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Abstract  

The thermal shock response of a gradient elastic half-space is examined using a 

higher-order finite element procedure. The half-space is assumed to experience 

convective heat transfer at its free surface with a fluid that undergoes a sudden change 

of its temperature. Simulations have been performed for different values of the 

microstructural parameters. The thermoelastic pulses within the gradient material are 

found to be dispersive and smoother than those within a classical elastic solid, for 

which the solution is retrieved as a special case. Energy type stability estimates for the 

weak solution have been obtained for both the fully and weakly coupled thermoelastic 

systems. The convergence characteristics of the proposed finite element schemes have 

been verified by several numerical experiments. 
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1. Introduction 

It is well-known that the material microstructure influences the macroscopical 

behavior of complex solids, such as composites, cellular materials, and ceramics. 

Classical continuum theories do not incorporate internal length-scales and therefore 

cannot capture the pertinent scale effects that are associated with the underlying 

material microstructure. To this purpose, various generalized (enhanced) continuum 

theories (for a comprehensive review, see [1]) have been proposed, enriching the 

classical description with additional material length scales and, thus, extending the 

range of applicability of the „continuum‟ concept in an effort to bridge the gap 

between classical continuum theories and atomic-lattice theories. These models have 

also been derived from the theoretical identification of homogeneous materials 

equivalent to composites with heterogeneous classic phases [2-5] and from 

experimental testing at small scales [6-8]. 

In the last decade, the study of microstructured materials through enhanced continuum 

theories has been significantly boosted by recent advances in the fields of 

nanomechanics, micromachining, and bioengineering. The use of such theories allows 

a more accurate description of the mechanical response of high performance 

microstructured materials for instance, in problems where high strain / stress gradients 

emerge [9-12] or when instability phenomena are involved [13-15]. 

One of the most effective generalized continuum theories has proved to be the theory 

of gradient elasticity, also known as dipolar gradient elasticity or grade-two theory 

[16, 17]. According to the gradient elasticity theory, the material points inside a 

continuum can be visualized as micro-continuum with their own internal displacement 

field described in reference to a local coordinate system. Assuming enough regularity 

of the deformation process, the internal displacement field of each point can be 

expanded in Taylor series. If only the linear terms of these expansions are retained, 

the dipolar theory is obtained. The continuum under consideration consists of 

structural units (micro-media) in the form of cubes with edge length, which is an 

inherent length characteristic of the material structure (e.g. grain size). The presence 

of this length parameter, in turn, implies that the gradient elasticity theory 

encompasses the analytical possibility of size effects, which are absent in the classical 

theory. The physical relevance of the characteristic material length scales as 

introduced through gradient type theories has been the subject of numerous theoretical 

and experimental studies. In particular, atomistic calculations and experiments 

indicate that for most metals, the characteristic internal length is of the order of the 

lattice parameter [4, 18]. However, foam and cellular materials exhibit a characteristic 

length that is comparable to the average cell size, whereas in laminates is of the order 

of the laminate thickness [2,7,8]. 
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In recent years, the thermoelastic behavior of complex microstructured materials has 

attracted considerable attention since their high performance properties are closely 

related to their reliability under changing thermal conditions. Various gradient type 

models have been developed in order to describe the thermomechanical response of 

such microstructured continua [19-24]. In several of these models non-local 

phenomena in the time dependence of the fields have been also considered, leading to 

non-Fourier heat transfer models like the Vernotte-Cattaneo model [25, 26]. The 

generalized Green-Lindsay model presented in [23], in a reduced form corresponding 

to the consideration of classical Fourier heat diffusion, will be the subject of the 

present analysis. This particular model will be employed for the study of the response 

of a gradient elastic half-space subjected to thermal shock on its boundary. The 

thermal shock is induced by convective heat transfer with a surrounding medium that 

undergoes a sudden change in its temperature (Fig. 1). The problem examined in the 

present work extends the analysis of Danilovskaya [27] to a microstructured material 

modelled by gradient thermoelasticity. The goal of the present study is to reveal the 

influence of the microstructure on the macroscopical behavior of complex materials 

under thermal shock conditions. It is worth noting that due to the complexity of the 

equations of gradient thermoelasticity very few solutions to benchmark initial-

boundary problems, such as the present one, exist in the literature. 

The paper is organized as follows. The equations governing the thermoelastic 

response of a gradient elastic solid, as derived in [23], are briefly introduced. After 

selecting appropriate nondimensional quantities, the respective Initial-Boundary 

Value Problem (IBVP) is stated. The variational form of the problem is defined and 

stability estimates for the weak solution are provided. Both cases of weak and strong 

thermoelastic coupling are analyzed. The case of a classical thermoelastic half-space 

may be retrieved by setting the microstructural parameters of the enhanced model to 

zero. In the framework of classical elasticity, the problem under consideration has 

been treated by many authors [27-31], and these results will be used as reference 

solutions for comparison between the two theories. 

For the solution of the enhanced thermoelastic model, special finite elements are 

introduced, based on the weak formulation of the IBVP. These 3 node elements 

feature Hermite polynomials of 5
th

 degree for the approximation of the displacement 

field. The higher regularity finite element space introduced is needed due to the higher 

order spatial derivatives acting on the displacement field in the governing partial 

differential equations. Several numerical results are presented and the convergence 

characteristics of the proposed numerical scheme are studied in detail. An energy 

balance equation is formulated based on the variational form of the weakly coupled 

system and the compliance of the numerical solutions with this constraint is analyzed. 

