 22.56 21.44 17.30
D2.2 2435 17.64 17.21 15.04
D2.3 21.82 15.58 15.07 13.69
D2.4 20.34 14.76 14.33 13.35
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TABLE VI
CONSUMED TIME CORRESPONDING TO TABLE IV (SECONDS)
Testin,
e & uIPCC PMF  RSNMF E?ﬁ:)/[ :52’31:14:3:5)
D1.1 343 41 6.1 81.0 5.4
D1.2 71.2 5.2 10.7 151.2 9.9
D1.3 125.1 5.7 12.6 218.8 144
D14 1539 63 157 300.2 19.8
D21 38.5 54 6.1 922 6.4
D2.2 86.7 7.2 124 174.7 11.3
D2.3 139.4 8,5 18.0 251.3 16.5
D2.4 1675 96 235 336.8 21.9

Based on the above results and discussions, we sum-
marize that EAMFM is able to provide highly accurate
estimates to unknown QoS data based on historical ones.
Its time cost is high due to the need of multiple base
models; yet, it can be drastically reduced with parallel
computing. Hence, it provides an effective scheme for
industrial applications seeking for highly-accurate QoS
estimates with available parallel computing facilities, e.g.,
cluster and cloud.

5 CONCLUSIONS

This work aims at designing an effective scheme for
QoS estimation with a) high prediction accuracy, b) low
time cost, and c) dependence on QoS data only. To do so,
we firstly investigate the alternating least squares-based
parameter training process for a matrix-factorization-
based QoS estimator. By dividing this process into single-
element-dependent subtasks, we subsequently integrate
the principles of alternating direction method (ADM) into
it, thereby obtaining the ADM-based parameter training
scheme. The resulting model is further diversified and
aggregated to achieve an Ensemble of ADM-based Matrix
Factorization Model (EAMFM), which is able to provide
highly accurate estimates to unknown QoS data. Through
parallelization, its computiational time is drastically re-
duced to achieve the comparable speed as the best single-
model QoS estimators. In the future work, we plan to ap-
ply the idea of EAMFM to other big data-related areas,
including complex network analysis [41-43] and bioin-
formatics [42, 44].
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