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ABSTRACT

Since the realisation of the computer, and shortly after the inception of artificial intelligence (AI), there has been an explosion of research solving human-level tasks using autonomous entities that are able to learn about an environment by observing and influencing it, known as intelligent agents (IA). This potent AI technique has yet to filter into the field of thermoscience, where the conceptual design and optimisation of complex energy systems has been a particularly challenging problem. Much of the design process still requires human expertise. But with the continual increase in computational power and the use of IAs, it is now time to shift the responsibility from the human to the computer. This research attempts to answer the question of whether it is possible for a computer to conceptually design a complex energy system autonomously, from inception. 
The complex energy system to be designed and optimised is a thermoacoustic heat engine (TAHE), which converts thermal to acoustic power. The complexity of its physical behaviour and its many design parameters makes it a challenging energy system for conceptual design and optimisation and consequently an ideal candidate for this particular research. The TAHE is designed for low temperature waste heat utilisation from a baking process.
In this work an approach is employed that is based on a reinforcement learning intelligent agent (RLIA). The RLIA is first employed to simultaneously optimise thirteen design parameter values. The RLIA was able to learn key design features of a TAHE which lead to the reduction in acoustic losses and an acoustic power from the engine of 495.32 W, when the thermal power input was 19 kW.   
For the main experiment, the RLIA must conceptually design the TAHE from scratch, changing both the parameter values and the configuration of the device. The results have shown the remarkable ability of the RLIA to identify several key design features of the TAHE: the correct configuration of the device, selecting designs that reduce acoustic losses, create positive acoustic power in the stack region and determine the region of optimality of the design parameter values. The RLIA has shown a great capacity to learn, even when contending with a complex environment and a vast search space. With this work we have introduced RLIAs as a new way approach to such multidimensional problems in the field of thermoscience/thermal engineering. 
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Nomenclature

	
	

	a
	speed of  sound (m s-1)

	
	action taken at time t

	A
	area (m2), Action

	
	isobaric heat capacity of working fluid (J kg-1K-1)

	
	isobaric heat capacity of solid plate (J kg-1K-1) 

	dV
	differential volume (m3)

	dx
	differential length in x-direction (m)

	dy
	differential length in y-direction (m)

	dz
	differential length in z-direction (m)

	D
	diameter (m)

	f
	spatially averaged function

	fr
	resonant frequency (s-1)

	Ge
	geometric parameter (geometric properties of stack region and engine)

	Gl
	global parameter (design parameter that does not vary with position or time)

	h
	enthalpy

	
	total thermal power available  for conversion (W)

	
	thermal conductivity (W m-1 K-1)

	M
	material parameter (thermophysical properties of working fluid and stack)

	p
	pressure (Pa)

	
	acoustic pressure amplitude (Pa)

	Pm
	mean pressure (Pa)

	Pr
	prandtl number

	
	probability action is chosen at time t

	Q
	action-value function

	
	rate of heat transfer (W)

	
	reward at time t

	R
	reward

	
	state of environment at time t

	t
	time (s)

	T
	temperature (K, ), Transition model

	
	volume flow rate (m3s-1)

	
	acoustic power  produced or consumed (W)

	
	coordinate along sound-propagation direction (m)

	
	stack centre position (m)

	
	mole fraction

	
	half plate spacing (m)

	

	Greek Letters

	
	learning rate/step size

	
	ratio of isobaric to isochoric specific heat, discount rate (in RL)

	
	temperature difference in stack region (K)

	
	stack length (m)

	
	engine length (m)

	
	penetration depth, (m)

	
	exploration parameter 

	
	correction for thermal properties of solid wall

	
	thermal efficiency

	
	wavelength of sound wave (m)

	
	density (kg m-3)

	
	Softmax method exploration parameter temperature

	
	angular frequency (s-1)

	
	perimeter (m)

	
	temperature gradient (K m-1)

	
	

	
	

	Subscripts
	

	1
	first order acoustic variable

	A
	ambient

	AHX
	ambient temperature heat exchanger

	c
	centre

	e
	engine

	H
	high

	HHX
	high temperature heat exchanger

	m
	mean

	r
	resonant

	s
	stack

	t
	time

	tot
	total

	
	thermal

	
	viscous

	
	

	
	

	
Abbreviations

	

	AI
	artificial Intelligence

	BR
	blockage ratio (ratio of the cross sectional area occupied by gas to the total cross sectional area)

	COP
	coefficient of performance

	DR
	drive ratio (pressure amplitude/mean pressure)

	GUI
	graphical user interface

	HX
	heat exchanger

	IA
	intelligent agent

	RL
	reinforcement learning

	RLIA
	reinforcement learning intelligent agent

	TAHE
	thermoacoustic heat engine
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[bookmark: _Toc452568813][bookmark: _Toc436035894]Chapter 1
1. [bookmark: _Toc452568814]Introduction
1.1 [bookmark: _Toc436035895][bookmark: _Toc452568815]Background of research
1.1.1 [bookmark: _Toc436035896][bookmark: _Toc452568816]Motivation and background problem
The continual increase in computational power since the dawn of the computer and the inception of artificial intelligence (AI) around the same time, has driven research to solve human-level tasks using computer systems. AI has spawned the creation of intelligent agents (an autonomous entity that observes an environment and takes actions in order to achieve a goal), which are able to learn simply by interacting with an environment. While these intelligent agents (IAs) have been applied successfully to numerous research fields, achieving incredible feats (Veness et al., 2011) , they have yet to filter into the field of thermoscience, which deals with complex physical systems, and could very much benefit from such powerful decision making tools.
In the field of thermal engineering there is much ongoing research in the conceptual design and optimisation of complex energy systems for specific applications. The problem must be constrained and simplified sufficiently in order for it be solvable, yet must be detailed enough that the results are physically meaningful. This trade-off must be considered when choosing a modelling tool. Also the optimisation technique must be able to deal with the level of detail that the system is described by the modelling tool. In such problems, typically the optimisation technique attempts to optimise certain design parameter values of an existing design that is specified beforehand (Ismail, Moghavvemi and Mahlia, 2014; Srikitsuwan, Kuntanapreeda and Vallikul, 2007). Also expert knowledge of the complex energy system is required by the human designer, and many design choices must be made along the way. But with the advent of AI and the continual increase in computational power, it seems natural that the responsibility of designing a complex energy system will shift to a computer system.
There are numerous reasons why the application of IAs to the field of thermal engineering would be massively beneficial. First, the computer is able to evaluate many more design options at a given time. Secondly, given sufficient scope, the IA has the potential to come up with novel designs, because it is not prone to the kind of bias that are experienced by humans, and can therefore consider design options that may not occur to the human designer. Thirdly, a tool such as this could enable a non-expert to conceptually design a complex energy system, by simply specifying the design criteria for a particular application. Therefore this research, for the first time, attempts to conceptually design and optimise a complex energy system autonomously using a computer.
The IA used in this research employs reinforcement learning (RL) (Woergoetter and Porr, 2008). This is a machine learning technique that is able to achieve a goal by optimising expected rewards, based on its interaction with an environment. Reinforcement learning has already been successfully applied to a wide variety of complex decision making tasks, and is well suited to this research problem. What makes a reinforcement learning intelligent agent (RLIA) so fascinating is that it does not need any prior knowledge of the environment, but learns from sampling the search space over time. Also reinforcement learning is able to handle large environments, and therefore less affected by increasing levels of complexity, unlike many optimisation or decision making techniques.
The case study of a complex energy system that is used in this research for the conceptual design and optimisation is of a thermoacoustic heat engine (TAHE). This is a type of prime mover that converts thermal to acoustic power (Merkli and Thomann, 1975a). The complexity of its physical behaviour and its many design parameters makes it a challenging energy system for design and optimisation and consequently an ideal candidate for this particular research.
 
1.1.2 [bookmark: _Toc436035897][bookmark: _Toc452568817]Case study – Thermoacoustic heat engine 
Thermoacoustic heat engines are devices that take advantage of a natural phenomenon in which spontaneous oscillations of the working fluid occur within a solid container, when subjected to some critical temperature gradient. As a result, thermal power is converted to acoustic power (a type of mechanical work), therefore they are classed under prime movers. Due to the many advantageous properties of the TAHE, such as the fact that it has no moving parts and is cheap to manufacture (Swift, 1988), the thermoacoustic technology has recently recieved much attention in the thermal engineering community. TAHEs are also able to utilise various types of heat sources and a wide range of temperature sources. 

1.1.3 [bookmark: _Toc452568818]TAHE design for low temperature heat utilisation
In biscuit manufacturing, biscuit dough is heated during baking at elevated temperatures in gas fired ovens. As a result of this baking process, exhaust gas is expelled from the baking oven and released into the atmosphere via an exhaust gas flue. The rejected gas mixture from the baking oven comprises CO2, N2, O2 and H2O, at a temperature of approximately 150. This type of heat source is  low temperature and high volume. In this research the TAHE is designed for this application, in order to utilise the low temperature waste heat.

1.2 [bookmark: _Toc436035898][bookmark: _Toc452568819] Research aims and objectives
As mentioned in section 1.1 the primary aim of this research is to determine whether it is possible for a computer to conceptually design a complex energy system autonomously from inception. The secondary aim is to endeavour to understand how this can be done effectively using RL. In order to achieve these aims the following objectives has been set:

1. Employ a standard iterative optimisation technique in order to optimise key design parameters of the TAHE for low temperature heat utilisation. This is to enable a baseline to be set for the performance of the RLIA.
2. Define the TAHE design problem in terms of the RL framework, for the initial proof of concept experiment that enables the RLIA to vary design parameter values of the TAHE.
3. Define the main TAHE design problem in terms of the RL framework, that allows the RLIA to not only change the design parameter values but also the configuration of the device.
4. Implement both RL design problems in Python.
5. Illustrate how the state information, reward scheme and tuning/learning parameters affects the ability of the RLIA to learn about the environment.
6. Demonstrate the ability of the RLIA to learn key design features of the TAHE, for the real life industrial problem. 

1.3 [bookmark: _Toc436035899][bookmark: _Toc452568820] Outline of thesis
The thesis is divided into the following chapters:

Chapter 1: Explains the relevance of the research in the current context of this thesis and the major objectives of this work.

Chapter 2: Looks at the capabilities of computer systems that attempt to solve ‘challenge problems’ in AI. Then optimisation techniques and approaches that are currently employed in thermoscience problems are outlined, highlighting current limitations. Finally the complex energy system (i.e. TAHE) to be designed and  optimised is introduced, describing its physical behaviour, its various potential applications and the optimisation techniques that have been used to date for its design.

Chapter 3: Presents an iterative design methodology that attempts to optimise nine design parameter values. The modelling tool that simulates the TAHE is introduced, describing the fundamental equations used to calculate the performance of the device. The way the problem is constrained according to the design parameter values and the simplifications that are made are defined. Finally, the results of the iterative design methodology are analysed and discussed.

Chapter 4: Introduces the concept of RL, providing previous examples of its use and the numerous benefits of employing an RL agent for our complex design problem. 

Chapter 5: A preliminary experiment is described where the RLIA must optimise design parameter values. The way the problem is defined in terms of the RL framework and the implementation of the problem in Python is outlined. The results from the preliminary experiment is analysed and discussed.

Chapter 6: Outlines the main experiment, which is the design and optimisation of a standing-wave TAHE, by varying both the design parameter values and also the configuration of the device. Again the results are analysed and discussed.

Chapter 7: Presents the assessment and conclusion of the whole research. Recommendations are made for possible future directions of research. 


[bookmark: _Toc435636090][bookmark: _Toc435637158][bookmark: _Toc435638009][bookmark: _Toc435638148][bookmark: _Toc435718888][bookmark: _Toc452568821]Chapter 2
2 [bookmark: _Toc452568822]Literature review
This literature review chapter first describes the background in AI that provided the inspiration for the learning technique that in used in this research. Then the optimisation techniques that are currently employed for design purposes of complex energy systems are evaluated, as well as those used in the field of thermoacoustics, discussing there merits, but ultimately their limitations and as a result the need for a new way of thinking. This chapter also looks at the brief history, the physical behaviour and applications of the thermoacoustic heat engine.

2.1 [bookmark: _Toc452568823]Artificial intelligence
In the last two decades there has been a resurgence in the field of AI. This is demonstrated by the success of computers such as Deep Blue (McCorduck, 2004), the computer chess-playing champion, which was a landmark in AI at the time. While Deep Blue was created for a specific purpose, it highlighted the computational power that was accessible at the time and what it could achieve. From this platform came the desire in AI to expand the capabilities of computers to solve multiple problems. A result of this persuit was the creation of Watson (Ferrucci et al., 2010) , a computer that was designed to advance the field of question-answering technology. It was able to compete on Jeapardy in real time. These examples not only highlight the aspiration of the field of AI to solve human-level tasks, but also their incredible accomplishments. 
Another exciting direction of AI is autonomous entities, that are able to learn about an environment by taking actions and observing the outcome with regard to an ultimate goal, known as IAs. They have been successfully applied to various domains (Jennings and Wooldridge, 1998; Wooldridge and Jennings, 1995; Etzioni and Weld, 1995), and their application to new research domains continues as there popularity grows. Now there is research into the creation of IAs that is not only able to solve one type of problem but is generalised to solve multiple problems, with exciting results as they are tested against ‘challenge problems’ in AI. One example is of a general reinforcement learning agent that was tested against a variety of stochastic and partially observable domains, such as Pacman, with the agent able to learn a number of important concepts of the game  (Veness et al., 2011) . 
While impressive strides have been made in AI to solve human level tasks, these AI techniques have not yet filtered into certain engineering fields e.g. thermoscience/thermal engineering, where problems are often multidimensional with vast search spaces. Therefore these types of problems could hugely benefit from such powerful decision making tools. 

2.2 [bookmark: _Toc452568824]Computational optimisation techniques
There are three broad classifications in the field of computational optimisation techniques that are currently employed in thermal engineering optimisation problems: numerical methods, heuristic methods and multi-objective optimisation. All of these areas overlap with each other to varying degrees. Each approach is detailed below.

2.2.1 [bookmark: _Toc435865605][bookmark: _Toc452568825]Numerical methods
Complex thermal engineering problems can be categorised as constrained optimisation problems, therefore numerical techniques such as newton’s method, direct and gradient methods are not applicable to the type and complexity of problems discussed in this research. These constrained optimisation problems can instead be defined as linear programming (LP) problems. 
The concept of LP has been around for a while and it was Leonid Kantorovich who first formulised a problem in terms of LP in 1939, as we know it today (Schrijver, 1998). Since then many varied problems have been defined and solved as LP problems, from operations research (Winston and Goldberg, 2004), to microeconomics (Russell and Wilkinson, 1979). It has also gained popularity in thermal engineering, as the continual increase in computational power has allowed problems with thousands of constraints and decision variables to be solved quickly and efficiently (Omu, Choudhary and Boies, 2013).
The standard form of any LP problem is defined with respect to three parts: the linear function to be optimised, the problem constraints and non-negative variables. The standard form of an LP problem is shown below.