Moreover, the dispersive nature of the thermoelastic pulses, as dictated by the 

gradient elasticity theory [32-35], has been verified and found to occur in normal or 

anomalous type, depending on the relative magnitude of the microstructural 
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parameters. It is shown that the resulting kinematic fields (displacements, strains) are 

smoother than those predicted by the classical theory of thermoelasticity [31]. 

 

 

 

Figure 1. Gradient elastic half-space subjected to convective heat transfer with a 

surrounding fluid at its free boundary. 

 

2. Governing Equations 

In the following, we consider a homogeneous gradient elastic half space. The half-

space is assumed to be initially at uniform temperature oT  and the free surface is 

suddenly subjected to convection heat transfer with a surrounding fluid medium at 

temperature oT T  . The convective heat transfer starts at time instant 0t   and 

constitutes the only forcing for all 0t  . The governing equations for the 

thermoelastic response of a solid have been derived in the framework of gradient 

elasticity theory as a special case of more general thermoelastic models [23, 24] 

including second sound effects for the heat diffusion phenomenon. In what follows, 

we assume classical Fourier heat transfer. Since the convection boundary condition is 

applied uniformly on the free surface of the half-space, the temperature and 

displacement field vary only in the direction x  along the depth of the half-space. 

Assuming that at point x  and time instant t , the temperature inside the half-space is 

( , )T x t , we introduce the temperature difference ( , ) ( , ) ox t T x t T   . For small 

values of the temperature variation  , the three dimensional classical thermoelastic 

equations for a gradient elastic solid (see e.g. [23]) are reduced to the following 1D 

system    

(3 2 ) 0e t xx o xtc k T a u          ,     (1) 

 1 2 23 ( 2 ) (3 2 ) 0tt xxtt xx xxx
u H u u g u a             .   (2) 



Published in Applied Mathematical Modelling, 40 (2016), 10181-10198 
doi: http://dx.doi.org/10.1016/j.apm.2016.07.023  

 

where u  is the displacement along the x  - axis and  , ec , k , a  are the material 

density, specific heat capacity under constant strain, thermal conductivity and thermal 

expansion coefficient respectively. The classical notation ,   is used for the Lamé 

constants of elasticity. Moreover, the subscripts ,x t  denote differentiation with 

respect to the spatial and temporal variable, respectively. Finally, the characteristic 

lengths associated with gradient elasticity are H  and g , providing higher order 

contributions to the kinetic and strain energy densities respectively. 

Appropriate boundary conditions, variationally consistent with (2), at the traction-free 

surface of the half-space are [16, 17] 

( ) 1 2 20 3 ( 2 )( ) (3 2 ) 0n

xtt x xxxP H u u g u a             , on 0x  ,    (3a) 

( ) 0 0n

xxR u   , on 0x  ,                                     (3b)  

expressing zero monopolar ( )nP  and dipolar ( )nR  tractions, respectively. Note that the 

dipolar traction ( )nR  represents a double-stress without a moment (pinch). An 

example from structural mechanics of similar self-equilibrating double-forces without 

moment can be found in the bending analysis of a beam with T-type cross-section 

[36]. Moreover, the monopolar traction ( )nP  represents the force-vector acted upon 

the free surface. 

The following point now deserves attention: in the general dynamical case, the 

existence of the inertia and micro-inertia terms in the equation of motion and in the 

boundary conditions (see Eqs. (2) and (3a)) violates the assumption of (Euclidean) 

objectivity when the motion is considered in non-inertial frames. As Jaunzemis [37, p. 

233] points out, the issue of objectivity in constrained generalized continuum theories 

(e.g. constrained Cosserat and strain-gradient theories) can be circumvented by 

introducing an objective generalized (effective) body force and an objective 

generalized body double-force. The former is defined as the difference of the standard 

body force and the inertia term (related to the acceleration – see also [38, p. 159] in 

the classical setting), and the latter as the difference of the standard body double-force 

and the micro-inertia term (related to the acceleration gradient). The generalized body 

force and body double-force are assumed to be objective although its constituents are 

not (see also [39]). 

The convection heat transfer occurring at 0x   is expressed through Newton‟s law of 

cooling as 

 x ck C    , where oT T   .   (4)  

where cC  is the convection coefficient. The surrounding fluid medium temperature 

  is assumed to be a function of the temporal variable with the form  
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( ) ( )t f t   ,      (5)  

where   is the temperature increase or decrease, with respect to the reference state 

oT , attained by the surrounding medium and ( ) :[0, ] [0,1]f t J  , is a function 

characterizing the temperature forcing variation with respect to time. For the classical 

„thermal shock‟ condition it is 0( ) ( )f t t t H , where H  denotes the Heaviside 

function. Mollified versions of thermal shock conditions may be also modeled by 

selecting appropriately the form of f  (e.g. ramp functions) as shown in figure 2. 

At infinity, vanishing temperature, displacement and displacement gradient fields are 

assumed   

 lim , , 0x xu u  ,      (6) 

while zero initial conditions are imposed as 

                                             
( ,0) ( ,0) ( ,0) 0tx u x u x    .                      (7) 

 

Figure 2. Time profile of the temperature change in the surrounding fluid, influencing 

convective heat transfer with the gradient elastic half-space.  

