

Improving the quality of bug data in software

repositories

A thesis submitted as partial fulfilment of the requirement of

Doctor of Philosophy (Ph.D.)

by

BILYAMINU AUWAL ROMO

Computer Science Department

Brunel University London

Friday 15th April 2016

Abstract

Context: Researchers have increasingly recognised the benefit of mining software repositories

to extract information. Thus, integrating a version control tool (VC tool) and bug tracking

tool (BT tool) in mining software repositories as well as synchronising missing bug tracking

data (BT data) and version control log (VC log) becomes of paramount importance, in order

to improve the quality of bug data in software repositories. In this way, researchers can do

good quality research for software project benefit especially in open source software projects

where information is limited in distributed development. Thus, shared data to track the issues

of the project are not common. BT data often appears not to be mirrored when considering

what developers logged as their actions, resulting in reduced traceability of defects in the

development logs (VC logs).

VC system (Version control system) data can be enhanced with data from bug tracking

system (BT system), because VC logs reports about past software development activities.

When these VC logs and BT data are used together, researchers can have a more complete

picture of a bug’s life cycle, evolution and maintenance. However, current BT system and

VC systems provide insu�cient support for cross-analysis of both VC logs and BT data for

researchers in empirical software engineering research: prediction of software faults, software

reliability, traceability, software quality, e�ort and cost estimation, bug prediction, and bug

fixing.

Aims and objectives: The aim of the thesis is to design and implement a tool chain to

support the integration of a VC tool and a BT tool, as well as to synchronise the missing VC

logs and BT data of open-source software projects automatically. The syncing process, using

Bicho (BT tool) and CVSAnalY (VC tool), will be demonstrated and evaluated on a sample

of 344 open source software (OSS) projects.

Method: The tool chain was implemented and its performance evaluated semi-automatically.

The SZZ algorithm approach was used to detect and trace BT data and VC logs. In its for-

mulation, the algorithm looks for the terms "Bugs," or "Fixed" (case-insensitive) along with

the ’#’ sign, that shows the ID of a bug in the VC system and BT system respectively. In

i

addition, the SZZ algorithm was dissected in its formulation and precision and recall analysed

for the use of “fix”, “bug” or “# + digit” (e.g., #1234), was detected when tracking possible

bug IDs from the VC logs of the sample OSS projects.

Results: The results of this analysis indicate that use of “# + digit” (e.g., #1234) is more

precise for bug traceability than the use of the “bug” and “fix” keywords. Such keywords are

indeed present in the VC logs, but they are less useful when trying to connect the development

actions with the bug traces – that is, their recall is high. Overall, the results indicate that

VC log and BT data retrieved and stored by automatic tools can be tracked and recovered

with better accuracy using only a part of the SZZ algorithm. In addition, the results indicate

80-95% of all the missing BT data and VC logs for the 344 OSS projects has been synchronised

into Bicho and CVSAnalY database respectively.

Conclusion: The presented tool chain will eliminate and avoid repetitive activities in

traceability tasks, as well as software maintenance and evolution. This thesis provides a

solution towards the automation and traceability of BT data of software projects (in particular,

OSS projects) using VC logs to complement and track missing bug data.

Synchronising involves completing the missing data of bug repositories with the logs de-

tailing the actions of developers. Synchronising benefit various branches of empirical software

engineering research: prediction of software faults, software reliability, traceability, software

quality, e�ort and cost estimation, bug prediction, and bug fixing.

ii

Contents

1 Introduction 1

1

1.1 Problem Statement . 3

1.1.1 MSR tools for VC log and BT data . 3

1.1.2 How to identify bugs (BT data) into VC log 4

1.1.3 How to find discrepancies between VC system and BT system 5

1.1.4 Syncing VC logs and BT data . 8

1.1.5 A framework for an automated detection and syncing of bug-related dis-

crepancies . 9

1.2 Research Objectives . 9

1.3 The contributions of this thesis . 11

1.4 The beneficiaries of this thesis . 13

1.5 Structure of the thesis . 14

2 State of the art 17

2.1 Introduction . 17

2.2 Types of software repositories . 19

2.3 Definitions and terms . 21

2.4 Context . 22

2.5 Categories of research around bugs . 25

2.5.1 Bug triaging . 26

iii

2.5.2 Bug life cycle . 27

2.5.3 Bug reporting . 29

2.5.4 Duplicate bug reports . 31

2.5.5 Bug severity . 33

2.5.6 Bug tracking system . 33

2.6 Related tools . 35

2.6.1 Linkster . 36

2.6.2 Relink . 36

2.6.3 Buco Reporter . 37

2.6.4 Buco Analyser . 38

2.6.5 Bug Locator . 39

2.6.6 Bicho . 39

2.6.7 CVSAnalY . 40

2.6.8 Hipikat . 41

2.6.9 SoftChange . 41

2.7 Related techniques - SZZ algorithm . 45

2.8 Summary of the Chapter . 46

3 Methodology 47

3.1 Introduction . 47

3.2 Sampling an OSS forge . 47

3.3 Selecting the most appropriate VC system . 50

3.3.1 Distributed and Centralised VC system 50

3.3.2 CVSAnalY . 52

3.3.3 Description of CVSAnalY schema . 53

3.4 Selecting the appropriate BT system . 55

3.4.1 Bicho . 56

3.4.2 Description of Bicho schema . 56

3.5 Locating VC logs and BT Data . 58

iv

3.5.1 Locating bugs in VC logs . 59

3.5.2 Locating bugs in BT data . 60

3.6 Worked Example: Brackets project . 60

3.6.1 Identifying bugs in VC logs . 60

3.6.2 Brackets Project: Discrepancies between the bug sets from VC logs and

BT data . 61

3.7 Automating and filling the missing data . 63

3.8 Summary of the chapter . 66

4 Locating bugs in VC Logs 67

4.1 Introduction . 67

4.2 Definitions . 68

4.3 Worked example: Bracket project . 69

4.3.1 Obtaining the complete set of bug IDs 69

4.3.2 Evaluating the precision of each SZZ component 71

4.4 Replicability and scability of the approach . 73

4.5 Trade-o� between recall and precision . 75

4.6 Replication with a large sample of OSS projects 76

4.7 Summary of the chapter . 78

5 Discrepancies between the bug sets from VC logs and BT data 80

5.1 Introduction . 80

5.2 Background . 81

5.3 Results - Overall sample of OSS projects . 84

5.4 Scenarios of bug coverage . 89

5.4.1 Scenario 1 . 89

5.4.2 Scenario 2 . 89

5.4.3 Scenario 3 . 90

5.4.4 Scenario 4 . 91

5.5 Worked example: four scenarios . 91

v

5.5.1 Worked Example – Scenario 1 . 92

5.5.2 Worked Example – Scenario 2 . 96

5.5.3 Worked Example – Scenario 3 . 99

5.5.4 Worked Example – Scenario 4 . 103

5.5.5 Worked example - Summary of the four scenarios 104

5.6 Summary of the chapter . 105

6 Automating and synchronising the missing data 106

6.1 Introduction . 106

6.2 Background . 108

6.2.1 VC log . 108

6.2.2 BT data . 109

6.3 Structure of The Framework . 110

6.3.1 VC Log Parser Via CVSAnalY . 112

6.3.2 BT data Parser Via Bicho . 112

6.4 Implementation . 112

6.4.1 Retrieving VC Logs . 113

6.4.2 Retrieving BT Data . 113

6.4.3 Data Cleaning . 114

6.4.4 Isolating The Bug IDs . 114

6.4.5 Evaluation . 115

6.5 Quantification of VC logs and BT data . 116

6.6 Re-engineering Bicho and CVSAnalY . 119

6.7 Synchronisation . 120

6.7.1 T1: Bicho – CVSAnalY . 120

6.7.2 T1: CVSAnalY – Bicho . 121

6.7.3 Issues with synchronisation . 123

6.8 Re-aligning CVSAnalY and Bicho . 124

6.8.1 T2 Bicho – IssuesBicho table . 125

vi

6.8.2 T2: CVSAnalY – SCMlogCVSAnalY table 125

6.8.3 Implementation of Auxiliary Tables . 125

6.9 Summary of the chapter . 132

7 Conclusion and Threats to Validity 133

7.1 Introduction . 133

7.2 Contributions of this thesis . 134

7.3 Beneficiaries and impact of this thesis . 135

7.4 Evaluation of the thesis contribution . 136

7.5 Threats to validity . 139

7.5.1 Threats to validity (Chapter 3) . 139

7.5.1.1 Internal validity . 139

7.5.1.2 External validity . 141

7.5.2 Threats to validity (Chapter 4) . 141

7.5.2.1 Internal validity . 141

7.5.2.2 Construct validity . 142

7.5.2.3 External validity . 143

7.5.2.4 Conclusion validity . 143

7.5.3 Threats to validity (Chapter 5) . 143

7.5.3.1 Internal validity . 143

7.5.3.2 Construct validity . 144

7.5.3.3 External validity . 144

7.5.3.4 Conclusion validity . 144

7.5.4 Threats to validity (Chapter 6) . 145

7.5.4.1 Internal . 145

7.5.4.2 Construct validity . 145

7.6 Future work . 146

7.6.1 Empirical studies . 146

7.6.2 Tool sets . 146

vii

7.6.3 Tool-chain . 147

7.7 Thesis conclusion . 147

Appendix A 169

A.1 Tool-chain: Mining VC logs and BTS Data of 344 OSS Projects 169

A.2 Tool-chain: Quantification of VC logs and BT Data of 1 OSS Projects 170

A.3 Tool-chain: Quantification of VC logs and BT Data of 344 OSS Projects 175

A.4 Tool-chain: Re-engineering CVSAnalY and Bicho and integrate extra tables

(SCMlogcvsanaly table and Issuesbicho table in their respective databases) and

Synchronisation of VC logs and BT data of 344 OSS Projects 180

A.5 Tool-chain: Evaluating Bicho and CVSAnalY delta 188

A.6 Finding discrepancies: Results - 344 OSS Projects 192

A.7 344 OSS Projects Precision and recall of the three main components of the SZZ

algorithm . 213

A.8 Bicho and CVSAnalY Delta-344 OSS Projects 213

viii

List of Figures

1.1 Bug data in VC logs using “# + digit” keyword 5

1.2 Bug data in VC logs using “fixed” keyword . 6

1.3 Bug data in VC logs using “bug” keyword . 6

1.4 BT data marked as “Open” . 7

1.5 Current state of VC log and BT data . 9

1.6 Architectural overview of the framework . 15

2.1 Di�erent areas of research on bugs . 26

2.2 Bug life cycle . 28

2.3 Number of papers cited most in bug research categories 34

2.4 Number of researches in each category of bug research 35

2.5 Linkster tool screenshot adapted from [17] . 36

2.6 Architectural overview of Relink Tool adapted from [130] 37

2.7 Core module of BuCo Reporter adapted from [83] 38

2.8 Architectural overview of the BuCo Analyser tool adapted from [87] 38

2.9 Bicho schema . 40

2.10 CVSAnalY schema . 42

2.11 Screenshot of Hipikat adapted from [30] . 43

2.12 Architectural overview of SoftChange, adapted from [46] 44

3.1 Centralised VC system adapted from [73] . 51

3.2 Distributed VC system adapted from [73] . 51

ix

3.3 CVSAnalY Database Tables . 53

3.4 SCMlog table . 54

3.5 structure of the ’repositories’ table in CVSAnalY database 55

3.6 structure of the ’people’ table in the CVSAnalY database 55

3.7 The tables in Bicho database . 57

3.8 People table in Bicho database . 58

3.9 Trackers table in Bicho database . 58

3.10 Corresponding fields linked in Bicho and CVSAnalY 59

3.11 Intersection of BT data and VC logs in Bicho and CVSAnalY database for

Bracket project . 62

3.12 Corresponding fields linked in Bicho and CVSAnalY 66

4.1 Precision and Recall curve of three main component of the SZZ algorithm . . . 76

5.1 Ratio of bug IDs mentioned in both development logs and bug trackers,per project 87

5.2 BT data and VC logs of 344 OSS projects . 88

5.3 Scenario one . 89

5.4 Scenario two . 90

5.5 Scenario three . 90

5.6 BT data in Bicho . 94

5.7 No bug IDs mirrored in CVSAnalY . 94

5.8 Scenario 1: 10 OSS projects . 95

5.9 BT data in Bicho . 98

5.10 Bug IDs mirrored in CVSAnalY . 98

5.11 Scenario 2: 10 OSS projects . 99

5.12 BT data in Bicho . 100

5.13 Bug ID mirrored in CVSAnalY . 102

5.14 Scenario 3: 10 OSS projects . 102

6.1 VC log . 108

x

6.2 BT data . 109

6.3 Corresponding fields linked in Bicho and CVSAnalY 110

6.4 UML diagram of components . 111

6.5 Architectural overview of the framework . 111

6.6 SCMlog table in CVSAnalY database . 120

6.7 Issues —> SCMLog . 122

6.8 SCMlog —> Issues . 123

6.9 T1 Demo: Primary ID field in Issues Table (Bicho) is set to be Auto increment 123

6.10 T1 and T2 Demo . 124

6.11 IssuesBicho table . 124

6.12 SCMlogCVSAnalY table . 125

6.13 Bicho delta . 128

6.14 CVSAnalY delta . 129

6.15 Bicho and CVSAnalY Delta . 130

6.16 T2 . 130

6.17 Synchronised BT Data and VC logs into newer SCMlogcvsanaly and Issuesbicho 131

7.1 Before: Ratio of bug IDs mentioned in both development logs and bug track-

ers,per project . 138

7.2 After: Ratio of bug IDs mentioned in development logs per project (in 344 OSS

projects) . 138

xi

List of Tables

1.1 Our publications related to the chapters of this thesis. 15

4.1 Bug IDs and sources of information . 70

4.2 Number of logs that were referring to TP, FP, FN and TN for # symbol 72

4.3 Number of logs that were referring to TP, FP, FN and TN for Fixed 72

4.4 Number of logs that were referring to TP, FP, FN and TN for Bug 72

4.5 Attributes of the projects selected . 74

4.6 Manual evaluation of 10 OSS projects precision and recall of the three main

components of the SZZ algorithm . 75

4.7 Statistical significance of the SZZ algorithm (p-value) 77

5.1 Metrics evaluated for the bug sets from BT data and VC logs (an excerpt from

344 OSS projects) . 86

5.2 Total number of OSS projects comply with four scenarios 91

5.3 10 OSS projects observed in scenario 1 . 93

5.4 Metrics evaluated for the bug sets from BT data and VC logs (excerpt) 93

5.5 10 OSS projects observed in scenario 2 . 97

5.6 Metrics evaluated for the bug sets from BT data and VC logs (excerpt) 97

5.7 10 OSS projects observed in scenario 3 . 101

5.8 Metrics evaluated for the bug sets from BT data and VC logs (excerpt) 101

5.9 10 OSS projects observed in scenario 4 . 104

5.10 Mean (average) values evaluated for the 37 OSS projects in four Scenarios . . . 105

xii

6.1 Synchronisation of BT data and VC log using # Symbol of the SZZ Algorithm

- 344 OSS Projects . 127

1 SZZ Algorithm: # Symbol - 344 OSS Projects 193

2 SZZ Algorithm: Fixed - 344 OSS Projects . 200

3 SZZ Algorithm: Bug - 344 OSS Projects . 207

4 344 OSS Projects Precision and recall of the three main components of the SZZ

algorithm . 214

5 Synchronisation of BT data and VC log using # Symbol of the SZZ Algorithm

- 344 OSS Projects . 221

xiii

xiv

Acknowledgements

All praise and thanks are due to Almighty Allah, the Glorious and Exalted.

I am heartily thankful and indebted to my principal supervisor Dr. Andrea Capiluppi for his

continuous support, guidance and encouragement at all stages of this research. He has been a

tremendous mentor to me. His guidance and support helped me in many ways in this research and

writing of this Thesis. Without his uncountable advice and support, none of this could have been

possible. I would also like to extend my gratitude to my second supervisor Professor Tracy Hall for

her insightful comments and advice throughout this research.

I’d like to thank my parents, Auwal Sulieman Romo and Hafsat Auwal Romo. They’ve instilled in me

the appropriate level of curiosity and passion for learning that keeps me writing and researching late

into the night. The debt is too large to pay in one lifetime.

I wholeheartedly thank my cherished wife, Zainab Abubukar Jaredi, and my stepmothers Suwaiba

Usman Maitambari and Zara’u Jelani Marna—they are the greatest pride and joy of my life. I will

always be grateful for their love, patience, and understanding. The incessant curiosity of my family

has been a continuous inspiration for my studies on learning. A huge acknowledgment is due to my

parents-in-law, Abubakar Sahabi Jaredi and Hauwa'u Sahabi Jaredi; my uncle, Lawali Halidu Romo;

my sisters and brothers; and my best friends, Mustapha Abdullahi Sifawa, Hassan Sahabi Isah Gada,

Adamu Ibrahim Ruwa-wuri and Fodio Aliyu Wamakko for their continuous encouragement and

unconditional support.

I’d be remiss if I didn’t acknowledge the manifold support of Drs. Aaron Khan and Andres Baravalle

as well as Mal. Hassan Gummi, Mal. Aliyu Dikko Tambuwal and Mal. Yahaya Shehu; they taught me

a lot about Computer Science in general. My thanks also are due to Brunel Software Engineering Lab

Members, and many other amazing people at Brunel University London and University of East

London, whose zeal for studying the way that our brain works trickled down to folks like me and

xv

instigated my work on Software Maintenance and Evolution.

To my past and present colleagues, Muhammad Abdullahi Salame, Ali M Said, Nadia Abubakar,

Ahmed, Muhammad Al-mualla, Najeeb AA Gambo and Nasiru Daniya, and many others, who

encouraged and supported me in many ways: there are only a few lines that I can write here but my

gratitude is much larger than that.

xvi

Dedication

This Thesis is dedicated with love to my late great-grandfather, Mal. Ahmad Muhammad (Roro

Romo) and to Sokoto—the land and the people.

Chapter 1

Introduction

Researchers in empirical software engineering have been mining software repositories for a

long time [114]. Version control system logs (i.e, VC log) [84], defect tracking systems [95],

mailing lists [18], [100] and the documentation of software artefacts [69] all provide a rich set

of data that can be used to understand the inner mechanisms of producing software. The

field of mining software repositories (MSR) is similar (but not limited) to the fields of data

mining and knowledge discovery: the principle of this field is that empirical investigations

of repositories will create new research avenues in software processes and products, including

software maintenance and evolution. MSR studies in the past have helped to support the

maintenance of software projects, for instance by proposing and validating techniques and

novel ideas to help developers report and understand the evolution of software systems [141];

[70]; [48].

Practitioners and researchers in the MSR field have increasingly recognised the benefit of

mining software repositories to extract information and have observed an exponential growth.

The source of data most commonly used by researchers and practitioners is, by far, VC logs [5].

The VC logs contain the actions (adding, deleting or modification of files/codes) performed

by developers throughout the life cycle of a software project: a subset of empirical studies

([43];[42]; [104]; [55]) have been pivotal in understanding how such repositories are mined

e�ectively, and what evidence should be provided by researchers on a software project by

mining such activity logs.

1

Introduction: Chapter 1 CHAPTER 1. INTRODUCTION

Many researchers has recognised the importance of mining VC logs, with the objective,

among others, to support software corrective maintenance activities [19], or to improve software

design and component reuse [25], [38], [9]. On the other hand, the analysis of VC logs has

highlighted the most relevant artefacts that can help software developers in the open-source

software (OSS) community to understand and participate in software development projects

[40]. For instance, new software developers could contribute to bug-fixing processes and add

new feature enhancements to a software project that are relevant to their past expertise [108].

Another commonly mined source of data is bug tracking system (BT system) data. BT

data contains information reported by users and developers in the OSS community [104].

However, BT data can be used to design models for predicting software faults and software

reliability [45].

Nonetheless, a subset of studies ([41], [137], [5], [105], [126], [139], [67], [36], [34]) have

been crucial in shedding light on how BT data can be mined and provide empirical evidence

regarding software defects that could be revealed from such data. In addition, BT data has

been used to design models for predicting software faults, software artefact can also link to

when, how and by whom changes have been made to it [134].

The context of this work is the traceability of software bugs, which is the linking of the

software artefact from VC logs to BT data (and vice versa) produced during the development

and maintenance cycle of a software system. In simpler terms, traceability of a software bug

is the establishment of links between bugs and the changes that software developers made to

fix the bug. For this purpose, it is fundamental (i) to provide more e�cient automatisation

of the traceability of the bug information (i.e., from the BT data) as reflected by the actions

of developers (i.e., from the VC log); and (ii) to make use of both VC log and BT data to

provide a better understanding of the bug-related activities in software projects.

This chapter is structured as follows. In section 2, the problem statement that underlines

the whole thesis is defined; in section 3, the objectives of this thesis are defined, including the

appropriate reasoning behind each objective; and in section 4, the contributions of the thesis

are highlighted, with respect to the current situation in this field. Section 5 highlights the

beneficiaries of this thesis. Finally, section 6 illustrates the contents (structure) of the thesis,

2

Introduction: Chapter 1 Problem statement

and how each chapter is used to build the arguments, or verify the objectives.

1.1 Problem statement

This section illustrates the problem that the thesis aims to solve (or the “why”) and articulated

into various chapters of the thesis. These parts reflect the issues that researchers face when

attempting to trace bugs in the VC log, and how they need to reconcile the discrepancies

between the VC log and the BT data (and vice versa). The steps are as follows:

1. How to select the appropriate tools to mine VC logs and BT data.

2. How to identify bugs (BT data) in VC logs.

3. How to detect the discrepancies (missing data, redundancies and so on) between VC

logs and BT data.

4. How to synchronise redundant or missing data from one data source by using the traces

found in the other source, and vice versa.

5. How to produce a tool chain to automatically detect, synchronise and re-engineer

missing data and discrepancies in VC logs and BT data.

In the next subsections, the above-mentioned problems are analysed in more detail (i.e.,

each section looks at “How” to solve the problems).

1.1.1 MSR tools for VC log and BT data

When investigating tools to mine VC log and BT data, there are several tools that are publicly

available, but also others that are not publicly available (i.e., commercial tools) for mining

VC logs and BT data.

Some of the tools that are publicly available include Linkster [17], ReLink [130] and BuCo

Reporter [83]. These tools will be examined in detail in Chapter 2.4.

3

Introduction: Chapter 1 Problem statement

Tools that are not publicly available include Repoguard [80], SoftChange by [46]1 and

Rational ClearCase2 (these tools are also discussed in detail in 2.6). From the perspective of

repeating this research, one would need to use a publicly available tool set.

The second element required to achieve the objectives of this thesis is the integration of

the tools. It is important to select a VC system tool and a BT system tool and integrate their

functionality in an automated way. Since the tools are designed and their input and output is

developed and run independently, the integration of various sources of data, and their input

and output, becomes fundamental. In this way, certain criteria have been set in terms of

the similarity between the entities and the components stored by the tool set (discussed in

Chapter 3.7). Similarly, other features need to be considered, such as ensuring that the tools

can support multiple sources of data and software repositories.

1.1.2 How to identify bugs (BT data) in VC logs

Identifying bugs in VC logs requires a large amount of time in software bug traceability

[79], and the cost of identifying and fixing bugs has been reported is high in the commercial

project [54].

Similarly, developers in the OSS community might spend considerable e�ort on locating

bugs in VC log. After the bugs are identified, a link should be established between the bug

associated with the VC log. As a result, researchers have to devise their techniques in how to

look for bugs in VC logs e�ectively when dealing with software bug traceability. Ideally, the

aim would be to reduce the cost and time to identify or locate bugs in VC logs.

At present, there are techniques that researchers and practitioners have used to identify

bugs in VC logs, from other fields. They include information retrieval (IR) methods [130],

machine learning and heuristic-based approaches using sequential-pattern mining [68], [56],

[36]. The technique that is most commonly used by software engineering communities is the

SZZ algorithm, which looks for patterns such as “#+digit (e.g., #1234)”, “fixed” and “bug”

keywords [116], [18]. There are some pitfalls in any algorithm or technique when identifying
1Available only on request
2
http://www-03.ibm.com/software/products/en/clearcase

4

Introduction: Chapter 1 Problem statement

bugs in VC logs. An example of such a pitfall could be deciding the right keywords and

how much precision and recall have an e�ect [56], [97]. The study of Casalnuovo et al [26]

demonstrates that researchers in software engineering have di�culty in deciding the right

keywords for identifying bugs in VC log. As a result, the researchers have applied nine

keywords in retrieving project evolution history related to VC logs: “error”, “bug”, “fix”,

“issue”, “mistake”, “incorrect”, “fault”, “defect” and “flaw”. Previous studies have used

mainly with two keywords – “bug” and “fix” – to identify bugs in VC logs.

Figure 1.1 depicts use of the keyword “# +digit”. Figure 1.2 depicts a real example of VC

logs retrieved using the regular expression “fixed”, and 1.3 depicts a real example of VC logs

retrieved using the regular keyword expression “bug”.

Figure 1.1: Bug data in VC logs using “# + digit” keyword

1.1.3 How to find discrepancies between VC logs and BT data

The integration of di�erent tools for software development is challenging when the tools, which

should track complementary artefacts, lack consistency in the recording of events [35]. For

instance, Robles et al [106] stated that “correlating BT data and VC logs is a big challenge

that requires complex methods”. This shows that when bugs are discovered, developers should

report their existence in the VC logs when they fix them. Also, they should open the appro-

priate procedure in the issue tracker, marking it as “open”; similarly, when a bug has been

5

Introduction: Chapter 1 Problem statement

Figure 1.2: Bug data in VC logs using “fixed” keyword

Figure 1.3: Bug data in VC logs using “bug” keyword

6

Introduction: Chapter 1 Problem statement

fixed, the developers should mention its “fixed” status in the VC logs and mark it as “closed”

in the BT data. Figure 1.4 shows a typical example of a bug marked as “open” in BT data.

Figure 1.4: BT data marked as “Open”

Past research has established the fact that there is inconsistency in how bugs are reported

when tracing the issue tracker, and VC logs of a software project [17], which means that

bugs in BT systems do not appear in VC systems. Also, it was asserted by [88] and the

study of [12] of OSS repositories that studies with few OSS projects “were not enough to

make any statistical conclusion”. The challenge is to produce empirical evidence on many OSS

projects. Since VC logs and BT data are not typically mirrored and synchronised, below are

the potential problems when mining VC logs and BT data in empirical studies:

1. Incomplete data. This could be a case of the BT system not having all the data,

or it could be that the VC logs have incomplete data. This can lead to a biased or

non-trustable analysis in empirical software engineering research [112].

2. Inconsistent and a skewed set of data. There could be serious consequences when

automated algorithms consider only certain VC logs and BT data. Any model designed

and produced using an inconsistent and skewed set of data might be severely biased

[10]. Therefore, automatisation and completion of missing data is of critical importance

in order to avoid biased research [53]. In reality, VC logs should form a superset of

all BT data: one would expect the data contained inside BT system to be mirrored in

the VC system and developers to record and distinguish between their development and

bug-fixing actions.

7

Introduction: Chapter 1 Problem statement

This thesis is based on the existing tools and techniques found in the literature proposed

by [3, 5, 17, 34, 36, 41, 67, 80, 83, 104, 105, 121, 126, 130, 137]. Their past studies report

on the traceability links and recovery not to synchronise the recovered links between VC logs

and BT data into their respective databases. In this research we want to ensure that the VC

logs and BT data that we use in empirical software engineering research are as complete as

possible.

Finally, cross-analysing and linking VC logs and BT data can improve the quality of data

that we use in empirical software engineering research [74]. Similarly, improving the data

accuracy we obtained from OSS projects will provide practitioners in software engineering

with more complete data sets [31].

1.1.4 How to synchronise VC logs and BT data

This section looks at how to integrate the tool set and sync the VC logs and BT data when

data is missing from one or the other. In other words, when bug data is missing from the BT

system, how can we recover BT data using the VC logs information available? Conversely,

when VC logs information is missing in the VC system, how can we recover VC logs using the

BT data available?

The novelty of the tool chain that needs to be designed and implemented in this thesis,

apart from the fact that it supports various OSS software repositories, is that it is able to

synchronise missing VC logs (concerning bugs) with data extracted from the BT system,

and vice versa. Thus, such a tool chain can assist in mining the complete set of software

evolutionary data throughout the entire life cycle of software projects, as well as provide

complete VC logs and BT data for posterior analysis.

Figure 1.5 depicts a Venn diagram that shows the current state of BT data and VC log

information. Only a small subset of VC log and BT data are present and in sync [109].

Now the idea is to utilise the existing techniques and related publicly available tools in

order to design and implement a tool chain not only for “extracting”, but also for automatically

“syncing” VC logs and BT data, which supports multiple BT system and VC systems. This is

because current BT system and VC system databases were designed and structured to extract

8

Introduction: Chapter 1 Research Goal and Objective

Figure 1.5: Current state of VC log and BT data

and store VC logs and BT data in di�erent tables that exist in di�erent databases [109]. As

a result, a newer table might be created (by not intervening in the existing structure of the

databases to avoid duplication) in both databases, where all the missing VC logs and BT data

are identified and extracted and can be synchronised in an automatic way.

1.1.5 A tool chain for automated detection and syncing of bug-related dis-

crepancies

In this thesis, an approach and tool chain has been introduced for synchronising the VC

logs and BT data to form a more complete data set that supports researchers in software

engineering, particularly in software maintenance and evolution.

In order to automatically synchronise and detect VC logs and BT data in this thesis, the

tool chain will provide an interface that enables researchers in software engineering to cross-

analyse and link BT data and VC log data automatically. In this case, the BT tool (Bicho)

and VC tool (CVSAnalY) will be re-engineered and implement the tool chain by realigning

relevant entities that exist between the Bicho and CVSAnalY tool sets. Thus, automated

entries in both tools can occur simultaneously, and common links between VC logs and BT

data can be detected automatically.

1.2 Research objectives

Researchers in the past have already studied and established the fact that links between BT

data and VC logs are missing and can be recovered [12]. However, improving the quality

9

Introduction: Chapter 1 Research Goal and Objective

of bug data in software repository has not been adequately investigated so far. In addition,

investigating the techniques and approaches used to extract bugs from the VC logs using

regular expressions has been investigated with a large sample of OSS projects in this thesis.

Following the parts that compose the problem statement, the objectives of this thesis are as

follows:

Obj1 [Tools] To discover what tools researchers use in mining VC logs and BT data and

identify the tools available, as well as describe their data structure.

• Rationale: The rationale is to provide state-of-the-art VC tool and BT tool

sets. The structures have to be mapped and linked correctly with consistent data

formatting between VC logs and BT data in their respective databases.

Obj2 [Bugs into VC log] To identify bugs in VC logs, I want to dissect the SZZ algorithm

(regular expression) in its basic components and analyse their respective precision and

recall. Namely, I want to examine the use of “fix”, “bug” and “# + digit” to trace bug

IDs from the VC logs of OSS projects stored in both tools.

• Rationale: The objective is to dissect the SZZ algorithm in its three main com-

ponents, or the basic blocks that can be used to identify the presence of bug-fixing

commits. These three components will be used in this thesis to isolate all the bug

IDs as found in the VC logs, and to determine if, for instance, the keyword “fix”

is more often found in the proximity of a bug ID than the “bug” keyword or “# +

digit”.

• Hypothesis: Using “# + digit” when tracing bug IDs in VC logs produces higher

precision than using the keywords “bug” or “fix”.

Obj3 [Discrepancies between BT data and VC logs] Use the SZZ technique to analyse

BT data and VC logs on a large data set to provide a quantitative study of the traceability

issues of 344 OSS projects to quantify the number of BT data and VC logs missing.

• Rationale: By identifying bugs in VC logs and BT data, I can establish evidence

10

Introduction: Chapter 1 Research Goal and Objective

of the feasibility in traceability link recovery and cross-analyse the VC logs and BT

data of 344 OSS projects from open-source software repositories.

• Hypothesis: Bugs in VC logs and BT data of 344 OSS projects sampled from

GitHub3 are not mirrored. Most of the OSS projects have an issue of bug traceability[108].

Obj4 [Synchronisation] To reconcile and sync the VC logs and BT data of large OSS

projects.

• Rationale: To isolate database fields that can be used to fill the gaps in one source

or the other.

Obj5 [Tool chain] To present and propose a tool chain that track and synchronise VC logs

and BT data from 344 OSS projects.

• The rationale of such a tool chain is to assist in link recovery and the synchronisa-

tion of BT data and VC logs. In addition, the goal will be to provide a framework to

support multiple BT systems and VC systems in mining software repository links.

1.3 Contributions of this thesis

The contributions of this thesis are as follows:

C1 – Tools. In this thesis, tools that trace VC logs and BT data for software projects

were identified. After selecting Bicho and CVSAnalY to use in this research, this the-

sis described VC logs and BT data structures of the tools selected. It also identified

the fields that linked BT data and VC logs for synchronisation into their respective

databases. Thus, researchers in software engineering can trace, mine VC logs and BT

data using the identified tools collectively without mining and tracking VC logs and BT

data independently.
3
http://github.com

11

Introduction: Chapter 1 Research Goal and Objective

C2 – Bugs in VC log. The thesis presented an in-depth analysis of VC logs using the SZZ

algorithm, which has been used extensively by researchers to identify bugs in VC logs

and BT data of software systems. In this thesis, the SZZ algorithm was partitioned in its

three core components – the “bug” and “fix” keywords and “# +digit” – with a manual

check-up. In addition, this thesis evaluated the precision and recall of the various parts

of the SZZ algorithm and presented the precision and recall of each element in detecting

bug identifiers in the development logs (VC logs). This thesis suggested using “# +

digit” and the bug ID, which largely outperformed the other proxies in finding bugs in

VC logs and BT data.

C3 – Discrepancies between BT data and VC logs. This thesis presented the results

in a Venn diagram, which suggested that around 1/3 of the total number of VC logs and

BT data were mirrored when cross-analysed and linked with BT data. Also, another

1/3 were only present in BT data retrieved by Bicho, while the rest were found in VC

log data (CVSAnalY), but never summarised into BT data retrieved by a BT system

tool (Bicho). This thesis presented and conducted a large empirical study that mined

the VC logs and BT data of 344 OSS projects, hosted on GitHub4. Thus, this thesis

provided a large and significant statistical conclusion with reasonable evidence in the

issue of traceability links recovery and syncing of VC log and BT data from open-source

software repositories.

C4 – Synchronisation. The thesis presented a tool chain that synchronised VC logs and

BT data, ensuring that data sets held by these tools (Bicho and CVSAnalY) are always

complete and enriched e�ectively. Most importantly: (i) the tool chain avoids the im-

pediment of using incomplete data sets for analysis in empirical software engineering;

(ii) VC log and BT data can be identified and retrieved with higher precision; and (iii)

consistent and unskewed data sets can be obtained, since the missing information in

both tools is tracked and synchronised.

C5 – Tool chain. This thesis proposed and implemented a complete tool chain not only for
4
https://github.com/

12

Introduction: Chapter 1 Research Goal and Objective

extracting, but also for automatically syncing VC logs (development logs) and bugs of

issue data (BT data) – that is, supporting multiple BT system and VC system.

The novelty of the tool chain, apart from the fact that it supports various OSS reposito-

ries, is its ability to synchronise missing VC logs (concerning bugs) with data extracted

from the BT system, and vice versa. Finally, this tool chain was made available.

1.4 Beneficiaries and impact of this thesis

1. Open-source software (OSS) community This thesis benefits OSS community that

aim to design and develop tools for retrieving VC logs and BT data collectively that

(i) support various BT system and VC system sources; (ii) allow cross-analysis of BT

data and VC logs; and (iii) track and synchronise missing BT data and VC logs of

software projects, ensuring that complete and consistent data sets are always stored in

the database for posterior analysis.

2. Researchers in software corrective maintenance: Researchers in software main-

tenance and evolution benefit from this thesis, since the source of data most commonly

used by researchers in software corrective maintenance is, by far, VC logs and BT data.

Using the tool chain to extract data from various sources will help researcher by improv-

ing the quality of the data sets they used. Similarly, researchers can extract complete

VC logs and BT data from various sources, and also understand the inner mechanisms

of producing software artefacts that are required for research and analysis in software

engineering.

3. Researchers in empirical software engineering: The novelty of the tool chain,

apart from the fact that it supports various OSS software repositories, is its ability

to synchronise missing development logs (concerning bugs) with data extracted from

the BT system, and vice versa. As a result, researchers of bugs in empirical software

engineering benefit from this thesis by using the tool chain in mining complete sets of

evolutionary facts to provide an unbiased data set.

13

Introduction: Chapter 1 Structure of the Thesis

In general, both large OSS and commercial projects can be analysed in order to extract

and establish missing links and sync BT data with VC logs (and vice versa) for posterior

analysis.

1.5 Structure of the thesis

This chapter introduces the road map for the thesis and the contribution to knowledge.

Chapter 2 presents the state of the art of the existing tools and techniques in the literature.

Also, Chapter 2 Section 2.4 present the context of this thesis and discuss the literature related

to mining software repositories, software maintenance and evolution, and open-source software.

The approach (methodology) is discussed in Chapter 3.

Chapter 5 presents an empirical study. The results of the empirical study in this thesis,

carried out with over 300 OSS projects sampled from GitHub, are presented in Chapter 5.3.

The results suggest BT data are not mirrored when compared to the VC logs of the same OSS

project.

This thesis presents the SZZ replication with large OSS projects (344) using an improved

approach in Chapter 4. Chapter 6 discusses the automating and filling the missing data of 344

OSS projects sampled in this research. Chapter 6.3 details the structure and implementation

of the framework proposed by this thesis and describes how to sync and cross-analyse the two

sets of bug-related data (VC logs and BT data) and vice versa.

The threat to validity based on our finding in every chapter of this thesis in general are

discussed in Chapter 7.5. Finally, the thesis concludes in Chapter 7.7.

Appendix A in Section A.1 presents the tool chain (codes) developed and used in the

empirical study reported in this thesis. Table 1.1 summarises the thesis structure, as follows:

Figure 1.6 depicts an overview of this thesis, which will be discussed in more detail in

Chapter 6.3. The left-hand side of this figure (as highlighted) is firmly established in the data

found in the open repositories, among the ones described in Chapter 2 Section 2.2 of this

thesis.

Below is a list of the publications based on this thesis:

14

Introduction: Chapter 1 Structure of the Thesis

Issue Analyser

Log Analyser

Issues

Logs

Bug/
Fixed/
#6515

Syncing Process

Bug/
Fixed/
#6515

Bug/
Fixed/
#6515

Issues

Logs

SQL queries

 GitHub

 GitHub

Automated Entries
into Bicho

Automated Entries
into CVSAnalY

Figure 1.6: Architectural overview of the framework

Chapter Title Bibliography
2 State of the Art [109]
3 Methodology [108]
4 Locating bugs in VC Logs [108]

5 Discrepancies between the bug sets from VC logs and BT data [109]
[108]

6 Automating and synchronising the missing data [109]
[108]

Table 1.1: Our publications related to the chapters of this thesis.

15

Introduction: Chapter 1 Structure of the Thesis

1. Romo, B. A. and Capiluppi, A. 2015. Towards an automation of the traceability of bugs

from development logs: a study based on open source software. In Proceedings of the

19th international Conference on Evaluation and Assessment in Software Engineering

(Nanjing, China, April 27 - 29, 2015). EASE ’15. ACM, New York, NY, 1-6. DOI=

http://doi.acm.org/10.1145/2745802.2745833

2. Romo, B. A., Capiluppi, A., and Hall, T. 2014. Filling the Gaps of Development Logs and

Bug Issue Data. In Proceedings of the international Symposium on Open Collaboration

(Berlin, Germany, August 27 - 29, 2014). OpenSym ’14. ACM, New York, NY, 1-4.

DOI= http://doi.acm.org/10.1145/2641580.2641592

16

Chapter 2

State of the art

In this chapter, we discuss definitions and terms mentioned in this thesis, and we discuss

the di�erent types of bugs and their categories. Also, we discuss the state of the art in

extracting data from the commit logs and bug tracking issue trackers, and their related tools

and techniques.

2.1 Introduction

The “software maintenance” and “software evolution” research fields have become very active

and well respected within software engineering research, and the terms software evolution and

software maintenance are often used as synonyms. For instance, the International Standards

Organisation [63] and [21] emphasise the importance and need for pre-delivery aspects of

software maintenance as well as the post- delivery stage (i.e., its evolution).

The IEEE 1219 Standard for Software Maintenance [1] defines software maintenance as

“the modification of a software product after delivery to correct software failure. It will improve

performance or other attributes or to adapt the product to a modified environment.”

On the other hand, software evolution, in general, implies that something in the code base

has changed for the better. The Merriam-Webster Dictionary defines evolution as “a process

of continuous change from a lower, simpler, or worse to a higher, more complex, or better

state”. Thus, it captures our intuitive concepts about something that is improving.

17

State of the Art: Chapter 2 Introduction

The main driving factor of the first conference on software engineering (organised in 1968

by the NATO Science Committee) was to establish and use “sound engineering principles to

obtain reliable, e�cient and economically viable software”. Similarly, it was mentioned that

software maintenance is among the activities of software engineering, and considered as a

post-production activity – that is to say, after delivery and deployment of a software project.

Referring to the early definitions of software maintenance, Royce in 1970 shared and pro-

posed the well-known waterfall life-cycle process for software development. This process model

was inspired as a result of established engineering principles, which include a maintenance

phase (but not an evolution one) as the final phase in the life cycle of a software system [110].

The ISO [63] also proposed the following categories for software maintenance:

1. Corrective maintenance is the modification of a software project after delivery (at the

post-delivery stage) to correct identified faults.

2. Preventive maintenance is the modification of software to prevent future faults (at the

post-delivery stage).

3. Adaptive maintenance is the modification of software projects after delivery (at post/pre-

delivery stage) to keep the software system functioning in a di�erent software platform.

4. Perfective maintenance is the modification made to software projects to maintain and

improve the software perfectiveness and quality (at the post-delivery stage).

The term “software evolution” attracted renewed attention in the 1990s following the

classic and insightful work of [81] as well as [82]. In these studies, software evolution has been

accepted as an area of research worth studying and an area that poses serious problems and

challenges to software projects.

Software evolution has been studied for the past 60 years, and has become an even more

prominent area of study since the pioneering works by Lehman and Belady. In most research

on software evolution, there is an awareness of the rapidly increasing importance and impact of

software projects in many activities of society. In the 1990s, the term software evolution gained

18

State of the Art: Chapter 2 Introduction

widespread acceptance, and the research on software evolution started to become popular [8],

[96].

Evolutionary processes such as evolution development [47], the spiral model [20] and the

stage model [13] have shed additional light on how systems evolve and their dynamics.

This research will improve the tool sets that support the maintenance of software projects

in the pre-delivery and post-delivery stages of software development [21]. The focus of this

work is intended to be specific, because the tools generally used in mining bug-related data,

for software maintenance and evolution activities, are not always producing exactly the same

sets of bug data (i.e., they are not in sync) [109]. In addition, this thesis also focus on

linking bug reports to code changes and vice-versa, so that better quality bug data can be

mined for researchers that hopefully will benefit practitioners. However, the data stored by

BT tool and VC tool could be crucial for research in cost estimation, software quality and

fault prediction techniques: therefore, a better understanding of how this data collection could

be better achieved is of paramount importance.

The fields of software maintenance and evolution have received renewed attention due to

the availability of open-software repositories that allow researchers to mine data to construct

models and techniques. In the next subsection, we present the di�erent types of repositories,

how they became available to practitioners, and what could be mined by researchers.

2.2 Types of software repositories

Mining software repositories, to extract process and product data, is now considered as a

research field, and the term mining software repositories (MSR) has been defined to describe

a broad class of analyses dealing with the examination of software repositories. In this research,

software repositories, in general, are storage websites that hold several of the artefacts designed,

produced and archived during software evolution [132] [67] [56] [48] [133] [131].

The most commonly used software repositories allow OSS projects to store the informa-

tion about bugs and relative to the VC logs. Systems such as Concurrent Versions System,

Subversion (SVN) and Git are being commonly used by developers to maintain a log of all the

19

State of the Art: Chapter 2 Introduction

activities done by developers on a software system.

On the other hand, repositories to hold bug data, their date of inception, their resolution

date (if any) and so on have long since been made available as issues/bug-tracking systems.

Examples of such BT systems include Bugzilla1, SourceForge2 and JIRA3. Communication

archives (e.g., e-mail or mailing lists) have also been used in past research [77], mostly as a

means of triangulating other data, for instance to determine the list of authors and developers

discussing the issues around code production [101].

Based on their characteristics and uses, the following are the categories of software repos-

itories:

1. Historical repository: This type of repository records the evolutionary facts concern-

ing the progress of a particular software project. Source control repositories and bug

repositories are examples of this type of repository. Software repositories are quite often

used in software engineering as a way of storing and keeping a record of an open-source

software project. For instance, historical repositories are used to track the history of a

bug or changes made to a software artefact.

2. Runtime repository: Involves VC logs that contain information about the execution and

usage of a software system in both single and multiple deployment sources.

3. Code repository: Host several open-source software projects – for example, Source-

forge.net, Google Code and Codeplex.com – including their source code.

The information stored in these repositories provides software practitioners and researchers

with the ability to mine source code, bug-related data and the VC logs. In this thesis, we

consider all the repositories mentioned above to mirror important and interesting software

artefacts [43].

Information that exists in these repositories remains throughout the entire stages of the

software project. This information might represent thousands of versions with years of facts
1
https://www.bugzilla.org

2
http://sourceforge.net

3
https://www.atlassian.com

20

State of the Art: Chapter 2 Definition

about the development process of a software system. Software engineering researchers have de-

vised and investigated a wide range of approaches to extract relevant information and revealed

relationships and trends from repositories in the context of software evolution [67].

2.3 Definitions and terms

In this subsection we report some definitions adapted from the IEEE Standard Classification

for Software Anomalies [2], including defect, error and fault. The use of these terms di�ers

with respect to each organisation or software project. In this case, the approach is to use the

terms bug, defect and errors with respect to a particular definition or term adopted and used

in a given software project and organisation.

The definition of a VC log is added to these basic definitions.

• Defect: A defect is an imperfection found in a system where the system does not conforms

to its specifications and need be corrected or replaced. (adapted from IEEE Standard

1044-2009 [2])

• Error: Error is a human action that result to incorrect functions defined as per the

software requirement specification document and the actual product. (adapted from

IEEE Standard 1044-2009 [2])

• Bug: A bug is an error found before the system is delivered to the client. In some cases

the terms bug and defect are used interchangeably to refer to an error found and reported

before and after a system has been designed, developed and delivered to the client.

• Fault: A fault is an error that causes a failure to the system which might terminate the

whole functionality of a system. (adapted from IEEE Standard 1044-2009 [2]) Faults

occur as a result of a discrepancy in source code which can deviate from the system

requirements.