Linear objective function:
	 
	
	(2.1) 


Problem constraints:
	 
	
	

	
	
	

	      
	
	

	
	
	(2.2) 


Non-negative variables:
	 
	
	(2.3) 



Once the problem is defined in this way, there are numerous algorithms that can be adopted to solve the optimality problem, the most popular being the Simplex method (Dantzig, 1998).
The type of LP problem that one comes across frequently in the field of thermal engineering is mixed integer linear programming (MILP). This is when the problem has non-integer as well as integer decision variables. Problems have been successfully defined in this way to solve for example a distributed energy network optimisation problem (Omu, Choudhary and Boies, 2013) that attempts to minimise annual costs. The MILP model includes 70,000 variables and constraints, and was solved in less than 75 seconds, which illustrates the ability of MILP to handle a large decision variable set. The MILP model has also been applied to multi-criteria optimisation problems; such as the optimisation of a distributed energy supply system for an industrial area, while considering an economic and environmental objective function (Buoro et al., 2013). Other types of problems cannot be modelled with sufficient accuracy using an LP model and is instead represented as a nonlinear programing (NLP) problem. For example a polygeneration energy system is designed based on a mixed-integer nonlinear programming (MINLP) model in order to optimise the overall structure of the system for maximum annual profit (Liu, Pistikopoulos and Li, 2009).
This approach to the design and optimisation of complex energy systems has become popular in recent decades due to the continual increase in computational power, which has allowed fast evaluation of solutions to be obtained for these types of problems.

2.2.2 [bookmark: _Toc452568826]Heuristic optimisation methods
Heuristic optimisation methods are employed for problems that cannot be solved satisfactorily with classical numerical methods, for instance if the objective to be optimised is nonlinear and discontinuous, or if the numerical method cannot find the region of optimality.  Also due to the stochastic nature of heuristic optimisation methods it is able to deal with data that’s noisy and is less likely to be stuck at sub-optimal solutions. Furthermore, convergence of solution to the global optimum does not depend on initial solutions. 
Two types of heuristic methods that are frequently used in thermal engineering optimisation problems are known as evolutionary and swarm algorithms, in particular genetic algorithm (Jonn, 1975) and particle swarm algorithm (Kennedy and Ebemart, 1995).

Genetic algorithms (GAs)
The basic premise of GAs is that the search space is populated with random individuals known as ‘chromosomes’ of possible solutions that are represented as a binary string. Each bit is known as a ‘gene,’ and is manipulated during the optimisation process due to the search process. For each generation of the population, the individuals are evaluated according the fitness function and assigned a fitness value that determines which individuals survive for the next generation. In accordance with ‘survival of the fittest,’ individuals with high fitness have a better chance of reproduction and those with low fitness are more likely to become extinct. Then crossover occurs, which combines parent strings to create two new strings known as ‘offspring.’ The crossover is mainly responsible for the search aspect of the GA. Also chromosomes are subject to the mutation operator according to the mutation probability, which changes a bit from 1 to 0 and vice versa. This is in order to maintain genetic diversity. A flowchart of the algorithm is shown in Figure 2.1. The growing popularity of GAs can be attributed to several factors:

· General applicability to a wide range of optimisation problems. 
· Easy to implement and does not need to compute gradients.
· Can be applied to both single objective and multi-objective problems.
· Probabilistic nature allows a more thorough coverage of search space.
· Provides a population of ‘good’ (Pareto optimal) solutions, rather than a single solution.
· Far less affected by initial solutions than classical optimisation techniques.



[bookmark: _Ref435721775][bookmark: _Toc452568901]Figure 2.1 Flowchart of genetic algorithm

The design of heat exchangers (HXs) is important in thermal engineering as a crucial element of all energy systems. Its design can vary vastly depending on application. The design process is a complex selection of geometric and operating parameters, therefore it relies heavily on the designer’s experience. Research into automating the design and optimisation process has been on going for a while. It is still subject to this evolution. More recently, this complex engineering problem has benefited from the use of GA (Özçelik, 2007; Caputo, Pelagagge and Salini, 2008; Sanaye and Hajabdollahi, 2010). GA has also been applied to a wide range of thermal engineering problems e.g. heating, ventilation, air conditioning and refrigeration systems (HVAC&R), as well as power generation. Most of this work has focused on a few key parameters for optimisation, typically less than five.

Particle Swarm Optimisation (PSO)
PSO is a swarm algorithm that is inspired by the movement of birds in a flock. Like GA, PSO is also a population-based optimisation method with possible solutions known as ‘particles.’ It updates the population for each iteration of the optimisation technique and each candidate solution in the population is evaluated according to a fitness function. But the way it explores the search space is quite different from GA, as it uses two parameters, the position and velocity. The velocity and position of the particles in the search space are updated according to the particle’s objectives. Over the iterative process each particle’s value is updated according to its best position, as well as the best position of the whole population. The flowchart for particle swarm optimisation is shown in Figure 2.2.









[bookmark: _Ref441650035][bookmark: _Toc452568902]Figure 2.2 Particle Swarm Optimisation flowchart

Some argue the advantages of PSO over GA lies in the fact that it is easier to implement, since there are fewer tuning parameters (Hu, 2006). Also, a study showed (Hassan et al., 2005) that not only is PSO equal to GA in terms of being able to solve an optimisation problem, but the PSO outperforms the GA with regard to computational efficiency in seven out of the eight test problems investigated. Due to the studies that highlight the benefits of PSO, this optimisation technique has been utilised in thermal engineering problems more and more in the last decade. In (Patel and Rao, 2010), four case studies were analysed for the design optimisation of shell-and-tube HXs using PSO. Three design parameters were considered for optimisation. In each case study, the results were compared with previous work that had used GA and in each of the cases the PSO was able to minimise total annual cost more than GA. For all studies the solution converged quite rapidly to the optimum solution within twenty-two generations. PSO was also implemented for the design of HVAC systems (Bravo and Flocker, 2012). One example is a piping system, which must supply chilled water to an eight-floor building, where the PSO considered three and then ten design parameters, in order to determine optimal pip sizes. The study highlights yet again the relative simplicity of adopting PSO to an optimisation problem, but also that the rate of convergence is strongly dependent on the choice of PSO parameter values.
With all the promise of evolutionary and swarm algorithms, as with any other technique these heuristic methods have their drawbacks. PSO and GA cannot guarantee convergence and the results will be slightly different for each run, therefore it is usual practice to repeat the optimisation procedure. Also, its measure of the solutions quality is with respect to other solutions, therefore the stopping criteria is not always obvious. However, by far the biggest issue is that these optimisation techniques do not scale well with increasing complexity i.e. when the search space increases and it is necessary to increase population size in order to sufficiently cover the search space. The most computationally consuming aspect of these techniques is calculating each individual fitness function, after each generation of a new population. Therefore the larger the population size, the longer this will take and the more simulations must be carried out, for a given iteration. This is why, so far, these algorithms have not been applied to the design of an engine, for example. Currently, the only way complex engineering problems can remain tractable, is if the problem is broken down into its simplest form. This is why optimisation studies that use heuristic methods are currently in the scale of designing fan blades rather than engines. In this research we are attempting to ultimately reach the dizzy heights of the engine. 
Variants of GA and PSO have been created in an attempt to better deal with some of the above-mentioned problems, for example parallel GAs. These divide the computational workload between several processors, thereby decreasing the time required to solve a problem (Hilbert et al., 2006). It has yet to be seen whether such advanced GA optimisation techniques are capable of designing an engine, rather than merely a component of an engine. 

2.2.3 [bookmark: _Toc452568827]Multi-objective optimisation
Optimisation of thermal efficiency of an energy system is not the only important factor to consider; economic and environmental considerations play an important role also. This has led to increased research into multi-objective optimisation problems that attempt to design complex energy systems with regard to often-conflicting objectives (Kavvadias and Maroulis, 2010). Unfortunately there is not a single solution to these nontrivial problems that optimise all objectives concurrently. Therefore it is necessary to determine a suitable way to find the best compromise between the objectives. Pareto optimality (Pareto and Politique, 1896) defines a set of solutions in which none of the objective functions can be improved upon without having a detrimental effect with regard to the other objective function(s). Therefore Pareto optimality is used to establish a hierarchy of solutions.
Multi-objective optimisation does not simply yield a single result, there are numerous ways to solve a problem, which can be categorised into four classes: no preference, a priori, a posteriori and interactive methods (Hwang and Masud, 1979). In the no preference method, no partiality is given to any of the objectives and so a solution is identified that is deemed to be the best compromise between the objectives. In the other three methods preference information is given in some way, at some point of the optimisation process by a human decision maker.
In thermal engineering the use of posteriori multi-objective optimisation method using evolutionary algorithms (MOEAs) has become prevalent. This provides a set of Pareto optimal solutions for each new generation of the population of possible solutions (Kavvadias and Maroulis, 2010; Ahmadi, Rosen and Dincer, 2012; Sanaye and Dehghandokht, 2011; Lazzaretto and Toffolo, 2004; Sayyaadi, 2009). For example a review of the literature with regard to the design and optimisation of hybrid renewable energy systems has shown the potential of heuristic algorithms in solving such multiobjective engineering problems (Fadaee and Radzi, 2012). Numerical methods have also been successfully applied to multi-objective optimisation problems (Ren et al., 2010) .  

2.3 [bookmark: _Toc452568828]Thermoacoustic heat engines (TAHEs)
2.3.1 [bookmark: _Toc452568829]Background
Although the history of thermoacoustics goes back a couple of hundred years, the amount of research regarding this field and the practical application of thermoacoustic devices has only really gained traction in the last several decades.
The history of thermoacoustics started when Byron Higgins first observed the phenomenon of energy conversion from heat to acoustic in 1777. It was not until a century later when Lord Rayleigh (Rayleigh, 1878) qualitatively described this physical phenomenon correctly. In the theoretical sense, thermoacoustics was firmly established in 1969 by Rott, who developed the mathematics describing acoustic oscillations, thus creating the foundations for all the work that followed. Rott’s acoustic approximation and mathematical equations is still used to model thermoacoustic devices today. 
Thermoacoustic heat engines (TAHEs) are a type of prime mover that takes advantage of a natural phenomenon. Spontaneous oscillations of a working fluid occur within a solid container, when subjected to some critical temperature gradient. As a result thermal power is converted to acoustic power (a type of mechanical work). Therefore this prime mover is able to self-start given the right conditions. TAHE has justifiably received increasing levels of attention by the research community, as it is an attractive alternative to other prime movers. TAHE do not require moving parts, exotic materials, or close tolerances, which makes it cheap to manufacture and maintain. Unlike other prime movers, TAHE has the disctinct advantage that it can operate at relatively low temperatures, as previous literature has shown spontaneous oscillations can occur when  and the temperature difference  (Biwa, Hasegawa and Yazaki, 2010). Due to the fact that TAHEs can operate at a wide temperature range, it can use many heat sources i.e. solar, waste heat recovery, biomass etc. Also, the acoustic power produced can be used in three principle ways: drive a refrigeration system (Zoontjens et al., 2005; Tijani, Zeegers and De Waele, 2002)  , lift the temperature of a heat source (Yang et al., 2014; Spoelstra and Tijani, 2005)  , or generate electricity (de Blok, Owczarek and Francois, 2015; Luo et al., 2008; Backhaus, Tward and Petach, 2004)               .
There has been research carried out regarding the theoretical understanding of thermoacoustics and the physical behaviour of these devices. However practical applications remain the ultimate goal. The obstacles that hinder commercialisation are a lack of complete understanding of the physical behaviour of the device. Also the design of TAHEs remains very challenging due to its complex physical behaviour. The main reason for the complex physical behaviour is the interdependency between the oscillating pressure gradient which causes oscillating motion, and the oscillating motion that causes oscillating pressure gradients. There has been much research attempting to overcome the first obstacle, but not as much in overcoming the latter.
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All TAHEs have at the very least four essential elements:

1. High temperature heat exchanger (High T HX)
2. Porous medium (stack or regenerator)
3. Ambient temperature heat exchanger (Ambient T HX)
4. Resonator

The TAHE in Figure 2.3 consists of two HXs; these are the engine’s heat source and heat sink. There is also a porous medium, where thermal power is converted to acoustic power. Finally a resonator, consisting of a cylindrical tube, encompasses all components and is the solid container for the acoustic wave generated.
The key mechanism for energy conversion from thermal to acoustic is known as the thermoacoustic effect, occurring in the TAHE when certain conditions are satisfied. A compressible fluid is used as the working fluid within the engine, which in most cases is an inert gas such as helium. Acoustic waves occur naturally as a result of a critical temperature gradient across the stack (), as heat transfer occurs between the compressible fluid and a solid boundary (i.e. stack or regenerator). The transfer of thermal energy to and from the compressible fluid and the solid boundary creates local changes of pressure and velocity in the working fluid. When the correct pressure-velocity phasing as shown in Figure 2.64b occurs, acoustic oscillations appear spontaneously creating an acoustic wave. In this way only acoustics is required to control the pressure and motion of the working fluid. Depending on the pressure-velocity phasing either a standing-wave or a traveling-wave is created. (a)
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Figure 2.4 (a) Standing-wave resonator of length  with diameter D, (b) pressure amplitude  and volume flow ratedistribution of the working fluid in resonator as a function of position x.

The ratio of plate spacing to the thermal penetration depth (the region in which heat can diffuse in the working fluid) in the porous medium determines the thermodynamic cycle. This affects the strength of the interaction between the solid plates and the working fluid and therefore the magnitude and the time phasing of the temperature oscillations throughout the porous medium (Swift, 2002). On the surface area of the solid plates, in the porous medium within the, as shown in Figure 2.3, the thermal interaction occurs between the solid stack plate and the working fluid, along the x direction due to enthalpy flux. It is this interaction that produces a temperature gradient across the stack. Ordinary thermal conduction in the stack produces losses in the system, as the desired transfer of heat between the stack plate and working fluid does not occur and therefore this behaviour is undesirable.
To achieve a standing-wave as shown in Figure 2.64 with the volume flow rate, 90̊ out of phase with the oscillating pressure, the plate spacing must not be so close that the solid plate and the working fluid follow the same oscillating temperature. But they cannot be too far apart, such that the thermal contact is weak between the two and no heat transfer occurs. So it is normal practice for the plate spacing of the stack to be set at a distance of a few thermal penetration depths. However it is due to this weak thermal contact that makes the standing-wave heat engine inherently irreversible. Actually,  phasing would produce zero acoustic power, therefore standing-wave systems are typically between  and , so the acoustic waves produced are not pure standing-waves. In the case of the traveling-wave TAHE, the oscillating volume flow rate is in phase with the oscillating pressure. As a result good thermal contact between the gas and the solid plate is required and so the gap between plates in the regenerator is normally smaller than.

