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Repo-Man/PP1 regulates heterochromatin
formation in interphase
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Repo-Man is a protein phosphatase 1 (PP1) targeting subunit that regulates mitotic

progression and chromatin remodelling. After mitosis, Repo-Man/PP1 remains associated

with chromatin but its function in interphase is not known. Here we show that Repo-Man,

via Nup153, is enriched on condensed chromatin at the nuclear periphery and at the edge of

the nucleopore basket. Repo-Man/PP1 regulates the formation of heterochromatin,

dephosphorylates H3S28 and it is necessary and sufficient for heterochromatin protein

1 binding and H3K27me3 recruitment. Using a novel proteogenomic approach, we show that

Repo-Man is enriched at subtelomeric regions together with H2AZ and H3.3 and that

depletion of Repo-Man alters the peripheral localization of a subset of these regions and

alleviates repression of some polycomb telomeric genes. This study shows a role for a mitotic

phosphatase in the regulation of the epigenetic landscape and gene expression in interphase.
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T
he formation of the new G1 nucleus, after cells undergo
mitosis, requires major re-organization and tight regula-
tion of chromatin structure that together with nuclear

envelope reformation provide the new cells with a nuclear
environment containing essential cues for gene expression
regulation1.

Chromatin is mainly in a repressive state at the nuclear
envelope, with the exception of regions around the nuclear pores
(reviewed in Kind and van Steensel2). Peripheral chromatin is
largely enriched in repressive histone modifications and
heterochromatin protein 1 (HP1) that is anchored via its
interaction with lamin B receptor3. Methylation of H3K9,
thought to trigger association of chromatin to the lamina, and
the polycomb-mediated H3K27me2/3 are particularly enriched at
the nuclear periphery and at the edge of lamina-associated
domains (reviewed in Bickmore et al.4). HP1 binding to
H3K9me3 is enhanced in the presence of H3K27me3 and is
blocked by phosphorylation of the adjacent H3S10 (refs 5–7),
suggesting that a fine balance between these mechanisms
culminates in a specific chromatin landscape and that phospho-
methyl switches need to be tightly controlled during mitosis and
in interphase.

Despite the emerging and recognized importance of protein
phosphatases at M/G1 transition, very little is known about
the details of how this class of enzymes regulates chromatin
modifications and which phosphatases are essential for
the reorganization of specific chromatin domains. Repo-Man
(CDCA2) is a PP1 (protein phosphatase 1) targeting subunit8

that, during mitotic exit, is essential for chromatin remodelling
and nuclear envelope reformation9 while in interphase is involved
in DNA repair10. The Repo-Man/PP1 complex is targeted
to chromatin at anaphase, where it de-phosphorylates Histone
H3 (T3 and S10)9,11, counteracting the mitotic kinases Haspin
and Aurora B, respectively. These phospho-switches are essential
for the removal of the chromosome passenger complex from
the mitotic chromosomes (via H3T3)12 thus allowing normal
mitotic progression, and for the re-association of HP1 to
H3K9me3 after mitosis (H3S10)5. Targeting of Repo-Man to
chromatin is achieved via dephosphorylation of a chromatin-
binding domain at the C terminus while the N terminus domain
harbours the nuclear periphery targeting module and the binding
site for Importin b (ref. 9). Once targeted to the chromatin
in anaphase, the complex has a low turnover and PP1 is
stably associated with Repo-Man13; therefore, from anaphase
until the following mitosis, the complex could potentially act
on chromatin locally and contribute to the maintenance of a
specific chromatin landscape. However, the docking sites for
Repo-Man on the chromosomes and the overall importance of
the complex in interphase chromatin organization and
maintenance are not known.

This study reveals that, in interphase, a fraction of Repo-Man
associates with the heterochromatin beneath the inner lamina
and adjacent to the nuclear pore complex (NPC). Repo-Man/PP1
is necessary for the organization of HP1 foci in interphase
and sufficient to trigger a local enrichment of heterochromatin
markers. We also provide evidence that Repo-Man contributes
to the dephosphorylation of H3S28 with the potential to
represent the counteracting phosphatase for the mitotic and
stress kinases in interphase. Using an antibody-free technique
that allows the investigation of protein–chromatin interactions,
we show that Repo-Man associates with chromatin by binding
directly to the modified lysine 27 on the H3 tail. Subtelomeric
regions are particularly enriched for Repo-Man-binding
sites where the complex contributes to generate a chromatin
environment that is important for the peripheral localization
and transcription regulation of a subset of telomeric regions.

Collectively, our data shows that Repo-Man/PP1 regulates
the histone code and chromatin structure at least across a panel
of target regions.

Results
Repo-Man associates with the nuclear envelope via Nup153.
Repo-Man associates with the chromosomes in anaphase
and contributes to the assembly of nuclear envelope (NE)
proteins for the formation of the new G1 nucleus. Published
mass spectrometry analyses identified interactions of Repo-Man
with several nuclear envelope proteins, namely, Importin b and
Nup153 together with histone proteins9,14 (Fig. 1a). While
the interaction between Repo-Man and Importin b is direct,
the link with the Nucleoporin Nup153 and its biological relevance
is still unclear.

Repo-Man and Nup153 show some co-localization at the
nuclear periphery (at deconvolution-microscopy resolution)
(Fig. 1b). To understand this interaction at higher resolution,
we first conducted proximity ligation assays (PLA) with
antibodies against endogenous Repo-Man and Nup153;
although both proteins are present within the entire nuclear
space (Fig. 1c, panels a–f), PLA reveals that they interact at
the nuclear periphery rather than in the nuclear interior (Fig. 1c,
panels g,h). To quantify the results, we used PLA between
endogenous Repo-Man and transfected GFP:Nup153 or
GFP alone. Repo-Man and the GFP:Nup153 PLA signals were
more abundant than Repo-Man and the GFP alone and
again highly enriched at the nuclear periphery (Fig. 1d, d).
Furthermore, PLA signals between endogenous Repo-Man
and Nup153 are significantly reduced after Repo-Man RNAi in
particular at the nuclear periphery (Fig. 1f). Therefore a
close interaction between Repo-Man and Nup153 occurs at
the periphery of the interphase nucleus.

To spatially visualize the localization of Repo-Man at
the nuclear periphery we used electron microscopy. Since all
the available antibodies do not recognize the peripheral pool of
Repo-Man in interphase (only during anaphase—see later in
the text), we used HeLa cell lines expressing either the
N terminus of Repo-Man fused to GFP or GFP alone (Fig. 1g;
Supplementary Fig. 1). In this cell line, N terminus Repo-Man
shows nuclear localization with particular enrichment at the
nuclear envelope (Fig. 2d), in a rim-like configuration similar to
the one observed with GFP:Repo-Man full length. This
N-terminal region of Repo-Man in fact contains the domain
responsible for targeting to the NE9. Using antibodies against
GFP, we could show that Repo-Man is on the chromatin beneath
the NE (Fig. 1g, red arrows), at the edge of the NPC basket
(Fig. 1g, black arrow) and a proportion is associated with
intra-nuclear bodies in chromatin dense regions, which are
possibly related to the proposed role of Repo-Man in
heterochromatin formation (see later in the text); further
studies however will be required to elucidate their nature
(Fig. 1h; Supplementary Fig. 1). Altogether, this data supports
the presence of Repo-Man at the nuclear periphery and led
us to investigate its possible role on chromatin remodelling
in further detail.