• Version control system log: VC log refers to related information provided by software

developers regarding changes made in a source code in order to fix errors, bugs, defects

and faults that occur and are reported in a software project.

21

Context Definition

The VC log-related information is achieved in a control version system (as discussed in

section 3.3) where all the logs pertaining to a given software project can be accessed by

practitioners and researchers in software engineering for di�erent purposes.

2.4 Context

Open source software witnessed an exponential growth over the last two decades. Software de-

velopers in this community collaborate and volunteer in developing complex software systems.

Users of the systems and developers can submit bug reports for fixes or changes, developers

in the open source community represent a successful example of software development. De-

velopers in that community participate and collaborate at their convenience and voluntary

basis. There exist two notions of software in the literature such as open source software and

free software. The open source software is advocated by the Open Source Initiative (OSI).

They foster the use, modification, and sharing (in modified or unmodified form) of software by

anyone. Open source software might involve a team of developers and it is distributed under

a license that comply with their Definition (OSI).

In this thesis, we focus on the Free/Libre Open Source Software projects for the following

reasons:

1. The exponential growth and the popularity of OSS projects in commercial industries

2. The free (OSS projects) data and the accessibility to obtain the data from di�erent

software repositories in multiple formats for analysis and experiment. [62]

3. The freedom to publish results of OSS projects without breaching confidentiality agree-

ments

4. The ability to provide researchers and practitioners with both OSS community and

commercials freedom to replicate our findings and study.

5. The opportunity to contribute and adhere to the benchmarks and terms set-up by FSF

and OSI in OSS community.

22

Context Definition

The OSI 4 is a global non-profit organisation focused on promoting and protecting open

source software, development, and communities.

The distribution of open-source software according to OSI must comply with the following

terms adapted from OSI 5:

1. Free Redistribution: The license shall not restrict any party from selling or giving away

the software as a component of an aggregate software distribution containing programs

from several di�erent sources. The license shall not require a royalty or other fee for

such sale.

2. Source Code: The program must include source code, and must allow distribution in

source code as well as compiled form. Where some form of a product is not distributed

with source code, there must be a well-publicized means of obtaining the source code for

no more than a reasonable reproduction cost preferably, downloading via the Internet

without charge. The source code must be the preferred form in which a programmer

would modify the program. The deliberately obfuscated source code is not allowed.

Intermediate forms such as the output of a pre-processor or translator are not allowed.

3. Derived Works: The license must allow modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original software.

4. Integrity of The Author’s Source Code: The license may restrict source-code from being

distributed in modified form only if the license allows the distribution of "patch files"

with the source code for the purpose of modifying the program at build time. The

license must explicitly permit distribution of software built from modified source code.

The license may require derived works to carry a di�erent name or version number from

the original software.

5. No Discrimination Against Persons or Groups: The license must not discriminate against

any person or group of persons.
4http://opensource.org/
5http://opensource.org/definition

23

Context Definition

6. No Discrimination Against Fields of Endeavour: The license must not restrict anyone

from making use of the program in a specific field of endeavour. For example, it may

not restrict the program from being used in business, or from being used for genetic

research.

7. Distribution of License: The rights attached to the program must apply to all to whom

the program is redistributed without the need for execution of an additional license by

those parties.

8. License Must Not Be Specific to a Product: The rights attached to the program must

not depend on the program’s being part of a particular software distribution. If the

program is extracted from that distribution and used or distributed within the terms

of the program’s license, all parties to whom the program is redistributed should have

the same rights as those that are granted in conjunction with the original software

distribution.

9. License Must Not Restrict Other Software: The license must not place restrictions on

other software that is distributed along with the licensed software. For example, the

license must not insist that all other programs distributed on the same medium must be

open-source software.

10. License Must Be Technology-Neutral: No provision of the license may be predicated on

any individual technology or style of interface.

Moving on to this, the Free Software Foundation (FSF) promotes the freedom to defend the

right of the free software users. The following terms define four degrees of software freedom:

1. Redistributing copies of the software program

2. Executing a software program, for any private or commercial purpose

3. Distributing modified copies of the software program, also, given the community the

accessibility of the opportunity to source code, changes as well as improvement made to

the software program.

24

Context Definition

4. Accessing the source code to revise and peruse software functions and to adapt it to user

desire.

The aforementioned degrees define a precise goal and the term free and open source soft-

ware. Moreover, the term Libre software was coined to refer to the same notion of free software

and open source software thus the ambiguity of the word free in English Language.

The FSF emphasises the “why” promotion and defending the freedom of free software

or open-source software. While, the OSI focuses on the availability of source code and the

process of developing open source software project. Accordingly, the OSI open-code comprises

developing software model that involves the freedom of revision by developers in the process

of open-source software development project with transparency or openness.

However, the discrepancies of OSI and FSF is regarded as less significant in the context

of this dissertation. In this way, the terms Open Source Software (OSS) project is used to

exemplify a software system developed base on these two concepts that is to say OSI and FSF.

We use the terms commercial software project to refer non-open source software in this

thesis.

2.5 Categories of research around bugs

Past research on bug-related data has mined bug databases containing a wealth of information

about software failures and their reports. The research around these topics has centred on

how the failure occurred, what part of the system was a�ected, and how it was fixed. The

detailed information on these aspects can be automatically mined from bug tracking systems

and version control systems, and researchers in software engineering used this information to

predict future occurrences of defects, bugs and errors in software projects. Figure 2.1 depicts

a taxonomy of bug research areas, which will be discussed in the subsections below.

The rationale for categorising bugs in this thesis is of course to highlight the importance

of BT data and VC logs data sets and how they were applied in each category or branch that

we study in this research. The data used to produce this representation was selected using all

the relevant papers from the series of international workshops on mining software repositories.

25

Context Definition

Figure 2.1: Di�erent areas of research on bugs

Each of these research areas is analysed below to highlight the main results based on the

related literature.

2.5.1 Bug triaging

Bug triaging in OSS projects is a way of assigning bugs to developers for fixes: the “triager” is

a member of a software project who can assign a bug to developers. Also, the triager decides

whether a bug is new, unconfirmed or reopened. If the bug has been fixed, then it will be

marked as resolved. The bug is also marked as resolved if a change or fix is not needed; for

instance, when the bug is duplicate, invalid or won’t fix, it can be closed. In addition, when

the bug is resolved, quality assurance tests take place before marking the bug status to either

verified, closed, reopened or unconfirmed [7].

The following are some of the papers we study and categorise in this research based on

bug triage.

1. The researchers in [93] propose an approach to help in bug triaging processing by classi-

fying and predicting which developer needs to work on a bug that is reported based on

the description that exists in the bug report. The system uses the naive Bayes classifica-

26

Context Definition

tion to automatically assign the report to a developer. It was evaluated on the Eclipse

project and indicates an accuracy of 30%.

2. The researchers in [65] propose a graph model, based on Markov chains, that captures

bug reassignment history. The model assists bug triagers to better assign developers

to bug reports. The researchers e�ectively conducted their experiments with 445,000

bug reports. Accordingly, their model reduced bug reassignment events by up to 72%

and increased the prediction accuracy by up to 23% when compared to traditional bug

triaging techniques.

3. The researchers in [7] present a machine-learning-based technique that creates recom-

mendations that assist development-oriented decisions. The authors present three di�er-

ent kinds of development-oriented recommenders, namely: (i) a developer recommender

that suggests which developers might fix a bug; (ii) a component recommender that

suggests to which product component a report might pertain; and (iii) an interest rec-

ommender that suggests which developers on the project might be interested in fixing

the bug. They conducted their study with five OSS projects. The results suggest bug

reports are recommended su�ciently, with up to 75% accuracy.

2.5.2 Bug life cycle

The life cycle of a bug describes a sequence which a bug must traverse before it sets

to fixed in software projects [33]. Figure 2.2 depicts a life cycle of a bug and shows all

the sequences of a bug as well as the transition stages. The statuses –New, Assigned,

Resolved, Verified, Unconfirmed, Reopened and Closed – represent the stages. All the

related information regarding the activities and statuses of a given bug are achieved in

bug tracking systems like BugZilla and GitHub.

The life-time of bug describes a sequence of a cycle in which a bug most traverses before

it has to be fixed in software projects [33]. The figure 2.2 depicted a life cycle of a bug

and showed all the sequence of a bug as well as the transition stages. The statuses such

as New, Assigned, Resolved, Verified, Unconfirmed, Reopened, and Closed represent the

27

Context Definition

stages. In addition, all the related information regarding the activities and statuses of a

given bug are achieved in bug tracking systems like BugZilla and GitHub.

Figure 2.2: Bug life cycle

The following are some of the papers we study in this taxonomy based on the bug life

cycle.

4. The researchers [98] explored the importance of data mining tools to predict the time

to fix a bug using the information obtained at the beginning of a bug life cycle. The

result reveals that an accuracy of 34.9% can be achieved. In addition, the researchers

are speculating that the higher level of attributes, such as the average lifetime of a bug

in specific components or products, may have a greater predictive power.

5. The researchers [33] propose an approach to support the analysis of a bug database,

using two visualisations. They highlight the critical parts of the system, such as the

components a�ected by most of the bugs. In addition, the researchers consider bug

tracking systems, which store data about bugs reported by users or developers. The

researchers briefly introduce the context by reporting on the particularities of the present

28

Context Definition

data, and then propose two visualisations to render bugs.

2.5.3 Bug reporting

Bug reports are of vital information in any software development project. They allow

users of the system to inform developers of the problems encountered while using the

system. Bug reports typically contain a description of the problem encountered while

using software in natural language text format, which is used by researchers in empirical

software engineering and practitioners to automatically assign developers [6] and loca-

tions where the bug can be fixed [24]. In addition, bug reports help to recognise bug

duplicates [111] and predict correction e�orts in an OSS project [126].

The following are some of the papers we study in our taxonomy based on bug report-

ing.

6. The researchers [35] e�ectively investigated how users of the system are reporting bugs:

what information they provided, how frequently, and the consequences of such a bug

report.

The researchers examined the quality and quantity of information provided in 1,600

bug reports drawn from four open-source projects (Eclipse, Firefox, Apache HTTP and

Facebook API) that recorded what information users actually provide, how and when

users provide the information, and how this a�ects the outcome of the bug. The results

indicate that the observed behaviour and expected results appeared in more than 50%

of reports. Accordingly, there is no strong relationship observed between the provided

information and the outcome of the bug.

7. The researchers [6] applied a machine-learning algorithm to the open bug repository and

learned the kinds of reports each developer resolves. Their approach uses a supervised

machine-learning algorithm that is applied to information in the bug repository.

Their results reached precision levels of 57% on the Eclipse development project. For

the Firefox development project, their approach achieved precision rates of over 50%,

29

Context Definition

reaching 64% on one recommendation. For the GCC project, the results were far worse,

with a precision rate of only 6% for one recommendation because of the characteristics

of the project, such as one developer dominating the report resolution process.

8. The researchers [61] present a descriptive model of bug report quality based on a sta-

tistical analysis of surface features of over 27,000 publicly available bug reports for the

Mozilla Firefox project. In addition, the model predicts whether a bug report is triaged

within a given amount of time.

The results indicate the model performs significantly better in terms of precision and

recall. In addition, the researchers suggest the model can reduce the overall cost of

software maintenance in a setting where the average cost of addressing a bug report is

more than 2% of the cost of ignoring an important bug report.

9. The researchers [14] conducted a survey to determine the information on bug reports

that Eclipse developers used and the problems they frequently encountered. The results

suggest that steps to reproduce and stack traces are most useful in bug reports. The

most harmful problems they frequently encountered were errors in steps to reproduce,

incomplete information and wrong observed behaviour.

10. The researchers [52] conducted a large-scale quantitative and qualitative analysis of

the bug reassignment process in Microsoft Windows Vista, using both quantitative and

qualitative approaches. The researcher e�ectively quantified social interactions in terms

of both useful and harmful reassignments. Their results suggested that reassignments

are useful to determine the best person to fix a bug, contrary to the popular opinion

that reassignments are always harmful.

11. The researchers [22] quantitatively and qualitatively analysed the questions asked in

a sample of bug reports from the Mozilla and Eclipse projects. The result highlights

the importance of engaging with the community e�ectively and e�ciently in bug-fixing

activities as well as keeping them up to date about the status of a bug report.

12. The researchers [15] conducted a survey of users and developers of Apache, Mozilla and

30

Context Definition

Eclipse to find out what makes a bug report. The results indicate that across all three

projects the step to reproduce the information contained in a bug report was either

incomplete information or wrong observed behaviour. Also the researchers developed a

tool that measures the quality of a bug report. The tool was tested by the developers,

which indicated a rate of about 41% of a bug report in complete agreement with the

developers.

13. The researchers [76] investigated how often users participate in an open-source project

and what they contribute. In addition, they further investigated and analysed the reports

of Mozilla contributors who report a bug but were never assigned to fix the problem.

Their result suggests that users are not contributing to OSS projects and that only

Mozilla developers do contribute. According to their findings, one can argue that users

do contribute in identifying and fixing bugs, though they might not contribute to the

e�ort to fix the bug they reported.

In this regard, without the users who report a bug or experience a fault in the system,

how could a developer be aware that a certain fault exists within a software component

after it has been delivered to the client? Even if the bug report is not clear enough to

provide developers with the information they need to fix the bug, there are techniques,

such as machine learning and text-mining algorithms, that extract the information they

need or identify duplicate bug reports that will lead to a better bug report in an open

bug reporting system.

14. The researchers [61] present a model that automatically filters a bug report. This model

can predict whether a bug report has been triaged within a given period. The empirical

evaluation shows that it reduced software maintenance costs by an average of 2% if the

average triage cost is not greater than the cost of ignoring the important bug report.

2.5.4 Duplicate bug reports

The following are some of the papers we study in this category based on duplicate bug

report.

31

Context Definition

15. The researchers [124] investigated duplicate bug report detection in mining software

repositories using natural language and execution information. The experiment was

conducted using Firefox and Eclipse bug repositories. The results of the experiment

show that use of execution information can detect 67–93% of duplicate bug reports in

the Firefox bug repository, while use of natural language information can detect 43–72%.

The analysis of the results indicates natural language at some stage failed to detect more

duplicate bug reports in Eclipse and Firefox repositories, while the execution information

detected more duplicate bug reports.

16. The researchers [111] investigated the detection of duplicate bug reports in a case study,

analysing defect reports at Sony Ericsson mobile communication using natural language

processing techniques. The result of their study shows that about 2/3 (40%) of the

duplicates can be found using natural language processing.

17. The researchers [16] presented empirical evidence that duplicate bug reports contain

valuable information that helps developers to fix a bug.

18. The researchers [119] propose a new model design to detect duplicate bug reports on

a three-bug repository (Open O�ce, Eclipse and Firefox). The result shows a relative

improvement of 17–31%, 22–26%, and 35–43% in Open O�ce, Firefox and Eclipse data

sets respectively.

19. The researchers [118] measured the similarity between two bug reports by introducing

a retrieval function that utilised the information available in a bug report, as well as

optimised the proposed retrieval function for specific bug repositories, such as Mozilla,

Eclipse and Open O�ce. The results show a 10–27% relative improvement in mean

average precision over the previous model – that is, the character N-gram-based model

by [120].

20. The researchers [120] compared existing models in detecting duplicate bug reports, where

the proposed model indicates a low-level feature to represent the title and detailed de-

scription of a bug report.

32

Context Definition

21. The researchers [122] extended the study of report classification by [64] by utilising

the REP, which was recently proposed for report retrieval problems to measure the

similarities between a bug report and determine whether they are duplicates or not.

There was a new notion of similarity between two bug reports are significant enough.

Their preliminary results indicate the approach is e�ective to increase the true positive

rate of 200%.

2.5.5 Bug severity

The following are some of the papers we study in this category based on bug severity.

22. The researchers [89] present a new and automated approach called SEVERIS (Severity

Issue assignment) that assists test engineers in assigning a severity level to defect reports.

They conducted a case study on SEVERIS with data from a NASA project and an issue

tracking system was presented. The results indicate that using machine learning and

text-mining methods it is possible to automatically predict severity levels from the text

provided in the project issue tracking system.

23. The researchers [78] investigated the possibility of predicting the severity and accuracy

of a reported bug in Mozilla, Eclipse and Gnome by analysing its textual description

using a text-mining algorithm.

The results suggest it is possible to predict the severity using the information provided

in a bug report as well as the textual information describing the bug in the report.

2.5.6 Bug tracking system

The following are some of the papers we study in our taxonomy based on bug tracking

system.

24. The researchers [138] addressed the concerns of a bug tracking system by proposing four

broad directions for improvement with a prototype that demonstrates an interactive bug

tracking system.

33

Context Related tools

25. The researchers [66] investigated and analysed the information needed and commonly

faced problems with bug reporting. In addition, they conducted a survey on Apache,

Eclipse, Mozilla projects and the feedback from 172 developers and users, and suggested

a list of seven recommendations for a new design of a bug tracking system.

26. The researchers [64] investigated and proposed a technique to reduce the cost of the

software triaging process. The proposed technique uses surface features, textual seman-

tics and graph clustering to predict the duplicate status of a bug report. In addition,

the technique is capable of reducing software maintenance costs by filtering out 8% of

duplicate bug reports.

Figure 2.3 below is a box plot summarising the number of papers most commonly cited in

each category of bug research that we studied in the literature.

Figure 2.3: Number of papers cited most in bug research categories

Figure 2.4 below summarises the highest number of researches in each category of bug

research that we considered in our taxonomy.

34

Context Related tools

Figure 2.4: Number of researches in each category of bug research

2.6 Related tools

Current solutions (tools) have been devised by [80] [17], [130], [121], [3], [29], [83], which are

all attempts to integrate and trace missing links between VC logs and BT data accurately. In

this way, it is important to improve these tools by synchronising the recovered links of VC

logs and BT data in either database automatically.

In this section, we will discuss the related tools for tracking VC logs and BT data. In

addition, we will discuss the related work regarding the techniques that were undertaken to

retrieve VC logs and BT data. We will discuss the tools that extract VC logs and BT data,

as follows:

1. BucoReporter 6

2. Bug-Code Analyser 7

6
http://java.uom.gr/buco/

7
http://www.seiplab.riteh.uniri.hr/?page_id=492&lang=en

35

Context Related tools

3. Linkster 8

4. Relink 9

2.6.1 Linkster

By way of background, the Linkster tool involves a series of steps to retrieve, parse as well as

convert and link data sources [17]. As a result, it requires significant manual e�ort to track

missing links between BT data and VC logs.

Figure 2.5: Linkster tool screenshot adapted from [17]

Figure 2.5 depicts a screenshot of the Linkster tool by [17], which displays three kinds

of information on Windows: (i) commit transactions including all the changed files; (ii) bug

reports; and (iii) di� and blame information for all of the lines in a file before and after a

particular commit. In addition, the tool requires access to VC system and BT system.

2.6.2 Relink

ReLink, developed by [130], collects information automatically from the source code repository

and bug tracking system, builds the resulting information linked to bugs/issues or logs and

outputs the identified links. Figure 2.6 depicts the overall process of the ReLink tool.
8Linkster is not publicly available for download.
9
https://code.google.com/p/bugcenter/wiki/ReLink

36

Context Related tools

Figure 2.6: Architectural overview of Relink Tool adapted from [130]

ReLink was applied to three open-source projects – ZXing, OpenIntents and Apache – and

two simulation studies on Apache and Eclipse MAT [130].

The researchers e�ectively evaluated the recovered links that are manually recovered and

verified links. On average, for the three OSS projects, ReLink recovered links with 78% recall

and 89% precision, while traditional heuristics only achieved 64% recall and 91% precision.

In general, the tool requires a large amount of interaction, but recovers missing VC logs

and BT data accurately.

2.6.3 Buco Reporter

The BuCo Reporter, developed by [83], is an extensible framework that mirrors development

logs and the bug tracking data, and it generates a complete set of evolutionary facts and

metrics about a given OSS project. BuCo accurately traces development logs and bugs, but

it was not designed and developed to “synchronise” the missing development logs and bugs

if discrepancies were found. Figure 2.7 depicts the core module of BuCo Reporter.

37

Context Related tools

Figure 2.7: Core module of BuCo Reporter adapted from [83]

2.6.4 Buco Analyser

BuCo Analyser was designed and developed to e�ectively retrieve VC logs and BT data from

open-source bug tracking systems and source code management repositories. The tool ad-

dressed the issue of linking VC logs and BT data sources, but still failed to synchronise the

recovered and linked VC logs and BT data.

Figure 2.8 depicts an architectural overview of BuCo Analyser. The external interfaces

that connect BT system and VC system allow the tool to extract VC logs and BT system raw

data, as well as perform the calculation on software metrics that exist in OSS projects [87].

Figure 2.8: Architectural overview of the BuCo Analyser tool adapted from [87]

38

Context Related tools

On the other hand, below are some of the tools that extract VC logs and BT data inde-

pendently, each of which we will discuss in detail.

1. Bug Locator 10

2. Bicho 11

3. CVSAnalY 12

4. Hipikat 13

5. SoftChange 14

2.6.5 Bug Locator

Bug Locator, which was proposed by [136], can automatically search for relevant BT data in

the source code based on initial bug reports. It can e�ectively retrieve BT data by issuing a

given query to evaluate BT data localisation performance. In addition, it utilises the relevant

information regarding the BT data that exist and have been confirmed as fixed. Bug Locator

uses the Vector Space Model to extract e�ectively relevant BT data. Thus, the tool traces

links between VC logs and BT data using the traditional heuristics proposed by [11]. In this

way, it is not designed to support the integration and synchronisation of VC logs and BT data.

However, the tool e�ectively performs bug localisation in general.

2.6.6 Bicho

Bicho15 is a command-line-based tool used to extract BT data from BT systems like Bugzilla,

Sourceforge, GitHub and JIRA. Specifically, Bicho extracts bug information such as Priority,
10

https://code.google.com/p/bugcenter/downloads/list

11
https://github.com/MetricsGrimoire/Bicho

12
https://github.com/MetricsGrimoire/CVSAnalY

13
https://www.cs.ubc.ca/labs/spl/projects/hipika/downloads.html

14
http://sourcechange.sourceforge.net/

15Bicho supports the following trackers: Bugzilla (> 4) Sourceforge.net (abandoned), Jira (unstable), Launch-
pad, Allura (unstable), Github (unstable).

39

Context Related tools

Status, Resolution and Changes and is automatically stored in a MySQL database. Figure 2.9

is the Bicho schema16 and depicts relevant entities in the Bicho database.

In this way, the purpose of Bicho is to retrieve BT data from BT system such as BugZilla

and GitHub and store the information locally in a MySQL database for posterior analysis.

Figure 2.9: Bicho schema

2.6.7 CVSAnalY

CVSAnalY is also a command-line-based tool that extracts data out of logs of repositories

and then automatically stores them in a MySQL database for subsequent analyses.

The purpose of CVSAnalY is to analyse the events that occur in the source code. This

includes the developers’ actions during software corrective maintenance activities from various

source code management systems [107] like CV system, SVN or Git and stored VC logs in

MySQL databases.

The structure of CVSAnalY was designed with ten entities (tables) and three additional
16

https://github.com/MetricsGrimoire/Bicho

40

Context Related tools

entities. In addition, it is divided into two main parts. The first part consists of the set

of entities that represent the history of the project based on the information from the log.

CVSAnalY filled these tables during the parsing process exclusively with the information

provided by the repository log (SCM). Thus, these tables will always be present in the schema

independently of how CVSAnalY is executed.

Also, the second set of tables in CVSAnalY is composed of tables of various extensions.

Information provided in these tables depends on every CVSAnalY extension. Figure 2.10 is the

CVSAnalY schema17 including relevant entities that exist in the CVSAnalY database. Also,

each table contains a data field and data type where the information extracted by CVSAnalY

is held in a MySQL database.

2.6.8 Hipikat

Hipikat, proposed by [30], is a tool designed to form an implicit group memory from the VC

logs of software projects and recommend source code from the archives that are relevant for

fixes when a new developer in an OSS project is assigned to perform a certain task. Hipikat

functions as a plug-in that works within the Eclipse IDE. Thus, it is designed to recommend

VC logs of OSS projects and is not suitable to automate and sync VC logs and BT data.

Figure 2.11 depicts a screenshot of Hipikat run in Eclipse IDE. In summary, it e�ectively

recommends source code to new developers in software development projects.

2.6.9 SoftChange

SoftChange, by [46], retrieves software artefacts and is designed for the analysis and enhance-

ment of software artefacts retrieved from CV system. In addition, it allows the user to visualise

the information e�ectively. However, the purpose of SoftChange is to analyse the VC logs to

help uncover the history and evolution of the software project. In this way, it might be di�cult

to support the synchronisation and integration of various sources, such as VC logs and BT

data, simultaneously, since it is designed to extract information from VC system purposely to

visualise the evolutionary aspect of a given OSS project.
17

https://github.com/MetricsGrimoire/CVSAnalY

41

Context Related tools

Figure 2.10: CVSAnalY schema

42

Context Related tools

Figure 2.11: Screenshot of Hipikat adapted from [30]

43

Context Related tools

Figure 2.12 depicts an architectural overview of SoftChange.

Figure 2.12: Architectural overview of SoftChange, adapted from [46]

However, research by Kim et al [75] and Sliwerski et al [116] has demonstrated and validated

manually that the VC logs and bug-related data are referring and pointing to actual fixes using

SZZ algorithm (discussed in Section 2.7 of this chapter) as well as automatically and accurately

identifying bug-introducing changes. In this thesis, we go one step further and improve the

functionality of a VC tool and BT tool we studied and reported in Section 2.6 of this chapter

by synchronising (filling) the missing data (i.e., BT data and VC logs) of OSS projects in

their respective database and, in an automatic way. Similarly, the study by Sureka et al

[121] applies a formal mathematical model to automate the process of identifying missing

links between bug-fixing commits in VC logs and their associated bug reports. The model is

e�ective in recovering such missing links: in this research, as mentioned earlier, we proposed

to use the identified discrepancies to synchronise the VC logs or BT data when missing links

are recovered.

Traceability links are needed to building defect prediction models and [134]. However,

44

Context Related tools

the available tools to document VC logs and BT data lack integration [42]. As a result, two

independent sets of bug-related data are produced, filling di�erent databases [80] [109]. It has

been suggested that using the bug IDs from VC log messages could help to identify and recover

missing traceability links [51] [85] [10]. These logs need to be manually or semi-automatically

analysed and compared, to determine if logs and IDs from BT system are referring to the

same set of bug IDs, or if they refer to disjoint sets.

2.7 Related techniques - SZZ algorithm

Various researchers, including [30] [42] [75] [116] [3] [121], have attempted to integrate and

identify missing links between VC logs and BT data into BT Systems and VC Systems. In

this thesis, we applied the same technique, but di�erently with an attempt to “synchronise”

either the missing VC logs or BT data of software projects using the SZZ algorithm.

However, Mausa et al [88] e�ectively evaluated the current techniques and approaches to

solving the traceability issues in linking of VC logs and BT data of OSS software projects. In

general, they found that the use of regular expressions might work well. Also, they suggest

that researchers and practitioners should adapt each part of the subset of the SZZ algorithm

(i.e., “fix”, “bug” and # identifier) to a particular software repository, perhaps to a software

project in traceability links. In this way, it is important to dissect the most widely used SZZ

regular expressions [116], because it will serve as a guide in syncing complete recovered VC

logs and BT data of open-source software projects.

Moreover, the study of Matsuda et al [86] proposes a technique for hierarchically grouping

commits that are similar to our approach for BT data to retrieve sets of operations by speci-

fying the granularity of VC logs. Their technique e�ectively reorganises VC logs by recording

editing operations of source code based on types of refactoring.

The approach of mining VC logs and BT data – that is to say, SZZ – is among the widely

used algorithms to look for bug-fixing commits, with a set of simple rules [116]. A recent

study by Shepperd et al [113] contributes a significant and more appropriate way to clean

bug-related data sets for empirical research applied to the NASA case study.

45

Context Summary

VC logs and BT data have been searched in basically two ways: (i) by using keywords

such as “fixed” or “bug” [91]; and (ii) by searching for references to bug reports, for instance

the use of the # sign and various numeric values (e.g., #1234) that are linked to the ID of

a bug [30] [42] [74] [116]. The SZZ algorithm is an example of an approach that combines

keywords and proxies to detect bug-fixing commits. Many have used the SZZ algorithm to

detect bug-induced changes in OSS projects, but in this research we use it partially and make

it better in detecting VC logs and BT data of OSS projects.

2.8 Summary of the Chapter

In summary, most of the tools reported and found in the literature retrieve and trace VC log

and BT data e�ectively. Thus, in this thesis we will integrate a VC tool and a BT tool as

well as identify and synchronise the missing data (BT data and VC logs of OSS project) in

their respective databases. The contribution of the presented research is towards a complete

framework to synchronise the missing VC logs and BT data, supporting various repositories

and bug tracking algorithms and approaches [108].

The evaluation of the current techniques and approaches to solving the traceability issues

in linking of VC logs and BT data of software projects by Mausa et al [88] suggests the

use of regular expressions might work well. Similarly, they compare their e�ectiveness with

other well-known bug linking techniques and tools, such as ReLink by Wu et al [130] and

BuCo Reporter by Ligu et al [83], based on the regular expression. Their results suggest the

technique and tools are equally as e�ective as other proposed techniques in solving the issue

of traceability links.

46

Chapter 3

Methodology

3.1 Introduction

In the previous chapter this thesis discussed the tools and techniques related to the issue of

finding bug data in VC logs. In this chapter we will discuss the methodology and techniques

that were applied in this thesis to extract the bug-related data from the VC system and from

the BT system. Similarly, we will discuss the rationale for selecting tools to store VC logs

and BT data. In addition, we will discuss how we selected the OSS projects and automated

the download, extraction and storage of VC logs and BT data. We will also detail how we

performed the comparison between the VC logs and BT data.1

3.2 Sampling an OSS forge

We impose certain requirements and criteria in sampling the OSS forge. The requirements

and criterion itemised below are essential in sampling the required number of OSS projects

needed for this research as follows:

• The OSS project must be maintained and remain under active development. This ensures

the analysed VC logs and BT data will not be obsolete or irrelevant to our approach.
1Parts of this chapter appears in two papers published in OpenSym 2014 and EASE 2015 [109] [108]

47

Methodology: Chapter 3 Sampling an OSS forge

• The OSS project must have at least two accessible repositories: (i) a code repository and

(ii) a bug repository. This is to facilitate a joint automatic extraction and synchronisa-

tion of missing data. Data from these repositories will be extracted by the tool chain

developed for this research using the identified tools (i.e., CVSAnalY and Bicho) pre-

sented in Section 2.6. This criterion has an impact on the OSS projects selected in this

research, because the repositories should have a format that can be processed by Bicho

and CVSAnalY. In particular, the VC logs must be based on Subversion, VC system or

Git – that is, the VC systems supported by CVSAnalY. In fact, both tools sometimes

encounter a time-act during data extraction. The issue was resolved by imposing a delay

of 15 seconds before sending each request to the repository when mining VC logs and

BT data using the tool chain developed for this research. Following this methodology,

only repositories that can be processed by CVSAnalY and Bicho have been considered.

• The OSS project BT system repository must be a tracker supported by the Bicho tool2.

We extracted the projects’ data from the GitHub repository through a crawler developed in

Perl3, obtaining the sample of OSS projects. The FLOSSmole project contains the population

of GitHub projects as of February 2013, as found in http://flossdata.syr.edu/data/gh/2013/.

The population on that data dump is 3,640,870 projects. Below is the formula we used in

calculating the sample size of the OSS forge:

Samplesize = Z

2 ú (p)ú(1 ≠ p)
c

2 (3.1)

Where:

Z = confidence level

p = percentage picking a choice

c = confidence interval (or merging error)

2Bicho supports the following trackers: Bugzilla (> 4) Sourceforge.net (abandoned), Jira (unstable), Launch-
pad, Allura (unstable), Github (unstable)

3Refer to Appendix B in Section A.1 for the script

48

Methodology: Chapter 3 CVS

The sizing of the sample was achieved by considering a 95% confidence level and a 5%

confidence interval, resulting in 384 projects. Each project in the sample was given a unique

ID and the randomisation process was carried out using Excel. A randomiser extracted 384

random numbers between 1 and 3,640,870. After manual inspection, we found that some 40

projects were empty, hence giving an overall number of ‘alive’ projects of 344, which is the

sample that was studied. The final sample of projects can be found on Figshare.4

The justification of the sample size of 344 OSS project in this study was to ensure that

a su�cient number of OSS projects is used in the analysis and evaluation of the proposed

approach. Thus, it is essential to determine the number of OSS projects likely to be required

to avoid a Type II error, which is the likelihood of concluding there is no missing links between

BT data and VC logs of OSS projects [117]. In other words, the 344 OSS projects sampled

in this thesis will be su�cient to ensure that the thesis has acceptable statistical power to

support in validating our hypothesis mentioned in Chapter 1 Section 1.2 (i.e., Obj2 and Obj3)

of this thesis.

However, after obtaining the list of the projects, we then manually checked each of the

344 selected OSS projects to ensure all the projects had met the criteria we set in Section

3.1 of this chapter, before extracting (i.e., checking out the projects’ VC logs and BT data).

The data we obtained via FLOSSmole for all the projects from GitHub do not have the URL

to extract VC logs and BT data. In this way, a project name was randomly selected from

the list of projects. A manual check-up to confirm the URL on the GitHub repository was

also carried out before a project was included in the list of 344 OSS projects in this thesis.

In addition, some of the projects on the data obtained via FLOSSmole do not exist on the

GitHub repository and others were empty. Thus, the projects were excluded from part of the

study and the data randomly replaced. That is to say, the list of the projects on GitHub was

obtained via FLOSSmole. The text file contains the list of all the project names and their

URL, which was used to extract all the VC logs and BT data. The list of the project names

and URL can be found on Figshare.5

4
https://figshare.com/s/be471b90e70865db6a30

5
https://figshare.com/s/be471b90e70865db6a30

49

Methodology: Chapter 3 Distributed and Centralised VC system

3.3 Selecting the most appropriate VC system

VC systems are used to track changes made in the source code by developers at di�erent

stages of a software project [123]. The information about the projects is stored and can be

accessed later for revision and software corrective activities. Researchers benefit from getting

this information by exploring and observing the evolution of software systems to predict which

part of the system might be faulty or needs careful consideration before the system fails during

normal operation. VC systems are a fundamental tool in any open-source software project,

because they help software development teams to keep track of their progress and any other

changes made in the source code during software development [60] [37]. VC systems include

CVS, SVN, Git and Mercurial.

3.3.1 Distributed and Centralised VC system

VC systems are classified into two types: distributed VC systems and centralised VC

systems. The di�erence between distributed and centralised VC systems is that centralised

VC systems keep the logs of changes on a central server, from which every member of the

software development team can request the latest version of the source code or file and then

later push the latest changes/commit they made to the centralised VC system.

In this way, every member of the software development team sharing the server shares the

team source code or files. A typical example of a software repository hosting OSS projects

that uses a centralised VC system is SourceForge. Figure 3.1 depicts an architectural overview

of a centralised VC system.

Conversely, in a distributed VC system, every member of the software development team

has a working copy of the entire project and logs (i.e., source code or files) locally. In this

case, a member of the software development team is not required to be online to commit or

make any changes in the source code. Members of the software development team can pull a

request with any other team member in the software project. A typical example of a software

repository hosting OSS projects that uses a distributed VC system is GitHub. The 344 OSS

projects we sampled for this research use distributed VC systems. One advantage is that in

50

Methodology: Chapter 3 Distributed and Centralised VC system

Figure 3.1: Centralised VC system adapted from [73]

distributed VC systems there is no central system in which the entire logs (i.e., source code)

are hosted; every member of the software development team has a working copy in case there is

a failure or crash in the central VC system server. Figure 3.2 depicts an architectural overview

of a distributed VC system.

Figure 3.2: Distributed VC system adapted from [73]

51

Methodology: Chapter 3 Distributed and Centralised VC system

GitHub 6 has 10 million people and developers who currently contribute to over 26 million

projects; many are active projects [71]. Each repository on GitHub has a dedicated project

page that hosts the source code files, commit history, open issues, and other data associated

with the project [32]. Developers create permanent URLs to link to specific lines of code in a

file. As a result, we chose the GitHub repository and retrieved VC logs and BT data using the

identified tools. Regarding the tools that are used to extract data from VC systems, Robles

[103] proposed the use of existing tools and data sets when mining software repositories in

order to allow other researchers to validate and replicate existing studies. Many researchers

in MSR develop their own tools, and some researchers are not making their tools and data

sets publicly available for replication and validation [62].

Therefore, we chose Bicho and CVSAnalY to improve and combine their functionality

by automating the process of downloading, extraction and storage of VC logs and BT data

collectively. These tools are developed as part of the Metrics Grimoire project7. In this way,

we want to improve and combine their functionality and reuse existing tool sets and data sets

for mining software repositories to allow other researchers to replicate and validate our study.

In addition, Bicho and CVSAnalY were e�ectively designed and developed with organised

databases for easy querying. Similarly, the data structure in their databases corresponded for

cross-database analysis [49].

3.3.2 CVSAnalY

CVSAnalY is a command line-based tool that extracts data out of logs of repositories and

then automatically stores them in a MySQL database for subsequent analyses.

The purpose of CVSAnalY is to analyse the events that occur in the source code. The

data extracted include the developers’ actions during software corrective maintenance activities

from various source code management systems [107]. CVSAnalY supports, among others, the

CVS, SVN and Git systems and stores the VC logs in a MySQL database.
6
https://github.com/about

7
https://metricsgrimoire.github.io/

52

Methodology: Chapter 3 Distributed and Centralised VC system

3.3.3 Description of CVSAnalY schema

Figure 2.10 depicts the schema of CVSAnalY8. The structure of CVSAnalY was designed

with ten entities (tables) and three additional entities (13 in total). In addition, it is divided

into two main parts. The first part consists of the set of entities that represent the history

of the project based on the information from the log. CVSAnalY filled these tables during

the parsing process exclusively with the information provided by the repository log (SCM).

Thus, these tables will always be present in the schema independently of how CVSAnalY is

executed. The most up-to-date CVSAnalY is designed with 13 tables. In each table there

exists a data field and data type where the information extracted by CVSAnalY is held in a

MySQL database. The tables that exist in a CVSAnalY database are shown in Table 3.3.

Table 3.3: CVSAnalY Database Tables

In this section, we will discuss some of the tables produced by CVSAnalY that we consider

relevant in order to narrow down and carefully examine the issue of how and where to identify

VC logs of OSS projects in CVSAnalY. Below we look at the tables SCMlog, repositories and

people.

1. The SCMlog table contains the information about every VC log in the repository dis-

played. The table data field consists of the ID of the project in the database and
8
https://github.com/MetricsGrimoire/CVSAnalY/wiki/Database-Schema

53

Methodology: Chapter 3 Distributed and Centralised VC system

revision (rev) of each VC log, as well as the actual commits developers made in bug-fix

processes and feature enhancement. In this table, we can track and link who, how and

when changes were made in the source code of a given OSS project that we extract.

This will help in identifying relevant entities and the data field that are suitable for the

automation, integration and synchronisation of VC logs into BT data and vice versa.

Thus, we deliberate on the SCMlog table as the entity that will be used in re-aligning

the tools. Conversely, we further assess and evaluate the data fields that exist in the

table. It’s important to ensure the data formats are also carefully examined during the

syncing process between the VC logs held by CVSAnalY (database) and the BT data

held by Bicho (database) to avoid redundancy and data conflict. In addition, the data

fields that we deliberate in the SCMlog table are identified in table 3.12. Table 3.4 is

the description of the SCMlog table in the CVSAnalY database.

Table 3.4: SCMlog table

2. The repositories table holds the links for all the OSS projects that CVSAnalY extracts

and stores in its database. It contains the ID, uri and the name of the OSS project.

However, the repositories table in CVSAnalY is linked to the tracker table in the

Bicho database. Interestingly, they hold similar data fields and formats. We narrow the

selection of the entities, since we are only interested in the VC system log and BT data

held by these tools. In this way, the data structures of Bicho and CVSAnalY appear to be

similar, and this indicates and increases the possibility of realigning their functionality.

Table 3.5 depicts a description of the repositories table in the CVSAnalY database.

54

Methodology: Chapter 3 BTS

Table 3.5: structure of the ’repositories’ table in CVSAnalY database

3. The people table in the CVSAnalY database contains three data fields: id, name and

the email address of the developer or a member of the project team. The description

of this table is also relevant to the people table in the Bicho database. Table 3.6 is a

description of the people table in CVSAnalY. Also, each table contains a data field and

data type where the information extracted by CVSAnalY is held in a MySQL database.

Table 3.6: structure of the ’people’ table in the CVSAnalY database

Also, each table contains a data field and data type where the information extracted by

CVSAnalY hold in MySQL Database.

3.4 Selecting the appropriate BT system

BT systems are often designed and developed as a database-driven web application with an

interface that allows multiple users to submit bug reports simultaneously [138]. These systems

can be crawled by automated tools to store the retrieved information in a localised database

for analysis.

Furthermore, BT systems are used in most open-source software projects to deal with

55

Methodology: Chapter 3 BTS

reporting software bugs, feature enhancement reports from users of the system and developers.

Hence, among the most widely used BT systems in the OSS community is Bugzilla [99]. This

system allows users to report a bug in addition to managing bug reports and feature requests

through a publicly available interface on the web. The BT system data we used in this research

was sampled from GitHub.

3.4.1 Bicho

Bicho is a command line-based tool used to extract BT data from BT systems like Bugzilla,

SourceForge, GitHub and JIRA. Specifically, Bicho extracts bug information such as "Prior-

ity", "Status", "Resolution" and "Changes" which is automatically stored in a MySQL database.

In this way, the purpose of Bicho is to extract BT data from bug-tracking systems. Bi-

cho’s back end handles each specific BT system, such as Bugzilla or GitHub, and stores the

information locally in a MySQL database for posterior analysis.

3.4.2 Description of Bicho schema

The structure of Bicho is designed with ten (10) entities (tables), and it has a set of core

tables, used by all the back ends, and extended tables, particularly to each BT system.

The most up-to-date version of Bicho is designed with ten tables. Also, in each table there

exist data fields and data types where the BT data extracted by Bicho is held in a MySQL

database. Figure 2.9 depicts the Bicho database schema.

We will discuss the selected and identified tables – issues, trackers and people – produced

by Bicho and considered relevant in order to narrow down and carefully examine the issue

of how and where to identify BT data of OSS projects in Bicho. Table 3.7 presents a list of

tables that exist in the Bicho database.

1. The issue table holds the information for each ticket – that is to say, each bug reported

by a user or a developer. The information includes the time when it was opened, the

reporter, the opener, summary, and description of the problem encountered, as well

as the current status, priority and assigned developer. The table has 12 data fields

56

Methodology: Chapter 3 BTS

Table 3.7: The tables in Bicho database

holding relevant information regarding BT data, such as the tracker_id, issue, status,

assigned_to, submitted_by, and so on. Thus, the Issues table perfectly matches and

resembles the SCMlog table. Because the SCMlog table data field can be linked to the

Issues data field, as visible in Figure 3.12, the corresponding data fields are linked in

Bicho and CVSAnalY. In general, we can trace VC logs in SCMlog tables in CVSAnalY,

as well as trace BT data in the Issues tables in Bicho. As a result, we can also connect

VC logs and BT data of both Bicho and CVSAnalY, since the tools are designed with the

relevant data structure. Therefore, SCMlog tables and Issues tables are the entities

considered for the automation, integration and synchronisation of BT data and VC logs

in this research.

2. The people table in Bicho holds the information regarding each developer, like the list

of people who participated in the ticketing process. However, in CVSAnalY there is a

people table which holds the id, name and email address of each developer who has

made changes to any bug report or feature enhancement in the project. These tables

are not considered because we are only interested in VC logs and BT data held by these

tools (Bicho and CVSAnalY). Table 3.8 is the description of the people table in the

CVSAnalY database.

57

Methodology: Chapter 3 BTS

Table 3.8: People table in Bicho database

3. The trackers table in the Bicho database holds information pertaining to the OSS

projects from which Bicho retrieved BT data. This included information like the ID of

the project, the URL, type and the date it was retrieved. Similarly, CVSAnalY has the

same tables, called repositories, which hold the same information regarding the VC logs

of OSS projects extracted by CVSAnalY, also with a similar data field. In this way, the

only observation in this table is that one cannot query the date a project was retrieved,

though it is relevant. Thus, only id, uri, type and the name of the project can be

queried. Table 3.9 shows the description of the trackers table in the Bicho database.

Table 3.9: Trackers table in Bicho database

3.5 Locating VC logs and BT Data

In this section, the logic of how to retrieve BT data and VC logs we implement the full SZZ

algorithm [116]. In its formulation, the algorithm should look for the terms "Bugs" or "Fixed"

(case insensitive) in message logs, along with the “#" sign, which shows the ID of a bug. We

demonstrate how to locate or identify the bugs that have been addressed both in CVSAnalY

58

Methodology: Chapter 3 Locating bugs in BT data

and Bicho, by issuing a number preceded by a “#" sign in the following subsections.

3.5.1 Locating bugs in VC logs

The first step was to store the VC logs via the CVSAnalY tool set. Among the tables generated

by CVSAnalY, we specifically queried SCMlog table, which holds the number and unique

IDs of changes in the VC system, the identity of developers who perform these changes and

the comment message describing the changes applied to the code. The right-hand side of table

3.10 shows the composition of the CVSAnalY table that was used for the extraction of the

information referring to bugs.

In order to identify or locate the bugs in VC logs, we used the SCMlog table, which

mentions the number and unique IDs of changes in the VC system. In the presence of a bug

ID, the VC logs also mention the bug ID with the #1234 format. For the purpose of this

research, we are only interested in bug IDs that are being mentioned by developers: bug IDs

do not necessarily need to be "fixed" or "resolved". This step is also integrated in the tool

chain.

Table 3.10: Corresponding fields linked in Bicho and CVSAnalY

59

Methodology: Chapter 3 Worked Example

3.5.2 Locating bugs in BT data

To locate or identify bugs in BT data, we used the Bicho tool to obtain and store all the infor-

mation contained in the bug trackers of the projects contained in the sample, as well as all the

issues reported by the users of a project and confirmed as such by developers. One of the tables

created by Bicho is the issues and issues_ext_bugzilla table, where the status (“open” or

“closed”) or the message accompanying the entry is stored and imported for publication by the

relative GitHub tracker. In this way, we queried specifically the issues_ext_bugzilla table

to obtain the set of unique numbers and IDs of bugs reported and confirmed by developers.

This step is also integrated in the tool chain.

