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Abstract

This paper deals with theH∞ state estimation problem for a class of discrete-time neural networks with stochastic

delays subject to state- and disturbance-dependent noises(also called(x, v)-dependent noises) and fading channels.

The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system

measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed

problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense

against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the

stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions

are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribedH∞

performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results.

Index Terms

Delayed neural networks,H∞ state estimation, delay-distribution-dependent condition, random delay,(x, v)-

dependent noises, fading channels.

I. INTRODUCTION

The past few decades have witnessed the successful applications of recurrent neural networks (RNNs) in many

areas including image processing [40], pattern recognition [3], combinatorial optimization [24], associative memories

[32] and signal processing [35]. In general, these applications are heavily dependent on 1) the dynamic behaviors

(e.g. stability and synchronization) of the RNNs; and 2) thetrue states of the neurons in a noisy environment.

Therefore, the analysis issues of neural networks such as synchronization, stability and state estimation have attracted

considerable attention, and a rich body of results have beenreported in the literature [20], [39].

It is well known that the time-delay, which is inevitable during signal transmission between the neurons and in

the implementation of neural networks, is one of the important sources which may cause instability and oscillation

of the networks. As such, it is of great significance to investigate the mathematical properties of delayed neural

networks, and much effort has been devoted to various types of time-delays (continuous, discrete, distributed or
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mixed), see [17], [21], [23], [30], [31], [34], [37], [39]. Nevertheless, an important class of time-delays, namely,

probabilistic delays, have not gained sufficient attentionin the context of dynamics analysis for RNNs. Probabilistic

delays occur frequently in practice, for example, by using the statistical method, it has been found in [31] that a

large delay occurs with a low probability in networked control systems. The time delay in neural networks may

randomly appear as well due to synaptic voltage and temporalnoise associated with transmitter release. In [39],

the Bernoulli variable has been introduced to characterizethe random delay and several less conservative stability

conditions have been derived for delayed neural networks. By employing the information of both the probability

distribution and the variation range of the time delay, the exponentialH∞ filtering problem has been addressed in

[23] for switched neural networks with random delays.

Due to random fluctuations from the release of neurotransmitters as well as thermal noises in the electronic

equipments, various stochastic perturbations are unavoidable with both biological and artificial neural networks.

Up to now, most literature has focused on the stochastic neural networks withstate-dependent noisesonly for

the purpose of simplicity [1], [17]. As pointed out in [9], not only system states but also external disturbances

may be corrupted by stochastic noises in the engineering practice. By means of Hamilton-Jacobi inequalities, the

stochasticH∞ control problem has been studied in [18] for nonlinear Markovian jump systems with state- and

disturbance-dependent noises ((x, v)-dependent noises for short). For the stochasticH2/H∞ control problem, it has

been revealed in [29] that there exist essential differences between the system with state-dependent noises and that

with (x, v)-dependent noises. Note that(x, v)-dependent noises are typical phenomena for RNNs because 1)the

neurotransmitter-induced noises are naturally neuron-state-dependent; 2) the thermal noises are usually external-

disturbance-dependent; and 3) both kinds of noises tend to occur simultaneously in practice. Nevertheless, the

dynamics analysis issue for neural networks with(x, v)-dependent noises has not been addressed and remains

open.

In reality, the information of the neuron states of RNNs is crucial for some specific applications such as

associative memories, optimization and state feedback control. Unfortunately, such information may not be fully

accessible because of the complexity of neural networks andit is necessary to estimate the neuron states via

available measurements. As such, the problem of state estimation for neural networks has stirred particular research

interest and a wealth of literature has appeared [14], [16],[36], [38], [42]. By constructing a new Lyapunov-

Krasovskii functional, the delay-distribution-dependent state estimator has been designed in [1] for discrete-time

neural networks with time-varying delays. In [16], the Arcak-type state estimator, which is more general than the

widely used Luenberger-type one, has been designed for the static neural networks with time delays. Recalling

these existing methods, there has been a common assumption that communication channel is ideal such that the

measurements of neural networks can be transmitted to the estimator in aninstantaneous way. Such an assumption

is, however, not always true when the RNNs and the estimator are connected via unreliable channels (i.e., wireless

connection) in the case of hardware implementation. As such, it makes practical sense to study the state estimation

problem for neural networks in a networked environment.

Recently, there have been some results on state estimation problems of neural networks against network-induced

phenomena such as communication delays [17], missing measurements [20], quantization effects [42], and event-

triggered strategy [34]. However, another network-induced phenomenon, i.e., fading channel, has gained relatively

less attention in the context of state estimator design despite its practical significance in wireless communication

networks. Generally, when signals are transmitted throughwireless channels, they are often subject to several

phenomena such as scattering and reflection due probably to shadowing effects from obstacles, the multipath

propagation and the path loss. Therefore, the channel fading phenomenon is unavoidable in wireless networks and

it could deteriorate the performance of networked systems if not handled properly [10], [26]. In order to reflect
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the changes of the transmitted signals in both the amplitudeand the phase, fading can be modeled by a time-

varying stochastic mathematical model such as Rice fading channel model [10] and Rayleigh fading channel model

[28]. So far, some initial results have been reported for theproblems of stabilization [10],H∞ filtering [6], H∞

control [4] and Kalman filtering [25] with fading channels. Nevertheless, to the best of the authors’ knowledge, the

state estimation problem for delayed neural networks with fading channels has not been adequately studied, not to

mention the case when the(x, v)-dependent noises are also a concern.

Motivated by the above discussions, we aim to investigate the H∞ state estimation problem for a class of

delayed stochastic neural networks.The main contributions of this paper can be summarized as follows. 1) The

neural network addressed is comprehensive to cover random delays and(x, v)-dependent noises, which may reflect

the reality more closely. 2) This paper represents the first of few attempts to study the problem of state estimation

for neural networks with fading channels. 3) Based on the stochastic analysis approach and the Kronecker product,

several delay-distribution-dependent conditions are derived under which the dynamics of the estimation error is

stochastically stable with the prespecifiedH∞ constraint.

The rest of this paper is organized as follows. In Section II,the neural networks with random delays,(x, v)-

dependent noises and fading channels are introduced and some preliminaries are briefly outlined. In Section III,

the H∞ state estimation problem is investigated by applying the stochastic analysis approach and the Kronecker

product, and the estimator gains are obtained by solving a linear matrix inequality (LMI). A numerical example is

provided to show the effectiveness of the main results in Section IV. Finally, conclusions are drawn in Section V.