 

3. Nondimensional quantities and scaling considerations 

Let us introduce the thermal diffusivity  / ek c   and the elastic P-wave speed 

( 2 ) /pc      . The characteristic length for the classical thermoelastic model is 

/ pc  . Utilizing these parameters, the following nondimensional quantities are 

introduced 

/x   , /pc t   , / oT   ,  /U u  .    (8) 
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Let /pJ c J     and set (0, ) (0, )Q J   . The initial – boundary value (IBVP) 

problem in nondimensional form becomes: Find  , U  such that  

1 0DU      , in Q       (9) 

 2 2

2 0A BU U U U D    
       , in Q     (10) 

where 
1 / 3A H    , 

1

B g   , 
1

(3 2 )

e

a
D

c

 




  , 

2 2

(3 2 )o

p

T a
D

c

 




  , 

The convection boundary condition in nondimensional form is  

 Bi     , on 0  , (0, )J ,    (11) 

where Bi /cC k   is the nondimensional Biot number characterizing the magnitude 

of convective heat transfer with respect to that of heat conduction. Note that for 

Bi   the free surface of the half space attains the temperature   and the Robin 

condition (11) becomes ( 0, ) ( )      . Zero traction conditions at the free 

surface of the half-space and conditions at infinity now read 

0U     and   
2 2

2 0A BU U U D        , on 0  ,  (0, )J    (12) 

lim , , 0U U    , (0, )J .    (13)  

Finally, the initial conditions (7) become 

( ,0) ( ,0) ( ,0) 0U U       for all (0, )   .   (14)  

The above introduced nondimensional quantities are the ones typically used for the 

analysis of homogeneous materials in order to introduce a space-time frame suitable 

for studying the transient effects of thermal shock problems [27, 28, 31]. Notice that 

in the case of the classical elastic half space subjected to thermal shock, no other 

characteristic length than   is introduced. 

Setting 1 0D  , results in the elimination of the coupling term U  from the heat 

transfer equation (9). The corresponding weakly coupled system gives rise to the 

problem of thermal stresses in a gradient elastic half space. 

     

4. Variational Formulation 

In this section, the variational formulation of the previously stated IBVP will be 

derived. Let us first introduce some notation regarding the appropriate function spaces 
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for the solution of the weak form. The standard notation ( )kH  , k   is used for 

the Hilbert (Sobolev) function spaces 
,2 ( )kW   over the open domain   and 

0 2( ) ( )H L   . For J   and every Banach space V  the function valued space 

2 (0, ; )L J V , equipped with the norm 

 2

1/2
2

(0, ; ) 0

J

L J V V
v v d . 

will be extensively used (see for example [40]). 

Multiply equations (9), (10) with 
1(0, )H  , 

2 (0, )v H  , respectively. 

Assuming enough regularity, integration by parts and use of boundary conditions (11) 

and (12) along with conditions at infinity, yields the variational problem: 

Find ,U  such that 

1
0 0 0

Bi (0) (0, ) Bi (0) ( / )pd d D U d f c            
  

          ,  (15) 

a.e. in (0, )J , for every 
1(0, )H   and 

2 2

2
0 0 0 0 0

0A BvU d v U d v U d v U d D v d             
    

          , (16) 

a.e. in (0, )J , for every 
2 (0, )v H  , along with the corresponding homogeneous 

initial conditions. 

In the following stability estimates for the weak solution of the above variational 

problem will be derived. We will first consider the uncoupled (or weakly coupled) 

case since in many applications the difference in the response of the fully coupled and 

weakly coupled systems is negligible [29, 31].  

 

5. The weakly coupled system 

In the case where 1 0D  , the thermoelastic system (9), (10) becomes uncoupled, 

since equation (9) for the temperature field does not depend upon the displacement. In 

this case, the initial boundary value problem becomes 

2 2

2
0 0 0 0 0

A BvU d v U d v U d v U d D v Fd             
    

         ,   (17) 

a.e. in (0, )J , for every 
2 (0, )v H  , 
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where F  is the temperature profile inside the half-space, given as the solution of 

initial-boundary value problem 

0    , in Q .      (18) 

with the convection boundary condition (11), lim ( , ) 0      and initial condition 

( , 0) 0    .    

In the following an energy balance equation will be derived and energy type stability 

estimates will be proved. Setting v U  in (17), and using the identities 

2

2

(0, )0

1

2 L

d
U U d U

d
  






  , 

1

2

(0, )0

1

2 H

d
U U d U

d
  






   and 

1 2

2 22 2

(0, ) (0, )0 0

1

2
B BH H

d
U U d U U d U U

d
      



 

 
   
   ,  

we get for s   

2 1 1 2

2 2 2 22 2

2(0, ) (0, ) (0, ) (0, ) 0
2s A s B sL H H H

d d d
U U U U D U Fd

ds ds ds
  



   
    
   ,   (19)  

where 
 2(0, ) 0,

i

i

H L
U D U

 
   stands for the standard seminorm. 

