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An Effective Scheme for QoS Estimation via 
Alternating Direction Method-based Matrix 

Factorization 
 

Abstract—Accurately estimating unknown quality-of-service (QoS) data based on historical records of Web-service invocations 
is vital for automatic service selection. This work presents an effective scheme for addressing this issue via alternating direction 
method-based matrix factorization. Its main idea consists of a) adopting the principle of the alternating direction method to 
decompose the task of building a matrix factorization-based QoS estimator into small subtasks, where each one trains a subset 
of desired parameters based on the latest status of the whole parameter set; b) building an ensemble of diversified single 
models with sophisticated diversifying and aggregating mechanism; and c) parallelizing the construction process of the 
ensemble to drastically reduce the time cost. Experimental results on two industrial QoS datasets demonstrate that with the 
proposed scheme, more accurate QoS estimates can be achieved than its peers with comparable computing time with the help 
of its easy parallel realization. 

Index Terms—Quarlity-of-service, QoS Estimation, Alternating Direction Method, Matrix Factorization, Ensemble, Collaborative 
Filtering 
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1 INTRODUCTION

N THIS ERA of cloud computing, Web-services are in-
dispensible for most industrial Web applications, there-

by resulting in drastically increasing number of online 
Web-services. In such context, how to select suitable ser-
vices from a large candidate set becomes a thorny issue 
[1-4]. To conduct warming-up tests for service selection is 
one feasible approach to this issue [1-3]. However, it is 
inefficient due to high economical expenses and compu-
ting time [4-7]. Hence, automatic mechanisms of Web-
service selection become vital for industrial Web applica-
tions [3-11]. 

Service selection should be taken according to various 
characteristics of Web-services [4-11]. Quality-of-service 
(QoS) is one of the most important characteristics of a 
Web-service [1-5]. It can be measured by many specific 
metrics, e.g., request-time and throughput. Given a group 
of candidate services, once their QoS data are available, 
reliable service selection can be taken accordingly. Alt-
hough it is expensive to conduct warming-up tests for 
QoS-data, historical QoS records are usually available. 
Therefore, the key problem is how to estimate unob-
served QoS data based on observed ones with high accu-
racy.  

According to pioneering research [4-11], collaborative 
filtering (CF)-based approaches are highly efficient to QoS 
estimation. A CF-based QoS estimator can be achieved by 
several approaches, where a popular choice is the similar-
ity-based K-nearest-neighborhood (S-KNN) model [4-7, 
12-15]. In general, an S-KNN-based QoS estimator works 
by a) modeling historical QoS data into user/service fea-
ture vectors, b) building the similarities among us-
ers/services to select the K-nearest-neighbors of each us-

er/service, and c) estimation unobserved QoS data based 
on the observed ones by the neighbors of involved us-
ers/services. Shao et al. [4] propose a user S-KNN model 
to implement automatic QoS estimation for Web-services. 
Zheng et al. [5] propose the architecture of a Web-service 
recommender system whose key component is an S-KNN 
model for QoS estimation. Their further research [6] offers 
a mixed approach by combining user-oriented and ser-
vice-oriented S-KNN models to obtain QoS estimates 
with higher accuracy. Cao et al. [7] propose a hybrid S-
KNN model which combines the user/service similarity 
from the historical QoS data and inverse consumer fre-
quency to obtain the final estimates of unknown QoS data. 

Another widely-adopted kind of approaches to CF-
based QoS estimation is via matrix factorization (MF) [16-
22]. A QoS estimator of this kind generally works by a) 
modeling the historical QoS data on a given QoS metric, 
i.e., request time, with a user-service matrix. In this ma-
trix, each row stands for a specified user, each column for 
a specified service and each entry for the QoS record by a 
specified user on a specified service. Note that since each 
user can only touch a finite subset of the whole service set, 
this user-item matrix is highly incomplete with numerous 
missing data; b) building a low-rank approximation to 
this incomplete user-service matrix based on its known 
entries only; and c) estimation unobserved QoS data in 
the user-service matrix with corresponding entries in its 
low-rank approximation. As unveiled by recent research 
in the recommender system community [12-19], MF-
based CF models are highly accurate and scalable for 
many cases. They are also very effective in addressing the 
problem of QoS estimation [8-11, 20]. However, motivat-
ed by practical requirements, it is still desired to further 
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improve the accuracy of MF-based QoS estimators. 
Zhang et al. [8] propose an MF-based QoS estimator 