2.3.3 [bookmark: _Toc452568831]Practical applications
In the past decades, research in thermoacoustic devices has demonstrated the many ways they can be potentially used to realise practical applications (Zoontjens et al., 2005; Hatazawa et al., 2004; Symko et al., 2004)                 .
 
Refrigeration: An advantage of thermoacoustic refrigeration over vapour-compression systems is the use of an inert gas as its working fluid compared to R-134a and R-22 refrigerants (Zoontjens et al., 2005) . Making it an attractive alternative from an environmental perspective. One example of an application that has been considered is the utilisation of waste heat from an internal combustion engine to drive a thermoacoustic refrigeration system (Gardner and Howard, 2009). Thermoacoustic technology has also been considered for cryogenic applications (Antao and Farouk, 2013). Currently the obstacle to overcome is its low coefficient of performance (COP) compared to other commercial refrigeration systems. Due to this issue there have been numerous attempts to optimise its design, in an effort to improve its performance (Tartibu, Sun and Kaunda, 2015; Srikitsuwan, Kuntanapreeda and Vallikul, 2007; Wetzel and Herman, 1997).
Heat pump: This area of thermoacoustics research is perhaps the least investigated. Research carried out by Energy Research Centre of the Netherlands (NEC) has shown the potential of thermoacoustic heat pumps to upgrade waste heat so that it can be reused in a useful way (Spoelstra and Tijani, 2005). Another example is the research demonstrating the potential for good Carnot efficiency when three heat pumps are coupled in a single loop (Yang et al., 2014)               . 
Electricity generation: There have been numerous attempts in recent years to design efficient thermoacoustic electricity generators, achieving conversion efficiencies from acoustic and electric of up to 77% (Jensen and Raspet, 2010; Luo et al., 2008; Backhaus, Tward and Petach, 2004) . In these systems a type of transducer (e.g. linear alternator, piezoelectric) is coupled with the TAHE to convert acoustic power to electric power. One example of this is the recovery of waste heat from a cooking stove for the generation of cheap electricity for rural communities (Chen et al., 2012)               .

Arguably the greatest limitation currently of thermoacoustic devices for any practical application is its relatively low performance, compared to other devices that it competes with. Optimisation of the design of these thermoacoustic devices for a specific application can go a long way to remedying this problem.

2.3.4 [bookmark: _Toc452568832]Design and optimisation methodologies of TAHEs
Much of the literature in thermoacoustics has focused on varying a few key design parameters in experimental studies, as it is not feasible to include all design parameters in a single study. The experimental studies have been in part to further understanding of nonlinear behaviour of thermoacoustic devices, in order to empirically determine the relationship of these behaviours to the performance of the device. 
Recent work has considered systematic approaches for the design and optimisation of thermoacoustic devices, using computational techniques. Most of the computational techniques have attempted to design the standing-wave TAHE, as its physical behaviour is easier to describe than that of the traveling-wave TAHE and there are fewer design parameters. Wetzel and Herman (Wetzel and Herman, 1997) first proposed a systematic design and optimisation algorithm of a standing-wave thermoacoustic refrigerator that provides estimates for initial design calculations. From fundamental equations of linear thermoacoustic theory, describing the total power flowing through the stack and the acoustic power produced, it was possible to identify nineteen design parameters that affect the performance of the device. These can be categorised into global, material and geometric parameters. A five-step design algorithm is employed, in which each step consists of separately optimising a specific component of the device, which yields a global maximum with regard to the performance of a thermoacoustic refrigeration system. This approach was taken further (Babaei and Siddiqui, 2008) by also considering the energy balance equation, which provides a useful estimation of the performance of thermoacoustic devices. Also entropy balance is implemented in order to refine the optimisation process. This type of systematic design methodology was employed for the optimisation of a TAHE, in the application of low temperature waste heat recovery in food manufacturing, which considered thirteen design parameters (Mumith, Makatsoris and Karayiannis, 2014a). Although this research starts to consider how to design such a complex energy system in a systematic way, they are still a relatively simplified solution to this complex design problem. They all start with a predefined simple design of a TAHE. 
Attempts have been made to employ AI optimisation techniques, such as the work described in (Zolpakar, Mohd-Ghazali and Ahmad, 2014; Srikitsuwan, Kuntanapreeda and Vallikul, 2007) and (Chaitou and Nika, 2012), adopting a genetic algorithm and particle swarm optimisation method, respectively.  Srikitsuwan et al. chose to optimise the plate spacing and length of the stack in a standing-wave thermoacoustic refrigerator. Chaitou’s and Nika’s work considers three design parameters, one of which is the traveling-standing-wave ratio. While these optimisation techniques do not suffer from some of the problems that classical optimisation techniques do, they do not scale well at all for problems with increasing levels of complexity, as the size of the search space increases. 
Other research has attempted to employ other optimisation techniques. One example is the representation of the multi-objective optimisation of a stack in a thermoacoustic refrigerator, as a mixed integer non-linear programming problem (Tartibu, Sun and Kaunda, 2015). In this case five design parameters of the stack are considered for optimisation.

2.4 [bookmark: _Toc452568833] Summary of literature
The popularity of GA, PSO and mixed-integer linear programming to solve complex thermal engineering problems have been well founded. The literature has shown that MILP is able to deal with large number of decision variables (i.e. design parameters). Also GAs are far less likely to become stuck at local optimums than traditional numerical techniques, like gradient descent or to be affected by initial estimates, due to its probabilistic nature. But the common problem of all these computational techniques is that the type of problem to be solved must adhere to strict rules. While GAs and PSOs is more flexible than LP, it has yet to be seen whether they are sufficiently adept at moving beyond their current limitations.
A survey of the literature suggests that the field of thermoacoustics seems to be lagging behind a little in terms of adopting state-of-the-art design and optimisation methods. It could also be argued that even these techniques have not been used to their full potential, as the number of design parameters considered for optimisation have been low. Therefore the field of thermoacoustics could very much benefit from a powerful design and optimisation technique that is better able to deal with the complex nature of thermoacoustic devices, in order to be competitive on the market.
With the continual increase in computational power and with research in AI yielding decision making tools with immense capabilities, it seems natural that a computer will be capable of autonomously designing a complex energy system by itself. Currently, the optimisation methods described above are not capable of such feat, but we believe at least one that is: reinforcement learning.
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The work described in this chapter and the results obtained from the iterative design methodology are intended to provide a comparison to the design methodology (reinforcement learning) that is the main focus of this research. This is to determine the effectiveness of the RL agent to be able to conceptually design and optimise a TAHE. 
The TAHE is uniquely suitable for low temperature heat sources, as it is able to produce mechanical work at these low temperatures (Biwa, Hasegawa and Yazaki, 2010), unlike other prime movers. Therefore, in this research, we attempt to the conceptual design and optimisation of the TAHE for the application of low temperature waste heat utilisation.

3.1 [bookmark: _Toc452568839]Design considerations
During the design process of the TAHE it is necessary to take into account details of the practical application which will affect the design process of the TAHE. The considerations that are required are outlined below.

· Must utilise as much of the waste heat as possible.
· Must consider geometric limitations of the TAHE due to the installation of a retrofitted system in an existing factory.

3.2 [bookmark: _Toc452568840]Thermoacoustic heat engine design
3.2.1 [bookmark: _Toc452568841]Design parameters
The two important parameters in thermoacoustics, the total power  (total power = heat flux – thermal conductance in stack and working fluid) through the stack and the acoustic power  produced in the stack can be expressed using the short stack boundary layer approximation (Swift, 1988). This approximation is widely used (Babaei and Siddiqui, 2008; Wetzel and Herman, 1997) as it provides good agreement with observations of thermoacoustic systems even with its various simplifications and assumptions that are outlined below.

1 Plate spacing  is greater than both the thermal penetration depth  (the distance in which heat can diffuse through a fluid) and the viscous penetration depth  (the thickness of the layer on the surface of the stack plate where the viscous effects are significant and destroys the diffusion of heat within it).
2 Stack length  is assumed to be far less than the wavelength so that it does not perturb the acoustic wave. 
3 Stack is short enough that  and  is considered to be independent of x within the stack.
4 Temperature difference  across the stack is less than the stack mean temperature. Hence the thermophysical properties of the gas are assumed to be independent of x within the stack, and so, and the thermophysical properties are evaluated at the stack midpoint.

The equations of for  and as a result of these assumptions/simplifications are as follows (Swift, 1988):

	

	(3.1)

	
	(3.2)



where the normalised temperature gradient  is defined as  and the plate heat capacity correction factor  is defined as.   From these two equations and previous experimental work (Swift, 1995; Swift, 1988; Wheatley, 1986) it can be seen that there are 19 independent design parameters that affect the total power and the acoustic power in the stack. As for an ideal gas (which refers to the working fluid in the thermoacoustic heat engine) close to its critical point, the thermal expansion coefficient β can be omitted from the list as it will not have an effect on the value obtained for the total during ideal conditions. The cooling load  described by Wetzel and Herman (Wetzel and Herman, 1997) is not applicable as it is for the design of a refrigerator; instead this is replaced by the thermal power input. This is in order to observe the behaviour of the TAHE and how performance is affected by relatively large levels of thermal power input. Finally two material specific parameters for the working fluid, K and µ are considered as one and are observed as the Prandtl number σ =µcp/K, due to convenience during simulations and to limit the number of variables. Design Parameters
Type of Parameter
Value/Range
References
Global Design Parameters:

1. Thermal power input,  (kW)
Independent variable
1.00-19.00





1. Mean pressure,  (MPa)
Independent variable
1.00-3.00 
(Tang, Huang et al. 2009, Swift 1992)




1. Resonant Frequency,  (Hz)
Dependent Variable
43.38-137.07





1. Temperature difference,  (K)
Constant
144





1. Mean temperature,    (K)
Constant
351

1. Drive ratio, 
Dependent Variable
calculated by simulator 
(Atchley, Hofler et al. 1990, Swift 1995)
Material  Parameters:

1. Speed of Sound,  (m/s)
Dependent Variable
347.07-1096.50
(Wetzel, Herman 1997, Babaei, Siddiqui 2008, Swift, Garrett 2003)




1. Prandtl number, Pr
Dependent Variable
0.39-0.68
(Wetzel, Herman 1997, Babaei, Siddiqui 2008, Swift, Garrett 2003)
Geometric Parameters:

1. Blockage ratio, 
Constant
0.80 
(Swift 1988, Wheatley 1986)




1. Stack length,  (m)
Dependent variable
Output parameter
dependent on XA, DR, , y0, &





1. Stack centre position,  (m)
Independent Variable
0.12-0.98
(Wetzel, Herman 1997, Babaei, Siddiqui 2008)




1. Half plate spacing,  (m)
Constant
 

(Swift 1988, Wheatley 1986)




1. Diameter,  ( m2)
Independent Variable
0.10 – 0.20m
(Swift 1992)

[bookmark: _Ref435916560][bookmark: _Toc452568894]Table 3.1 Design parameters and the range of values employed during the iterative process

 
Mean pressure & Drive ratio 
Mean pressure should be as high as possible as it yields greater power density, but in reality it is limited by the mechanical properties of the resonator (Wetzel and Herman, 1997). Another factor to consider is that as mean pressure is increased thermal penetration depth  decreases, therefore the heat exchange gap must be smaller for adequate exchange of heat between the solid plate and working fluid, which may be difficult to build with great precision (Swift, 2002). Higher values of drive ratio leads to an increase in the viscous penetration depth, the region in which power is dissipated due to viscosity. Moreover there is a greater risk of nonlinear effects (i.e. turbulence) occurring, which diminish the performance of the engine. Mach number and Reynolds number have been used in thermoacoustics to predict the transition between laminar and turbulent flow in oscillatory flow, and literature have shown that these should be limited to 0.1 and 400, respectively (Wetzel and Herman, 1997). This suggests that there is an optimum mean pressure and drive ratio that provides good power density and does not significantly affect the thermal penetration depth  (the region in which heat from the solid plate diffuses into the fluid and acoustic power is produced).  The range of mean pressure value that is employed in the iterative process is 1MPa-3MPa (Tang et al., 2009; Swift, 1992) , based on values used in previous experimental work.  The drive ratio is calculated by the simulator as a result of the thermal power input specified.

Heat exchanger 
Normal heat exchanger calculation methods cannot be used to determine the thermal power extracted from the exhaust gas, as the volume flow rate in the TAHE is oscillatory and hence the time-averaged flow is zero. Furthermore, the operating conditions which affect the thermal power input do not remain the same and so the output temperature of the high temperature heat exchanger cannot be determined. Thus a wide range of  was adopted, to observe how the TAHE behaves at these larger power levels, and how various thermal power inputs affect the material and geometric parameter values that produce the greatest performance in the TAHE. A single TAHE will not be able to handle a large thermal power input as the very large pressure amplitudes created would cause nonlinear effects accounting for significant losses and degradation of performance (Zoontjens et al., 2005) . A thermal power input of 19 kW has been found in simulations to be the upper limit of the TAHE, that does not experience this degradation of performance due to  nonlinear behaviour. Therefore themal power inputs of up to 19 kW is considered in this work. But this limitation of the engine can be mitigated by using multiple TAHEs together.

Working fluid
The working fluid’s Prandtl number Pr () determines the fraction of the energy passing through the stack that will dissipate due to viscosity, therefore a low Prandtl number is desirable. Also, higher speed of sound yields greater acoustic power, as the time taken to carry out a cycle is reduced. In some cases a small fraction of lighter gases are mixed with a heavier gas in an effort to reduce the Prandtl number, but sacrificing power density, as the added mass reduces the speed of sound (Hao et al., 2011) . A mixture of Helium and a lighter gas Argon (Besnoin and Knio, 2004) was used for this work, varying the mole fraction of Argon  from 0-100% to determine numerically from the iterative process how this directly affects the acoustic power output and acoustic losses of the system. 

Stack
There are two aspects of the stack that have a direct effect on the acoustic power produced, the material and geometric properties. The thermophysical properties (,) of the stack should be such that heat capacity  is as high as possible to enable heat to move along the stack in the x direction by the constant heat transfer between the stack and the working fluid, but have low thermal conductivity to minimise ordinary conduction of heat along the stack which causes dissipation of power (Hao et al., 2011) . Hence, stainless steel was used as its heat capacity  is approximately 30 times more than its thermal conductivity.
The stack length plays a direct role in the desired performance of the engine as it is in the stack region that acoustic power is produced. It numerically determines the temperature gradient, and it is above a critical temperature gradient that acoustic power is produced. Also care should be taken that the stack is located where  is small to reduce viscous dissipation caused in the region of the viscous penetration depth, which prohibits the transfer of heat from the stack to the working fluid. This is a fundamental aspect of the thermoacoustic effect generating acoustic power. For this to take place, the stack position should be close to the pressure antinode of a standing-wave. But standing-wave systems produce acoustic power proportional to  and at a particular location. Therefore, there is an optimum position in the engine where maximum acoustic power is produced and minimum losses occur, which is typically between  and  (Babaei and Siddiqui, 2008; Wetzel and Herman, 1997). This range of values is used in our design methodology. The Blockage Ratio (BR) is defined as the ratio of the cross-sectional area occupied by the gas to the total cross sectional area, and represents the extent to which the plates are tightly packed in the stack section (Besnoin and Knio, 2004). It is a design parameter that is intended to take into account the effect of the stack on the acoustic field. Previous experimental work has shown that a value of 0.8 yields good results, and is therefore used in this work (Swift, 1988; Merkli and Thomann, 1975b). The plate spacing is a crucial parameter as it determines the strength of the interaction between the working fluid and the stack in terms of heat transfer and hence temperature of the working fluid. Typical values for the half plate spacing for a standing-wave thermoacoustic heat engine is between  and 4 (Babaei and Siddiqui, 2008; Wetzel and Herman, 1997; Swift, 1992).  In this work the half plate spacing is kept constant at. A gap which if any larger will weaken the interaction between the working fluid and stack and ultimately negatively affect the performance of the engine. This has been found to be the case when running simulations varying the half plate spacing between  and 4.