Notations. Throughout this paper,R (respectively,N+) is the set of all real numbers (respectively, non-negative

integers).Rn is the set of all realn-dimensional vectors andRm×n is the set of allm × n real matrices.A > 0

(respectively,A ≥ 0) is a real symmetric positive definite (respectively, positive semi-definite) matrix.AT denotes

the transpose of a matrixA. [a : b] is a set involving all integers betweena and b. CK denotes the class of all

continuous non-decreasing convex functionsµ : R+ → R
+ such thatµ(0) = 0 andµ(r) > 0 for r > 0. Cm(Rn)

denotes the class of functionsV (x) that ism times continuously differentiable with respect tox ∈ R
n. E{x} stands

for the mathematical expectation ofx. diag{· · · } is a block-diagonal matrix. The symbol⊗ denotes the Kronecker

product. The asterisk∗ in a matrix is used to denote the term that is induced by symmetry. Matrices, if they are

not explicitly specified, are assumed to have compatible dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce some preliminaries related toH∞ state estimation for neural networks and then

give the problem formulation.

A. Neural Networks with(x, v)-dependent noises

Consider the following discrete-time neural network with time-varying delays and(x, v)-dependent noises:






x(k + 1) =Ax(k) +W1f̄(x(k)) +W2ḡ(x(k − d(k))) + Cv(k) + [Āx(k) + B̄x(k − d(k)) + C̄v(k)]w(k),

y(k) =Dx(k) + Ev(k),

z(k) =Fx(k),

x(j) =φ(j), −dM ≤ j ≤ 0

(1)

wherex(k) = [x1(k), x2(k), . . . , xn(k)]
T ∈ R

n is the state vector associated withn neurons,y(k) ∈ R
ny is the

measurement output,z(k) ∈ R
nz is the neural signal to be estimated andw(k) is a one-dimensional zero-mean Gaus-

sian white noise sequence on a probability space(Ω,F ,Prob) with E{w2(k)} = 1. Let (Ω,F , {Fk}k∈N+ ,Prob)

be a filtered probability space where{Fk}k∈N+ is the family of subσ-algebras ofF generated by{ω(k)}k∈N+ .
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v(k) ∈ R
nv is the disturbance input which belongs tol2([0,∞),Rnv ), wherel2([0,∞),Rnv ) is the space of nonan-

ticipatory square-summable stochastic process{v(k) ∈ R
nv}k∈N+ with respect to{Fk}k∈N+ . d(k) ∈ [dm : dM ]

(dM ≥ dm ≥ 0) is the time-varyingrandomdelay.φ(j), −dM < j ≤ 0 is the initial condition which is assumed

to be independent of the process{w(·)}. A = diag{a1, a2, . . . , an} with |ai| < 1 describes the rate with which the

i-th neuron will reset its potential to the resting state in isolation when disconnected from the networks and external

inputs.W1 andW2 are the connection weight matrix and the delayed connectionweight matrix, respectively.C,

Ā, B̄, C̄, D, E andF are known real constant matrices with appropriate dimensions.

The neuron activation functions̄f(x(k)) = [f̄1(x1(k)), f̄2(x2(k)), . . . , f̄n(xn(k))]
T , ḡ(x(k)) = [ḡ1(x1(k)),

ḡ2(x2(k)), . . . , ḡn(xn(k))]
T are continuous, and satisfȳf(0) = 0, ḡ(0) = 0 and the following sector-bounded

condition:

[f̄(x)− f̄(y)− Φf (x− y)]T [f̄(x)− f̄(y)−Ψf (x− y)] ≤ 0,

[ḡ(x)− ḡ(y)− Φg(x− y)]T [ḡ(x)− ḡ(y)−Ψg(x− y)] ≤ 0
(2)

for all x, y ∈ R
n, whereΦf , Ψf , Φg andΨg are real matrices with appropriate dimensions.

The system (1) is described by a discrete-time stochastic difference equation (SDE). Since the difference equation

is a recursive relation, the solution to the SDE is obtained iteratively by beginning with any initial condition.

According to Theorem 2.2 of [41], a solution of such kind of stochastic difference equation exists if the diffusion

and drift terms are measurable. Since the neuron activationfunctions in (1) are assumed to be continuous, both the

diffusion and drift terms are therefore continuous. Based on Ex. 11.14 of [27], a continuous function is measurable,

and we can conclude that the solution of (1) exists with any initial condition.

B. Random Delay

In the system (1), it is assumed that the random delayd(k) is bounded and its probability distribution can be

observed. For a given numberN ≤ ⌊dM−dm

2 ⌋ where⌊·⌋ means the rounding down function, suppose thatd(k) takes

values in[dm1 : dM1 ], or [dm2 : dM2 ], or . . ., or [dmN : dMN ] with dm ≤ dm1 < dM1 < dm2 < dM2 < · · · < dmN < dMN ≤ dM ,

and

Prob{d(k) ∈ [dm1 : dM1 ]} = ᾱ1, Prob{d(k) ∈ [dm2 : dM2 ]} = ᾱ2, . . . , Prob{d(k) ∈ [dmN : dMN ]} = ᾱN , (3)

where0 ≤ ᾱi ≤ 1, i = 1, 2, . . . , N and
∑N

i=1 ᾱi = 1. In order to describe the probability distribution of the time

delay, we define the following sets

D1 = {k|d(k) ∈ [dm1 : dM1 ]}, D2 = {k|d(k) ∈ [dm2 : dM2 ]}, . . . , DN = {k|d(k) ∈ [dmN : dMN ]}, (4)

which imply thatD1 ∪ D2 ∪ . . . ∪ DN = N
+ andDi ∩Dj = ∅, ∀i 6= j, i, j = 1, 2, . . . , N.

DefineN mapping functions

d1(k) =

{

d(k), k ∈ D1

dm2 , else
d2(k) =

{

d(k), k ∈ D2

dm3 , else
. . . dN (k) =

{

d(k), k ∈ DN

dmN+1, else.
(5)

From (5), it can be found thatk ∈ Di implies the eventd(k) ∈ [dmi : dMi ], i = 1, 2, . . . , N occurs. Define the

following stochastic variables

α1(k) =

{

1, k ∈ D1

0, else
α2(k) =

{

1, k ∈ D2

0, else
. . . αN (k) =

{

1, k ∈ DN

0, else.
(6)
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Fig. 1. Framework of theH∞ state estimator design for neural networks over network environments.