Repo-Man accumulates at the nuclear periphery during
anaphase where the new pore complex proteins are deposited
and there it co-localizes with Nup153 (Fig. 2a); its recruitment
at the periphery of the anaphase chromosomes depends on
Nup153, in fact Nup153 RNAi prevents the accumulation of
endogenous Repo-Man at the chromosome periphery (Fig. 2b,c).
We therefore wanted to investigate if its retention at the periphery
of the interphase nucleus could also be dependent on
the interaction with Nup153. The enrichment of Repo-Man at
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Figure 1 | Repo-Man is enriched at the periphery of interphase nuclei. (a) Summary of Repo-Man interactors identified in previous studies9,11,14. In green

interactions with nuclear envelope proteins, blue with histones; yellow phosphatases (PP2A—mitotic exit onset only) and (PP1). (b) HeLa cells were

transfected with GFP:Repo-Man (red) then fixed and stained for Nup153 (green). (c) HeLa cells immunostained for endogenous Repo-Man (red) (a,b,d,e)

transfected with GFP:Nup153 (a,c) or co-immunostained for endogenous Nup153 (green) (d,f). Example of PLA signals (red) using Repo-Man and Nup153

antibodies (g,h). Scale bar, 10mm. (d) HeLa cells were transfected with GFP:Nup153 (b,d,f) or GFP alone (a,c,e) and PLA (red) was performed using

Repo-Man and GFP antibodies (c,d). (e) Quantification and cellular distribution of PLA signals as described in d from two independent experiments

(Fisher ****P-valueo0.0001). (f) Percentage and cellular distribution of PLA signals in Repo-Man (green) or Control RNAi (grey) (Chi-Square,

****P-valueo0.0001). (g) Electron Microscopy image of Repo-Man cell line expressing the peripheral N terminus domain fused to GFP. Immuno-electron

microscopy was conducted using an anti-GFP antibody. Black arrow shows accumulation at the edge of the NPC (white arrow) and Red arrows show

accumulation on heterochromatin adjacent to the nuclear envelope (see Supplementary Fig. 1), scale bar, 500 nm. (h) Quantification of the experiment

in g. Numbers represent the density of labelling in each of the indicated sub-compartments as the number of gold particles mm� 2 (see materials and

methods). Total number of gold particles counted was 1,057.
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Figure 2 | Nup153 is necessary for Repo-Man targeting to the nuclear periphery. (a) Anaphase from HeLa stable cell line expressing GFP:Repo-ManN

(N terminus Repo-Man), stained for Nup153 (red). Late anaphase showing Repo-Man accumulation at the chromosome periphery and co-localization with

Nup153. (b) HeLa cells transfected with Control (1) or Nup1532 RNAi oligo (2) and stained for endogenous Nup153 (red) and endogenous Repo-Man (green).

Zoom-in image of Nup153 and Repo-Man at the chromosome periphery in control cells (3). Scale bar, 5mm. (c) Quantification (line profile analysis) of Repo-

Man enrichment at the chromosome periphery. (d) Interphase nucleus of GFP: Repo-ManN HeLa stable cell line showing the nuclear localization of the

construct with enrichment at the nuclear periphery. The quantification of Repo-Man distribution was measured as line profile across the nucleus (yellow line) for

the experiments in c and g. (e) Profiles of Repo-Man (green) and H3K9me2 (gray) signals across the nucleus. Repo-Man enrichment was measured as the ratio

between the average of the two maximum intensity values (Max1 and Max2) by the median of the values in the plateau (c,g). (f) HeLa cells expressing

GFP:Repo-ManN were transfected with control or Nup153 siRNA oligos and the GFP profiles were analysed as in e. Lower panels are representations of

GFP:Repo-ManN localization in a section of a nucleus. (g) Quantification of Repo-Man enrichment at the nuclear periphery in HeLa cells stably expressing

GFP:Repo-ManN or transiently transfected with GFP: Repo-ManFL (full-length Repo-Man) after RNAi with Control oligos (grey bars) or with a single (Nup153 2) or

combination (Nup153 1&2) Nup153 oligos (green bars). Data in c and g were analysed with Mann–Whitney test (****Po0.0001), n are depicted in the figures. In

box plots in g, central line represents the median, box limits are the 25th and 75th percentiles and whiskers extend to 1.5� interquartile range.
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the nuclear periphery, which is slightly external to the peak of
the peripheral H3K9me2 marker, was quantified using a
line profile analyses (Fig. 2d,e). Depletion of Nup153 indeed
leads to the displacement of peripheral Repo-Man from the
nuclear lamina, without affecting its nuclear localization
(Fig. 2f,g), suggesting that anchoring rather than import is
affected by the depletion. The same results were obtained with
two different validated oligos against Nup153 (ref. 15) and using
both the cell line expressing GFP:Repo-Man N-terminus and
the GFP:Repo-Man full-length construct (Fig. 2g).

Therefore, we conclude that Nup153 interacts (directly
or indirectly) and recruits Repo-Man thus serving as a platform
to enrich or maintain Repo-Man at the nuclear periphery after
mitosis.

Repo-Man regulates post-mitotic heterochromatin assembly.
The nuclear lamina is generally a repressive chromatin
compartment enriched for heterochromatin proteins such
as HP1 and for repressive histone marks such as H3K9me3
(refs 16–18). HP1 binding to chromatin is dependent on the
presence of H3K9me3 and is abolished by phosphorylation
of the adjacent serine (S10) by Aurora B in early mitosis5–7.
Previous work conducted in Neurospora suggested that
PP1 could be the molecular effector of this phosho-methyl
switch since its depletion causes decreased levels of H3K9me3
(ref. 19). Moreover, we have previously observed that Repo-Man
knockdown in HeLa cells leads to increased S10P (ref. 9).
Normally, HP1 starts accumulating on chromosomes during
mitotic exit and foci become visible in late anaphase20.
We therefore asked whether Repo-Man was essential for
HP1 foci formation in the interphase nucleus.

Repo-Man depletion in HeLa cells leads to a severe decrease
in the number and size of HP1 alpha foci (Fig. 3a1 and right panel
a–d) that can be rescued by an oligo-resistant version of
GFP:Repo-Man (Fig. 3a2). The phenotype is specifically depen-
dent on this particular phosphatase complex since HP1 localiza-
tion is not affected by depletion of the PP1 subunit SDS22
(Fig. 3a1), previously shown to contribute to the removal of
mitotic Aurora B phosphorylations on anaphase chromosomes21

or, as recently shown, by depletion of another PP1 binding
subunit Ki-67 (ref. 22); these data therefore suggest that
Repo-Man/PP1-specific substrate dephosphorylations are indeed
required for heterochromatin maintenance. Moreover, live cell
imaging of GFP:HP1 shows that, in cells depleted of Repo-Man,
HP1 foci fail to accumulate upon mitotic exit, suggesting that the
complex is essential for foci formation (Supplementary Fig. 2a,b).
However, Repo-Man RNAi does not decrease the overall level of
HP1 (Supplementary Fig. 3a) nor reduces accumulation of lamin
B receptor at the nuclear periphery (Supplementary Fig. 3b).

We then wanted to test if enrichment of Repo-Man at
a locus was sufficient for HP1 recruitment. To this purpose
we used a tethering-recruiting experiment; GFP:LacI:Repo-Man
or GFP:LacI were transfected in a DT40 cell line carrying a single
integration of LacO repeats9. By coupling the LacI/LacO system
with immunofluorescence using a series of antibodies against
histone modifications and heterochromatin-associated proteins,
we have studied their enrichment at the LacO locus.

HP1 is recruited to the LacO array when LacI:Repo-Man
but not LacI alone is present (Fig. 3b), and the HP1 accumulation
positively correlates with Repo-Man levels (Fig. 3c).
HP1 recruitment is dependent on the phosphatase activity of
the complex since it is significantly reduced by the Repo-Man
RAXA mutant (PP1 non-binding mutant) (Fig. 3b).
This therefore suggests that PP1 is necessary for heterochromatin
formation. However, tethering PP1 to the locus per se

(via the PP1-binding domain from Ki-67 (refs 23,24)) is
not sufficient to restore the level of recruitment achieved by the
Repo-Man/PP1 complex (Fig. 3b). Taken together, these experi-
ments clearly indicate that Repo-Man/PP1 complex creates
the favourable environment for HP1 recruitment to chromatin.
From this picture it emerges that a local balance of active
phosphatases is important to maintain the correct level of
heterochromatin in cells. It is therefore expected that over-
expression of these regulators, either by binding to non-canonical
chromatin regions or titrating PP1 away from the bound
targeting subunit can produce an abnormal chromatin environ-
ment as well; this indeed appears to be the case since Repo-Man
overexpression also disrupts the normal accumulation of
HP1 foci in interphase nuclei (Supplementary Fig. 2c,d).