3.6 Worked Example: Brackets project

In this section, we use the Brackets9 project as an example study. This is intended to illustrate

the two aspects that the thesis will address in the rest of the chapters: (i) how to identify

or locate bugs in VC logs, and (ii) how to detect the discrepancies between VC logs and BT

data. The same methodology used in the worked example was used in our extended study to

analyse the 344 OSS projects that were sampled and obtained from GitHub via FLOSSmole in

this thesis. The Brackets project is a “code editor for the web”. Brackets is a large JavaScript

project, with around 300kLOC of source code in the main development trunk. In this project,

there are over 180 contributors to the code. The overall number of commits exceeds 10,000,

and 88 releases have been published.

In the next subsections, we will discuss how to identify bugs in VC logs. Also, we will

discuss how to identify and quantify the discrepancies between the bug sets from VC logs and

BT data.

3.6.1 Identifying bugs in VC logs

This step involved the cleaning and storage of bug IDs for both CVSAnalY and Bicho for the

Brackets project. The query for the “#" sign, followed by numeric values in the development
9
https://github.com/adobe/brackets

60

Methodology: Chapter 3 Brackets Project

log imported with CVSAnalY, produces a large number of false positives. Furthermore, we

manually check whether the message field in the SCMlog table of CVSAnalY contains a

reference with a “#" sign. A typical example would be for the #3057 bug of the Brackets

project during the pilot study. The information found in the SCMlog table reads as Merge pull

request #3507 from adobe/jasonsanjose/getting-started-fr. The ID of this bug should return

development in- formation in SCMlog referring to the actual bug in the BT system. Instead,

the information refers to a request to merge some changes in the distributed VC system. We

marked these occurrences as "false positives" and excluded them from the pilot study as well

as the extended study.

In the case of the Brackets project, over 2,000 messages refer to the pattern searched for

using the # sign, but they are all linked to a request of pulling a merge from another distributed

repository into the original one under GitHub. These were filtered out automatically. After

discarding these false positives in brackets, we obtained a set of 366 bug IDs that are mentioned

in the CVSAnalY messages and another set of 349 bug IDs that are mentioned in the issue

tracker by Bicho. In addition, the traditional heuristic developers leave hints or links about

bug fixes in change logs was used to produce a link between bugs/issues and logs in both

tools, as this is widely used to mark bug fixes [130]. In this thesis, we specifically focused

on quantifying the bugs/issues, and the logs in Bicho and CVSAnalY that are not linked to

bug fixes. Table 3.10 shows how the two databases are linked: bug IDs were searched and

compared in the “summary” field of the Issues table of Bicho, and in the “message” field

of the SCMlog table in CVSAnalY. Discrepancies or commonalities were flagged and are

summarised in the Venn diagram in Figure 3.11.

Finally, we manually analysed each of the remaining bugs in both databases, to make sure

that each of the remaining IDs pointed to real bugs.

3.6.2 Brackets Project: Discrepancies between the bug sets from VC logs

and BT data

This section shows how we evaluate the discrepancies between BT systems and VC

logs. The bugs from the Brackets VC logs were extracted using the approach highlighted

61

Methodology: Chapter 3 Brackets Project

in Subsection 3.5.1; the bugs from the Brackets BT data were extracted using the approach

shown in Subsection 3.5.2. A Venn diagram (Figure 3.11) is used to show the subsets of bugs

in the Brackets project.

As is visible, the number of bug IDs that were found in both CVSAnalY and Bicho is

around one third (i.e., 167 bug IDs, which represents the intersection of the sets in the Venn

diagram) of the total number (i.e., 547, the union of all the sets in the diagram). Another

third of the bug IDs are only found in Bicho, while the rest of the bug IDs are reported and

found in CVSAnalY, but never summarised into issues retrieved by Bicho.

This result varies across projects, depending on the style of how the information on issues is

handled by developers, and it only refers to how developers refer to bug IDs. We did not infer

any information on whether the bug was fixed or opened: we just investigated the presence of

the bug IDs in the two databases, because our aim was to identify and quantify discrepancies

between the two sources in recording and in developer information about bugs.

[Bicho]
182

[CVSAnalY]
198167

Figure 3.11: Intersection of BT data and VC logs in Bicho and CVSAnalY database for Bracket project

However, the extended study of 344 OSS projects analyses discrepancies between the bug

sets from VC logs and BT data. This was carried out using set theory, by evaluating the union

62

Methodology: Chapter 3 Automating and filling the missing data

and intersection of the sets per project. Given a set of bug IDs mentioned in the VC logs, and

the list of bug IDs stored from the issue trackers of a project, we evaluated the intersection

(i.e., the common bug IDs) of these two sets, as well as the union of such sets (i.e., the overall

set of unique bug IDs jointly held in the two databases). We then formulated a metric

(named Shared Bug Coverage) to describe how many bug IDs are common in the two databases.

In addition, this was integrated into the tool chain developed for this research (i.e., the thesis).

3.7 Automating and filling the missing data

Observing the tables of Bicho and CVSAnalY (displayed in table 3.10) and their attributes,

we propose to use BT data in either database to synchronise the missing data as detected in

the other database. For instance, the 198 bug IDs and attributes stored by CVSAnalY (but

not found by Bicho) could be used to synchronise the summary and other attributes in the

Bicho database. For the purpose of replicating this approach, the full process of tool set-up,

data extraction, and automation and synchronisation of the missing data is detailed in the

steps below:

1. Installing Bicho is easy. It can be installed through a terminal – that is to say,

command line prompt. In our case, we installed the tool on Ubuntu. The installation is

done using the command python setup.py install on the terminal. The complete guide

on how to install Bicho can be found here: http://metricsgrimoire.github.io/Bicho/.

2. Installing CVSAnalY can also be done via a command line prompt (Terminal). Some

dependencies need to be installed before installing CVSAnalY. This include Git and

RepositoryHandler10 Once the required dependencies have been installed, CVSAnalY

can be installed by running setup.py script via the terminal, like python setup.py in-

stall. The complete guide on how to install CVSAnalY can also be found at \http:

//metricsgrimoire.github.io/CVSAnalY/.

3. Run CVSAnalY and Bicho for one specific project:
10A python library for handling code repositories through a common interface.

63

Methodology: Chapter 3 Automating and filling the missing data

The two commands that are used for running CVSAnalY and Bicho from the command

line (and tailored for the Brackets case) are as follows:

1 ‘bicho ≠≠db≠user≠out=[DB USER] ≠≠db≠password≠out=[DB PASS] ≠≠db≠

database≠out=[DB NAME] ≠b github ≠u https://github.com/adobe/brackets/

issues/ ≠≠backend≠user=[GITHUB USER] ≠≠

2

3 ‘bicho ≠≠db≠user≠out=root ≠≠db≠password≠out=YourDB≠Password ≠≠db≠

database≠out=bicho ≠b github ≠u \"https://github.com/adobe/brackets" ≠≠

backend≠user=GitHub≠UserName ≠≠backend≠password=Your≠GitHuB≠

Password ≠≠debug‘;

4

5

A Perl script was developed to join the processes of executing CVSAnalY and Bicho and

to extract BT data and VC logs. The algorithm (or pseudocode) illustrated in Algorithm

1 further illustrates the step-by-step procedure we followed to automatically check out

the VC logs and BT data of the worked example (i.e., Brackets) as well as of all the 344

OSS projects we sampled in this research (refer to Appendix B in Section A.1 for the

Perl script).

The algorithm shows that, for every project, the BT data on VC logs and tracker issues

are retrieved from the SCMlog and the appropriate database tables produced, as linked

above in table 3.10. In the case of the GitHub repository, this process is replicable to

any other project by replacing the name of the project in the https://api.github.com/

repos/$project//issues URL to retrieve the BT data (line 27 of the script located in

A.1), and replacing the name of the project in the https://github.com/$project/ URL

to retrieve the VC logs (line 20 of the script located in Section A.1).

4. Find discrepancies in the data sets: Once the data in the two databases had been

obtained and stored, we applied the SZZ algorithm to identify the missing BT data in

the SCMlog Table of CVSAnalY and the Issues Table of Bicho and vice versa.

64

Methodology: Chapter 3 Automating and filling the missing data

Algorithm 1 VC logs and BT system data extraction pseudocode
1: Read input File
2: for <each line> do Û Until end of text file
3: procedure chomp(a, b, c) Û Remove trailing and leading strings
4: end procedure
5: svn_line Ω url
6: project Ω url
7: PRINT “Executing project A using cvsAnaly"
8: procedure exec(svn_line) Û Extracting VC logs from VC system
9: Store into db

10: end procedure
11: while timer ”= 0 do Û Pause for 15s

12: end while
13: PRINT “Executing project A using Bicho"
14: procedure exec(project) Û Extracting BT data from BT system
15: Store into db
16: rm Û Clear cache
17: end procedure
18: end for

Using sets of bug IDs, we automatically compared and produced a joint list of bug IDs,

and classified them as “missing from the Bicho database”, “lacking in the CVSAnalY

database”, or “present in both”.

In the Brackets case, we found 198 bug IDs that were missing in the issue archives, but

present in the CVSAnalY database; we also found 182 bug IDs that were in the Bicho

database, but not present in the CVSAnalY database. Finally, 167 bug IDs were present

in both sets.

5. Integration of table entries: In the cases where one bug ID was missing from either

database, we proposed using the data found in the other database to fill in the missing

data of that ID automatically. For instance, let’s assume that ID #45 was found only

in the CVSAnalY database and not in the Bicho database. The “message” field in the

CVSAnalY database could be used to automatically fill the “summary” field of the Bicho

database. Similarly, the “Id" of the CVSAnalY database could be used as the "Id" of the

Bicho database. “Committer_id" from the CVSAnalY database could be used to fill in

the “Assigned_to" attribute in Bicho, and so on. The full list of matching fields of the

65

Methodology: Chapter 3 Automating and filling the missing data

two tables is reported in Chapter 6.8.

Table 3.12: Corresponding fields linked in Bicho and CVSAnalY

The item that must be carefully linked between the two databases is the Project ID: since

the two databases are distinct, it is likely that the “Repository_id" sequentially stored by

CVSAnalY will be di�erent from the “Tracker_id" stored (also sequentially) by Bicho.

In the Brackets case, CVSAnalY stored the log data in our database with a Reposi-

tory_id=333, while Bicho stored the issues for the same project with a Tracker_id =

333. An extra table might be created to link the two IDs in the databases automatically.

All the fields of CVSAnalY or Bicho from table 3.10 have been mapped to connect the

corresponding attributes in both tools. Table 3.12 shows the corresponding fields that have

been linked to fill up the missing bug data in either database.

3.8 Summary of the chapter

This chapter presented the procedure we used to extract, compare and synchronise semi-

automatically the gaps discovered in either the VC logs or the BT data of OSS projects. We

showed that such an approach has been partially automated when partially implementing a

well-known algorithm to isolate the bug-fixing commits (i.e., the SZZ algorithm [116]).

66

Chapter 4

Locating bugs in VC Logs

4.1 Introduction

In the previous chapter we presented the methodology that will be applied in the rest of the

work. In this chapter, we will focus specifically on the VC logs, and on various issues that

were found when extracting bug information from these data sources.

In this research, VC logs have been searched for bugs in basically two ways: (i) by using

keywords such as “Fixed" or “Bug" [91]; and (ii) by searching for references to bug reports, for

instance the use of the “#" sign and various numeric values (e.g., #1234), which are linked

to the ID of a bug [30] [42] [75][116]. The SZZ algorithm is an example of an approach that

combines keywords and proxies to detect bug-fixing commits.

Traceability links are needed to perform various software evolutionary activities, for in-

stance to design and build defect prediction models [134]. However, the available tools to

document VC logs lack integration [42]. As a result, two independent sets of bug-related data

are produced, filling di�erent databases [80] [109]. It has been suggested that using the bug

IDs from VC logs could help to identify and recover missing traceability links [51] [85] [10].

These logs need to be manually or semi-automatically analysed and compared, to determine

if VC logs and IDs from BT systems are referring to the same set of bug IDs, or if they refer

to disjoint sets.

In this analysis 10 OSS projects from GitHub were analysed to pilot and show an approach

67

Locating bugs in VC logs: Chapter 4 Introduction

to extract the complete set of bug IDs. In order to obtain the complete list of IDs that should

be considered, the SZZ algorithm is ‘dissected’ in its basic components, or proxies, in terms

of their precision at pointing to bug IDs. In this chapter, we will first create the full set of

bug IDs from the two sources of information (i.e., VC system and BT system), and second

evaluate the precision and recall of the individual SZZ components in identifying or locating

bug IDs.

4.2 Definitions

The analysis performed below is an attempt at evaluating the precision and recall of the

various components of the SZZ algorithm when detecting bug-fixing commits. In particular,

the implementation of the SZZ algorithm uses (i) the “Fixed" term, (ii) the “Bug" term, and

(iii) the # identifier (with digits, say #12345) to check their precision and recall when isolating

the bug IDs in the VC logs.

In the context of this study, and using the standard terms used in the information and

retrieval terminology, the terms true positive (TP), true negative (TN), false positive (FP)

and false negative (FN) are defined (and relatively to the # identifier) as follows:

• TP#,p

= number of # identifiers that refer to a bug ID (in project p);

• FP#,p

= number of # identifiers that do not refer to a bug ID (in project p);

• FN#,p

= number of bug IDs that in the development logs are not identified by a # sign

(in project p);

• TN#,p

= number of commit logs that do not refer to bug IDs and not considered as

referring to bug IDs (in project p);

As illustrated above, we partitioned the SZZ algorithm in three components, based on the

keywords used. Therefore, given each keyword or identifier, precision is defined as

Precision#,p

= TP#,p

TP#,p

+ FP#,p

(4.1)

68

Locating bugs in VC logs: Chapter 4 Worked example

Precision

bug,p

= TP

bug,p

TP

bug,p

+ FP

bug,p

(4.2)

Precision

fix,p

= TP

fix,p

TP

fix,p

+ FP

fix,p

(4.3)

Similarly, recall (or true positive rate) of using one or other component of the SZZ algorithm

is defined as follows:

Recall#,p

= TP#,p

TP#,p

+ FN#,p

(4.4)

Recall

bux,p

= TP

bug,p

TP

bug,p

+ FN

bug,p

(4.5)

Recall

fix,p

= TP

fix,p

TP

fix,p

+ FN

fix,p

(4.6)

When considering the “Fix" and “Bug" keywords, similar definitions to the ones above

apply. All the items were manually checked for the projects composing the sample, and the

precision and recall of each are summarised in Table 4.6 (in Chapter 4.4).

4.3 Worked example: Bracket project

In this section, we analyse the steps that were performed to produce the TP, TN, FP and FN

terms from an exemplar case study. The precision and recall are also evaluated to exemplify

the approach.

The project that we use for such exemplification is the Brackets project, which we used

and showed a worked example of in Chapter 3.6.

4.3.1 Obtaining the complete set of bug IDs

At first, we retrieved all the bug IDs contained in the BT system of this project, and we

created the first set (S1), containing over 4,000 bug IDs; after, we produced a query to mimic

69

Locating bugs in VC logs: Chapter 4 Worked example

the SZZ algorithm in order to retrieve all the logs containing either the # symbol or the “Fix"

or “Bug" keywords from the development logs (VC logs). Only 3,117 logs were obtained when

querying the VC logs, and 1,865 logs contained unique bug identifiers: this list of bug IDs

created the second set of bug IDs (S2), as found in the VC system source.

Below, the results of basic operations on S1 and S2 are provided when considering the #

identifier:

• S1 = 4,634

• S2 = 3,117

• S1 fl S2 (Common bugs) = 267

• S1 - S2 (only in the BT system) = 4,367

• S2 - S1 (only in the VC logs) = 1,865

From the list above, we observed that the bug-tracking system of Brackets contains 4,634

bug IDs, but this is not the overall set. Using the “# with digits" proxy, 267 more bug IDs

were found in the VC logs that were not reported in the BT system. On the other hand,

the VC logs are much more incomplete, since only 3,117 bugs are reported in the commits.

The set of common bugs – i.e., those appearing in both the BT system and the VC logs

(development logs) – is 267. Using the "Bug" and "Fixed" keywords also produces further

results, as summarised in Table 4.1 below.

Table 4.1: Bug IDs and sources of information

BT system Dev logs
SZZ part S1 S2 S1 fl S2 S1 - S2 S2 - S1
4,634 3,117 267 4,367 1,865
Fix 4,634 63 31 4,603 32
Bug 4,634 154 79 4,555 75

By combining all the lists of bug IDs found with the various proxies (i.e., the SZZ com-

ponents), it is possible to obtain a complete set of bug IDs contained in the two information

70

Locating bugs in VC logs: Chapter 4 Worked example

sources, i.e. the BT system and the VC system. More importantly, it is evident that bug IDs

are missing from either source, so it is fundamental to analyse each for completeness.

The second study that needs to be performed is an analysis of what is found in the un-

structured VC logs, to make sure that what is retrieved is a bug ID and not a false positive.

This analysis is performed in the next subsection in this chapter.

4.3.2 Evaluating the precision of each SZZ component

In the second step of our evaluation, we performed a manual analysis of a random sample of

100 VC logs to determine the precision and recall of each of the SZZ components. Since the

logs are unstructured, we need to analyse each one manually to determine whether “Fix" or

“Bug" or the # identifier are referring to a bug. Regarding the # symbol, we found 58 logs

(out of 100) that mentioned #: after a close inspection, we realised that 57 of these logs were

actually referring to a bug ID (i.e., the true positive, TP), while only one of those logs did not

refer to a bug ID (i.e., the false positives, FP). Furthermore, there are 42 logs that mention

either “Fix" or “Bug", but don’t have a unique ID attached (i.e., the false negatives). From

Table 4.2, 4.3 and 4.4 we present the number of logs that were referring to TP, FP, FN and

TN for the Brackets project and the remaining nine OSS projects. Given the formulas above,

we evaluated the precision of “using the # symbol as a predictor of the presence of the bug

ID” as equal to 0.983. The recall of such an approach reached 0.576. Similarly, regarding

the “Bug" keyword, we found that only one log mentioning “Bug" also referred to a bug ID

(i.e., TP), while three logs mentioning “Bug" were not related to any bug ID (i.e., FP); the

remainders of the logs created the FN element. Using the “Bug" keyword as a predictor of

a bug ID had a precision of 0.25 and a recall of 0.01. Finally, for the “Fix" keyword, we

evaluated a precision of 0.500 and a recall of 0.695. Based on the precision and recall, we then

computed the F-measure as detailed below:

F ≠ measure = 2 ú precision ú recall

precision + recall

(4.7)

The # symbol gained an F-measure of 0.726, the “Fix" keyword 0.582 and the “Bug"

71

Locating bugs in VC logs: Chapter 4 Worked example

#Symbol
S/N Project Name No. logs TP FP FN TN
1 Brackets 100 57 1 42 0
2 Leaflet 22 6 0 16 0
3 Reddit 74 40 12 22 0
4 CocoaPods 100 18 0 82 0
5 Puma 81 11 2 63 0
6 AutoMapper 68 19 6 43 0
7 MonoDevelop 100 19 3 78 0
8 CodeHub 42 0 0 42 0
9 Manos 100 1 3 46 0
10 puppet 100 0 22 92 0

Table 4.2: Number of logs that were referring to TP, FP, FN and TN for # symbol
Fixed

S/N Project Name No. logs TP FP FN TN
1 Brackets 100 41 41 18 0
2 Leaflet 22 1 12 9 0
3 Reddit 74 14 21 39 0
4 CocoaPods 100 15 77 8 0
5 Puma 81 6 61 14 0
6 AutoMapper 68 8 29 31 0
7 MonoDevelop 100 14 55 31 0
8 CodeHub 42 0 35 7 0
9 Manos 100 0 63 37 0
10 puppet 100 0 58 17 0

Table 4.3: Number of logs that were referring to TP, FP, FN and TN for Fixed
Bug

S/N Project Name No. logs TP FP FN TN
1 Brackets 100 1 3 96 0
2 Leaflet 22 0 0 22 0
3 Reddit 74 1 1 72 0
4 CocoaPods 100 0 3 97 0
5 Puma 81 0 6 75 0
6 AutoMapper 68 0 1 67 0
7 MonoDevelop 100 29 8 63 0
8 CodeHub 42 0 8 34 0
9 Manos 100 0 2 98 0
10 puppet 100 0 18 82 0

Table 4.4: Number of logs that were referring to TP, FP, FN and TN for Bug

72

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

keyword only 0.019. Since the F-measure is often used, in the context of information retrieval,

to assess the performance of searches, this further test confirms the earlier findings. Analysing

the unstructured data of the VC logs of the Brackets project as a pilot study, we conclude

that the most precise proxy of bug IDs is the # identifier, when considering the free-text

descriptions of changes written by developers as an addendum to their commits to the VC

systems. Comparatively, the "Bug" keyword performs very poorly: very often developers cite

the keyword without attaching the correct bug ID for traceability purposes.

These findings, if confirmed, will re-enforce the traceability of bug IDs from BT systems

into VC systems and vice versa can represent a real issue, at least for OSS projects. In the

next section, we repeat the analysis for nine further projects, to check whether the results are

confirmed in general.

4.4 Replicability and scability of the approach

After illustrating the approach used in the worked example above, we replicated the study

with a further set of nine OSS projects, extracted from the same repository (GitHub). This

was done for two basic reasons: to replicate the manual approach on a subset of the 344

OSS projects sampled; and to report on the scalability of the approach, in order to give an

indication of the e�ort needed to replicate the experiment. A brief analysis of the internal

attributes of the projects was conducted, which is summarised in Table 4.5. The section below

presents the precision and recall results when using the individual components of the SZZ

algorithm.

The results of the replication of the worked example on nine further software projects are

shown in Table 4.6 below. As also performed in the worked example above, each individual

component of the SZZ algorithm (# identifier, “Fix" and “Bug") has its own subsets of results

for precision, recall and F-measure. For longer sets of VC logs, we randomly selected a subset

of 100 log entries per project depending on the total number of logs in the project. For the

projects that had fewer than 100 logs, all the logs were selected, while for the projects that

had 100 logs and above we only took the top subset of 100 logs randomly and analysed them

73

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

Table 4.5: Attributes of the projects selected

S/N Project Name URL Commits kLOC No. Devs
1 Brackets github.com/adobe/brackets 16,665 300k 285
2 Leaflet github.com/Leaflet 3,677 6.89 194
3 Reddit github.com/reddit 6,000 200 140
4 CocoaPods github.com/CocoaPods 4,800 22.2 160
5 Puma github.com/puma 1000 8.39 30
6 AutoMapper github.com/AutoMapper 700 2.78 50
7 MonoDevelop github.com/mono/monodevelop 30,000 900 170
8 CodeHub github.com/thedillonb/CodeHub 305 12 2
9 Manos github.com/jacksonh/manos 1,113 66.4K 27
10 puppet github.com/puppetlabs/puppet 20,256 379 337

manually, to detect the presence of bug IDs.

Similarly to the Brackets project above, and for every analysed project, we observed that

the use of the # identifier outperformed both the “Fix" and the “Bug" keywords in the iden-

tification of the bug IDs from the VC logs (development logs). It is an important finding: VC

logs are clearly lagging behind in terms of completeness and traceability, as compared to the

BT data.

Thus, the scalability of the approach has to be considered under two aspects: (i) size of

the projects’ VC logs; and (ii) the time it took to analyse and detect the presence of bug IDs

of all 344 sampled projects.

In terms of the size of the projects’ VC logs, for the 10 OSS projects in the worked example

it took a significant amount of e�ort and time to manually evaluate the precision of each SZZ

component. For instance, for the Brackets project we took 100 VC logs. To manually analyse

each log three times (i.e., to determine if “Fix" or “Bug" and the # identifier are referring to a

bug) would require a significant amount of e�ort and time considering the size of the VC logs

for every project in the 344 OSS projects for this research. As a result, the replication of large

OSS projects was extended semi-automatically using the tool chain to evaluate the precision

of each SZZ component. This will be detailed in the next section of this chapter.

The process followed to extract the precision and recall data was similar to the pilot study:

the VC logs of the projects were analysed manually and a decision taken as to whether the log

was actually related to a bug description or not. The process was repeated for the # identifier

74

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

Manually analysed # symbol Fix Bug
S/N No. Logs P R F P R F P R F
1 100 0.983 0.576 0.726 0.500 0.695 0.582 0.250 0.010 0.020
2 22 1.000 0.273 0.429 0.077 0.100 0.087 0.000 0.000 0.000
3 74 0.769 0.645 0.702 0.400 0.264 0.318 0.500 0.014 0.027
4 100 1.000 0.180 0.305 0.163 0.652 0.261 0.000 0.000 0.000
5 81 0.846 0.149 0.253 0.090 0.300 0.138 0.000 0.000 0.000
6 68 0.760 0.306 0.437 0.216 0.205 0.211 0.000 0.000 0.000
7 100 0.864 0.196 0.319 0.203 0.311 0.246 0.784 0.315 0.450
8 42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 100 0.250 0.021 0.039 0.000 0.000 0.000 0.000 0.000 0.000
10 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.6: Manual evaluation of 10 OSS projects precision and recall of the three main components of the SZZ
algorithm

and the “Bug" and “Fix" keywords (as well as their derivatives, like “Fixed" or “Fixing").

For all the analysed projects, the F-measure obtained when using the # identifier is always

higher than for any of the other proxies (“Bug" or “Fix"). In specific cases, the precision of the

identifier reaches maximum values (in Projects 1, 2 and 4); in other cases, such as Project 8,

none of the SZZ components achieve any result, which is particularly worrying for the purpose

of bug traceability.

4.5 Trade-o� between recall and precision

The trade-o� between precision and recall in the context of this thesis occurs with an increased

proportion of # symbol precision, leading to a decreased proportion of Fixed and Bug precision.

In addition, the Recall proportion of Fixed and Bug component of the SZZ algorithm was high

at the expense of a low proportion in the Recall of # symbol. However, manually evaluating

the precision and recall of puppet and CodeHub projects (i.e., project 8 and 10 as visible

from the Precision and Recall curve in Figure 4.1 below), the proportion of the three main

components of the SZZ algorithm (i.e., # symbol, fixed and bug) were zero (also visible in

Table 4.6) because none of the logs retrieved in that project referred to the TP and FP as

defined in Section 4.2 of this Chapter. Similarly, same applies to the rest of the 10 OSS

projects, evaluated where the proportion of both zero recall and zero precision were obtained

75

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

for the three main component of the SZZ algorithm.

Previous studies by Buckland et al [23] and Gordan et al [50], regarding the origins of the

recall and precision trade-o� assumed knowledge of the size of the set of retrieved logs as a

fraction of the total number of logs in the database.

In addition, the trade-o� between precision and recall can be observed using the precision-

recall curve in Figure 4.1, and an appropriate balance between the precision and recall of the

three main component of the SZZ algorithm evaluated using 10 OSS projects.

Figure 4.1: Precision and Recall curve of three main component of the SZZ algorithm

4.6 Replication with a large sample of OSS projects

After evaluating the approach (i.e., SZZ components) used in the worked example above, we

replicated the study with the rest of the OSS projects sampled for this research. The 344 OSS

projects were extracted from the same repository (GitHub).

This section presents the precision, recall and F-measure results for each project when

using the individual components of the SZZ algorithm of all 344 OSS projects.

In addition, the result of each component was further examined by applying a Mann–Whitney

test to further unveil the significance of using each component and prove the scalability of the

approach [127]. Similarly, the results of the replication of the 344 OSS projects are shown in

Table 4 in Appendix A.7. Also, each individual component of the SZZ algorithm (# identifier,

“Fix" and “Bug") has its own subsets of results for precision, recall and F-measure for each

76

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

project. We compute the precision, recall and F-measure as detailed in section 4.2 of this

chapter.

Moreover, the results are reported in table 4 in Appendix A. Section A.7 were used to

compute the statistical significance of using each component of the SZZ algorithm (i.e., #

identifier, Fix and Bug) presented in the matrix Table 4.7 below using WESSA1

But in this case, the results varied significantly, considering that the analysis of the 10 OSS

projects was carried out manually. Also, in some OSS projects only the top 100 subsets of VC

logs were considered when evaluating each components, while the rest of the 10 OSS projects

had fewer than 100 VC logs. However, where the proportion of the three main components of

the SZZ algorithm (i.e., # symbol, fixed and bug) were zeros from Table 4 in Appendix A.

Section A.7. None of the logs retrieved in that project referred to the TP and FP as mentioned

in the previous Section 4.5 and defined in Section 4.2 of this Chapter.

Similarly, in most of the projects, we observed that the use of the # identifier outperformed

both the “Fix" and the “Bug" keywords in the identification of the bug IDs from the VC

logs. Iteratively, this is an important finding: VC logs are clearly lagging behind in terms of

completeness and traceability, as compared to the BT data.

P# Pfixed Pbug R# Rfixed Rbug F# Ffixed Fbug
P# 2.9193E-96 4.9707E-104 1.8594E-66 3.815E-94 1.0329E-98 6.1107E-64 1.0139E-92 1.0139E-92
Pfixed 3.8349E-20 1.8921E-85 0.79254 0.58966 2.6336E-91 0.1038 0.1038
Pbug 9.1993E-95 9.7608E-19 4.7604E-19 1.194E-102 5.6958E-11 5.6958E-11
R# 1.3882E-87 1.3882E-87 6.1107E-64 1.6694E-86 7.4359E-104
Rfixed 0.7962 1.2705E-93 0.16261 1.4199E-13
Rbug 1.294E-96 0.24014 7.07E-14
F# 3.2641E-92 7.9778E-111
Ffixed 4.9455E-06
Fbug

Table 4.7: Statistical significance of the SZZ algorithm (p-value)

Legend:
PBug = Precision bug P# = Precision # Pfixed = Precision fixed
RBug = Recall bug R# = Recall # Rfixed = Recall fixed
Fbug = F-measure bug F# = F-measure # Ffixed = F-measure fixed

1Web-enabled scientific services and applications (WESSA) is a free Statistics Software calculation:
http://www.wessa.net/

77

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

The matrix table in Table 4.7 shows the significance of the three main components of

SZZ algorithm. This was evaluated using the precision, recall and F-measure against each

individual component of the SZZ algorithm – that is, the # identifier and “Bug" and “Fix"

keywords.

The process followed to extract the precision and recall data was similar to the pilot study:

the VC logs of the projects were extracted semi-automatically using the tool chain by issuing

the following SQL query.

1 select message from scmlog where repository_id= ? and message NOT like ’%Merge�pull�

request%’ and message like ’%#%’

The same syntax for the SQL query was repeated for the # identifier and the “Bug"

and “Fix" keywords. When comparing all the SZZ components, the # identifier is always

more significant than any of the other proxies (“Bug" or “Fix"). In some of the projects,

the precision of the # identifier reaches maximum values as well. In other projects, none of

the SZZ components achieve a result, which is particularly worrying for the purpose of bug

traceability.

4.7 Summary of the chapter

This chapter outlined an approach to building a complete set of bug IDs that were documented

in the evolution of a software system. This comprises the analysis and parsing of both the

VC systems and the BT systems: this is required because we found that, commonly, OSS

projects hold di�erent sets of bug IDs when interrogating the BT system and the VC system.

In addition, the chapter presented an in-depth analysis of the SZZ algorithm, which has been

used extensively by researchers to track the bug-fixing commits of software systems. We

partitioned the algorithm into its three basic components, and with a manual check-up, we

showed the precision and recall of each component in detecting bug identifiers in the VC logs.

We found that the guideline of using the # symbol and the bug ID largely outperforms the

other proxies to detect bug-fixing commits. Manually inserting the references to bug IDs is

clearly not achieving the required traceability, and a better (automated) approach should be

78

Locating bugs in VC logs: Chapter 4 Replicability and scability of the approach

designed to have the two sources of data aligned and in sync. The possible way to do so would

be to generate an automatic commit into the VC logs that details the bug-fixing activity, as

obtained by the BT system. Likewise, when the BT system is not aligned to the VC system, an

entry could be automatically generated to insert the bug development activity, as detailed in

the VC logs, into the BT system. Furthermore, we demonstrated that the process of collecting

data related to bugs, when using open-source projects, is far from established or repeatable.

Developers tend to record their actions in di�erent ways, and very often the bug-fixing commits

are not reflected onto and from the corresponding BT system. The results in this chapter are

relevant to the research community: models, techniques and empirical approaches that use

defect data would produce seemingly di�erent (or complementary) results, when the complete

set of bug data was to be extracted and considered for study. Replication studies could be

performed to assess whether the results as proposed in past papers could be complemented

with further evidence of bug-fixing activity. On the other hand, the use of the SZZ algorithm

shows that some keywords (“Fix" and “Bug") are linked to less precision and higher recall.

This result reinforces the message that practitioners should synchronise the VC logs with the

BT data by using the standard # notation for bug IDs.

79

Chapter 5

Discrepancies between the bug sets

from VC logs and BT data

This chapter describes how we analysed the data from BT data sets and VC logs to find

discrepancies between the sets of bug IDs cited. The chapter is structured as follows1: Section

5.1 presents the introduction. We discuss the background in Section 5.2. Section 5.3 presents

the results of 344 OSS projects of our empirical study; the shared bug coverage of 344 OSS

projects that we observed in four scenarios in this research is discussed in Section 5.4. We

present worked examples of the four scenarios that we observed among the 344 OSS projects in

Section 5.5. Section ?? presents our discussion, and the conclusion to this chapter is provided

in Section 5.6.

5.1 Introduction

In the previous chapters, we learned that over the past two decades, software engineering

researchers have shown significant interest in the analysis and use of empirical data. Open-

source software (OSS) projects provide a large amount of process and product data, and

several tools are available to mine and analyse this data. As mentioned, utilising this vast

amount of data can benefit both OSS and commercial projects: mining and analysing software
1Some contents of this chapter have been published in the EASE 2015 proceedings [108]

80

Finding discrepancies: Chapter 5 Background

artefacts – like code, design documents, requirements or bug issues – can o�er fundamental

contributions for empirical software engineering research. Using the right set of bug IDs, BT

data can be used to design models for predicting software faults and software reliability; faults

and reliability of a software artefact can also be linked to who, when and how changes were

made to it. Similarly, the analysis of VC logs can give important insights into the underlying

software quality, by focusing on software developers and their actions and e�orts in order to

build cost-estimation models. Such logs can also be used for detecting bug-fixing actions,

improving bug-prediction techniques and increasing software quality and reliability [134].

In this chapter we argue that the BT and VC data sets are complementary: the extraction

of both VC logs and BT data sets requires tools that (i) automatically mine software projects

(or software repositories) and (ii) store the extracted data in specifically built databases, for

posterior analysis. Data includes not only source code, but also metadata, such as logs, dates

and types of actions performed on specific software artefacts. Developers in OSS communities

use these tools as a medium of collaboration and communication, such as reporting bugs or

mentioning changes that occur as a result of a bug fix, as well as revising all the commits to

a software artefact [57].

Combining the two sets of bug-related data (VC logs and BT data) is related to the trace-

ability of bugs within software development. In this chapter we illustrate why bug traceability

is complicated by the fact that the sources of bug data are often not in sync or complete [58].

5.2 Background

As discussed in Chapter 3.4, bug-tracking systems such as Bugzilla are the most commonly

used in the OSS community to keep track of bugs, features and enhancements. All the BT

data that exist inside a BT system are explicitly identified with a hash symbol followed by a

number (e.g., #1234), which is the bug ID. In this case, BT systems store, for each tracked

bug, its life cycle, with an indication of a “fixed”, “open”, “closed”, “resolved” or “new” status.

On the other hand, source code management systems like Control Version System (CVS) are

where the tracking of software maintenance and corrective activities on OSS projects is kept.

81

Finding discrepancies: Chapter 5 Background

In this way, VC logs and BT data are recorded inside VC systems and BT systems respectively,

in an unstructured way and on di�erent platforms. Thus, it is not possible, for example, to

jointly parse an SQL query on a BT system and a VC system to analyse and understand

the evolution of OSS projects as well as the action of developers in bug fixes. In this case,

Bicho and CVSAnalY tools are designed and developed to bridge this gap – that is, to enable

researchers and practitioners in software engineering to retrieve and store VC logs and BT

data in a relational database for posterior analysis.

All changes or VC logs are retrieved and stored in the SCMlog table (of CVSAnalY

database) in the message text field as single entries.

Each entry might contain various data, including the developer who made the changes,

a text message referring to the reasons for the commit, and the list of features added to a

piece of a component in the system as well as the date it was added. The BT data are also

retrieved and stored in the Issues table (of Bicho database) in the Summary text field as

single entries. Similarly, each entry might contain various data, such as the bug ID, which

developer was assigned to fix the bug, a summary of the problems reported and encountered

by the user, and the date it was reported.

Tools such as CVSAnalY and Bicho are designed to bridge the gap, by allowing researchers

to e�ectively retrieve and record VC logs and BT data in a structured way as well as to store

them in their localised databases for posterior analysis. Unfortunately, using the tools (i.e.,

Bicho and CVSAnalY), one is not able to collectively parse a single query to retrieve or analyse

and understand the evolution of a given OSS project as well as the action of developers in bug

fixes regarding VC logs and BT data. Thus, there is a need to cross-analyse VC logs stored in

CVSAnalY with BT data stored in Bicho in order to obtain and mirror correct BT data and

VC logs, matching bugs with the changes related to bug fixes. One way is to analyse the CVS

log messages (i.e. the SCMlog table in CVSAnalY in the message text field), to identify

commits related to bugs that were fixed. In addition, in cases where VC logs and BT data

are missing and recovered, there is a need to synchronise the recovered data automatically

to have complete sets of data for empirical studies and other software corrective maintenance

activities.

82

Finding discrepancies: Chapter 5 Background

In this research, we first analysed and identified the SCMlog table and the text that

exists in the message field in the CVSAnalY database for VC logs, looking for bug IDs. For

example, we used keywords such as “#1234”, “Fixed #1234” or “Bug #1234”. In this study

we are only interested in the number of bug IDs reported in the BT system (i.e. in the Bicho

Issues table) and the bug IDs appearing in the SCMlog table mentioned in CVSAnalY. This

is because we want to quantify the discrepancies in the traceability of VC logs and BT data.

By that means, we can perform an empirical study with a large number of OSS projects, which

consists of thousands of VC logs and BT data from open-source software repositories.

Norman [39] hinted that many empirical studies in the past were conducted with very

small systems; in other words, they did not scale up to large systems. In this way, there might

still be a minor gap to be filled in the area of traceability issues related to VC logs and BT

data in software engineering. A typical example is the empirical study of Bachmann et al [12]

with one OSS project. This might not be enough to establish a “ground truth” that VC logs

are not mirrored when linked with BT data in OSS software projects. There are hundreds of

thousands of OSS projects existing in only one software repository (i.e., GitHub).

The rationale for the empirical study in this chapter of 344 OSS software projects sampled

randomly on GitHub is to establish reasonable evidence in relation to traceability links recovery

and synchronisation of bug-related data from open-source software repositories.

Several approaches have been proposed in the literature, as discussed in Chapter 3. They

are related to recovering traceability links between design and implementation. The study

of Murphy et al [94] reported on the software reflexion models to match a design expressed

in the Booch notation against its C++. In addition, regular expressions are used and ap-

plied in naming conventions and mapping source code model entities onto high-level model

entities [125] [4].

Similarly, other techniques have been proposed that use data mining on source code man-

agement systems (CVS) [43]; [44]; [135]; [140]. These researchers are among the pioneers to

first exploit release data to identify logical coupling between entities. Moreover, they suggest

the use of CVS history to detect fine-grained logical coupling between functions, classes and

files. Their proposed techniques investigate the historical development of classes, analysing

83

Finding discrepancies: Chapter 5 Results - Overall Sample of OSS Projects

the time when a new class is added onto the system and when an existing class is changed.

Similarly, these consist of attributes regarding the changes of an entity, like the author, the date

and so on. All this information, including the addition of features enhancement, is analysed

in order to reveal evolutionary facts and changes made in di�erent parts of the system in the

software development process [44]; [135].

5.3 Results - Overall sample of OSS projects

In this section, we report the analysis of the sample of 344 OSS projects from GitHub. In

particular, we report on how many bug IDs are mentioned in the two databases for each

project. The two overarching hypotheses that we planned to verify in this research are:

1. bug-related data stored in the issue trackers should be considered as complete; and

2. bug-related data is common and shared in both VC logs and issue trackers.

In order to summarise the findings from the 344 OSS projects, we produced a box plot in

5.1 to display the shared bug coverage (SBC) ratio, defined as follows:

SBC = BugIDs(V CS) fl BugIDs(BTS)
BugIDs(V CS) fi BugIDs(BTS) (5.1)

where BugIDs (VCS) is the set of bug IDs as found in the VC logs (of any project), and

BugIDs (BTS) is the set of bug IDs from the issue trackers (of the same project). This ratio

was evaluated for each project, and the values were always in the [0. . . 1] interval. We present

the results using the box plot, which is considered to be an excellent tool for illustrating

the variation in as well as the location of information in large data sets, particularly for

detecting and conveying the location and variation of changes between di�erent kinds of data

sets in groups [129]. In addition, it is useful for describing the behaviour of the random size

of population and distribution at di�erent stages, either at the beginning or the end of the

distributions. Similarly, the outliers in the box plot are points that indicate values that are

outside the lower and upper distribution of di�erent types of data sets [27].

Table 5.1 presents an excerpt of the results, such as:

84

Finding discrepancies: Chapter 5 Results - Overall Sample of OSS Projects

• All in Bicho: In this set of operations we obtained all the BT data IDs in the Bicho

Issues tables which might be traced in the CVSAnalY database.

• All in CVSAnalY: In this column we present all the VC log IDs in the CVSAnalY

SCMlog table which might be traced in Bicho.

• Intersection: In this column we present all the BT system and VC log IDs present in

both the Bicho and CVSAnalY databases – in other words, the IDs of each project that

the tool chain was able to trace in both tools (i.e., the common IDs, or the intersection,

in Bicho and CVSAnalY).

• Only in Bicho: In this column we present all the unique BT data IDs in the Bicho

database that are not traced in the CVSAnalY database.

• Only in CVSAnalY: In this column we present the unique VC log IDs in the CVS-

AnalY database that are not traced in the Bicho database.

• The union: This column presents the total number of VC logs and BT data retrieved

by the tool chain in the respective Bicho and CVSAnalY databases.

• Shared bug coverage: This column presents the ratio of bug coverage in the Bicho

and CVSAnalY databases for each project, defined as follows:

SharedBugCoverage = Union

intersection

(5.2)

Where the union is the total number of bug IDs retrieved by the tool chain in the

respective Bicho and CVSAnalY databases, and the intersection is the common IDs also

tracked in the Bicho and CVSAnalY databases.

The results presented in Table 5.1 are an excerpt from the 344 OSS projects evaluated for

each project. Refer to Appendix A in Section A.6 for the remaining results of the 334 OSS

projects sampled in this research. MySQL dump of Bicho and CVSAnalY database which

holds the BT data and VC logs of 344 OSS projects can be found on Figshare.2
2
https://figshare.com/s/be471b90e70865db6a30

85

Finding discrepancies: Chapter 5 Results - Overall Sample of OSS Projects

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
1 57 6 6 51 0 57 0.105
2 449 19 19 430 0 449 0.042
3 790 30 30 760 0 790 0.037
4 213 15 14 199 1 214 0.065
5 6 0 0 6 0 6 0
6 101 21 20 81 1 102 0.196
7 18 0 0 18 0 18 0
8 1459 218 202 1257 16 1475 0.136
9 34 2 2 32 0 34 0.058
10 2 1 0 2 1 3 0

Table 5.1: Metrics evaluated for the bug sets from BT data and VC logs (an excerpt from 344 OSS projects)

As visible from the box plot in Figure 5.1, (the Shared bug coverage evaluated per projects

presented in Appendix A. Section A.6 for all the 344 OSS projects was used to produce the

box plot in Figure 5.1) the set of common bug IDs is in general very low: in around 75% of

the projects the common IDs (i.e., the intersection of the sets) is no more than 20% of the

overall number of detected bug IDs (i.e., the union of the sets). This could mean that one of

the two databases (either VC logs or BT data) contains most of the information on bug IDs,

and that information is not mirrored in the other database. It could also mean that there

is a common subset of bug IDs, but that most of the other IDs are not shared in the two

information sources.

The box plot in Figure 5.1 shows that both Bicho and CVSAnalY have a significant e�ect

on missing data with respect to both VC logs and BT data of all 344 OSS projects we sampled

in this research. Thus, the gaps between the di�erent parts of the outliers in the box plot

show the degree of dispersion and skewness in the VC logs and BT data, which are not always

in sync in both Bicho and CVSAnalY databases. In addition, the outliers in the box plot it

indicate 20% of the OSS projects intersection of bug IDs in Bicho and CVSAnalY database.

In addition, the Chord diagram in Figure 5.2 visualises the inter-relationships between

BT data and VC logs of 344 OSS projects in Bicho and CVSAnalY respective database.

The connections between nodes arrange in circle such as All in bicho, All in CVSAnalY,

Intersection, Only in Bicho, Only in CVSAnalY and theUnion, displays the proportions

of Bug IDs for all 344 OSS projects sampled in this research.

The node is connected to each other represented proportionally by the size of each arc in

colours. In this way, the total number of Bug IDs in general for all the 344 OSS projects is

86

Finding discrepancies: Chapter 5 Scenarios of bug coverage

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.1: Ratio of bug IDs mentioned in both development logs and bug trackers,per project

211,457 (i.e., the union which is highlighted in the red arch). While the common Bug IDs

detected in Bicho and CVSAnalY, is highlighted in the lime green arch (i.e., the intersection

is 12,194). Thus the size of the lime green arch in the chord diagram represent a small

proportion of bug IDs shared in the node Only in CVSAnalY and All in CVSAnalY.

However, the size of the lime green arch in the chord diagram is bigger in the node Only

in Bicho compared to the node Only in CVSAnalY because the proportion of bug IDs

detected in Bicho overall are much higher than the bug IDs in CVSAnalY. As we mentioned

previously, the set of common bug IDs of 344 OSS projects is in general very low compared

with the total number of bug IDs detected in Bicho and CVSAnalY respective databases as

visualise in the chord diagram (in Figure 5.2) in the red arch (i.e., the union) and the lime

green arch (i.e., intersection).

In order to further describe the skewness of VC logs and BT data of the OSS projects we

analysed in this Chapter, in the Section 5.4, we formulate four scenarios of bug coverage in

the Bicho and CVSAnalY databases.

87

Finding discrepancies: Chapter 5 Scenarios of bug coverage

Figure 5.2: BT data and VC logs of 344 OSS projects

88

Finding discrepancies: Chapter 5 Scenarios of bug coverage

5.4 Scenarios of bug coverage

Depending on the configuration found for the two sets of bug IDs, four scenarios can be

expected for a software project: they are depicted graphically in the next subsection. In

addition, Table 5.1 shows the total number of OSS projects that comply with each scenarios.