Resonator
The length of the resonator determines the operating resonant frequency. Ideally the geometry of the resonator should be such that while maintaining the desired frequency, the dissipation of acoustic power through viscous and thermal-relaxation resistance should be minimised which occurs on the  wall’s surface. The volume of the cylinder determines the power density, as this determines the volume of working fluid that passes through the stack. As a result the acoustic power output that is produced is directly proportional to the volume of the working fluid that is in the thermal penetration depth region, above the stack plate. But if the surface area of the resonator walls increases, dissipation of acoustic power that occurs along these walls increases proportionally. Therefore a straight, uniform-diameter resonator is rarely the best design. Ideally, the part of the cylinder where inertance (inertial properties of the working fluid where there is a pressure gradient to drive mass flow) is important, the length and diameter can be reduced, but still maintaining the necessary length-to-area ratio while reducing the surface area, and thus reducing dissipation (Swift, 1988). 

3.2.2 [bookmark: _Toc452568842]Iterative design methodology
An iterative design process has been developed with which an incremental change in a design parameter value is made within the range of values shown in Table 1. Each time a new value of a design parameter is set as the input, the simulation is run and the output values (thermal stack efficiency, thermal engine efficiency) are assessed according to the following criteria: maximum power in stack, and minimum acoustic losses in engine as shown in figure 3.1. Not only does each design parameter affect the overall performance of the engine, but they also have complex relationships with each other. Therefore it is not possible to obtain globally optimum design parameter values, while simply adopting the approach of one-factor-at-a-time. Therefore parameters that have strong relationships with each other is varied simultaneously during a run. 
 

3.2.3 [bookmark: _Toc452568843]TAHE model simulator (DeltaEC)


[bookmark: _Toc452568907]Figure 3.1 Flowchart of iteration process
[image: ]
[bookmark: _Toc452568908]Figure 3.2 An example of part of a DeltaEC model. Input parameters are defined by user on the left hand side, and output parameters that are calculated by DeltaEC is on the right hand side.

Using a modelling tool in tangent with an optimisation technique and selecting the right one for a particular problem can be difficult, as the optimisation technique must be able to handle the level of complexity that the modelling tool describes a system. Also the process can be time consuming, as the optimisation technique must wait for the modelling tool to provide the relevant information that is to be evaluated, and must also take into account the time required for pre/post processing of data. As a result of these considerations, at the core of this approach is DeltaEC, a simulation code (Ward, Clark and Swift, 2008) specifically for the assessment of thermoacoustic systems. DeltaEC has a simple interface that allows users analyse design of thermoacoustic systems, and other useful features that lends itself to this study. It is described in detail below.

Linear approximation
DeltaEC numerically integrates in one spatial dimension (along the x-axis), adopting a low amplitude, linear approximation and sinuisodal time dependence model to describe the behaviour of thermoacoustic devices. It is represented by a series of segments, such as duct, cone, stack, heat exchanger, and is modelled in steady state conditions. 
The most fundamental equations required to find the pressure and volume flow rate of the system as a function of x can be determined from the wave equation. The equation defined below is the simplest expression of the wave equation and does not take into account viscous or thermal-hysteresis losses.
	
	
	(3.3)


This second-order equation can be reduced into a system of two first-order equations.
	
	
	(3.4)

	
	
	(3.5)


Different segments use different equations to account for local conditions, and are a variation of the above equations. For example, the governing equations in large-diameter ducts and shallow cones are,
	
	
	(3.6)

	
	
	(3.7)



where  and  are the spatially averaged thermal and viscous functions, and  is the plate heat capacity correction factor. If then the pressure gradient of Eq. 3.6 is completely inertial, but if  then the existence of viscosity and stationary boundaries adds a resistive component to the pressure gradient and also effects the size of the inertial influence. The spatially averaged thermal function  represents the thermal contact between the working fluid and solid plate, if  then thermal contact is perfect and if  there is no thermal contact between working fluid and solid plate (Swift, 2002). 
Every model starts with a BEGIN segment (the Zeroth segment), which initialises global variables values that are passed on to all subsequent segments. Local variables (e.g. geometric parameters) for a particular segment are provided by the user. These variables along with the first order differential equations are used to find the pressure amplitude and volume flow rate at a particular location along the x-axis, as DeltaEC employs a Runge-Kutta method to solve the first order differential equations. Other first order equations are used to determine other variables such as temperature. 


Comparison with experimental work
DeltaEC has been widely and successfully used in the thermoacoustic field (Karimi and Ghorbanian, 2013; Babaei and Siddiqui, 2008; Paek, Braun and Mongeau, 2007). Previous literature has compared results obtained in DeltaEC and experimental work (Hao et al., 2011; Abduljalil, Yu and Jaworski, 2011) . The literature has shown DeltaEC to be able to satisfactorily predict for example the resonant frequency of thermoacoustic devices (Hariharan, Sivashanmugam and Kasthurirengan, 2013; Hariharan, Sivashanmugam and Kasthurirengan, 2012). 

3.2.4 [bookmark: _Toc452568844]Standing-wave TAHE model in DeltaEC
Since DeltaEC employs the short stack boundary layer approximation to model thermoacoustic devices, the assumptions/simplifications have been taken into account during the design process. The configuration of the standing-wave thermoacoustic heat engine model created in DeltaEC is as follows:

1. Drive ratio (guess) is calculated by DeltaEC as a result of the thermal power input (target) that is defined by the user, using the guess-target feature of the simulation.
2. The overall length was kept constant at 4 m and the hot and ambient heat exchanger plate length was set at a constant value of 4 cm and 3.6 cm respectively, similar to Swift’s standing-wave TAHE (Swift, 1992).
3. The thermal power (guess) taken away by the ambient heat exchanger was predicted by DeltaEC, according to the target of constant temperature of 278 K using the simulator’s guess-target feature.
4. A thermoacoustic heat engine typically has a λ/2 or λ/4 wavelength resonator. Although a λ/4 wavelength resonator provides greater power per unit volume, the engine will require a higher resonant frequency, therefore in this case the engine is a λ/2 wavelength resonator.
5. The Blockage Ratio (BR) value was set similar to Swift’s standing-wave engine for both heat exchangers (Swift, 1992) of 0.4, as it is likely that this would provide enough space for the working fluid to move through the heat exchanger regions, and also provides sufficient heat transfer surface area.[bookmark: _Ref452542496][bookmark: _Toc452568909]Figure 3.3 Schematic of the standing-wave thermoacoustic heat engine in DeltaEC


A schematic of the standing-wave thermoacoustic heat engine created by DeltaEC is shown in Figure 3.3. Each segment in the diagram represents a section of the TAHE, such as segment 5HX and 20HX represents the high temperature and ambient temperature heat exchanger respectively. Also segment 10 in Figure 3.3 is the stack and segment 4 and 22 is the cylindrical tube. All these segments together form the simulated model of the diagram in Figure 2.3. The join segments between the stack (segment 10) takes into account discontinuities between stack and the heat exchangers with regard to temperature and volume flow rate.
By varying the design parameters identified in Table 3.1 systematically and solving the equations for pressure  and volume flow rate for each segment numerically using DeltaEC, it has been possible to determine those values that maximise performance of the engine.

3.3 [bookmark: _Toc452568845] Results
The results of the iterative design process are tabulated in Table 3.2, showing the values/range of values used for the design parameters for each simulation, providing information that ultimately yields maximum performance of the thermoacoustic heat engine, and utilises as much of the waste heat as possible. The main conclusions made from the simulations are described below.

[bookmark: _Ref435916916][bookmark: _Toc452568895]Table 3.2 Values of the design parameters considered in the design iterations
	Run number
	 (kW)
	 (MPa)
	DR
	(Hz)
	
	(m)
	(m)
	(m)

	1
	1.00-3.00
	2.00
	0.020-0.060
	137.06
	1.00
	0.032-0.082
	0.076-0.101
	0.10

	2
	1.00-4.00
	3.00
	0.013-0.053
	137.06
	1.00
	0.023-0.073
	0.071-0.097
	0.10

	3
	1.00-7.00
	1.00-3.00
	0.0123-0.059
	137.06
	1.00
	0.018-0.081
	0.070-0.100
	0.125

	4
	1.00-7.00
	2.00
	0.009-0.062
	137.06
	1.00
	0.021-0.084
	0.070-0.102
	0.15

	5
	1-14.00
	1.00-3.00
	0.004-0.060
	137.06
	1.00
	0.017-0.082
	0.069-0.10
	0.175


	6
	1.00-12.00
	2.00
	0.005-0.060
	137.06
	1.00
	0.022-0.082
	0.071-0.101
	0.20

	7
	1.00-19.00
	3.00
	0.003-0.626
	137.06
	1.00
	0.019-0.085
	0.007-0.0103
	0.20

	8
	8.00
	2.00
	0.040
	43.38-137.06
	0.00-1.00
	0.013-0.039
	0.067-0.080
	0.15

	9
	9.00
	2.00
	0.040
	43.38-137.06
	0.00-1.00
	0.014-0.041
	0.067-0.080
	0.175

	10
	12.00
	2.00
	0.040
	43.38-137.06
	0.00-1.00
	0.014-0.040
	0.067-0.080
	0.20

	11
	8.00
	3.00
	0.040
	43.38-137.06
	0.00-1.00
	0.019-0.056
	0.069-0.088
	0.15

	12
	9.00
	3.00
	0.040
	43.38-137.06
	0.00-1.00
	0.020-0.059
	0.070-0.090
	0.175

	13
	12.00
	3.00
	0.040
	43.38-137.06
	0.00-1.00
	0.019-0.056
	0.069-0.088
	0.20

	14
	19.00
	3.00
	0.060
	43.38-137.06
	0.00-1.00
	0.027-0.079
	0.073-0.100
	0.20

	15
	19.00
	3.00
	0.01-0.08
	137.06
	1.00
	0.041-0.146
	0.062-0.133
	0.20


[bookmark: _Ref435916984][bookmark: _Toc452568910]Figure 3.4 Drive ratio against thermal power input, with mean pressure Pm values of 1, 2 and 3 MPa

Drive ratio is directly proportional to the thermal power input as shown in Figure 3.5, therefore the greater the thermal power input the greater the drive ratio in the engine. As shown in Figure 3.4 when drive ratio is increased, beyond a certain point there are no gains in thermal efficiency as viscous losses increase in the stack. This is the obstacle faced when attempting to use high level thermal power inputs. You can decrease drive ratio by increasing mean pressure, also shown in  Figure 3.5, but high mean pressure values also cause viscous losses and nonlinear behaviour that diminishes the performance of the engine. All of this suggests that there is a mean pressure and drive ratio value that yield optimal thermal efficiency in the engine.[bookmark: _Ref435917032][bookmark: _Toc452568911]Figure 3.5 Thermal efficiency of the engine against drive ratio, at a mean pressure value of 3 MPa

[bookmark: _Ref435917011][bookmark: _Toc452568912]Figure 3.6 Thermal engine efficiency against stack centre position, at mean pressure of 3MPa

The relationship to the thermal efficiency of the engine when varying the global parameter drive ratio DR, with a constant mean pressure is shown in Figure 3.4. As the drive ratio increases, the thermal efficiency increases as the increased pressure amplitudes in the stack yield greater acoustic power. However, as the drive ratio continues to increase it does not have the same gains in thermal efficiency, until the engine reaches peak performance at a drive ratio of about 0.06, thermal power input of 18kW and thermal efficiency of 5.41%. This is because local conditions in the stack of increased volumetric flow rate results in greater viscous losses in the stack, limiting the engine’s efficiency, therefore any increase in the DR leads to diminishing returns as there is no additional increase in thermal efficiency. [bookmark: _Ref435917206][bookmark: _Toc452568913]Figure 3.7 Thermal efficiency of engine against thermal power input at various resonator diameters


Larger diameter resonators are able to manage larger thermal power inputs as they are able to deal with the large pressure amplitudes generated in the engine as shown in Figure 3.7. A resonator diameter of 0.20 m is able to manage a thermal power input of 19 kW at a thermal engine efficiency of 5.38%. But diameter cannot be increased limitlessly, because if  is too large then this would create noise in the acoustic wave and therefore lead to a loss in performance of the TAHE.[bookmark: _Ref435917351][bookmark: _Toc452568914]Figure 3.8 Prandtl number against mole fraction

When varying the stack centre position from near the pressure antinode, moving it towards the pressure node there is a significant difference in thermal engine efficiency as local conditions at the x position contribute directly to the creation of acoustic power and viscous dissipation. Figure 3.6 clearly shows that there is one optimal stack centre position which varies slightly with mean pressure, as a greater mean pressure causes the viscous penetration depth to be greater, resulting in greater viscous losses at a given point along the x-direction in the engine. This position is far closer to the velocity node than the velocity antinode (see figure 2.4b), which is at x=2.0 m. This is because as the stack moves closer to the velocity antinode, the local volumetric flow rate is greater which means that acoustic power dissipation due to viscosity is greater.
[bookmark: _Ref435917366][bookmark: _Toc452568915]Figure 3.9 Speed of sound against mole fraction

[bookmark: _Ref435917892][bookmark: _Toc452568916]Figure 3.10 Mole fraction against thermal engine efficiency with mean pressure 2 MPa and 3 MPa.

Figure 3.8 and Figure 3.9 shows the variation of Prandtl number and speed of sound as the mole fraction is varied from 0 (where working fluid is 100% Argon) to 1 (where working fluid is 100% Helium). Ideally, the Prandtl number should be as low as possible and the speed of sound should be as large as possible as the time taken for the wave to complete an acoustic cycle is reduced. In Figure 3.10  the mole fraction is varied at a mean pressure of 2MPa and 3MPa, while keeping the drive ratio constant at 0.04. The optimal value for the mole fraction, XA is 1.0, which provides a far greater speed of sound value of 1,096.50m/s even though the Prandtl number is as high as 0.681.