Heterochromatin can be accompanied by the presence
of H3K9me3 or H3K27me3 propagated by Suv3-9 and the
polycomb protein Ezh2 respectively (reviewed in Zhang et al.25).
Due to the decrease of HP1 foci formation observed upon
Repo-Man knockdown we sought to analyse repressive histone
post-translational modifications (PTMs) by immunofluo-
rescence. Indeed, Repo-Man RNAi leads to decreased levels
of H3K27me2/3 and H3K9me3 (Fig. 3d,e); this is accompanied
by an increase in H3K9ac (Fig. 3f) thus suggesting that Repo-Man
is necessary to maintain a repressive environment.

Tethering of Repo-Man to a LacO array correspondingly
produces accumulation of H3K9me3 and H3K27me2/3 and a
decrease in the permissive marker H3K9ac (Fig. 3g). Moreover,
H3K9ac levels show an anti-correlation with Repo-Man,
suggesting that the presence of Repo-Man is inhibitory for this
histone mark deposition whilst Suv3-9 shows the opposite trend
(Fig. 3h; Supplementary Fig. 3c,d). All these modifications
are indicative of a repressive chromatin status generated by
Repo-Man binding that, in this experimental system, is also
associated with the appearance of more compacted chromatin as
measured by DAPI intensity (Supplementary Fig. 3e).

Altogether, these data provide the first compelling evidence
for a role of Repo-Man in heterochromatin formation and
maintenance.

Repo-Man binds to modified H3 tails. Repo-Man/PP1
is released from the chromatin upon mitotic entry due to a
concerted action of CDK-1 (ref. 26) and Aurora B kinases11. At
anaphase onset, its dephosphorylation by PP2A and PP1 allows
the complex to re-localize onto chromatin8,11. At this stage, and
throughout interphase, the complex has a low turnover13

suggesting that it is stably associated with chromatin. In fact,
20% of Repo-Man pool is bound to chromatin as shown by
cell fractionation experiments (Supplementary Fig. 4b,c), which
is in agreement with the amount of Repo-Man immobile fraction
observed by FRAP13.

The chromatin-targeting domain of PP1 has been identified
at the C terminus of the protein9 where aa 890–925 encompass
the region necessary for its targeting to chromatin and binding
to histones11.

We next wanted to explore if Repo-Man binds to specific
chromatin regions. We first carried out a histone peptide
array screening, covering more than 300 histone modifications
using the recombinant C-terminus domain of Repo-Man
(aa 403–1,023, GST:Repo-ManCTerm)9. GST alone did not
provide any signal on the array, while GST:Repo-ManCTerm

could bind to a subset of histone modifications (Fig. 4a–c).
Recombinant Repo-Man preferentially binds to modifications
present at lysine 27 of H3, and lysine 20 of H4 (Fig. 4a; Supple-
mentary Fig. 4a). Repo-Man has affinity for the dimethylation,
trimethylation and acetylation of lysine 27 of histone H3. These
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antagonistic modifications can undergo highly dynamic switches
regulated by the abundance of each respective acetyltransferase
and methyltransferase (reviewed in Holmqvist and Mannervik27).
This paradoxical binding can also suggest that Repo-Man
associates with different histone modifications via multiple

domains. However, Repo-Man does not seem to have high
affinity for the other well-established repressive mark H3K9me3.

Interestingly, the array data also shows that the phosphoryla-
tion of S28 abolishes Repo-Man binding (Fig. 4b). Since this
phosphorylation occurs in mitosis at some but not all the H3 sites

100

2.5

300

200

100

0 2,000 4,000

Lacl: Repo-Man level (AFU)

H
P

1 
le

ve
l (

A
F

U
)

6,000 8,000 10,000

0 2,000

–1,000

–2,000

–3,000

4,000

Lacl: Repo-Man level (AFU)

6,000 8,000 10,000

***
R2 = 0.575

***

R2 = 0.4

H
P

1 
en

ric
hm

en
t a

t t
he

 L
ac

O
 lo

cu
s

H
3K

27
m

e2
/m

e3
 in

te
ns

ity
E

nr
ic

hm
en

t a
t t

he
 L

ac
O

 lo
cu

s

H
3K

9m
e3

 in
te

ns
ity

H
3K

9a
c 

in
te

ns
ity

H
3K

9a
c 

le
ve

l (
A

F
U

)

2.0

**

HP1 DNA

Lacl*

1.5

1.0

15
40

40

60
30

20
20

10

10

10

–10

0

0

0

5

0

2.0

1.5

1.0

*
*

*

Control
n=270

Control
n=228

Repo-Man
n=326

Repo-Man
n=296

RNAi

H3K9ac H3K9me3 H3K27me2/me3

Control
n=283

Repo-Man
n=202

RNAiRNAi

Lacl

**** **** ****

Lacl:
RMWT

Lacl:
RMRAXA

Lacl:
Ki67PP1BD

RNAi 21
Control
Repo-Man

Repo-Man/
GFP:RMR

SDS22

**** Control RNAi

HP1HP1 DNA

a b

c d

Repo-Man RNAi

****n=470
n=408
n=227

75

P
er

ce
nt

ag
e 

of
 c

el
ls

50

<5

25

<5>5

Number of HP1 foci

>5

a

b c

d e f

g h

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14048

6 NATURE COMMUNICATIONS | 8:14048 | DOI: 10.1038/ncomms14048 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(only 36.5% of H3S28 are phosphorylated in prometaphase,
Supplementary Fig. 6d,e), non-phosphorylated H3 sites could
be the docking platform for Repo-Man on anaphase chromatin;
its recruitment could then direct the dephosphorylation
of nearby nucleosomes (see also later in the text and Supple-
mentary Fig. 6b,d,e). This is also in agreement with the analyses
on Repo-Man loading onto chromatin during anaphase: it is
a progressive accumulation thus supporting a cooperative binding
through mitotic exit (Supplementary Fig. 6c).

Repo-Man1–135, a mutant form that can load on the
chromosome periphery but does not appear to be directly
targeted onto chromatin9, does not show any interaction with
the histone tails (unmodified or modified) within the array
(Fig. 4c). We therefore conclude that only Repo-ManCTerm

can bind histones in vitro. To investigate this histone-binding
activity in the context of chromatin, we incubated
HeLa nucleosomes with recombinant GST:Repo-ManCTerm,
GST:Repo-Man1-135 and GST alone (Supplementary Fig. 4e).
The presence of histones was only detected in the eluted fraction
of GST:Repo-ManCTerm (Fig. 4d, Supplementary Fig. 4e).

To verify that Repo-Man is indeed in proximity of
H3K27me2/3 in vivo, we took advantage of the PLA assay
using antibodies against the endogenous Repo-Man and
H3K27me2/3 in HeLa cells. The results show positive
PLA signals, particularly enriched at the periphery, that are
significantly reduced upon Repo-Man knockdown (Fig. 4e,f).

This indicates that the Repo-Man is indeed enriched
at chromatin regions containing H3K27me2/3 in vivo and
in proximity of the nuclear periphery compartment.

Repo-Man is enriched at subtelomeric regions. We
then investigated where Repo-Man is localized in the genome and
the characteristics of the local chromatin environment, in terms
of DNA sequences and histone composition.

Previous DamID experiments using a promoter tiling
array showed that Repo-Man is not particularly enriched at the
promoters of genes28, therefore we sought to map its binding
sites genome-wide. The lack of ChIP grade antibodies for
Repo-Man did not allow us to use a ChIP-based approach. We
therefore developed a TAG-Proteogenomic approach
(Supplementary Fig. 4d); GST-tagged C terminus Repo-Man
or GST alone were used as baits to isolate HeLa nucleosomes
with high affinity for Repo-Man; after elution, the chromatin
bound fraction was used either to separate the histone bands
for mass spectrometry analysis (Figs 4d and 5a) or to extract
DNA for sequencing (HiSeq) (Fig. 5b–f) (see schematics
in Supplementary Fig. 4d). This approach provided us with
unbiased information on both the chromatin flavour in terms
of histone variants and modifications as well as the genomic
binding regions of Repo-Man. The mass spectrometry

data analyses of two independent repeats show that Repo-Man
binds preferentially to chromatin containing the H2A variant
H2AZ and the H3 variants H3.2 or H3.3.

Histone variants have different functions in chromatin.
For example, H3.3 is incorporated in a replication-independent
manner and is found at active regions29 but also at silenced
regions such as pericentromeric regions and telomeres30.

H2AZ, which comprises only 10% of total H2A (ref. 31)
seems to be necessary for telomeric repression in yeast32 and
to be upstream of H3K9me3 and HP1 recruitment in
drosophila33.