The projects are further described in the next subsection (refer to appendix A in Section A.8

for the complete 344 OSS projects that comply with each scenario per project)

5.4.1 Scenario 1

The first scenario that we observed was when the set of bug IDs found in the issue tracker

database had no intersection with the set of bug IDs coming from the VC logs. We observed

this scenario in 25 projects: for the majority of these projects, one of the sets of bug IDs was

found in Bicho and CVSAnalY but the intersection of the sets was empty. Figure 5.3 depicts

scenario 1 graphically.

Figure 5.3: Scenario one

5.4.2 Scenario 2

The second scenario was the most common: there was a subset of bug IDs that was common to

the two data sources (i.e., the intersection of the sets). Apart from the common IDs, there was

also (i) one subset of bug IDs that appeared only in the VC logs, and (ii) another subset of bug

IDs that appeared only in the bug-tracking system. Figure 5.4 depicts scenario 2 graphically.

89

Finding discrepancies: Chapter 5 Scenarios of bug coverage

Figure 5.4: Scenario two

5.4.3 Scenario 3

The third scenario that we observed was when all the bug IDs of either of the sets were

contained within the other set: in the theory of sets, the cardinality of the union of the sets

was the cardinality of the containing set, while the cardinality of the intersection of the sets was

the cardinality of the contained set. We found 129 projects that complied with this scenario,

which is depicted graphically in Figure 5.5. This represents 42% of the total projects sampled

in this research, in which one of the bug ID sets was a subset of the other: for 103 projects, the

bug IDs found in the VC logs were a subset of what was found in the BT data. In a further

26 projects, the opposite was the case: the bug IDs found in the BT system were just a subset

of what was found in the development logs.

Figure 5.5: Scenario three

90

Finding discrepancies: Chapter 5 Worked example: four scenarios

5.4.4 Scenario 4

The final scenario was when all the bug IDs were found in the BT system and the development

log: in the set theory language, the union of the sets was equal to the intersection of the sets.

This was the ideal scenario, because the bugs were being mirrored exactly in the two databases:

unfortunately, we observed this scenario in only 8 projects out of 344, and in all these cases

the sets of bug IDs from both development logs and bug-tracking issues were empty.

Scenarios Number of OSS projects
1 25
2 182
3 129
4 8

Total number of OSS: 344

Table 5.2: Total number of OSS projects comply with four scenarios

It is worth noticing that Scenario 4 has very few projects: this would be the ideal situation,

when BT data and VC logs are perfectly aligned. In reality this the case, therefore it makes

our approach quite meaningful, in the case of OSS projects.

5.5 Worked example: four scenarios

In this section, we further investigate and conduct an in-depth analysis of 10 OSS projects

identified in each scenario that we observed in the previous section. The OSS projects were

randomly selected. The analysis will provide an insight into the discrepancies that we found

between BT data and VC logs of OSS projects sampled in this research, which fall under

four di�erent scenarios. In order to provide a comparison between each scenario, the bug IDs

of OSS projects discovered in both tools will be examined by measuring their metrics. This

includes the number of developers making commits or changes in the VC logs, the total lines

of code, and the number of revisions, as well as the total number of files existing in each OSS

project.

In the next subsection we will present the values measured across 10 projects in each

scenario.

91

Finding discrepancies: Chapter 5 Worked example: four scenarios

The StatSVN 3 tool was used to produce the metrics in the tables below [72].

The complete statistical report on the 10 OSS projects for all the scenarios was also evalu-

ated using StatSVN. The full statistical report of the 37 total number of OSS projects evaluated

for all four scenarios is available on Figshare.4

5.5.1 Worked Example – Scenario 1

In this scenario, we analysed 10 OSS projects with the aim of discovering the hidden factor

behind the set of bug IDs found in the issue tracker database that had no intersection with the

set of bug IDs coming from the VC logs. In the terminology of the set theory, and using BT as

the set of bug IDs from the bug trackers, and VC as the set of bug IDs from the development

logs:

BT fl VC = ÿ · BT ”© VC

For the 10 OSS projects reported in Table 5.3, as we mentioned, one of the sets of bug

IDs is empty either in Bicho or CVSAnalY, and therefore the intersection of the sets would

always be empty. We recall in Section 5.3 of this chapter that report on the number of bug IDs

detected in the two databases. In this way, for the 10 OSS projects analysed in this scenario

is presented in Table 5.4. The results is an excerpt from the finding of bugs IDs detected: all

in Bicho (i.e., in column BT - VC of Table of 5.4), only in Bicho (i.e., in column BT), and all

in CVSAnalY (i.e., in column VC - BT), only in CVSAnalY (i.e., in column VC) as well as

the Intersection of bug IDs in both tools was evaluated per project.

The second column of Table 5.3 shows the project IDs randomly selected from the 344

OSS projects. The column represents the same tracker (i.e., trackers table) IDs as those in the

Bicho database and the same repository (i.e., repositories table) IDs as those in the CVSAnalY

database. The third column of Table 5.3 presents the revision of each project as calculated

using the StatSVN tool. The average number of revisions for the OSS projects in scenario 1 is

653. Project ID=25 has 86 revisions and 5 developers, which is the lowest number of revisions
3StatSVN retrieves information from a Subversion repository and generates various tables and charts de-

scribing software development project: http://www.statsvn.org

4
https://figshare.com/s/be471b90e70865db6a30

92

Finding discrepancies: Chapter 5 Worked example: four scenarios

in this scenario and Project ID=192 has 1 developer which is the lowest number of developers

among the 10 OSS projects we observed in this scenario. On the other hand, project ID=207

has the highest number of revisions with 68 developers.

Scenario 1
S/N Project IDs No. Revision Total Files No. Developers Total LOC

1 10 903 267 29 34607
2 25 86 38 5 203066
3 30 262 5,290 6 2,657,423
4 34 775 475 27 25,052
5 42 1,637 336 201 89,826
6 47 166 46 6 3,740
7 192 88 11 1 884
8 205 317 1978 34 47,298
9 207 1929 159,219 68 159,219
10 239 365 210 34 92,769

Table 5.3: 10 OSS projects observed in scenario 1
Scenario 1

Bicho CVSAnalY (VC)
S/N Project IDs BT BT - VC BT fl VC VC - BT VC

1 10 2 2 0 1 1
2 25 11 11 0 3 3
3 30 7 7 0 6 6
4 34 139 139 0 2 2
5 42 52 52 0 202 202
6 47 26 26 0 37 37
7 192 1798 1798 0 5 5
8 205 71 71 0 1 1
9 207 109 5 0 5 109
10 239 1 1 0 18 18

Table 5.4: Metrics evaluated for the bug sets from BT data and VC logs (excerpt)

We present a worked example of what we observed in this scenario on project ID=10.

BT data was traced in Bicho, and the VC logs traced in CVSAnalY found. However, the

intersection of the sets on this project is empty. Figure 5.6 depicts a typical example of BT

data traced in phonegap project 5 (with project ID 10): this project shows there is no common
5The phonegap project is among the 344 OSS projects we sample on GitHub for this study.

https://github.com/sintaxi/phonegap.gita

93

Finding discrepancies: Chapter 5 Worked example: four scenarios

bug ID traced in CVSAnalY and Bicho, as depicted in figure 5.7.

Figure 5.6: BT data in Bicho

Figure 5.7: No bug IDs mirrored in CVSAnalY

94

Finding discrepancies: Chapter 5 Worked example: four scenarios

The graph in 5.8 summarises the results of the findings on discrepancies between VC logs

and BT data held by Bicho and CVSAnalY respective databases for the 10 OSS project in

scenario 1.

Figure 5.8: Scenario 1: 10 OSS projects

The numbers along the Y-axis in Figure 5.8 represent the number of bug IDs detected in

the Bicho and CVSAnalY databases.

The X-axis features one legend to represent the OSS projects IDs in scenario 1, the legend

on the right corresponds to four sets of bug IDs detected in Bicho and CVSAnalY: All in

Bicho, Only in Bicho, All in CVSAnalY, Only in CVSAnalY and Intersection.

In addition, the graph in Figure 5.8 displays the proportion of bug IDs detected in both

tools (i.e., Bicho and CVSAnalY), which indicates the number of bug IDs is by far higher in

Bicho than in the CVSAnalY, overall 70% of bug IDs in Bicho for all the 10 OSS projects in

this scenario are not mirrored in CVSAnalY. For instance, project ID=192 has 1798 bug IDs

found in Bicho. Unfortunately, none of the 1798 bug IDs are ever mentioned in the CVSAnalY

database (i.e., VC logs) while only 5 bug IDs were not mentioned in Bicho database. Thus,

clearly VC logs are lagging behind, as mentioned in Chapter 1. In reality, VC logs should form

95

Finding discrepancies: Chapter 5 Worked example: four scenarios

a superset of all BT data: one would expect the data contained inside the BT system to be

mirrored in the VC system and developers to record and distinguish between their development

and bug-fixing actions. Thus, there exist discrepancies in the data sets (i.e., VC logs and BT

data of OSS projects we sampled in this research) held by Bicho and CVSAnalY.

As a result, using our approach all the missing VC logs can be circumvented in either

Bicho or CVSAnalY (i.e., all the VC logs found only in CVSAnalY database will be converted

automatically to entries into the Bicho database; and all the BT data found only in Bicho will

be converted into entries to the CVSAnalY database). This will be demonstrated in the next

Chapter 6 of this thesis.

5.5.2 Worked Example – Scenario 2

In this scenario, we also analysed 10 OSS projects in order to identify a subset of bug IDs that

is common to the two data sources (i.e., the intersection of the bug IDs). In the terminology

of the set theory, and using BT as the set of bug IDs from the bug trackers, and VC as the

set of bug IDs from the development logs:

BT fl VC ”= ÿ · BT ”© VC

We recall in Section 5.3 of this chapter that report on the number of bug IDs detected in

the two databases. In this way, for the 10 OSS projects analysed in this scenario is presented

in Table 5.6. The results is an excerpt from the finding of bugs IDs detected: all in Bicho,

only in Bicho and all in CVSAnalY, only in CVSAnalY as well as the Intersection of bug IDs

in both tools was evaluated per project.

The second column shows the project IDs, which represent the same tracker (i.e., trackers

table) IDs as those in the Bicho database and also the same repository (i.e., repositories table)

IDs as those in the CVSAnalY database. The third column of Table 5.5 presents the revisions

of each project, calculated using the StatSVN tool. The average number of revisions of the

OSS projects in scenario 2 is 1,537. This indicates that a significant number of the OSS

projects in this scenario had a large number of revisions. Project ID=338 has 225 revisions

and 28 developers, which is the lowest number of revisions and the lowest number of developers

96

Finding discrepancies: Chapter 5 Worked example: four scenarios

among the 10 OSS projects we observed in scenario 2. Project ID=78 has the highest number

of revisions, and 54 developers.

Scenario 2
S/N Project IDs No. Revision Total Files No. Developers Total LOC

1 4 559 159 74 16,665
2 39 2,097 765 108 56,102
3 179 906 45 73 11,708
4 243 1,856 425 310 34,959
5 266 535 123 82 48,916
6 338 225 300 28 531,337
7 339 1,203 1,996 56 175,184
8 340 2,877 851 53 1,010,484
9 341 712 509 45 13,542
10 78 4,404 380 54 345,474

Table 5.5: 10 OSS projects observed in scenario 2
Scenario 2

Bicho CVSAnalY (VC)
S/N Project IDs BT BT - VC BT fl VC VC - BT VC

1 4 199 213 14 15 1
2 39 840 945 105 122 17
3 179 371 440 69 82 13
4 243 147 209 62 125 63
5 266 38 41 3 23 20
6 338 104 85 19 39 20
7 339 141 162 21 43 22
8 340 630 668 38 40 2
9 341 157 163 6 9 3
10 78 407 667 260 282 22

Table 5.6: Metrics evaluated for the bug sets from BT data and VC logs (excerpt)

Similarly, we present a worked example of what we observed in this scenario. In the 10 OSS

projects that we identified in this scenario, bug IDs were traced in Bicho and CVSAnalY. This

was observed in the Spark 6 project (project ID=4 in Table 5.5). Figure 5.9 depicts a typical

example of BT data traced in the Spark OSS project and bug IDs mirrored in CVSAnalY,

as depicted in Figure 5.10. In this case, the common bug IDs are not synchronised into the
6The Spark project is among the 344 OSS projects sample on GitHub for this study:

https://github.com/perwendel/spark:

97

Finding discrepancies: Chapter 5 Worked example: four scenarios

respective Bicho and CVSAnalY databases.

Figure 5.9: BT data in Bicho

Figure 5.10: Bug IDs mirrored in CVSAnalY

The graph in 5.11 summarises the results of the findings on discrepancies between VC logs

and BT data held by Bicho and CVSAnalY respective databases for the 10 OSS project in

scenario 2.

The numbers along the Y-axis in Figure 5.11 represent the number of bug IDs detected in

the Bicho and CVSAnalY databases.

The X-axis features one legend to represent the OSS projects IDs in scenario 2, the legend

on the right corresponds to four sets of bug IDs detected in Bicho and CVSAnalY: All in

Bicho, Only in Bicho, All in CVSAnalY, Only in CVSAnalY and Intersection.

In addition, the graph in Figure 5.11 displays the proportion of bug IDs detected in both

tools in this scenario(i.e., Bicho and CVSAnalY), which indicates there are common (i.e.,

intersection of bug IDs) bug IDs for all the 10 OSS projects in Bicho and CVSAnalY database,

In addition, 75% of the bug IDs in Bicho are much more than the bug IDs found in CVSAnalY

for all the 10 OSS project in this scenario. For instance, project ID=39 and 340 have much

98

Finding discrepancies: Chapter 5 Worked example: four scenarios

Figure 5.11: Scenario 2: 10 OSS projects

more bug IDs found only in Bicho. In this case, not all the bug IDs is detected in Bicho and

CVSAnalY database. Thus, the missing bug IDs along with the meta data will be synchronise

automatically into Bicho and CVSAnalY database vice versa.

5.5.3 Worked Example – Scenario 3

In this scenario, 10 OSS projects were analysed to identify when all the bug IDs of either of the

sets were contained within the other set. In the terminology of the set theory, and using BT as

the set of bug IDs from the bug trackers, and VC as the set of bug IDs from the development

logs:

BT ™ VC · BT fl VC ”= ÿ

We recall in Section 5.3 of this chapter that report on the number of bug IDs detected in

the two databases. In this way, for the 10 OSS projects analysed in this scenario is presented

in Table 5.8. The results is an excerpt from the finding of bugs IDs detected: all in Bicho,

only in Bicho and all in CVSAnalY, only in CVSAnalY as well as the Intersection of bug IDs

in both tools was evaluated per project.

99

Finding discrepancies: Chapter 5 Worked example: four scenarios

The first column in Table 5.7 shows the project IDs, which also represent the same tracker

(i.e., trackers table) IDs as those in the Bicho database and the same repository (i.e., reposito-

ries table) IDs as those in the CVSAnalY database. The second column of Table 5.7 presents

the revisions of each project, calculated using the StatSVN tool. The average number of re-

visions of the OSS projects in scenario 3 is 497. This suggests that half of the OSS projects

in this scenario have >100 revisions, while 2 projects in this scenario have <100 revisions.

Project ID=46 has 2 revisions and 1 developer, which is the lowest number of revisions and

the lowest number of developers in this scenario. On the other hand, project ID=275 has the

highest number of revisions – 2,068 – and 108 developers.

In this scenario, bug IDs in the BT system were just a subset of what was found in the VC

logs. This was observed in the Breze project7 project. Figure 5.12 depicts a typical example

of BT data traced in the Breze OSS project; 1 bug ID (i.e., BT data) was found in Bicho

database as a subset of 15 VC logs only mirrored in CVSAnalY database in the project, as

depicted in Figure 5.13.

Figure 5.12: BT data in Bicho

The graph in 5.14 summarises the results of the findings on discrepancies between VC logs

and BT data held by Bicho and CVSAnalY respective databases for the 10 OSS project in

scenario 3.

The numbers along the Y-axis in Figure 5.14 represent the number of bug IDs detected in

the Bicho and CVSAnalY databases.

The X-axis features one legend to represent the OSS projects IDs in scenario 3, the legend
7The Breze project is among the 344 OSS projects we sample on GitHub for this study:

https://github.com/breze-no-salt/breze.git

100

Finding discrepancies: Chapter 5 Worked example: four scenarios

Scenario 3
S/N Project IDs No. Revision Total Files No. Developers Total LOC

1 1 129 38 17 5,812
2 46 2 1 1 4
3 9 112 29 10 9,379
4 137 253 106 55 40,935
5 290 90 35 18 7,376
6 275 2,068 352 108 30,614
7 293 162 11 14 2,025
8 278 148 21 10 5,224
9 98 1,240 237 10 54,399
10 299 765 2034 34 1,590,527

Table 5.7: 10 OSS projects observed in scenario 3
Scenario 3

Bicho CVSAnalY (VC)
S/N Project IDs BT BT - VC BT fl VC VC - BT VC

1 1 51 57 6 0 6
2 46 106 107 1 0 1
3 9 32 34 2 0 2
4 137 3044 3050 6 0 6
5 290 80 83 3 0 3
6 275 698 749 51 0 51
7 293 45 47 2 0 2
8 278 2550 2562 12 0 12
9 98 0 1 1 15 16
10 299 140 154 14 0 14

Table 5.8: Metrics evaluated for the bug sets from BT data and VC logs (excerpt)

101

Finding discrepancies: Chapter 5 Worked example: four scenarios

Figure 5.13: Bug ID mirrored in CVSAnalY

Figure 5.14: Scenario 3: 10 OSS projects

102

Finding discrepancies: Chapter 5 Worked example: four scenarios

on the right corresponds to four sets of bug IDs detected in Bicho and CVSAnalY: All in

Bicho, Only in Bicho, All in CVSAnalY, Only in CVSAnalY and Intersection.

In addition, the graph in Figure 5.14 displays the proportion of bug IDs detected in both

tools in this scenario (i.e., Bicho and CVSAnalY databases), which indicates bug IDs found in

the CVSAnalY database were a subset of what was found in the Bicho database. For instance,

in project IDs=46, 137, 275 and 278, small number of bug IDs was found as a subset of BT

data in Bicho database. However, 15 bug IDs in project ID=98 was found as a subset of VC

logs in CVSAnalY database. In this case, bug IDs that were not found as a subset of the

other (i.e., either in Bicho or CVSAnalY database) will be synchronises automatically into

their respective databases.

5.5.4 Worked Example – Scenario 4

The final scenario was when all the bug IDs were found in the BT system and the development

log. In the terminology of the set theory, and using BT as the set of bug IDs from the bug

trackers, and VC as the set of bug IDs from the development logs:

BT © VC· BT fl VC = BT fi VC

This is the ideal scenario, when all the bugs IDs are being mirrored exactly in the two

databases. We classified 8 projects into this scenario, since they comply with the set theory

definition above. Unfortunately, these 8 projects have no big IDs

Below we provide an analysis of their characteristics, as done for this scenario previous 3

Scenarios. The second column in Table 5.9 shows the project IDs, which also represent the

same tracker (i.e., trackers table) IDs as those in the Bicho database and the same repository

(i.e., repositories table) IDs as those in the CVSAnalY database. The third column of Table

5.9 presents the revisions of each project, calculated using the StatSVN tool. The average

number of revisions of the OSS projects in scenario 4 is 430. Project ID=271 has 32 revisions

and 7 developers, which is the lowest number of revisions among the 10 OSS projects we

observed in scenario 4, while project ID=130 has the lowest number of developers and 208

103

Finding discrepancies: Chapter 5 Worked example: four scenarios

revisions. Project ID=89 has the highest number of revisions (1,970). The average number of

developers for the OSS projects sampled in this scenario is 6.

Scenario 4
S/N Project IDs No. Revision Total Files No. Developers Total LOC

1 38 311 40 13 3,743
2 45 85 387 4 45,332
3 89 1,970 493 4 25,954
4 103 147 86 5 68,804
5 125 258 112 8 4,984
6 130 208 91 3 4,229
7 271 32 12 7 747

Table 5.9: 10 OSS projects observed in scenario 4

5.5.5 Worked example - Summary of the four scenarios

Table 5.10 summarises the findings for the four scenarios, showing an average of revisions,

total files, number of developers and the total number of lines of code for the sample of 37

OSS projects we observed in the four scenarios.

Metrics were measured for the sample of 37 OSS projects using the StatSVN tool. The

OSS projects in scenario 2 produced a significant number of metrics, including the highest

number of revisions and the highest number of developers. Most of the common bug IDs

detected in Bicho and CVSAnalY were, by far, in scenario 2. The metrics produced by the

OSS projects in scenario 1 had the second-highest number of revisions and developers, and

those in scenario 3 had the third highest. On the other hand, for most of the OSS projects we

observed in scenario 4, bug IDs were empty in Bicho and CVSAnalY. Thus, most of the OSS

projects in scenario 4 had the lowest number of revisions and the lowest number of developers

among the 37 OSS projects we observed.

In general, Table 5.10 shows the mean (average) values evaluated for the 37 OSS projects

in four scenarios we sampled out of 344 OSS projects. The results in the Table 5.10 indicates

fewer revisions in software projects might result in fewer commits or changes in the software

development process. Conversely, having fewer developers in the software development process

might result in low commits and revisions. Depending on the experience of the developers

104

Finding discrepancies: Chapter 5 Summary of the chapter

Scenario No. Revision Total Files No. Developers Total LOC
1 653 16,787 41 331,388
2 1,537 555 88 224,437
3 497 286 28 193,387
4 430 174 6 21,970

Table 5.10: Mean (average) values evaluated for the 37 OSS projects in four Scenarios

and the size of the project. This might a�ect the traceability of BT data and VC logs of the

OSS projects we observed in the scenario where there is no intersection between the sets of

bug IDs in the two tools, or where only a small number of common IDs were detected.

In this section, we learned that traceability links between VC logs and BT data are derived

from changes in the source code [68]. Thus, the commits in the files might be the source of

information available for recovering links between BT data and VC logs produced by the

developers in the project. In this case, having a small number of revisions in a given OSS

project might reduce the possibility of tracking BT data and VC logs in the OSS projects we

sampled in this research.

5.6 Summary of the chapter

This chapter presented the results of an extended quantitative analysis of how bug-related

data is stored in the VC logs and the BT data in a sample of 344 OSS projects. The set of

bug IDs from the VC logs was compared to the set of bug IDs found in the BT systems. The

objective of this research was to ascertain how much discrepancy is visible when considering

these two sources of information, and whether either could be considered as a complete and

credible set of data regarding bug issues.

We found that over half of the projects sampled have a portion of bug IDs mentioned in

one source (either the development logs or the bug-tracking logs), but not in the other. We

also found that the intersection of “common” or shared bug IDs is very low (around 20% for

some 75% of the projects in the sample), while in some extreme cases projects held distinct

sets of IDs in either database that were not shared between them.

105

Chapter 6

Automating and synchronising the

missing data

In this section, we report in detail the proposed structure of the framework and the imple-

mentation.

This chapter is structured as follows. In Sections 6.1 and 6.2 we discuss the concept

and the background for this chapter. Section 6.3 details the structure of the framework

proposed. We discuss the implementation in Section 6.4. In Section 6.5 and 6.6 we discuss

the quantification of VC logs and BT data as well as re-engineering the tool sets. We report

on the synchronisation in Section 6.7. In addition, section 6.8 discuss re-aligning Bicho and

CVSAnalY and finally provide a conclusion in Section 6.9.

6.1 Introduction

Open-source software project development data is stored in a VC system, which contains

valuable information, such as the evolution of a software project. This information includes

the history of the development process and information about developers who have contributed

to producing the source code.

Developers in the open-source software (OSS) community derive benefits from VC systems

by getting access to the copies of the source code of di�erent software projects, and even by

106

Automating and synchronising the missing data: Chapter 6 Background

contributing to the source code in the repository, thereby learning and sharing knowledge of

di�erent types of software development processes. In addition, VC systems o�er an interface for

performing data analysis pertaining to the software project and conducting empirical studies

in software engineering.

However, such data cannot be queried through the standard interface of the VC system.

CVSAnalY and other related tools mentioned in Chapter 2.6 are designed to o�er such func-

tionality, with the limitation of not being able to synchronise the recovered missing VC logs.

Conversely, BT systems also hold crucial information regarding issues reported that may

require the immediate attention of developers in OSS or commercial projects. In this way,

getting access to BT systems is enabled via HTTP, and the issue reports can be viewed in

HTML format and can also be retrieved in XML format. The retrieval of BT data is required

for analyses and predicting future defects in the system. Similarly, before a developer can

add or make changes in the source code, the primary source of information and guide they

can refer to is the information stored in the BT system. In this way, the retrieval of issues

reports is done using Bicho for such analysis by querying relevant entities that exist in the

Bicho database.

The concept of the syncing process in this research is to provide an interface that enables

practitioners and researchers in software engineering to cross-analyse and sync BT data and

VC logs data automatically. In the case where discrepancies were discovered, syncing the

recovered link between VC logs and BT data would be advantageous in the databases of

either Bicho or CVSAnalY for posterior analyses.

The process of syncing VC logs and BT data will improve the quality of bug data we use

for validation of techniques and analysis in empirical software engineering. As a result, VC

logs and BT data can be queried with higher precision, consistent data sets can be obtained

(since the missing information in both tools is tracked and synchronised), and complete data

sets of software projects can be obtained for posterior analysis.

107

Automating and synchronising the missing data: Chapter 6 Background

6.2 Background

VC log data may be enhanced with the data from BT systems that report past software

corrective maintenance activities. When these are exploited together, extensive tools that

enable analyses and prediction of the future evolution of OSS projects are enriched e�ectively.

Unfortunately, Bicho and CVSAnalY provide insu�cient support for cross-analyses of both

VC logs and BT data.

6.2.1 VC log

Version commit logs refer to actions of developers left in text format, which detail all the

revisions and commits (changes) made to a software artefact. CVSAnalY retrieves VC logs

and stores them to a database (MySQL) automatically. The VC logs information can be

retrieved by issuing a query in the database, specifically in the SCMlog table that exists in

the CVSAnalY database. The specification of additional parameters in the query (SQL query)

allows the retrieval of information about a particular VC log. The SQL query in Figure 6.1

depicts a typical example of a query for a VC log file from one of the projects (the Scripts

project1) we sampled in this research, detailing several contextual descriptions of the changes

or revisions in the source code.

Figure 6.1: VC log

1
https://github.com/scriptcs/scriptcs

108

Automating and synchronising the missing data: Chapter 6 Background

6.2.2 BT data

BT data consists of two parts: a set of feature enhancement reports which describe metadata,

such as the report and which component of the system it pertains to; and a textual description

of the problems regarding the system.

In other words, BT data is considered as a bug report referring to a contextual description

of a software problem or request for an additional feature enhancement to the software. For

instance, the SQL query in Figure 6.2 depicts a typical example of an issue (BT system data)

reported for the Scripts project2. The resulting table shows the first 5 bug IDs retrieved by

the Bicho tool for the Scripts project.

Figure 6.2: BT data

The BT system has a valuable and useful web interface mechanism that provides other

systems, like Bicho, with access to BT data. In addition, the data that is retrieved from the

BT system is generated from a template. All the BT data within the Bicho tool set have the

same structure and format in the database.

Synchronising VC logs and BT data in a localised database provides the possibility of

querying most of the interesting analysis problems that are missing in their respective databases.

A simple database query statement ensures interoperability between Bicho and CVSAnalY

tools. Thus, the evolution of OSS projects related to VC logs and BT data can be achieved

collectively if they are mirrored in their respective databases.
2
https://github.com/scriptcs/scriptcs

109

Automating and synchronising the missing data: Chapter 6 Structure of the framework

Observing the tables of Bicho and CVSAnalY and their attributes, we propose using bug-

related data in either database to fill the missing data detected in the other database. Any

bug IDs and attributes stored by CVSAnalY (but not found by Bicho) could be used to fill

the summary and other attributes in the Bicho database. In consequence, automating the

integration of VC log data with BT data (and vice versa) will require the use of metadata

contained in the “SCMlog" table (populated by CVSAnalY) to be copied in the “Issues"

table (populated by Bicho). Table 6.3 shows that attributes could be used from either table

to fill the gaps in the other table.

Table 6.3: Corresponding fields linked in Bicho and CVSAnalY

6.3 Structure of The Framework

The structure of the framework comprises six modules: BT system, VC system, Bicho, CVS-

AnalY, SCMlog and Issues. Figure 6.4 depicts the components in a UML notation that can

be instantiated in the final implementation.

On the other hand, Figure 1.6 shows the architectural overview of the framework. The

next subsections describe the main components, and what has been achieved to date.

110

Automating and synchronising the missing data: Chapter 6 Structure of the framework

Figure 6.4: UML diagram of components

Issue Analyser

Log Analyser

Issues

Logs

Bug/
Fixed/
#6515

Syncing Process

Bug/
Fixed/
#6515

Bug/
Fixed/
#6515

Issues

Logs

SQL queries

 GitHub

 GitHub

Automated Entries
into Bicho

Automated Entries
into CVSAnalY

Figure 6.5: Architectural overview of the framework

111

Automating and synchronising the missing data: Chapter 6 Implementation

6.3.1 VC Log Parser Via CVSAnalY

This component defines the interaction between CVSAnalY and any VC systems. Also, the

SCMlog component serves as the main entry point where development logs are stored as

extracted by CVSAnalY. In this way, the SCMlog interface must be implemented, to allow

communication with any VC system. Currently, the framework supports the interaction with

Git.

However, one of the main obstacles among the supported CVS is that Git requires authen-

tication by the client or user before CVSAnalY can point to a repository in Git to extract

and store VC logs. A username and password need to be entered, to allow communication

between CVSAnalY and Git. As a result, this thesis implemented this framework only in its

static interaction with Git: users need first to specify their logging credentials for authenti-

cation in GitHub in order to extract data by CVSAnalY from the remote VCS and stored

development logs into a database generated by CVSAnalY. Refer to appendix A. Section A.1

for the complete codes.

6.3.2 BT data Parser Via Bicho

This component provides an interface in which the interaction between Bicho and any BT

system is defined. The interface that must be implemented by each client when mining data

from issue trackers is the Issues interface. Thus, the interface will enable the interaction

between Bicho and the supported bug-tracking systems. The framework currently supports

JIRA, Bugzilla, GitHub, SourceForge, Launchpad and Allura. Among these systems only

GitHub requires the user to authenticate their identity using the logging credentials already

registered on GitHub before it allows any interaction or communication. Refer to appendix A

in Section A.1 for the complete codes.

6.4 Implementation

We implement the majority of the framework in Perl programming language, whose strengths

are text manipulation, portability, fast development capabilities and a rapid development cycle

112

Automating and synchronising the missing data: Chapter 6 Implementation

[28]. In addition, Perl has an impressively broad range of standard libraries. The Perl DBI

package makes the automation and integration of databases very easy.

In this thesis, we make use of the SZZ algorithm [116] and track bugs and logs of the OSS

projects sample from GitHub. In our formulation, we only looked for bugs described by the

“#" sign and various numeric values (e.g., #1234) which are linked to the ID of a bug. In

its original formulation, the SZZ algorithm also searches for keywords like “Bug", “Fixed" and

others.

In this section, we detail the steps and process of the implementation. These include

retrieving the IDs from the two databases, combining the results into an intersection and union

of sets, and synchronising the identified missing VC logs and BT data into their respective

databases automatically.

6.4.1 Retrieving VC Logs

Obtaining the development logs: the tool is capable of interfacing with and executing CVS-

AnalY and Bicho commands, in order to parse logs and bugs at once. CVSAnalY and Bicho

automatically create databases and tables with metadata, storing all the development logs

(VC logs) and BT data of the sample. Among the tables generated by CVSAnalY, we then

specifically queried the message text field in SCMlog table, which mentions the number and

unique IDs of changes in the VC system. In the presence of a bug ID, the VC logs also mention

the bug ID with the #1234 format. For the purpose of this research, we were only interested

in bug IDs that were being mentioned by developers: bug IDs did not necessarily need to

be “fixed" or “resolved". This step was integrated into the tool that was developed for this

research (Refer to appendix A in Section A.2 for the complete code)

6.4.2 Retrieving BT Data

Obtaining the BT data: the second phase in our data preparation process was to execute the

Bicho tool to obtain and store all the information contained in the bug trackers of the projects

as well as all the issues reported by the users of a project and confirmed as such by developers.

One of the tables created by Bicho is the Issues and Issues_ext_bugzilla table, where the

113

Automating and synchronising the missing data: Chapter 6 Implementation

status (“open" or “closed") or the message accompanying the entry is stored and imported for

publication by the relative GitHub tracker. We queried specifically the Issues_ext_bugzilla

table to obtain the set of unique numbers and IDs of bugs reported and confirmed by the

developers table. This step was integrated into the tool that was developed for this research

(Refer to appendix A in A.2 for the complete code).

6.4.3 Data Cleaning

Data cleaning: false positives and true positives – the cleaning step, before isolating the bug

numbers and IDs for both CVSAnalY and Bicho. The query for the “#" sign followed by

numeric values in the VC logs imported with CVSAnalY produced a large number of false

positives in the pilot study carried out in Chapter 3.6. The messages refer to the pattern

searched for by the “#" sign, but they are all linked to a request of pulling a merge from another

distributed repository into the original one under GitHub. In this case, for the rest of the 344

OSS projects we obtained from GitHub, the same pattern was filtered out automatically using

the SQL query integrated into the tool that was developed for this research. Line 2 (BT data)

and lines 7–11 (VC logs) of the fragment of code in Code 6.1 indicate how we removed the

trailing strings.

6.4.4 Isolating The Bug IDs

Isolating the bug numbers and IDs: after cleaning the data and removing all the trailing strings

and white spaces, we composed two sets of bug IDs: one from the VC logs, and the other

from the issue tracking systems. In the VC logs, we looked for the bug IDs in the free text

descriptions left by developers (and stored in the SCMlog table). In the bug-tracking data,

we used the bug IDs assigned by the developers to the issues reported as bugs. These steps

were performed within the developed tool, by querying the appropriate tables and cleansing

the results. Line 2-4 (Bicho) and line 6-12 (CVSAnalY) of the fragment of code in Code 6.1

indicate how we composed the two sets of IDs of both tools.

Code 6.1: Cleaning VC logs and BT data

114

Automating and synchronising the missing data: Chapter 6 Implementation

1 # Removing trailing white spaces.

2 $data[0] =~ s/\s+//;

3

4 push (@output_bicho, $data[0]); # Isolating and assigning BT data

5

6 # Split VC logs into smaller section and removing trailing white spaces and strings

7 @tokens = split(/\s/, $data[0]);

8 for($j=0; $j<=$#tokens; $j++){

9 if ($tokens[$j] =~ /#\d+/){

10 $tokens[$j] =~ s/(\.|\,|\;|\:)//;

11 $tokens[$j] =~ s/.�#//;

12 push (@output_cvs, $tokens[$j]); # Isolating and assigning VC logs

13 }

14 }

15

16

6.4.5 Evaluation

Evaluating the union and intersection of the sets: the penultimate step was to evaluate the

union and intersection of the sets, for each project. Given a set of bug IDs mentioned in the

SCMlog table and the list of bug IDs stored in the issue trackers of a project, we evaluated

the intersection (i.e., the common bug IDs) of these two sets (as visible at lines 2–3 in the

fragment of code in Code 6.2), as well as the union of such sets (i.e., the overall set of unique

bug IDs jointly held in the two databases). We then formulated a metric (named Shared

Bug Coverage) to describe how many bug IDs are common in the two databases. This final

step is integrated into the tool as depicted in the fragment in Code 6.2 (Evaluation of VC logs

and BT data).

We randomly picked a few of the sample of 344 OSS projects (Discussed in Sub-section

115

Automating and synchronising the missing data: Chapter 6 Quantification

4.3.2 and Section 4.4 of Chapter 4) obtained from GitHub and manually analysed each of

the remaining bugs in the Bicho and CVSAnalY databases, to make sure that each of the

remaining IDs pointed to real bugs before evaluating the union and intersection of the sets.

The bug IDs within the data set obtained through Bicho were always related to bug IDs.

Code 6.2: Evaluation of VC logs and BT data

1 # CREATE SETS, USE SETS

2 $s1 = Set::Scalar≠>new (@output_bicho);

3 $s2 = Set::Scalar≠>new (@output_cvs);

4

6.5 Quantification of VC logs and BT data

After evaluating the sets of VC logs and BT data using set theory, we obtained the common,

union and intersection of sets of all 344 OSS projects we sampled in this research. We utilised

the shared bug coverage metric that we used in evaluating the sets of IDs, such that all the

VC log IDs found only in CVSAnalY, and not in Bicho, could be inserted into the Issues

table of Bicho. The IDs would be used as references in the SCMlog table and a query would

be parsed to retrieve relevant metadata inside the table (SCMlog). For instance, the relevant

metadata would include all the identified links which we mapped in Figure 6.3. Codes 6.3 and

6.4 depict a typical example of the SQL queries we used in both tools, which quantified all the

VC logs and BT data. However, we applied the full SZZ algorithms and quantified BT data

into VC logs present in Bicho and CVSAnalY, for example the use of the “#" symbol, “Fixed"

and “Bug" keywords in the CVSAnalY database (we used the same query and obtained the

results presented in Section A.6 at Appendix A).

Code 6.3: SQL query to retrieve BT Data

1 select RIGHT(web_link, locate(’/’,reverse(web_link))≠1) from issues_ext_github, issues

where issues.id = issues_ext_github.id and issues.tracker_id = 1;

116

Automating and synchronising the missing data: Chapter 6 Quantification

Code 6.4: SQL query to retrieve VC log

1 select message from scmlog where scmlog.message like ’%#%’ AND message NOT like ’%

Merge�Pull�request%’ AND scmlog.repository_id= 1;

2

3 select message from scmlog where scmlog.message like ’%Fixed%’ AND message NOT like ’

%Merge�Pull�request%’ AND scmlog.repository_id= 1;

4

5 select message from scmlog where scmlog.message like ’%Bug%’ AND message NOT like ’%

Merge�Pull�request%’ AND scmlog.repository_id= 1;

Code 6.5 shows how we quantified VC logs and BT data for each project using the set

operations, as follows:

SharedBugCoverage = Intersection

Union

(6.1)

• Only in Bicho: In this set of operations we obtained all the unique BT data IDs in the

Bicho database that are not traced in the CVSAnalY database (the operation of the set

is visible at line 8 in the fragment of code in Code 6.5).

• All in CVSAnalY: In this operation we obtained all the VC log IDs in the CVSAnalY

SCMlog table which might be traced in Bicho (the operation of the set is visible at line

9 in Code 6.5, which is a fragment of the tool chain developed for this thesis).

• Only in CVSAnalY: In this set of operations we obtained the unique VC log IDs in

the CVSAnalY database that are not traced in the Bicho database (the operation of the

set is visible at line 10 in Code 6.5).

• All in Bicho: In this set of operations we obtained all the BT data IDs in the Bicho

Issues tables which might be traced in the CVSAnalY database (the operation of the

set is visible at line 11 of Code 6.5, which is a fragment of the tool chain developed in

this thesis).

• Common BT system and VC logs in Both tools (intersection): In this operation

we obtained all the BT system and VC log IDs present in both the Bicho and CVSAnalY

117

Automating and synchronising the missing data: Chapter 6 Re-engineering

databases – in other words, the IDs the tool chain was able to trace in both tools (the

operation of the sets is visible at line 12 in Code 6.5).

• The union: This operation obtained the total number of VC logs and BT data retrieved

by the tool chain in Bicho and CVSAnalY respective databases. Also, the operation of

the union is visible at line 13 in Code 6.5.

After the sizing of VC logs and BT data in both tools, we display the results for each of the

344 OSS projects sampled in this research. Line 16 of Code 6.5 prints the number of VC logs

and BT data IDs based on the set of operations we itemised between lines 8 and 13 of Code

6.5, which is a fragment of the tool chain we developed in this research. (Refer to Section A.3

in Appendix A for the codes and Section A.6 in Appendix A for the results.)

Code 6.5: Quantification of VC logs and BT data

1

2 # CREATE SETS, USE SETS

3 $s1 = Set::Scalar≠>new (@output_bicho);

4 $s2 = Set::Scalar≠>new (@output_cvs);

5

6 # OPERATIONS ON SETS

7

8 $only_in_bicho = $s1 ≠ $s2; # only in bicho

9 $in_cvs = $s2; # in cvsanaly

10 $only_in_cvs = $s2≠$s1; # only in cvsanaly

11 $in_bicho = $s1; # in bicho

12 $common = $s1 � $s2; # common

13 $total = $s1 + $s2; # union

14

15

118

Automating and synchronising the missing data: Chapter 6 Synchronisation

6.6 Re-engineering Bicho and CVSAnalY

The first part of the process to change and improve the design of Bicho and CVSAnalY is

to identify the relevant entities that hold BT data and VC logs. In this way, the entities

will be examined to ensure the changes we made and the design conforms to the entities

and referential integrity of both databases. The referential integrity is where the foreign key

contains a value that refers to the existing valid row in another relation [102]. In this case, we

observed that the identified entities – that is to say, the SCMlog and Issues tables – might

need to be altered to allow cross-linking of VC logs and BT data correctly, since the data type

that exists in each data field of the tables in both tools varies slightly. The rev column in the

SCMlog table data type is medium text while in the issue column in the Issues table the

data type is VarChar. Such a typical discrepancy could result in missing data or return an

invalid entry during the automated entry in both tools.

In addition, the data structure of the Issues table in Bicho – for instance, the ID field

(i.e. the primary key in the Issues table) is set to be auto_increment. However, the primary

key – that is, the ID field – in the SCMlog table is not set to auto_increment. Therefore, we

also expected some di�culty in automating the entries of BT data into the SCMlog table,

like duplicate entries for the primary key, since it is not set to auto_increment. The tables

are depicted in table 6.9.

Other integrity rules that are enforced in the Bicho and CVSAnalY databases are the NOT

NULL and UNIQUE constraints. The NOT NULL constraints are placed in the SCMlog table

of CVSAnalY in each column except the id column (i.e., the primary key) to ensure that every

row in the table has a value for that column during the insertion of BT data traced in Bicho,

but not in CVSAnalY. Conversely, the UNIQUE constraint restriction is also placed in each

column to ensure that no duplicate values exist in the SCMlog and Issues tables of both

tools (Bicho and CVSAnalY). In addition, we will demonstrate some typical examples where

such constraints were encountered during the synchronisation process. Table 6.6 below depict

the SCMlog table in CVSAnalY and the Issues table in Bicho respectively.

119

Automating and synchronising the missing data: Chapter 6 Synchronisation

Table 6.6: SCMlog table in CVSAnalY database

6.7 Synchronisation

Merging BT data and VC logs from di�erent sources is a big challenge that requires complex

methods [106], since we are correlating and merging information from various sources.

In this research, we utilised the existing techniques and attempts to provide a resolution

to this dilemma (i.e., merging BT data and VC logs from various sources using Bicho and

CVSAnalY). Thus, we will merge BT data into VC logs of OSS projects using a simplified

approach.

In this way, we will instantiate the main components we mentioned in Section 6.3 above –

that is to say, the Issues interface and the SCMlog interface – in the structure of the framework

to enable an interaction or connection between Bicho and the supported BT system as well as

CVSAnalY and the supported distributed VC system, such as GitHub.

6.7.1 T1: Bicho – CVSAnalY

In this section, we synchronised the BT data and VC logs of two entities – that is to say, the

SCMlog table and the Issues table of CVSAnalY and Bicho respectively. We streamlined

the synchronisation in two forms: in Test 1 (T1) we attempted to sync missing BT data in

the Issues table of Bicho into the SCMlog table of CVSAnalY, and we attempted to sync

missing VC logs in the SCMlog table of CVSAnalY into the Issues table of Bicho.

We began by instantiating and implementing an interface (i.e., issues table) that enabled

the interaction with BT data retrieved by Bicho from the supported BT system. However, a

120

Automating and synchronising the missing data: Chapter 6 Synchronisation

connection needed to be established with CVSAnalY to allow an asynchronous exchange of

data between Bicho and CVSAnalY.

In this way, we used a set operation function in which we implemented and obtained the

BT data existing only in Bicho and already retrieved from the supported BT system and

merged it with VC logs in the CVSAnalY SCMlog interface (table). BT data was merged by

composing two sets of BT data IDs and VC log IDs in Bicho and CVSAnalY. The evaluation

of the sets of IDs was carried out automatically and integrated in the tool chain developed

for this thesis. The missing IDs were isolated and mapped as a set of elements (using a scaler

set in Perl) separately (i.e. only in Bicho and only in CVSAnalY) using the set operation

function (as visible in Code 6.5 in Section 6.5 of this chapter).

BT data in the Issues interface (table) of Bicho that was not mirrored in the SCMlog inter-

face (table) of CVSAnalY could be synchronised using the set operation function. We called

the set operation function and initiated a loop ($only_in_bicho–>element) to construct

the full list of elements (i.e. BT data IDs) existing only in Bicho and checked through each BT

system. Thus, we query the Issues table serving as the interface in Bicho, select the identified

columns and insert them into the SCMlog table serving as the interface in the CVSAnalY

database to merge BT data not mirrored in CVSAnalY using the full list of elements (i.e.,

BT data IDs existing only in Bicho and obtained in the set operation ($only_in_bicho)).

The arrows in table 6.7 graphically shows the attributes and the metadata contained in the

“Issues" table (populated by Bicho) to be copied in the “SCMlog" table (populated by

CVSAnalY).

6.7.2 T1: CVSAnalY – Bicho

In this section, we instantiated and implemented an interface (i.e., SCMlog table) that en-

abled the interaction with the VC logs retrieved by CVSAnalY from the supported CVS. Con-

versely, we established a connection with CVSAnalY to initiate and allow an asynchronous

exchange of data between CVSAnalY and Bicho. As a result, we could also use the set op-

eration function in which we implemented and obtained the VC logs existing only in CVS

and already retrieved from the supported VC system and merged them with BT data in the

121

Automating and synchronising the missing data: Chapter 6 Synchronisation

Table 6.7: Issues —> SCMLog

Bicho Issues interface (table). VC logs were merged by composing two sets of BT data IDs

and VC log IDs in Bicho and CVSAnalY. The evaluation of the sets of IDs was carried out

automatically and integrated in the tool chain developed for this thesis. The missing IDs were

isolated and mapped as a set of elements (using a scaler set in Perl) separately (i.e. only in

CVSAnalY and only in Bicho) using the set operation function (as visible in Code 6.5 in

Section 6.5 of this chapter).