that integrates the time interval as an additional factor. Lo 
et al. [9] propose an extended MF-based QoS estimator 
with the consideration of location information in each 
historical QoS record. These approaches have proven ef-
fective in generating accurate QoS estimates. However, 
their applications are restricted when the required auxil-
iary information is not available [8, 9]. Zheng et al. [10] 
propose to improve the MF-based QoS estimator by con-
sidering the neighborhood information. Nonetheless, it 
cost much memory to store the pair-wise factors for iden-
tifying the neighbors of each user/service in real applica-
tions. Luo et al. [19, 20] propose to ensemble a set of di-
versified non-negative latent factor models to achieve a 
highly accurate QoS estimator. This ensemble model is 
able to achieve high prediction accuracy. However, its 
base models train desired parameters through the single-
element-dependent non-negative multiplicative update, 
which usually requires excessive training iterations to 
converge, thereby resulting in much computational time. 

In general, most of current QoS estimators achieve 
high accuracy by extending the information inputs. As 
proven in prior works [8-11, 19, 20], with properly mod-
eled learning objectives, additional information besides 
historical QoS data can be integrated into an MF-based 
QoS estimator seamlessly. However, the performance of 
such extensions relies heavily on the benchmark models. 
Hence, it is highly significant to develop effective QoS 
estimators relying on QoS data only. This work focuses 
on designing an effective MF-based scheme for QoS esti-
mation with a) high prediction accuracy, b) low time cost, 
and c) dependence on the QoS data only. Its main idea 
consists of a) adopting the principle of the alternating 
direction method to accelerate the training process of an 
MF model without loss of prediction accuracy; b) build-
ing the ensemble of single models with several diversify-
ing and aggregating mechanism; and c) parallelizing the 
construction process of the ensemble to reduce the com-
putational time.  

The rest of this paper is organized as follows; Section II 
formulates the problem. Section III presents the scheme. 
Section IV gives the experiments and discusses the results. 
And finally, Section V concludes this paper. 

2 PROBLEMS FORMULATION 
For an MF-based QoS estimator, the fundamental data 

source is a user-service QoS-matrix as defined in [4-11, 20]: 
Definition 1. Given a user set U and a service set S, a us-
er-service QoS-matrix Q is a |U|×|S| matrix consisting of the 
historical records of a specified QoS-property by U on S 
where each known entry qu,s denotes the QoS-record by 
user u on service s. 
As mentioned before, Q is highly incomplete due to the 
impossibility for a user to invoke all services from S.  Let 
QK and QU denote the known and unknwon entry sets of 
Q respectively, we have the following problem [4-11, 20]: 
Definition 2. Given Q, the problem of MF-based QoS estima-

tion is to build a rank-f approximation Q̂ to Q based on QK, 
such that the most accurate estimate ,ˆu sq  of each un-

known entry qu,s∈QU is generated. 

As illustrated in [8-20], Q̂ usually consists of two rank-f  
matrices P and E, where P has dimension |U|×f, E has f×|S| 
and f<<min{|U|,|S|}. Note that P and E are usually inter-
preted as the user and service latent-feature-matrices, 
which reflect the user and service characteristics hidden 

in the historical QoS-data.  With them, the desired Q̂ is 

denoted by Q̂ PE= , and the objective turns to solve P 
and E according to QK. This is implemented by building 
the cost function, e.g., Euclidean distance or Kullback-
Leibler divergence, to measure the difference between Q 

and Q̂ [8-20], and then minimize it with respect to P and 
E. With the loss function based on Euclidean distance, the 
problem is formulated by: 