An interesting behaviour is observed when both the mean pressure and the drive ratio are varied, while thermal power input is kept constant at 6kW. For the range of values used in this work, optimal mean pressure is not the same for varying values of drive ratio as shown in Figure 3.11. For a drive ratio of 0.04 optimal mean pressure that yields maximum thermal efficiency is 2.2MPa, for a drive ratio of 0.05 optimal mean pressure is 1.4MPa and for a drive ratio of 0.06 the optimal mean pressure is 1.0MPa. Therefore it is not necessarily the case that greater mean pressure values produce greater performance in the TAHE.[bookmark: _Ref435917469][bookmark: _Toc452568917]Figure 3.11 Thermal engine efficiency against mean pressure with DR of 0.04, 0.05 & 0.06
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[bookmark: _Ref451846785]

[bookmark: _Toc452568896]Table 3.3 Final design parameter values as a result of iterative design methodology
	
	[bookmark: _GoBack]Optimal design parameters
	Input
	Output

	BRHHX
	BRAHX
	BRs
	
(m)
	 (MPa)
	(Hz)
	DR
	
	(m)
	
	(m)
	 (kW)
	
(W)

	0.4
	0.4
	0.8
	
	3.00
	137.06
	0.60
	1.00
	0.08
	0.07
	0.20
	19.00
	1029.10



Table 3.3 presents the final design parameter values that have yielded the greatest thermal efficiency. Stack centre position is shown as a fraction of the total length of the engine. As can be seen from Table 3.3 even at such a comparatively low temperature of 150, it has been possible to recover waste heat and obtain at the output of the TAHE 1,022.2 W of acoustic power at a thermal engine efficiency of 5.38%. Additionally, the TAHE has been able to recover a maximum of 19kW in this study. 
3.4 [bookmark: _Toc452568846]Conclusion
By varying key design parameters of the TAHE, it has been possible to deliver at the output of our engine 1,022.2W of acoustic power with a thermal engine efficiency of 5.38%. But a limitation of this technique is that it is possible at most to vary two different design parameters simultaneously. Therefore in order to vary parameter values for all combinations of the design parameters, it
 would be necessary to carry out many more runs. Also this technique can only ever be applied to the optimisation of design parameter values.

[bookmark: _Toc452568847][bookmark: _Toc438145922]Chapter 4
4. [bookmark: _Toc452568848]Reinforcement learning in engineering design
4.1 [bookmark: _Toc438145923][bookmark: _Toc452568849]Reinforcement learning
Reinforcement learning has had its theories validated separately in four distinct fields: control theory/operations research, artificial intelligence/machine learning, neuroscience and psychology. Machine learning is the aspect of reinforcement learning that is relevant to this research.
[bookmark: _Ref421545509][bookmark: _Toc452568918][bookmark: _Ref421545492]Figure 4.1 The agent-environment interaction in reinforcement learning (Sutton and Barto, 1998)


[bookmark: _Toc438145924][bookmark: _Toc452568850]4.1.1 Abstract representation of reinforcement learning
In the most abstract depiction of reinforcement learning, it can be thought of as the interaction between a learning agent and an environment as shown in Figure 4.1. The agent receives a signal in the form of the state of the environment and the corresponding reward (a numerical value) that reflects the desirability of the environment to be in that particular state. As a result of this information and information gathered from the historical interaction of the environment and agent, the agent chooses the next action to take. The history of the interaction between the environment and agent can be considered a sequence of state, action, and reward:
.
For each episode (i.e. an interaction between agent and environment) we have the information,
). 
As the agent learns from its historical interaction with the environment, it attempts to maximise the sum of expected rewards,

	
	
	(4.1) 

	
	
	


where k is the number of interactions in which a reward was received and  is the discount rate that provides weighting to future expected rewards (), which is a constant value for all t. If  is 0, then the agent’s objective is to only maximise the immediate reward, but as  increases towards the value 1, the objective is shifted to consider future rewards more strongly as the agent becomes more farsighted. Finally when =1 all future rewards are considered equally. In this way the agent learns to make decisions in order to achieve a goal.
RL is able to handle vast search spaces, optimising a goal through sampling, therefore it does not necessarily need a complete transition model, i.e. the probability that the environment will go from state  to   when taking action, for all possibilities. Also RL can be used where an analytic solution is not available or where an environment can only be understood by interacting with it. Reinforcement learning also scales better with complexity than other optimisation techniques. It is due to all these attributes that make RL potentially a very valuable tool, not only for the design problem that is defined in this thesis, but also for complex optimisation problems in thermoscience/thermal engineering in general.

[bookmark: _Toc438145925][bookmark: _Toc452568851]4.1.2 Learning
Most reinforcement learning algorithms are based on estimating value-functions, which estimates how good a decision is (i.e. which action to take) depending on the current state of the environment, in terms of expected rewards.  For each state-action pair, an estimated action-value function  is calculated and updated every time  and. The values can be stored and retrieved from a lookup table, but if there are many states that define an environment then this becomes impractical and other methods such as linear approximation is adopted (Barto, 1998).
The most widely adopted value function learning technique is known as Q-Learning (Watkins and Dayan, 1992), which directly approximates the optimal action-value function. It is a RL technique that can learn by simply sampling the state space and does not require a complete probability distribution of the actions to all states,

	
	
	(4.2) 



where   is the learning rate (also known as step size), which determines the weighting given to newly acquired information (current sample value) compared to previous information (previous estimated value).  is the old estimate and  is the sample information obtained from the latest backup ). The difference between the sample value and the old value is calculated. If the sample value is higher, then the q-value is nudged upwards, if it is lower than the q-value is nudged downwards, proportional to the learning rate. A summary of the Q-learning algorithm is shown in Figure 4.2, and a flowchart is conveyed in Error! Reference source not found..

Initialize Q (s,a) arbitrarily
Repeat (for each episode):
	Initialize s
	Repeat (for each step of episode):
		Choose a from s using policy derived from Q (e.g. ϵ-greedy)
		Take action a, observe r, 
		
		
	Until s is terminal
[bookmark: _Ref421699131][bookmark: _Toc452568919]Figure 4.2 Q-learning algorithm

[bookmark: _Toc438145926][bookmark: _Toc452568852]4.1.3 Exploration
The agent must not only exploit the latest information by choosing the next action based on the optimal action-value function , but must also explore the search space for actions that could potentially result in long term future rewards. There are various exploration techniques in the field of RL (Sutton and Barto, 1998), the simplest being the-greedy method. This uses a simple tuning parameter, where  is the probability that a random action will be chosen and  is the probability that a greedy action will be chosen i.e. one that has maximum  value. The advantage of this is that there is only one exploration parameter to set and it is easier to comprehend the influence of this parameter value on the exploration of the agent. 

4.2 [bookmark: _Toc438145927][bookmark: _Toc452568853]Design of complex energy systems using RL and previous approaches
It is not possible to make a direct comparison between RL and other optimisation techniques that are mentioned in chapter 2, because they are vastly different in the way they work and the tasks that they perform. In actual fact RL cannot be categorised as simply an optimisation technique, it is much more than that. It can optimally make decisions in order to achieve a goal and has been used for optimisation purposes (Dorigo and Gambardella, 2014; Wawrzyński, 2012; Zhang et al., 2012) . The RLIA decides for itself the action to take in order to change the environment and attempts to make decisions optimally in order to maximise long-term reward, in order to achieve the ultimate goal of a problem. The RLIA requires no human support in its decision making at any point during its interaction with the environment. As a result of this novel approach to the design of complex energy systems, it is believed that not only can the RLIA come up with an optimal design, but given sufficient scope, can come up with a novel design that may not occur to the human designer. This is partly because the RLIA is not subject to the kind of biases inherent in humans when making decisions and can therefore evaluate design solutions that may have potential, but that are not always obvious to the human designer. Also because of the way RLIAs learn from their interactions with an environment, they can more effectively explore the design space and can differentiate bad solutions while focusing on solutions that look promising. It is for these reasons that RL is a completely new approach to this old and difficult problem of optimally designing complex energy systems computationally. 
As promising as RL is, the biggest obstacle is that the relative success depends on how the problem is defined in terms of the RL framework and except in the simplest engineering problems, this is not always obvious (Singh, 2010). For example, Andrew Ng (an expert in the field of AI) attempted to teach a robot to climb steps using RL. He specified a reward scheme that he believed would enable the robot to achieve its goal, but instead found that the robot exhibited undesirable behaviour, which was not anticipated beforehand. Therefore the reward scheme was modified to penalise the robot when it would behave in this way. This occurred several times, where the behaviour of the robot was observed and the reward scheme adapted accordingly. Eventually the robot was able to learn to climb the steps satisfactorily, but achieving the desired goal required a process of trial and error, which is common in the implementation of RL. It must also be noted that there is no precedence for the use of RL in this research area, as a design tool. This is why the research described in this thesis partly focuses on the way the problem is defined in terms of the RL framework. This is so that we can begin to discover what the RLIA is capable of and how to effectively utilise such a compelling AI technique. The rest of the thesis describes a journey of discovery into the world of RL, in the context of our problem.







[bookmark: _Toc452568920]Figure 4.3 Flowchart of Q-learning algorithm
[bookmark: _Toc452568854][bookmark: _Toc438145928]Chapter 5
5 [bookmark: _Toc452568855]Proof of concept experiment
As mentioned previously, there are no examples of the implementation of RL as a design tool for complex energy systems. It is for this reason that a preliminary experiment has been devised to initially test the capabilities of the RLIA. A simplified version of the design problem is initially considered, where the RLIA attempts to find optimal parameter values of key design parameters. This is in order to better understand how to effectively implement RL to our design problem, before the much more challenging task of designing from inception the TAHE is attempted.

5.1 [bookmark: _Toc438145929][bookmark: _Toc452568856]Optimising design parameter values of a standing-wave TAHE
For the preliminary experiment, where the RLIA attempts to optimise key design parameter values, the results is analysed according to the following benchmarks:

1. Agent’s ability to learn about its environment
1. Agent’s ability to explore search space
1. Is the problem sufficiently constrained in order to produce physically meaningful results?

As in chapter 3, DeltaEC is used to represent the environment as it provides satisfactory results compared to experimental data, allows a direct comparison between the results described in chapter 3, and for implementation purposes, execution of actions is simple. Also the emphasis of this research is to better comprehend how to effectively apply RL to the design problem specified. It is due to this that an existing software is used to simulate the physical design of the TAHE.

5.1.1 [bookmark: _Toc438145930][bookmark: _Toc452568857]A RL framework for TAHE design
State
It is desirable to define the problem in general terms, as it is possible to unintentionally introduce bias towards a particular solution if we introduce to much specificity in the way the problem is defined. With this in mind a conscious effort has been made to define the design problem in as broad terms as possible, in terms of the state representation. It is for this reason that the only state information of the TAHE design given to the RLIA, is the acoustic power output  that is obtained at the right end of the engine (at the end of the resonator). If this value is negative, then this signifies the magnitude of acoustic losses in the design. 
For Q-learning, the more states and actions that are defined, the more q-values that need to be estimated. This therefore increases the complexity of the RL problem. As a result a concerted effort is made to keep the number of states to a minimal. Therefore the range of acoustic power values is discretised according to the following states:

State, S = {high, medium, low, negative, boundary crossed}
High if   
Medium if    
Low if    
Negative if   
Boundary crossed if action would take parameter values beyond the constraints specified in Table 5.1.

The range of  values for the specific states are based on the results obtained in chapter 3. The most desirable state (High) is created for   values that are greater than 1 kW, which are designs that match or surpass the performance of the design described in chapter 3. The range for the medium state is defined as  values that are reasonable, in terms of the performance of the TAHE. The range for the low state is of  values that represent low thermal efficiencies and therefore are not very desirable. Finally, the negative state denotes negative  values that represents acoustic losses in the engine. 
A modified state definition was devised where the states are more finely discretised, and there are six states instead of five. This is to determine what kind of impact this has on the ability of the RLIA to learn about the environment. The state definition is similar to the one described above, and has been modified as shown below.

 State, S = {high, medium-high, medium-low, low, negative, boundary crossed}
High if  
Medium-high if   
Medium-low if    
Low if  
Negative if    
Boundary crossed if action would take parameter values beyond the constraints that are specified in Table 5.1.

Reward
The magnitude of the rewards will have a significant effect on what the RL agent learns, as the rewards assigned to each state represents the level of desirability to be in that particular state. Therefore a reward scheme has been chosen that is believed will encourage the agent to create a design that surpasses the performance of the TAHE that is described in (Mumith, Makatsoris and Karayiannis, 2014b). The size of the rewards are based on examples in the literature of problems that were solved using RL (Sutton and Barto, 1998) and is also a process of trial and error, therefore different reward schemes have been adopted in different runs to observe the effect on the RLIA’s ability to learn about the environment. The greatest reward has been assigned if it can achieve an acoustic power output greater than 1 kW. In RL, negative values can be assigned to discourage unwanted behaviour; therefore a reward of -50 has been chosen whenever the RL agent observes a negative acoustic power value (i.e. exhibits acoustic losses). A relatively low reward is assigned whenever the environment is at a Medium or Low state (0  1 kW). This is another way to implicitly encourage the agent to choose actions that can yield  1 kW. Naturally the greatest reward is assigned to the desirable state, High, when  1 kW. The various reward schemes adopted for different runs are outlined below.
Reward scheme – option 1:
Reward, R (High) = +50
Reward, R (Medium) = +20
Reward, R (Low) = +10
Reward, R (Negative) = -50
Reward, R (Boundary crossed) = -1

Reward scheme – option 2:
Same as option 1, except reward for boundary crossed is -100.

Reward scheme – option 3:
Same as option 1, except reward for boundary crossed is -5.

Reward scheme – option 4:
The corresponding reward scheme when there are six instead of five states is as follows:

Reward, R (High) = +60
Reward, R (Medium-high) = +30
Reward, R (Medium-low) = +20
Reward, R (Low) = +10
Reward, R (Negative) = -50
Reward, R (Boundary crossed) = -5

Action
In terms of the action that can be taken by the RLIA, the design problem has been considered in terms of how a human designer would interact with the DeltaEC software to design a thermoacoustic device. In this particular definition of the design problem the focus is on optimising design parameter values, while the configuration is fixed, as in chapter 3. The actions directly relates to a specific design parameter located at a specific parameter address in the DeltaEC model. 

Action, A = {increase parameter value, decrease parameter value}

There are thirteen design parameters (from DUCT, HX, and STKSLAB segment) that can either increase or decrease in value according to the increments specified in Table 5.1. The thirteen design parameters are divided into the various segments that they belong to.