Integrating equation (19) with respect to the temporal variable from 0s   to 

s J  , and setting 

1 22 1

2 2 2 22 2

(0, ) (0, )(0, ) (0, )
( ; , )A B A BH HL H

E U U U U     
  

    ,     (20)  

2
0 0

( ) sP D U Fd ds


 


    ,     (21)  

   we get ( ; , ) 2 ( )A BE P    , (0, ]J  .         (22) 

Equation (22) expresses an energy balance and will be used in the following as means 

to verify the quality of the numerical solutions for the problem of thermal stresses 

inside the gradient elastic half-space. A typical stability estimate of the form 

2 2 2 22 1 2(0, ; (0, )) (0, ; (0, ))(0, ; (0, ))
2 CJ

L J H L J LL J H
U U CJe D F  

  ,   (23) 

with 
2 2 2 2( , ) 1/ min 1, ,A B A BC C          can be shown for the weakly coupled IBVP, in 

a straightforward manner. Observe that by adding 
0

U Ud 


  to both sides of (17) it is 
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2 1 2 1 2

2 2 2 2 22 2

(0, ) (0, ) (0, ) (0, ) (0, )

2
0 0

                                                                      2 2

s A s BL H L H H

s s

d d d
U U U U U

ds ds ds

D U Fd U Ud

 

 

    

 

    
 

  

 .   (24) 

Integration with respect to the temporal variable (which is now set to be s ) from 

0s   to s    , yields 

2 1 22 1

2 2 2 2 22 2

(0, ) (0, ) (0, )(0, ) (0, )

2
0 0 0 0

                                                     2 2

A BL H HL H

s s

U U U U U

D U Fd ds U Ud ds

 

 



 

 

   

 

    

   
.       (25) 

Using Cauchy-Schwarz inequality for the integrals at the r.h.s. of (25) leads to 

 

2 1 22 1

1 2 2 2

2 2 2 2 2

(0, ) (0, ) (0, )(0, ) (0, )

2 (0, ) (0, ) (0, ) (0, )0 0
                 2 2

L H HL H

s sH L L L

U U U U U

D C U F ds C U U ds

 

 

   

   

    

 
 ,   (26) 

where 
2 2 2 2( , ) 1/ min 1, ,A B A BC C         . Using inequality 

2 22     for real 

positive numbers we get 

   

21

1 2 2 2

2 2

(0, )(0, )

2 2 2 22

2(0, ) (0, ) (0, ) (0, )0 0
              

HH

s sH L L L

U U

C U D F ds C U U ds



 



   

 

   
 . (27) 

and applying Gronwall‟s lemma 

2 2 21

2 2 22

2(0, ) (0, ; (0, ))(0, )

CJ

H L J LH
U U D Ce F  

   .    (28) 

Integrating with respect to time in (0, )J  

2 2 2 22 1

2 2 22

2(0, ; (0, )) (0, ; (0, ))(0, ; (0, ))

CJ

L J H L J LL J H
U U D CJe F  

  .                   (29) 

Taking square roots and using norm equivalence in 
2

, yields 

2 2 2 22 1 (0, ; (0, )) (0, ; (0, ))(0, ; (0, )) L J H L J LL J H
U U c F  

   , 2 2 CJc D CJe .   (30)  

If , 1A B   , it is 1C   and 
/2Jc e . However, if 1A   or 1B  , notice that 

2
,( ) /21

,
A B J

A Bc e


  . Typically it is 
2

, 1A B 
 and the exponential growth of the constant c  

becomes extremely rapid. A somewhat more elaborate analysis yields an improved 
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constant for the desired stability estimate. In particular, working in the same spirit as 

in [41], great care has been exercised in order to avoid any exponential dependence of 

the stability constants upon quantities of the form 1

A
  or 1

B
  or the Biot number Bi  

when , 1A B    or in cases where Bi 1 . In the following, a stability result with a 

constant that exhibits only linear growth with 
1 1A


 will be derived. For that 

purpose the first step is to slightly modify the norms used for the stability estimate 

and then make use Young‟s inequality in the form 
2 1 22     ,    , for 

real positive numbers ,  , selecting appropriately the value for  . We begin with 

the following definition: 

Definition For any set of real positive numbers k , k   we introduce the spaces 

(0, )k

k H   , 1,2,3,...k    and 
2

0 (0, )L   , equipped with the norm 

1

2 2 22

(0, ) (0, )k k
k

kH H
u u u  

 , k  .    (31) 

It can be easily verified that the norms defined in eq. (31), are equivalent to the 

standard norms in ( )kH   i.e. 
(0, ) (0, )k k

k
k kH H

c u u C u
  
  , k   and  

 min 1,k kc   and  max 1,k kC  . 

Finally, it is by definition 2
21

2 2 2

(0, )
( ; , )A B L

E U U U  
 

    . We may now 

prove the following  

  

THEOREM 1 Let (0,1)A   and assume that the solution of variational problem 

(15), (16) with 1 0D   is sufficiently regular. Then it is 

2 2 22
21

1

2(0, ; ) (0, ; (0, ))(0, ; )
2 J

AL J L J LL J
U U D Je F 

 
  ,      (32) 

Proof  Using the same steps as previously, one easily gets 

2 1 22 1

1 2 2 2

2 2 2 2 22 2

(0, ) (0, ) (0, )(0, ) (0, )

2 (0, ) (0, ) (0, ) (0, )0 0
                    2 2

A BL H HL H

s sH L L L

U U U U U

D U F ds U U ds

 

 

 
   

   

    

 
 .  (33) 