( )
2 2ˆ, ,

FF
P E Q Q Q PEe = - = -    (1) 

where ||·||F denotes the Frobenius norm of a matrix. Note 
that the incompleteness of Q makes (1) not solvable. Nev-
ertheless, according to [16-22], to expand (1) into a single-
element-dependent form enables the optimization process 
to focus on QK rather than on Q, thereby resulting in the 
following problem: 
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where Pu,· and E·,s denotes the uth row-vector of P and sth 
column-vector of E, respectively. Moreover, as indicated 
in [8-20], a more efficient extension of (2) is achieved by 
integrating the linear-bias-factors and l2 regularization 
into it: 
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where bu and cs are linear-bias-factors for user u and ser-
vice s, B and C are length-|U| and |S| vectors consisting of 
all user and service biases, and λB, λC, λP and λE are posi-
tive constants denoting the regularizing coefficients for B, 
C, P and Q, respectively. With loss function (3), the objec-
tive is to minimize ε with respect to B, C, P and E, 

( ) ( )
, , ,

, , , arg min    , , , ,
B C P E

B C P E B C P Ee=     (4) 

for obtaining a converging model able to generate estimates 
for unknown entries in Q.  

3 PROPOSED SCHEME 

3.1 Training Scheme with Alternating Direction 
Method 

The principle of ADM [21, 22] is to decompose the 
original optimization task into tiny sub-ones, and then 
solve each subtask sequentially. The optimization process 
of a subtask relies on the updated status of those previ-
ously solved ones, thereby leading to fast convergence. 
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Hence, the first step to implement an ADM-based QoS 
estimator is to decompose the optimization task (4).  

Note that (4) is bi-linear and non-convex. It is thus not 
analytically solvable. A widely-adopted training scheme 
effective in addressing such a problem is the alternating 
least square (ALS)-based optimization [17, 23, 24], which 
works by fixing part of the decision parameters, e.g., B, C, 
and P in (3), to make the system convex and analytically 
solvable with respect to the remaining parameters, e.g., Q 
in (3). With ALS, the original training task (4) is actually 
decomposed into four subtasks as follows, 

( )

( )
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To introduce the ADM principle into the ALS-based 
training process of (3), we further decompose each ALS 
task in (5) into small sub tasks where each one deals with 
the optimization of a single parameter only. Here we take 
the training process of B for example.  For a single param-
eter bu in B, which is the linear bias for user u, let (B-bu) 
denote parameters in B except bu, (3) is convex with bu by 
fixing the others, i.e., (B-bu), C, P and E. Hence, we analyt-
ically solve (3) with respect to bu by adopting ALS as fol-
lows,  
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(6) 

where QK(u) denotes the subset of QK related to user u. 
By applying (6) to each parameters in B, we decom-

pose the ALS task with respect to B in (6) into |U| sub-
tasks, each of which updates one single parameter in B. 
By analogy, we decompose the ALS taks with respect to C, 
P and Q to obtain their training rules as follows,  
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where QK(s) denotes the set of data in QK related to ser-

vice s. Note that as shown in [19, 20], because QoS-data 
are defined on the positive field of real numbers, it is 
meaningful to constrain the resulting MF-based QoS es-
timator to be non-negative. Here we adopt the non-
negative projection strategy discussed in [25, 26] to keep 
the model parameters non-negative. More specifically, we 
extend the ALS-based parameter learning rules as follows,  
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Note that with B, C, P and E starting with non-negative 
initial hypothesis, i.e., all factors in B, C, P and E are ini-
tialized to fulfill 
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the ALS-based update rule (8) will keep them non-
negative.  

With (8), the original optimization task is divided into 
(|U|+|S|)×(f+1) subtasks. To achieve a highly-efficient 
ADM-based training process, it is necessary to arrange 
them into a properly designed solving-sequence [21, 22]. 
By carefully investigating the ALS-based update rule (8), 
we have the following results: 
a) The update of parameters inside B/C is independent, 
e.g., for users u and v, the update of bu does not affect that 
of bv. However, B and C are interdependent, e.g., for users 
u and service s, the update of bu affects cs if qu,s∈QK. Natu-
rally, the update of B and C affects that of P and E; and  
b) The update of parameters in P/E is dependent, i.e., the 
update of the kth parameter of a user/service affects that 
of the remaining k+1~fth parameters. Parameters in P and 
E are also interdependent.  