According to (3), we haveProb{αi(k) = 1} = E{αi(k)} = ᾱi, i = 1, 2, . . . , N. Then, the original system (1) can

be rewritten as






x(k + 1) =Ax(k) +W1f̄(x(k)) +

N∑

i=1

αi(k)W2ḡ (x (k − di(k))) + Cv(k)

+

[

Āx(k) +

N∑

i=1

αi(k)B̄x(k − di(k)) + C̄v(k)

]

w(k),

y(k) =Dx(k) + Ev(k),

z(k) =Fx(k),

x(j) =φ(j), −dM ≤ j ≤ 0.

(7)

C. Fading Channels

In this paper, we consider the phenomenon of fading channelsin the signal transmission which could be caused

by the unreliable wireless network medium. The measurementof the neural network is no longer equivalent to the

input of the estimator when there exist fading channels between the neural network and the estimator. Considering

theL-th order Rice fading model in [10], the measurement signal received by the estimator is described by

ȳ(k) =

lk∑

j=0

βj(k)y(k − j) +Gξ(k) (8)

wherelk = min{L, k}, L is the given number of paths,βj(k) (j = 0, 1, . . . , lk) are the channel coefficients that are

random variables taking values on the interval[0, 1] with mathematical expectations̄βj and variances̃βj . ξ(k) ∈

l2([0,∞),R) is an external disturbance andG is a constant matrix. For simplicity, we set{y(k)}k∈[−L,−1] = 0

and{vT (k) ξT (k)}k∈[−L,−1] = 0. It is assumed that the random variablesw(k), αi(k), i = 1, 2, . . . , N andβj(k),

j = 0, 1, . . . , lk are mutually independent in this paper.

D. H∞ State Estimator

We will investigate the problem ofH∞ state estimation for a class of neural networks with(x, v)-dependent

noises and fading channels, where the framework is shown in Fig. 1. For the system (7), we are interested in

constructing a full-order estimator of the form:
{

x̂(k + 1) =Af x̂(k) +Bf ȳ(k),

ẑ(k) =Fx̂(k)
(9)

where x̂(k) ∈ R
n is the estimated state,̂z(k) ∈ R

nz is the estimated output,Af andBf are the estimator gain

matrices to be designed.
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Settingη(k) = [xT (k) x̂T (k)]T , ζ(k) = [vT (k) ξT (k)]T and z̃(k) = z(k) − ẑ(k), the estimation error system

connecting the neural network (7) with the estimator (9) is obtained as follows:






η(k + 1) =Aη(k) + (β0(k)− β̄0)Dη(k) +

lk∑

j=1

β̄jDη(k − j) +

lk∑

j=1

(βj(k) − β̄j)Dη(k − j) +W1f(η(k))

+

N∑

i=1

ᾱiW2g(η(k − di(k))) +

N∑

i=1

(αi(k)− ᾱi)W2g(η(k − di(k))) + Cζ(k) + (β0(k)− β̄0)Eζ(k)

+

lk∑

j=1

β̄jEζ(k − j) +

lk∑

j=1

(βj(k)− β̄j)Eζ(k − j) +

[

Āη(k) +

N∑

i=1

ᾱiB̄η(k − di(k))

+

N∑

i=1

(αi(k)− ᾱi)B̄η(k − di(k)) + C̄ζ(k)

]

w(k)

z̃(k) =Fη(k)

(10)

where

A =

[

A 0

β̄0BfD Af

]

, D =

[

0 0

BfD 0

]

,W1 =

[

W1 0

0 0

]

, W2 =

[

W2 0

0 0

]

,

C =

[

C 0

β̄0BfE BfG

]

, E =

[

0 0

BfE 0

]

, Ā =

[

Ā 0

0 0

]

, B̄ =

[

B̄ 0

0 0

]

, C̄ =

[

C̄ 0

0 0

]

,

F = [F − F ], f(η(k)) =

[

f̄(x(k))

f̄(x̂(k))

]

, g(η(k − di(k))) =

[

ḡ(x(k − di(k)))

ḡ(x̂(k − di(k)))

]

, i = 1, 2, . . . , N.

Denote

Γ = [ᾱ1I ᾱ2I · · · ᾱNI], Γ̃ = diag{α̃1, α̃2, · · · , α̃N}, α̃i = ᾱi(1− ᾱi), i = 1, 2, . . . , N,

Γ̂(k) = [α̂1(k)I α̂2(k)I · · · α̂N (k)I], α̂i(k) = αi(k)− ᾱi, i = 1, 2, . . . , N,

Θ = [β̄1I β̄2I · · · β̄lkI 0 · · · 0
︸ ︷︷ ︸

L

], Θ̃ = diag{β̃1, β̃2, · · · , β̃lk , 0, · · · , 0
︸ ︷︷ ︸

L

},

Θ̂(k) = [β̂1(k)I β̂2(k)I · · · β̂lk(k)I 0 · · · 0
︸ ︷︷ ︸

L

], β̂j(k) = βj(k)− β̄j , j = 0, 1, 2, . . . , lk,

ηL(k) = [ηT (k − 1) ηT (k − 2) · · · ηT (k − L)]T ,

ζL(k) = [ζT (k − 1) ζT (k − 1) · · · ζT (k − L)]T ,

ηN (k) =
[
ηT (k − d1(k)) ηT (k − d2(k)) · · · ηT (k − dN (k))

]T
,

gN (η(k)) =
[
gT (η(k − d1(k))) gT (η(k − d2(k))) · · · gT (η(k − dN (k)))

]T
.

Then, the system (10) can be written as






η(k + 1) =Aη(k) + β̂0(k)Dη(k) +DΘηL(k) +DΘ̂(k)ηL(k) +W1f(η(k)) +W2ΓgN (η(k))

+W2Γ̂(k)gN (η(k)) + Cζ(k) + β̂0(k)Eζ(k) + EΘζL(k) + EΘ̂(k)ζL(k)

+
[

Āη(k) + B̄ΓηN (k) + B̄Γ̂(k)ηN (k) + C̄ζ(k)
]

w(k)

z̃(k) =Fη(k).

