

Heat versus hypoxic acclimation to improve physiological responses in a hypoxic environment

Adaptation and Cross Tolerance to Environmental and Metabolic Stressors: From the Patient to the Athlete

Oliver R. Gibson^{1,2}

¹ Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, UK. ² Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, UK.

⊠ <u>oliver.gibson@brunel.ac.uk</u>

Introduction

- Heat acclimation ergogenic under heat stress (& temperate?)
- **Cross acclimation**: "Adaptations made at a physiological level in response to one environmental stressor (e.g. Heat) are beneficial in another (e.g. Hypoxia.)"

Why?	Hypoxic/Altitude Interventions	Heat Interventions
Access	Access to artificial and terrestrial altitude can be problematic.	Thermally stressful environments generally more attainable.
Time	Prolonged sojourns at altitude not possible	Heat adaptation more expedient
Variability	Variability in response to LLTH / IHT interventions	Heat adaptations appear more consistent
Tolerance	Appropriate for those initially less tolerant to repeated hypoxic exposures	Heat stress well tolerated in young, trained individuals

Mechanisms? Calbet et al., (2003)

AJPRICP 284:R291-R303

Determinants of maximal oxygen uptake in severe acute hypoxia

Heled et al., 2012 Aviation, Space, and Env Med 83 (7) 649-653

Gibson et al., (2015)

J Appl Phys 119:889–99

Heat acclimation attenuates physiological strain and the HSP72, but not HSP90a, mRNA response to acute normobaric hypoxia.

10 days 90 min.day⁻¹ 40 ℃ 40% R.H. [ISO] Cycling @ 65% VO_{2peak} 10 min rest, cycling@ 40% \dot{VO}_{2peak} @ 65% VO_{2peak} FiO₂ = 0.12; ~4,500m

- HA successfully induced heat acclimated phenotype in normoxia
- ✓ Decreased rest T_{rec} (-0.49 °C)
- ✓ Decreased HR (-18 b.min⁻¹)
- ✓ Plasma & Blood Volume expansion (+15%)
- ✓ Increased Sweat Rate (+48%)

Gibson et al., (2015)

J Appl Phys 119:889–99

Heat acclimation attenuates physiological strain and the HSP72, but not HSP90 α , mRNA response to acute normobaric hypoxia.

White et al., (2016)

Temperature 3:1 176-185 The effect of ten days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m)

Is the duration of heat acclimation important? Lee et al., 2014a; Ext physiol & med 3:15.1-16

Is the duration of heat acclimation important? Lee et al., 2014b; *BioMed Res Int'l* 72: 849809. 1-16

Mechanisms? Calbet et al., (2004) AJPHCP 287:R1214-R1224

Plasma Volume expansion does not increase maximal cardiac output or VO_{2max} in lowlanders acclimatized to altitude

Mechanisms? Singhi et al., (2005) Annals of Tropical Paediatrics 25, 243-252 Body water and plasma volume in severe pneumonia: implications for fluid therapy

FIG. 1. Correlation between oxygen saturation (SpO2) and various body water compartments.

Conclusions

- Improved physiological responses to (normobaric) hypoxia
- Improved endurance performance in (normobaric) hypoxia
 - tbc in hypobaric hypoxia
- Magnitude of benefits may be reduced/limited in those acclimatized to altitude.
- Mechanistic work required to support applied understanding

Future

directions

- Identify mechanisms more clearly
 - ? Plasma Volume
 - ? Temperature
- Determine benefits across spectrum of simulated and terrestrial ascents
 - ✓ >3,000 4,000m
 - ? 1,500 2,500m?
- Identify exercise intensity domains whereby cross acclimation may effectively occur
 - ✓ Moderate intensity
 - ? Low & High intensity

Centre for Human Performance, Exercise and Rehabilitation (CHPER)

✻

University of Brighton

A.Prof Peter Watt Dr Neil Maxwell Centre for Sport and Exercise Science and Medicine (SESAME) ASPETAR

Dr Lee Taylor

ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre **Dr Ailish Sheard (nee White)** School of Kinesiology and Nutritional Science