Hence, we split the ALS-based optimization task (5) in-
to (f+2) subtasks, and solve them sequentially following 
the ADM principle as follows:  
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which is quite significant. 
b) The improvement in estimation accuracy by 

EAMFM is related with the amount of training data. In 
Table III, we have summarized the improvement in esti-
mation accuracy by EAMFM on all testing cases. From 
Table III, we see that with more and more training data, 
the improvement generally gets smaller and smaller. On 
possible reason for this phenomenon is that with more 
training data, the resulting model generates its estimates 
nearer to the true values. Consequently, the accuracy gain 
by an ensemble decreases. 

TABLE III 
MAE OF EAMFM (WITH 20 BASE MODELS) AND AMF 

Testing 

Case 

EAMFM 

(20 models) 

Single 

Base Model 

Accuracy Gain 

by Ensemble 

D1.1 0.5062 0.5359 5.54% 

D1.2 0.4414 0.4722 6.52% 

D1.3 0.4279 0.4471 4.29% 

D1.4 0.4137 0.4272 3.16% 

In summary, QoS estimates by EAMFM are more accu-
rate than those by a single base model.  

4.4 Part C 

In this part we test the efficiency of parallelism in 
EAMFM. On each testing case of D1, we build an 
EAMFM model consisting of 20 base models, and record 
the consumed time. This process is repeated with the 
number of computational nodes increasing from 1 to 20. 
The corresponding results are depicted in Fig. 6. 

It can be clearly seen from Fig. 6 that with the number 
of computing nodes increasing, the consumed time by 
building a 20-model EAMFM drastically decreases. For 
instance, on testing case D1.1, the consumed time is 101.7 
seconds with 1 computing node, and 6.8 seconds with 20 
computing nodes. However, the time is not linear with 
respect to the number of employed computing nodes. 
This is because when building an EAMFM model, the 
model aggregation via an AdaBoost-based algorithm 
cannot be parallelized, as depicted in Fig. 2. 

4.5 Part D 

This part compares the performance of the proposed 
EAMFM against three QoS estimators that are among the 
most effective ones to the best knowledge of the authors. 
They are summarized in Table IV. The experiment set-
tings of all tested models are as follows: 
a) For M1, the number of the nearest neighbors and the 
balancing coefficient directly decide the performance. We 
tune them together on all cases following the instructions 
in [5, 6]; 
b) For all MF-based QoS estimator, the dimension of the 
latent factor space, i.e., f, is set at 20. Meanwhile, to elimi-
nate the effect of the random initial guess, we initialize 
each model with the same randomly-generated arrays; 
c) For M2, the momentum is set at 0.9, and we tuned its 
step-size following the work in [15]; 
d) For M3, the regularizing coefficient is tuned for each 
case by following [19, 20]; and 

e) For EAMFM, the regularizing parameters in its base 
models are set as λB=λC=λP=λE=0.1 on D1, and 
λB=λC=λP=λE=6 on D2. The number of base models n is set 
at 20. 
 

TABLE IV 
COMPARED MODELS IN EXPERIMENT PART III 

Models Description 
M1 The QoS estimator proposed in [5, 6] that combines 

user-oriented and item-oriented S-KNN models. 
M2 The QoS estimator based on probabilistic matrix 

factorization proposed in [15]. It is a sophisticated 
and highly accurate model in CF community. 

M3 The QoS estimator based on regularized single-
element-dependent non-negative matrix factoriza-
tion proposed in [19, 20]. It takes the non-negative 
nature of QoS data into consideration.  

 
The comparison results are recorded in Tables V and VI. 