VC logs in the SCMlog interface (table) of CVSAnalY not mirrored in the Issues interface

(table) of Bicho could be synchronised using our set operation function. we called the set

operation function and initiated a loop ($only_in_cvs–>element) to construct the full list

of elements (i.e. VC log IDs) appearing only in the SCMlog table of CVSAnalY database,

specifically in the message column (using the “#" symbol), and then checked each VC log ID

and processed them one element at a time. Thus, we query the SCMlog table in the message

column serving as the interface in Bicho, select the identified columns and insert them into the

Issues table serving as the interface in the Bicho database to merge VC logs not mirrored in

Bicho using the full list of elements(i.e., VC log IDs existing only in CVSAnalY and obtained

in the set operation ($only_in_cvs)). Also, the arrows in table 6.8 graphically shows the

attributes and the metadata contained in the “SCMlog" table (populated by CVSAnalY) to

be copied in the “Issues" table (populated by Bicho).

122

Automating and synchronising the missing data: Chapter 6 Synchronisation

Table 6.8: SCMlog —> Issues

6.7.3 Issues with synchronisation

The synchronisation was implemented, as we envisage the occurrence of duplicate entries of

bug IDs to be synchronised into Bicho database. As we mentioned in Section 6.6, there might

be duplicate entries for primary keys in the ID column of the Issues and SCMlog Table in

either databases as depicted in Figure 6.9. Figure 6.10 shows the failed synchronisation of VC

logs from CVSAnalY to Bicho in T1 during the implementation.

Therefore, we preferred not to intervene in the existing databases (Bicho and CVSAnalY)

and Tables (Issues and SCMlog) at this stage, but rather to work on two di�erent tables,

to be integrated within CVSAnalY and Bicho, respectively.

Figure 6.9: T1 Demo: Primary ID field in Issues Table (Bicho) is set to be Auto increment

123

Automating and synchronising the missing data: Chapter 6 Synchronisation

Figure 6.10: T1 and T2 Demo

6.8 Re-aligning CVSAnalY and Bicho

We realigned the Bicho and CVSAnalY databases by adding two extra Tables in their respec-

tive databases – namely the SCMlogCVSAnalY Table in CVSAnalY and the IssuesBicho

Table in Bicho – as depicted in Table 6.11 and 6.12.

Table 6.11: IssuesBicho table

124

Automating and synchronising the missing data: Chapter 6 Synchronisation

Table 6.12: SCMlogCVSAnalY table

6.8.1 T2 Bicho – IssuesBicho table

Similarly, we realigned the Bicho databases by adding an extra table called IssuesBicho and

inserting VC logs not mirrored in the Bicho database. This is automated and integrated into

the tool chain developed, as visible in the fragment of code in Appendix A Section A.4 between

lines 28-39.

6.8.2 T2: CVSAnalY – SCMlogCVSAnalY table

In this Table, we synced BT data not mirrored in CVSAnalY by creating the SCMlogCVS-

AnalY table if it did not exist (integrated in the tool chain) and inserting the missing BT

data into the SCMlogCVSAnalY Table created automatically, as visible in the fragment of

code in Appendix A Section A.4 between lines 72-86.

6.8.3 Implementation of Auxiliary Tables

The synchronisation was implemented successfully. The BT data not mirrored in the SCMlog

Table in the CVSAnalY database was synchronised into the SCMlogCVSAnalY table of

CVSAnalY automatically, and without duplication. Similarly, VC logs not mirrored in the

Issues table in the Bicho database was synchronised into IssuesBicho automatically. Figure

6.16 shows the automatic syncing process in both tools for all 344 OSS projects we sampled

in this research.3 for the complete code.
3Refer to Appendix A in A.4

125

Automating and synchronising the missing data: Chapter 6 Synchronisation

The table in 6.1 present the percentage of BT data and VC logs recovered and synchronised

in the auxiliary tables of Bicho and CVSAnalY databases per project. The columns in Table

6.1 such as Only in Bicho and Only in CVSAnalY for Project ID=42 in Bicho and

CVSAnalY database shows the number of BT data and VC logs only tracked in Project

ID=42. Thus, the 52 BT data found only in Bicho (i.e., 20.47% of the BT data in project

ID=42) was recovered and synchronised into CVSAnalY auxiliary (SCMlogCVSAnalY) Table

automatically. On the other hand, a significant bug IDs was found in the VC log. In this

case, the 202 number of bug Ids tracked in VC logs (i.e., 79.53% of bug IDs) in column only

in CVSAnaly for project ID=42 in the table 6.1 was recovered and synchronised into Bicho

auxiliary (Issuesbicho) table automatically. This was evaluated using the tool-chain (Refer to

appendix A.5 for the complete code) automatically for all the 344 OSS projects sampled in

this research. The percentage of bug data recovered and synchronised for the rest of the 300

OSS projects can also be found in Appendix A Section A.8 (Mysql dump of Bicho Delta and

CVSAnalY Delta (database) which holds the recovered and synchronised BT data and VC

logs of 344 OSS projects can be found on Figshare.4

The box plot in Figure 6.13, shows the set of bug IDs only found in CVSAnalY is in general

very low: in around 75% of projects bug IDs not found in CVSAnalY (i.e., only in Bicho) is

synchronised in the CVSAnalY database. This means Bicho delta contains less information

on bug IDs in Issuesbicho (i.e., the table in Bicho database that holds the VC logs synch from

CVSAnalY).

In addition, the box plot in Figure 6.13 shows that some of the OSS projects we sampled

on GitHub for this research, there is significant e�ect on missing data with respect to VC

logs. Thus,the outliers in the box-plot indicate in around 25% of all the 344 OSS projects

in CVSAnalY database the only bug Ids presence was synchronised into bicho delta (i.e.,

issuesbicho table in Bicho database).

On the other hand, the box plot in Figure 6.14, shows the set of bug IDs only found in Bicho

is in general very high: in around 75% of projects bug IDs was found in Bicho was synchronised

into newer SCMlogcvsanaly table of CVSAnalY database created in the database. This mean
4
https://figshare.com/s/be471b90e70865db6a30

126

Automating and synchronising the missing data: Chapter 6 Synchronisation

Project Ids All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Bicho Delta CVSAnalY Delta
1 57 6 6 51 0 57 0.00% 89.47%
2 449 19 19 430 0 449 0.00% 95.77%
3 790 30 30 760 0 790 0.00% 96.20%
4 213 15 14 199 1 214 0.47% 92.99%
5 6 0 0 6 0 6 0.00% 100.00%
6 101 21 20 81 1 102 0.98% 79.41%
7 18 0 0 18 0 18 0.00% 100.00%
8 1459 218 202 1257 16 1475 1.08% 85.22%
9 34 2 2 32 0 34 0.00% 94.12%
10 2 1 0 2 1 3 33.33% 66.67%
11 18 3 2 16 1 19 5.26% 84.21%
12 29 1 1 28 0 29 0.00% 96.55%
13 14 541 1 13 540 554 97.47% 2.35%
14 2257 554 544 1713 10 2267 0.44% 75.56%
15 195 40 19 176 3 198 1.52% 79.80%
16 494 56 54 440 2 496 0.40% 88.71%
17 0 13 0 0 13 13 100.00% 0.00%
18 1 0 0 1 0 1 0.00% 100.00%
19 792 31 5 787 26 818 3.18% 96.21%
20 33 1 1 32 0 33 0.00% 96.97%
21 321 6 6 315 0 321 0.00% 98.13%
22 40 1 1 39 0 40 0.00% 97.50%
23 1 0 0 1 0 1 0.00% 100.00%
24 6 0 0 6 0 6 0.00% 100.00%
25 11 3 0 11 3 14 21.43% 78.57%
26 166 107 3 163 104 270 38.52% 60.37%
27 121 17 17 104 0 121 0.00% 85.95%
28 325 68 68 257 0 325 0.00% 79.08%
29 3 0 0 3 0 3 0.00% 100.00%
30 7 6 0 7 6 13 46.15% 53.85%
31 232 192 185 47 7 239 2.93% 19.67%
32 8 0 0 8 0 8 0.00% 100.00%
33 21 0 0 21 0 21 0.00% 100.00%
34 139 2 0 139 2 141 1.42% 98.58%
35 364 28 28 336 0 364 0.00% 92.31%
36 27 1 1 26 0 27 0.00% 96.30%
37 47 6 6 41 0 47 0.00% 87.23%
38 0 0 0 0 0 0 0.00% 0.00%
39 945 122 105 840 17 962 1.77% 87.32%
40 27 2 2 25 0 27 0.00% 92.59%
41 236 35 4 232 31 267 11.61% 86.89%
42 52 202 0 52 202 254 79.53% 20.47%
43 421 94 93 328 1 422 0.24% 77.73%
44 24 3 3 21 0 24 0.00% 87.50%
45 0 0 0 0 0 0 0.00% 0.00%
46 107 1 1 106 0 107 0.00% 99.07%
47 26 37 0 26 37 63 58.73% 41.27%
48 68 5 5 63 0 68 0.00% 92.65%
49 55 9 8 47 1 56 1.79% 83.93%
50 51 0 0 51 0 51 0.00% 100.00%

Table 6.1: Synchronisation of BT data and VC log using # Symbol of the SZZ Algorithm - 344 OSS Projects

127

Automating and synchronising the missing data: Chapter 6 Synchronisation

Figure 6.13: Bicho delta

128

Automating and synchronising the missing data: Chapter 6 Synchronisation

CVSAnalY delta will contains more information on bug IDs that were circumvented in the

SCMlogcvsanaly table of CVSAnalY database found only in bicho. Thus, there are no outliers

in the upper quartile of the box plot. In most of the 344 OSS projects we sampled in this

research, the majority of missing BT data and VC log were circumvented automatically using

our approach in both Bicho and CVSAnalY respective databases.

Figure 6.14: CVSAnalY delta

Furthermore, the bar chart displayed in Figure 6.15 summarise graphically the percentage

of BT data and VC log been recovered and synchronised automatically in Bicho and CVSAnalY

respective databases using our approach for all the 344 OSS projects we sampled in this

research.

129

Automating and synchronising the missing data: Chapter 6 Synchronisation

Figure 6.15: Bicho and CVSAnalY Delta

Figure 6.16: T2

130

Automating and synchronising the missing data: Chapter 6 Synchronisation

Figure 6.17: Synchronised BT Data and VC logs into newer SCMlogcvsanaly and Issuesbicho

131

Automating and synchronising the missing data: Chapter 6 Summary of the chapter

Figure 6.17 shows (i.e a snapshot of the tables in both tools databases) the result of the

syncing process automatically in Bicho and CVSAnalY database for the OSS projects we

sampled in this research.

6.9 Summary of the chapter

The synchronisation of Bicho and CVSAnalY tool sets is suitable for analysing open-source

software projects and commercial projects, provided they are hosted or use the repository

supported by Bicho and CVSAnalY respectively. However, the solution of automation and

synchronisation of VC logs and BT data improve the quality of bug data in software repository

reduced the impediment of incomplete, inconsistent and skewed sets of data that researchers

used for empirical studies.

Furthermore, we also presented a framework for detecting and automatically synchronising

bug-related data missing from these sources. The framework is easy to implement by following

the steps and processes that are involved in mining VC logs and BT data. However, it can be

a daunting and very challenging task, since the origin of such data sets is also not mirrored. In

this way, the synchronisation will enable flexible cross-analyses of evolutionary aspects of OSS

projects, since, using the tool chain, one can mine VC logs and BT data from VC systems

and BT systems. Also, the synchronisation provides a simple query-result mechanism and

supports complex data queries for analysis.

132

Chapter 7

Conclusion and Threats to Validity

7.1 Introduction

This thesis proposed a large empirical study that mines the VC logs and BT data of 344

OSS projects hosted on GitHub1. In addition, this thesis proposed a framework not only for

“extracting”, but also for automatically “syncing” VC logs and BT data supporting multiple

BT systems and VC systems. The novelty of the framework, apart from supporting various

OSS software repositories, is the ability to synchronise missing VC logs (concerning bugs) with

data extracted from the BT system, and vice versa. The framework will assist in mining the

complete set of software evolutionary facts throughout the entire life cycle of software projects;

to provide complete data to bug-detection techniques; to assist the developers during the

corrective software maintenance; and to provide an unbiased data set for empirical software

engineering research on bugs.

In this chapter, Sections 7.2 and 7.3 summarise and highlight the contributions, beneficia-

ries and impacts of the thesis. In Section 7.4 of this chapter, we evaluate the contributions of

the thesis. In addition, we will discuss the threats to validity that could call into question some

of the findings of this thesis. These include the threats to internal, external and construct

validity of our study in Section 7.5. We discuss our future work and detail possible extensions

of the study reported in this thesis in Section 7.6. Finally, we discuss the conclusions based
1
https://github.com/

133

Conclusion: Chapter 7 Contribution of this thesis

on the problems we reported and investigated in each chapter of this thesis in Section 7.7.

7.2 Contributions of this thesis

Following the list of objectives and the problems observed as outlined in Chapter 1, the

contributions of this thesis are as follows:

C1 – Tools. In this thesis, tools that trace VC logs and BT data for software projects

were identified. After selecting Bicho and CVSAnalY to be used in this research, this

thesis described VC logs and BT data structures of the tools selected and identified

the fields that linked BT data and VC logs for synchronisation into their respective

databases. Thus, researchers in software engineering can trace, mine VC logs and BT

data using the identified tools collectively without mining and tracking VC logs and BT

data independently.

C2 – Bugs in VC log. The thesis presented an in-depth analysis of VC logs using the SZZ

algorithm, which has been used extensively by researchers to identify bugs in VC logs

and BT data of software systems. In this thesis, the SZZ algorithm was partitioned in its

three core components – the “bug” and “fix” keywords and “# +digit” – with a manual

check-up. In addition, this thesis evaluated the precision and recall of the various parts

of the SZZ algorithm and presented the precision and recall of each element in detecting

bug identifiers in the development logs (VC logs). This thesis suggested using “# +

digit” and the bug ID, which largely outperformed the other proxies in finding bugs in

VC logs and BT data.

C3 – Discrepancies between BT data and VC logs. This thesis presented the results

in a Venn diagram, which suggested that around 1/3 of the total number of VC logs and

BT data were mirrored when cross-analysed and linked with BT data. Also, another

1/3 were only present in BT data retrieved by Bicho, while the rest were found in VC

log data (CVSAnalY), but never summarised into BT data retrieved by a BT system

tool (Bicho). This thesis present and conducted a large empirical study that mined

134

Conclusion: Chapter 7 Beneficiaries and impact of this thesis

the VC logs and BT data of 344 OSS projects, hosted on GitHub2. Thus, this thesis

provided a large and significant statistical conclusion with reasonable evidence in the

issue of traceability links recovery and syncing of VC log and BT data from open-source

software repositories.

C4 – Synchronisation. The thesis presented a tool chain that synchronised VC logs and

BT data, ensuring that data sets held by these tools (Bicho and CVSAnalY) are always

complete and enriched e�ectively. Most importantly: (i) the tool chain avoids the im-

pediment of using incomplete data sets for analysis in empirical software engineering;

(ii) VC log and BT data can be identified and retrieved with higher precision; and (iii)

consistent and unskewed data sets can be obtained, since the missing information in

both tools is tracked and synchronised.

C5 – Tool chain. This thesis proposed and implemented a complete tool chain not only for

extracting, but also for automatically syncing VC logs (development logs) and bugs of

issue data (BT data) – that is, supporting multiple BT system and VC system.

The novelty of the tool chain, apart from the fact that it supports various OSS reposito-

ries, is its ability to synchronise missing VC logs (concerning bugs) with data extracted

from the BT system, and vice versa. Finally, this tool chain was made available.

7.3 Beneficiaries and impact of this thesis

Following the contributions as outlined in Chapter 1 and recapitulated in Section 7.2, the

beneficiaries and impact of this thesis are as follows:

1. Open-source software (OSS) community This thesis benefits OSS community and

that aim to design and develop tools for retrieving VC logs and BT data collectively

that (i) support various BT system and VC system sources; (ii) allow cross-analysis of

BT data and VC logs; and (iii) track and synchronise missing BT data and VC logs of
2
https://github.com/

135

Conclusion: Chapter 7 Evaluation of the thesis contribution

software projects, ensuring that complete and consistent data sets are always stored in

the database for posterior analysis.

2. Researchers in software corrective maintenance: Researchers in software main-

tenance and evolution benefit from this thesis, since the source of data most commonly

used by researchers in software corrective maintenance is, by far, VC logs and BT data.

Using the tool chain to extract data from various sources will help researcher by improv-

ing the quality of the data sets they used. Similarly, researchers can extract complete

VC logs and BT data from various sources, and also understand the inner mechanisms

of producing software artefacts that are required for research and analysis in software

engineering.

3. Researchers in empirical software engineering: The novelty of the tool chain,

apart from the fact that it supports various OSS software repositories, is its ability

to synchronise missing development logs (concerning bugs) with data extracted from

the BT system, and vice versa. As a result, researchers of bugs in empirical software

engineering benefit from this thesis by using the tool chain in mining complete sets of

evolutionary facts to provide an unbiased data set.

In general, both large OSS and commercial projects can be analysed in order to extract

and establish missing links and sync BT data with VC logs (and vice versa) for posterior

analysis.

7.4 Evaluation of the thesis contribution

The research presented in this thesis aims to be an overarching discussion about how data

on bugs are being extracted and used to inform studies on bug prediction, bug triaging and

identification. The findings of this thesis do not confirm the hypotheses: bug IDs are not

mirrored from bug trackers into VC logs and vice versa. Also, using the set of all bugs from

bug-tracking systems is not always definitive in describing the overall set of bugs in a software

system. Therefore, the traceability of bugs in open-source projects could benefit from the

136

Conclusion: Chapter 7 Evaluation of the thesis contribution

integration of two sources of information: one based on the VC logs, and one based on the

BT data.

The four scenarios described in Chapter 5 Section 5.4 show an overarching problem in the

traceability of bugs, which can be described as the “expressiveness” of an information source.

VC logs should be expressive enough to follow the opening, fixing and closing of a bug closely

and afterwards update the bug-tracking system as proof of what was achieved during the

development itself. What we found from our sample of projects is that there is never a perfect

match in what is recorded by developers in the di�erent databases: what is more worrying is

that the information source that is intended primarily to track defects and their resolution is

often missing some pieces of information that are instead recorded in the development logs.

To be truly e�ective, our (and others’) approach of tracing bugs into VC logs should

be integrated into a framework that not only detects and stores the discrepancies in the

traceability of bugs into the VC logs, but also provides a means to synchronise (fill) the missing

data in one data source if that data was to be found in the other data source. In (chapter

6), we presented our framework, which aims to integrate di�erent types of repositories, and

various approaches to bug notations. Similarly, Bicho and CVSAnalY (before) were run

independently and producing independent results in which cross-analysing BT data and VC

logs to track the missing link required significant amount of manual e�ort. In this thesis,

we implement our framework using our approach and integrate Bicho (i.e., a BT tool) and

CVSAnalY (i.e., a VC tool) functionalities. In addition, we evaluate the framework in which

98% of the missing BT data and VC logs were circumvented in their respected databases

automatically as we reported in Chapter 6 of the this thesis.

In addition, before the implementation of the framework we used the approach presented

in this thesis to track missing data of 344 OSS project. The result of the analysis presented

in Chapter 5 Section 5.3 ()Figure 7.1,) are mirrored the box-plot indicated that in 75% of 344

OSS projects sampled in this research, no more than 20% of the overall number of detected

bug IDs (i.e., not mirrored in Bicho and CVSAnalY database).

However, In most of the 344 OSS projects we sampled in this research, the majority of

missing BT data and VC log were circumvented automatically in both Bicho and CVSAnalY

137

Conclusion: Chapter 7 Evaluation of the thesis contribution

Figure 7.1: Before: Ratio of bug IDs mentioned in both development logs and bug trackers,per project

Figure 7.2: After: Ratio of bug IDs mentioned in development logs per project (in 344 OSS projects)

138

Conclusion: Chapter 7 Threats to validity

respective databases. After the implementation of our framework and approach, the box plot

in Figure 7.2, shows the set of bug IDs detected that were inserted into newer SCMlogcvsanaly

table of CVSAnalY database created in the database. This resulted in around 75% of projects

bug IDs found in Bicho but not in CVSAnalY before was synchronised. Thus, the shared

bug coverage of bug IDs was high and it shows no outlier in the box plot presented in Figure

7.2.

7.5 Threats to validity

In this section, we discuss the threats to the validity of this research. This includes internal,

external, construct and conclusion validity. These threats are defined as follows.

• Internal validity is defined as the accuracy of the conclusion about the study in this

research [90].

• External validity is defined as the generalised validity of the conclusions of the research

in this thesis [90].

• Construct validity refers to the degree to which a conclusion can be made following the

theoretical constructs on which the approach was based [90].

• Conclusion validity in this thesis is defined as a factor that can influence and lead the

findings in this thesis to an incorrect conclusion.

7.5.1 Threats to validity (Chapter 3)

In this section, we will discuss the threats to validity that are specific to our approach and

finding in Chapter 3 of this thesis.

7.5.1.1 Internal validity

The selection of OSS projects and extraction of VC logs and BT data was very time-consuming

and tedious. However, the mining process was particularly slow due to the sleep-time we

139

Conclusion: Chapter 7 Threats to validity

imposed between each OSS project extraction step in both Bicho and CVSAnalY. For instance,

a sleep-time of 15 seconds was regularly imposed after VC logs data of one OSS project had

been extracted and before moving on to Bicho to extract BT data of the same OSS project in

order to avoid an unfriendly stress on the BT system and VC system server (refer to Appendix

B in A.1 for a working copy of the tool chain in lines 23–24 for the sleep-time fragment of

code).

The reliability of VC logs and BT data is also a potential issue: certainly one can never

be sure that the repositories hold correct and complete VC logs and BT data. Thus we

set some criteria and requirement as mentioned in Chapter 3 Section 3.2 of this thesis. For

instance requirements include: every OSS project sampled in this thesis the projects must be

maintained and remain under active development. This is to ensures that the analysed VC

logs and BT data were not obsolete. Because extracting incomplete or inconsistent VC logs

and BT data of OSS projects can lead to a biased and untrustable result and incorrect analysis

[112]. Since BT systems and VC systems are not in sync, in this case, it is hard to ensure

that all related data are collected. For instance, some OSS projects might have another source

code or bug repositories that are not made publicly available. In this case, we might obtain

empty VC logs or BT data.

There is also a threat to SZZ algorithm validity. We implemented the SZZ algorithm on

the basis that SZZ is currently the best available algorithm for automatically identifying VC

logs on BT data [128]. We cannot guarantee that SZZ is still the best algorithm. Although

we improved the approach (SZZ algorithms) that we applied in this research, the approach

may also be subject to implementation errors. We tried to minimise this threat by piloting on

one OSS project (i.e., the Bracket project), as detailed in the working example in Section 3.6,

before applying the approach to all the 344 OSS projects. In addition, we further validated

our technique through extensive manual check-up during our analysis and implementation

as detailed and reported in Chapter 4 Section 4.3.2 in this thesis. We performed a manual

analysis of a random sample of 100 VC logs of 10 OSS projects we sampled in order to

determine whether “Fix" or “Bug" or the # identifier are referring to a bug.

140

Conclusion: Chapter 7 Threats to validity

7.5.1.2 External validity

In Chapter 3, we check in Bicho and CVSAnalY databases if any over-lagging exist in their

respective databases using the SZZ algorithm and traces of VC logs and BT data. . In

addition, we cannot guarantee that the obtained results are generalisable on the OSS projects

sampled from GitHub. Kalliamvakou et al [71] asserted that “One of the biggest threats to

validity to any study that uses GitHub data indiscriminately is the bias”, because most of the

repositories that are developed on GitHub are personal and inactive repositories. However,

the data we obtained in this research and the selected OSS projects were active projects. We

mitigated this threat by imposing some criteria and requirements which excluded non-active

projects from this research. Thus, to the best of our knowledge, this increased our confidence

on the approach and the results we obtained using the selected OSS projects. Moreover, the

tools we selected might not have been the right tools for some projects. For instance, some

developers might not mention a bug report ID in the message field of the SCMlog table in

CVSAnalY, while the ID exists in the summary field of the Issues table of Bicho or in di�erent

patches that are handled via a mailing list, rather than through the BT system.

7.5.2 Threats to validity (Chapter 4)

In this section, we will discuss the threats to validity that are specific to our finding in Chapter

4 of this thesis.

7.5.2.1 Internal validity

With respect to internal validity, the evaluation was between VC logs retrieved using CVS-

AnalY and BT data retrieved using Bicho. Both tools are executed independently and pro-

duce independent results. Similarly, the VC logs and BT data are stored in di�erent localised

databases created by both tools automatically. The extraction process – that is to say, mining

VC logs and BT data of each project’s data set – was carried out simultaneously to avoid any

discrepancies or over-lagging using the tool chain. This allowed us to evaluate and dissect each

individual SZZ component in this study to the best of our knowledge, and thus to minimise

141

Conclusion: Chapter 7 Threats to validity

any other external factors that might have had an e�ect on the results in our empirical study.

7.5.2.2 Construct validity

With respect to construct validity, which deals with the relation between the theory and

observations, we sampled 10 OSS systems from GitHub in order to pilot the dissection of the

SZZ algorithm in its basic components, or proxies, in terms of their precision at pointing to

bug IDs.

In this thesis, we have evaluated the precision and recall of the individual SZZ components

at identifying or locating bug IDs. In order to avoid errors or mistakes during our evaluation,

we automated the process using the tool chain developed for this research. Moreover, we used

the widely adopted metric F-measure to assess the SZZ technique as well as its improvement.

We measured the performance of the existing techniques – that is to say, the SZZ algorithm

– on each basic component (i.e., the use of “# 123”, “Fixed” and “Bug” via Precision-Recall

and F-Measure as well as showing their p-value).

To mitigate such a threat, we began with a pilot study, in which we studied 10 OSS projects

and manually analysed each VC log to determine if “Fix” or “Bug” or the # identifier were

referring to a bug. After successful completion of the pilot study, we extended the study to a

large number (344) of OSS projects sampled from GitHub. But in this case, the results varied

significantly, considering that analysis of the 10 OSS projects was carried out manually. Also,

in some OSS projects only the top 100 subsets of VC logs were considered when evaluating

each component of the SZZ algorithm, while the rest of the 10 OSS projects had fewer than 100

VC logs. However, where the proportion of the three main component of the SZZ algorithm

(i.e., # symbol, fixed and bug) were zeros from Table 4 in Appendix 7.7. Section A.7 none

of the logs retrieved in that project referred to the TP and FP as mentioned in the previous

Section 4.5 and defined in Section 4.2 of this Chapter. In some of the 10 OSS projects analysed

manually, only the top 100 subsets of VC logs were considered in evaluating each component,

while the rest of the 10 OSS projects had fewer than 100 VC logs.

142

Conclusion: Chapter 7 Threats to validity

7.5.2.3 External validity

We welcome researchers in empirical software engineering to build on the results in this thesis

and replicate our study with di�erent and large OSS projects using the SZZ algorithm (i.e., the

approach) in order to advance this body of knowledge. Replicating this study with di�erent

and large OSS projects from di�erent repositories could help reduce this threat. We leave this

as future work.

The results from this study are only generalisable to Bicho and CVSAnalY tool sets and

the 344 OSS projects we sampled from GitHub via FlossMole. In addition, we do not claim

that these results would apply to all MSR tools we mentioned in this study. Further empirical

studies are needed to validate this generalisation. We leave this as future work too.

7.5.2.4 Conclusion validity

With respect to conclusion validity, due to the large number of OSS projects we sampled in

this study, as well as non-normality of VC logs and BT data sets, we used the Mann-Whitney

test to prove the significance of each individual SZZ algorithm component [59].

7.5.3 Threats to validity (Chapter 5)

In this section, we will discuss the threats to validity that are specific to our finding in Chapter

5 of this thesis.

7.5.3.1 Internal validity

With respect to internal validity, we conducted an in-depth analysis between VC logs retrieved

using CVSAnalY and BT data retrieved using Bicho. The extraction process – that is to say,

mining VC logs and BT data of each project’s data set – was carried out simultaneously

to avoid any discrepancies or over-lagging. This allowed us to quantify and identify each

of the OSS project data sets (VC logs and BT data) we sampled in this study with careful

considerations to the best of our knowledge. This was to minimise any other external factors

that might have had an e�ect on the results in our empirical study.

143

Conclusion: Chapter 7 Threats to validity

7.5.3.2 Construct validity

With respect to construct validity, our aim was to quantify and identify the discrepancies of

large OSS projects to provide significant evidence that VC logs and BT data are not mirrored

in OSS projects. We evaluated the union and intersection of the sets for each project. Given

a set of bug IDs mentioned in the VC logs, and the list of bug IDs stored from the BT system

of a project, we evaluated the intersection (i.e., the common bug IDs) of these two sets, as

well as the union of such sets (i.e., the overall set of unique bug IDs jointly held in the two

databases). We then formulated a metric (named Shared Bug Coverage) to describe how many

bug IDs are common in the two databases.

To mitigate such a threat, we began with a pilot study in which we studied 10 OSS

projects (Brackets) and manually mirrored all the VC logs and BT data that exist in Bicho

and CVSAnalY.

7.5.3.3 External validity

We welcome researchers in empirical software engineering to build on the results in this thesis

and replicate our study with large OSS projects using our approach to advance this body of

knowledge.

Our results from this study are only generalisable to Bicho and CVSAnalY tool sets and

the OSS projects we sampled from GitHub via FlossMole. In addition, we do not claim that

these results would apply to all MSR tools we mentioned in this study. Further empirical

studies are needed to validate this generalisation.

7.5.3.4 Conclusion validity

With respect to conclusion validity, due to the large number of OSS projects we sampled in

this study, we mitigated this threat by conducting an in-depth analysis on the four scenarios

of bug coverage reported in Chapter 5 Section 5.4. Thus, we randomly selected 37 OSS

projects out of 344. This represented 10 OSS projects for three of the scenarios and seven OSS

projects for one scenario that we observed based on the metric we formulated called shared

bug coverage. The worked examples presented for each scenario confirmed that discrepancies

144

Conclusion: Chapter 7 Threats to validity

exist between the data held in Bicho and CVSAnalY and suggested that BT data and VC logs

of OSS projects are not mirrored.

7.5.4 Threats to validity (Chapter 6)

In this section, we will discuss the threats to validity that are specific to our finding in Chapter

6 of this thesis.

7.5.4.1 Internal

Internal validity is defined as the accuracy of the conclusion in this research [90]. The threats

to internal validity in Chapter 6 were the synchronised BT data and VC logs of two entities

– that is to say, the SCMlog table and the Issues table of CVSAnalY and Bicho respectively.

The synchronisation was in two forms: in Test 1 (T1) we synced the missing BT data in the

Issues table of Bicho into the SCMlog table of CVSAnalY, and also synced missing VC logs

in the SCMlog table of CVSAnalY into the Issues table of Bicho. Unfortunately, as we

envisaged, the occurrence of duplicate entries of BT data was not mirrored in the CVSAnalY

database, as we mentioned in Section 6.6.

To mitigate such a threat, we did not intervene in the existing databases (Bicho and

CVSAnalY) and tables (Issues and SCMlog). We synchronised the missing BT data and

VC logs in a di�erent integrated table within the respective CVSAnalY and Bicho databases.

This was achieved using the set operation function visible in Code 6.5 in Section 6.5 in the

penultimate chapter of this thesis. Thus, we realigned the Bicho and CVSAnalY databases

by adding two extra tables in their respective databases – namely the SCMlogCVSAnalY

table in CVSAnalY and the IssuesBicho table in Bicho.

7.5.4.2 Construct validity

The construct validity in Chapter 6 was the SZZ algorithm [116] that we applied to track

and sync bugs and logs of the 344 OSS projects sampled and obtained from GitHub. In our

formulation, we only looked for bugs described by the “#” sign and various numeric values

(e.g., #1234) which were linked to the ID of a bug. In its original formulation, the SZZ

145

Conclusion: Chapter 7 Future work

algorithm also searches for keywords like “Bug”, “Fixed” and others. We mitigated such

a threat by conducting an analysis and evaluating the precision and recall of the various

components of the SZZ algorithm when detecting bug-fixing commits. In particular, the

implementation of the SZZ algorithm uses (i) the “Fixed” term, (ii) the “Bug” term, and (iii)

the # identifier (with digits, say #12345) to check their precision and recall when isolating

the bug IDs in the VC logs.

7.6 Future work

In this section, we present our future work based on threats to validity we reported for each

chapter.

7.6.1 Empirical studies

The possible extension of this study with di�erent and large OSS projects to be sampled from

di�erent repositories is among our future work. As we mentioned in the previous section of this

chapter, we want to conduct a blind analysis [115] and replicate our study with commercial

projects using our approach in order to advance this body of knowledge.

Since the results from this study are only generalisable to Bicho and CVSAnalY tool sets

and the 344 OSS projects we sampled from GitHub via FlossMole, we also plan to apply

our approach to other MSR tools we mentioned in this study in Chapter 2.6, in order to

validate the generalisation of our findings related to discrepancies in OSS projects we reported

in Chapter 5.3.

7.6.2 Tool sets

As mentioned above, the results from this study are only generalisable to Bicho and CVSAnalY

tool sets and the 344 OSS projects we sampled from GitHub via FlossMole. As stated in the

previous section of this chapter, we do claim our approach might be applicable to the rest of

the tools we mentioned in Chapter 2.6. Thus, we plan to implement our framework using the

same approach to merge and synchronise the missing BT data and VC logs using the tools

146

Conclusion: Chapter 7 Thesis conclusion

recovered in their respective databases. The implementation is made easier by the flexibility

of our framework following the steps we highlighted in Chapter 6.3. Nevertheless, this will

require a significant amount of e�ort to be achieve.

7.6.3 Tool-chain

As stated in Chapter 6.7, the ultimate goal of this research is to automate and synchronise

BT data and VC logs from di�erent sources. This is a big challenge that requires a complex

method [106]. In this thesis, we reported that the size, and the number of developers has an

e�ect in traceability of bugs in VC logs. Obtaining complete sets of data is very crucial in

empirical software engineering research that deals with: prediction of software faults, software

reliability and traceability, software quality, e�ort and cost estimation, bug prediction, and

bug fixing. Thus, it is crucial to provide them with a framework and tool chain that aims to

support the integration, tracking and syncing of BT data and VC logs of multiple sources.

For instance, Bicho supports Bugzilla (> 4), Sourceforge.net (abandoned), Jira (unstable),

Launchpad, Allura (unstable). Moreover, the implementation of the framework was carried

out by developing a tool chain – that is to say, secondary software that is considered to be

cost e�ective [92], because it does not require a significant amount of resources and time in

order to be developed, given the size, time and e�ort needed to develop a tool with a user

interface. Thus, we plan to present the tool chain with a graphical user interface that supports

the integration, tracking and syncing of BT data and VC logs of multiple sources in a single

platform. As we mentioned in Chapter 6.4, the tool chain will be capable of executing Bicho

and CVSAnalY by querying specific entities in their respective databases. In addition, it will

be able to recover and synchronise the missing data in their respective databases and vice

versa.

7.7 Thesis conclusion

In this section, we discuss the conclusions based on the problem statement that were articulated

into various chapters of this thesis. In addition, we will discuss and reflect the aims and

147

Conclusion: Chapter 7 Thesis conclusion

objectives that motivate this research in which we outlines in Chapter 1 of this thesis.

In chapter 2 we reported the related work, techniques and tools that aim to retrieve VC logs

and BT data from BT system and VC system. The contribution of the presented research is the

framework to synchronise the missing VC logs and BT data, supporting various repositories

and bug-tracing algorithms and approaches [108]. In addition, we report on the evaluation of

the existing techniques and approaches to solving the traceability issues in linking of VC logs

and BT data of software projects by [88], who suggests that the use of regular expressions

might work well. They compared the e�ectiveness of regular expressions with that of other

well-known bug-linking techniques and tools, such as ReLink by [130] and BuCo Reporter by

[83]. Their results suggest the technique and tools are equally as e�ective as other proposed

techniques in solving the issue of traceability links.

In conclusion, all the BT tools and VC tools reported in Chapter 2 retrieved VC logs and

BT data independently and required a large amount of interaction. Others – such as BuCo

Reporter, Bug-code Analyser, Linkster and ReLink – recover missing logs and bugs/issues

accurately. Unfortunately, they are unable to synchronised BT data and VC logs in their

respective databases. Therefore, our approach, and the proposed framework the tool chain,

goes one step further and completed these tools by synchronising the missing VC logs and

BT data in either database in an automatic way. Thus we achieved our objective (Obj1) and

discovered what researchers use in mining VC logs and BT data.

In chapter 3 of the thesis, we presented a procedure and our approach to extract, compare

and synchronise the gaps discovered in either the VC logs or the BT data of OSS projects.

We showed that such an approach has been partially automated when partially implementing

a well-known algorithm to isolate the bug-fixing commits (i.e., the SZZ algorithm [116]).

This chapter outlined an approach to building a complete set of bug IDs that were docu-

mented in the evolution of a software system. This comprises the analysis and parsing of both

the VC logs and the BT data: this is required because we found that commonly OSS projects

hold di�erent sets of bug IDs when interrogating the BT system and the development logs.

In addition, we conducted an in-depth analysis of the SZZ algorithm, which has been used

extensively by researchers to track the bug-fixing commits of software systems. We partitioned

148

Conclusion: Chapter 7 Thesis conclusion

the algorithm into its three basic components, and with a manual check-up, we showed the

precision and recall of each component in detecting bug identifiers in the development logs.

We found that the guideline of using the # symbol and the bug ID largely outperforms the

other proxies in detecting bug-fixing commits.

Manually inserting the references to bug IDs is clearly not achieving the required trace-

ability, and a better (automated) approach should be designed to have the two sources of data

aligned and synchronised. The possible way to do this would be to generate an automatic

commit in the development logs that details the bug-fixing activity, as obtained by the BT

system. In the same way, when the BT system is not aligned with the VC logs, an entry could

be automatically generated to insert the bug-development activity, as detailed in the VC logs,

into the BT system.

In Chapter 4 of thesis, we demonstrated that the process of collecting data related to bugs,

when using open-source projects, is far from established or repeatable. Developers tend to

record their actions in di�erent ways, and very often the bug-fixing commits are not reflected

onto and from the corresponding BT system.

The results in this chapter are relevant to the research community: models, techniques

and empirical approaches that use defect data would produce seemingly di�erent (or comple-

mentary) results, when the complete set of bug data was to be extracted and considered for

study. Replication studies could be performed to assess whether the results as proposed in

past papers could be complemented with further evidence of bug- fixing activity.

On the other hand, the use of the SZZ algorithm shows that some keywords (“Fix” and

“Bug”) are linked to less precision and higher recall. This result should reinforce the message

for practitioners and researchers when identifying bugs in VC logs of OSS projects to use the

standard # notation for bug IDs. Thus we achieved our objective (Obj2) and identify bugs

(BT data) into VC logs in this chapter.

In Chapter 5 we presented the results of an extended quantitative analysis on a sample of

344 OSS projects, and how the bug-related data is stored in the VC logs and the BT data. The

set of bug IDs from the VC logs was compared to the set of bug IDs found in the BT systems.

The objective of the research in this chapter was to ascertain how much discrepancy is visible

149

Conclusion: Chapter 7 Thesis conclusion

when considering these two sources of information, and whether either could be considered as

a complete and credible set of data regarding bug issues.

We found that over half of the 344 OSS projects we analysed have a portion of bug IDs

mentioned in one source (either the development logs or the bug-tracking logs) but not in the

other. We also found that the intersection of “common” or shared bug IDs is very low (around

20% for some 75% of the projects in the sample), while in some extreme cases projects hold

a distinct set of IDs in one database that is not shared in the other database. Furthermore,

we also presented a framework for detecting and automatically synchronising missing bug-

related data from these sources. Thus we achieved our objective (Obj3) and detected the

discrepancies between VC logs and BT data.

In Chapter 6 The integration and combining the functionality of Bicho and CVSAnalY tool

sets is suitable for analysing open-source software projects and commercial projects provided

they are hosted or used the repository supported by Bicho and CVSAnalY respectively as

mentioned in Chapter 2. The solution of automation and synchronisation of VC logs and BT

data reduces the impediment of incomplete, inconsistent and skewed data sets that researchers

use for empirical studies. Thus we achieved our objective (Obj4) and synchronised the

missing data from one data source by using the traces found in the other source (i.e, either in

Bicho or CVSAnaly vice versa).

In addition, we implement our proposed a framework (Published in the 19th International

Conference on Evaluation and Assessment in Software Engineering (EASE) 2015). that is

easy to implement following the steps and process that we outlined in the structure of the

framework [108]. However, it is a daunting task and very challenging, because the origin

of such data sets is also not in synchronised. In this way, the synchronisation will enable

flexible cross-analyses of evolutionary aspects of OSS projects, since Bicho and CVSAnalY are

capable of mining VC logs and BT data from VC systems and BT systems. Also, after the

implementation and synchronisation. The tool chain provides a simple query-result mechanism

and supports complex data queries for analysis. Thus we achieved our objective (Obj5) and

developed a tool chain that automatically detects, synchronises and re-engineers missing data

and discrepancies in VC logs and BT data of 344 OSS projects.

150

Finally, we summarise evaluate the framework and the tool chain by graphically presented

the percentage of BT data and VC log been recovered and synchronised automatically in

Bicho and CVSAnalY respective databases using our approach for all the 344 OSS projects we

sampled in this research. In general 80-95% of the missing BT data and VC logs of 344 OSS

projects we sampled in this research has been recovered in Bicho and CVSAnalY respective

database.

151

Bibliography

[1] Ieee standard for software maintenance. IEEE Std 1219-1998, pages i–, 1998.

[2] Ieee standard classification for software anomalies. IEEE Std 1044-2009 (Revision of

IEEE Std 1044-1993), pages 1–23, Jan 2010.

[3] P. Anbalagan and M. Vouk. On mining data across software repositories. 2009 6th IEEE

International Working Conference on Mining Software Repositories, 2009.

[4] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-code traceability for object-

oriented systems. Annals of Software Engineering, 9(1-4):35–58, Jan. 2000.

[5] G. Antoniol, M. Di Penta, H. Gall, and M. Pinzger. Towards the integration of versioning

systems, bug reports and source code meta-models. Electronic Notes in Theoretical

Computer Science, 127(3):87–99, 2005.

[6] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proceedings of the

28th International Conference on Software Engineering, ICSE ’06, pages 361–370, New

York, NY, USA, 2006. ACM.

[7] J. Anvik and G. C. Murphy. Reducing the e�ort of bug report triage: Recommenders

for development-oriented decisions. ACM Transactions on Software Engineering and

Methodology, 20(3):10:1–10:35, Aug. 2011.

[8] L. J. Arthur. Software Evolution: The Software Maintenance Challenge. Wiley-

Interscience, New York, NY, USA, 1988.

152

[9] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate

the impact of software tools: A case study of the version editor. IEEE Transactions on

Software Engineering, 28:324–333, 2002.

[10] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats on building models

from cvs and bugzilla repositories: The mozilla case study. In Proceedings of the 2007

Conference of the Center for Advanced Studies on Collaborative Research, CASCON ’07,

pages 215–228, Riverton, NJ, USA, 2007. IBM Corp.

[11] A. Bachmann and A. Bernstein. Software process data quality and characteristics: A

historical view on open and closed source projects. In Proceedings of the Joint Inter-

national and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE)

and Software Evolution (Evol) Workshops, IWPSE-Evol ’09, pages 119–128, New York,

NY, USA, 2009. ACM.

[12] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The missing links:

Bugs and bug-fix commits. In Proceedings of the Eighteenth ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, FSE ’10, pages 97–106, New

York, NY, USA, 2010. ACM.

[13] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: A roadmap. In

Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, pages

73–87, New York, NY, USA, 2000. ACM.

[14] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and T. Zimmermann. Quality

of bug reports in eclipse. In Proceedings of the 2007 OOPSLA Workshop on Eclipse

Technology eXchange, eclipse ’07, pages 21–25, New York, NY, USA, 2007. ACM.

[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann. What

makes a good bug report? In Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pages 308–

318, New York, NY, USA, 2008. ACM.

153

[16] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate bug reports consid-

ered harmful...; really? In Software Maintenance, 2008. ICSM 2008. IEEE International

Conference on, pages 337–345, Sept 2008.

[17] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein. Linkster: enabling e�cient

manual inspection and annotation of mined data. In Proceedings of the eighteenth ACM

SIGSOFT international symposium on Foundations of software engineering, pages 369–

370. ACM, 2010.

[18] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email so-

cial networks. In Proceedings of the 2006 international workshop on Mining software

repositories, pages 137–143. ACM, 2006.

[19] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Reveillere. Empirical

evaluation of bug linking. In Software Maintenance and Reengineering (CSMR), 2013

17th European Conference on, pages 89–98. IEEE, 2013.

[20] B. Boehm. A spiral model of software development and enhancement. Computer,

21(5):61–72, May 1988.

[21] P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge 2004

version. Guide to the Software Engineering Body of Knowledge, 2004. SWEBOK, pages –

, 2004.

[22] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs in bug reports:

Improving cooperation between developers and users. In Proceedings of the 2010 ACM

Conference on Computer Supported Cooperative Work, CSCW ’10, pages 301–310, New

York, NY, USA, 2010. ACM.

[23] M. Buckland and F. Gey. The relationship between recall and precision. J. Am. Soc.

Inf. Sci., 45(1):12–19, Jan. 1994.

[24] G. Canfora and L. Cerulo. Fine grained indexing of software repositories to support

154

impact analysis. In Proceedings of the 2006 International Workshop on Mining Software

Repositories, MSR ’06, pages 105–111, New York, NY, USA, 2006. ACM.

[25] A. Capiluppi, C. Boldyre�, and K.-J. Stol. Successful reuse of software components: A

report from the open source perspective. In S. Hissam, B. Russo, M. de Mendonça Neto,

and F. Kon, editors, Open Source Systems: Grounding Research, volume 365 of IFIP Ad-

vances in Information and Communication Technology, pages 159–176. Springer Berlin

Heidelberg, 2011.

[26] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert use in github

projects. In Proceedings of the 37th International Conference on Software Engineering

- Volume 1, ICSE ’15, pages 755–766, Piscataway, NJ, USA, 2015. IEEE Press.

[27] J. M. Chambers. Graphical methods for data analysis. 1983.

[28] T. Christiansen and N. Torkington. Perl cookbook. " O’Reilly Media, Inc.", 2003.

[29] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins. Recovering traceability

links between source code and fixed bugs via patch analysis. In Proceedings of the 6th

International Workshop on Traceability in Emerging Forms of Software Engineering,

TEFSE ’11, pages 31–37, New York, NY, USA, 2011. ACM.

[30] D. Cubranic and G. Murphy. Hipikat: recommending pertinent software development

artifacts. In Software Engineering, 2003. Proceedings. 25th International Conference on,

pages 408–418, May 2003.

[31] D. �ubraniÊ, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A project memory

for software development. Software Engineering, IEEE Transactions on, 31(6):446–465,

2005.