(11)

Definition 1: [33] The zero solution of the estimation error system (11) with ζ(k) = 0 is said to be stochastically

stable if, for anyε > 0, there exists aδ > 0 such that

E{‖η(k)‖} < ε (12)
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wheneverk ∈ N
+ andmaxj∈{−dL

M ,−dL
M+1,...,0}{‖φ̄(j)‖} < δ with dLM = max{dM , L}, where φ̄(j) = [φT (j) 0]T

for j = −dLM ,−dLM + 1, . . . , 0.

Lemma 1: [33] If there exists a Lyapunov functionV (ρ(k)) ∈ C1
(

R
2(dL

M+1)n
)

and a functiona(r) ∈ CK

satisfying the following conditions:

V (0) = 0, (13)

a(‖ρ(k)‖) ≤ V (ρ(k)), (14)

E{V (ρ(k + 1))} ≤ E{V (ρ(k))}, k ∈ N
+ (15)

whereρ(k) =
[
ηT (k) ηT (k − 1) · · · ηT (k − dLM )

]T
, then the zero solution of the system (11) withζ(k) = 0 is

stochastically stable.

Lemma 2: [13] For a scalarα and arbitrary matricesA, B, C, D with appropriate dimensions, the Kronecker

product⊗ satisfies

(i) α(A⊗B) = (αA) ⊗B = A⊗ (αB),

(ii) (A+B)⊗ C = A⊗ C +B ⊗ C,

(iii) (A⊗B)(C ⊗D) = (AC)⊗ (BD),

(iv) (A⊗B)T = AT ⊗BT ,

(v) (A⊗B)−1 = A−1 ⊗B−1.

Lemma 3:ConsideringΓ̂(k), Θ̂(k), Γ̃ and Θ̃ in (11), the following equalities hold for any matrixX with

appropriate dimension

E{Γ̂T (k)XΓ̂(k)} = Γ̃⊗X, (16)

E{Θ̂T (k)XΘ̂(k)} = Θ̃⊗X. (17)

Proof: According to definitions of the matrix̂Γ(k) and stochastic variablesαi(k), i = 1, 2, . . . , N, we have

E{Γ̂T (k)XΓ̂(k)} =E
{
[α̂1(k)I α̂2(k)I · · · α̂N (k)I]TX[α̂1(k)I α̂2(k)I · · · α̂N (k)I]

}

=diag{α̃1X, α̃2X, · · · , α̃NX} = Γ̃⊗X

which is equivalent to (16). The equality (17) can be proven in a similar way and the details are omitted here.

Our aim in this paper is to design anH∞ estimator of the form (9) such that the following requirements are

satisfied simultaneously:

(i) The zero-solution of the estimation error system (11) with ζ(k) = 0 is stochastically stable.

(ii) Under the zero-initial condition, the estimator errorz̃(k) satisfies
∞∑

k=0

E{‖z̃(k)‖2} < γ2
∞∑

k=0

E{‖ζ̃(k)‖2} (18)

for any nonzerõζ(k) =
[
ζT (k) ζTL (k)

]T
∈ l2[0,∞), whereγ > 0 is a given disturbance attenuation level.

Remark 1:In this paper, we consider a general class of delayed stochastic neural networks (1). The time-varying

delay is characterized by introducing a sequence of Bernoulli stochastic variable, and the system state and disturbance

input are both subject to noises. The neural network model iscomprehensive to describe the practical phenomena

more precisely. The nonlinear description in (2) is quite general that includes the usual Lipschitz condition as a

special case, and it provides a vector-based sector-bounded condition that would facilitate the mathematical analysis

on the dynamic behaviors of neural networks.
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Remark 2:Due to the shadowing problem and multipath transmission, the L-th order Rice fading model (8) has

been widely used in areas of remote control and signal processing. Such a model is capable of accounting for packet

dropouts, channel fading and time-delays simultaneously,and may reflect the reality of measurement transmission

especially through wireless networks. Moreover, such a signal propagation process will lead to substantial difficulties

in subsequent analysis and design.

III. M AIN RESULTS

In this section, we deal with theH∞ state estimation problem for the neural network (11) by using the stochastic

analysis approach and the Kronecker product.

Theorem 1:Consider the delayed neural network (1) and assume that estimator gainsAf andBf in (9) are given.

The estimation error system (11) is stochastically stable with a prescribedH∞ performanceγ > 0 if there exist

positive definite matricesP > 0, Qj > 0, Ri > 0 and positive constant scalarsδ > 0, λi > 0 (i = 1, 2, . . . , N,

j = 1, 2, . . . , L) such that the following LMI holds:

Π =

[

Π11 Π12

∗ Π22

]

< 0 (19)

where

Π11 =











Ω11 + FTF Ω12 Ω13 Ω14 Ω15

∗ Ω22 0 Ω24 Ω25

∗ ∗ Ω33 0 Ω35

∗ ∗ ∗ Ω44 Ω45

∗ ∗ ∗ ∗ Ω55











,

Π12 =

[

ΩT
16 ΩT

26 ΩT
36 ΩT

46 ΩT
56

ΩT
17 ΩT

27 0 ΩT
47 ΩT

57

]T

, Π22 =

[

Ω66 − γ2I Ω67

∗ Ω77 − γ2I

]