From them, we conclude: 
a) When compared with the other models, EAMFM is 

able to gain its significant advantage in estimation accuracy. 
On D1.1, its MAE is 0.5062, about 25.14% lower than 
0.6762 by M1, 9.32% lower than 0.5582 by M2, and 6.91% 
lower than 0.5438 by M3. On D1.4, with denser training 
data the MAE of M1-M3 and EAMFM are 0.4589 and 
0.4473, 0.4361 and 0.4137, respectively. The accuracy im-
provement to M1-M3 by EAMFM is 9.85%, 7.51%, and 
5.14%, respectively. Similar results are also obtained in the 
experiments on D2, as recorded in Table V. 

a) Due to its need for building nultiple base models, 
EAMFM indeed consumes much more time than its peers. 
However, owing to its ease of parallelization, its compu-
ting time can be reduced to be comparable with that of 
the other sophisticated QoS estimators. As recorded in 
Table VI, with only one computing node, to build a 20-
model EAMFM consumes 81.0 seconds. This is 2.36, 19.76 
and 13.28 times that of the time by UIPCC, PMF and 
RSNMF, respectively. However, with 20 computing 
nodes its time is drastically reduced to 5.4 seconds, which 
is clearly comparable with 4.1 and 6.1 seconds needed by 
PMF and RSNMF, and much lower than that 34.3 seconds 
needed by UIPCC. This indicates that the practicability of 
EAMFM can be greatly improved via its efficient parallel-
ization. 

TABLE V 
MAE OF TESTED MODELS ON ALL CASES 

Testing 

Case 
UIPCC PMF RSNMF EAMFM 

D1.1 0.6762 0.5582 0.5438 0.5062 

D1.2 0.5412 0.4931 0.4868 0.4414 

D1.3 0.4993 0.4647 0.4593 0.4279 

D1.4 0.4589 0.4473 0.4361 0.4137 

D2.1 28.70 22.56 21.44 17.30 

D2.2 24.35 17.64 17.21 15.04 

D2.3 21.82 15.58 15.07 13.69 

D2.4 20.34 14.76 14.33 13.35 
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TABLE VI 
CONSUMED TIME CORRESPONDING TO TABLE IV (SECONDS) 

Testing 

Case 
UIPCC PMF RSNMF EAMFM 

(1 node) 
EAMFM 
(20 nodes) 

D1.1 34.3 4.1 6.1 81.0 5.4 

D1.2 71.2 5.2 10.7 151.2 9.9 

D1.3 125.1 5.7 12.6 218.8 14.4 

D1.4 153.9 6.3 15.7 300.2 19.8 

D2.1 38.5 5.4 6.1 92.2 6.4 

D2.2 86.7 7.2 12.4 174.7 11.3 

D2.3 139.4 8,5 18.0 251. 3 16.5 

D2.4 167.5 9.6 23.5 336. 8 21.9 

 
Based on the above results and discussions, we sum-

marize that EAMFM is able to provide highly accurate 
estimates to unknown QoS data based on historical ones. 
Its time cost is high due to the need of multiple base 
models; yet, it can be drastically reduced with parallel 
computing. Hence, it provides an effective scheme for 
industrial applications seeking for highly-accurate QoS 
estimates with available parallel computing facilities, e.g., 
cluster and cloud. 

5 CONCLUSIONS 
This work aims at designing an effective scheme for 

QoS estimation with a) high prediction accuracy, b) low 
time cost, and c) dependence on QoS data only. To do so, 
we firstly investigate the alternating least squares-based 
parameter training process for a matrix-factorization-
based QoS estimator. By dividing this process into single-
element-dependent subtasks, we subsequently integrate 
the principles of alternating direction method (ADM) into 
it, thereby obtaining the ADM-based parameter training 
scheme. The resulting model is further diversified and 
aggregated to achieve an Ensemble of ADM-based Matrix 
Factorization Model (EAMFM), which is able to provide 
highly accurate estimates to unknown QoS data. Through 
parallelization, its computiational time is drastically re-
duced to achieve the comparable speed as the best single-
model QoS estimators. In the future work, we plan to ap-
ply the idea of EAMFM to other big data-related areas, 
including complex network analysis [41-43] and bioin-
formatics [42, 44]. 
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