Since Histone H3 sequences are almost identical it is
not surprising that the vast majority of PTMs found are
shared amongst the three H3 variants (Fig. 5a). Nevertheless,
we have identified some H3 PTMs that are specific for
H3.3 in Repo-Man-associated chromatin. In particular, the
H3K27me2/K36me2 marks were shown to co-exist on the same
H3 tail and being dependent on PRC2 (ref. 34). Repo-Man bound
chromatin seems to be enriched for several well established
repressive marks (K9me1, K27me1, K27me3) and others
(K79me1, K79me2 or K115me1) whose function are less
understood (Fig. 5a). Intriguingly, K27ac is found associated
with H3.1 and H3.2 whereas K27me3 with H3.3 suggesting
that Repo-Man/PP1 could interact with two intrinsically different
nucleosome structures.

To identify which regions within the genome Repo-Man is
capable of binding to, we used the eluted chromatin from
the experiment described before and analysed the DNA using
deep sequencing (Supplementary Fig. 4d).

Repo-Man is found distributed on all the chromosomes,
as expected from the known cell biology of the complex.
A significant 9-fold enrichment of Repo-Man binding sites
was observed at subtelomeric regions of several chromosomes
(Fig. 5b,c). This is consistent with the mass spectrometry results.

Characterization of Repo-Man binding sites reveals significant
enrichment for RefSeq genes and exons (Fig. 5d). Although
in coverage very little is found on TSS even when the window
comprises a 2Kb region around the TSS, 2 and 15% respectively
(not shown), these are still significant. This is in line with
the DamID promoter tiling array experiments28, where few
promoter hits were found for Repo-Man when compared
with other PP1 targeting subunits; an example is MEST gene
detected in our and the published data set (Supplementary
Fig. 4f). Repo-Man is over-represented at CpG islands.
CpG islands are often associated with active gene promoters
but they were also found at promoters of developmentally
regulated genes and repressed by polycomb group of proteins
(reviewed in Deaton and Bird35).

We then analysed Repo-Man accumulation relative to
the presence of combinations of histone modifications with

Figure 3 | Repo-Man is necessary and sufficient to establish a heterochromatic environment. (a) Quantification of HP1 alpha foci after immunostaining

of HeLa cells depleted of Repo-Man (green) or SDS22 (yellow) (1). Rescue of the HP1 foci numbers is achieved by a Repo-Man:GFP oligo-resistant

construct in a Repo-Man siRNA background (brown) (2). Chi-Square (****Po0.0001). Typical image of HP1 foci in a control (a,b) or Repo-Man (c,d) RNAi.

Scale bar, 5 mm. (b) DT40 cells containing a LacO array inserted in a single locus were transfected with GFP:LacI, GFP:LacI:Repo-Man(RM), GFP:LacI:

Repo-Man(RM)RAXA and the PP1 binding domain GFP:LacI:Ki67PP1BD. Cells were fixed and stained with HP1 antibody (representative image shown in the

inset). The enrichment was calculated as a ratio between the intensity at LacI spot (green arrow in the inset), and a random nuclear spot. (c) Correlation

between the accumulation of GFP:LacI:Repo-Man(RM) at the LacO array and HP1 from the experiments in b, linear regression. (d–f) Intensities of

H3K27me2/3 (d), H3K9me3 (e) and H3K9ac (f) staining in fixed HeLa cells after control (gray) or Repo-Man (green) RNAi. Cell numbers are depicted in

the figure. Data sets were analysed with Mann–Whitney test between three replicates (****Po0.0001). In box plots, central line represents the median,

box limits are the 25th and 75th percentiles and whiskers extend to 1.5� interquartile range. (g,h) DT40 cells containing a LacO array inserted at a single

locus were transfected with GFP:LacI (grey) or GFP:LacI:Repo-Man (green). Cells were fixed and stained with antibodies against H3K9ac, H3K9me3 and

H3K27me2/3. The signal intensity levels were measured as described in b. (h) Correlation between GFP:LacI:Repo-Man(RM) enrichment at the LacO array

and the levels of the active H3K9ac, linear regression. Stars indicate t-test unless stated otherwise (*Po0.05, **Po0.01, ***Po0.001 using two-three

replicates). Error bars in a, b and g represent s.d.
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particular attention to the ones identified in the peptide array
or in our mass spectrometry data sets (Fig. 5e). The co-existence
of H3K27me3 and H3K4me3 is the classical bivalent mark
for developmentally regulated genes but it is also present
in differentiated cell lines36; Repo-Man is significantly enriched
at sites encompassing these markers.

H3K27me3 together with H3K9me3 has been found in 48% of
drosophila polythene chromosomes37 but also in human cells
and evidences indicate that the modified H3K27me3 and
H3K9me3 reinforce heterochromatin establishment through

HP1 alpha associations6. Despite the high overlap of Repo-Man
with H3K9me3 and H3K27me3, this is not statistically significant,
possibly pointing at the high representation of these marks
in differentiated cells38.

Repo-Man is also highly enriched in H3K79me2 and
H3K4me3 or H3K27me3 marked chromatin. The role
of H3K79me2 in the epigenetic landscape is still not fully
understood; although most studies seem to indicate a role
in transcription, H3K79me2 has also been associated with
Swi6 (HP1)39 and it has been postulated to occupy bivalent
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Figure 4 | Repo-Man interacts with modified histone H3. (a) Recombinant GST tagged Repo-Man (C terminus domain) was incubated with a histone

peptide array (Active Motif). The signal intensity was detected with an anti-GST antibody and quantified by LICOR. Preferential interactions of GST:Repo-

ManCTerm (C-terminus domain) are shown between two biological replicas. (b) Repo-Man has less affinity for peptides containing modified K27 residue

(either methylated or acetylated) if the adjacent S28 is phosphorylated (S28P). (c) The histone peptide array was incubated with recombinant GST:Repo-

Man1-135 (dark green bars) or GST alone (white bars) and signals detected with an anti-GST antibody as in a. Error bars represent s.e.m. between two

arrays. (d) InstantBlue staining of GST alone, GST:Repo-ManCTerm or GST:Repo-Man1-135 proteins incubated with HeLa nucleosomes (bound and unbound

fractions are shown). (e) Endogenous Repo-Man and H3K27me2/3 interactions in interphase detected by PLA. Panel on the right shows the overlay of the

PLA signals with the nuclear erosion script69. Scale bar, 5 mm. (f) Counts of PLA signals in control and Repo-Man RNAi in two replicates as described in c.

P-value was calculated using Mann–Whitney test (**Po0.01). n is depicted in the figure. In box plots, central line represents the median, box limits are the

25th and 75th percentiles and whiskers extend to 1.5� interquartile range.
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Figure 5 | Repo-Man associates with repressive histone modifications and subtelomeric regions. Eluted fractions of GST:Repo-Man and GST alone

incubated with nucleosomes (as in Fig. 4d) were analysed by Mass Spectrometry (a) or the DNA was extracted and sequenced by Illumina HiSeq (b–f).

(a) Histone H3 PTMs identified in the GST:Repo-Man fraction only. In bold are modifications identified in all the replicate experiments and in red are

coexistent PRC-dependent histone modifications found in Jung et al.34 (b) Overview of GST:Repo-Man binding sites genome-wide in two replicates.

(c) Repo-Man hits at subtelomeric regions are higher than expected by chance. (d) Annotation of Repo-Man hits according to gene features or lamina

association71 (Fisher P-values). TES: transcription end site; TSS: transcription start site; LADs: lamina associated domains. (e) Overlaps between Repo-Man

hits and double histone modifications extracted from HeLa ENCODE data sets for H3K27ac, H3K4me3, H3K79me2, H3K27me3, H2AZ, H3K9me3 and

H4K20me1 (Fisher P-values). (f) Single gene profiles of Repo-Man target genes PPP2R2C (1) and PDE9A (2) classified as polycomb repressed and

heterochromatin associated (H3K9me3) respectively by the software ChromHMM43. The chromosomes and the position of the gene (red line) are shown

along with the representation of the genomic sequence (lines/squares are exons). Repo-Man binding sites distribution is shown for two independent data

sets (light and dark green). Positioning of histone marks along the genomic window were extracted from the UCSC in HeLa cells (H2AZ, H3K9ac,

H3K9me3, H3K27ac, H3K27me3, H4K20me1 and S2-PolII), reads in y axis¼ 50. (g) H3K27me2/3 ChIP on chromatin from control and Repo-Man RNAi

cells. Repo-Man RNAi enrichment is expressed over Control RNAi enrichment, calculated relatively to input DNA using same amount of DNA in PCR. Error

bars represent s.e.m. t-test was applied. (*Po0.05, **Po 0.01, ***Po0.001).
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genes together with H3K4me3 (often on the same nucleosomes40)
and H3K27me3 (ref. 41).