,

with

Ω11 = ATPA− P + β̃0D
TPD + ĀTPĀ +

L∑

j=1

Qj +

N∑

i=1

(
dMi − dmi + 1

)
Ri − δF1,

Ω12 = ATPDΘ, Ω13 = ĀTPB̄Γ, Ω14 = ATPW1 + δF2, Ω15 = ATPW2Γ,

Ω16 = ATPC + β̃0D
TPE + ĀTPC̄, Ω17 = ATPEΘ,

Ω22 = ΘTDTPDΘ + Θ̃⊗ (DTPD)− diag{Q1,Q2, · · · ,QL}, Ω24 = ΘTDTPW1,

Ω25 = ΘTDTPW2Γ, Ω26 = ΘTDTPC, Ω27 = ΘTDTPEΘ+ Θ̃⊗ (DTPE),

Ω33 = ΓT B̄TPB̄Γ + Γ̃⊗ (B̄TPB̄)− diag{R1,R2, · · · ,RN} − Λ⊗ G1, Ω35 = Λ⊗ G2, Ω36 = ΓT B̄TPC̄,

Ω44 = WT
1 PW1 − δI, Ω45 = WT

1 PW2Γ, Ω46 = WT
1 PC, Ω47 = WT

1 PEΘ,

Ω55 = ΓTWT
2 PW2Γ + Γ̃⊗ (WT

2 PW2)− Λ⊗ I, Ω56 = ΓTWT
2 PC, Ω57 = ΓTWT

2 PEΘ,

Ω66 = CTPC + β̃0E
TPE + C̄TPC̄, Ω67 = CTPEΘ, Ω77 = ΘTETPEΘ + Θ̃⊗ (ETPE),

F1 = I ⊗
ΦT
f Ψf +ΨT

f Φf

2
, F2 =

I ⊗ (Φf +Ψf )
T

2
, Λ = diag{λ1, λ2, · · · , λN},

G1 = I ⊗
ΦT
g Ψg +ΨT

g Φg

2
, G2 =

I ⊗ (Φg +Ψg)
T

2
.

Proof: Choose the Lyapunov functionalV (ρ(k)) as

V (ρ(k)) = V1(k) + V2(k) +

N∑

i=1

Ṽi(k), (20)
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whereρ(k) is defined in Lemma 1 and

V1(k) = ηT (k)Pη(k), (21)

V2(k) =

L∑

j=1

k−1∑

s=k−j

ηT (s)Qjη(s), (22)

Ṽi(k) =

k−1∑

j=k−di(k)

ηT (j)Riη(j) +

dM
i −1
∑

j=dm
i

k−1∑

s=k−j

ηT (s)Riη(s), i = 1, 2, . . . , N. (23)

Obviously, the conditions (13) and (14) in Lemma 1 are satisfied whenV (ρ(k)) is chosen as (20). Along the

trajectory of the system (11), we calculate the expectationof the difference ofV (ρ(k)) and have

E{V (ρ(k + 1))− V (ρ(k))}

=E

{

V1(k + 1) + V2(k + 1) +

N∑

i=1

Ṽi(k + 1)− V1(k)− V2(k)−

N∑

i=1

Ṽi(k)

}

=E

{

∆V1(k) + ∆V2(k) +

N∑

i=1

∆Ṽi(k)

}

. (24)

Considering Lemma 3, one has

E{∆V1(k)} = E{V1(k + 1)− V1(k)} = E{ηT (k + 1)Pη(k + 1)− ηT (k)Pη(k)}

=E

{[

Aη(k) + β̂0(k)Dη(k) +DΘηL(k) +DΘ̂(k)ηL(k) +W1f(η(k)) +W2ΓgN (η(k))

+W2Γ̂(k)gN (η(k)) + Cζ(k) + β̂0(k)Eζ(k) + EΘζL(k) + EΘ̂(k)ζL(k)
]T

P
[

Aη(k) + β̂0(k)Dη(k)

+DΘηL(k) +DΘ̂(k)ηL(k) +W1f(η(k)) +W2ΓgN (η(k)) +W2Γ̂(k)gN (η(k)) + Cζ(k)

+ β̂0(k)Eζ(k) + EΘζL(k) + EΘ̂(k)ζL(k)
]

+
[

Āη(k) + B̄ΓηN (k) + B̄Γ̂(k)ηN (k) + C̄ζ(k)
]T

P

×
[

Āη(k) + B̄ΓηN (k) + B̄Γ̂(k)ηN (k) + C̄ζ(k)
]

− ηT (k)Pη(k)

}

=E

{

ηT (k)ATPAη(k) − ηT (k)Pη(k) + 2ηT (k)ATPDΘηL(k) + 2ηT (k)ATPW1f(η(k))

+ 2ηT (k)ATPW2ΓgN (η(k)) + 2ηT (k)ATPCζ(k) + 2ηT (k)ATPEΘζL(k)

+ β̃0η
T (k)DTPDη(k) + 2β̃0η

T (k)DTPEζ(k) + ηTL(k)Θ
TDTPDΘηL(k)

+ 2ηTL (k)Θ
TDTPW1f(η(k)) + 2ηTL (k)Θ

TDTPW2ΓgN (η(k)) + 2ηTL(k)Θ
TDTPCζ(k)

+ 2ηTL (k)Θ
TDTPEΘζL(k) + ηTL(k)

[

Θ̃⊗ (DTPD)
]

ηL(k) + 2ηTL (k)
[

Θ̃⊗ (DTPE)
]

ζL(k)

+ fT (η(k))WT
1 PW1f(η(k)) + 2fT (η(k))WT

1 PW2ΓgN (η(k)) + 2fT (η(k))WT
1 PCζ(k)

+ 2fT (η(k))WT
1 PEΘζL(k) + gTN (η(k))ΓTWT

2 PW2ΓgN (η(k)) + 2gTN (η(k))ΓTWT
2 PCζ(k)

+ 2gTN (η(k))ΓTWT
2 PEΘζL(k) + gTN (η(k))

[

Γ̃⊗ (WT
2 PW2)

]

gN (η(k))

+ ζT (k)CTPCζ(k) + 2ζT (k)CTPEΘζL(k) + β̃0ζ
T (k)ETPEζ(k) + ζTL (k)Θ

T ETPEΘζL(k)

+ ζTL (k)
[

Θ̃⊗ (ETPE)
]

ζL(k) + ηT (k)ĀTPĀη(k) + 2ηT (k)ĀTPB̄ΓηN (k) + 2ηT (k)ĀTPC̄ζ(k)

+ ηTN (k)ΓT B̄TPB̄ΓηN (k) + 2ηTN (k)ΓT B̄TPC̄ζ(k) + ηTN (k)
[

Γ̃⊗ (B̄TPB̄)
]

ηN (k) + ζT (k)C̄TPC̄ζ(k)
}

. (25)

On the other hand, it is not difficult to see that

E{∆V2(k)} =E{V2(k + 1)− V2(k)}
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=E







L∑

j=1





k∑

s=k−j+1

ηT (s)Qjη(s)−

k−1∑

s=k−j

ηT (s)Qjη(s)











=

L∑

j=1

E
{
ηT (k)Qjη(k)− ηT (k − j)Qjη(k − j)

}

=

L∑

j=1

E
{
ηT (k)Qjη(k)