· BEGIN segment – Mean pressure (0a), Frequency (0b), Drive ratio (by varying pressure amplitude-0d), Mole fraction (0j) 
· Ambient DUCT segment – Length (2c)
· High temperature HX segment – Blockage ratio (3b) , Length (3c) 
· STKSLAB segment – Blockage ratio (4b), Length (4c)
· Ambient temperature HX segment – Blockage ratio (5b), Length (5c) 
· High temperature DUCT segment – Length (6c)
· All segments – Cross sectional area (1a)

In the bracket is the parameter address for that particular design parameter in DeltaEC. There are 26 actions altogether, 13 actions that each increases a parameter value, and 13 actions that each decreases a parameter value. As there are five states, there are 130 state-action pairs altogether, and therefore 130 q-values that are calculated and updated.
The input of this RL problem is the action taken by the RLIA, and the output is the new acoustic power from the TAHE as a result of the action taken (i.e. the design parameter value that is changed).

5.1.2 [bookmark: _Toc452568858]Learning/tuning parameters of the RLIA
The conditions of the RL problem have been set as follows:
1. Discount rate, 
2. Learning rate, 
3. Exploration parameter, 
4. Decay parameter  
5. All  values are initialised at 0
6. Total episodes 
7. Equiprobable random policy employed (all actions are equally likely) 
For each episode, the exploration parameter value is multiplied by the decay parameter value in order to obtain the updated exploration parameter value. In this way the level of exploration decreases slowly over time. The discount and learning rate are typical values that are found in the literature for RL problems (Sutton and Barto, 1998). The exploration parameter value is initially a high value to encourage greater exploration at the beginning of the run. The different decay parameter values are adopted so that the level of exploration for a given run decreases at different rates, to observe the effect on the RLIAs ability to learn about the environment.
 
5.1.3 [bookmark: _Toc438145931][bookmark: _Toc452568859]Design constraints
Unlike when a RLIA interacts for example with a game, which tells the agent when it attempts to make an illegal move, in this case the environment (DeltaEC) cannot tell the agent if an illegal move is carried out (i.e. physically impossible parameter values). Hence if an action is taken that would cause a parameter value to go beyond the predefined range (shown in Table 5.1), then the environment is considered to have crossed a boundary of the defined problem. In this case the action is not taken, and a negative reward is given for attempting to make the ‘illegal move.’ 







[bookmark: _Toc436035976][bookmark: _Ref425857443][bookmark: _Ref448928814][bookmark: _Ref448928843][bookmark: _Ref448928860][bookmark: _Toc452568897]Table 5.1 Range of design parameter values and magnitude of incrementation

Design Parameters
Value/Range


Design Parameters
Value/Range

BEGIN Segment

STKSLAB Segment

1
Mean pressure
Mean P,  (MPa)
1.00 – 3.00
0.005
15
Total cross sectional area
0.008 – 0.030

0.0005
2
Resonant frequency
Freq, fr (Hz)
50 – 550
2
16
Porosity/ Blockage ratio, BRstack
0.5 – 0.8
0.001
3
Mean temperature
Beg,  (K)
423
n/a
17
Length,  (m)
0.04 – 0.06 
0.0001
4
Pressure amplitude
|p|,  (Pa)

  = 0.005 – 0.05
0.0001
18
Half plates spacing,  (m)


n/a
5
Phase of pressure amplitude
Ph(p), ()
0
n/a
19
Half thickness of solid plate, l (m)

 = 

n/a
6
Velocity amplitude
|U|,  (m2/s)
0
n/a
20
Plate material, 
Stainless steel
n/a
7
Phase of velocity amplitude
Ph(U), ()
0
n/a


HX Segment
8
Gas (type)
Helium-Argon mixture
n/a
21
Total cross sectional area
0.008 – 0.030

0.0005
9
Mole fraction nL, 
0.0 – 1.0
0.005

22
Porosity/ Blockage ratio, BRHX
0.3 – 0.5
0.001
SURFACE Segment

23
Length,  (m)
0.03 – 0.06
0.0001
10
Cross-sectional area, A (m2)
0.008 – 0.030

0.0005
24
Half plates spacing,  (m)


n/a
DUCT Segment
25
HeatIn,  (kW)
(Thermal power input)
19.0
n/a
11
Cross-sectional area,
A (m2)
0.008 – 0.030

0.0005
26
HeatIn,  (kW)
(Therm al power output)
-4. 0
n/a
12
Perimeter,  (m)
Calculated by DeltaEC according cross-sectional area
n/a
27
Solid material, 
Copper
n/a
13
Length,  (m)
3.2 – 1.00
0.01

14
Surface roughness

n/a


5.1.4 [bookmark: _Toc438145932][bookmark: _Toc452568860]Implementation
The RL design problem is programmed in Python, as it is a versatile programming language that allows rapid prototyping due to its readability, its extensive standard library, as well as the tens-of-thousands of third party software. The algorithm for the learner, explorer and controller is obtained from the modular Machine Learning Library for Python, called Pybrain (Schaul et al., 2010) .  One of the things to consider when using an existing software for modelling is the most efficient way to interact with the software in order to automate design changes. The problem with DeltaEC, is that the only way to modify the design is through its  graphical user interface (GUI). A Python toolkit WATSUP has therefore been chosen that directly interacts with the DeltaEC’s window application to find and invoke actions on controls and menu items. EXPERIMENT
ENVIRONMENT
TASK
Observation
Action
Reward
AGENT
Controller           Learner             Explorer
[bookmark: _Ref421705681][bookmark: _Toc452568921]Figure 5.1 The various components of the RL problem


The coding has been modularised as shown in Figure 5.1, each with its own distinctive job.

Environment: Is the world in which the agent interacts, which in this case is DeltaEC. In addition this includes code that defines the design constraints that have been defined in the previous section.
Task: Handles the interaction between the agent and environment, and defines the ultimate goal of the environment (i.e. outlines the reward scheme).
Agent: The agent has its own learning component (Q-learning), a controller that stores and retrieves Q-values from a lookup table, and an explorative component (-greedy method).
Experiment: The experiment brings the environment, task and agent together so that they interact as shown in Figure 5.1 for an episode, to create the RL problem.

The class diagram of Figure 5.3 shows the structure of the Python code. Python has allowed seamless interaction between classes coded for this particular design problem (DesignTAHETask, DeltaECAutomation, DeltaECEnvironment) and the rest of the classes that are a part of Pybrain. The RLDesignExperiement Python file (module) brings together all the components of the RL design problem, in order to execute an action for every episode, and return the state observation and the corresponding reward.





[bookmark: _Toc452568922]Figure 5.2 Class diagram of the implementation of the design problem


[bookmark: _Ref452730861][bookmark: _Toc452568923]Figure 5.3 Sequence diagram showing the main task executed for one episode
In the sequence diagram in Figure 5.3, the various classes are grouped in terms of the different functions that the RL agent must perform, therefore this sequence diagram conveys a certain level of abstraction compared to the actual Python code. This is in order to simplify the sequence diagram to the essential tasks that are carried out for one episode. Figure 5.3 shows how the main python module (Experiment) calls various methods in other classes in order to store or retrieve information for a given episode. 
At the beginning of an episode the current state observation is retrieved from the task. A random number is then chosen between 0 and 1. If the value is less than , then a random action is chosen. If the random value is greater than , then the action that has the greatest q-value for the current state is chosen for execution. A reward is given based on the new state of the environment, after the action has been executed. The Q-learning algorithm then retrieves the appropriate values from the look-up table and also uses the latest information obtained in order to update the q-value. After this the average reward is calculated, and the model for that episode is saved in DeltaEC.

5.2 [bookmark: _Toc438145933][bookmark: _Toc452568861]Results 
[bookmark: _Toc452568898]Table 5.2 Values of learning/tuning parameters of the RLIA for the different runs
	Run
	Total number episodes
	alpha
	decay
	Initial exploration value
	Final exploration value
	Reward scheme

	1
	100,000
	0.05
	0.99999
	0.8
	0.29
	Option 1

	2
	100,000
	0.1
	0.99999
	0.8
	0.29
	Option 1

	3
	100,000
	0.1
	0.99999
	0.8
	0.29
	Option 2

	4
	150,000
	0.5
	0.999994
	0.8
	0.33
	Option 3

	5
	150,000
	0.5 
	0.999997
	0.8
	0.51
	Option 3

	6
	150,000
	0.1
	0.999997
	0.8
	0.51
	Option 3

	7
	150,000
	0.05
	0.999997
	0.8
	0.51
	Option 4

	8
	150,000
	0.1
	0.999997
	0.8
	0.51
	Option 4

	9
	150,000
	0.1
	0.999995
	1.0
	0.47
	Option 4

	10
	150,000
	0.05
	0.999995
	1.0
	0.47
	Option 4


[bookmark: _Ref435607666][bookmark: _Toc452568924]Figure 5.4 DeltaEC file during test runs, showing the temepratures in the STSLAB and HX segment

It was initially thought that restricting the stack length would ensure that the temperature at the end of the stack and ambient temperature HX would not go below 273 K. But in actual fact the temperatures quite frequently went far below 273 K during initial runs, as shown in Figure 5.4. Therefore it was clear that simply constraining parameter values was not sufficient to always ensure physically meaningful results. For subsequent runs the problem was modified to include an additional constraint. If the temperature TEnd value is below 280 K as a result of an action taken, then a boundary to the problem has been crossed. The environment goes back to its previous state before the action was taken, and a negative reward for boundary crossed is given accordingly. 
[bookmark: _Ref441635864][bookmark: _Toc452568925]Figure 5.5 Run 1: Change in acoustic power as design of  TAHE changes over time

In this first run, while the RLIA was not able to create a design that yielded positive, there are certainly exciting signs that the RLIA was able to use the information it had learnt earlier on in its interaction with the environment. The  of the designs gradually moves towards 0 W from about 80 000 episodes onwards. If the worst design (which occurs for episode 26,589) is compared with the best (which occurs at episode 100,000), then it can be seen that there are stark differences in terms of the design of the TAHE. The design for episode 26,589 has positioned the stack where the volume flow rate is greatest, and therefore subject to high viscous losses of 923.82 W. Both HXs also exhibit this problem, with viscous losses of 904.378 W for the high temperature HX and 530.2 W for the ambient temperature HX. But the design for episode 100,000 positions the thermoacoustic core closer to the velocity node on the left hand side of the engine, where volume flow rate is lower. Partly as a result of this, the stack is able to create a positive of 252.13 W, although all of this is dissipated in other parts of the engine. It is interesting to note that the global design parameter values did not change drastically over time, but there was a clear decrease in the high temperature duct length compared to the ambient temperature duct length, which determines the position of the thermoacoustic core within the engine. The RLIA was able to learn to reduce acoustic losses and gradually shift the thermoacoustic core closer to the velocity node. The approach of the  towards 0 W (shown in Figure 5.5) suggests that given more time interacting with the environment the RLIA would be able create a design that produces a positive net .
[bookmark: _Ref441636591][bookmark: _Toc452568926]Figure 5.6 Run 2: Change in average reward over time

105


[bookmark: _Ref440993668][bookmark: _Toc452568927]Figure 5.7 Run 2: Change in acoustic power as design of  TAHE changes over time

For the second run, the maximum the RLIA was able to achieve was an acoustic power of 377.15 W during episode number 44,262. This  has been possible because the stack length is sufficiently long and therefore the stack region was able to produce acoustic power of 583.46 W, drive ratio is high and both the HX plate lengths are sufficiently small, reducing acoustic losses. But on the downside the stack centre position is located where volume flow rate is high, and the mean pressure is only 1.995 MPa. Unlike in the first run, the RLIA was able to achieve positive acoustic power relatively quickly (shown in Figure 5.6), due to the change in learning rate. The RLIA initially benefited from overriding more of the newly acquired information to the old information, when updating the q-value. This enabled the RLIA to learn much faster than in the first run, which can be seen in Figure 5.7. But the overconfidence in the information provided by the environment early on has a detrimental effect from about episode number 55,000 and onwards. This is probably due to the RLIA taking actions based on the q-values at a particular time, which may not reflect the utility of an action at that time, particularly early on when the RLIA is still attempting to comprehend the environment and therefore bad choices are made that yield poor designs. This dip in performance can be seen in the average reward graph, as the average reward value peaks at episode number 55,108, before tailing off. 
For the first run, boundary was crossed 50,615 times, and for run 2 boundary was crossed 28,380 times, which shows that the negative reward of -1 has not been a sufficient deterrent for the RLIA to attempt to venture beyond the defined search space. If the RLIA spends much of its time attempting to cross the boundaries of the defined problem, then it spends less time exploring within the search space. In the third run, the reward for crossing boundaries is set at -100 in order to sufficiently penalise the RLIA if it attempts to go beyond the boundaries of the problem. While the RLIA attempted to cross the boundaries less frequently, 11,595 times, an unanticipated consequence was that the RLIA explored little of the parameter space, and therefore the average reward value remains stagnant (shown in Figure 5.8). This indicates that the performance of the RLIA did not get better over time, and was not able to create a design that yielded.
As a result of the poor performance by the RLIA in the third run, the reward for boundary crossed was changed to -5. Also the first three runs suggest that the RLIA could benefit from more time interacting with the environment, as the RLIA is able to learn certain key design features of the TAHE, but not all concurrently, which is required to achieve. Therefore the total number of episodes carried out for all subsequent runs was 150,000 episodes.[bookmark: _Ref440993752][bookmark: _Toc452568928]Figure 5.8 Run 3: Change in average reward over time

The reward for boundary crossed of -5 works better than either -1 or -100, as the RLIA sufficiently explored each parameter space for the fourth run, and out of 150,000 episodes, boundary was crossed 19,780 times, which is reasonable low. The RLIA is able to gradually decrease acoustic losses until it is able to create a design that produces positive during episode number 34,057. After this initial period, the  value oscillates sharply between values of about 0 W and 300 W, as many of the parameter values also oscillates between its minimum and maximum values. The maximum  value produced is 311.32 W for episode number 129,866. 
While the RLIA explores the full range of the each design parameter value, it must evaluate many different combinations of the thirteen design parameter values, and so far the results suggest that the level of exploration decreases too quickly over time to enable sufficient exploration of the entire search space. Therefore for the fifth run the decay parameter is set to 0.999997, so that the final exploration parameter value is 0.51, higher than previous runs. Again the RLIA is able to reduce acoustic losses over time to eventually yield a value of 495.32 W during episode number 107,678.