[32] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: Transparency

and collaboration in an open software repository. In Proceedings of the ACM 2012

Conference on Computer Supported Cooperative Work, CSCW ’12, pages 1277–1286,

New York, NY, USA, 2012. ACM.

155

[33] M. D’Ambros, M. Lanza, and M. Pinzger. "a bug’s life" visualizing a bug database. In

Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE

International Workshop on, pages 113–120, June 2007.

[34] S. Davies and M. Roper. Bug localisation through diverse sources of information. In

Software Reliability Engineering Workshops (ISSREW), 2013 IEEE International Sym-

posium on, pages 126–131, Nov 2013.

[35] S. Davies and M. Roper. What’s in a bug report? In Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, ESEM

’14, pages 26:1–26:10, New York, NY, USA, 2014. ACM.

[36] S. Davies, M. Roper, and M. Wood. Using bug report similarity to enhance bug lo-

calisation. In Reverse Engineering (WCRE), 2012 19th Working Conference on, pages

125–134, Oct 2012.

[37] B. de Alwis and J. Sillito. Why are software projects moving from centralized to de-

centralized version control systems? In Proceedings of the 2009 ICSE Workshop on

Cooperative and Human Aspects on Software Engineering, CHASE ’09, pages 36–39,

Washington, DC, USA, 2009. IEEE Computer Society.

[38] D. Draheim and L. Pekacki. Process-centric analytical processing of version control data.

In Software Evolution, 2003. Proceedings. Sixth International Workshop on Principles

of, pages 131–136, Sept 2003.

[39] N. Fenton, S. L. Pfleeger, and R. L. Glass. Science and substance: A challenge to

software engineers. IEEE Software, 11(4):86–95, 1994.

[40] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi. Empirical studies of

open source evolution. In Software evolution, pages 263–288. Springer Berlin Heidelberg,

2008.

[41] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for feature

156

tracking. In Proceedings of the 10th Working Conference on Reverse Engineering, WCRE

’03, pages 90–, Washington, DC, USA, 2003. IEEE Computer Society.

[42] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version

control and bug tracking systems. International Conference on Software Maintenance,

2003. ICSM 2003. Proceedings., pages 23–32, 2003.

[43] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product release

history. In Proceedings of the International Conference on Software Maintenance, ICSM

’98, pages 190–, Washington, DC, USA, 1998. IEEE Computer Society.

[44] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting logical

couplings. In Proceedings of the 6th International Workshop on Principles of Software

Evolution, IWPSE ’03, pages 13–, Washington, DC, USA, 2003. IEEE Computer Society.

[45] M. Gegick, P. Rotella, and T. Xie. Identifying security bug reports via text mining: An

industrial case study. In Mining Software Repositories (MSR), 2010 7th IEEE Working

Conference on, pages 11–20, May 2010.

[46] D. M. German. Mining cvs repositories, the softchange experience. Evolution,

245(5,402):92–688, 2004.

[47] T. Gilb. Evolutionary development. SIGSOFT Software Engineering Notes, 6(2):17–17,

Apr. 1981.

[48] M. W. Godfrey, A. E. Hassan, J. Herbsleb, G. C. Murphy, M. Robillard, P. De-

vanbu, A. Mockus, D. E. Perry, and D. Notkin. Future of mining software archives:

A roundtable. IEEE Transactions on Software Engineering, 26(1):67–70, Jan. 2009.

[49] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, G. Robles, and A. del Castillo. An-

alyzing gerrit code review parameters with bicho. Electronic Communications of the

EASST, 2014.

[50] M. Gordon and M. Kochen. Recall-precision trade-o�: A derivation. Journal of the

American Society for Information Science, 40(3):145–151, 1989.

157

[51] O. Gotel and A. Finkelstein. An analysis of the requirements traceability problem. In

Requirements Engineering, 1994., Proceedings of the First International Conference on,

pages 94–101, Apr 1994.

[52] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. "not my bug!" and other

reasons for software bug report reassignments. In Proceedings of the ACM 2011 Confer-

ence on Computer Supported Cooperative Work, CSCW ’11, pages 395–404, New York,

NY, USA, 2011. ACM.

[53] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature review

on fault prediction performance in software engineering. Software Engineering, IEEE

Transactions on, 38(6):1276–1304, 2012.

[54] T. Hall, D. Bowes, S. Counsell, L. Moonen, and A. Yamashita. Software fault charac-

teristics: A synthesis of the literature. 2015.

[55] A. E. Hassan. Predicting faults using the complexity of code changes. In Proceed-

ings of the 31st International Conference on Software Engineering, pages 78–88. IEEE

Computer Society, 2009.

[56] A. E. Hassan and T. Xie. Software intelligence: The future of mining software engineering

data. In Proceedings of the FSE/SDP Workshop on Future of Software Engineering

Research, FoSER ’10, pages 161–166, New York, NY, USA, 2010. ACM.

[57] H. Hayashi, A. Ihara, A. Monden, and K.-i. Matsumoto. Why is collaboration needed

in oss projects? a case study of eclipse project. In Proceedings of the 2013 International

Workshop on Social Software Engineering, pages 17–20. ACM, 2013.

[58] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and M. Godfrey.

The msr cookbook: Mining a decade of research. 2013 10th Working Conference on

Mining Software Repositories (MSR), 2013.

[59] J. J. Higgins. Introduction to modern nonparametric statistics. Cengage Learning, 2003.

158

[60] K. Hinsen, K. Läufer, and G. K. Thiruvathukal. Essential tools: Version control systems.

Computing in Science Engineering, 11(6):84–91, Nov 2009.

[61] P. Hooimeijer and W. Weimer. Modeling bug report quality. In Proceedings of the

Twenty-second IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE ’07, pages 34–43, New York, NY, USA, 2007. ACM.

[62] J. Howison, M. Conklin, and K. Crowston. Flossmole: A collaborative repository for

floss research data and analyses. International Journal of Information Technology and

Web Engineering, 1(3):17–26, 2006.

[63] International Standards Organisation (ISO). Standard 14764 on Software Engineering -

Software Maintenance. ISO/IEC, 1999.

[64] N. Jalbert and W. Weimer. Automated duplicate detection for bug tracking systems.

In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE

International Conference on, pages 52–61, June 2008.

[65] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with bug tossing graphs.

In Proceedings of the the 7th Joint Meeting of the European Software Engineering Confer-

ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,

ESEC/FSE ’09, pages 111–120, New York, NY, USA, 2009. ACM.

[66] S. Just, R. Premraj, and T. Zimmermann. Towards the next generation of bug tracking

systems. In Visual Languages and Human-Centric Computing, 2008. VL/HCC 2008.

IEEE Symposium on, pages 82–85, Sept 2008.

[67] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of approaches for

mining software repositories in the context of software evolution. Journal of Software

Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

[68] H. Kagdi, J. Maletic, and B. Sharif. Mining software repositories for traceability links.

In Program Comprehension, 2007. ICPC ’07. 15th IEEE International Conference on,

pages 145–154, June 2007.

159

[69] H. Kagdi, J. Maletic, B. Sharif, et al. Mining software repositories for traceability links.

In Program Comprehension, 2007. ICPC’07. 15th IEEE International Conference on,

pages 145–154. IEEE, 2007.

[70] H. H. Kagdi. Mining software repositories to support software evolution. PhD thesis,

Kent State University, 2008.

[71] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian.

The promises and perils of mining github (extended version). 2015.

[72] J. Kealey and G. Mussbacher. Statsvn: Statistics for svn repositories based on the open

source project statcvs.

[73] M. Kim. Developer’s toolbox: A guide to version control for magento using git and

beanstalk. 2014. Retrieved February 15, 2015 from http://gotgroove.com/ecommerce-

blog/guide-to-version-control-for-magento-using-git-and-beanstalk/.

[74] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus, T. Girba, M. Pinzger, E. J.

Whitehead, Jr., and A. Zeller. Ta-re: An exchange language for mining software reposito-

ries. In Proceedings of the 2006 International Workshop on Mining Software Repositories,

MSR ’06, pages 22–25, New York, NY, USA, 2006. ACM.

[75] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr. Automatic identification

of bug-introducing changes. In Automated Software Engineering, 2006. ASE’06. 21st

IEEE/ACM International Conference on, pages 81–90. IEEE, 2006.

[76] A. J. Ko and P. K. Chilana. How power users help and hinder open bug reporting. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI

’10, pages 1665–1674, New York, NY, USA, 2010. ACM.

[77] G. Kuk. Strategic interaction and knowledge sharing in the kde developer mailing list.

Management Science, 52(7):1031–1042, 2006.

160

[78] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the severity of a re-

ported bug. In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference

on, pages 1–10, May 2010.

[79] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: A study of

developer work habits. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, pages 492–501, New York, NY, USA, 2006. ACM.

[80] M. Legenhausen, S. Pielicke, J. Ruhmkorf, H. Wendel, and A. Schreiber. Repoguard: a

framework for integration of development tools with source code repositories. In Global

Software Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference on,

pages 328–331. IEEE, 2009.

[81] M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the

IEEE, 68(9):1060–1076, Sept 1980.

[82] M. M. Lehman and L. A. Belady, editors. Program Evolution: Processes of Software

Change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[83] E. Ligu, T. Chaikalis, and A. Chatzigeorgiou. Buco reporter: Mining software and bug

repositories. page 121, 2013. Retrieved January 23, 2015 from http://ceur-ws.org/Vol-

1036/p121-Ligu.pdf.

[84] B. Livshits and T. Zimmermann. Dynamine: Finding common error patterns by mining

software revision histories. In Proceedings of the 10th European Software Engineering

Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, ESEC/FSE-13, pages 296–305, New York, NY, USA,

2005. ACM.

[85] M. Lormans and A. van Deursen. Can lsi help reconstructing requirements traceability

in design and test? In Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on, pages 10 pp.–56, March 2006.

161

[86] J. Matsuda, S. Hayashi, and M. Saeki. Hierarchical categorization of edit operations for

separately committing large refactoring results. 2015. Retrieved August 30, 2015 from

http://www.se.cs.titech.ac.jp/ hayashi/pub/jmatsu-iwpse2015.pdf.

[87] G. Mausa, T. G. Grbac, and B. D. Basic. Software defect prediction with bug-code

analyzer-a data collection tool demo. In Software, Telecommunications and Computer

Networks (SoftCOM), 2014 22nd International Conference on, pages 425–426. IEEE,

2014.

[88] G. Mausa, P. Perkovic, T. G. Grbac, and I. Stajduhar. Techniques for bug-code linking.

In SQAMIA’14, pages 47–55, 2014.

[89] T. Menzies and A. Marcus. Automated severity assessment of software defect reports.

In Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, pages

346–355, Sept 2008.

[90] M. Mitchell and J. Jolley. Research design explained. Cengage Learning, 2012.

[91] A. Mockus and L. Votta. Identifying reasons for software changes using historic

databases. In Software Maintenance, 2000. Proceedings. International Conference on,

pages 120–130, 2000.

[92] L. Morgan and P. Finnegan. Benefits and drawbacks of open source software: an ex-

ploratory study of secondary software firms. In Open Source Development, Adoption

and Innovation, pages 307–312. Springer, 2007.

[93] G. C. Murphy and D. Cubranic. Automatic bug triage using text categorization. In Pro-

ceedings of the Sixteenth International Conference on Software Engineering & Knowledge

Engineering. Citeseer, 2004.

[94] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion models: Bridging the

gap between design and implementation. IEEE Transactions on Software Engineering,

27(4):364–380, Apr. 2001.

162

[95] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In

Proceedings of the 28th international conference on Software engineering, pages 452–461.

ACM, 2006.

[96] P. Oman and T. Lewis. Milestones in software evolution. IEEE Computer Society Press

reprint collection. IEEE Computer Society Press, 1990.

[97] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an understanding of bug fix patterns.

Empirical Software Engineering, 14(3):286–315, June 2009.

[98] L. D. Panjer. Predicting eclipse bug lifetimes. In Proceedings of the Fourth International

Workshop on Mining Software Repositories, MSR ’07, pages 29–, Washington, DC, USA,

2007. IEEE Computer Society.

[99] C. R. Reis and R. P. de Mattos Fortes. An overview of the software engineering process

and tools in the mozilla project, 2002.

[100] P. C. Rigby and A. E. Hassan. What can oss mailing lists tell us? a preliminary psycho-

metric text analysis of the apache developer mailing list. In Proceedings of the Fourth

International Workshop on Mining Software Repositories, page 23. IEEE Computer So-

ciety, 2007.

[101] P. C. Rigby and A. E. Hassan. What can oss mailing lists tell us? a preliminary

psychometric text analysis of the apache developer mailing list. In Proceedings of the

Fourth International Workshop on Mining Software Repositories, MSR ’07, pages 23–,

Washington, DC, USA, 2007. IEEE Computer Society.

[102] P. Rob and C. Coronel. Database Systems: Design, Implementation, and Management.

Course Technology Press, Boston, MA, United States, 8th edition, 2007.

[103] G. Robles. Replicating msr: A study of the potential replicability of papers published in

the mining software repositories proceedings. In Mining Software Repositories (MSR),

2010 7th IEEE Working Conference on, pages 171–180, May 2010.

163

[104] G. Robles and J. M. Gonzalez-Barahona. Developer identification methods for integrated

data from various sources. SIGSOFT Software Engineering Notes, 30(4):1–5, May 2005.

[105] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and I. Herraiz. Tools and

datasets for mining libre software repositories. Multi-Disciplinary Advancement in Open

Source Software and Processes, page 24, 2011.

[106] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and I. Herraiz. Tools and

Datasets for Mining Libre Software Repositories, volume 1, pages 24–42. IGI Global,

Information Resources Management Association. 701 East Chocolate Avenue, Hershey,

PA 17033, Jan. 2011.

[107] G. Robles, S. Koch, and J. M. González-Barahona. Remote analysis and measurement

of libre software systems by means of the cvsanaly tool. 2004.

[108] B. A. Romo and A. Capiluppi. Towards an automation of the traceability of bugs from

development logs: A study based on open source software. In Proceedings of the 19th

International Conference on Evaluation and Assessment in Software Engineering, EASE

’15, pages 33:1–33:6, New York, NY, USA, 2015. ACM.

[109] B. A. Romo, A. Capiluppi, and T. Hall. Filling the gaps of development logs and

bug issue data. In Proceedings of The International Symposium on Open Collaboration,

OpenSym ’14, pages 8:1–8:4, New York, NY, USA, 2014. ACM.

[110] W. W. Royce. Managing the development of large software systems: Concepts and

techniques. In Proceedings of the 9th International Conference on Software Engineering,

ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[111] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect reports

using natural language processing. In Proceedings of the 29th International Conference

on Software Engineering, ICSE ’07, pages 499–510, Washington, DC, USA, 2007. IEEE

Computer Society.

164

[112] M. Shepperd. How do i know whether to trust a research result? Software, IEEE,

32(1):106–109, 2015.

[113] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some comments on the nasa

software defect data sets. 2013.

[114] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Mining the maintenance history of

a legacy software system. In Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference on, pages 95–104. IEEE, 2003.

[115] B. Sigweni and M. Shepperd. Using blind analysis for software engineering experiments.

In Proceedings of the 19th International Conference on Evaluation and Assessment in

Software Engineering, EASE ’15, pages 32:1–32:6, New York, NY, USA, 2015. ACM.

[116] J. åliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? ACM

SIGSOFT Software Engineering Notes, 30(4):1–5, 2005.

[117] G. M. Sullivan and R. Feinn. Using e�ect size-or why the p value is not enough. Journal

of graduate medical education, 4(3):279–282, 2012.

[118] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards more accurate retrieval of dupli-

cate bug reports. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM

International Conference on, pages 253–262, Nov 2011.

[119] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A discriminative model approach

for accurate duplicate bug report retrieval. In Proceedings of the 32Nd ACM/IEEE

International Conference on Software Engineering - Volume 1, ICSE ’10, pages 45–54,

New York, NY, USA, 2010. ACM.

[120] A. Sureka and P. Jalote. Detecting duplicate bug report using character n-gram-based

features. In Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pages

366–374. IEEE, 2010.

165

[121] A. Sureka, S. Lal, and L. Agarwal. Applying fellegi-sunter (fs) model for traceability

link recovery between bug databases and version archives. In Software Engineering

Conference (APSEC), 2011 18th Asia Pacific, pages 146–153. IEEE, 2011.

[122] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report identification. In Software

Maintenance and Reengineering (CSMR), 2012 16th European Conference on, pages

385–390, March 2012.

[123] W. F. Tichy. Rcs—a system for version control. Software: Practice and Experience,

15(7):637–654, 1985.

[124] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting duplicate

bug reports using natural language and execution information. In Proceedings of the

30th International Conference on Software Engineering, ICSE ’08, pages 461–470, New

York, NY, USA, 2008. ACM.

[125] J. Weidl and H. Gall. Binding object models to source code: an approach to object-

oriented re-architecting. In Computer Software and Applications Conference, 1998.

COMPSAC ’98. Proceedings. The Twenty-Second Annual International, pages 26–31,

Aug 1998.

[126] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to fix

this bug? In Mining Software Repositories, 2007. ICSE Workshops MSR ’07. Fourth

International Workshop on, pages 1–1, May 2007.

[127] P. Wessa. Free statistics software, o�ce for research development and education. 2016.

[128] C. Williams and J. Spacco. Szz revisited: Verifying when changes induce fixes. In

Proceedings of the 2008 Workshop on Defects in Large Software Systems, DEFECTS

’08, pages 32–36, New York, NY, USA, 2008. ACM.

[129] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Exper-

imentation in Software Engineering: An Introduction. Kluwer Academic Publishers,

Norwell, MA, USA, 2000.

166

[130] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: Recovering links between bugs and

changes. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages 15–25, New

York, NY, USA, 2011. ACM.

[131] T. Xie. Bibliography on mining software engineering data. 2014. Retrieved February

15, 2014 from https://sites.google.com/site/asergrp/dmse.

[132] T. Xie and D. Notkin. Mutually enhancing test generation and specification inference.

In A. Petrenko and A. Ulrich, editors, Formal Approaches to Software Testing, volume

2931 of Lecture Notes in Computer Science, pages 60–69. Springer Berlin Heidelberg,

2004.

[133] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for software engineering.

Computer, 42(8):55–62, 2009.

[134] H. Yang, C. Wang, Q. Shi, Y. Feng, and Z. Chen. Bug inducing analy-

sis to prevent fault prone bug fixes. 2014. Retrieved February 15, 2015 from

http://software.nju.edu.cn/zychen/paper/2014SEKE1.pdf.

[135] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source

code changes by mining change history. IEEE Transactions on Software Engineering,

30(9):574–586, Sept. 2004.

[136] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate infor-

mation retrieval-based bug localization based on bug reports. In Software Engineering

(ICSE), 2012 34th International Conference on, pages 14–24, June 2012.

[137] Y. Zhou and J. Davis. Open source software reliability model: an empirical approach.

In ACM SIGSOFT Software Engineering Notes, volume 30, pages 1–6. ACM, 2005.

[138] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu. Improving bug tracking systems.

In Software Engineering - Companion Volume, 2009. ICSE-Companion 2009. 31st In-

ternational Conference on, pages 247–250, May 2009.

167

[139] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Pre-

dictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007.

International Workshop on, pages 9–9. IEEE, 2007.

[140] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining version histories to

guide software changes. In Proceedings of the 26th International Conference on Software

Engineering, ICSE ’04, pages 563–572, Washington, DC, USA, 2004. IEEE Computer

Society.

[141] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version histories to

guide software changes. Software Engineering, IEEE Transactions on, 31(6):429–445,

2005.

168

Appendix A

A.1 Tool-chain: Mining VC logs and BTS Data of 344 OSS

Projects

1 #!/usr/bin/perl ≠w

2

3 @all = ‘cat GH≠344≠OSS≠Projects.txt‘;

4 foreach $line(@all){

5 chomp $line;

6 $svn_line = $line;

7 $project = $line;

8

9 $project =~ s/.�\s//;

10 $project =~ s/.�\///;

11 $project =~ s/\.git//;

12 $num= 5;

13 $project_bicho = $line;

14 $project_bicho =~ s/.�github.com\///;

15 $project_bicho =~ s/\.git//;

16

17

18 print "\t\tExecuting�cvsanaly...\n";

169

19 ‘exec $svn_line‘;

20 ‘cvsanaly2 ≠u root ≠p password ≠d cvsanaly1 $project >> LOGs/log≠cvsanaly≠

$project.txt‘;

21

22 while ($num≠≠){

23 sleep(15);

24 }

25

26 print "\t\tExecuting�Bicho...\n";

27 ‘bicho ≠≠db≠user≠out=user ≠≠db≠password≠out=password ≠≠db≠database≠out

=bicho1 ≠b github ≠u \"https://api.github.com/repos/$project_bicho/issues\"�≠≠

backend≠user=user�≠≠backend≠password=password�≠≠debug‘;

28

29 ����‘rm�≠rf�$project‘;

30 }

A.2 Tool-chain: Quantification of VC logs and BT Data of 1

OSS Projects

1

2 #!/usr/bin/perl ≠w

3

4 # DBI is the standard database interface for Perl

5 # DBD is the Perl module that we use to connect to the

MySQL database

6 use DBI;

7 use DBD::mysql;

8 use Set::Scalar;

170

9

10 use warnings;

11

12 @output_cvs = ();

13 @output_bicho = ();

14

15 #

≠≠

16 # open the accessDB file to retrieve the database name, host name, user name and

password

17

18 # || die "Billy Can’t access your login credentials";

19

20 # ≠≠≠≠≠FROM Bicho

≠≠

21 $database =’bicho’;

22 $host = ’127.0.0.1’;

23 $userid =’user’;

24 $passwd =’pw’;

25

26

27 # invoke the ConnectToMySQL sub≠routine to make the database connection

28 $connection = ConnectToMySql($database);

29

30 # set the value of your SQL query

31 $query = "select�RIGHT(web_link,�locate(’/’,reverse(web_link))≠1)�from�

issues_ext_github,�issues�where�issues.id�=�issues_ext_github.id�and�issues.

171

tracker_id�=�1";

32

33 # prepare your statement for connecting to the database

34 $statement = $connection≠>prepare($query);

35

36 # execute your SQL statement

37 $statement≠>execute();

38

39 # retrieve the values returned from executing your SQL statement

40 while (@data = $statement≠>fetchrow_array()) {

41

42 $data[0] =~ s/\s+//;

43

44 push (@output_bicho, $data[0]);

45

46

47 }

48

49 $database =’cvsanaly’;

50 $host = ’127.0.0.1’;

51 $userid =’user’;

52 $passwd =’pw’;

53

54

55 # invoke the ConnectToMySQL sub≠routine to make the database connection

56 $connection = ConnectToMySql($database);

57

58 # set the value of your SQL query

172

59 $query = "select��message�from�scmlog�where�repository_id=�1�and�message�NOT�like�

’%Merge�pull�request%’�and�message�like�’%#%’�";

60

61 # prepare your statement for connecting to the database

62 $statement = $connection≠>prepare($query);

63

64 # execute your SQL statement

65 $statement≠>execute();

66

67 # retrieve the values returned from executing your SQL statement

68 while (@data = $statement≠>fetchrow_array()) {

69

70 @tokens = split(/\s/, $data[0]);

71 for($j=0; $j<=$#tokens; $j++){

72 if ($tokens[$j] =~ /#\d+/){

73 $tokens[$j] =~ s/(\.|\,|\;|\:)//;

74 $tokens[$j] =~ s/.�#//;

75 push (@output_cvs, $tokens[$j]);

76 }

77 }

78

79 }

80 # CREATE SETS, USE SETS

81 $s1 = Set::Scalar≠>new (@output_bicho);

82 $s2 = Set::Scalar≠>new (@output_cvs);

83

84 # OPERATIONS ON SETS

85

86 $only_in_bicho = $s1 ≠ $s2; # only in bicho

173

87 $in_cvs = $s2; # in cvsanaly

88 $only_in_cvs = $s2≠$s1; # only in cvsanaly

89 $in_bicho = $s1; # in bicho

90 $common = $s1 � $s2; # common

91 $total = $s1 + $s2; # union

92

93

94

95

96 print $in_bicho≠>size."\t".$in_cvs≠>size."\t".$common≠>size."\t".$only_in_bicho≠>size

."\t".$only_in_cvs≠>size."\t".$total≠>size."\t"."\n";

97

98

99

100 # exit the script

101 exit;

102

103 #≠≠≠ start sub≠routine

≠≠

104 sub ConnectToMySql {

105 #

≠≠

106

107 my ($db) = @_;

108

109 # assign the values to your connection variable

110 my $connectionInfo="dbi:mysql:$db;$host";

111

174

112 # make connection to database

113 my $l_connection = DBI≠>connect($connectionInfo,$userid,$passwd);

114

115 # the value of this connection is returned by the sub≠routine

116 return $l_connection;

117

118 }

119

120 #≠≠≠ end sub≠routine

≠≠

A.3 Tool-chain: Quantification of VC logs and BT Data of 344

OSS Projects

1 #!/usr/bin/perl ≠w

2

3 # DBI is the standard database interface for Perl

4 # DBD is the Perl module that we use to connect to the

MySQL database

5 use DBI;

6 use DBD::mysql;

7 use Set::Scalar;

8

9 use warnings;

10

11 for ($i=1; $i<=344; $i++){

12 @output_cvs = ();

175

13 @output_bicho = ();

14

15 #

≠≠

16 # open the accessDB file to retrieve the database name, host name, user name and

password

17

18 # || die "Billy Can’t access your login credentials";

19

20 # ≠≠≠≠≠FROM Bicho

≠≠

21 $database =’bicho’;

22 $host = ’127.0.0.1’;

23 $userid =’userName’;

24 $passwd =’password’;

25

26

27 # invoke the ConnectToMySQL sub≠routine to make the database connection

28 $connection = ConnectToMySql($database);

29

30 # set the value of your SQL query

31 $query = "select�RIGHT(web_link,�locate(’/’,reverse(web_link))≠1)�from�

issues_ext_github,�issues�where�issues.id�=�issues_ext_github.id�and�issues.

tracker_id�=�?";

32

33 # prepare your statement for connecting to the database

34 $statement = $connection≠>prepare($query);

176

35

36 # execute your SQL statement

37 $statement≠>execute($i);

38

39 # retrieve the values returned from executing your SQL statement

40 while (@data = $statement≠>fetchrow_array()) {

41

42 $data[0] =~ s/\s+//;

43

44 push (@output_bicho, $data[0]);

45

46

47 }

48

49 $database =’cvsanaly’;

50 $host = ’127.0.0.1’;

51 $userid =’userName’;

52 $passwd =’passWord’;

53

54

55 # invoke the ConnectToMySQL sub≠routine to make the database connection

56 $connection = ConnectToMySql($database);

57

58 # set the value of your SQL query

59 $query = "select��message�from�scmlog�where�repository_id=�?�and�message�NOT�like�

’%Merge�pull�request%’�and�message�like�’%#%’�";

60

61 # prepare your statement for connecting to the database

62 $statement = $connection≠>prepare($query);

177

63

64 # execute your SQL statement

65 $statement≠>execute($i);

66

67 # retrieve the values returned from executing your SQL statement

68 while (@data = $statement≠>fetchrow_array()) {

69

70 @tokens = split(/\s/, $data[0]);

71 for($j=0; $j<=$#tokens; $j++){

72 if ($tokens[$j] =~ /#\d+/){

73 $tokens[$j] =~ s/(\.|\,|\;|\:)//;

74 $tokens[$j] =~ s/.�#//;

75 push (@output_cvs, $tokens[$j]);

76 }

77 }

78

79 }

80 # CREATE SETS, USE SETS

81 $s1 = Set::Scalar≠>new (@output_bicho);

82 $s2 = Set::Scalar≠>new (@output_cvs);

83

84 # OPERATIONS ON SETS

85

86 $only_in_bicho = $s1 ≠ $s2; # only in bicho

87 $in_cvs = $s2; # in cvsanaly

88 $only_in_cvs = $s2≠$s1; # only in cvsanaly

89 $in_bicho = $s1; # in bicho

90 $common = $s1 � $s2; # common

91 $total = $s1 + $s2; # union

178

92

93

94

95

96 print $in_bicho≠>size."\t".$in_cvs≠>size."\t".$common≠>size."\t".$only_in_bicho≠>size

."\t".$only_in_cvs≠>size."\t".$total≠>size."\t"."\n";

97

98 }

99

100 # exit the script

101 exit;

102

103 #≠≠≠ start sub≠routine

≠≠

104 sub ConnectToMySql {

105 #

≠≠

106

107 my ($db) = @_;

108

109 # assign the values to your connection variable

110 my $connectionInfo="dbi:mysql:$db;$host";

111

112 # make connection to database

113 my $l_connection = DBI≠>connect($connectionInfo,$userid,$passwd);

114

115 # the value of this connection is returned by the sub≠routine

116 return $l_connection;

179

117

118 }

119

120 #≠≠≠ end sub≠routine

≠≠

A.4 Tool-chain: Re-engineering CVSAnalY and Bicho and in-

tegrate extra tables (SCMlogcvsanaly table and Issuesbi-

cho table in their respective databases) and Synchronisa-

tion of VC logs and BT data of 344 OSS Projects

1 #!/usr/bin/perl ≠w

2 #use strict;

3 use v5.10; # for say() function

4 # DBI is the standard database interface for Perl

5 # DBD is the Perl module that we use to connect to the

MySQL database

6 use DBI;

7 use DBD::mysql;

8 use Set::Scalar;

9

10 use warnings;

11

12 for ($i=1; $i<=344; $i++){

13 @output_cvs = ();

14 @output_bicho = ();

15

180

16 #

≠≠

17 # open the accessDB file to retrieve the database name, host name, user name and

password

18

19 # || die "Billy Can’t access your login credentials";

20

21 # ≠≠≠≠≠FROM Bicho

≠≠

22 $database =’bicho2’;

23 $host = ’127.0.0.1’;

24 $userid =’UserName’;

25 $passwd =’Password’;

26

27

28 #say "IssuesBicho Table created successfully!";

29 # invoke the ConnectToMySQL sub≠routine to make the database connection

30 $connection = ConnectToMySql($database);

31 #say "Creating IssuesBicho Table if NOT exists ";

32

33

34 $query= "CREATE�TABLE�IF�NOT�EXISTS�issuesbicho�(

35 ��tracker_id�int(11)�DEFAULT�NULL,

36 ��submitted_by�int(11)�DEFAULT�NULL,

37 ��assigned_to�int(11)�DEFAULT�NULL,

38 ��submitted_on�datetime�DEFAULT�NULL,

39 ��issue�mediumtext,

181

40 ��summary�longtext)";

41 $statement = $connection≠>prepare($query);

42 $statement≠>execute();

43

44 # set the value of your SQL query

45 $query = "select�RIGHT(web_link,�locate(’/’,reverse(web_link))≠1),tracker_id,�

submitted_by,�assigned_to,�submitted_on,issue,�summary�from�issues_ext_github,�

issues�where�issues.id�=�issues_ext_github.id�and�issues.tracker_id�=?";

46

47 # prepare your statement for connecting to the database

48 $statement = $connection≠>prepare($query);

49

50 # execute your SQL statement

51 $statement≠>execute($i);

52

53 # retrieve the values returned from executing your SQL statement

54 while (@data = $statement≠>fetchrow_array()) {

55

56 $data[0] =~ s/\s+//;

57

58 push (@output_bicho, $data[0]);

59

60

61 }

62

63 $database =’cvsanaly2’;

64 $host = ’127.0.0.1’;

65 $userid =’UserName’;

66 $passwd =’Pssowrd’;

182

67

68

69 # invoke the ConnectToMySQL sub≠routine to make the database connection

70 $connection = ConnectToMySql($database);

71

72 $query = "CREATE�TABLE�IF�NOT�EXISTS�scmlogcvsanaly�(

73 ��weblink_bugid�varchar(255),

74 ��repository_id�int(11),

75 ��author_id�int(10),

76 ��committer_id�int(10),

77 ��date�datetime,

78 ��rev�varchar(255),

79 ��message�longtext)";

80

81 $statement = $connection≠>prepare($query);

82

83 $statement≠>execute();

84 say "Creating�SCMlogCVSAnalY�Table�if�NOT�exists�";

85

86 say "SCMlogCVSAnalY�Table�created�successfully!";

87

88 # set the value of your SQL query

89 $query = "�select��message�from�scmlog�where�repository_id=�?�and�message�NOT�like

�’%Merge�pull�request%’�and�message�like�’%#%’��";

90

91 # prepare your statement for connecting to the database

92 $statement = $connection≠>prepare($query);

93

94 # execute your SQL statement

183

95 $statement≠>execute($i);

96

97 # retrieve the values returned from executing your SQL statement

98 while (@data = $statement≠>fetchrow_array()) {

99

100 @tokens = split(/\s/, $data[0]);

101 for($j=0; $j<=$#tokens; $j++){

102 if ($tokens[$j] =~ /#\d+/){

103 $tokens[$j] =~ s/(\.|\,|\;|\:)//;

104 $tokens[$j] =~ s/.�#//;

105 push (@output_cvs, $tokens[$j]);

106 }

107 }

108

109 }

110 # CREATE SETS, USE SETS

111 $s1 = Set::Scalar≠>new (@output_bicho);

112 $s2 = Set::Scalar≠>new (@output_cvs);

113

114 foreach my $e ($s1≠>elements){

115 }

116

117 foreach my $e ($s2≠>elements){

118 }

119

120 # OPERATIONS ON SETS

121

122 $only_in_bicho = $s1 ≠ $s2; # only in bicho

123 $in_cvs = $s2; # in cvsanaly

184

124 $only_in_cvs = $s2≠$s1; # only in cvsanaly

125 $in_bicho = $s1; # in bicho

126 $common = $s1 � $s2; # common

127 $total = $s1 + $s2; # union

128

129

130 $conn1 = ConnectToMySql(’bicho2’);

131

132 foreach my $e ($only_in_cvs≠>elements){

133 }

134

135 foreach my $mida ($only_in_cvs≠>elements){

136

137

138 my $sql = "SELECT��distinct�repository_id,author_id,committer_id,date,rev,�message��

from�scmlog�where�repository_id=�?�and�message�NOT�like�’%Merge�pull�request%’

�and�message�like�?";

139

140 # prepare your statement for connecting to the database

141 $stat = $connection≠>prepare($sql);

142

143 # execute your SQL statement

144 $stat≠>execute($i, ’%#’.$mida.’%’);

145

146 # retrieve the values returned from executing your SQL statement

147 while (@data = $stat≠>fetchrow_array()) {

148

149 my ($repid,$autid,$comid,$date,$revid,$messagelog) = @data;

150

185

151

152 $query = "INSERT��INTO��issuesbicho�(tracker_id,�submitted_by,�assigned_to,�

submitted_on,�issue,��summary)

153 ������values�(?,�?,�?,�?,?,?)�";

154

155 $statement = $conn1≠>prepare($query);

156

157 $statement≠>execute($i, $autid, $comid, $date,$revid,$messagelog);

158

159 }

160

161 }

162

163 foreach my $midb ($only_in_bicho≠>elements){

164

165

166 my $sql = "select��RIGHT(web_link,�locate(’/’,reverse(web_link))≠1),tracker_id,�

submitted_by,�assigned_to,�submitted_on,issue,�summary�from�issues_ext_github,�

issues�where�issues.id�=�issues_ext_github.id�and�issues.tracker_id�=?�and�RIGHT(

web_link,�locate(’/’,reverse(web_link))≠1)�=�?";

167

168 $statement = $conn1≠>prepare($sql);

169

170 $statement≠>execute($i, $midb);

171

172 while (@data = $statement≠>fetchrow_array()) {

173

174

186

175 my ($web_link, $trackida, $submittedbya, $assignedtoa, $submittedona,$issuea,

$summarya) = @data;

176

177 $query = "INSERT��INTO�scmlogcvsanaly�(weblink_bugid,�repository_id,�author_id,

�committer_id,�date,�rev,�message)

178 ��������values�(?,�?,�?,�?,�?,?,?)�";

179 $stat = $connection≠>prepare($query);

180

181 $stat≠>execute($web_link, $trackida, $submittedbya, $assignedtoa, $submittedona,

$issuea,$summarya);

182

183

184 }

185 }

186

187 print $in_bicho≠>size."\t".$in_cvs≠>size."\t".$common≠>size."\t".$only_in_bicho≠>size

."\t".$only_in_cvs≠>size."\t".$total≠>size."\n";#"\t" .$Bicho≠>size."\t".$CVSAnalY

≠>size."\n";

188 }

189

190 # exit the script

191 exit;

192

193 #≠≠≠ start sub≠routine

≠≠

194 sub ConnectToMySql {

195 #

≠≠

187

196

197 my ($db) = @_;

198

199 # assign the values to your connection variable

200 my $connectionInfo="dbi:mysql:$db;$host";

201

202 # make connection to database

203 my $l_connection = DBI≠>connect($connectionInfo,$userid,$passwd);

204

205 # the value of this connection is returned by the sub≠routine

206 return $l_connection;

207

208 }

209

210 #≠≠≠ end sub≠routine

≠≠

A.5 Tool-chain: Evaluating Bicho and CVSAnalY delta

1

2 #!/usr/bin/perl ≠w

3

4 # DBI is the standard database interface for Perl

5 # DBD is the Perl module that we use to connect to the

MySQL database

6 use DBI;

7 use DBD::mysql;

188

8 use Set::Scalar;

9

10 use warnings;

11

12 for ($i=1; $i<=344; $i++){

13 @output_cvs = ();

14 @output_bicho = ();

15

16 #

≠≠

17 # open the accessDB file to retrieve the database name, host name, user name and

password

18

19 # || die "Billy Can’t access your login credentials";

20

21 # ≠≠≠≠≠FROM Bicho

≠≠

22 $database =’bicho2’;

23 $host = ’127.0.0.1’;

24 $userid =’Username’;

25 $passwd =’Password’;

26

27

28 # invoke the ConnectToMySQL sub≠routine to make the database connection

29 $connection = ConnectToMySql($database);

30

31 # set the value of your SQL query

189

32 $query1 = "select�count(�)�from�issuesbicho��where�tracker_id=?";

33

34 # prepare your statement for connecting to the database

35 $statement = $connection≠>prepare($query1);

36

37 # execute your SQL statement

38 $statement≠>execute($i);

39

40 while (@data = $statement≠>fetchrow_array()) {

41

42

43 push (@output_bicho, $data[0]);

44 # retrieve the values returned from executing your SQL statement

45 }

46

47

48

49

50 $database =’cvsanaly2’;

51 $host = ’127.0.0.1’;

52 $userid =’UserName’;

53 $passwd =’Password’;

54

55

56 # invoke the ConnectToMySQL sub≠routine to make the database connection

57 $connection = ConnectToMySql($database);

58

59 # set the value of your SQL query

60 $query2 = "select�count(�)��from�scmlogcvsanaly��where�repository_id=?";

190

61

62 # prepare your statement for connecting to the database

63 $statement = $connection≠>prepare($query2);

64

65 # execute your SQL statement

66 $statement≠>execute($i);

67 while (@data = $statement≠>fetchrow_array()) {

68

69

70 push (@output_cvs, $data[0]);

71

72 $s1 = Set::Scalar≠>new (@output_bicho);

73 $s2 = Set::Scalar≠>new (@output_cvs);

74

75 $in_cvs = $s2;

76 $in_bicho = $s1; # in bicho

77

78

79 print $in_bicho."\t".$in_cvs."\t"."\n";

80 }

81

82 }

83

84 # exit the script

85 exit;

86

87 #≠≠≠ start sub≠routine

≠≠

88 sub ConnectToMySql {

191

89 #

≠≠

90

91 my ($db) = @_;

92

93 # assign the values to your connection variable

94 my $connectionInfo="dbi:mysql:$db;$host";

95

96 # make connection to database

97 my $l_connection = DBI≠>connect($connectionInfo,$userid,$passwd);

98

99 # the value of this connection is returned by the sub≠routine

100 return $l_connection;

101

102 }

103

104 #≠≠≠ end sub≠routine

≠≠

A.6 Finding discrepancies: Results - 344 OSS Projects

192

Table 1: SZZ Algorithm: # Symbol - 344 OSS Projects

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
1 57 6 6 51 0 57 0.10526315789474
2 449 19 19 430 0 449 0.04231625835189
3 790 30 30 760 0 790 0.0379746835443
4 213 15 14 199 1 214 0.06542056074766
5 6 0 0 6 0 6 0
6 101 21 20 81 1 102 0.19607843137255
7 18 0 0 18 0 18 0
8 1459 218 202 1257 16 1475 0.13694915254237
9 34 2 2 32 0 34 0.05882352941176
10 2 1 0 2 1 3 0
11 18 3 2 16 1 19 0.10526315789474
12 29 1 1 28 0 29 0.03448275862069
13 14 541 1 13 540 554 0.00180505415162
14 2257 554 544 1713 10 2267 0.2399647110719
15 195 22 19 176 3 198 0.0959595959596
16 494 56 54 440 2 496 0.10887096774194
17 0 13 0 0 13 13 0
18 1 0 0 1 0 1 0
19 792 31 5 787 26 818 0.00611246943765
20 33 1 1 32 0 33 0.03030303030303
21 321 6 6 315 0 321 0.01869158878505
22 40 1 1 39 0 40 0.025
23 1 0 0 1 0 1 0
24 6 0 0 6 0 6 0
25 11 3 0 11 3 14 0
26 166 107 3 163 104 270 0.01111111111111
27 121 17 17 104 0 121 0.1404958677686
28 325 68 68 257 0 325 0.20923076923077
29 3 0 0 3 0 3 0
30 7 6 0 7 6 13 0
31 232 192 185 47 7 239 0.77405857740586
32 8 0 0 8 0 8 0
33 21 0 0 21 0 21 0
34 139 2 0 139 2 141 0
35 364 28 28 336 0 364 0.07692307692308
36 27 1 1 26 0 27 0.03703703703704
37 47 6 6 41 0 47 0.12765957446809
38 0 0 0 0 0 0 0
39 945 122 105 840 17 962 0.10914760914761
40 27 2 2 25 0 27 0.07407407407407
41 236 35 4 232 31 267 0.01498127340824
42 52 202 0 52 202 254 0
43 421 94 93 328 1 422 0.22037914691943
44 24 3 3 21 0 24 0.125
45 0 0 0 0 0 0 0
46 107 1 1 106 0 107 0.00934579439252
47 26 37 0 26 37 63 0
48 68 5 5 63 0 68 0.07352941176471
49 55 9 8 47 1 56 0.14285714285714
50 51 0 0 51 0 51 0

193

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
51 582 134 123 459 11 593 0.20741989881956
52 141 30 30 111 0 141 0.21276595744681
53 171 2 2 169 0 171 0.01169590643275
54 0 1 0 0 1 1 0
55 116 34 28 88 6 122 0.22950819672131
56 0 2 0 0 2 2 0
57 0 0 0 0 0 0 0
58 237 12 11 226 1 238 0.04621848739496
59 7 1048 1 6 1047 1054 0.00094876660342
60 2 0 0 2 0 2 0
61 110 14 11 99 3 113 0.09734513274336
62 7 571 1 6 570 577 0.00173310225303
63 134 21 10 124 11 145 0.06896551724138
64 82 61 61 21 0 82 0.74390243902439
65 0 196 0 0 196 196 0
66 8 787 2 6 785 793 0.00252206809584
67 0 348 0 0 348 348 0
68 716 101 95 621 6 722 0.13157894736842
69 12 4 1 11 3 15 0.06666666666667
70 1387 204 195 1192 9 1396 0.13968481375358
71 2 0 0 2 0 2 0
72 1 4 0 1 4 5 0
73 2 37 0 2 37 39 0
74 590 10 9 581 1 591 0.01522842639594
75 1 67 0 1 67 68 0
76 78 563 2 76 561 639 0.00312989045383
77 0 46 0 0 46 46 0
78 667 282 260 407 22 689 0.37735849056604
79 0 11 0 0 11 11 0
80 112 0 0 112 0 112 0
81 0 2 0 0 2 2 0
82 48 163 7 41 156 204 0.0343137254902
83 826 0 0 826 0 826 0
84 0 312 0 0 312 312 0
85 6 0 0 6 0 6 0
86 29 63 13 16 50 79 0.16455696202532
87 188 73 0 188 73 261 0
88 17 11 3 14 8 25 0.12
89 0 0 0 0 0 0 0
90 0 156 0 0 156 156 0
91 5 15 0 5 15 20 0
92 867 0 0 867 0 867 0
93 0 554 0 0 554 554 0
94 3610 0 0 3610 0 3610 0
95 1 2077 1 0 2076 2077 0.00048146364949
96 40 2 0 40 2 42 0
97 9 2 0 9 2 11 0
98 1 16 1 0 15 16 0.0625
99 0 67 0 0 67 67 0
100 49 14 10 39 4 53 0.18867924528302

194

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
101 3 0 0 3 0 3 0
102 83 2 1 82 1 84 0.01190476190476
103 0 0 0 0 0 0 0
104 32 1 0 32 1 33 0
105 0 3 0 0 3 3 0
106 38 0 0 38 0 38 0
107 23 222 6 17 216 239 0.02510460251046
108 5 0 0 5 0 5 0
109 7 67 0 7 67 74 0
110 0 23 0 0 23 23 0
111 56 153 4 52 149 205 0.01951219512195
112 70 0 0 70 0 70 0
113 468 102 96 372 6 474 0.20253164556962
114 7 36 5 2 31 38 0.13157894736842
115 435 27 0 435 27 462 0
116 2 17 0 2 17 19 0
117 1 0 0 1 0 1 0
118 38 25 22 16 3 41 0.53658536585366
119 9 0 0 9 0 9 0
120 43 0 0 43 0 43 0
121 0 42 0 0 42 42 0
122 131 20 11 120 9 140 0.07857142857143
123 233 7 2 231 5 238 0.00840336134454
124 105 22 0 105 22 127 0
125 0 0 0 0 0 0 0
126 541 77 2 539 75 616 0.00324675324675
127 2 0 0 2 0 2 0
128 2 19 1 1 18 20 0.05
129 43 9 1 42 8 51 0.01960784313725
130 0 0 0 0 0 0 0
131 160 227 24 136 203 363 0.06611570247934
132 0 175 0 0 175 175 0
133 6 747 2 4 745 751 0.00266311584554
134 1941 538 389 1552 149 2090 0.18612440191388
135 3323 0 0 3323 0 3323 0
136 0 17 0 0 17 17 0
137 3050 6 6 3044 0 3050 0.00196721311475
138 773 382 48 725 334 1107 0.04336043360434
139 245 70 9 236 61 306 0.02941176470588
140 481 116 45 436 71 552 0.08152173913043
141 3009 83 79 2930 4 3013 0.0262197145702
142 779 14 4 775 10 789 0.00506970849176
143 1704 37 33 1671 4 1708 0.01932084309133
144 1265 12 12 1253 0 1265 0.00948616600791
145 1850 274 90 1760 184 2034 0.04424778761062
146 1174 41 23 1151 18 1192 0.01929530201342
147 16 0 0 16 0 16 0
148 794 123 93 701 30 824 0.1128640776699
149 287 0 0 287 0 287 0
150 23 71 6 17 65 88 0.06818181818182