From this point on, the analysis follows a different path. Invoking the definition of the 

k , 1, 2k    norms in order to group the terms in the l.h.s. of (33) and using Young‟s 

inequality, with 
2

A   , it is 
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 1 2 2 2
21

2 2 2 2 2 22 2 2

2(0, ) (0, ) (0, ) (0, )0
A s A sH L L L

U U U D F U U ds


  

    
      . (34) 

For the r.h.s. of (34), we may write 

 

 

1 2 2 2

2
1 2

2 2 2 22 2 2

2(0, ) (0, ) (0, ) (0, )0

2 2 22 2

2 (0, )0 0
                                       

A s A sH L L L

s A L

U D F U U ds

U U ds D F ds



 

 





   



  

   

 



 
, (35) 

 Application of Gronwall‟s lemma yields 

2 2
21

2 2 2 22 2 2 2

2 2(0, ) (0, ;(0, ))0

J

A AL L J
U U e D F ds e D F




   

  
    ,    (36) 

Integrating again with respect to    

2 2 22
21

2 2 22 2

2(0, ; ) (0, ; (0, ))(0, ; )

J

AL J L J LL J
U U Je D F 

 
   .   (37) 

Taking now square roots and using the norm equivalence in 
2

, we arrive at (32).   □ 

REMARK. Observe that in this case it is 
1 /2J

Ac e 
and the dependence of the 

stability constant on the large term 
1

A


 is only linear and not exponential. 

Furthermore, note that in this case the stability constant does not depend on B . 

Finally, let us mention, that an analogous procedure may be used to derive energy 

norm error estimates for the finite element method. The derivation of these estimates 

will be the subject of a future work. 

  

6. The fully coupled system 

In this section, an a priori stability result for the weak solution of the fully coupled 

thermoelastic problem will be derived. The estimate presented here is sharper than 

that obtained in [42].  

THEOREM 2 Let 2 1/ 0D D    and assume that the solution of variational 

problem (15), (16) is sufficiently regular.  Then it is 

2 2 2 2 1 *
1 2(0, ; ) (0, ; ) (0, ; (0, )) (0, )

Bi 3 J

s L J L J L J L H
U U J e



 
   
     .   (38) 

Proof Set     in (15) and v U  in (16). Multiply equation (15) by   , add (15) 

to (16) and note the resulting mutual cancelation of the coupling terms 

1
0

D U d 


  and 2
0

D v d 


  .     (39) 
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The variational equation now reads 

2 2

0 0 0 0

2

0 0
    Bi (0, ) Bi ( / ) , ( )

A B

p

U U d U U d U U d U U d

d d f c

   

 

  

         

   

 

       

  

     

         

 , (40) 

where ,   denotes the pairing between 
1(0, )H   and its dual space

1 *(0, )H  . In 

fact, as will be shown later, the Dirac function ( )   is smoother than required for the 

duality pairing to make sense in this 1D setting. Adding the term 
0

U Ud 


  to both 

sides of eq. (40), we may write, since 1f  , 

2 1 2 1 2
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 ,    (41) 

where   22 ( )( )
,

LL
u u u






 denotes the   - weighted 2L  inner product. 

Using Cauchy-Schwarz inequality for the duality pairing, the definitions of the norms 

in spaces 1  and 2  and modified Young‟s inequality with 1   for the second 

integral in the r.h.s. of (41) we arrive at 

2
1 2

1 1 * 1
1 2

2 2 2

(0, )

2 2 2

(0, ) (0, ) (0, )
          2Bi

s L

sH H H

d
U U

ds

U U



  

  

    

    
 

     

,      (42) 

Employing again the modified Young‟s inequality with Bi    and since by 

definition it is 1 2 1

2 2 2

(0, ) (0, ) (0, )H L H  
      , we have 

1 * 1 1 1 * 2

2 2 2 2 22 2 2 2

(0, ) (0, ) (0, ) (0, ) (0, )
Bi Bi

H H H H L
     

    
         .    (43) 

Using this last inequality in conjunction with (41), integrating with respect to time 

from 0s   to s   and applying Gronwall‟s lemma, we finally arrive at 

                   
2 1 *

21

2 2 2 22 2

(0, ) (0, )
Bi J

L H
U U J e


  

  
     ,            (44)  

Integrating again with respect to time from 0   to J  , taking square roots and 

using the norm equivalence in 
3
 we get estimate (38).                                              □ 
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7. Semi-discretization with Finite Elements and time integration 

Let us now introduce appropriate finite element spaces for conforming discretization 

of the variational problem (15), (16). A first step is the approximation of the infinite 

domain (0, )  with a finite one (0, ( ))L J , where the end point is selected such that 

conditions at infinity hold approximately in ( )L J   for J  . A similar 

procedure has been adopted in [43] for the solution of a Cauchy problem of nonlinear, 

classical thermoelasticity. For the approximation of the temperature field we select 
1(0, )hV H L  , such that for each fixed (0, ]J  , it is ( )h hV   , where h  is the 

characteristic mesh size. Similarly, for the approximation of the displacement field we 

have 
2( ) (0, )h h

UU V H L   . The discretized variational problem becomes 

Find ,h hU  such that 

0 0

1
0

Bi (0) (0, )

                                         (0)Bi ( / )

L L
h h h h h h

L
h h h

p

d d

D U d f c

  



     

   

    

  

 


,            (45) 

a.e. in (0, )J  for every 
h hV   and 

2

0 0 0

2

2
0 0

                          0

L L L
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L L
h h h h

B

v U d v U d v U d

v U d D v d

    

  

   

  

 

   

  

 
,   (46) 

a.e. in (0, )J  for every 
h h

Uv V . 