[bookmark: _Toc452568929]Figure 5.9 Run 5: Change in acoustic power as design of  TAHE changes over time


[bookmark: _Toc452568930]Figure 5.10 Run 6: Change in acoustic power as design of  TAHE changes over time


[bookmark: _Ref440995384][bookmark: _Toc452568931]Figure 5.11 Run 6: Change in average reward over time

In the sixth run, the increase in the learning rate has allowed the RLIA to be able to obtain positive  value as early as episode number 15,125. Although the maximum  value achieved is 430.56 W, and could not surpass the previous result, the RLIA was able to achieve an average reward that was greater than zero, for the first time as shown in Figure 5.11.
So far the high state has not been observed, and the  value has been at the lower end of the medium state. It may be difficult for the RLIA agent to push the environment into the high state because the medium state encompasses a wide range of the  values (between 300W and 1 kW) and therefore states are too coarsely discretised. So for the seventh run, the medium state is divided into two, so that there are six states instead of five.
While the RLIA was not able to produce positive acoustic power in the seventh run when learning rate is 0.05, it was able to produce a maximum of 303.82 W in the eighth run, when learning rate is 0.1. Therefore this modified state definition performed no better with more states.
Due to the many combinations of design parameter values that the RLIA has to evaluate, a greater level of exploration during the initial stages of the interaction with the environment, and a higher final exploration value has yielded better results. Therefore the initial exploration parameter value is set to 1 for the ninth and tenth run, in which case the RLIA just explores the search space randomly and does not choose a greedy action initially. This is to determine if yet greater levels of exploration would yield better results, as it explores more of the search space and is therefore more likely to stumble across a good design. When the learning rate is 0.1, for the ninth run, the maximum acoustic power is 344.04 W. When the learning rate is 0.05, the maximum acoustic power is 405.21 W. In the tenth run, the greater levels of exploration and the learning rate results in the boundaries being crossed less frequently. It seems that after a point, greater levels of exploration does not yield better results, at least for the number of interactions that the RLIA has with the environment in this study. The general performance may improve with this greater level of exploration, if the RLIA had more time to interact with the environment.
As there is a temperature constraint imposed that does not allow  the temperature at the end of the stack to go below 280 K, it is possible to increase the maximum stack length allowed in future, in order to allow a greater temperature gradient across the stack, and therefore enable potentially higher values of acoustic power in the stack region.







[bookmark: _Ref452557947][bookmark: _Toc452568899]Table 5.3 Final design parameter values using RL compared to iterative design methodology
	
	Final design parameters
	Input
	Output

	
	BRAHX
	BRHHX
	BRs
	
(m)
	
(m)
	 (MPa)
	(Hz)
	DR
	
	(m)
	
	(m)
	 (kW)
	
(W)

	Iterative design methodology
	0.4
	0.4
	0.8
	
	4.0
	3.00
	137.06
	0.60
	1.00
	0.08
	0.07
	0.20
	19.00
	1029.10

	RLIA
	0.495
	0.474
	0.8
	
	1.7305
	2.185
	52
	0.0495
	0.965
	0.0599
	0.3866
	0.16
	19.00
	495.32



Table 5.3 Shows the final design parameter values using both the RLIA and the iterative methodology. It can be seen that several design parameter values that are the same or similar such as the stack BR and mole fraction. But there are also some design parameter values that are not close which helps to explain why the RLIA was able to achieve a lower acoustic power output. For example in the TAHE that was designed by the RLIA, the stack centre position is much closer to the velocity antinode and the frequency is lower than the actual resonant frequency of the TAHE that has been designed. Also higher mean pressure would have yielded higher power density for the conceptual design that was created by the RLIA.



5.3 [bookmark: _Toc438145934][bookmark: _Toc452568862]Conclusion
The maximum  value that the RLIA was able to achieve is 495.32 W. While the results have not currently been able to surpass that of the iterative design methodology, there are certainly exciting signs of the RLIA’s ability to learn attributes of the TAHE that distinguish a good design from a bad one. It has to be noted that this RLIA must explore a more expansive search space than the iterative design methodology as all thirteen design parameter values are varied simultaneously for a given run, and there is sufficient evidence to conclude that given more time, the RLIA has the ability to find optimum design parameter values that yield a globally optimum design. 
It is exciting to consider that given the simple representation of this design problem, with only a few states, the RLIA has been able to learn much about a complex landscape, without any prior knowledge of the environment, just by interacting with it. 


[bookmark: _Toc452568863][bookmark: _Toc438145935]Chapter 6
6. [bookmark: _Toc452568864]Autonomous design and optimisation of a TAHE using a RLIA
This chapter describes the endeavour to solve the most complex problem that is described so far in this thesis. In this iteration of the problem, the RLIA is able to not only change the design parameter values but also the configuration of the device.

(4.1) [bookmark: _Toc435865641][bookmark: _Toc435866911][bookmark: _Toc435912239][bookmark: _Toc436035938][bookmark: _Toc438145936][bookmark: _Toc441071662][bookmark: _Toc441648623][bookmark: _Toc449601942][bookmark: _Toc451168862][bookmark: _Toc451169472][bookmark: _Toc451170311][bookmark: _Toc452568784][bookmark: _Toc452568865]
(4.2) [bookmark: _Toc435865642][bookmark: _Toc435866912][bookmark: _Toc435912240][bookmark: _Toc436035939][bookmark: _Toc438145937][bookmark: _Toc441071663][bookmark: _Toc441648624][bookmark: _Toc449601943][bookmark: _Toc451168863][bookmark: _Toc451169473][bookmark: _Toc451170312][bookmark: _Toc452568785][bookmark: _Toc452568866]
(4.3) [bookmark: _Toc435865643][bookmark: _Toc435866913][bookmark: _Toc435912241][bookmark: _Toc436035940][bookmark: _Toc438145938][bookmark: _Toc441071664][bookmark: _Toc441648625][bookmark: _Toc449601944][bookmark: _Toc451168864][bookmark: _Toc451169474][bookmark: _Toc451170313][bookmark: _Toc452568786][bookmark: _Toc452568867]
(4.4) [bookmark: _Toc435865644][bookmark: _Toc435866914][bookmark: _Toc435912242][bookmark: _Toc436035941][bookmark: _Toc438145939][bookmark: _Toc441071665][bookmark: _Toc441648626][bookmark: _Toc449601945][bookmark: _Toc451168865][bookmark: _Toc451169475][bookmark: _Toc451170314][bookmark: _Toc452568787][bookmark: _Toc452568868]
(4.5) [bookmark: _Toc435865645][bookmark: _Toc435866915][bookmark: _Toc435912243][bookmark: _Toc436035942][bookmark: _Toc438145940][bookmark: _Toc441071666][bookmark: _Toc441648627][bookmark: _Toc449601946][bookmark: _Toc451168866][bookmark: _Toc451169476][bookmark: _Toc451170315][bookmark: _Toc452568788][bookmark: _Toc452568869]
6.1 [bookmark: _Toc438145941][bookmark: _Toc452568870]Design problem
The first attempt at designing a standing-wave adopts the same state definitions and reward scheme as in the previous chapter, but the way the actions are referred to is different. In the previous chapter each action was the incremental change in a specific design parameter value. But in this particular instance, the segments in DeltaEC can be added or deleted; therefore segments are not fixed in a particular position along the x-axis and design parameters do not have permanent addresses. As a result, apart from the global design parameters that are located in the BEGIN segment, for all other design parameters, the parameter address in DeltaEC is chosen at random. If for example the stack length value cannot be changed because there is no stack segment, then another action is chosen, and if there is more than one stack segment, then one is chosen at random.
Any TAHE requires at least four components in order to function; a stack, a heat source and sink and a solid container. Therefore a restriction of a minimum of four segments is imposed on the model. Also the maximum number of segments allowed was set at six, to ensure that the model does not exhibit wildly unrealistic physical behaviour. For instance if an action chosen by the RLIA would take the number of segments below four or above six, then the RLIA has attempted to cross the boundaries of the search space, a negative reward is given, and this action is not taken. When state is initialised, four segments are chosen at random in no particular order. The parameter values are also chosen at random within the range of values specified in table 4.1. All DeltaEC models require specific segments: the BEGIN segment which sets global parameters, the HARDEND segment that denotes the beginning or end of a solid container and the SURFACE segment which comes before the HARDEND segment and accounts for thermal-hysteresis dissipation (Ward, Clark and Swift, 2008). These are not included in the restrictions of the number of segments in a model. 
As a result of the above considerations, there are in total 32 possible actions that can be taken by the RLIA. These can be summarised as follows:

Action, A = {increase parameter value, decrease parameter value, add segment, delete segment}

There are four types of segments that can be added or deleted: duct, stack, heat source HX, and heat sink HX. Also there are twelve design parameter values that can be increased or decreased: mean pressure, DR, frequency, mole fraction, duct length, stack length, stack BR, heat source length, heat source BR, heat sink length, heat sink BR, and cross sectional area. The design constraints are the same as in Table 5.1.
The reward scheme is configured according to the results obtained in chapter 5 and a process of trial and error, carrying out each run and modifying the reward scheme accordingly. 

6.1.1 [bookmark: _Toc438145942][bookmark: _Toc452568871]Design problem in terms of RL framework
State definition – option 1:
The state definition is the same as in the previous chapter, which is defined as follows:

State, S = {high, medium, low, negative, boundary crossed}
High if  1kW for 19kW thermal power input 
Medium if   1kW for 19kW thermal power input
Low if   300 W for 19kW thermal power input
Negative if   for 19kW thermal power input
Boundary crossed if action would take parameter values beyond the design or temperature constraints specified.

The state information is of the acoustic power value in the x-direction that is furthest to the right, and is referred to as




State definition – option 2:
In this state definition there are altogether nine states, which are a combination of whether all segment types are in the design and the acoustic power value at the far right, in the x-direction.

State, S = {High-All Segment types, Medium-All Segment types, Low-All Segment types, Negative-All Segment types, High-Not all Segment types, Medium-Not all Segment types, Low-Not all Segment types, Negative-Not all Segment types, boundary crossed}

Reward scheme – option 1a:
The reward scheme is the same as option 1 in the previous chapter, which are as follows:
Reward, R (High) = +50
Reward, R (Medium) = +20
Reward, R (Low) = +10
Reward, R (Negative) = -50
Reward, R (Boundary crossed) = -1

Reward scheme – option 1b:
Reward, R (High) = +1000
Reward, R (Medium) = +300
Reward, R (Low) = +50
Reward, R (Negative) = -1000
Reward, R (Boundary crossed) = -100
Reward scheme – option 2:
This reward scheme corresponds with option 2 of the state definition.

Reward, R (All segment types) = +60
Reward, R (Not all segment types) = -60
Reward, R (High) = +50
Reward, R (Medium) = +20
Reward, R (Low) = +10
Reward, R (Negative) = -50
Reward, R (Boundary crossed) = -5

If a boundary has not been crossed then two observations of the features of the design are carried out: does it have all four segment types, and is positive acoustic power observed at the far right. For each design feature a separate reward is given as outlined above, and the reward for that particular episode is the sum of these rewards.

6.1.2 [bookmark: _Toc438145943][bookmark: _Toc452568872]Parameter tuning of the RLIA
The conditions of the RL problem have been set as follows:
1. Discount rate, 
2. Learning rate, 
3. Initial exploration parameter, 
4. Decay parameter  
5. All  values are initialised at 0
6. Total number of episodes

The decay parameter value affects how fast the exploration parameter decreases over time and the final exploration parameter value. Therefore various decay parameter values are adopted to see how this affects the ability of the RLIA to learn. The decay parameter values are different from chapter 5 as the runs in this experiment are longer as the total number of episodes is greaters, and so  the exploration parameter value needs to decrease more slowly over time. The reason that the total number of episodes is greater is that in this experiment there are more q-values to estimate, therefore greater time is necessary for the RLIA to interact with the environment.

6.2 [bookmark: _Toc438145944][bookmark: _Toc452568873]Implementation
Due to the increase in complexity of the problem, it was necessary to code additional features of the program, as shown in Figure 6.1 Class diagram. For example, due to the constraint of segment number it was necessary to keep track of how many segments were in a model for a given episode, and to update this number when a segment was added or deleted. Also, all temperature values are checked in the simulation, after executing an action, to determine whether the temperature boundary was crossed as a result of the action. The temperature boundary is crossed if any temperature in the simulation is below 280 K, to ensure physically meaningful results, or above 523 K, as this study only considers a low temperature heat source. If any temperature of the simulation goes beyond this boundary, then the reward for ‘boundary crossed’ state is given, and DeltaEC goes back to the model of the last episode where boundary was not crossed.

[bookmark: _Ref441145655][bookmark: _Toc452568932]Figure 6.1 Class diagram






6.3 [bookmark: _Toc452568874][bookmark: _Toc438145945]Results
[bookmark: _Toc452568900]Table 6.1 Changes to the tuning parameters and the definition of the problem for the different runs
	Run
	Total number episodes
	alpha
	decay
	Initial exploration value
	Final exploration value
	Reward scheme

	1
	250,000
	0.1
	0.999995
	0.80
	0.23
	Option 1a

	2
	250,000
	0.1
	0.999998
	0.80
	0.49
	Option 1b

	3
	400,000
	0.05
	0.999998
	0.80
	0.49
	Option 1a

	4
	400,000
	0.05
	0.999998
	0.80
	0.49
	Option 2

	5
	500,000
	0.1
	0.999998
	0.80
	0.29
	Option 2


[bookmark: _Ref440113336][bookmark: _Toc452568933]Figure 6.2 Run 1: Change in average reward over time

The ability of the RLIA to learn over time for the first run can be seen in Figure 6.2, which shows the average reward steadily improving over time, showing that the RLIA is able to gain a better understanding of the environment and accumulate greater rewards over time. Given that the average reward value is steadily improving indicates that the number of interactions is a factor in determining how much the RLIA is able to learn in a given time.  

[bookmark: _Ref440967829][bookmark: _Toc452568934]Figure 6.3 Run 1: Change in acoustic power as design of  TAHE changes over time
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In the first run, the acoustic losses for the designs were initially high, as the RLIA evaluated different kinds of configurations, but over time, particularly after 150,000 episodes, the RLIA was able to slowly reduce acoustic losses in the designs. Unfortunately this translated in a higher perceived utility for the action of adding the duct segment than the other segments that would yield greater acoustic losses. The RLIA was able to select a design that created positive for the first time for episode 8262, when an additional stack segment was added, allowing enough of a temperature gradient in this region to enable positive acoustic power to be produced. This was also the case for the design of episode 8310. The schematic can be seen in Figure 6.3, which shows that there is a long duct segment between the heat source and stack, leading to unnecessary acoustic losses along the duct walls. Also there were examples of designs, such as designs B, D and E (shown in Figure 6.3), that has a duct segment on the left hand side, shifting all subsequent segments closer to the velocity node, these designs would cause the greatest acoustic losses. While the RLIA was able to produce positive on numerous occasions, and the heat source HX and the stack was configured correctly, they did not include the heat sink HX. The boundaries of the defined problem were crossed 173,196 times out of a total of 250,000 episodes, so the RLIA only spent 76,804 of the episodes exploring the search space. This suggests that throughout the run, the RLIA was still attempting to comprehend which actions were likely to lead to crossing a boundary.