}
− E

{

ηTL (k)diag{Q1,Q2, · · · ,QL}ηL(k)
}

. (26)

Moreover, we can show that

E{∆Ṽi(k)} =E{Ṽi(k + 1)− Ṽi(k)}

=E

{
k∑

j=k−di(k+1)+1

ηT (j)Riη(j) −

k−1∑

j=k−di(k)

ηT (j)Riη(j)

+

dM
i −1
∑

j=dm
i





k∑

s=k−j+1

ηT (s)Riη(s)−

k−1∑

s=k−j

ηT (s)Riη(s)





}

=E

{

(
dMi − dmi + 1

)
ηT (k)Riη(k) − ηT (k − di(k))Riη(k − di(k))

+





k−dm
i∑

j=k−di(k+1)+1

+

k−1∑

j=k−dm
i +1

−

k−1∑

j=k−di(k)+1

−

k−dm
i∑

j=k−dM
i +1



 ηT (j)Riη(j)

}

≤E

{(
dMi − dmi + 1

)
ηT (k)Riη(k) − ηT (k − di(k))Riη(k − di(k))

}

, i = 1, 2, . . . , N. (27)

Therefore, we have

E

{
N∑

i=1

∆Ṽi(k)

}

≤

N∑

i=1

E

{ [(
dMi − dmi + 1

)
ηT (k)Riη(k)− ηT (k − di(k))Riη(k − di(k))

] }

=

N∑

i=1

E
{(

dMi − dmi + 1
)
ηT (k)Riη(k)

}
− E

{

ηTN (k)diag{R1,R2, · · · ,RN}ηN (k)
}

. (28)

Notice that (2) implies

[f(η(k)) − (I ⊗ Φf )η(k)]
T [f(η(k)) − (I ⊗Ψf )η(k)] ≤ 0,

[g(η(k − di(k))) − (I ⊗ Φg)η(k − di(k))]
T [g(η(k − di(k))) − (I ⊗Ψg)η(k − di(k))] ≤ 0, i = 1, 2, . . . , N.

There exist scalarsδ > 0 andλi > 0 (i = 1, 2, . . . , N ) such that

δ[f(η(k)) − (I ⊗ Φf )η(k)]
T [f(η(k)) − (I ⊗Ψf )η(k)] ≤ 0, (29)

N∑

i=1

λi[g(η(k − di(k))) − (I ⊗ Φg)η(k − di(k))]
T [g(η(k − di(k)))− (I ⊗Ψg)η(k − di(k))] ≤ 0. (30)

By Lemma 2, the inequality (30) can be written as

gTN (η(k))(Λ ⊗ I)gN (η(k)) + ηTN (k)

(

Λ⊗

(

I ⊗
ΦT
g Ψg +ΨT

g Φg

2

))

ηN (k)

−ηTN (k)
(
Λ⊗

(
I ⊗ (Φg +Ψg)

T
))

gN (η(k)) ≤ 0 (31)

whereΛ = diag{λ1, λ2, · · · λN}.
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Denoteη̃(k) =
[
ηT (k) ηTL (k) ηTN (k) fT (η(k)) gTN (η(k)) ζT (k) ζTL (k)

]T
. According to (25), (26), (28) and

considering (29), (31), we have

E{V (ρ(k + 1))− V (ρ(k))}

≤E

{

∆V1(k) + ∆V2(k) +

N∑

i=1

∆Ṽi(k)

}

− δ[f(η(k)) − (I ⊗ Φf )η(k)]
T [f(η(k)) − (I ⊗Ψf )η(k)]

−

N∑

i=1

λi[g(η(k − di(k)))− (I ⊗ Φg)η(k − di(k))]
T [g(η(k − di(k))) − (I ⊗Ψg)η(k − di(k))]

=E{η̃T (k)Ω1η̃(k)} (32)

where

Ω1 =
















Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17

∗ Ω22 0 Ω24 Ω25 Ω26 Ω27

∗ ∗ Ω33 0 Ω35 Ω36 0

∗ ∗ ∗ Ω44 Ω45 Ω46 Ω47

∗ ∗ ∗ ∗ Ω55 Ω56 Ω57

∗ ∗ ∗ ∗ ∗ Ω66 Ω67

∗ ∗ ∗ ∗ ∗ ∗ Ω77
















.

Now, we first prove the stochastic stability of the estimation error system (11) withζ(k) = 0. From (32), one

can easily obtain that

E{V (ρ(k + 1))− V (ρ(k))}|ζ(k)=0 ≤ E{η̄T (k)Ω̄1η̄(k)}

where

η̄(k) =
[
ηT (k) ηTL (k) ηTN (k) fT (η(k)) gTN (η(k))

]T
,

Ω̄1 =











Ω11 Ω12 Ω13 Ω14 Ω15

∗ Ω22 0 Ω24 Ω25

∗ ∗ Ω33 0 Ω35

∗ ∗ ∗ Ω44 Ω45

∗ ∗ ∗ ∗ Ω55











.

According to (19), it is easy to see thatΠ11 < 0 which implies Ω̄1 < 0. By Lemma 1, the system (11) with

ζ(k) = 0 is stochastically stable.

Next, let us show that the estimation error system (11) satisfies theH∞ performance for all nonzero exogenous

disturbances under the zero-initial condition. Adding thezero term

z̃T (k)z̃(k)− γ2ζ̃T (k)ζ̃(k)− [z̃T (k)z̃(k)− γ2ζ̃T (k)ζ̃(k)]

to (32) results in

E{V (ρ(k + 1)) − V (ρ(k))}

≤E

{

η̃T (k)Ω1η̃(k) + ηT (k)FTFη(k) − γ2ζT (k)ζ(k)− γ2ζTL (k)ζL(k)− [z̃T (k)z̃(k)− γ2ζ̃T (k)ζ̃(k)]
}

. (33)

Summing up (33) on both sides from0 to n with respect tok, one gets

V (ρ(n+ 1))− V (ρ(0))
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≤E

n∑

k=0

{
η̃T (k)Πη̃(k)

}
− E

n∑

k=0

{

z̃T (k)z̃(k)− γ2ζ̃T (k)ζ̃(k)
}

, (34)

whereΠ is defined in (19). Lettingn → ∞ and considering the zero-initial condition, it can be obtained from (19)

and (34) that

E

n∑

k=0

{

z̃T (k)z̃(k)− γ2ζ̃T (k)ζ̃(k)
}

≤ E

n∑

k=0

{
η̃T (k)Πη̃(k)

}
< 0,

which is equivalent to (18), and the proof is now complete.