The selected finite element approximations feature 5
th

 order Hermite polynomials for 

the approximation of the displacement field and quadratic Lagrange shape functions 

for the approximation of the temperature. The respective finite element spaces are 

defined, for (0, )J   random but fixed, as 

3
1

1

(0, ): ( ) ( )h h h h

i ie
i

V w H L w L x w 



 
   
 

 , and   (47) 

6
2

1

(0, ): ( ) ( )h h h h

U i ie
i

V w H L w H x w 


 
   
 

 .   (48) 

Note that in order to formulate conforming finite element approximations the use of 

Hermite interpolation polynomials is necessary, as the weak solution for the 
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displacements has been found to be in 
2 (0, )H   for each (0, )J  and thus higher 

regularity that that yielded by Lagrange interpolation polynomials is needed. 

Finally, it is worth noting that similar combinations of 
0C (temperature field) and 

1C

(gradient elastic displacement field) have also been applied other coupled field 

problems, as for example the simulation of the hydroelastic response of thin flexible 

strips subjected to long water wave excitation [44]. 

Discretization in space with finite elements produces a system of Ordinary 

Differential Equations (ODEs) to be integrated with respect to time. This system has 

the form 

   My Cy Ky F ,                                             (49) 

where y  is the vector on nodal unknowns , ,h h h

i i iU U  , and subscript i  ranges over 

all the mesh nodes. Introducing the vector v y  system (49) is transformed to the 

first order in time system 





        
         

        

yI O O I y 0

vO M K C v F
.                                 (50) 

For a time step 0  , selected such that it is /J n  , n , the time integration of 

system (50) is performed with the general scheme, 

1( ) ( )n na a  A z B z f ,                                              (51) 

where, for a parameter [0,1]a , it is 

( )a a
   

    
   

I O O I
A

O M K C
 , ( ) (1 )a a 

   
     

   

O I I O
B

K C O M
 , 

 
  
 

y
z

v
 and 

1 1

(1 )
n n

a a 
 

   
     

   

0 0
f

F F
 . 

The cases 0,1/ 2,1a  correspond to the Explicit Euler, Crank-Nicolson and Implicit 

Euler method respectively. The explicit scheme for 0a   is not unconditionally 

stable and therefore it will not be considered in the following. The Crank-Nicolson 

scheme is second order accurate and A-stable but not L-stable. Finally, the Implicit 

Euler method has excellent stability properties but is only first order accurate. In the 

following analysis, the value 0.52a   has been considered. This value is selected in 

order to introduce an amount of numerical dissipation to the solution. Note that when 

0.5a  , the classical elasticity solution exhibits spurious oscillations near sharp 
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fronts when relatively coarse time stepping is employed. A more detailed discussion 

of this phenomenon will be presented in the following section.            

 

Figure 3. Thermoelastic element shape functions. The element features 5
th

 order 

Hermite polynomials for the approximation of the displacement field and quadratic 

Lagrange shape functions for the approximation of the temperature. 

 

8. Results and discussion 

The problem of thermal shock response for the gradient elastic half-space is solved 

for two different values of the Biot Number, Bi 1  and Bi   . The latter value 

corresponds to the application of a Dirichlet condition on the upper surface of the half 

space, such that the temperature at this point attains the value   immediately at time 

0  , as also discussed in previous sections. In both cases we set ( 0)f  H , 

where   is set to unity in eq. (5). The numerical solution for the displacement field is 

obtained by discretizing the region, [0, ]L  where ( )L L J    is properly selected 

so as to avoid any wave reflections at L  in the time interval examined.  

In the present study, we examine the effects of the relative magnitude of the 

(nondimensional) microstructural parameters 1 / 3A H    and 1

B g   , 

controlling micro-inertia and strain gradient effects, respectively, on the mechanical 
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behavior of the material under thermal shock conditions. Estimates relating the 

gradient parameters H  and g  with the geometrical characteristics of the material 

microstructure can be found in [4, 18]. In particular, Shodja et al. [18] showed, via an 

atomistic approach, that for several metallic materials and different crystalline 

structures (fcc or bcc), the characteristic lengths range from about 2 Å to 5 Å. Given 

that for typical metals (e.g. aluminum, copper, lead, titanium, and steel) and some 

ceramic materials (e.g. silica) the thermoelastic length   is of the order of 10Å (at 

300K) (see e.g. [45]), the values for the nondimensional parameters A  and B   range 

from 0.1 to 0.5. The material properties selected are typical for ceramic refractories 

and in particular are set to: 33 /k W mK , 
34000 /kg m  , 755 /ec J kgK , 

14.6 6a e K   , 
2416 9 /E e N m , 0.23v  .  

The solution is obtained for both the fully and weakly coupled systems. Several 

numerical tests have been performed in order to evaluate the convergence 

characteristics of the proposed method. A sequence of finite element meshes is 

considered. The number of finite elements elN  employed for the solution is increased 

as 100,200,400,800,1600elN  . In all cases we select the number of time steps tN  to 

be twice the number of the elements ( 2t elN N ). Finally, a numerical experiment 

with 2500 elements and 10000 time steps was performed to be used as a highly 

accurate numerical solution. 