The overrepresentation of Repo-Man binding sites at regions
containing H4K20me1 and H3K27ac is not surprising since
these marks are associated with CpG island promoters42.

Two typical gene profiles, PPP2R2C and PDE9A, are shown
in Fig. 5f together with Repo-Man occupancy and histone
profiles. According to the bioinformatics tool ChromHMM43,
PPP2R2C is defined as polycomb repressed (H3K27me3 positive)
whereas PDE9A is defined as heterochromatin (H3K9me3
positive). These genes are also characterized by the presence of
H2AZ and absence of PolII (Fig. 5f and other examples in
Supplementary Fig. 4g).

We next sought to explore the functional relationship between
H3K27me2/3 occupancy and Repo-Man. To this purpose we
have selected polycomb genes containing Repo-Man-binding
sites and performed ChIP on Control or Repo-Man RNAi-treated
cells (Fig. 5g). Across this panel of genes, Repo-Man RNAi
reduces the accumulation of H3K27me2/3 thus reinforcing
Repo-Man role in the maintenance of this repressive chromatin.

Repo-Man regulates chromatin positioning and gene expression.
We have so far shown that Repo-Man sustains a repressive
environment, it is enriched at subtelomeric regions and is
important for chromatin organization at the nuclear periphery.
To examine the biological implications of these findings we used
a HT1080 cell line containing LacO arrays integrated in the
13q22 and expressing LacI:GFP44. Within this region, there are
Repo-Man binding sites and, importantly, this locus
is found to localize at the nuclear periphery (Fig. 6a). Upon
Repo-Man RNAi (Fig. 6b) we could observe repositioning of
the peripheral chromosomal 13q22, with the locus moving
towards the interior of the nucleus. Positioning of the locus seems
to be dependent on PP1 since overexpression of Repo-Man
RAXA (a dominant-negative form that does not bind PP1) shows
a similar trend (Fig. 6b). However, Repo-Man depletion did not
change the positioning of the nucleolar-associated locus on
chromosome 13p (Supplementary Fig. 5a,b). We next explored
the impact of Repo-Man on an endogenous locus, the
subtelomeric region of chr14 (Supplementary Fig. 5c). Using
FISH with a PAC mapping to this region (CTC-820M16 (ref. 45))
we show that the locus moves to a more central location
upon Repo-Man RNAi in HeLa cells (Fig. 6c,d). Together, these
results support a role for Repo-Man in maintaining a subset of
subtelomeric regions at the nuclear periphery.

This further evidence also suggests that the Repo-Man/PP1
complex at the nuclear periphery is important to maintain
heterochromatin features necessary for the spatial organization
of chromatin within the nucleus.

Due to the fact that chromosome positioning at the periphery
is closely linked to transcriptional repression and our
new findings of Repo-Man being associated with several
polycomb repressed genes, we tested if Repo-Man dosage would
affect the expression of some of these telomeric-located genes. We
selected five genes based on their telomeric positioning,
enrichment for H3K27me2/3 and association with Repo-Man
(ADCY2, GRP133, SLC6A18, PPP2R2C and SLC6A19).
The expression profile of these genes, assessed by qPCR upon
Repo-Man RNAi, shows an increase in their expression consistent
with Repo-Man/PP1 playing an active role in maintaining
a repressive environment at these telomeric loci (Fig. 6g).

Because we have identified Nup153 as having a critical role
in recruiting and maintaining Repo-Man at the periphery,
we tested if depletion of Nup153 itself would affect the peripheral
chromatin organization. We have therefore analysed the

enrichment of H3K27me2/3 and H3K9me3 at the
nuclear periphery after Nup153 RNAi; in this condition both
markers are decreased at this nuclear compartment (Fig. 6e,f) and
more importantly, a selection of Repo-Man bound subtelomeric
genes became de-repressed (Fig. 6g).

Repo-Man dephosphorylates H3S28. We have previously shown
that Repo-Man/PP1 is essential for the dephosphorylation of
H3S10 during mitotic exit however the phosphatase
for the H3S28 site is not known. H3S28 is phosphorylated both
in mitosis (by Aurora B) and in interphase (by MSK1) in
response to stress46. This phosphorylation helps to modulate
the binding of PRC2 and the expression of polycomb-regulated
genes (reviewed in Sawicka and Seiser47). We therefore tested if
Repo-Man/PP1 dephosphorylates H3S28 for which a phosphatase
has not been identified.

To this purpose we used two different approaches. First,
we overexpressed a hyperactive Repo-Man mutant TA3
(previously characterized alongside with its effects in H3T3
dephosphorylation9) and tested the phosphorylation levels of
H3S28 in early mitosis; indeed Repo-Man TA3 can induce
premature histone dephosphorylation of H3S28 (Fig. 7a). Second,
we depleted Repo-Man in HeLa cells and analysed
the H3S28 phosphorylation levels in anaphase and cytokinesis:
in Repo-Man depleted cells a significant level of H3S28 is retained
compared with the controls (Fig. 7b,c). Moreover, mitotic
chromosomes of Repo-Man depleted cells show a higher level
of H3S28 phosphorylation (Supplementary Fig. 6a). All together
this data suggests that H3S28 is a substrate of Repo-Man/PP1 at
least during mitotic exit. However, due to Repo-Man being bound
to some chromatin regions during interphase and the fact that
some polycomb-repressed genes increase expression upon
Repo-Man RNAi, we can speculate that Repo-Man/PP1 could
potentially dephosphorylate H3S28 in interphase as well.

These results clearly identify Repo-Man/PP1 as a key
chromatin-linked phosphatase complex essential for modulating
the levels of S10 and S28 phosphorylations, which might
drive phospho/methyl switches through HP1 and PRC2 binding
(Fig. 7d).

Discussion
Repo-Man/PP1 complex has been shown to have important
functions both in early mitosis and during mitotic exit. One
of the established roles for this complex is reverting the mitotic
phosphorylation events on histone H3, T3/S10 (ref. 48), and
here we show that dephosphorylates the S28 residue as well.
Beside this catalytic activity, Repo-Man is also an important
factor necessary for the timely re-organization of the nuclear
envelope during mitotic exit. However, this complex is not
degraded once mitosis is over but remains stably linked to
chromatin in interphase until the following division. In the
present study we found that a fraction of Repo-Man is enriched at
the nuclear periphery where it is maintained via an interaction
with Nup153, associates with heterochromatin marks and is
essential for the peripheral localization, epigenetic environment
maintenance and expression of a subset of subtelomeric
and polycomb-regulated genes.

Previous studies demonstrated that Repo-Man interacts
with Importin b in anaphase and that its depletion leads to
deformed G1 nuclei. After cell division, it remains associated
with chromatin13, and a fraction is bound to the nuclear
periphery. Nup153 has been previously shown to co-purify
with Repo-Man in chicken and human cells9,14 but the function
of this interaction remained unknown. Here we have
demonstrated that this interaction is important to stabilize

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14048

10 NATURE COMMUNICATIONS | 8:14048 | DOI: 10.1038/ncomms14048 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


the pool of Repo-Man at the nuclear periphery of the newly-
formed nuclei and point to an extended function for Nup153
involved also in tethering chromatin-associated proteins, distinct
from interactions with nucleoporins and import proteins
necessary for the normal function of the NPC.

Using electron microscopy we were able to show that
Repo-Man lies right outside the NPC, it sits on the dense
chromatin at its boundary as well as underneath the nuclear
lamina within patches of heterochromatin, pointing that

Repo-Man bound chromatin is indeed different from the
active type of chromatin commonly associated within the
nucleopore basket49. Interestingly, recent investigations in
ES cells have also shown enrichment of polycomb repressive
chromatin associated with Nup153 (ref. 50).