Having derived the analysis results, we are now ready to solve the state estimator design problem for the neural

network (11) in the following theorem.

Theorem 2:Consider the delayed neural network (1) and the disturbanceattenuation levelγ > 0. The addressed

H∞ state estimator design problem is solvable if there exist positive definite matricesP > 0, Qj > 0, Ri > 0,

positive constant scalarsδ > 0, λi > 0 (i = 1, 2, . . . , N, j = 1, 2, . . . , L) and a matrixX such that the following

LMI holds:

Ξ =
















−P 0 0 0 0 0 Υ1

∗ −P 0 0 0 0 Υ2

∗ ∗ −I ⊗ P 0 0 0 Υ3

∗ ∗ ∗ −P 0 0 Υ4

∗ ∗ ∗ ∗ −I ⊗ P 0 Υ5

∗ ∗ ∗ ∗ ∗ −I ⊗ P Υ6

∗ ∗ ∗ ∗ ∗ ∗ Σ
















< 0 (35)

where

Υ1 =
[

PÂ+ XA1 XD1Θ 0 PW1 PW2Γ PĈ + XC1 XE1Θ
]

,

Υ2 =
[ √

β̃0XD1 0 0 0 0

√

β̃0XE1 0

]

,

Υ3 =
[

0 Θ̆⊗ XD1 0 0 0 0 Θ̆⊗ XE1

]

, Υ4 =
[

PĀ 0 PB̄Γ 0 0 PC̄ 0
]

,

Υ5 =
[

0 0 Γ̆⊗ (PB̄) 0 0 0 0
]

, Υ6 =
[

0 0 0 0 Γ̆⊗ (PW2) 0 0
]

,

Σ =
















Σ11 0 0 δF2 0 0 0

∗ Σ22 0 0 0 0 0

∗ ∗ Σ33 0 Λ⊗ G2 0 0

∗ ∗ ∗ Σ44 0 0 0

∗ ∗ ∗ ∗ Σ55 0 0

∗ ∗ ∗ ∗ ∗ Σ66 0

∗ ∗ ∗ ∗ ∗ ∗ Σ77
















,

with

Â =

[

A 0

0 0

]

, A1 =

[

0 I

β̄0D 0

]

, D1 =

[

0 0

D 0

]

, Ĉ =

[

C 0

0 0

]

, C1 =

[

0 0

β̄0E G

]

,

E1 =

[

0 0

E 0

]

, Γ̆ = diag
{√

α̃1,
√

α̃2, · · · ,
√

α̃N

}

, Θ̆ = diag
{√

β̃1,

√

β̃2, · · · ,

√

β̃lk , 0, · · · , 0
︸ ︷︷ ︸

L

}

Σ11 = −P +

L∑

j=1

Qj +

N∑

i=1

(
dMi − dmi + 1

)
Ri − δF1 + FTF , Σ22 = −diag{Q1,Q2, · · · ,QL},

Σ33 = −diag{R1,R2, · · · ,RN} − Λ⊗ G1, Σ44 = −δI, Σ55 = −Λ⊗ I, Σ66 = −γ2I, Σ77 = −γ2I.
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Moreover, if the aforementioned inequality is feasible, the desired estimator gains in (9) can be determined by
[
Af Bf

]
=
(
ITPI

)−1
ITX (36)

whereI =
[
0 I
]T

.

Proof: Denoting

Ῡ1 =
[

A DΘ 0 W1 W2Γ C EΘ
]

, Ῡ2 =
[ √

β̃0D 0 0 0 0

√

β̃0E 0

]

,

Ῡ3 =
[

0 Θ̆⊗D 0 0 0 0 Θ̆⊗ E
]

, Ῡ4 =
[

Ā 0 B̄Γ 0 0 C̄ 0
]

,

Ῡ5 =
[

0 0 Γ̆⊗ B̄ 0 0 0 0
]

, Ῡ6 =
[

0 0 0 0 Γ̆⊗W2 0 0
]

,

the LMI (19) can be rewritten as follows

Π = Σ+ ῩT
1 PῩ1 + ῩT

2 PῩ2 + ῩT
3 (I ⊗ P)Ῡ3 + ῩT

4 PῩ4 + ῩT
5 (I ⊗ P)Ῡ5 + ῩT

6 (I ⊗ P)Ῡ6 < 0. (37)

By applying the Schur Complement Lemma and Lemma 2, we know that the inequality (37) is equivalent to















−P−1 0 0 0 0 0 Ῡ1

∗ −P−1 0 0 0 0 Ῡ2

∗ ∗ −I ⊗ P−1 0 0 0 Ῡ3

∗ ∗ ∗ −P−1 0 0 Ῡ4

∗ ∗ ∗ ∗ −I ⊗ P−1 0 Ῡ5

∗ ∗ ∗ ∗ ∗ −I ⊗ P−1 Ῡ6

∗ ∗ ∗ ∗ ∗ ∗ Σ
















< 0. (38)

In order to avoid partitioning the positive definite matrixP, the parameters in (38) are rewritten in the following

form:

A = Â+ IKA1, D = IKD1, C = Ĉ + IKC1, E = IKE1,

whereK = [Af Bf ]. Pre- and post-multiplying the inequality (38) by

diag{P, P, I ⊗ P, P, I ⊗ P, I ⊗ P, I}

and settingX = PIK, it is easily known that the inequality (38) is equivalent to the inequality (35). Furthermore,

the estimator gains can be derived by (36), which completes the proof.

Remark 3:Different from the existing results for state estimation ofneural networks [16], [42], several delay-

distribution-dependent conditions are derived in this paper, i.e., the conditions are dependent on both the probability

distribution and the variation range of the time delay. It iswell known that the more information of the time delay

is employed, the less conservative results may be derived. On the other hand, as can be seen from our main results,

the larger upper boundsdMi and the larger variationdMi -dmi would have more side effects to the feasibility of the

obtained LMI conditions.