195

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
151 1159 0 0 1159 0 1159 0
152 78 38 13 65 25 103 0.12621359223301
153 1033 353 196 837 157 1190 0.16470588235294
154 10 183 0 10 183 193 0
155 583 61 60 523 1 584 0.1027397260274
156 2867 535 456 2411 79 2946 0.15478615071283
157 572 2969 258 314 2711 3283 0.07858665854401
158 483 43 33 450 10 493 0.06693711967546
159 3457 0 0 3457 0 3457 0
160 9127 13 13 9114 0 9127 0.00142434534896
161 945 95 93 852 2 947 0.09820485744456
162 14 123 2 12 121 135 0.01481481481481
163 133 91 22 111 69 202 0.10891089108911
164 345 5 1 344 4 349 0.00286532951289
165 650 9 7 643 2 652 0.01073619631902
166 168 21 20 148 1 169 0.11834319526627
167 101 40 36 65 4 105 0.34285714285714
168 111 30 2 109 28 139 0.01438848920863
169 124 9 7 117 2 126 0.05555555555556
170 470 403 39 431 364 834 0.04676258992806
171 172 54 41 131 13 185 0.22162162162162
172 0 109 0 0 109 109 0
173 69 329 19 50 310 379 0.05013192612137
174 622 4 4 618 0 622 0.0064308681672
175 277 1160 115 162 1045 1322 0.08698940998487
176 112 53 16 96 37 149 0.10738255033557
177 2534 8 2 2532 6 2540 0.0007874015748
178 276 6 6 270 0 276 0.02173913043478
179 440 82 69 371 13 453 0.1523178807947
180 81 4 4 77 0 81 0.04938271604938
181 560 14 13 547 1 561 0.02317290552585
182 34 121 1 33 120 154 0.00649350649351
183 0 12 0 0 12 12 0
184 1533 29 28 1505 1 1534 0.01825293350717
185 81 429 1 80 428 509 0.00196463654224
186 596 74 71 525 3 599 0.11853088480801
187 561 32 26 535 6 567 0.04585537918871
188 479 471 82 397 389 868 0.09447004608295
189 451 24 23 428 1 452 0.05088495575221
190 1467 1301 464 1003 837 2304 0.20138888888889
191 346 118 73 273 45 391 0.18670076726343
192 1798 5 0 1798 5 1803 0
193 608 11 9 599 2 610 0.01475409836066
194 6 560 1 5 559 565 0.00176991150442
195 203 4 2 201 2 205 0.00975609756098
196 1114 8 7 1107 1 1115 0.00627802690583
197 104 7 1 103 6 110 0.00909090909091
198 197 1646 5 192 1641 1838 0.00272034820457
199 511 78 16 495 62 573 0.02792321116928
200 1978 38 38 1940 0 1978 0.01921132457027
201 572 31 29 543 2 574 0.05052264808362
202 416 0 0 416 0 416 0
203 240 2 2 238 0 240 0.00833333333333
204 29 2035 0 29 2035 2064 0
205 71 1 0 71 1 72 0

196

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
206 3806 2095 826 2980 1269 5075 0.16275862068966
207 109 5 0 109 5 114 0
208 4164 80 13 4151 67 4231 0.00307255967856
209 230 3216 9 221 3207 3437 0.00261856270003
210 461 3 3 458 0 461 0.00650759219089
211 64 0 0 64 0 64 0
212 0 52 0 0 52 52 0
213 0 57 0 0 57 57 0
214 476 1 1 475 0 476 0.00210084033613
215 1694 382 327 1367 55 1749 0.18696397941681
216 19 15 3 16 12 31 0.09677419354839
217 2142 1 1 2141 0 2142 0.00046685340803
218 314 88 83 231 5 319 0.26018808777429
219 252 64 45 207 19 271 0.16605166051661
220 326 89 41 285 48 374 0.1096256684492
221 357 732 48 309 684 1041 0.04610951008646
222 448 4 4 444 0 448 0.00892857142857
223 12467 14 13 12454 1 12468 0.00104266923324
224 0 12 0 0 12 12 0
225 125 1 1 124 0 125 0.008
226 83 140 36 47 104 187 0.19251336898396
227 111 48 3 108 45 156 0.01923076923077
228 1270 15 13 1257 2 1272 0.01022012578616
229 330 16 16 314 0 330 0.04848484848485
230 163 42 3 160 39 202 0.01485148514851
231 71 0 0 71 0 71 0
232 452 52 52 400 0 452 0.11504424778761
233 189 20 17 172 3 192 0.08854166666667
234 208 1 1 207 0 208 0.00480769230769
235 270 1 1 269 0 270 0.0037037037037
236 51 115 2 49 113 164 0.01219512195122
237 119 0 0 119 0 119 0
238 790 35 35 755 0 790 0.04430379746835
239 1 18 0 1 18 19 0
240 510 0 0 510 0 510 0
241 1092 2 1 1091 1 1093 0.00091491308326
242 403 0 0 403 0 403 0
243 209 125 62 147 63 272 0.22794117647059
244 580 26 24 556 2 582 0.04123711340206
245 339 176 125 214 51 390 0.32051282051282
246 405 2 1 404 1 406 0.00246305418719
247 51 0 0 51 0 51 0
248 62 156 13 49 143 205 0.06341463414634
249 636 16 15 621 1 637 0.02354788069074
250 313 15 14 299 1 314 0.04458598726115
251 388 5 4 384 1 389 0.01028277634961
252 74 8 2 72 6 80 0.025
253 43 286 29 14 257 300 0.09666666666667
254 232 432 105 127 327 559 0.18783542039356
255 1752 2 1 1751 1 1753 0.00057045065602
256 38 1 1 37 0 38 0.02631578947368
257 232 13 13 219 0 232 0.05603448275862
258 215 16 16 199 0 215 0.07441860465116
259 119 10 10 109 0 119 0.08403361344538
260 102 11 5 97 6 108 0.0462962962963
261 154 248 122 32 126 280 0.43571428571429

197

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
262 419 111 65 354 46 465 0.13978494623656
263 0 11 0 0 11 11 0
264 10 22 1 9 21 31 0.03225806451613
265 225 42 4 221 38 263 0.01520912547529
266 41 23 3 38 20 61 0.04918032786885
267 686 0 0 686 0 686 0
268 170 1 1 169 0 170 0.00588235294118
269 88 0 0 88 0 88 0
270 5 0 0 5 0 5 0
271 0 0 0 0 0 0 0
272 15 0 0 15 0 15 0
273 12 0 0 12 0 12 0
274 0 58 0 0 58 58 0
275 749 51 51 698 0 749 0.06809078771696
276 328 0 0 328 0 328 0
277 68 16 6 62 10 78 0.07692307692308
278 2562 12 12 2550 0 2562 0.00468384074941
279 31 12 7 24 5 36 0.19444444444444
280 75 1 1 74 0 75 0.01333333333333
281 300 108 106 194 2 302 0.35099337748344
282 2458 304 39 2419 265 2723 0.01432243848696
283 1587 79 46 1541 33 1620 0.0283950617284
284 417 18 14 403 4 421 0.0332541567696
285 166 6 6 160 0 166 0.03614457831325
286 381 14 11 370 3 384 0.02864583333333
287 434 103 41 393 62 496 0.08266129032258
288 678 13 3 675 10 688 0.00436046511628
289 197 37 34 163 3 200 0.17
290 83 3 3 80 0 83 0.03614457831325
291 1446 163 156 1290 7 1453 0.10736407432897
292 655 27 23 632 4 659 0.03490136570561
293 47 2 2 45 0 47 0.04255319148936
294 1433 9908 176 1257 9732 11165 0.01576354679803
295 1590 277 269 1321 8 1598 0.16833541927409
296 1756 88 86 1670 2 1758 0.04891922639363
297 675 1375 39 636 1336 2011 0.01939333664843
298 198 14 12 186 2 200 0.06
299 154 14 14 140 0 154 0.09090909090909
300 864 93 90 774 3 867 0.1038062283737
301 1661 234 196 1465 38 1699 0.1153619776339
302 1211 168 164 1047 4 1215 0.13497942386831
303 549 55 53 496 2 551 0.0961887477314
304 439 71 63 376 8 447 0.14093959731544
305 64 21 5 59 16 80 0.0625
306 387 11 6 381 5 392 0.01530612244898
307 106 12 2 104 10 116 0.01724137931034
308 191 12 10 181 2 193 0.05181347150259
309 20 0 0 20 0 20 0
310 317 99 2 315 97 414 0.0048309178744
311 19 0 0 19 0 19 0
312 273 28 10 263 18 291 0.03436426116838
313 47 73 0 47 73 120 0
314 267 78 75 192 3 270 0.27777777777778

198

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
315 234 56 55 179 1 235 0.23404255319149
316 430 63 56 374 7 437 0.12814645308924
317 2338 321 284 2054 37 2375 0.11957894736842
318 296 4 4 292 0 296 0.01351351351351
319 4 0 0 4 0 4 0
320 114 0 0 114 0 114 0
321 152 15 15 137 0 152 0.09868421052632
322 175 43 42 133 1 176 0.23863636363636
323 321 5 5 316 0 321 0.01557632398754
324 47 8 2 45 6 53 0.0377358490566
325 463 79 75 388 4 467 0.16059957173448
326 144 8 8 136 0 144 0.05555555555556
327 324 20 19 305 1 325 0.05846153846154
328 12 49 8 4 41 53 0.15094339622642
329 142 2 1 141 1 143 0.00699300699301
330 25 12 1 24 11 36 0.02777777777778
331 164 3 2 162 1 165 0.01212121212121
332 266 59 57 209 2 268 0.21268656716418
333 4634 604 267 4367 337 4971 0.05371152685576
334 3374 3117 1252 2122 1865 5239 0.23897690398931
335 20 0 0 20 0 20 0
336 48 0 0 48 0 48 0
337 83 0 0 83 0 83 0
338 104 39 19 85 20 124 0.15322580645161
339 162 43 21 141 22 184 0.11413043478261
340 668 40 38 630 2 670 0.05671641791045
341 163 9 6 157 3 166 0.03614457831325
342 168 53 40 128 13 181 0.22099447513812
343 620 63 62 558 1 621 0.09983896940419
344 141 18 15 126 3 144 0.10416666666667

199

Table 2: SZZ Algorithm: Fixed - 344 OSS Projects

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
1 57 0 0 57 0 57 0
2 449 0 0 449 0 449 0
3 790 4 4 786 0 790 0.0050632911
4 213 0 0 213 0 213 0
5 6 0 0 6 0 6 0
6 101 1 1 100 0 101 0.0099009901
7 18 0 0 18 0 18 0
8 1459 37 34 1425 3 1462 0.023255814
9 34 1 1 33 0 34 0.0294117647
10 2 1 0 2 1 3 0
11 18 1 1 17 0 18 0.0555555556
12 29 0 0 29 0 29 0
13 14 119 0 14 119 133 0
14 2257 169 168 2089 1 2258 0.0744021258
15 195 5 4 191 1 196 0.0204081633
16 494 0 0 494 0 494 0
17 0 3 0 0 3 3 0
18 1 0 0 1 0 1 0
19 792 3 1 791 2 794 0.0012594458
20 33 0 0 33 0 33 0
21 321 0 0 321 0 321 0
22 40 0 0 40 0 40 0
23 1 0 0 1 0 1 0
24 6 0 0 6 0 6 0
25 11 0 0 11 0 11 0
26 166 20 0 166 20 186 0
27 121 0 0 121 0 121 0
28 325 5 5 320 0 325 0.0153846154
29 3 0 0 3 0 3 0
30 7 2 0 7 2 9 0
31 232 0 0 232 0 232 0
32 8 0 0 8 0 8 0
33 21 0 0 21 0 21 0
34 139 0 0 139 0 139 0
35 364 2 2 362 0 364 0.0054945055
36 27 0 0 27 0 27 0
37 47 0 0 47 0 47 0
38 0 0 0 0 0 0 0
39 945 3 3 942 0 945 0.0031746032
40 27 0 0 27 0 27 0
41 236 1 0 236 1 237 0
42 52 3 0 52 3 55 0
43 421 0 0 421 0 421 0
44 24 0 0 24 0 24 0
45 0 0 0 0 0 0 0
46 107 0 0 107 0 107 0
47 26 2 0 26 2 28 0
48 68 2 2 66 0 68 0.0294117647
49 55 1 1 54 0 55 0.0181818182
50 51 0 0 51 0 51 0

200

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
51 582 0 0 582 0 582 0
52 141 1 1 140 0 141 0.0070921986
53 171 0 0 171 0 171 0
54 0 0 0 0 0 0 0
55 116 23 21 95 2 118 0.1779661017
56 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0
58 237 0 0 237 0 237 0
59 7 33 0 7 33 40 0
60 2 0 0 2 0 2 0
61 110 2 1 109 1 111 0.009009009
62 7 43 0 7 43 50 0
63 134 3 1 133 2 136 0.0073529412
64 82 0 0 82 0 82 0
65 0 18 0 0 18 18 0
66 8 52 0 8 52 60 0
67 0 8 0 0 8 8 0
68 716 1 1 715 0 716 0.001396648
69 12 0 0 12 0 12 0
70 1387 4 4 1383 0 1387 0.0028839221
71 2 0 0 2 0 2 0
72 1 0 0 1 0 1 0
73 2 1 0 2 1 3 0
74 590 0 0 590 0 590 0
75 1 2 0 1 2 3 0
76 78 155 0 78 155 233 0
77 0 6 0 0 6 6 0
78 667 3 3 664 0 667 0.0044977511
79 0 1 0 0 1 1 0
80 112 0 0 112 0 112 0
81 0 1 0 0 1 1 0
82 48 2 0 48 2 50 0
83 826 0 0 826 0 826 0
84 0 21 0 0 21 21 0
85 6 0 0 6 0 6 0
86 29 47 8 21 39 68 0.1176470588
87 188 0 0 188 0 188 0
88 17 0 0 17 0 17 0
89 0 0 0 0 0 0 0
90 0 12 0 0 12 12 0
91 5 0 0 5 0 5 0
92 867 0 0 867 0 867 0
93 0 84 0 0 84 84 0
94 3610 0 0 3610 0 3610 0
95 1 129 0 1 129 130 0
96 40 0 0 40 0 40 0
97 9 1 0 9 1 10 0
98 1 0 0 1 0 1 0
99 0 6 0 0 6 6 0
100 49 1 1 48 0 49 0.0204081633
101 3 0 0 3 0 3 0
102 83 0 0 83 0 83 0
103 0 0 0 0 0 0 0
104 32 0 0 32 0 32 0
105 0 0 0 0 0 0 0

201

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
106 38 0 0 38 0 38 0
107 23 9 0 23 9 32 0
108 5 0 0 5 0 5 0
109 7 8 0 7 8 15 0
110 0 0 0 0 0 0 0
111 56 13 1 55 12 68 0.0147058824
112 70 0 0 70 0 70 0
113 468 9 9 459 0 468 0.0192307692
114 7 1 0 7 1 8 0
115 435 0 0 435 0 435 0
116 2 0 0 2 0 2 0
117 1 0 0 1 0 1 0
118 38 18 15 23 3 41 0.3658536585
119 9 0 0 9 0 9 0
120 43 0 0 43 0 43 0
121 0 9 0 0 9 9 0
122 131 0 0 131 0 131 0
123 233 0 0 233 0 233 0
124 105 3 0 105 3 108 0
125 0 0 0 0 0 0 0
126 541 7 0 541 7 548 0
127 2 0 0 2 0 2 0
128 2 0 0 2 0 2 0
129 43 0 0 43 0 43 0
130 0 0 0 0 0 0 0
131 160 2 0 160 2 162 0
132 0 2 0 0 2 2 0
133 6 107 0 6 107 113 0
134 1941 60 56 1885 4 1945 0.0287917738
135 3323 0 0 3323 0 3323 0
136 0 1 0 0 1 1 0
137 3050 0 0 3050 0 3050 0
138 773 6 1 772 5 778 0.001285347
139 245 0 0 245 0 245 0
140 481 3 2 479 1 482 0.0041493776
141 3009 0 0 3009 0 3009 0
142 779 3 1 778 2 781 0.0012804097
143 1704 2 2 1702 0 1704 0.0011737089
144 1265 2 2 1263 0 1265 0.0015810277
145 1850 1 1 1849 0 1850 0.0005405405
146 1174 1 1 1173 0 1174 0.0008517888
147 16 0 0 16 0 16 0
148 794 3 3 791 0 794 0.0037783375
149 287 0 0 287 0 287 0
150 23 19 3 20 16 39 0.0769230769
151 1159 0 0 1159 0 1159 0
152 78 7 2 76 5 83 0.0240963855
153 1033 9 5 1028 4 1037 0.0048216008
154 10 1 0 10 1 11 0
155 583 16 16 567 0 583 0.0274442539
156 2867 16 11 2856 5 2872 0.0038300836
157 572 53 11 561 42 614 0.0179153094
158 483 0 0 483 0 483 0
159 3457 0 0 3457 0 3457 0
160 9127 0 0 9127 0 9127 0

202

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
161 945 29 29 916 0 945 0.0306878307
162 14 3 0 14 3 17 0
163 133 1 0 133 1 134 0
164 345 0 0 345 0 345 0
165 650 0 0 650 0 650 0
166 168 0 0 168 0 168 0
167 101 0 0 101 0 101 0
168 111 1 0 111 1 112 0
169 124 0 0 124 0 124 0
170 470 53 1 469 52 522 0.0019157088
171 172 0 0 172 0 172 0
172 0 0 0 0 0 0 0
173 69 75 16 53 59 128 0.125
174 622 0 0 622 0 622 0
175 277 35 3 274 32 309 0.0097087379
176 112 3 2 110 1 113 0.017699115
177 2534 1 0 2534 1 2535 0
178 276 0 0 276 0 276 0
179 440 5 4 436 1 441 0.0090702948
180 81 0 0 81 0 81 0
181 560 0 0 560 0 560 0
182 34 2 0 34 2 36 0
183 0 0 0 0 0 0 0
184 1533 2 2 1531 0 1533 0.0013046314
185 81 5 0 81 5 86 0
186 596 63 61 535 2 598 0.102006689
187 561 2 1 560 1 562 0.0017793594
188 479 8 1 478 7 486 0.0020576132
189 451 1 1 450 0 451 0.0022172949
190 1467 10 4 1463 6 1473 0.0027155465
191 346 0 0 346 0 346 0
192 1798 1 0 1798 1 1799 0
193 608 0 0 608 0 608 0
194 6 8 0 6 8 14 0
195 203 0 0 203 0 203 0
196 1114 1 1 1113 0 1114 0.0008976661
197 104 0 0 104 0 104 0
198 197 247 0 197 247 444 0
199 511 2 1 510 1 512 0.001953125
200 1978 1 1 1977 0 1978 0.0005055612
201 572 3 3 569 0 572 0.0052447552
202 416 0 0 416 0 416 0
203 240 0 0 240 0 240 0
204 29 103 0 29 103 132 0
205 71 1 0 71 1 72 0
206 3806 1057 449 3357 608 4414 0.1017217943
207 109 0 0 109 0 109 0
208 4164 16 1 4163 15 4179 0.0002392917
209 230 880 3 227 877 1107 0.0027100271
210 461 0 0 461 0 461 0
211 64 0 0 64 0 64 0
212 0 1 0 0 1 1 0
213 0 2 0 0 2 2 0
214 476 0 0 476 0 476 0
215 1694 8 8 1686 0 1694 0.0047225502

203

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
216 19 1 1 18 0 19 0.0526315789
217 2142 1 1 2141 0 2142 0.0004668534
218 314 2 1 313 1 315 0.0031746032
219 252 2 0 252 2 254 0
220 326 1 0 326 1 327 0
221 357 58 1 356 57 414 0.0024154589
222 448 0 0 448 0 448 0
223 12467 3 2 12465 1 12468 0.0001604107
224 0 0 0 0 0 0 0
225 125 0 0 125 0 125 0
226 83 5 1 82 4 87 0.0114942529
227 111 0 0 111 0 111 0
228 1270 0 0 1270 0 1270 0
229 330 0 0 330 0 330 0
230 163 22 2 161 20 183 0.0109289617
231 71 0 0 71 0 71 0
232 452 0 0 452 0 452 0
233 189 4 4 185 0 189 0.0211640212
234 208 0 0 208 0 208 0
235 270 0 0 270 0 270 0
236 51 2 0 51 2 53 0
237 119 0 0 119 0 119 0
238 790 0 0 790 0 790 0
239 1 1 0 1 1 2 0
240 510 0 0 510 0 510 0
241 1092 0 0 1092 0 1092 0
242 403 0 0 403 0 403 0
243 209 26 21 188 5 214 0.0981308411
244 580 4 4 576 0 580 0.0068965517
245 339 9 5 334 4 343 0.0145772595
246 405 0 0 405 0 405 0
247 51 0 0 51 0 51 0
248 62 9 1 61 8 70 0.0142857143
249 636 0 0 636 0 636 0
250 313 0 0 313 0 313 0
251 388 1 1 387 0 388 0.0025773196
252 74 0 0 74 0 74 0
253 43 32 1 42 31 74 0.0135135135
254 232 24 4 228 20 252 0.0158730159
255 1752 0 0 1752 0 1752 0
256 38 0 0 38 0 38 0
257 232 0 0 232 0 232 0
258 215 0 0 215 0 215 0
259 119 1 1 118 0 119 0.0084033613
260 102 0 0 102 0 102 0
261 154 5 4 150 1 155 0.0258064516
262 419 32 31 388 1 420 0.0738095238
263 0 0 0 0 0 0 0
264 10 1 0 10 1 11 0
265 225 4 1 224 3 228 0.0043859649
266 41 2 0 41 2 43 0
267 686 0 0 686 0 686 0
268 170 0 0 170 0 170 0
269 88 0 0 88 0 88 0
270 5 0 0 5 0 5 0

204

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
271 0 0 0 0 0 0 0
272 15 0 0 15 0 15 0
273 12 0 0 12 0 12 0
274 0 0 0 0 0 0 0
275 749 6 6 743 0 749 0.0080106809
276 328 0 0 328 0 328 0
277 68 1 0 68 1 69 0
278 2562 1 1 2561 0 2562 0.0003903201
279 31 0 0 31 0 31 0
280 75 0 0 75 0 75 0
281 300 0 0 300 0 300 0
282 2458 3 2 2456 1 2459 0.0008133388
283 1587 0 0 1587 0 1587 0
284 417 0 0 417 0 417 0
285 166 0 0 166 0 166 0
286 381 1 1 380 0 381 0.0026246719
287 434 4 3 431 1 435 0.0068965517
288 678 1 0 678 1 679 0
289 197 1 1 196 0 197 0.0050761421
290 83 1 1 82 0 83 0.0120481928
291 1446 2 2 1444 0 1446 0.0013831259
292 655 1 0 655 1 656 0
293 47 0 0 47 0 47 0
294 1433 1408 13 1420 1395 2828 0.0045968883
295 1590 2 1 1589 1 1591 0.0006285355
296 1756 17 17 1739 0 1756 0.0096810934
297 675 118 2 673 116 791 0.002528445
298 198 1 1 197 0 198 0.0050505051
299 154 2 2 152 0 154 0.012987013
300 864 15 15 849 0 864 0.0173611111
301 1661 4 4 1657 0 1661 0.0024081878
302 1211 23 23 1188 0 1211 0.0189925681
303 549 9 9 540 0 549 0.0163934426
304 439 8 8 431 0 439 0.0182232346
305 64 2 1 63 1 65 0.0153846154
306 387 0 0 387 0 387 0
307 106 11 2 104 9 115 0.0173913043
308 191 0 0 191 0 191 0
309 20 0 0 20 0 20 0
310 317 3 0 317 3 320 0
311 19 0 0 19 0 19 0
312 273 15 1 272 14 287 0.0034843206
313 47 5 0 47 5 52 0
314 267 2 2 265 0 267 0.0074906367
315 234 0 0 234 0 234 0
316 430 1 1 429 0 430 0.0023255814
317 2338 46 38 2300 8 2346 0.0161977835
318 296 0 0 296 0 296 0
319 4 0 0 4 0 4 0
320 114 0 0 114 0 114 0
321 152 8 8 144 0 152 0.0526315789
322 175 3 3 172 0 175 0.0171428571
323 321 1 1 320 0 321 0.0031152648
324 47 3 0 47 3 50 0
325 463 1 0 463 1 464 0

205

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
326 144 0 0 144 0 144 0
327 324 1 1 323 0 324 0.0030864198
328 12 13 3 9 10 22 0.1363636364
329 142 0 0 142 0 142 0
330 25 0 0 25 0 25 0
331 164 0 0 164 0 164 0
332 266 2 1 265 1 267 0.0037453184
333 4634 63 31 4603 32 4666 0.0066438063
334 3374 457 220 3154 237 3611 0.0609249515
335 20 0 0 20 0 20 0
336 48 0 0 48 0 48 0
337 83 0 0 83 0 83 0
338 104 6 3 101 3 107 0.0280373832
339 162 4 1 161 3 165 0.0060606061
340 668 1 1 667 0 668 0.001497006
341 163 1 1 162 0 163 0.0061349693
342 168 2 2 166 0 168 0.0119047619
343 620 12 12 608 0 620 0.0193548387
344 141 5 4 137 1 142 0.0281690141

206

Table 3: SZZ Algorithm: Bug - 344 OSS Projects

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
1 57 0 0 57 0 57 0
2 449 0 0 449 0 449 0
3 790 1 1 789 0 790 0.0012658228
4 213 0 0 213 0 213 0
5 6 0 0 6 0 6 0
6 101 1 0 101 1 102 0
7 18 0 0 18 0 18 0
8 1459 23 20 1439 3 1462 0.0136798906
9 34 0 0 34 0 34 0
10 2 1 0 2 1 3 0
11 18 1 1 17 0 18 0.0555555556
12 29 0 0 29 0 29 0
13 14 24 0 14 24 38 0
14 2257 48 47 2210 1 2258 0.0208148804
15 195 2 2 193 0 195 0.0102564103
16 494 0 0 494 0 494 0
17 0 2 0 0 2 2 0
18 1 0 0 1 0 1 0
19 792 2 0 792 2 794 0
20 33 0 0 33 0 33 0
21 321 2 2 319 0 321 0.0062305296
22 40 0 0 40 0 40 0
23 1 0 0 1 0 1 0
24 6 0 0 6 0 6 0
25 11 0 0 11 0 11 0
26 166 4 0 166 4 170 0
27 121 0 0 121 0 121 0
28 325 43 43 282 0 325 0.1323076923
29 3 0 0 3 0 3 0
30 7 2 0 7 2 9 0
31 232 6 6 226 0 232 0.025862069
32 8 0 0 8 0 8 0
33 21 0 0 21 0 21 0
34 139 0 0 139 0 139 0
35 364 0 0 364 0 364 0
36 27 0 0 27 0 27 0
37 47 0 0 47 0 47 0
38 0 0 0 0 0 0 0
39 945 4 4 941 0 945 0.0042328042
40 27 0 0 27 0 27 0
41 236 2 1 235 1 237 0.0042194093
42 52 8 0 52 8 60 0
43 421 4 4 417 0 421 0.0095011876
44 24 0 0 24 0 24 0
45 0 0 0 0 0 0 0
46 107 0 0 107 0 107 0
47 26 0 0 26 0 26 0
48 68 0 0 68 0 68 0
49 55 1 1 54 0 55 0.0181818182
50 51 0 0 51 0 51 0

207

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
51 582 7 5 577 2 584 0.0085616438
52 141 1 1 140 0 141 0.0070921986
53 171 0 0 171 0 171 0
54 0 0 0 0 0 0 0
55 116 1 0 116 1 117 0
56 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0
58 237 2 2 235 0 237 0.0084388186
59 7 915 0 7 915 922 0
60 2 0 0 2 0 2 0
61 110 1 1 109 0 110 0.0090909091
62 7 562 0 7 562 569 0
63 134 0 0 134 0 134 0
64 82 0 0 82 0 82 0
65 0 68 0 0 68 68 0
66 8 780 2 6 778 786 0.0025445293
67 0 347 0 0 347 347 0
68 716 0 0 716 0 716 0
69 12 0 0 12 0 12 0
70 1387 8 8 1379 0 1387 0.0057678443
71 2 0 0 2 0 2 0
72 1 1 0 1 1 2 0
73 2 3 0 2 3 5 0
74 590 1 1 589 0 590 0.0016949153
75 1 67 0 1 67 68 0
76 78 7 0 78 7 85 0
77 0 46 0 0 46 46 0
78 667 5 4 663 1 668 0.005988024
79 0 2 0 0 2 2 0
80 112 0 0 112 0 112 0
81 0 0 0 0 0 0 0
82 48 3 0 48 3 51 0
83 826 0 0 826 0 826 0
84 0 312 0 0 312 312 0
85 6 0 0 6 0 6 0
86 29 4 3 26 1 30 0.1
87 188 13 0 188 13 201 0
88 17 0 0 17 0 17 0
89 0 0 0 0 0 0 0
90 0 156 0 0 156 156 0
91 5 2 0 5 2 7 0
92 867 0 0 867 0 867 0
93 0 17 0 0 17 17 0
94 3610 0 0 3610 0 3610 0
95 1 1981 1 0 1980 1981 0.0005047956
96 40 0 0 40 0 40 0
97 9 0 0 9 0 9 0
98 1 0 0 1 0 1 0
99 0 67 0 0 67 67 0
100 49 0 0 49 0 49 0
101 3 0 0 3 0 3 0
102 83 0 0 83 0 83 0
103 0 0 0 0 0 0 0
104 32 0 0 32 0 32 0
105 0 0 0 0 0 0 0

208

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
106 38 0 0 38 0 38 0
107 23 114 0 23 114 137 0
108 5 0 0 5 0 5 0
109 7 2 0 7 2 9 0
110 0 1 0 0 1 1 0
111 56 10 0 56 10 66 0
112 70 0 0 70 0 70 0
113 468 2 2 466 0 468 0.0042735043
114 7 31 0 7 31 38 0
115 435 3 0 435 3 438 0
116 2 4 0 2 4 6 0
117 1 0 0 1 0 1 0
118 38 0 0 38 0 38 0
119 9 0 0 9 0 9 0
120 43 0 0 43 0 43 0
121 0 11 0 0 11 11 0
122 131 2 2 129 0 131 0.0152671756
123 233 4 1 232 3 236 0.0042372881
124 105 2 0 105 2 107 0
125 0 0 0 0 0 0 0
126 541 73 1 540 72 613 0.0016313214
127 2 0 0 2 0 2 0
128 2 2 0 2 2 4 0
129 43 0 0 43 0 43 0
130 0 0 0 0 0 0 0
131 160 1 0 160 1 161 0
132 0 6 0 0 6 6 0
133 6 106 0 6 106 112 0
134 1941 45 31 1910 14 1955 0.0158567775
135 3323 0 0 3323 0 3323 0
136 0 0 0 0 0 0 0
137 3050 0 0 3050 0 3050 0
138 773 21 6 767 15 788 0.0076142132
139 245 2 2 243 0 245 0.0081632653
140 481 4 1 480 3 484 0.0020661157
141 3009 1 1 3008 0 3009 0.0003323363
142 779 0 0 779 0 779 0
143 1704 15 11 1693 4 1708 0.006440281
144 1265 4 4 1261 0 1265 0.0031620553
145 1850 4 0 1850 4 1854 0
146 1174 3 1 1173 2 1176 0.0008503401
147 16 0 0 16 0 16 0
148 794 2 2 792 0 794 0.0025188917
149 287 0 0 287 0 287 0
150 23 4 0 23 4 27 0
151 1159 0 0 1159 0 1159 0
152 78 6 2 76 4 82 0.0243902439
153 1033 7 5 1028 2 1035 0.0048309179
154 10 7 0 10 7 17 0
155 583 1 1 582 0 583 0.0017152659
156 2867 15 11 2856 4 2871 0.0038314176
157 572 129 20 552 109 681 0.0293685756
158 483 0 0 483 0 483 0
159 3457 0 0 3457 0 3457 0
160 9127 1 1 9126 0 9127 0.000109565

209

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
161 945 9 9 936 0 945 0.0095238095
162 14 4 1 13 3 17 0.0588235294
163 133 0 0 133 0 133 0
164 345 0 0 345 0 345 0
165 650 2 2 648 0 650 0.0030769231
166 168 0 0 168 0 168 0
167 101 3 3 98 0 101 0.0297029703
168 111 4 0 111 4 115 0
169 124 0 0 124 0 124 0
170 470 282 30 440 252 722 0.0415512465
171 172 0 0 172 0 172 0
172 0 9 0 0 9 9 0
173 69 6 0 69 6 75 0
174 622 0 0 622 0 622 0
175 277 107 6 271 101 378 0.0158730159
176 112 1 0 112 1 113 0
177 2534 4 0 2534 4 2538 0
178 276 0 0 276 0 276 0
179 440 1 1 439 0 440 0.0022727273
180 81 0 0 81 0 81 0
181 560 0 0 560 0 560 0
182 34 4 0 34 4 38 0
183 0 0 0 0 0 0 0
184 1533 5 5 1528 0 1533 0.0032615786
185 81 15 0 81 15 96 0
186 596 63 61 535 2 598 0.102006689
187 561 4 4 557 0 561 0.0071301248
188 479 6 1 478 5 484 0.0020661157
189 451 0 0 451 0 451 0
190 1467 23 5 1462 18 1485 0.0033670034
191 346 5 1 345 4 350 0.0028571429
192 1798 0 0 1798 0 1798 0
193 608 1 1 607 0 608 0.0016447368
194 6 14 0 6 14 20 0
195 203 0 0 203 0 203 0
196 1114 0 0 1114 0 1114 0
197 104 0 0 104 0 104 0
198 197 139 0 197 139 336 0
199 511 5 4 507 1 512 0.0078125
200 1978 1 1 1977 0 1978 0.0005055612
201 572 1 1 571 0 572 0.0017482517
202 416 0 0 416 0 416 0
203 240 0 0 240 0 240 0
204 29 47 0 29 47 76 0
205 71 0 0 71 0 71 0
206 3806 697 180 3626 517 4323 0.0416377516
207 109 0 0 109 0 109 0
208 4164 3 2 4162 1 4165 0.0004801921
209 230 263 0 230 263 493 0
210 461 0 0 461 0 461 0
211 64 0 0 64 0 64 0
212 0 2 0 0 2 2 0
213 0 3 0 0 3 3 0
214 476 0 0 476 0 476 0

210

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
215 1694 17 16 1678 1 1695 0.009439528
216 19 2 1 18 1 20 0.05
217 2142 0 0 2142 0 2142 0
218 314 4 4 310 0 314 0.0127388535
219 252 0 0 252 0 252 0
220 326 2 1 325 1 327 0.003058104
221 357 34 2 355 32 389 0.0051413882
222 448 0 0 448 0 448 0
223 12467 0 0 12467 0 12467 0
224 0 0 0 0 0 0 0
225 125 0 0 125 0 125 0
226 83 5 1 82 4 87 0.0114942529
227 111 0 0 111 0 111 0
228 1270 1 1 1269 0 1270 0.0007874016
229 330 0 0 330 0 330 0
230 163 33 1 162 32 195 0.0051282051
231 71 0 0 71 0 71 0
232 452 0 0 452 0 452 0
233 189 0 0 189 0 189 0
234 208 0 0 208 0 208 0
235 270 0 0 270 0 270 0
236 51 4 0 51 4 55 0
237 119 0 0 119 0 119 0
238 790 4 4 786 0 790 0.0050632911
239 1 2 0 1 2 3 0
240 510 0 0 510 0 510 0
241 1092 0 0 1092 0 1092 0
242 403 0 0 403 0 403 0
243 209 3 1 208 2 211 0.0047393365
244 580 1 1 579 0 580 0.0017241379
245 339 10 4 335 6 345 0.0115942029
246 405 0 0 405 0 405 0
247 51 0 0 51 0 51 0
248 62 8 0 62 8 70 0
249 636 0 0 636 0 636 0
250 313 0 0 313 0 313 0
251 388 0 0 388 0 388 0
252 74 1 0 74 1 75 0
253 43 33 1 42 32 75 0.0133333333
254 232 22 4 228 18 250 0.016
255 1752 0 0 1752 0 1752 0
256 38 0 0 38 0 38 0
257 232 2 2 230 0 232 0.0086206897
258 215 0 0 215 0 215 0
259 119 0 0 119 0 119 0
260 102 2 1 101 1 103 0.0097087379
261 154 8 5 149 3 157 0.0318471338
262 419 5 3 416 2 421 0.0071258907
263 0 0 0 0 0 0 0
264 10 0 0 10 0 10 0
265 225 9 1 224 8 233 0.0042918455
266 41 2 0 41 2 43 0
267 686 0 0 686 0 686 0
268 170 0 0 170 0 170 0
269 88 0 0 88 0 88 0

211

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
270 5 0 0 5 0 5 0
271 0 0 0 0 0 0 0
272 15 0 0 15 0 15 0
273 12 0 0 12 0 12 0
274 0 0 0 0 0 0 0
275 749 3 3 746 0 749 0.0040053405
276 328 0 0 328 0 328 0
277 68 0 0 68 0 68 0
278 2562 1 1 2561 0 2562 0.0003903201
279 31 1 1 30 0 31 0.0322580645
280 75 0 0 75 0 75 0
281 300 31 30 270 1 301 0.0996677741
282 2458 5 1 2457 4 2462 0.0004061738
283 1587 1 1 1586 0 1587 0.0006301197
284 417 0 0 417 0 417 0
285 166 0 0 166 0 166 0
286 381 0 0 381 0 381 0
287 434 8 7 427 1 435 0.016091954
288 678 3 0 678 3 681 0
289 197 0 0 197 0 197 0
290 83 0 0 83 0 83 0
291 1446 0 0 1446 0 1446 0
292 655 0 0 655 0 655 0
293 47 0 0 47 0 47 0
294 1433 5767 54 1379 5713 7146 0.0075566751
295 1590 12 12 1578 0 1590 0.0075471698
296 1756 3 3 1753 0 1756 0.0017084282
297 675 1186 30 645 1156 1831 0.0163844894
298 198 3 3 195 0 198 0.0151515152
299 154 0 0 154 0 154 0
300 864 7 7 857 0 864 0.0081018519
301 1661 3 3 1658 0 1661 0.0018061409
302 1211 1 1 1210 0 1211 0.0008257638
303 549 1 0 549 1 550 0
304 439 0 0 439 0 439 0
305 64 14 1 63 13 77 0.012987013
306 387 0 0 387 0 387 0
307 106 0 0 106 0 106 0
308 191 0 0 191 0 191 0
309 20 0 0 20 0 20 0
310 317 0 0 317 0 317 0
311 19 0 0 19 0 19 0
312 273 0 0 273 0 273 0
313 47 44 0 47 44 91 0
314 267 0 0 267 0 267 0
315 234 2 2 232 0 234 0.0085470085
316 430 2 1 429 1 431 0.0023201856
317 2338 9 9 2329 0 2338 0.003849444
318 296 3 3 293 0 296 0.0101351351
319 4 0 0 4 0 4 0
320 114 0 0 114 0 114 0
321 152 0 0 152 0 152 0
322 175 1 1 174 0 175 0.0057142857
323 321 0 0 321 0 321 0
324 47 0 0 47 0 47 0

212

S/N All in Bicho All in CVSAnalY Intersection Only in Bicho only CSVAnalY Union Shared bug coverage
325 463 2 2 461 0 463 0.0043196544
326 144 1 1 143 0 144 0.0069444444
327 324 1 1 323 0 324 0.0030864198
328 12 4 0 12 4 16 0
329 142 1 0 142 1 143 0
330 25 6 0 25 6 31 0
331 164 0 0 164 0 164 0
332 266 4 3 263 1 267 0.0112359551
333 4634 154 79 4555 75 4709 0.0167763856
334 3374 375 94 3280 281 3655 0.0257181943
335 20 0 0 20 0 20 0
336 48 0 0 48 0 48 0
337 83 0 0 83 0 83 0
338 104 2 1 103 1 105 0.0095238095
339 162 2 2 160 0 162 0.012345679
340 668 5 5 663 0 668 0.0074850299
341 163 0 0 163 0 163 0
342 168 1 0 168 1 169 0
343 620 5 5 615 0 620 0.0080645161
344 141 2 2 139 0 141 0.0141843972

A.7 344 OSS Projects Precision and recall of the three main

components of the SZZ algorithm

The table in 4 is the result of the precision and recall of each individual component of the SZZ

Algorithm which was evaluated per project. In addition, the result of each component was

used and compare against each component and obtained the p-value reported in chapter 4.6

that demonstrate the significant of each component which was summarise in the matrix table

in 4.7 of chapter 4.

A.8 Bicho and CVSAnalY Delta-344 OSS Projects

The table 5 present the percentage of BT data and VC logs recovered and synchronised in the

auxiliary tables of Bicho and CVSAnalY databases per project. The columns in table 1 such

as Only in Bicho and Only in CVSAnalY was synchronised using # Symbol of the SZZ

Algorithm for all the 344 OSS Projects in Bicho and CVSAnalY respective databases.