 

 

Figure 4. Convergence characteristics of the proposed finite element procedure. Both 

the temperature and the displacement approximation error are plotted for Bi 1 . Both 

axes are in logarithmic scale. 
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An example of the convergence characteristics of the finite element procedure are 

shown in figure (4) for Bi 1 . Both axes in figure 4 are in logarithmic scale. The 

solution obtained with 1600 elements was considered to be the „exact solution‟. As an 

error indicator, the following quantity has been selected 

[0, ], [0, ]

[0, ], [0, ]

max ( 1600) ( )

max ( 1600)

i j

el

i j

el el
L J

N

el
L J

solution N solution N

e
solution N

 

 

 

 

 




.                   (52) 

The maximum difference is calculated over all nodal values of the displacement field 

and over all discrete time instances. The convergence of the displacement field Finite 

Element solution is more rapid that of the temperature field. This is attributed to the 

higher order approximation used for the displacements. Finally, the error values are 

almost identical for the fully coupled and weakly coupled systems for the considered 

material parameters. This is due to the small contribution of the coupling term in 

equation (9).   

 

 

Figure 5. Space - time plot of the displacement field in the fully coupled case inside 

the gradient elastic half-space for different values of the microstructural parameters λA 

and λΒ and Bi     Classical elasticity corresponds to the case λA = λΒ =0. 
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Figure 5 presents a space - time plot of the displacement field inside the gradient 

elastic half-space for different values of the microstructural parameters λA and λΒ 

(fully coupled system). Classical elasticity corresponds to the case 0A B   . The 

results are obtained with 2500 elements and 10000 time steps. The dispersive nature 

of the thermoelastic pulse in the case that 0.1, 0.3A B    and 0.3, 0.1A B    

can be seen around the pulse traveling front. 

Figure 6 illustrates the difference between the solutions of the fully and weakly 

coupled system. The difference relative to the maximum value attained by the 

numerical solution of the fully coupled system (denoted in figure 9 as 

f/c f/c
[0, ], [0, ]

||| ||| max
i j

h h

L J
U U

  
  ) is plotted. This difference is found to be several orders of 

magnitude less than the maximum amplitude of the thermoelastic pulse.  Thus, the 

fully coupled and weakly coupled systems yield almost identical results for the 

considered (ceramic refractory) material. 

Let us now study the response of the weakly coupled system. The energy balance for 

the solution, as dictated by equation (22), is plotted in Figures 6 and 7, for Bi 1  and 

Bi    respectively. In the latter case, the bound dictated by inequality (32), is also 

computed. Invoking inequality (32) and using the analytical evaluation of the 
2 2(0, ; (0, ))L L   norm of the temperature field solution of the heat transfer problem 

in the half-space cause by a sudden change in the temperature of its boundary, we 

have   

2 2

2 3/2

(0, ; (0, ))

4(2 2)
( , )

3
L L

F s


 



 ,     (53) 

where  ( , ) erfc / 2F s s  , [28, 29].  In that manner, we obtain an explicit bound 

for the quantity 2
21

2 2 2

(0, )
( )

L L
E U U U


  , where 1 2,   and the induced 

norms are now defined over the interval (0, )L . along with the bound derived from 

inequality (36) and equation (53). The energy balance for the solution in all cases is 

verified as , 0h   , where   denotes the time step. 
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Figure 6. Displacement field solution difference between the fully and weakly 

coupled systems.  

 

Figures 9 and 10 are plots of the displacement solution for Bi 1  and Bi    

respectively, for the weakly coupled system. In both cases three different 

combinations of the microstructural parameters are selected. The displacement field is 

plotted as a function of the spatial parameter at three time instances ( 5,10,25  ). 

The classical elasticity solution ( 0A B   ) is also plotted. From comparison 

between Figures 9 and 10 it is observed that the solution is of lower amplitude for 

small values of the Biot number. The dispersive nature of pulses characterizing 

gradient elasticity solutions is evident for the cases where the microstructural 

parameters are dissimilar. Normal dispersion is exhibited in the case where A B  , 

while anomalous dispersion occurs when A B  . The case ( 0.2A B   ) shows 

almost zero dispersion. This is in accordance with the dispersion analysis of gradient 

elastic solutions [32-35, 39]. 

Figures 11 and 12 are plots of the displacement gradient inside the half-space for 

Bi 1  and Bi   , respectively. The latter case is of lower regularity for the classical 

elasticity. However, it is observed that in the case of gradient elasticity, the first 

derivative of the displacement, corresponding to the strain, is continuous. Note that in 

the case of the gradient elastic solution, the presence of higher order terms makes the 

displacement gradient smoother. 
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Figure 7. Energy balance according to equation (22), for different values of the 

microstructural parameters λA and λΒ, for Bi 1 . 

 

 

Figure 8. Energy balance according to equation (22), for different values of the 

microstructural parameters λA and λΒ, for Bi   . The stability estimate for the 

gradient elastic solution (equation (36)) is plotted with a dashed line. 
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Figure 9. Displacement field inside the half-space for different values of the 

microstructural parameters λA and λΒ, at three time instances. The classical elasticity 

solution is plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 10. As in Fig. 9 but with Bi   . 
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Figure 11. Displacement gradient inside the half-space for different values of the 

microstructural parameters λA and λΒ, at different time instances. The classical 

elasticity solution is plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 12. As in Fig. 11 but with Bi   . 
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Figure 13. Velocity inside the half-space for different values of the microstructural 

parameters λA and λΒ, at different time instances. The classical elasticity solution is 

plotted against the gradient elastic one ( Bi 1 ). 