Repo-Man contributes to the re-formation of HP1 foci
after division and its depletion coincides with decreases
in heterochromatin marks such as H3K27me3 and, to a
lesser extent, H3K9me3. When Repo-Man is artificially tethered
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Figure 6 | Repo-Man depletion affects chromosome positioning. (a) HT1080 cells containing a LacO array inserted at 13q22 and expressing GFP:LacI

were fixed and stained for Nup153. The arrow indicates the integration site. (b) Position of the chr13q22 was measured using an erosion script software69

across five concentric shells (1—most outer shell to 5—most inner shell) after RNAi with control or Repo-Man oligos or transiently transfected with

the dominant-negative Repo-ManRAXA mutant. (c) 3D FISH with probe CTC-820M16 (red signal) mapping to the subtelomeric region of chromosome

14 performed on HeLa cells. (d) Quantification of spots location described in c, using the erosion script software. (Fisher test, *Po0.05, **Po0.01,

***Po0.001 using two-three replicates). (e) Enrichment of H3K27me2/3 at the nuclear periphery after Nup153 RNAi. (f) Enrichment of H3K9me3 at

the nuclear periphery after Nup153 RNAi. Enrichment was calculated as in Fig. 2e. Mann–Whitney test (*Po0.05), n is depicted in the figure.

In box plots in e and f, central line represents the median, box limits are the 25th and 75th percentiles and whiskers extend to 1.5� interquartile range. (g)

Differential expression of telomeric genes bound by Repo-Man between control and Repo-Man (green) or Nup153 (blue) RNAi. Delta–delta-CT method

was used and normalized for GAPDH. Error bars¼ s.e.m. between three replicates. t-test was used for statistical analysis (*Po0.05, **Po0.01).
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to a locus (using the LacI:LacO system), repressive histone
marks accumulate at this region. All these evidences strongly
suggest that Repo-Man is necessary and sufficient to generate
and maintain a repressive chromatin environment within
the nucleus. In fact, the nuclear periphery is enriched in
repressive chromatin and the pool of Repo-Man localized at the
periphery could be important to maintain this nuclear
environment.

In this respect, the important question is: how does Repo-Man
bind to chromatin and where?

Repo-Man binds progressively to chromatin after anaphase
onset8 through its histone-binding domain localized to the
C terminus of the protein9. Binding of PP1 and PP2A to
Repo-Man allows its dephosphorylation and targeting to
chromatin11. Here we have identified that Repo-Man
has affinity for a subset of histone modifications including
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Figure 7 | Repo-Man dephosphorylates S28 and regulates a phospho-switch necessary for heterochromatin maintenance. (a–c) Repo-Man

dephosphorylates H3S28P. (a) HeLa cells overexpressing GFP:Repo-ManTA3, which prematurely associates with chromatin, were fixed and stained for

H3S28P. Scale bar, 5mm. (b,c) HeLa cells after control or Repo-Man RNAi were fixed and stained for H3S28P and tubulin. The intensity of

H3S28P was measured in anaphase and cytokinesis (cyto) in two independent replicates (c). Scale bar, 10 mm. Mann–Whitney test (****Po0.0001),

n is depicted in the figure. In box plots in c, central line represents the median, box limits are the 25th and 75th percentiles and whiskers extend to

1.5� interquartile range. (d) Model: Repo-Man associates with modified Lysine 27 when the adjacent S28 is not modified. Through dephosphorylations of

the nearby serine 10 and 28 it regulates HP1 enrichment and potentially the maintenance of H3K27 methylation respectively. These processes may

contribute to the establishment and/or maintenance of a repressive environment. At the periphery, the position of this chromatin environment is also

locally maintained via the interaction between Repo-Man and Nup153.
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H3K27 (me2/3 or ac) that could represent its docking sites
at anaphase onset in nucleosomes voided of S28 phosphorylation;
in fact only 36.5% of S28 is phosphorylated in mitosis. Because
of this finding and with the knowledge that Repo-Man is involved
in the dephosphorylation of histone H3, we hypothesized
that Repo-Man could also target S28 for dephosphorylation, for
which thus far no phosphatases had been identified. Our
study in fact indicates that this is the case.

These findings place Repo-Man/PP1 at the centre of
the phosphorylation switches occurring on histone H3 critical
for the M/G1 transition but also suggest that this complex
could be involved in signal transduction in interphase, for
example opposing the activity of MSK1 and PLK1 (refs 51,52).
The latter is a very interesting avenue that will be interesting
to explore further in a well-characterized model system.

Our peptide array analyses identified the binding to
H3K27me2/3 but also to H3K27ac and H4K20me1/2. A dynamic
interplay between H3K27ac and H3K27me3 has been shown
in ES cells. Depending on the levels of the respective enzymes,
developmentally regulated genes seem to transit between an
active, marked by H3K27ac, and poised, marked by H3K27me3
state53. A rapid transition between these states would possibly
require that chromatin readers could recognize opposing modi-
fications perhaps with different affinities. Another possibility
is that Repo-Man C-terminus domain interacts with positive
and negative histone markers via different subdomains.

H4K20me1 and H4K20me2 are widely present in the genome
and H4K20me3 is deposited by Suv4-20h2, which interacts
with H3K9me3 and HP1 (refs 54–56). It might be the case that
Repo-Man binds the bookmarked H4K20me1/2 for facilitating a
later conversion into the repressive H4K20me3 state. Further
studies will be necessary to analyse in detail the biological
significance of Repo-Man and H4K20me binding. The presence
of combinations of these modifications within the same
or adjacent nucleosomes could increase and tighten the binding
of Repo-Man to a specific chromatin region. Nucleosome recon-
stitution experiments will address these important questions
in the future.

Chromatin containing the H2A variant H2AZ seems to be
preferentially bound by Repo-Man. Interestingly, H2AZ is asso-
ciated with polycomb-repressed genes and its loss reduces
PRC2 occupancy levels in ES cells57.

Repo-Man binds chromatin characterized by a repressive
histone code and is enriched at subtelomeric regions. Telomeres
are enriched for the histone variant H3.3 and often
found associated with the repressive markers H3K9me3,
H4K20me3 and HP1 at subtelomeric regions58 and H2AZ
in yeast32. A high percentage of Repo-Man binding sites
overlap with H3K9me3 and H3K27me3 and in conjunction
with H2AZ. The first two histone modifications are markers
of repression (H3K9me3 and H3K27me3) and the latter demarks
insulator regions (H2AZ). Moreover, H3K9me3 and H3K27me3
can co-associate and they have been found together with H2AZ
in facultative heterochromatin bound by lamin A/C, thought
to be more dynamic59.

Very little Repo-Man is found at promoters, as previously
shown using a DamID approach28, although its presence in
these regions is higher than expected. Interestingly, Repo-Man
has a large portion of binding sites at CpG islands. CpG islands
are usually found in promoters of active genes and studies in
ES cells found both H3K4me3 and H3K27me3 at CpG islands
bound by PRC2 (ref. 35).

The functional relevance of Repo-Man targeting to telomeres
and its presence at the nuclear periphery has implications
in genome organization. In fact we have shown that subtelomeric
regions of chr13 and chr14 move away from the periphery

in Repo-Man depleted cells and the expression of telomeric
genes is elevated upon RNAi. These changes are not simply
explained by cell-cycle arrest/defects caused by Repo-Man
knockdown since previous studies show that Repo-Man depletion
does not cause major cell cycle changes in HeLa cells8. It has
been suggested that telomeres are tethered to the periphery
in late anaphase during the process of nuclear envelope
reassembly60. Repo-Man is crucial for the nuclear assembly
process as well9, suggesting that the role of Repo-Man in telomere
organization may begin at these early stages of nuclear formation.
Moreover we have provided the first evidence of a role of Nup153
in organizing the peripheral chromatin via Repo-Man.