213

Table 4: 344 OSS Projects Precision and recall of the three main components of the SZZ algorithm

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
1 0.895 0.000 0.895 0.000 0.000 0.000 0.531 0.000 0.531 0.000 0.000 0.000
2 0.958 0.000 0.958 0.000 0.000 0.000 0.511 0.000 0.511 0.000 0.000 0.000
3 0.962 0.000 0.962 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000
4 0.934 0.000 0.934 0.000 0.000 0.000 0.518 0.000 0.518 0.000 0.000 0.000
5 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
6 0.802 0.000 0.802 0.000 0.000 0.000 0.570 0.000 0.570 0.000 0.000 0.000
7 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
8 0.862 0.002 0.862 -0.002 0.002 -0.002 0.544 0.002 0.544 0.002 0.002 0.002
9 0.941 0.000 0.941 0.000 0.000 0.000 0.516 0.000 0.516 0.000 0.000 0.000
10 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
11 0.889 0.000 0.889 0.000 0.000 0.000 0.533 0.000 0.533 0.000 0.000 0.000
12 0.966 0.000 0.966 0.000 0.000 0.000 0.509 0.000 0.509 0.000 0.000 0.000
13 0.929 0.000 0.929 0.000 0.000 0.000 0.520 0.000 0.520 0.000 0.000 0.000
14 0.759 0.000 0.759 0.000 0.000 0.000 0.594 0.000 0.594 0.000 0.000 0.000
15 0.903 0.005 0.903 0.000 0.005 0.000 0.529 0.005 0.529 0.000 0.005 0.000
16 0.891 0.000 0.891 0.000 0.000 0.000 0.533 0.000 0.533 0.000 0.000 0.000
17 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
19 0.994 0.003 0.994 0.000 0.003 0.000 0.502 0.003 0.502 0.000 0.003 0.000
20 0.97 0.000 0.97 0.000 0.000 0.000 0.508 0.000 0.508 0.000 0.000 0.000
21 0.981 0.000 0.981 0.000 0.000 0.000 0.505 0.000 0.505 0.000 0.000 0.000
22 0.975 0.000 0.975 0.000 0.000 0.000 0.506 0.000 0.506 0.000 0.000 0.000
23 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
24 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
25 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
26 0.982 0.000 0.982 0.000 0.000 0.000 0.505 0.000 0.505 0.000 0.000 0.000
27 0.86 0.000 0.86 0.000 0.000 0.000 0.545 0.000 0.545 0.000 0.000 0.000
28 0.791 0.000 0.791 0.000 0.000 0.000 0.576 0.000 0.576 0.000 0.000 0.000
29 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
30 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
31 0.203 0.000 0.203 0.000 0.000 0.000 -0.516 0.000 -0.516 0.000 0.000 0.000
32 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
33 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
34 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
35 0.923 0.000 0.923 0.000 0.000 0.000 0.522 0.000 0.522 0.000 0.000 0.000
36 0.963 0.000 0.963 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000
37 0.872 0.000 0.872 0.000 0.000 0.000 0.539 0.000 0.539 0.000 0.000 0.000
38 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
39 0.889 0.000 0.889 0.000 0.000 0.000 0.533 0.000 0.533 0.000 0.000 0.000
40 0.926 0.000 0.926 0.000 0.000 0.000 0.521 0.000 0.521 0.000 0.000 0.000
41 0.983 0.000 0.983 -0.004 0.000 -0.004 0.504 0.000 0.504 0.004 0.000 0.004
42 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
43 0.779 0.000 0.779 0.000 0.000 0.000 0.583 0.000 0.583 0.000 0.000 0.000
44 0.875 0.000 0.875 0.000 0.000 0.000 0.538 0.000 0.538 0.000 0.000 0.000
45 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
46 0.991 0.000 0.991 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
47 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
48 0.926 0.000 0.926 0.000 0.000 0.000 0.521 0.000 0.521 0.000 0.000 0.000
49 0.855 0.000 0.855 0.000 0.000 0.000 0.547 0.000 0.547 0.000 0.000 0.000
50 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
51 0.789 0.000 0.789 -0.003 0.000 -0.003 0.577 0.000 0.577 0.003 0.000 0.003
52 0.787 0.000 0.787 0.000 0.000 0.000 0.578 0.000 0.578 0.000 0.000 0.000

214

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
53 0.988 0.000 0.988 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
54 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
55 0.759 0.017 0.759 0.000 0.017 0.000 0.595 0.018 0.595 0.000 0.018 0.000
56 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
57 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
58 0.954 0.000 0.954 0.000 0.000 0.000 0.512 0.000 0.512 0.000 0.000 0.000
59 0.857 0.000 0.857 0.000 0.000 0.000 0.545 0.000 0.545 0.000 0.000 0.000
60 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
61 0.9 0.009 0.9 0.000 0.009 0.000 0.529 0.009 0.529 0.000 0.009 0.000
62 0.857 0.000 0.857 0.000 0.000 0.000 0.545 0.000 0.545 0.000 0.000 0.000
63 0.925 0.015 0.925 0.000 0.015 0.000 0.521 0.015 0.521 0.000 0.015 0.000
64 0.256 0.000 0.256 0.000 0.000 0.000 -1.105 0.000 -1.105 0.000 0.000 0.000
65 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
66 0.75 0.000 0.75 0.503 0.000 0.503 0.600 0.000 0.600 0.990 0.000 0.990
67 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
68 0.867 0.000 0.867 0.000 0.000 0.000 0.541 0.000 0.541 0.000 0.000 0.000
69 0.917 0.000 0.917 0.000 0.000 0.000 0.524 0.000 0.524 0.000 0.000 0.000
70 0.859 0.000 0.859 0.000 0.000 0.000 0.545 0.000 0.545 0.000 0.000 0.000
71 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
72 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
73 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
74 0.985 0.000 0.985 0.000 0.000 0.000 0.504 0.000 0.504 0.000 0.000 0.000
75 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
76 0.974 0.000 0.974 0.000 0.000 0.000 0.507 0.000 0.507 0.000 0.000 0.000
77 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
78 0.61 0.000 0.61 -0.002 0.000 -0.002 0.735 0.000 0.735 0.001 0.000 0.001
79 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
80 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
81 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
82 0.854 0.000 0.854 0.000 0.000 0.000 0.547 0.000 0.547 0.000 0.000 0.000
83 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
84 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
85 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
86 0.552 1.345 0.552 -0.037 1.345 -0.037 0.842 -3.900 0.842 0.033 -3.900 0.033
87 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
88 0.824 0.000 0.824 0.000 0.000 0.000 0.560 0.000 0.560 0.000 0.000 0.000
89 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
90 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
91 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
92 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
93 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
94 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
95 0 0.000 0 0.500 0.000 0.500 0.000 0.000 0.000 0.999 0.000 0.999
96 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
97 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
98 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
99 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 0.796 0.000 0.796 0.000 0.000 0.000 0.574 0.000 0.574 0.000 0.000 0.000

215

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
101 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
102 0.988 0.000 0.988 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
103 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
104 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
105 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
106 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
107 0.739 0.000 0.739 0.000 0.000 0.000 0.607 0.000 0.607 0.000 0.000 0.000
108 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
109 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
110 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
111 0.929 0.000 0.929 0.000 0.000 0.000 0.520 0.273 0.520 0.000 0.273 0.000
112 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
113 0.795 0.000 0.795 0.000 0.000 0.000 0.574 0.000 0.574 0.000 0.000 0.000
114 0.286 0.000 0.286 0.000 0.000 0.000 -2.000 0.000 -2.000 0.000 0.000 0.000
115 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
116 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
117 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
118 0.421 0.079 0.421 0.000 0.079 0.000 1.600 0.086 1.600 0.000 0.086 0.000
119 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
120 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
121 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
122 0.916 0.000 0.916 0.000 0.000 0.000 0.524 0.000 0.524 0.000 0.000 0.000
123 0.991 0.000 0.991 -0.013 0.000 -0.013 0.502 0.000 0.502 0.013 0.000 0.013
124 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
125 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
126 0.996 0.000 0.996 -0.181 0.000 -0.181 0.501 0.000 0.501 0.117 0.000 0.117
127 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
128 0.5 0.000 0.5 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000
129 0.977 0.000 0.977 0.000 0.000 0.000 0.506 0.000 0.506 0.000 0.000 0.000
130 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
131 0.85 0.000 0.85 0.000 0.000 0.000 0.548 0.000 0.548 0.000 0.000 0.000
132 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
133 0.667 0.000 0.667 0.000 0.000 0.000 0.667 0.000 0.667 0.000 0.000 0.000
134 0.8 0.002 0.8 -0.007 0.002 -0.007 0.572 0.002 0.572 0.007 0.002 0.007
135 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
136 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
137 0.998 0.000 0.998 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
138 0.938 0.006 0.938 -0.020 0.006 -0.020 0.517 0.007 0.517 0.019 0.007 0.019
139 0.963 0.000 0.963 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000
140 0.906 0.002 0.906 -0.006 0.002 -0.006 0.527 0.002 0.527 0.006 0.002 0.006
141 0.974 0.000 0.974 0.000 0.000 0.000 0.507 0.000 0.507 0.000 0.000 0.000
142 0.995 0.003 0.995 0.000 0.003 0.000 0.501 0.003 0.501 0.000 0.003 0.000
143 0.981 0.000 0.981 -0.002 0.000 -0.002 0.505 0.000 0.505 0.002 0.000 0.002
144 0.991 0.000 0.991 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
145 0.951 0.000 0.951 0.000 0.000 0.000 0.513 0.000 0.513 0.000 0.000 0.000
146 0.98 0.000 0.98 -0.002 0.000 -0.002 0.505 0.000 0.505 0.002 0.000 0.002
147 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
148 0.883 0.000 0.883 0.000 0.000 0.000 0.536 0.000 0.536 0.000 0.000 0.000
149 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
150 0.739 0.696 0.739 0.000 0.696 0.000 0.607 2.286 0.607 0.000 2.286 0.000
151 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
152 0.833 0.064 0.833 -0.057 0.064 -0.057 0.556 0.068 0.556 0.049 0.068 0.049
153 0.81 0.004 0.81 -0.002 0.004 -0.002 0.566 0.004 0.566 0.002 0.004 0.002
154 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
155 0.897 0.000 0.897 0.000 0.000 0.000 0.530 0.000 0.530 0.000 0.000 0.000

216

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
156 0.841 0.002 0.841 -0.001 0.002 -0.001 0.552 0.002 0.552 0.001 0.002 0.001
157 0.549 0.073 0.549 -0.308 0.073 -0.308 0.849 0.079 0.849 0.160 0.079 0.160
158 0.932 0.000 0.932 0.000 0.000 0.000 0.519 0.000 0.519 0.000 0.000 0.000
159 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
160 0.999 0.000 0.999 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
161 0.902 0.000 0.902 0.000 0.000 0.000 0.529 0.000 0.529 0.000 0.000 0.000
162 0.857 0.000 0.857 -0.375 0.000 -0.375 0.545 0.000 0.545 0.176 0.000 0.176
163 0.835 0.000 0.835 0.000 0.000 0.000 0.555 0.000 0.555 0.000 0.000 0.000
164 0.997 0.000 0.997 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
165 0.989 0.000 0.989 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
166 0.881 0.000 0.881 0.000 0.000 0.000 0.536 0.000 0.536 0.000 0.000 0.000
167 0.644 0.000 0.644 0.000 0.000 0.000 0.691 0.000 0.691 0.000 0.000 0.000
168 0.982 0.000 0.982 0.000 0.000 0.000 0.505 0.000 0.505 0.000 0.000 0.000
169 0.944 0.000 0.944 0.000 0.000 0.000 0.515 0.000 0.515 0.000 0.000 0.000
170 0.917 0.111 0.917 7.412 0.111 7.412 0.524 0.124 0.524 0.349 0.124 0.349
171 0.762 0.000 0.762 0.000 0.000 0.000 0.593 0.000 0.593 0.000 0.000 0.000
172 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
173 0.725 0.855 0.725 0.000 0.855 0.000 0.617 5.900 0.617 0.000 5.900 0.000
174 0.994 0.000 0.994 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
175 0.585 0.116 0.585 -1.347 0.116 -1.347 0.775 0.131 0.775 0.267 0.131 0.267
176 0.857 0.009 0.857 0.000 0.009 0.000 0.545 0.009 0.545 0.000 0.009 0.000
177 0.999 0.000 0.999 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
178 0.978 0.000 0.978 0.000 0.000 0.000 0.506 0.000 0.506 0.000 0.000 0.000
179 0.843 0.002 0.843 0.000 0.002 0.000 0.551 0.002 0.551 0.000 0.002 0.000
180 0.951 0.000 0.951 0.000 0.000 0.000 0.513 0.000 0.513 0.000 0.000 0.000
181 0.977 0.000 0.977 0.000 0.000 0.000 0.506 0.000 0.506 0.000 0.000 0.000
182 0.971 0.000 0.971 0.000 0.000 0.000 0.508 0.000 0.508 0.000 0.000 0.000
183 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
184 0.982 0.000 0.982 0.000 0.000 0.000 0.505 0.000 0.505 0.000 0.000 0.000
185 0.988 0.000 0.988 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
186 0.881 0.003 0.881 -0.003 0.003 -0.003 0.536 0.003 0.536 0.003 0.003 0.003
187 0.954 0.002 0.954 0.000 0.002 0.000 0.512 0.002 0.512 0.000 0.002 0.000
188 0.829 0.015 0.829 -0.011 0.015 -0.011 0.558 0.015 0.558 0.010 0.015 0.010
189 0.949 0.000 0.949 0.000 0.000 0.000 0.514 0.000 0.514 0.000 0.000 0.000
190 0.684 0.004 0.684 -0.013 0.004 -0.013 0.650 0.004 0.650 0.012 0.004 0.012
191 0.789 0.000 0.789 -0.012 0.000 -0.012 0.577 0.000 0.577 0.011 0.000 0.011
192 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
193 0.985 0.000 0.985 0.000 0.000 0.000 0.504 0.000 0.504 0.000 0.000 0.000
194 0.833 0.000 0.833 0.000 0.000 0.000 0.556 0.000 0.556 0.000 0.000 0.000
195 0.99 0.000 0.99 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
196 0.994 0.000 0.994 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
197 0.99 0.000 0.99 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
198 0.975 0.000 0.975 0.000 0.000 0.000 0.507 0.000 0.507 0.000 0.000 0.000
199 0.969 0.002 0.969 -0.002 0.002 -0.002 0.508 0.002 0.508 0.002 0.002 0.002

217

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
200 0.981 0.000 0.981 0.000 0.000 0.000 0.505 0.000 0.505 0.000 0.000 0.000
201 0.949 0.000 0.949 0.000 0.000 0.000 0.514 0.000 0.514 0.000 0.000 0.000
202 1 0.000 1 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
203 0.992 0.000 0.992 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
204 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
205 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
206 0.783 0.160 0.783 -0.187 0.160 -0.187 0.580 0.190 0.580 0.120 0.190 0.120
207 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
208 0.997 0.004 0.997 0.000 0.004 0.000 0.501 0.004 0.501 0.000 0.004 0.000
209 0.961 3.813 0.961 0.000 3.813 0.000 0.510 -1.355 0.510 0.000 -1.355 0.000
210 0.993 0.000 0.993 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
211 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
212 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
213 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
214 0.998 0.000 0.998 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
215 0.807 0.000 0.807 -0.001 0.000 -0.001 0.568 0.000 0.568 0.001 0.000 0.001
216 0.842 0.000 0.842 -0.059 0.000 -0.059 0.552 0.000 0.552 0.050 0.000 0.050
217 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
218 0.736 0.003 0.736 0.000 0.003 0.000 0.609 0.003 0.609 0.000 0.003 0.000
219 0.821 0.000 0.821 0.000 0.000 0.000 0.561 0.000 0.561 0.000 0.000 0.000
220 0.874 0.000 0.874 -0.003 0.000 -0.003 0.539 0.000 0.539 0.003 0.000 0.003
221 0.866 0.160 0.866 -0.109 0.160 -0.109 0.542 0.190 0.542 0.082 0.190 0.082
222 0.991 0.000 0.991 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
223 0.999 0.000 0.999 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
224 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
225 0.992 0.000 0.992 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
226 0.566 0.048 0.566 -0.053 0.048 -0.053 0.810 0.051 0.810 0.046 0.051 0.046
227 0.973 0.000 0.973 0.000 0.000 0.000 0.507 0.000 0.507 0.000 0.000 0.000
228 0.99 0.000 0.99 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
229 0.952 0.000 0.952 0.000 0.000 0.000 0.513 0.000 0.513 0.000 0.000 0.000
230 0.982 0.123 0.982 -0.323 0.123 -0.323 0.505 0.140 0.505 0.164 0.140 0.164
231 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
232 0.885 0.000 0.885 0.000 0.000 0.000 0.535 0.000 0.535 0.000 0.000 0.000
233 0.91 0.000 0.91 0.000 0.000 0.000 0.526 0.000 0.526 0.000 0.000 0.000
234 0.995 0.000 0.995 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
235 0.996 0.000 0.996 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
236 0.961 0.000 0.961 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000
237 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
238 0.956 0.000 0.956 0.000 0.000 0.000 0.512 0.000 0.512 0.000 0.000 0.000
239 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
240 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000

218

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
241 0.999 0.000 0.999 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
242 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
243 0.703 0.024 0.703 -0.010 0.024 -0.010 0.634 0.025 0.634 0.009 0.025 0.009
244 0.959 0.000 0.959 0.000 0.000 0.000 0.511 0.000 0.511 0.000 0.000 0.000
245 0.631 0.012 0.631 -0.018 0.012 -0.018 0.706 0.012 0.706 0.017 0.012 0.017
246 0.998 0.000 0.998 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
247 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
248 0.79 0.129 0.79 0.000 0.129 0.000 0.576 0.148 0.576 0.000 0.148 0.000
249 0.976 0.000 0.976 0.000 0.000 0.000 0.506 0.000 0.506 0.000 0.000 0.000
250 0.955 0.000 0.955 0.000 0.000 0.000 0.512 0.000 0.512 0.000 0.000 0.000
251 0.99 0.000 0.99 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
252 0.973 0.000 0.973 0.000 0.000 0.000 0.507 0.000 0.507 0.000 0.000 0.000
253 0.326 0.721 0.326 1.524 0.721 1.524 -14.000 2.583 -14.000 0.427 2.583 0.427
254 0.547 0.086 0.547 -0.092 0.086 -0.092 0.852 0.094 0.852 0.072 0.094 0.072
255 0.999 0.000 0.999 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
256 0.974 0.000 0.974 0.000 0.000 0.000 0.507 0.000 0.507 0.000 0.000 0.000
257 0.944 0.000 0.944 0.000 0.000 0.000 0.515 0.000 0.515 0.000 0.000 0.000
258 0.926 0.000 0.926 0.000 0.000 0.000 0.521 0.000 0.521 0.000 0.000 0.000
259 0.916 0.000 0.916 0.000 0.000 0.000 0.524 0.000 0.524 0.000 0.000 0.000
260 0.951 0.000 0.951 -0.010 0.000 -0.010 0.513 0.000 0.513 0.010 0.000 0.010
261 0.208 0.006 0.208 -0.020 0.006 -0.020 -0.552 0.007 -0.552 0.019 0.007 0.019
262 0.845 0.002 0.845 -0.005 0.002 -0.005 0.551 0.002 0.551 0.005 0.002 0.005
263 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
264 0.9 0.000 0.9 0.000 0.000 0.000 0.529 0.000 0.529 0.000 0.000 0.000
265 0.982 0.013 0.982 -0.038 0.013 -0.038 0.505 0.014 0.505 0.034 0.014 0.034
266 0.927 0.000 0.927 0.000 0.000 0.000 0.521 0.000 0.521 0.000 0.000 0.000
267 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
268 0.994 0.000 0.994 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
269 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
270 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
271 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
272 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
273 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
274 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
275 0.932 0.000 0.932 0.000 0.000 0.000 0.519 0.000 0.519 0.000 0.000 0.000
276 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
277 0.912 0.000 0.912 0.000 0.000 0.000 0.525 0.000 0.525 0.000 0.000 0.000
278 0.995 0.000 0.995 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
279 0.774 0.000 0.774 0.000 0.000 0.000 0.585 0.000 0.585 0.000 0.000 0.000
280 0.987 0.000 0.987 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
281 0.647 0.000 0.647 -0.003 0.000 -0.003 0.688 0.000 0.688 0.003 0.000 0.003
282 0.984 0.000 0.984 -0.002 0.000 -0.002 0.504 0.000 0.504 0.002 0.000 0.002
283 0.971 0.000 0.971 0.000 0.000 0.000 0.508 0.000 0.508 0.000 0.000 0.000
284 0.966 0.000 0.966 0.000 0.000 0.000 0.509 0.000 0.509 0.000 0.000 0.000
285 0.964 0.000 0.964 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000
286 0.971 0.000 0.971 0.000 0.000 0.000 0.508 0.000 0.508 0.000 0.000 0.000
287 0.906 0.002 0.906 -0.002 0.002 -0.002 0.528 0.002 0.528 0.002 0.002 0.002
288 0.996 0.000 0.996 0.000 0.000 0.000 0.501 0.000 0.501 0.000 0.000 0.000
289 0.827 0.000 0.827 0.000 0.000 0.000 0.558 0.000 0.558 0.000 0.000 0.000
290 0.964 0.000 0.964 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000

219

Precision Recall
S/N hash fix hash bug fix bug hash fix hash bug fix bug
291 0.892 0.000 0.892 0.000 0.000 0.000 0.532 0.000 0.532 0.000 0.000 0.000
292 0.965 0.000 0.965 0.000 0.000 0.000 0.509 0.000 0.509 0.000 0.000 0.000
293 0.957 0.000 0.957 0.000 0.000 0.000 0.511 0.000 0.511 0.000 0.000 0.000
294 0.877 0.973 0.877 0.572 0.973 0.572 0.538 36.711 0.538 0.799 36.711 0.799
295 0.831 0.001 0.831 0.000 0.001 0.000 0.557 0.001 0.557 0.000 0.001 0.000
296 0.951 0.000 0.951 0.000 0.000 0.000 0.513 0.000 0.513 0.000 0.000 0.000
297 0.942 0.172 0.942 0.706 0.172 0.706 0.516 0.208 0.516 0.631 0.208 0.631
298 0.939 0.000 0.939 0.000 0.000 0.000 0.517 0.000 0.517 0.000 0.000 0.000
299 0.909 0.000 0.909 0.000 0.000 0.000 0.526 0.000 0.526 0.000 0.000 0.000
300 0.896 0.000 0.896 0.000 0.000 0.000 0.531 0.000 0.531 0.000 0.000 0.000
301 0.882 0.000 0.882 0.000 0.000 0.000 0.536 0.000 0.536 0.000 0.000 0.000
302 0.865 0.000 0.865 0.000 0.000 0.000 0.542 0.000 0.542 0.000 0.000 0.000
303 0.903 0.000 0.903 0.000 0.000 0.000 0.528 0.000 0.528 0.000 0.000 0.000
304 0.856 0.000 0.856 0.000 0.000 0.000 0.546 0.000 0.546 0.000 0.000 0.000
305 0.922 0.016 0.922 -0.342 0.016 -0.342 0.522 0.016 0.522 0.169 0.016 0.169
306 0.984 0.000 0.984 0.000 0.000 0.000 0.504 0.000 0.504 0.000 0.000 0.000
307 0.981 0.085 0.981 0.000 0.085 0.000 0.505 0.093 0.505 0.000 0.093 0.000
308 0.948 0.000 0.948 0.000 0.000 0.000 0.514 0.000 0.514 0.000 0.000 0.000
309 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
310 0.994 0.000 0.994 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
311 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
312 0.963 0.051 0.963 0.000 0.051 0.000 0.510 0.054 0.510 0.000 0.054 0.000
313 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
314 0.719 0.000 0.719 0.000 0.000 0.000 0.621 0.000 0.621 0.000 0.000 0.000
315 0.765 0.000 0.765 0.000 0.000 0.000 0.591 0.000 0.591 0.000 0.000 0.000
316 0.87 0.000 0.87 -0.002 0.000 -0.002 0.540 0.000 0.540 0.002 0.000 0.002
317 0.879 0.003 0.879 0.000 0.003 0.000 0.537 0.003 0.537 0.000 0.003 0.000
318 0.986 0.000 0.986 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
319 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
320 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
321 0.901 0.000 0.901 0.000 0.000 0.000 0.529 0.000 0.529 0.000 0.000 0.000
322 0.76 0.000 0.76 0.000 0.000 0.000 0.594 0.000 0.594 0.000 0.000 0.000
323 0.984 0.000 0.984 0.000 0.000 0.000 0.504 0.000 0.504 0.000 0.000 0.000
324 0.957 0.000 0.957 0.000 0.000 0.000 0.511 0.000 0.511 0.000 0.000 0.000
325 0.838 0.000 0.838 0.000 0.000 0.000 0.553 0.000 0.553 0.000 0.000 0.000
326 0.944 0.000 0.944 0.000 0.000 0.000 0.515 0.000 0.515 0.000 0.000 0.000
327 0.941 0.000 0.941 0.000 0.000 0.000 0.516 0.000 0.516 0.000 0.000 0.000
328 0.333 0.833 0.333 0.000 0.833 0.000 0.000 5.000 0.000 0.000 5.000 0.000
329 0.993 0.000 0.993 0.000 0.000 0.000 0.502 0.000 0.502 0.000 0.000 0.000
330 0.96 0.000 0.96 0.000 0.000 0.000 0.511 0.000 0.511 0.000 0.000 0.000
331 0.988 0.000 0.988 0.000 0.000 0.000 0.503 0.000 0.503 0.000 0.000 0.000
332 0.786 0.004 0.786 -0.004 0.004 -0.004 0.579 0.004 0.579 0.004 0.004 0.004
333 0.942 0.007 0.942 -0.017 0.007 -0.017 0.516 0.007 0.516 0.016 0.007 0.016
334 0.629 0.070 0.629 -0.100 0.070 -0.100 0.709 0.076 0.709 0.077 0.076 0.077
335 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
336 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
337 1 0.000 1 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.000
338 0.817 0.029 0.817 -0.010 0.029 -0.010 0.563 0.030 0.563 0.010 0.030 0.010
339 0.87 0.019 0.87 0.000 0.019 0.000 0.540 0.019 0.540 0.000 0.019 0.000
340 0.943 0.000 0.943 0.000 0.000 0.000 0.516 0.000 0.516 0.000 0.000 0.000
341 0.963 0.000 0.963 0.000 0.000 0.000 0.510 0.000 0.510 0.000 0.000 0.000
342 0.762 0.000 0.762 0.000 0.000 0.000 0.593 0.000 0.593 0.000 0.000 0.000
343 0.9 0.000 0.9 0.000 0.000 0.000 0.529 0.000 0.529 0.000 0.000 0.000
344 0.894 0.007 0.894 0.000 0.007 0.000 0.532 0.007 0.532 0.000 0.007 0.000

220

Table 5: Synchronisation of BT data and VC log using # Symbol of the SZZ Algorithm - 344 OSS Projects

Proj.
IDs

No
intersection Classic Bicho

contained
CVS.

contained perfect Both
empty

Shered bug
coverage

Scen.
1

Scen.
2

Scen.
3

Scen.
4

Bicho
Delta

CVS.
Delta

1 0 0 1 0 0 0 0.105 0 0 1 0 0.00% 89.47%
2 0 0 0 0 0 0 0.042 0 0 1 0 0.00% 95.77%
3 0 0 1 0 0 0 0.038 0 0 1 0 0.00% 96.20%
4 0 1 0 0 0 0 0.065 0 1 0 0 0.47% 92.99%
5 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
6 0 1 0 0 0 0 0.196 0 1 0 0 0.98% 79.41%
7 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
8 0 1 0 0 0 0 0.137 0 1 0 0 1.08% 85.22%
9 0 0 1 0 0 0 0.059 0 0 1 0 0.00% 94.12%
10 1 0 0 0 0 0 0.000 1 0 0 0 33.33% 66.67%
11 0 1 0 0 0 0 0.105 0 1 0 0 5.26% 84.21%
12 0 0 1 0 0 0 0.034 0 0 1 0 0.00% 96.55%
13 0 1 0 0 0 0 0.002 0 1 0 0 97.47% 2.35%
14 0 1 0 0 0 0 0.240 0 1 0 0 0.44% 75.56%
15 0 1 0 0 0 0 0.096 0 1 0 0 1.52% 79.80%
16 0 1 0 0 0 0 0.109 0 1 0 0 0.40% 88.71%
17 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
18 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
19 0 1 0 0 0 0 0.006 0 1 0 0 3.18% 96.21%
20 0 0 1 0 0 0 0.030 0 0 1 0 0.00% 96.97%
21 0 0 1 0 0 0 0.019 0 0 1 0 0.00% 98.13%
22 0 0 1 0 0 0 0.025 0 0 1 0 0.00% 97.50%
23 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
24 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
25 1 0 0 0 0 0 0.000 1 0 0 0 21.43% 78.57%
26 0 1 0 0 0 0 0.011 0 1 0 0 38.52% 60.37%
27 0 0 1 0 0 0 0.140 0 0 1 0 0.00% 85.95%
28 0 0 1 0 0 0 0.209 0 0 1 0 0.00% 79.08%
29 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
30 1 0 0 0 0 0 0.000 1 0 0 0 46.15% 53.85%
31 0 1 0 0 0 0 0.774 0 1 0 0 2.93% 19.67%
32 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
33 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
34 1 0 0 0 0 0 0.000 1 0 0 0 1.42% 98.58%
35 0 0 1 0 0 0 0.077 0 0 1 0 0.00% 92.31%
36 0 0 1 0 0 0 0.037 0 0 1 0 0.00% 96.30%
37 0 0 1 0 0 0 0.128 0 0 1 0 0.00% 87.23%
38 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
39 0 1 0 0 0 0 0.109 0 1 0 0 1.77% 87.32%
40 0 0 1 0 0 0 0.074 0 0 1 0 0.00% 92.59%
41 0 1 0 0 0 0 0.015 0 1 0 0 11.61% 86.89%
42 1 0 0 0 0 0 0.000 1 0 0 0 79.53% 20.47%
43 0 1 0 0 0 0 0.220 0 1 0 0 0.24% 77.73%
44 0 0 1 0 0 0 0.125 0 0 1 0 0.00% 87.50%
45 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
46 0 0 1 0 0 0 0.009 0 0 1 0 0.00% 99.07%
47 1 0 0 0 0 0 0.000 1 0 0 0 58.73% 41.27%
48 0 0 1 0 0 0 0.074 0 0 1 0 0.00% 92.65%
49 0 1 0 0 0 0 0.143 0 1 0 0 1.79% 83.93%
50 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
51 0 1 0 0 0 0 0.207 0 1 0 0 1.85% 77.40%
52 0 0 1 0 0 0 0.213 0 0 1 0 0.00% 78.72%

221

Proj.
IDs

No
intersection Classic Bicho

contained
CVS.

contained perfect Both
empty

Shered bug
coverage

Scen.
1

Scen.
2

Scen.
3

Scen.
4

Bicho
Delta

CVS.
Delta

53 0 0 1 0 0 0 0.012 0 0 1 0 0.00% 98.83%
54 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
55 0 1 0 0 0 0 0.230 0 1 0 0 4.92% 72.13%
56 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
57 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
58 0 1 0 0 0 0 0.046 0 1 0 0 0.42% 94.96%
59 0 1 0 0 0 0 0.001 0 1 0 0 99.34% 0.57%
60 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
61 0 1 0 0 0 0 0.097 0 1 0 0 2.65% 87.61%
62 0 1 0 0 0 0 0.002 0 1 0 0 98.79% 1.04%
63 0 1 0 0 0 0 0.069 0 1 0 0 7.59% 85.52%
64 0 0 1 0 0 0 0.744 0 0 1 0 0.00% 25.61%
65 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
66 0 1 0 0 0 0 0.003 0 1 0 0 98.99% 0.76%
67 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
68 0 1 0 0 0 0 0.132 0 1 0 0 0.83% 86.01%
69 0 1 0 0 0 0 0.067 0 1 0 0 20.00% 73.33%
70 0 1 0 0 0 0 0.140 0 1 0 0 0.64% 85.39%
71 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
72 1 0 0 0 0 0 0.000 1 0 0 0 80.00% 20.00%
73 1 0 0 0 0 0 0.000 1 0 0 0 94.87% 5.13%
74 0 1 0 0 0 0 0.015 0 1 0 0 0.17% 98.31%
75 1 0 0 0 0 0 0.000 1 0 0 0 98.53% 1.47%
76 0 1 0 0 0 0 0.003 0 1 0 0 87.79% 11.89%
77 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
78 0 1 0 0 0 0 0.377 0 1 0 0 3.19% 59.07%
79 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
80 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
81 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
82 0 1 0 0 0 0 0.034 0 1 0 0 76.47% 20.10%
83 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
84 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
85 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
86 0 1 0 0 0 0 0.165 0 1 0 0 63.29% 20.25%
87 1 0 0 0 0 0 0.000 1 0 0 0 27.97% 72.03%
88 0 1 0 0 0 0 0.120 0 1 0 0 32.00% 56.00%
89 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
90 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
91 1 0 0 0 0 0 0.000 1 0 0 0 75.00% 25.00%
92 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
93 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
94 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
95 0 0 0 1 0 0 0.000 0 0 1 0 99.95% 0.00%
96 1 0 0 0 0 0 0.000 1 0 0 0 4.76% 95.24%
97 1 0 0 0 0 0 0.000 1 0 0 0 18.18% 81.82%
98 0 0 0 1 0 0 0.063 0 0 1 0 93.75% 0.00%
99 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
100 0 1 0 0 0 0 0.189 0 1 0 0 7.55% 73.58%

222

Proj.
IDs

No
intersection Classic Bicho

contained
CVS.

contained perfect Both
empty

Shered bug
coverage

Scen.
1

Scen.
2

Scen.
3

Scen.
4

Bicho
Delta

CVS.
Delta

101 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
102 0 1 0 0 0 0 0.012 0 1 0 0 1.19% 97.62%
103 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
104 1 0 0 0 0 0 0.000 1 0 0 0 3.03% 96.97%
105 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
106 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
107 0 1 0 0 0 0 0.025 0 1 0 0 90.38% 7.11%
108 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
109 1 0 0 0 0 0 0.000 1 0 0 0 90.54% 9.46%
110 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
111 0 1 0 0 0 0 0.020 0 1 0 0 72.68% 25.37%
112 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
113 0 1 0 0 0 0 0.203 0 1 0 0 1.27% 78.48%
114 0 1 0 0 0 0 0.132 0 1 0 0 81.58% 5.26%
115 1 0 0 0 0 0 0.000 1 0 0 0 5.84% 94.16%
116 1 0 0 0 0 0 0.000 1 0 0 0 89.47% 10.53%
117 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
118 0 1 0 0 0 0 0.537 0 1 0 0 7.32% 39.02%
119 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
120 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
121 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
122 0 1 0 0 0 0 0.079 0 1 0 0 6.43% 85.71%
123 0 1 0 0 0 0 0.008 0 1 0 0 2.10% 97.06%
124 1 0 0 0 0 0 0.000 1 0 0 0 17.32% 82.68%
125 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
126 0 1 0 0 0 0 0.003 0 1 0 0 12.18% 87.50%
127 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
128 0 1 0 0 0 0 0.050 0 1 0 0 90.00% 5.00%
129 0 1 0 0 0 0 0.020 0 1 0 0 15.69% 82.35%
130 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
131 0 1 0 0 0 0 0.066 0 1 0 0 55.92% 37.47%
132 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
133 0 1 0 0 0 0 0.003 0 1 0 0 99.20% 0.53%
134 0 1 0 0 0 0 0.186 0 1 0 0 7.13% 74.26%
135 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
136 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
137 0 0 1 0 0 0 0.002 0 0 1 0 0.00% 99.80%
138 0 1 0 0 0 0 0.043 0 1 0 0 30.17% 65.49%
139 0 1 0 0 0 0 0.029 0 1 0 0 19.93% 77.12%
140 0 1 0 0 0 0 0.082 0 1 0 0 12.86% 78.99%
141 0 1 0 0 0 0 0.026 0 1 0 0 0.13% 97.25%
142 0 1 0 0 0 0 0.005 0 1 0 0 1.27% 98.23%
143 0 1 0 0 0 0 0.019 0 1 0 0 0.23% 97.83%
144 0 0 1 0 0 0 0.009 0 0 1 0 0.00% 99.05%
145 0 1 0 0 0 0 0.044 0 1 0 0 9.05% 86.53%
146 0 1 0 0 0 0 0.019 0 1 0 0 1.51% 96.56%
147 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
148 0 1 0 0 0 0 0.113 0 1 0 0 3.64% 85.07%
149 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
150 0 1 0 0 0 0 0.068 0 1 0 0 73.86% 19.32%
151 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
152 0 1 0 0 0 0 0.126 0 1 0 0 24.27% 63.11%
153 0 1 0 0 0 0 0.165 0 1 0 0 13.19% 70.34%
154 1 0 0 0 0 0 0.000 1 0 0 0 94.82% 5.18%
155 0 1 0 0 0 0 0.103 0 1 0 0 0.17% 89.55%
156 0 1 0 0 0 0 0.155 0 1 0 0 2.68% 81.84%
157 0 1 0 0 0 0 0.079 0 1 0 0 82.58% 9.56%
158 0 1 0 0 0 0 0.067 0 1 0 0 2.03% 91.28%
159 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
160 0 0 1 0 0 0 0.001 0 0 1 0 0.00% 99.86%
161 0 1 0 0 0 0 0.098 0 1 0 0 0.21% 89.97%
162 0 1 0 0 0 0 0.015 0 1 0 0 89.63% 8.89%
163 0 1 0 0 0 0 0.109 0 1 0 0 34.16% 54.95%

223

Proj.
IDs

No
intersection Classic Bicho

contained
CVS.

contained perfect Both
empty

Shered bug
coverage

Scen.
1

Scen.
2

Scen.
3

Scen.
4

Bicho
Delta

CVS.
Delta

164 0 1 0 0 0 0 0.003 0 1 0 0 1.15% 98.57%
165 0 1 0 0 0 0 0.011 0 1 0 0 0.31% 98.62%
166 0 1 0 0 0 0 0.118 0 1 0 0 0.59% 87.57%
167 0 1 0 0 0 0 0.343 0 1 0 0 3.81% 61.90%
168 0 1 0 0 0 0 0.014 0 1 0 0 20.14% 78.42%
169 0 1 0 0 0 0 0.056 0 1 0 0 1.59% 92.86%
170 0 1 0 0 0 0 0.047 0 1 0 0 43.65% 51.68%
171 0 1 0 0 0 0 0.222 0 1 0 0 7.03% 70.81%
172 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
173 0 1 0 0 0 0 0.050 0 1 0 0 81.79% 13.19%
174 0 0 1 0 0 0 0.006 0 0 1 0 0.00% 99.36%
175 0 1 0 0 0 0 0.087 0 1 0 0 79.05% 12.25%
176 0 1 0 0 0 0 0.107 0 1 0 0 24.83% 64.43%
177 0 1 0 0 0 0 0.001 0 1 0 0 0.24% 99.69%
178 0 0 1 0 0 0 0.022 0 0 1 0 0.00% 97.83%
179 0 1 0 0 0 0 0.152 0 1 0 0 2.87% 81.90%
180 0 0 1 0 0 0 0.049 0 0 1 0 0.00% 95.06%
181 0 1 0 0 0 0 0.023 0 1 0 0 0.18% 97.50%
182 0 1 0 0 0 0 0.006 0 1 0 0 77.92% 21.43%
183 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
184 0 1 0 0 0 0 0.018 0 1 0 0 0.07% 98.11%
185 0 1 0 0 0 0 0.002 0 1 0 0 84.09% 15.72%
186 0 1 0 0 0 0 0.119 0 1 0 0 0.50% 87.65%
187 0 1 0 0 0 0 0.046 0 1 0 0 1.06% 94.36%
188 0 1 0 0 0 0 0.094 0 1 0 0 44.82% 45.74%
189 0 1 0 0 0 0 0.051 0 1 0 0 0.22% 94.69%
190 0 1 0 0 0 0 0.201 0 1 0 0 36.33% 43.53%
191 0 1 0 0 0 0 0.187 0 1 0 0 11.51% 69.82%
192 1 0 0 0 0 0 0.000 1 0 0 0 0.28% 99.72%
193 0 1 0 0 0 0 0.015 0 1 0 0 0.33% 98.20%
194 0 1 0 0 0 0 0.002 0 1 0 0 98.94% 0.88%
195 0 1 0 0 0 0 0.010 0 1 0 0 0.98% 98.05%
196 0 1 0 0 0 0 0.006 0 1 0 0 0.09% 99.28%
197 0 1 0 0 0 0 0.009 0 1 0 0 5.45% 93.64%
198 0 1 0 0 0 0 0.003 0 1 0 0 89.28% 10.45%
199 0 1 0 0 0 0 0.028 0 1 0 0 10.82% 86.39%
200 0 0 1 0 0 0 0.019 0 0 1 0 0.00% 98.08%
201 0 1 0 0 0 0 0.051 0 1 0 0 0.35% 94.60%
202 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
203 0 0 1 0 0 0 0.008 0 0 1 0 0.00% 99.17%
204 1 0 0 0 0 0 0.000 1 0 0 0 98.59% 1.41%
205 1 0 0 0 0 0 0.000 1 0 0 0 1.39% 98.61%
206 0 1 0 0 0 0 0.163 0 1 0 0 25.00% 58.72%
207 1 0 0 0 0 0 0.000 1 0 0 0 4.39% 95.61%
208 0 1 0 0 0 0 0.003 0 1 0 0 1.58% 98.11%
209 0 1 0 0 0 0 0.003 0 1 0 0 93.31% 6.43%
210 0 0 1 0 0 0 0.007 0 0 1 0 0.00% 99.35%
211 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
212 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
213 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
214 0 0 1 0 0 0 0.002 0 0 1 0 0.00% 99.79%
215 0 1 0 0 0 0 0.187 0 1 0 0 3.14% 78.16%
216 0 1 0 0 0 0 0.097 0 1 0 0 38.71% 51.61%
217 0 0 1 0 0 0 0.000 0 0 1 0 0.00% 99.95%
218 0 1 0 0 0 0 0.260 0 1 0 0 1.57% 72.41%
219 0 1 0 0 0 0 0.166 0 1 0 0 7.01% 76.38%
220 0 1 0 0 0 0 0.110 0 1 0 0 12.83% 76.20%
221 0 1 0 0 0 0 0.046 0 1 0 0 65.71% 29.68%
222 0 0 1 0 0 0 0.009 0 0 1 0 0.00% 99.11%
223 0 1 0 0 0 0 0.001 0 1 0 0 0.01% 99.89%
224 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
225 0 0 1 0 0 0 0.008 0 0 1 0 0.00% 99.20%

224

Proj.
IDs

No
intersection Classic Bicho

contained
CVS.

contained perfect Both
empty

Shered bug
coverage

Scen.
1

Scen.
2

Scen.
3

Scen.
4

Bicho
Delta

CVS.
Delta

226 0 1 0 0 0 0 0.193 0 1 0 0 55.61% 25.13%
227 0 1 0 0 0 0 0.019 0 1 0 0 28.85% 69.23%
228 0 1 0 0 0 0 0.010 0 1 0 0 0.16% 98.82%
229 0 0 1 0 0 0 0.048 0 0 1 0 0.00% 95.15%
230 0 1 0 0 0 0 0.015 0 1 0 0 19.31% 79.21%
231 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
232 0 0 1 0 0 0 0.115 0 0 1 0 0.00% 88.50%
233 0 1 0 0 0 0 0.089 0 1 0 0 1.56% 89.58%
234 0 0 1 0 0 0 0.005 0 0 1 0 0.00% 99.52%
235 0 0 1 0 0 0 0.004 0 0 1 0 0.00% 99.63%
236 0 1 0 0 0 0 0.012 0 1 0 0 68.90% 29.88%
237 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
238 0 0 1 0 0 0 0.044 0 0 1 0 0.00% 95.57%
239 1 0 0 0 0 0 0.000 1 0 0 0 94.74% 5.26%
240 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
241 0 1 0 0 0 0 0.001 0 1 0 0 0.09% 99.82%
242 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
243 0 1 0 0 0 0 0.228 0 1 0 0 23.16% 54.04%
244 0 1 0 0 0 0 0.041 0 1 0 0 0.34% 95.53%
245 0 1 0 0 0 0 0.321 0 1 0 0 13.08% 54.87%
246 0 1 0 0 0 0 0.002 0 1 0 0 0.25% 99.51%
247 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
248 0 1 0 0 0 0 0.063 0 1 0 0 69.76% 23.90%
249 0 1 0 0 0 0 0.024 0 1 0 0 0.16% 97.49%
250 0 1 0 0 0 0 0.045 0 1 0 0 0.32% 95.22%
251 0 1 0 0 0 0 0.010 0 1 0 0 0.26% 98.71%
252 0 1 0 0 0 0 0.025 0 1 0 0 7.50% 90.00%
253 0 1 0 0 0 0 0.097 0 1 0 0 85.67% 4.67%
254 0 1 0 0 0 0 0.188 0 1 0 0 58.50% 22.72%
255 0 1 0 0 0 0 0.001 0 1 0 0 0.06% 99.89%
256 0 0 1 0 0 0 0.026 0 0 1 0 0.00% 97.37%
257 0 0 1 0 0 0 0.056 0 0 1 0 0.00% 94.40%
258 0 0 1 0 0 0 0.074 0 0 1 0 0.00% 92.56%
259 0 0 1 0 0 0 0.084 0 0 1 0 0.00% 91.60%
260 0 1 0 0 0 0 0.046 0 1 0 0 5.56% 89.81%
261 0 1 0 0 0 0 0.436 0 1 0 0 45.00% 11.43%
262 0 1 0 0 0 0 0.140 0 1 0 0 9.89% 76.13%
263 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
264 0 1 0 0 0 0 0.032 0 1 0 0 67.74% 29.03%
265 0 1 0 0 0 0 0.015 0 1 0 0 14.45% 84.03%
266 0 1 0 0 0 0 0.049 0 1 0 0 32.79% 62.30%
267 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
268 0 0 1 0 0 0 0.006 0 0 1 0 0.00% 99.41%
269 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
270 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
271 1 0 0 0 0 1 0.000 0 0 0 1 0.00% 0.00%
272 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
273 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
274 1 0 0 1 0 0 0.000 0 0 1 0 100.00% 0.00%
275 0 0 1 0 0 0 0.068 0 0 1 0 0.00% 93.19%
276 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
277 0 1 0 0 0 0 0.077 0 1 0 0 12.82% 79.49%
278 0 0 1 0 0 0 0.005 0 0 1 0 0.00% 99.53%
279 0 1 0 0 0 0 0.194 0 1 0 0 13.89% 66.67%

225

Proj.
IDs

No
intersection Classic Bicho

contained
CVS.

contained perfect Both
empty

Shered bug
coverage

Scen.
1

Scen.
2

Scen.
3

Scen.
4

Bicho
Delta

CVS.
Delta

280 0 0 1 0 0 0 0.013 0 0 1 0 0.00% 98.67%
281 0 1 0 0 0 0 0.351 0 1 0 0 0.66% 64.24%
282 0 1 0 0 0 0 0.014 0 1 0 0 9.73% 88.84%
283 0 1 0 0 0 0 0.028 0 1 0 0 2.04% 95.12%
284 0 1 0 0 0 0 0.033 0 1 0 0 0.95% 95.72%
285 0 0 1 0 0 0 0.036 0 0 1 0 0.00% 96.39%
286 0 1 0 0 0 0 0.029 0 1 0 0 0.78% 96.35%
287 0 1 0 0 0 0 0.083 0 1 0 0 12.50% 79.23%
288 0 1 0 0 0 0 0.004 0 1 0 0 1.45% 98.11%
289 0 1 0 0 0 0 0.170 0 1 0 0 1.50% 81.50%
290 0 0 1 0 0 0 0.036 0 0 1 0 0.00% 96.39%
291 0 1 0 0 0 0 0.107 0 1 0 0 0.48% 88.78%
292 0 1 0 0 0 0 0.035 0 1 0 0 0.61% 95.90%
293 0 0 1 0 0 0 0.043 0 0 1 0 0.00% 95.74%
294 0 1 0 0 0 0 0.016 0 1 0 0 87.17% 11.26%
295 0 1 0 0 0 0 0.168 0 1 0 0 0.50% 82.67%
296 0 1 0 0 0 0 0.049 0 1 0 0 0.11% 94.99%
297 0 1 0 0 0 0 0.019 0 1 0 0 66.43% 31.63%
298 0 1 0 0 0 0 0.060 0 1 0 0 1.00% 93.00%
299 0 0 1 0 0 0 0.091 0 0 1 0 0.00% 90.91%
300 0 1 0 0 0 0 0.104 0 1 0 0 0.35% 89.27%
301 0 1 0 0 0 0 0.115 0 1 0 0 2.24% 86.23%
302 0 1 0 0 0 0 0.135 0 1 0 0 0.33% 86.17%
303 0 1 0 0 0 0 0.096 0 1 0 0 0.36% 90.02%
304 0 1 0 0 0 0 0.141 0 1 0 0 1.79% 84.12%
305 0 1 0 0 0 0 0.063 0 1 0 0 20.00% 73.75%
306 0 1 0 0 0 0 0.015 0 1 0 0 1.28% 97.19%
307 0 1 0 0 0 0 0.017 0 1 0 0 8.62% 89.66%
308 0 1 0 0 0 0 0.052 0 1 0 0 1.04% 93.78%
309 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
310 0 1 0 0 0 0 0.005 0 1 0 0 23.43% 76.09%
311 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
312 0 1 0 0 0 0 0.034 0 1 0 0 6.19% 90.38%
313 1 0 0 0 0 0 0.000 1 0 0 0 60.83% 39.17%
314 0 1 0 0 0 0 0.278 0 1 0 0 1.11% 71.11%
315 0 1 0 0 0 0 0.234 0 1 0 0 0.43% 76.17%
316 0 1 0 0 0 0 0.128 0 1 0 0 1.60% 85.58%
317 0 1 0 0 0 0 0.120 0 1 0 0 1.56% 86.48%
318 0 0 1 0 0 0 0.014 0 0 1 0 0.00% 98.65%
319 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
320 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
321 0 0 1 0 0 0 0.099 0 0 1 0 0.00% 90.13%
322 0 1 0 0 0 0 0.239 0 1 0 0 0.57% 75.57%
323 0 0 1 0 0 0 0.016 0 0 1 0 0.00% 98.44%
324 0 1 0 0 0 0 0.038 0 1 0 0 11.32% 84.91%
325 0 1 0 0 0 0 0.161 0 1 0 0 0.86% 83.08%
326 0 0 1 0 0 0 0.056 0 0 1 0 0.00% 94.44%
327 0 1 0 0 0 0 0.058 0 1 0 0 0.31% 93.85%
328 0 1 0 0 0 0 0.151 0 1 0 0 77.36% 7.55%
329 0 1 0 0 0 0 0.007 0 1 0 0 0.70% 98.60%
330 0 1 0 0 0 0 0.028 0 1 0 0 30.56% 66.67%
331 0 1 0 0 0 0 0.012 0 1 0 0 0.61% 98.18%
332 0 1 0 0 0 0 0.213 0 1 0 0 0.75% 77.99%
333 0 1 0 0 0 0 0.054 0 1 0 0 6.78% 87.85%
334 0 1 0 0 0 0 0.239 0 1 0 0 35.60% 40.50%
335 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
336 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
337 1 0 1 0 0 0 0.000 0 0 1 0 0.00% 100.00%
338 0 1 0 0 0 0 0.153 0 1 0 0 16.13% 68.55%
339 0 1 0 0 0 0 0.114 0 1 0 0 11.96% 76.63%
340 0 1 0 0 0 0 0.057 0 1 0 0 0.30% 94.03%
341 0 1 0 0 0 0 0.036 0 1 0 0 1.81% 94.58%
342 0 1 0 0 0 0 0.221 0 1 0 0 7.18% 70.72%
343 0 1 0 0 0 0 0.100 0 1 0 0 0.16% 89.86%
344 0 1 0 0 0 0 0.104 0 1 0 0 2.08% 87.50%

106 182 102 26 0 8 25 182 129 8
128 No. OSS Projects in four scenario

226