 

 

Figure 14. As in Fig. 13 but with Bi   . 
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Figure 15. Total stress (eq. (3a)) inside the half-space for different values of the 

microstructural parameters λA and λΒ, at two time instances. The classical elasticity 

solution is plotted against the gradient elastic one ( Bi 1 ). 
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Figure 16. As in Fig. 15 but with Bi   . The exact solution for the stresses [see e.g. 

31], is plotted with a thin solid line. 

 

In Figures 13 and 14, the variation of the velocity inside the half-space is displayed 

for the selected values of the Biot number. Again, three different combinations of the 

microstructural parameters are selected. The velocity is plotted as a function of the 

spatial parameter at two time instances ( 5, 25  ). In classical elasticity, for Bi   ,  

the velocity suffers a finite jump at   , which implies that a shock wave (singular 

surface) travels through the material. This is in marked contrast with the gradient 

elasticity solution where the velocity is continuous and, thus, no shock waves are 

formed.  

Finally, Figures 15 and 16 show the distribution of the (total) stress, defined in Eq. 

(3a), as a function of the spatial parameter at two time instances ( 5, 25  ) for Bi 1  

and Bi   . Examining the case Bi    it is observed that in classical elasticity, the 

monopolar stress (see references [27-31] for a closed form solution of the stress field) 

exhibits a finite discontinuity at the same point where the velocity becomes 

discontinuous. The latter observation is a direct consequence of the enforcement of 

the dynamical compatibility conditions at the singular surface [46]. On the other hand, 

in the case of gradient elasticity, the total stress remains spatially continuous at all 

instances. The oscillations appearing before or after the pulse front, at   , are the 

result of the dispersive nature (normal or anomalous) characterizing the gradient 

elasticity solution. 
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It is interesting to examine the time profile of the displacement gradient at the free 

surface of the half space. Figures 17 and 18 depict the displacement gradient for 

0   in the case that Bi 1  and Bi    respectively. In the former case, namely 

when Bi 1  (Figure 17), the strain at the free surface is a continuous function of time. 

For the classical elasticity, the strain constantly increases (with decreasing rate) 

approaching asymptotically a certain value. In the gradient elastic case, and particular 

in the cases 0.2A B    and 0.3, 0.1A B   , the increase in not monotone and 

the solution oscillates, while increasing to the asymptotic limit. In all cases, for large 

values of the temporal variable, the gradient elasticity solution is of lower magnitude 

than that of the classical elasticity case. In particular, it is observed that as the 

microstructural parameter B  increases the material becomes stiffer. 

The case Bi    is more interesting. In this case, the temperature at 0   changes 

instantly form oT  to T   at 0  . For the classical elasticity case, since the traction 

2U D    at the free surface of the half-space is zero, the strain U  features a finite 

jump at 0  . The dashed black line for 0A B   , corresponding to classical 

elasticity, presents this situation. The numerical solution features spurious oscillations 

which reduce in magnitude near this discontinuity at 0  . In the gradient elastic 

case, where the zero traction condition at the free surface of the half-space is 
2 2

2 0A BU U U D        , the strain is continuous despite the fact that the 

temperature features a discontinuity.    

 

Figure 17. Displacement gradient at the free surface of the half-space as a function of 

time, for Bi 1 .   
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Figure 18. Displacement gradient at the free surface of the half-space as afunction of 

time, for Bi   .  

 

 

9. Conclusions 

The thermal shock behavior of complex microstructured materials such as advanced 

ceramics, cellular materials and foams is a problem of growing interest since their 

high performance properties are closely related to their reliability under changing 

thermal conditions. The present study extends the analysis of Danilovskaya [27, 28], 

where a thermal shock acts on a classical elastic half space, to a microstructured 

material modelled with gradient thermoelasticity. It is noted that due to the 

complexity of the equations of gradient thermoelasticity, very few solutions to 

benchmark initial-boundary value problems exist in the literature. Special 

thermoelastic finite elements have been developed for the simulation of the response 

of a gradient elastic half-space subjected to thermal shock on its boundary. The Partial 

Differential Equations governing the phenomenon under consideration have been 

solved for different values of the microstructural parameters. The solution for a 

classical thermoelastic solid is obtained as a special case. Energy type stability 

estimates for the weak solution have been obtained for the fully coupled thermoelastic 

system as well as for the weakly coupled. The adopted finite element scheme 

performed well in all numerical experiments conducted. An important result obtained 

in the present study is that the displacement and strain fields induced by the 

thermoelastic shock are smoother (no kinks in displacements or discontinuities in 

strains) than the ones predicted by classical thermoelasticity. In addition, the 

thermoelastic pulse is of dispersive nature, as is typically the case for waves in 
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gradient elastic solids. Normal or anomalous dispersion characteristics are obtained 

depending on the values of the gradient parameters. Finally, we note that the 

differences between the solution of the fully coupled thermoelastic system and the 

weakly coupled have been found to be negligible for the material properties selected.  
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