In the present study we have also shown that Repo-Man
not only counteracts the S10 (ref. 9) phosphorylation but
also the S28 during mitotic exit; this role could also persist
in interphase at specific sites. Multiple kinases, including
RSK2, MSK1/2, PIM1 and IKKa, have been shown to directly
phosphorylate H3 thereby indicating that H3 phosphorylation
is a critical step in signal transduction to the chromatin/
transcriptional regulatory machinery (reviewed in Baek61).
Stress induction of MSK1 can re-activate the polycomb-silenced
a-globin gene via H3S28 phophorylation62 and gene activation
during ES cells differentiation through dissociation of PRC63.
On the other hand, H3S28P could also trigger more permanent
changes in the epigenetic landscape. A methyl/acetylation
switch on the lysine 27 has been proposed in a luciferase
reporter where MSK1 phosphorylation of S28P leads to
K27 acetylation coupled with reduction of K27me3 and of
polycomb group of proteins binding at the reporter62. Previous
models suggest that phosphorylation of S28 through stress
activated kinases underlies the methyl/acetyl switches regulating
the nearby K27, however, the nature of the counteracting
phosphatase is not known64. Since we detect a decrease
of H3K27me2/3 after Repo-Man RNAi at specific loci where
Repo-Man is bound, we suggest that Repo-Man could
be important in mediating the acetyl-methyl switch, through
dephosphorylation of H3.

Collectively our data shows that Repo-Man/PP1 facilitates
a particular chromatin environment in the daughter cells and,
by doing so, this complex contributes to shape nuclear chromatin
structure and organization in interphase. This represents the
first study suggesting Repo-Man/PP1 complex as epigenetic
regulator. As can be predicted by this model, a phosphatase
with such a role should be maintained at highly controlled levels
and alterations of its dosage may have drastic consequences
for gene organization and expression that might arise in
disease scenarios like cancer.

Methods
Cell culture, cloning and transfections. HT1080 and HeLa cells were grown
in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin–
Streptomycin (Invitrogen Gibco) at 37 �C with 5% CO2.

DT40 cells carrying a single integration of the LacO array26 were cultured
in RPMI1640 supplemented with 10% FBS and 1% chicken serum at 39 �C and
5% CO2.

Transient transfections for DT40 in LacO array background were conducted
as previously described using GFP-fused LacI, LacI:RMWT, LacI:RMRAXA

LacI:KI67PP1BD constructs9,26.
For RNAi treatments, HeLa cells in exponential growth were seeded in

six-well plates containing glass coverslips and grown overnight. Transfections
were performed using Polyplus jetPRIME (PEQLAB, Southampton, UK) with
the indicated siRNA oligos and analysed at 48 h after transfection as previously
described9. For the rescue experiments HeLa cells at 50% confluence were
transfected with 400 ng of plasmid DNA and 50 nM of siRNA oligonucleotides
and analysed 48 h post-transfection. The siRNA oligonucleotides against
Repo-Man (CDCA2) and SDS22 (PPP1R7) were obtained from Qiagen,
Hs_CDCA2_5 and PPP1R7_7, respectively, Nup153_1 50-GGCAGACU
CUACCAAAUGUtt-30 and Nup153_2 50-GGACUUGUUAGAUCUAGUUtt-30 ,
and finally CGUACGCGGAAUACUUCGAdTdT was used as a control.
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For rescue experiments, as in Fig. 3a, the oligo 50-UGACAGACUUGACC
AGAAATT-30 was used instead of Hs_CDCA2_5.

Constructs and cell lines used in this study, were generated in Vagnarelli et al.9;
HP1:GFP and Nup153:GFP construct were a kind gifts from Schirmer Lab
(Welcome Trust Edinburgh) and Ullman Lab (University of Utah), respectively.

Immunofluorescence microscopy. Cells were fixed in 4% PFA and processed
as previously described26. Primary antibodies were used as in Supplementary
Table 1. Fluorescence-labelled secondary antibodies were applied at
1:200 (Jackson ImmunoResearch). Three-dimensional data sets were acquired
using a wide-field microscope (NIKON Ti-E super research Live Cell imaging
system) with a numerical aperture (NA) 1.45 Plan Apochromat lens. The data
sets were deconvolved with NIS Elements AR analysis software (NIKON).
Three-dimensional data sets were converted to Maximum Projection in the
NIS software, exported as TIFF files, and imported into Adobe Photoshop
for final presentation.

Live cell imaging was performed with a Nikon Ti-E super research live
cell imaging system microscope as previously described9.

For quantification of the staining in RNAi background masks were
created around the DAPI nuclei. Mean intensity of antibodies signals were
extracted and background was subtracted. For quantification of enrichment in
LacI/LacO systems, three circles were designed around the LacI spot, within
the nucleus and outside the cell and signals intensities were extracted. The
outside circle served as background and was subtracted from both the nuclear
and the LacI spot, then the signal intensity from the LacI was normalized
relative to the intensity of the nuclear signal.

PLA. Proximity ligation assay was performed according to the manufacturer’s
protocol (Sigma). HeLa cells were fixed, permeabilized and blocked with
BSA as previously described9. The antibodies were used at a concentration
as per Supplementary Table 1. PLA probes were added and ligation was
performed following manufacturer instructions (Sigma). Coverslips were
mounted on DAPI and observed on the previously mentioned wide-field
NIKON microscope. Spots lying within nuclear masks were counted in
control and Repo-Man siRNA experiments.

Quantitative real-time PCR. RNA was collected from RNAi treated HeLa
cells and extracted using the Tissue and Cells RNA Isolation Kit (Mobio) according
to manufacturer’s protocol. One microgram of RNA was used to prepare
cDNA using the cDNA synthesis kit (Thermo Scientific) and oligo(dT) primers
according to manufacturer’s instructions. qPCR was quantified using SYBR green
Master Mix (Thermo Scientific) and according to manufacturer’s instructions
(primers in Supplementary Table 2). Delta–delta CT method was used with
normalization for GAPDH.

Immunoelectron microscopy. Cells were fixed in 2� 4% paraformaldehyde,
0.2% glutaraldehyde in PHEM buffer (60 mM PIPES, 25 mM HEPES, 2 mM MgCl2,
10 mM EGTA, pH6.9) for 60 min. Then 1� fix was added without the
glutaraldehyde. Cells were scraped off the culture dish, pelleted, stored
1–2 days, resuspended in 15% PVP, 1.7 M sucrose in 0.1 M phosphate buffer
with 33 mM Na2CO3, pH 7.4 and frozen in liquid nitrogen. Frozen pellets were
sectioned on a cryo-ultramicrotome (Leica, UC6 with FC6 cryo-attachment).
Cryosections, retrieved in 15% PVP, 1.7 M sucrose, were thawed, rinsed in
PBS with 1% glycine, incubated in PBS with 1% BSA, incubated with rabbit
anti-GFP antibody (Abcam) at 1:100 dilution, rinsed in PBS then incubated with
the secondary anti-rabbit 10 nm colloidal gold (BBI Solutions). Grids were then
rinsed in PBS, transferred to 1% glutaraldehyde (Agar Scientific) in PBS, washed
in water and embedded in 2% methyl cellulose containing 0.4% uranyl acetate
(Agar Scientific). Images were taken on a Hitachi H7600 electron microscope at
100 kV. For quantification of gold labelling, 50 images were acquired at a magni-
fication of 60,000 times, corresponding to 5 mm2 of cell area. Analysis was carried
out using Fiji. The Freehand selection tool was used to measure the total nuclear
area within the images analysed, delineated by the inner nuclear membrane or
the edge of the image, as well as to estimate the area of the peripheral hetero-
chromatin. Distinct nuclear bodies were only analysed if they were labelled.

In vitro binding array. The peptide array was purchased from Active Motif.
GST: Repo-Man403-1023 GST: Repo-Man1-135 (ref. 9) or GST alone was expressed
in Rosetta and purified on glutathione beads (Thermo Scientific). One micromolar
of protein was processed onto the histone peptide array using the anti-GST
(Pierce CAB4169, 1:1,000) and c-myc (positive control) as described by the
manufacturer (Active Motif). LiCor secondary antibodies (LiCor IRDye 800CW
and 680RD at 1:3,000 dilution) were used to allow imaging with the Odyssey
system. Arrays were analysed through manufacturer’s software.

Preparation of Repo-Man bound nucleosomes. Chromatin was extracted
from HeLa cells and digested with Micrococcal Nuclease (NEB, 37 �C, 20 min)
and incubated overnight (4 �C) with either GST:Repo-Man or GST alone

glutathione beads (Thermo Scientific) in binding buffer (50 mM TRIS, 1 mM
CaCl2, 4 mM MgCl2, 0.32 M sucrose, 150 mM NaCl and 0.1% NP-40). Bound
fraction was washed with binding buffer and eluted with glutathione reduced.
DNA extracted and sequenced in Illumina HiSeq2500.