Remark 4:Assume thatM denotes the row size of the LMI,N represents the number of decision variables

andV stands for a scaling factor, then the number of flops needed tocalculate anε-accurate solution to the LMI

is bounded byO(MN 3 log(V /ε)). For the neural network (1) with the measurement (8), the variable dimensions

are as follows:x(k) ∈ R
n, y(k) ∈ R

ny , v(k) ∈ R
nv andξ(k) ∈ R. For the LMI condition in Theorem 2, we have

M = (4L+ 8N + 10)n + (L+ 1)(nv + 1) andN = (L+N + 1)n(2n + 1) + 2n(n+ ny) +N + 1. Hence, the

computational complexity of the derived LMI condition can be represented asO((L+N)4n7). It is obvious that

the computational complexity depends polynomially on parametersL, N and the variable dimensionn.
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Remark 5:In Theorem 2, the problem ofH∞ state estimation is solved for neural networks with random delays,

(x, v)-dependent noises and fading channels. The optimal solution to derive the minimum disturbance attenuation

level, i.e.,γmin, can be found by solving the convex optimization problem as follows:

min
P>0, Qj>0, Ri>0, δ>0, λi>0, X , i=1,2,...,N, j=1,2,...,L

χ subject to the LMI (35) withχ = γ2.

Remark 6:In the neural network (1), althoughw(k) is supposed to be a one-dimensional white noise for simplicity,

all our results can be extended to the following neural network with multiple noises without any difficulty:






x(k + 1) =Ax(k) +W1f̄(x(k)) +W2ḡ(x(k − d(k))) + Cv(k)

+

r∑

s=1

[Āsx(k) + B̄sx(k − d(k)) + C̄sv(k)]ws(k),

y(k) =Dx(k) + Ev(k),

z(k) =Fx(k),

x(j) =φ(j), −dM ≤ j ≤ 0

wherews(k), s = 1, . . . , r are independent, standard one-dimensional white noises ona probability space(Ω,F ,Prob),

and Ās, B̄s, C̄s, s = 1, . . . , r are constant matrices with appropriate dimensions.

IV. A N UMERICAL EXAMPLE

In this section, a numerical example is presented so as to demonstrate the effectiveness of our main results.

Consider the third-order delayed neural network (1) with the following parameters:

A =






0.2 0 0

0 0.3 0

0 0 0.1




 , W1 =






0.2 −0.2 0

0 −0.3 0

0 0 0.2




 , W2 =






−0.2 0.1 0

−0.2 0.3 0

0 0 0.1




 , C =






0.2

−0.3

0.1




 ,

Ā =






0.2 −0.05 0

0.1 0.1 0

0 0 0.05




 , B̄ =






0.05 −0.02 0

0.05 0.1 0

0 0 −0.01




 , C̄ =






0.05

0.1

0.05




 ,

D =
[

0.2 0.4 0.1
]

, E = 0.2, F =
[

0.3 0.1 0.1
]

.

The activation functions are taken as

f̄(x(k)) =






0.4x1(k)− tanh(0.2x1(k))

0.3x2(k)− tanh(0.2x2(k))

0.4x3(k)− tanh(0.3x3(k))




 , ḡ(x(k)) =






0.4x1(k)− tanh(0.2x1(k) + 0.08x2(k))

0.2x2(k)− tanh(0.1x2(k))

0.3x3(k)− tanh(0.2x3(k))






wherexs(k) (s = 1, 2, 3) represents thes-th element of the system statex(k). It is easy to see that the sector-

bounded condition (2) can be met with

Φf =






0.2 0 0

0 0.1 0

0 0 0.1




 , Ψf =






0.4 0 0

0 0.3 0

0 0 0.3




 , Φg =






0.2 0.08 0

0 0.1 0

0 0 0.1




 , Ψg =






0.4 0.08 0

0 0.2 0

0 0 0.3




 .

In this example, the variation of the time-varying delayd(k) is shown in Fig. 2 from which it can be calculated

that forN = 3, the probability distribution of the delay is

Prob{d(k) ∈ [1 : 2]} = 0.7, Prob{d(k) ∈ [3 : 5]} = 0.2, Prob{d(k) ∈ [6 : 8]} = 0.1.
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Fig. 2. The variation of the time-varying delayd(k).

Finally, assume that the channel number of the model (8) isL = 2, the mathematical expectations of the channel

coefficients arēβ0 = 0.8, β̄1 = 0.3, β̄2 = 0.2, the variances of the channel coefficients areβ̃0 = 0.01, β̃1 = 0.09,

β̃2 = 0.25, and the constant matrixG = 0.1.

The H∞ performance levelγ is taken as0.9. By using MATLAB software with YALMIP 3.0, we can obtain

the desired estimator gains as follows:

Af =






0.2519 −0.0100 −0.0096

−0.0093 0.2570 −0.0089

−0.0090 −0.0090 0.2549




 , Bf =






0.3118

0.3154

0.3135




 .

In this simulation, the initial values are assumed to be{x(k)}k∈[−8,−1] = [0 0 0]T andx(0) = [0.5 − 0.5 0.3]T .

The exogenous disturbance inputs are selected as

v(k) = e−
k

25 sin(k), ξ(k) = e−
k

25 cos(k).

The simulation results are shown in Figs. 3–5. Fig. 3 depictsthe measurement output and the received signal

by the estimator, respectively. Fig. 4 plots the plant and estimator outputs while Fig. 5 shows the estimation error.

The simulation results have confirmed that the designedH∞ estimator performs very well.

V. CONCLUSIONS

The problem ofH∞ state estimation for delayed neural networks with(x, v)-dependent noises and fading channels

has been investigated in this paper. A sequence of random variables obeying the Bernoulli distribution has been

employed to characterized the time-varying delay, and the Rice fading model has been utilized to describe the

phenomenon of fading channels. Several delay-distribution-dependent conditions have been derived in terms of

LMIs, which guarantee that the estimation error system is stochastically stable with the givenH∞ constraint.

Finally, a numerical example has been presented to show the effectiveness of the results derived. It would be

interesting to study the following future research topics:1) development of less conservative conditions for the

problem ofH∞ state estimation for delayed neural networks; 2) extensionof the results obtained in this paper to

neural networks with other network-induced phenomena [2],[5], [7], [8], [11], [12], [15], [19], [22], [43].
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Fig. 3. The measurementy(k) and the received signal̄y(k).
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Fig. 4. The plant outputz(k) and the estimator output̂z(k).
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