[bookmark: _Ref441068998][bookmark: _Toc452568935]Figure 6.4 Run 2: Change in global design parameter values over time


[bookmark: _Ref440979457][bookmark: _Toc452568936]Figure 6.5 Run 2: Change in average reward over time

In the second run, the larger negative reward for negative and boundary crossed was not sufficient to overcome either of the problems.  The boundaries of the search space were crossed 170,319 times out of 250,000 episodes, which is only slightly less than the first run. But on a positive note, the average reward steadily increases demonstrating the ability of the RLIA to learn about the environment over time, as shown in Figure 6.5. The second run was able to produce positive more frequently than the first run. But it too exhibited the same problem, as heat sink HX was not included in most of the designs that was able to produce positive. This is because the apparent utility for adding the heat sink HX segment for the negative  state was generally lower than other actions. This is because the RLIA attributed this action to greater acoustic losses. Therefore from the point of view of the RLIA, choosing the heat sink HX did not have sufficient utility with respect to its ultimate goal, which was to maximise acoustic power out. Keep in mind that the goal of the RLIA is derived from the reward scheme. But of course these engines violate the second law of thermodynamics. So while the RLIA was effective at decreasing acoustic losses in the designs, the state information and reward scheme did not provide sufficient information for the RLIA to fully comprehend what a physically meaningful design is. In all of the above cases the RLIA was able to identify designs that yielded high acoustic losses, and would choose configurations that reduced these losses. For second run, the global parameter values were not sufficiently explored within the range defined, as shown in Figure 6.4, even though the level of exploration decreases more slowly in the second run. Also, while the RLIA was able to learn certain useful information about the environment, the results suggest that more time is needed for the RLIA to figure out the confines of the problem and also to comprehend to a greater depth the complexities of the environment. Therefore for the third and fourth run, the total number of episodes executed is 400,000. 
[bookmark: _Ref441630658][bookmark: _Toc452568937]Figure 6.6 Run 4: Change in average reward over time

Due to the additional state information in the fourth run, the designs produced by the RLIA in general has more variation in terms of the types of segments. Therefore the RLIA is able to evaluate more varied configurations to discern good designs from bad ones. Also the heat sink HX was included in the design more frequently than in any of the previous runs. As a result of the greater variation, this indirectly helped to reduce acoustic losses of the designs, as it was the selection of the same type of segment, such as the HXs that would lead to the greatest acoustic losses in the third run (shown in Figure 6.8). The definition of the problem in the fourth run seems to be a step in the right direction in terms of learning the correct configuration of the TAHE that yields positive. As before the worst designs included a duct segment on the left hand side which accounted for the high acoustic losses, such as the design D as shown in Figure 6.10. While the RLIA was able to learn more about the environment in the fourth run, it was not able to create a design that yielded positive . Boundaries of the design problem was crossed just less than half the time, which is the smallest fraction of the total number of episodes for all the runs executed so far. As a result the RLIA was able to explore more of the search space, which can be seen in Figure 6.9, as the global parameter values are varied more within the specified range. It is interesting to note that while the average reward increases over time, the gradient of the slope is less than the third run (shown in Figure 6.7), and eventually levels off towards the end of the run as shown in Figure 6.6.
[bookmark: _Ref441630739][bookmark: _Toc452568938]Figure 6.7 Run 3: Change in average reward over time

[bookmark: _Ref441629462][bookmark: _Toc441659966][bookmark: _Toc452568939]Figure 6.8 Run 3: Change in acoustic power as design of  TAHE changes over time

[bookmark: _Ref441630270][bookmark: _Toc452568940]Figure 6.9 Run 4 Change in global parameter values 
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Much of the time boundaries of the problem was crossed due to the temperature constraints, therefore in the fifth run the temperature constraint was relaxed, so that temperatures were allowed to go above 523 K. This is to determine whether the rigid temperature constraint was one of the reasons that it was not possible for the RLIA to produce positive in the fourth run, given the number of interactions of the RLIA had with the environment. While positive was obtained in the fifth run, some of these results are misleading as they are combinations of segments that do not behave as engines, such as designs B and D (shown in Figure 6.11).  But the RLIA was able to learn to reduce acoustic losses of the design, and the correct configuration of the device that was able to produce positive in the stack region. In this run, the RLIA was able to explore the search space adequately for the global design parameter values (shown in Figure 6.12).
Unfortunately it was not possible for the RLIA to reduce acoustic losses and create positive acoustic power in the stack region, which is required to create a design that yields positive . This may be due to insufficient time for the RLIA with the environment, as it needed to decipher actions that would likely lead to a boundary being crossed as well as determining a good design of the TAHE. Also the results suggest that in order for the RLIA to understand more effectively what a TAHE is and how it should behave, it would benefit from greater state information. Although too much specificity in defining the design problem should be avoided so that an unintentional bias is not introduced into the decision making process of the RLIA.





[image: ][bookmark: _Ref441590772][bookmark: _Toc452568942]Figure 6.11 Run 5: Change in acoustic power as design of  TAHE changes over time
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[bookmark: _Ref441072734][bookmark: _Toc452568943]Figure 6.12 Run 5: Change in global design parameter values over time


In general, while the RLIA has been successful in determining the design parameter values in the region of optimality, it has had difficulty in determining the correct resonant frequency. This may be partly due to the fact that the length of the engine continually changes quite dramatically as segments are added and deleted, and the incremental change in frequency is small (. Therefore the RLIA is unable to keep up with the change in resonant frequency, which contributes greatly to the performance of the engine. 
Allowing up to six segments for a given design, instead of yielding interesting designs, has instead resulted in designs with redundant segments that only serve to cause acoustic losses. For example in the fifth run, for episode number 2355, the design has all the fundamental components and in the right order, but in between the heat source HX and stack is a duct that is 0.57 m long. Therefore limiting the number of segments to five in future would be prudent, and would still be sufficient for the RLIA to be able to design a standing-wave TAHE with all the essential components.
One of the main obstacles the RLIA has had to contend with is that it only requires one aspect of the design to be less than ideal, for there to be no acoustic power produced. So there are occasions when the design has all the segment types in the correct configuration, stack length is reasonably long, plate length of HXs is relatively short, drive ratio is high, but the thermoacoustic core is positioned a little too close to the velocity node and so the viscous losses are too great. Many aspects of the design must be in the optimal region to be able to even produce acoustic power out of the engine, let alone creating a globally optimal design. The design problem may benefit from a differentiation in the reward scheme with designs that cause huge acoustic losses (i.e.) and do not have all the right components, and a promising design that yields  that is smaller in magnitude. Currently these are all lumped together with one reward value for negative acoustic power out. In future providing two different reward values for different magnitudes of  will likely help the RLIA to differentiate between bad designs and promising ones. It is believed that as a result the RLIA could use promising designs as a spring board for better designs. 
A very encouraging prospect is that in all the runs, the RLIA was at least able to learn something about its environment, which validates not only the way the design problem has been defined in terms of the RL framework, but also RL as a potent design tool for complex energy systems. In some runs, the RLIA was able to learn more, and/or more quickly due to variations in tuning/learning parameters. Option 2 of the state definition and reward scheme has yielded encouraging results, enabling the RLIA to learn certain important design features of the TAHE: the correct configuration, designs which lead to the reduction in acoustic losses, producing positive acoustic power in the stack region, and determining design parameter values in the region of optimality.

6.4 [bookmark: _Toc452568875]Conclusion
The general RL framework for this design problem has been very successful in reducing acoustic losses, obtaining the correct configuration, and producing positive acoustic power in the stack region. But the RLIA has not yet been able to maximise acoustic power out of the standing-wave TAHE. It is believed that the state definition and reward scheme adopted in fourth and fith run is capable of producing a globally optimum design of the standing-wave TAHE if the number of segments allowed for a given design is reduced, the learning parameters are tuned, and small modificatins are made to the state definition and reward scheme
What is clear is the great capacity of the RLIA to learn about an environment, and to intelligently explore an extensive search space. But what is also clear is that in order for the RLIA to learn effectively and efficiently, much depends on how the problem is defined in terms of the RL framework. Therefore extensive work is required to gain a better understanding of how to fully utilise RL in the context of engineering design.
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This chapter is divided into the following three sections: the main conclusions of the work, an overall assessment of the contributions made in this research, and finally the recommendations for future work.

7.1 [bookmark: _Toc452568884]Conclusions of current research
The primary aim of this research was to answer the question of whether it is possible for a computer to autonomously learn to design a complex energy system, from inception. The case study carried out in this research focuses on the design of a TAHE for the application of low temperature heat recovery. 
This thesis provides quantitative analysis of the implementation of a RLIA to the design problem of the TAHE. In order the gauge the effectiveness of the RLIA, an iterative design methodology was employed so that a comparison could be made. For the application of a RLIA, a proof of concept experiment is outlined, where the design problem is defined so that the RLIA searches the parameter space, in order to simultaneously optimise thirteen design parameters. Then the main experiment is attempted, where the RLIA can not only change parameter values, but also the configuration of the device. As a result of the quantitative analysis and the study that is carried out, the following conclusions can be made:

1. The iterative design methodology was able to achieve an acoustic power output of 1,022.2 W, and a thermal efficiency of 5.38%. Although this methodology was able to achieve reasonable results, implementation becomes increasingly difficult as the number of design parameters is increased. Many of the design parameters are dependent on each other, but at most it is possible to change two parameters simultaneously for a given run. Therefore it is necessary to carry out many runs to account for all design parameter combinations, which can be incredibly time consuming. Consequently this type of design methodology is not practical for increasing numbers of design parameters. The ultimate limitation of this type of technique like other numerical optimisation techniques is that it can only ever optimise design parameter values.
2. The proof of concept experiment clearly demonstrates the ability of the RLIA to identify key design features, such as the position of the stack in the engine that minimises acoustic losses in engine, high drive ratio, short HX plate lengths etc.
3. The results from the proof of concept experiment validates the general implementation of RL to our design problem, in terms of the state definition and actions that can be taken by the RLIA. The RLIA was able to achieve a a design that yielded a maximum of 495.32 W of acoustic power output.
4. The RLIA was able to identify bad designs that lead to high acoustic losses, and thereby selected these types of designs less frequently over time.
5. In the main experiment the RLIA was able to learn certain design features of the TAHE, that distinguish a good design from a bad one. The RLIA was able to create designs that lead to the reduction in acoustic losses, it was able to comprehend the correct configuration of the TAHE, was able to create positive acoustic power in the stack region, and was able to determine the region of optimality of most of the design parameter values.

As a result of the above conclusions the question that we attempted to respond to in this thesis, of whether it is possible for a computer to autonomously design a complex energy system from inception, can decisively be answered in the affirmative.
 
7.2 [bookmark: _Toc452568885]Research contributions
This research has proposed an entirely new way of viewing a thermoscience design problem, by attempting to shift more of the responsibility from a human designer to a computer than ever before, which is the major novelty and contribution of this work. Furthermore, this thesis has provided an insight into the adoption of an autonomous RLIA for design purposes, in terms of how the definition of the problem affects outcomes. In order to test the capabilities of a RLIA, it has been applied to a case study of a complex energy system, the TAHE. This novel approach can now be positioned as a potent alternative to other design tools of complex energy systems.
The novelty and contribution of this research is outlined below:

1. The application of a RLIA to the field of thermal engineering and thermoacoustics as a design tool.
2. Programming of a RLIA and defining the design problem in Python.
3. Making the comparison between the proposed technique and a technique that has been used for the design and optimisation of TAHEs previously.
4. Successfully defining the problem for the design of a TAHE in terms of the RL framework.
5. The design of a complex energy system from inception, by a computer.
  
7.3 [bookmark: _Toc452568886]Recommendations for future work
While this thesis has introduced a new and powerful autonomous RLIA, there is still much to understand about RL and even more to explore in terms of its capabilities, in the context of designing complex energy systems. While this research has shown the capability of a computer to autonomously design a complex energy system from inception, future work is necessary to understand how the RLIA can understand to a greater extent the complexities of the design of the TAHE. Reinforcement learning is an incredibly malleable technique, as it is possible to define the states and reward scheme in many different ways. As mentioned previously, one proposition is the modification to the state definition and reward scheme, giving a larger negative reward for a bad design that produces large acoustic losses, and a smaller negative reward for promising designs that produce smaller acoustic losses. It is necessary in future to reconsider the actions that changes the frequency, which greatly effects the performance of the engine. One option is to increment the value by a larger amount, so that it is easier for the frequency to keep up with the constant change in length of the engine.
With regard to the field of RL, there are various learning algorithms, exploration techniques (Alpaydin, 2004; Kaelbling, Littman and Moore, 1996), as well as different approaches to how reward, state and action is defined. Now that a new path of research has been created, applying RLIAs to thermoscience/thermal engineering, this path must be further explored to determine where it leads and how far it goes. Therefore further extensive quantitative analysis is necessary, in order to better understand how to fully utilise the extensive capabilities of RL. 
Other possible directions for future research are outlined in the sections below.

7.3.1 [bookmark: _Toc452568887]Alternative modelling approach
A possible alternative direction for modelling the problem, if greater accuracy is desired, is the use of commercial computational fluid dynamics program Fluent, which has been used successfully in conjunction with optimisation techniques (Hilbert et al., 2006) , and in modelling TAHEs (Jian-xin and Xiao-Yan, 2011; Yu, Dai and Luo, 2010). 

7.3.2 [bookmark: _Toc452568888]Comparisons to advanced optimisation techniques
As genetic algorithms have become increasingly popular in the thermal engineering community, it  worth investigating how this optimisation technique compares with the RLIA, when attempting to solve the type of problem that is described in this thesis. This is in order to discern how far parallel GA can be taken in order to solve human level tasks, and to perhaps find the ultimate limitation of such techniques.

7.3.3 [bookmark: _Toc452568889]Multi-objective problem
Optimising the design of a complex energy system for practical applications, while considering economic and environmental factors, as well as thermal, is of great importance in the field of thermoscience. Therefore extending the approach described in this thesis to multi-objective design problems, by modifying the goal specified, will add further utility to the research area.

7.3.4 [bookmark: _Toc452568890]Expanding work to other complex energy systems
In the field of thermoacoustics the most promising type of device is the traveling-wave TAHE. This type of device is more difficult to design than the standing-wave, and is the ultimate design challenge in the field of thermoacoustics. Therefore attempting to design this complex energy system using a RLIA would be the obvious next step in this research.  
While this study has focused on creating a RLIA that can design a specific energy system, works such as (Veness et al., 2011)  shows that a RLIA is capable of solving more than one problem, by representing the problem in a more abstract way. There is commonality in terms of the design criteria of a complex energy system, which is minimising the losses of power, while maximising power output, as well as economic and environmental factors. It is this approach that could form the foundations of creating a RLIA that can optimally design different types of complex energy systems. This would enable non-experts to design and evaluate different  energy systems for a specific application. In the field of thermoscience/thermal engineering, this is the holy grail and the real end goal for the future of this research.
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[bookmark: _Toc452568893]A.1 Main experiment
Figure A.1 Run 1: Variation of global parameter values

Run 1









Run 2
Figure A.2 Run 2: Change in acoustic power as design of  TAHE changes over time





Run 3Figure A.3 Run 3: Variation of global parameter values



Run 5Figure A.4 Run 5: Change in average reward over time
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