Protein assays and quantitative immunoblotting. HeLa cells were pelleted
and prepared for blotting either through sonication in SDS sample buffer
or fractionated according to the Subcellular Protein Fractionation Kit
(Thermo Scientific). Membranes were incubated with primary antibodies as in
Supplementary Table 1 and subsequently with IRDye-labelled secondary
antibodies (LiCor). Fluorescence intensities were determined using an
LiCor Odyssey CCD scanner according to manufacturer’s instructions
(LiCor Biosciences).

Mass spectrometry. Part of the chromatin eluted from the GST:Repo-Man
or GST alone was loaded on an SDS–PAGE then stained with Instant Blue
(Expedeon). The regions of gel containing the histones were excised and
sent for Mass spectrometry.

Excised gel bands were de-stained and proteins were digested with trypsin,
as previously described65. In brief, proteins were reduced in 10 mM dithiothreitol
(Sigma) for 30 min at 37 �C and alkylated in 55 mM iodoacetamide (Sigma)
for 20 min at ambient temperature in the dark. They were then digested
overnight at 37 �C with 12.5 ng ml-1 trypsin (Pierce).

MS-analyses were performed either on an LTQ-Orbitrap mass spectrometer
(Thermo Scientific) or on a Q Exactive mass spectrometer (Thermo Scientific)
both coupled on-line to Ultimate 3000 RSLCnano Systems (Dionex, Thermo
Scientific).

The MaxQuant software platform version 1.5.1.2 was used to process the
raw files and search was conducted against Homo sapiens complete/reference
proteome set of UniProt database (released on 14/05/2014), using the
Andromeda search engine. For the first search peptide tolerance was set to
20 p.p.m. while for the main search peptide tolerance was set to 4.5 pm.
Isotope mass tolerance was 2 p.p.m. and maximum charge to 7. Digestion
mode was set to specific with trypsin allowing maximum of two missed cleavages.
Carbamidomethylation of cysteine was set as fixed modification. Oxidation
of methionine, acetylation, single, di- and tri-methylation of lysine, as well as
single and di-methylation of arginine were set as variable modifications.
Peptide and protein identifications were filtered to 1% FDR.

Histone PTM were detected only amongst the three GST:Repo-ManCTerm

data sets and none on GST alone. Histone variants peptide counts mentioned
in the text (H2AZ) or represented in Fig. 5a were over-represented in the
GST:Repo-ManCTerm (at least 3-fold) when compared with GST alone.

For the characterization of serine 28 phosphorylation during mitosis, cells
were grown overnight with nocodazole and mitotic extracts were collected
and ran on a gel and stained with Instant Blue (Expedeon). The histone bands
were excised for Mass Spectrometry. For the determination of the degree of
phosphorylation on H3S28 two similar histone gel bands were digested as
previously described. Before the addition of trypsin one of the samples was
treated with alkaline phosphatase for 30 min at 37 �C. The analyses of
phosphorylated S28 peptides was conducted as described in Steen et al.66

Bioinformatic analyses. Sequencing libraries were constructed, quantified
and analysed according to standard protocols. Sequencing libraries were
constructed on the Apollo 324 Next Generation Sample Preparation system
(Wafergen) using the PrepX Complete ILMN 32i DNA Library Kit (Wafergen)
according to the manufacturer’s guidelines. The prepared libraries were
quantified and multiplexed before 50-nt paired end sequencing on a HiSeq2500
(Rapid mode) according to standard Illumina protocols. Approximately
60–80 million read pairs were produced per sample and mapped to the
human reference genome (hs37d5 version of build 37). Bam files from
individual sequencing lanes were merged using Picard (Picard, http://broad-
institute.github.io/picard/). Mapped reads were analysed for standard
ChIP-Seq quality metrics; in particular, for each sample, the Normalized Strand
Cross-correlation was41.05 and the Relative Strand Cross-correlation coefficients
was 40.8, suggesting a good degree of enrichment for the protein of interest,
in agreement with67. Peaks were called using the software MACS2 with default
parameters for narrow regions. Peaks located on unlocalized genomic contigs
(for example, GL000192.1 or hs37d5) were excluded from the final set of
significantly enriched regions. The sequences obtained with the GST alone
were subtracted from the data sets.

Using a 5% FDR cut-off, 7550 binding sites were detected from the first
and 4201 from the second duplicate. A stringent approach was applied to select
634 Repo-Man binding sites resulting from the union of common sites found in
replicates 1 and 2.

HeLa broad peaks of histone markers and chromatin proteins of interest were
downloaded from the ENCODE depository (https://genome.ucsc.edu/ENCODE/)
and compared with Repo-Man-binding sites in terms of overlapping peaks
using a Python script. UCSC Genome browser was used to visualize Repo-Man
and ENCODE data sets.
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Characterization of Repo-Man binding sites was performed using ChromHMM
states downloaded from the Roadmap Epigenomics Database for the HeLa
epigenome and using a 15-state Hidden Markov Model (HMM)43.

Subtelomeric regions were defined as 500-kb windows adjacent to the
terminal fragment of each chromosome as in Yang et al.68

Chromosome positioning. HT1080 cell line carrying a LacO integration on
chromosome 13q22 and expressing a LacI:GFP (kindly provided by W Bickmore)
was used with RNAi for Repo-Man as described before. Images of LacI:GFP
co-stained with Nup153 were taken and analysed with the nuclear erosion scrip69

to assess chromosome 13q22 location in relation to each of the five concentric
shells.

3D FISH. The PAC CTC-820M16, localized in the subtelomeric region of
chromosome 14 (14q32.33, Chr14:107106019-107206128 Ensemble draft 75
(ref. 45)) was labelled by nick translation with digoxigenin –dUTP (Roche),
using the Abbott Molecular Nick Translation kit, as per manufacturer instructions.
The 22-14 alpha satellite probe p14.1 (ref. 70) was similarly labelled with
biotin-dUTP.

For 3D FISH, the transfected cells were incubated in CSK buffer
(0.1 M NaCl; 0.3 M Sucrose; 0.003 M MgCl2; 0.01 M Pipes) for 10 min, and then
fixed in 2% formaldehyde/1� PBS for 5 min. Cells permeabilization was carried
out in 0.5% Triton X-100/1� PBS for 20 min. Following an incubation in
0.1 N HCl for 10 min, and a wash in 2� SCC, the probes were applied onto the
cells, and the probe and nuclear DNA were denatured simultaneously at 85 �C for
5 min. The slides were incubated at 37 �C. The following day, slides were
washed three times in 0.1� SSC at 65 �C.

The probes were detected with anti-digoxigenin antibody, conjugated with
rhodamine (Roche), or avidin Alexa Fluor 488 Conjugate (Invitrogen), both at
5 mg ml� 1, and the slides mounted in Vectashield DAPI (Oncor). Images
were acquired with an Olympus BX-51 epifluorescence microscope coupled
to a JAI CVM4þ CCD camera, with Leica Cytovision Genus v7.1.

Chromatin immunoprecipitation. ChIP was performed using the ChIP-IT
express kit (Active Motif) according to Manual’s Instructions. The protocol was
erformed on RNAi treated HeLa cells and using 10ml of H3K27me2/3 antibody
(Active Motif, 39535) and digoxin as a negative control (Jackson Laboratories,
200-002-156). After ChIP, DNA was purified using Phenol Chloroform and ethanol
precipitation with glycogen. DNA concentration was measured using Qubit (High
Sensitivity Kit, Thermo) and reduced to 0.2 ngml. qPCR was
quantified using SYBR green Master Mix (Thermo Scientific) and according to
manufacturer’s instructions (primers in Supplementary Table 2). Delta–delta
CT method was used with normalization for Input DNA. MYT1 gene was used as a
control for H3K27me2/3 enrichment.

Data availability. Mass Spec data generated in this study have been deposited in
PRIDE under accession number PXD004613. Hi-Seq data generated in this study
have been deposited on Gene Expression Omnibus under GEO accession number
GSE84035. The microscopy data are available from the corresponding author upon
request and will be released via figshare.
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